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Abstract 

CLASSIFICATION OF PLOT-LEVEL FIRE-CAUSED TREE MORTALITY IN A 

REDWOOD FOREST USING DIGITAL ORTHOPHOTOGRAPHY AND LIDAR 

Swanton Pacific Ranch is an approximately 1,300 ha working ranch and forest in 

northern Santa Cruz County, California, managed by California Polytechnic State 

University, San Luis Obispo (Cal Poly). On August 12, 2009, the Lockheed Fire burned 

300 ha of forestland, 51% of the forested area on the property, with variable fire intensity 

and mortality. This study used existing inventory data from 47 permanent 0.08 ha (1/5 ac) 

plots to compare the accuracy of classifying mortality resulting from the fire using digital 

multispectral imagery and LiDAR. The percent mortality of trees at least 25.4 cm (10”) 

DBH was aggregated to three classes (0-25, 25-50, and 50-100%). Three separate 

Classification Analysis and Regression Tree (CART) models were created to classify plot 

mortality. The first used the best imagery predictor variable of those considered, the 

Normalized Difference Vegetation Index (NDVI) calculated from 2010 National 

Agricultural Imagery Program (NAIP) aerial imagery, with shadowed pixel values 

adjusted, and non-canopy pixels removed. The second used the same NDVI in 

combination with selected variables from post-fire LiDAR data collected in 2010. The 

third used the same NDVI in combination with selected variables from differenced 

LiDAR data calculated using post-fire LiDAR and pre-fire LiDAR collected in 2008. The 

imagery alone was 74% accurate; the imagery and post-fire LiDAR model was 85% 

accurate, while the imagery and differenced LiDAR model was 83% accurate. These 

findings indicate that remote sensing data can accurately estimate post-fire mortality, and 

that the addition of LiDAR data to imagery may yield only modest improvement. 
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Chapter 1 

Introduction 

Swanton Pacific Ranch is an approximately 1,300 ha working ranch and forest in 

northern Santa Cruz County, California, managed by California Polytechnic State 

University, San Luis Obispo (Cal Poly). The ranch was donated to the school by alumnus 

Al Smith upon his death in 1994, following a 7-year partnership that involved Cal Poly 

students and faculty to manage the ranch as a productive, working property and a 

learning laboratory. Approximately 530 ha of the property is forestland, of which 284 ha 

are managed for timber production under a Non-industrial Timber Management Plan. The 

forest is a heterogeneous mixture of a variety of species, dominated by Redwood, 

Tanoak, Douglas-fir, and Madrone. 

In order to support both research and forest management, the forested portion of 

the ranch has a Continuous Forest Inventory system (CFI), installed partly in 1997 and 

partly in 2003. The system comprises eighty-three 0.08 ha (1/5 ac) circular plots 

distributed on a 152.4 m (500 ft) grid. 
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On August 12, 2009, a fire was ignited to the north of Swanton Pacific Ranch 

which would come to be known as the Lockheed Fire, and burn 3,163 ha over the course 

of 11 days. Over one-third of the ranch property was burned, including 300 ha of 

forestland, representing 51% of the forested area on the property, with variable fire 

intensity and mortality. Given the existence of high-quality inventory data in the area 

which had burned, the opportunity existed to evaluate the utility of remote sensing to 

detect tree mortality resulting from the fire. The two general types of remotely-sensed 

data which were used in this study are digital multispectral imagery and light detection 

and ranging (LiDAR). 

1.1 Purpose and need 

The purpose of this study is to assess how accurately fire-caused tree mortality 

can be estimated at the stand level from remotely-sensed data in a diverse forested 

environment. Forest managers have a need for information about fire effects and the 

spatial distribution of mortality following wildfire, but direct assessment from the field is 

time-consuming and expensive. Remote sensing may be used to estimate varying levels 

of mortality and provide a more efficient, timely, scalable, and potentially more cost-

effective means for post-fire assessment. Similar past studies have generally used an 

index of fire 'severity' rather than estimating mortality directly. While useful, estimates of 

severity are not generally sufficient to make stand-level forest management decisions 

about post-fire response. 
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1.2 Objectives 

The primary objective of this study is to evaluate the accuracy of a variety of methods for 

interpreting remote sensing data in estimating percent tree mortality in a forested 

environment. This is comprised of several smaller objectives: 

1. Assess the accuracy of estimates using digital multispectral imagery 

1.1. Evaluate a variety of imagery options available to landowners 

1. Compare varying techniques for manipulation of imagery 

1.2. Examine the effects of extracting metrics using oversized plots 

1.3. Examine the effects of using LiDAR-derived canopy masks 

2. Assess the accuracy of estimates fusing post-fire LiDAR data and imagery. 

3. Assess the accuracy of estimates fusing pre- and post-fire LiDAR data and 

imagery. 

3 



 

 

 

 

 

 

 

  

 

 

       

   

 

   

  

 

 

   

 

  

 

Chapter 2 

Background 

2.1 Study location and site description 

The study site is a portion of Swanton Pacific Ranch, a 1,320 ha educational and 

research facility, dedicated to remain a working ranch and forest, owned by the Cal Poly 

Corporation and managed by the College of Agriculture, Food, and Environmental 

Sciences at Cal Poly. The ranch is located on the west slope of the Santa Cruz Mountains 

on the Central Coast of California, approximately 19 km north of the city of Santa Cruz. 

Elevations across the site range from approximately 20-470 m.  The topography is steep 

and rugged – slopes range from 0-85%, with area by slope class shown in table 2.1. The 

site experiences a maritime-Mediterranean climate, with cool rainy winters and dry 

summers, moderated by coastal fog. Average annual rainfall is 77.88 cm. 
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Figure 2.1: Study area location 

Table 2.1: Study area slopes 

Slope range (%) 

< 30 

30-50 

50-65 

Area (%) 

8 

21 

34 

Overstory forest canopy in the study area is dominated by second-growth coast 

redwood (Sequoia sempervirens (D. Don) Endl.) with a significant component of 

Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco var menziesii), tanoak (Lithocarpus 

densiflorus (Hook & Arn.) Rehder) and coast live-oak (Quercus agrifolia (Née)). The 

riparian is dominated by red alder (Alnus rubra (Bong.)) and also has a significant 

component of bigleaf maple (Acer macrophyllum (Pursh)) and California bay 
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(Umbellularia californica (Hook. & Arn.) Nutt.). Understory species are many and 

varied, but several of the most common are listed in table 2.2. 

Table 2.2: Common understory species 

Scientific name and authority Common name 

Aralia californica (S. Watson) Elk-clover 

Gaultheria shallon (Pursh) Salal 

Oxalis oregana (Nutt.) Redwood sorrel 

Polystichum munitum (Kaulf.) C. Presl. Western sword fern 

Rubus parviflorus (Nutt.) Thimbleberry 

Rubus ursinus Chan. & Schltdl. California blackberry 

Toxicodendron diversilobum (Torr. & A. Gray) Greene Poison-oak 

Trillium ovatum (Pursh) Western trillium 

Urtica dioica L. subsp. Gracilis (Aiton) Selander Stinging nettle 

Vaccinium ovatum (Pursh) Huckleberry 

With the exception of a small stand at the northernmost extent, the entire study 

site was clearcut in the early 20
th

 century. Portions of the site were salvage logged 

following the Pine Mountain Fire in 1948. Approximately 127 ha, 41% of the site, was 

selectively harvested between 1989-2008, with some portions harvested twice within this 

period. As a result, the structure of the forest is variable across the site, with 1-3 age 

classes present. Basal area (BA) within the plots range from 4-202 m
2
/ha; BA within 

plots used for this project range from 35-124 m
2
/ha. The entire site is located within the 

perimeter of the Lockheed fire. As a result of the fire, 37.5 hectares of the study area were 

salvage-logged using a helicopter in the winter of 2009 (see figure 2.2). 
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Figure 2.2: Harvest history 

2.2 Literature Review 

Wildland fires burn with varying intensity, which may be measured as flame 

height, heat, rate of spread, or total energy released. The resulting effects depend on the 

interaction of intensity and duration with ecological characteristics of the site, and are 

commonly referred to as fire severity. Although there is no common standard for 

ecological measurement of fire severity, one field measurement which is applicable 

across a wide range of vegetation types and has gained relatively widespread acceptance 

is composite burn index (CBI). CBI rating comprises the condition and color of soil, 
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amount of vegetation consumed, scorch of trees, and presence of sprouting and/or new 

colonizing vegetation (Key & Benson, 2006). Other measures may be used where they 

are perceived to be more relevant to the goals of land managers – for example, amount of 

vegetation removed (Fox, Maselli, & Carrega, 2008), change in leaf area index (�LAI) 

(Boer et al., 2008), change in vegetation height (Kaufmann, Stoker, & Greenlee, n.d.), or 

mortality (Kobziar, Moghaddas, & Stephens, 2006; Rogan & Yool, 2001). 

The changes to the structure and color of aboveground vegetation and the color of 

soil result in changes in the signal returned by both active and passive remote sensing 

systems. In particular, discrete-return light detection and ranging (LiDAR) and digital 

orthophotography are commonly used to assess of the condition of vegetation, including 

change detection following disturbance events, such as wildland fire. The use of imagery 

to detect and characterize tree mortality and severity of forest fires has a more robust 

history. CBI was developed for use in mapping burn severity using Landsat TM/ETM 

30m imagery (Key & Benson, 2006). Accuracy, however, can be an issue, as 

“countervailing post-fire factors often lead to spectral confusion” (Rogan & Yool, 2001). 

LiDAR is a relatively new technology, and few studies have attempted to use LiDAR to 

detect or characterize damage resulting from forest fire, although pre- and post-fire 

LiDAR datasets have been used to detect areas where vegetation was entirely removed by 

fires (Kaufmann et al., n.d.; Wang & Glenn, 2009). The increasing use of LiDAR to 

describe aboveground biomass, however, is well documented in scientific literature 

(Carson, 2004; Lefsky, Cohen, Parker, & Harding, 2002; Lim, Treitz, Wulder, St-Onge, & 

Flood, 2003; Renslow, 2000). LiDAR data have been used to estimate plot- or stand-level 

metrics such as Lorey's mean height, volume (Goerndt, Monleon, & Temesgen, 2010) 
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and quadratic mean diameter (Goerndt et al., 2010; Muss, Mladenoff, & Townsend, 

2011), as well as to characterize stand characteristics such as successional stage 

(Falkowski, Evans, Martinuzzi, Gessler, & Hudak, 2009), presence of understory (Hill & 

Broughton, 2009; Maltamo et al., 2005; Martinuzzi et al., 2009), and snags (Martinuzzi et 

al., 2009). This review is divided into three sections: Imagery, LiDAR, and Fusion (the 

use of imagery and LiDAR techniques together to produce a single classification or 

model). 

2.2.1 Imagery 

There are a variety of strategies for characterizing the effects of disturbance 

events using one or more digital orthophotos, and many have been applied to characterize 

vegetation changes after wildland fire. Most broadly, these break down into change 

detection using before and after (multi-temporal) scenes versus single-scene methods. 

Commonly used methods (in both categories) are linear transformations, univariate image 

differencing, and supervised, unsupervised, and hybrid classification (Coppin, 

Jonckheere, Nackaerts, Muys, & Lambin, 2004; Lu, Mausel, Brondízio, & Moran, 2004). 

The most commonly used strategies are methods of univariate image differencing 

(Coppin et al., 2004).  Within this umbrella, one strategy which has been used to assess 

burn severity is the comparison of band ratios before and after wildland fire. Two 

commonly used indices based on band ratios are the normalized burn ratio (NBR) and the 

normalized difference vegetation index (NDVI), their multi-temporal counterparts are 

differenced normalized burn ratio (dNBR) and differenced normalized difference 

vegetation index (dNDVI). dNBR was originally defined based on Landsat TM/ETM 

bands 4 and 7 – near-infrared (NIR) and short-wavelength infrared (SWIR). NIR values 
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tend to decrease, and SWIR to increase, pre-fire to post-fire, and the change in these 

bands is greatest in magnitude of all bands. Of all bands, SWR exhibits the greatest 

variance when considering values for burned areas. Scaling by the sum of bands 

normalizes for overall brightness, and helps remove topographic effects. Thus, 

normalized burn ratio is defined as (NIR – SWIR)/(NIR + SWIR), and dNBR as 

NBRprefire – NBRpostfire. dNBR is positive over areas of productive vegetation; near zero 

for clouds, cured grasses, soil, and rock; and negative for severe water stress and 

nonvegetative traits created within burn areas (Key & Benson, 2006). Similarly, NDVI is 

defined as (NIR – RED)/(NIR + RED), and dNDVI as NDVIprefire – NDVIpostfire. 

Although dNBR may be more sensitive to changes caused by wildland fire, NDVI 

can be calculated from a wider variety of imagery, which may be available at finer spatial 

and temporal scales than Landsat imagery. A comparison of six approaches (two artificial 

neural networks, two principal component analyses, NDVI, and two differenced band 

ratios, one of which is dNBR) demonstrated that dNBR produces similar results to much 

more complicated methods (C. Kenneth Brewer, J. Chris Winne, Roland L. Redmond, 

David W. Opitz, & Mark V. Mangrich, 2005). The dNBR method, applied to Landsat 

imagery, is used operationally by the US Forest Service Remote Sensing Applications 

Center to support burned area emergency response following major wildland fires across 

the US. There is 73-75% agreement between dNBR and composite burn index (CBI). In 

correlating dNBR and CBI, most (32%) of the errors were confusion between unburned 

and low-severity areas, and high severity areas had the lowest rate of error in two years of 

assessment (Cocke, Fulé, & Crouse, 2005). However, in a Redwood and Tanoak forest 

following the Big Sur Basin Complex Fire, linear models based on Landsat TM bands 
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(3,4,5,7) and (2,3,4) respectively were better predictors of overall CBI and damage to 

dominant trees, than dNBR (Meng & Meentemeyer, 2011). A comparison of eight indices 

(four single scene, and their multi-temporal companions) for the detection of burn 

severity in a ponderosa pine forest in South Dakota found that dNDVI outperformed 

dNBR at year one assessment, while dNBR performed better at extended assessment 

(years 2, 3, 5, and 7) when compared to CBI (Chen et al., 2011). Comparison of NDVI 

and dNBR from Landsat TM/ETM+ scenes across four wildfire burn sites in Alaska to 

CBI found that NDVI performed similarly to dNBR (|r| of .72 vs. .70) (Epting, Verbyla, 

& Sorbel, 2005). Assessment of fire severity across three fires in pine, oak, and 

eucalyptus forests in Spain found that NDVI performed similarly to NBR, dNDVI 

similarly to dNBR, and that single-scene indices outperformed multi-temporal indices at 

describing severity within burned areas, while multi-temporal indices were more accurate 

at distinguishing between burned and unburned areas (Escuin, Navarro, & Fernández, 

2008). Using SPOT imagery to map burn severity with an eye toward increased runoff 

resulting from reduced vegetative cover following wildland fire in an oak/pine forest in 

France, NBR and NDVI values were found to be strongly correlated, as were dNBR and 

dNDVI. In this case, multi-temporal images performed better than single scenes, due to 

inclusion of areas of bare rock and vineyards in the study area (Fox et al., 2008). Burned 

pine/broadleaf forestland in Korea was classified to four classes (including unburned) 

with 83% overall accuracy (kappa = .76) using dNDVI from Landsat TM imagery (Lee, 

Kim, Chung, & Park, 2008). 

Change in leaf area index (�LAI) is another potential measure of burn severity, 

which can be measured in the field and via remote sensing. Following wildland fire in a 
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Jarrah (Eucalyptus marginata) forest in SW Australia, �LAI was similarly related to 

��� 
NBR, NDVI, and the simple ratio (SR), , from Landsat TM imagery (R

2
 = 0.87 for 

��� 

all). Of the three methods, SR was the most accurate at detecting burned areas, while 

NBR and NDVI both had errors of commission outside the burn perimeter (Boer et al., 

2008).  

Another set of strategies commonly used with imagery are transformations, 

generally the principal components (PC) transformation and the Kauth-Thomas or 

tasseled cap transformation. PC transformation is a statistical method, which uses 

orthogonal transformation to derive a set of linearly uncorrelated variables, where the 

first variable describes the greatest possible variance among the bands (generally, this is 

essentially overall brightness), and each successive variable describes the greatest 

variance possible, subject to the constraint of orthogonality. The resulting bands do not 

correspond to any particular features in the scene. The Kauth-Thomas (KT) or tasseled 

cap transformation was originally developed for agricultural applications using Landsat 

MSS data (Kauth & Thomas, 1976). Similarly to PC transformation, it is an orthogonal 

transformation, however, the coefficients used to project original bands onto ‘tasseled-cap 

space’ are designed to bring out specific physical features within imagery – namely, 

‘brightness’, ‘greenness’, ‘wetness’, and ‘other’ (the last coordinate is chosen to be 

orthogonal to the first three but does not represent any particular feature). Tasseled-cap 

coefficients have been developed for other sensors, including the QuickBird satellite 

(Yarbrough, Easson, & Kuszmaul, 2005). Kauth-Thomas linear transformation 

techniques and principal component analysis both enhance the utility of Landsat TM 

imagery for detection and classification of burned forest areas. In general, KT provides 
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superior accuracy of classification of burn severity (17% better accuracy compared to 

PC). In particular, KT is more sensitive to greenness and wetness (i.e. differences in 

vegetation and moisture). Accuracy of both KT and PC analysis was greatest for most 

severe, then moderate, and least for least severely burned areas (Patterson & Yool, 1998; 

Rogan & Yool, 2001). 

Unsupervised classification relies on statistical methods to delineate areas whose 

signatures (collected band values, without band differencing or ratioing) are the most 

dissimilar. Using unsupervised classification, only the number of classes is specified; the 

classes and pixels that belong to them are identified by software. Alternatively, 

supervised classification is conducted by a user with a priori knowledge of conditions on 

the ground. Known regions representing each class are provided as input to the 

classification software, which evaluates the entire area of interest and assigns each pixel 

to the class with which it is most closely associated. Automated maximum-likelihood 

classification of six-band imagery was used to delineate areas of red discoloration caused 

by jack pine budworm in a Canadian forest, with average commission accuracy of 86%. 

Adding separately obtained infrared imagery did not improve the accuracy (Leckie, 

Cloney, & Joyce, 2005). There are also methods which hybridize both approaches: A 

hybrid of unsupervised classification, spectral unmixing, and object-based classification 

techniques was used with a high resolution digital multispectral image to detect 

presence/absence of solitary standing dead trees in a hardwood-dominated forest in 

Canada. Accuracy was 94% (47/50) for areas classified as dead wood, and 70% for areas 

classified as having no dead wood present (Pasher & King, 2009). A hybrid of supervised 

and unsupervised classification was 93.2-95% accurate in recognizing trees killed by 
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sudden oak death on two forested sites (one oak woodland, one redwood and tanoak) in 

Marin County, CA from 1m 4-band imagery. The hybrid method outperformed both pure 

supervised and pure unsupervised classification, which had similar performance (Kelly, 

Shaari, Guo, & Liu, 2004). 

Regardless of which modeling/classification strategy is used, if multiple scenes 

will be used, the dates on which pre- and post-fire imagery are acquired is important. 

Unburned features in the landscape are altered by wetting and drying, and productivity 

cycles. Pre- and post-fire acquisitions should have as similar moisture content and 

phenology as possible. In general, early to middle growing season periods have the best 

results. NDVI tends to degrade late in the growing season more than dNBR. In order to 

match phenology, pre-fire imagery should generally come from a prior year, unless it can 

be obtained within 24 days of the post-fire image (without significant change in 

conditions). Extended assessment (post-fire scene obtained from the following growing 

season instead of immediately following fire) may be more representative of actual 

severity(Key & Benson, 2006).  

2.2.2 LiDAR 

A variety of strategies have been used to model stand-level metrics based on 

attributes of LiDAR data. In a Douglas-fir/Grand Fir forest in Oregon, LiDAR data with 

average first-return density of 10 points/m
2
 was used to estimate BA, Lorey's mean 

height, volume, density, quadratic mean DBH, and crown width using both area-based 

and single-tree approaches. The area-based approach was best for BA (R
2
 = 89.7), 

volume (90.4), density (91.9), quadratic mean DBH (82.1), crown width (79.9). The 

single-tree approach was best for Lorey's mean height (R
2 

= 96.4). Area models 
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performed as well or better than single-tree models except for Lorey's mean height. 

LiDAR metrics used in best models included max, mean, percentiles, and interquartile 

distances in canopy heights; a variety of normalized point densities in height bins; and 

median, maximum, and percentiles of intensity data (Goerndt et al., 2010). Aggregations 

of LiDAR hits over 2-60m radius plots can be used to generate cubic-spline pseudo-

waveforms of height/intensity and height/frequency data. There does not appear to be any 

justification for the pseudo-waveform technique with intensity data, but wave-based 

models based on frequency may be more plausible. Comparing frequency-based and 

frequency-waveform models, of 11 parameters modeled, 5 (highest canopy point in plot, 

crown base height, log of mean stem diameter, log of aboveground biomass, and log of 

foliage biomass) were best modeled by frequency; 5 (average canopy height, crown 

length, canopy coverage, log of total stand basal area, and log of total stand stem density) 

were best modeled by frequency-based waveform, and one (log of branch biomass) was 

equally well modeled by both. The average increase in R
2
 for parameters modeled better 

by waveform method was .064, while the average increase in R
2
 for parameters modeled 

better by frequency was .038 (Muss et al., 2011). 

Thematic classification of stands has also been attempted using LiDAR data. A 

random forest algorithm was used with LiDAR data (density of 0.26 returns/m
2
) to 

classify a multi-species conifer forest in Idaho by forest successional stage. In one model, 

with 7 classes, having overall accuracy of 90.12%,  canopy cover and  mean height were 

the most important predictors, followed by the density in two height strata from 1-2.5m 

and 20-30m, median height, 25
th

 percentile height, modal height, and density in the 10-

20m height stratum.  In another model, with 6 classes, having overall accuracy of 
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95.54%, canopy cover and mean height were the most important predictors, followed by 

maximum height, median height, and density of the 20-30m height stratum(Falkowski et 

al., 2009). 

In a fashion somewhat similar to classification strategies, LiDAR data have been 

used to detect the presence or absence of particular conditions in forested environments. 

The presence of understory vegetation in a diverse deciduous forest, for example, was 

detected by filtering leaf-on and leaf-off LiDAR data based on probable height to crown 

base by species of overstory tree cover, with 77% accuracy using both datasets, and 72% 

accuracy using only leaf-off data (Hill & Broughton, 2009). This was accomplished using 

relatively low-density data - 1 pulse/m
2
. An algorithm based on kernel-filtered height 

histogram of laser hits was able to correctly detect the presence/absence of multistory 

forest condition in 24 of 28 plots in a mixed conifer forest in Finland. A model based on 

proportion of vegetation hits (essentially, ground return ratio), 20
th

 percentile canopy 

height, maximum LiDAR height, and natural log of 60
th

 percentile canopy height was 

able to predict the logarithmic number of understory trees with R
2
 of .87 (Maltamo et al., 

2005). The distribution (presence/absence) of shrub understory was mapped with 83% 

accuracy in a mixed conifer forest in Idaho using percent ground returns, percent of 

returns between 1 and 2.5m, and plot slope multiplied by the cosine of aspect, and the 

distribution (presence/absence) of snags was mapped with 72-80% accuracy using a 

variety of topographic and canopy height metrics derived from LiDAR (Martinuzzi et al., 

2009).  In a forest with a relatively high component of standing dead trees, on the north 

rim of the Grand Canyon, LiDAR percentile heights and high/low intensity peak 

frequency data was used to distinguish between live and standing dead biomass and 
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estimate volume of each with R
2
 of 0.76 for live biomass, and 0.62 for dead (Kim et al., 

2009).  

While LiDAR has been used more extensively to characterize forest stand 

conditions in general, relatively few studies have used LiDAR data to describe or 

quantify damage resulting from forest fires. Canopy height (first return – bare earth) 

changes from LiDAR data gathered before and after the Hayman Fire in Colorado 

revealed areas where vegetation was consumed, but errors in repeated measurement 

confounded quantification of vegetation lost (Kaufmann et al., n.d.). In sagebrush 

vegetation, damage was estimated from change in height of first return. Accuracy of 

classification by this method ranged from 64-96%, and was superior to classification by 

dNBR, which ranged from 32-85% (Wang & Glenn, 2009). 

2.2.3 Fusion of Imagery and LiDAR 

Fusion of imagery and LiDAR techniques discussed above has been used for a 

similar variety of purposes. These strategies may be as simple as utilizing information 

from both datasets (sometimes referred to as 'stacking'), but often involves linear 

transformations of combined data, machine-learning algorithms, supervised 

classification, or some hybrid combination of any of the preceding methods. The use of 

NDVI from a 0.5 m color infrared ortho-image to identify shrub cover on an 

experimental site in Portugal improved the accuracy of a DEM created from 

simultaneously captured LiDAR data, which improved the estimation of shrub canopy 

height (R
2
 = 0.65 vs. 0.48).  A variety of fuel metrics (canopy height, basal area, canopy 

cover, shrub cover, shrub height) were modeled in a Sierra Nevada mixed conifer forest 

with R
2
 between .87-.59 using principal component analysis of NAIP 1 meter 4-band 
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imagery and heights, percentiles, and densities from LiDAR data having average pulse 

density of 9 pulses/m
2
 (Jakubowksi, Guo, Collins, Stephens, & Kelly, 2013). Support 

vector machines, a machine-learning algorithm, outperformed simple regression for 

modeling fuel loads, while simple regression was adequate for simple tree metrics, when 

using principal component analysis of NAIP 1 meter 4-band imagery and heights, 

percentiles, and densities from LiDAR data having average pulse density of 9 pulses/m
2 

in a Sierra Nevada mixed conifer forest (Jakubowksi et al., 2013). Minimum noise 

fraction, a variation of principle component transformation, outperformed simpler 

principle component analysis (90.1% accuracy, k=0.86 vs. 61.4% accuracy, k=0.52) and 

“stacking” (using LiDAR-derived canopy cover, canopy height model variance, and 

normalized point density in four 0.5m height bins as bands in a raster with the imagery, 

without transformation)(87.2% accuracy, k=0.863) at modeling surface fuels (9 

models/classes) in pine-hardwood forestland including areas of brush and grass in east 

Texas (Mutlu, Popescu, Stripling, & Spencer, 2008). Supervised classification based on a 

minimum noise fraction transformation of QuickBird 2.5m 4-band imagery and  LiDAR-

derived canopy cover, canopy height model variance, and normalized point density in 10 

height bins of 0.5-5m was able to model surface fuels in pine-hardwood forestland 

including areas of brush and grass in east Texas (using 9 classes) with 90.1% accuracy 

(k=0.86) (Mutlu et al., 2008). 

Fusion of LiDAR and imagery has also been used to classify forestland as to stand 

structure or other characteristics. Principal component analysis of 2' resolution color 

infrared imagery and a variety of metrics derived from LiDAR data with 2.5-27 points/m
2 

were used to classify a redwood forest into 36 strata (Golinkoff, Hanus, & Carah, 2011). 
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Principal component analysis of NAIP 1 meter 4-band imagery and heights, percentiles, 

and densities from LiDAR data having average pulse density of 9 pulses/m
2
 was able to 

classify a Sierra Nevada mixed conifer forest with regards to 40 surface fuel models with 

45% accuracy, and a broader classification of 3 surface fuel types with 73-76% accuracy 

(Jakubowksi et al., 2013).  
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Chapter 3 

Methodology 

3.1 Field data 

There are 83 CFI plots distributed across the study area. Fifty of these 0.08 ha 

(1/5 ac) circular plots were installed in 1997 and re-measured in 2008, and the remaining 

33 installed in 2003. The plots were installed on a 152.4 m (500 ft) grid established by 

Maskrey and Reimer in 1993, which is tied to USGS benchmark 1238N, located on the 

Little Creek Bridge on Swanton Road, that point having the assumed local coordinates 

(10,000' N; 10,000' E) for the purposes of the inventory system. Plot locations were 

established based on a variety of control points set along the Little Creek haul road, using 

a staff compass and cloth tape. As a result, the plots are not located precisely along the 

theoretical true North-South grid or at precisely 500 ft spacing, with the errors in 

locations increasing with increasing distance from survey control. During subsequent plot 
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re-measurements, positions were collected at plot centers using a Garmin 60csx GPS in 

2009 (except for one plot, a GPS position for which was collected in 2013). 

A variety of standard forest inventory data is collected every ten years at each CFI 

plot, however, data used in this analysis was limited to tree species, DBH, bearing and 

distance from plot center, and tree status (live or dead). Tree status was assessed each 

year following the fire, through 2012, with the most recent (2012) status being used for 

this analysis, while DBH was measured in either 2003 or 2008 (for plots established in 

1998). The diameters of trees in plots measured in 2003 was projected to 2008 using a 

growth rate of 2% (Auten, 2012). For further description of field methods, see Bonner 

(1998), Anderson (2003), Maskrey and Reimer (1993), and Auten (2012). 

3.2 Imagery 

Three sets of digital multispectral imagery were available for this project: Digital 

Globe's QuickBird satellite imagery, aerial photos taken as part of the National 

Agricultural Imagery Program (NAIP), and aerial photos taken by Kevin Spry (Spry 

Aerials). The accuracy of georeferencing of imagery used was checked by determining 

the coordinates of two buildings which could be seen and whose locations had been 

surveyed using a total station. The average error across the two locations checked is 

shown in table 3.1, and the supporting information in appendix B. 
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Table 3.1: Average error in positions from imagery 

Average 

Image Error (ft) 

NAIP 2009 3.265 

NAIP 2010 8.32 

NAIP 2012 8.38 

QuickBird 2008 31.435 

QuickBird 2009 99.42 

Spry 2010 3.81 

3.2.1 QuickBird 

QuickBird images from 10/13/2008 (pre-fire) and 9/15/2009 (post-fire) were 

obtained for this project. The spatial resolution of these images is 2.4m for color and 

infrared, with a 60cm panchromatic band. NDVI was calculated for both images, and 

dNDVI calculated as NDVIpostfire – NDVIprefire. In order to examine whether masking out 

areas of the imagery which did not contain forest canopy would improve the relationship 

with mortality, a series of canopy masks was made by subtracting the LiDAR DEM from 

the canopy surface model, and reclassifying the resulting canopy height mask (CHM) 

raster to a binary mask based on canopy height. Masks were made for 1-5 m heights, and 

used to create canopy-masked NDVIs at each height, where areas of the raster with CHM 

values below the threshold height had their pixel values replaced with 'NoData'.  The 

post-fire image was also transformed into tasseled cap space using the coefficients shown 

in Table 3.1, derived by Yarbrough, Easson, and Kuszmaul.  
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Table 3.2: Tasseled Cap Transformation coefficients(Yarbrough et al., 2005) 

Brightness Greenness Wetness Other 

Blue 0.319 -0.121 0.652 0.677 

Green 0.542 -0.331 0.375 -0.675 

Red 0.49 -0.517 -0.639 0.292 

Infrared 0.604 0.78 -0.163 0.011 

All of the aforementioned processing was performed, and average plot values for 

NDVI, the four canopy-masked NDVIs, dNDVI, and the four Tasseled Cap bands were 

extracted, in ArcMap 10.1. 

3.2.2 National Agricultural Imagery Program 

Orthoimages covering the project area were obtained by downloading digital 

ortho-quarter-quads taken in the summers of 2009, 2010, and 2012, and stitching them 

together in ArcMap 10.1. The spatial resolution of these images is 1m. NDVI was 

calculated for all three images, and dNDVI calculated as NDVI2010 – NDVI2009 and as 

NDVI2012 – NDVI2009. The 2010 image has extensive deep shadows, which, in 

preliminary exploration of the data, interfered with the relationship between NDVI and 

mortality. Two different techniques were explored in an attempt to get the most out of the 

data: using only unshadowed pixels, and adjusting the values of shadowed pixels. The 

first step for both techniques was an unsupervised classification process in ArcGIS, with 

7 classes, 2 of which corresponded with shadowed pixels. The resulting raster was 

reclassified to a set of masks, one having value 1 for unshadowed areas, and NoData for 

shadowed areas, and the other having value 1 for shadowed areas, and NoData for 

unshadowed areas. These masks were used to extract average plot values of NDVI and 

dNDVI, from only shadowed or unshadowed pixels. They were also used to extract 
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samples of unshadowed and shadowed pixels from an unburned portion of the scene, with 

similar vegetation as the fire area. Approximately 20 million unshadowed pixels and 

approximately 8 million shadowed pixels were compared. The distributions of pixel 

values from the sample are shown below in figure 3.1. 
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Figure 3.1: Raw pixel values, NAIP 2010 image, unburned sample 

The mean values of each sample of pixels were calculated. For band 1, the mean 

value of shadowed pixels was 73, while the mean value for unshadowed pixels was 135. 

For band 4, the mean value of shadowed pixels was 101, while the mean value for 

unshadowed pixels was 177. The values of shadowed pixels were adjusted by the 

difference in means (62 for band 1, and 76 for band 4). The resulting distributions, shown 

in figure 3.2, are very similar. 
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Figure 3.2: Adjusted pixel values, NAIP 2010 image, unburned sample 

The resulting NDVI, along with individual bands, are shown in figure 3.3, along 

with the originals. The variability in the adjusted NDVI across the study area is much 

greater than in the original, although the overall range is very similar. 

Figure 3.3: Original & adjusted red and IR bands and NDVI, NAIP 2010 imagery 
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In the same fashion as the QuickBird imagery, canopy-masked NDVI rasters were 

created at 1-5 m threshold heights for unshadowed and adjusted NDVI. Average plot 

values for 2010 NDVI, dNDVI, unshadowed NDVI, adjusted NDVI, and for twelve total 

canopy-masked unshadowed and adjusted NDVIs were calculated in ArcMap 10.1. 

Average plot values for 2012 NDVI and dNDVI were also calculated in ArcMap 10.1. 

3.2.3 Spry Aerials 

These images were taken at an average altitude of 4,234 m AMSL, using a Vexcel 

UltraCam X, by Kevin Spry (www.geog2.com). The spatial resolution of these images is 

29.2 cm. Post-fire imagery was captured during the summer each year following the fire, 

on 6/13/2010, 7/27/2011, and 5/11/2012. Normalized Difference Vegetation Index was 

calculated for all three images in ArcGIS. 

3.3 LiDAR data 

Two LiDAR data sets were used for this project: one collected February 28-29 

2008, and one March 9-10 2010, both by Airborne1 corporation, El Segundo CA. The 

2008 flight used an Optech ALTM 3100 sensor aboard a Cessna 210 fixed-wing aircraft, 

scanning at 100,000 Hz with a scan angle of 14º. The 2010 flight used an Optech ALTM 

Orion sensor aboard a Navajo Chieftain fixed-wing aircraft, scanning at 150,000 Hz with 

a scan angle of 14º. For both flights, 1-sigma horizontal accuracy was 30 cm, and vertical 

accuracy 18.3 cm at 95% confidence and 15.2 cm at 90% confidence, according to the 

vendor.  Quality assurance for elevations was provided by the vendor using real-time 

kinematic GPS points. For the 2008 flight, 1,046 points were collected; RMSE for the 
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LiDAR DEM was 0.03 m, with residuals ranging from -0.15 to 0.07 m. For the 2010 

flight, 2,742 points were collected; RMSE for the DEM was .034 m, with residuals 

ranging from -0.052 to 0.03 m. Raw data from both flights were delivered in LAS format, 

filtered by the vendor to identify bare-earth ground returns, and with points classified as 

first, last, or intermediate returns. Average first-return density across the study area was 

5.78 returns/m
2
 for the 2008 data and 8.12 returns/m

2
 for the 2010 data. The raw LiDAR 

data were clipped to the locations of the CFI plots and exported as comma-separated 

value files using FUSION LiDAR toolkit, developed by the US Forest Service.  Height 

percentiles and a variety of other metrics describing the vertical distribution of LiDAR 

returns above 2 m, as suggested by White et. al. (2013) in their best-practices guide, were 

calculated for each plot using the CloudMetrics tool in FUSION. The number of points in 

1 m height bins was calculated for each plot using the DensityMetrics tools in FUSION. 

Height percentiles were normalized by mean and mode, and point counts in 1 m height 

bins were normalized by total number of points, in Microsoft Excel. 

3.4 Plot location adjustment 

In an attempt to increase the accuracy of mapped plot locations, a stem map was 

created from bearings and distances collected for each CFI plot, and estimated heights 

based on allometric equations for redwood and douglas-fir (Eng, 2012). The stem map 

was visualized along with the portions of the LiDAR point cloud in and around the plots 

in ArcScene, as shown in figure 3.4. Of 47 plots whose location was examined, 17 

appeared to be correctable, while 15 appeared to be correct, and the remaining 15 could 

not reasonably be corrected in this fashion. Of the plots which had their locations 

adjusted, the average adjustment was approximately 12.5m. Including plots whose 
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locations were considered correct, the average adjustment was approximately 8.6m.  

Average values were extracted from the NAIP 2010 unshadowed NDVI image and the 

2009 QuickBird NDVI using both the unadjusted and adjusted plot locations. There was 

no improvement in the relationships between NDVI and mortality based on the 

adjustment, so, in the interest of consistency, the original unadjusted locations were used 

for all further analysis. 

Figure 3.4: Plot 78 tree locations and LiDAR returns 

3.5 Oversized Plots 

In order to determine the optimal size for extracting information from imagery 

(and possibly LiDAR), NDVI from the 2010 NAIP unshadowed, including two canopy-

height-masked, NDVIs; 2010 NAIP adjusted, including two canopy-height-masked; and 

QuickBird imagery was extracted for 1, 2, and 3 m buffers on the plot areas (yielding plot 

areas of 0.09, 0.10, and 0.11 ha compared to the original 0.08 ha). In implementing a 
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forest inventory using variable-plot sampling with a 20 BAF prism, resulting in a median 

‘plot size’ of 0.036 hectares (, Golinkoff et al. determined that a .08 ha grid cell was the 

optimal size for extraction (Golinkoff et al., 2011).  Intuitively, it seems plausible that 

extracting information from a slightly oversized plot should, at a minimum, not decrease 

accuracy, since trees near the edges of plots will have a significant portion of their crowns 

outside the plot, and since the intensity of a fire in the area immediately adjacent to a plot 

will have an effect on the mortality within that plot. Average NDVI from the eight 

combinations of imagery and plot size were used as predictors in linear regression. The 

results, shown in table 3.2, do not strongly support the use of oversized plots for 

extraction. All three unshadowed NDVIs demonstrate a slight decrease in the strength of 

the relationship with mortality, as does the QuickBird NDVI. All three adjusted NDVIs 

show modest improvement in the relationship at one and two meters, and then a small 

decrease at three meters. Given the additional workload associated with extracting 

LiDAR variables for a series of buffered plots, and the complexity of translating the 

concept into wall-to-wall prediction, oversized plots were not used for this project. 
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2
Table 3.3: R , mortality vs. NDVI, oversized plots 

Model R-squared 

NAIP 2010 unshadowed NDVI 0.48 

     1m buffer 0.476 

     2m buffer 0.474 

     3m buffer 0.47 

NAIP 2010 unshadowed NDVI above 1m 0.496 

     1m buffer 0.495 

     2m buffer 0.495 

     3m buffer 0.494 

NAIP 2010 unshadowed NDVI above 2m 0.496 

     1m buffer 0.495 

     2m buffer 0.494 

     3m buffer 0.493 

NAIP 2010 shadow-adjusted NDVI 0.487 

     1m buffer 0.49 

     2m buffer 0.492 

     3m buffer 0.49 

NAIP 2010 shadow-adjusted NDVI above 2m 0.516 

     1m buffer 0.52 

     2m buffer 0.522 

     3m buffer 0.521 

NAIP 2010 shadow-adjusted NDVI above 5m 0.524 

     1m buffer 0.528 

     2m buffer 0.53 

     3m buffer 0.529 

QuickBird NDVI 0.373 

     1m buffer 0.359 

     2m buffer 0.359 

     3m buffer 0.346 
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Chapter 4 

Analysis and Results 

Initial, exploratory analysis was performed using linear regression and imagery, 

which influenced further analysis. Average mortality was calculated for each plot for all 

trees, and for trees at least 10” DBH in excel. Average plot values of NDVI and dNDVI 

were extracted from imagery in ArcMap 10.1 and explored as potential predictors of both 

average mortalities in linear regression using JMP Pro 9. Table 4.1 shows the results – in 

every case, there is a greater correlation between mortality of trees 10” DBH and greater 

and the given predictor, than between that predictor and overall mortality. The mortality 

of trees 10” DBH and greater was used for all further analysis. 
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Table 4.1: Linear fits, overall and 10” DBH mortality 

Model Mortality R-squared 

Quickbird NDVI Overall 0.169 

10” DBH+ 0.373 

Quickbird dNDVI Overall 0.181 

10” DBH+ 0.286 

NAIP 2010 unshadowed NDVI Overall 0.441 

10” DBH+ 0.480 

NAIP 2010 adjusted NDVI Overall 0.385 

10” DBH+ 0.487 

NAIP 2012 NDVI Overall 0.297 

10” DBH+ 0.321 

Spry 2010 NDVI Overall 0.360 

10” DBH+ 0.385 

Plot mortality of trees 10” DBH and greater was coded as a categorical variable to 

determine the relative effectiveness of using only imagery, using imagery and post-fire 

LiDAR, and using imagery and pre- and post-fire LiDAR to classify mortality. The 

categories used and number of plots in each category are shown in table 4.3. 

Table 4.2: Plot mortality categories 

Mortality of trees 10" Mortality Number 

DBH and greater (%) Class of plots 

< 25 Low 20 

25-50 Moderate 16 

> 50 High 11 

These categories were chosen to provide enough information to land managers 

with as few classes as possible. In areas with less than 25% mortality of trees 10” DBH 

and greater, salvage harvesting is not likely to be economically viable, and the impact of 

mortality on the long-term productivity of these areas should be small. In areas with 
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greater than 50% mortality, harvesting is probably necessary to maintain productivity, and 

is very likely to be supported from an economic point of view. Areas in between will 

likely need further assessment based on the age, size, and density of timber, accessibility, 

and landowner objectives. 

The categorical mortality variable was used as the response variable in 

Classification Analysis and Regression Trees (CART) models in JMP Pro 9. Leave-one-

out cross-validation was used. The CART prodedure selects variables and values at which 

to split data in order to maximize homogeneity within the resulting classes. Compared to 

logistic regression, it is better able to handle non-linearity and multicollinearity, both of 

which were present in the data. It has the additional benefit that the output is easy to 

interpret – the decision trees for models are shown in section 4.2. 

4.1 Imagery 

As stated above, initial, exploratory analysis was done using linear regression. In 

the case of the Tasseled-Cap-transformed QuickBird, the 'greenness' band has a negative 

relationship with mortality, while the 'other' band has a positive relationship. In order to 

capture both effects in a single metric, the difference (greenness-other) was calculated. In 

addition, to explore whether normalization by brightness would improve any of the 

relationships, greenness/brightness, other/brightness, and (greenness-other)/brightness 

were calculated. In the case of the NAIP 2010, where portions of the scene were masked 

out, as discussed in the methodology section, the relationship between NDVI and 

mortality was determined to be different for shadowed versus unshadowed pixels, and 

two strategies were evaluated: using only unshadowed pixels, and using a weighted 
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average of unshadowed and adjusted shadowed pixels. Figure 4.1 shows the original and 

adjusted red and infrared bands, and the NDVI as calculated before and after adjustment. 

Table 4.3 shows the results of all linear regressions against plot percent mortality of trees 

10” and greater. 

Figure 4.1: 2010 NAIP bands 1 and 4 and NDVI, before and after adjustment 
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2
Table 4.3: R  and p, linear regression 

Model 
2

R p 

Quickbird TCT Green/Bright 0.270 0.0002 

Quickbird TCT (Green-Other)/Bright 0.264 0.0002 

Quickbird TCT Green-Other 0.211 0.0012 

Quickbird TCT Green 0.210 0.0012 

Quickbird TCT Other/Bright 0.167 0.0044 

Quickbird TCT Other 0.144 0.0086 

Quickbird NDVI 0.373 <.0001 

Quickbird dNDVI 0.286 0.0001 

NAIP 2010 NDVI 0.002 0.76 

NAIP 2010 unshadowed NDVI 0.480 <.0001 

NAIP 2010 adjusted NDVI 0.487 <.0001 

NAIP 2010 adjusted NDVI above 1m 0.513 <.0001 

NAIP 2010 adjusted NDVI above 2m 0.516 <.0001 

NAIP 2010 unshadowed dNDVI 0.314 <.0001 

NAIP 2012 NDVI 0.321 <.0001 

NAIP 2012 dNDVI 0.233 0.0006 

Spry 2010 NDVI 0.385 <.0001 

Canopy-height masking (removing pixels which do not represent forest canopy, 

using masks made from the LiDAR-derived canopy height model) was explored with 

QuickBird and Spry imagery, but did not improve relationships with mortality. Canopy-

height masks at 1-2 m improved the relationships for the 2010 NAIP unshadowed NDVI, 

but not above 2 m; because the number of pixels retained in the unshadowed NDVI was 

already low for several plots, the canopy-masked versions, with even fewer pixels 

contributing, were not used. Relationships for the 2010 NAIP adjusted NDVI did 

continue to improve when masks above 2 m were used, however, again, the number of 

pixels participating in the average values for some plots became small. 
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Image metrics with R
2
 greater than .25 were used as factors in decision tree 

classification using leave-one-out cross-validation in JMP Pro 9. The number of trees in 

each plot was used as the weight. Two models were clearly superior, and, unsurprisingly, 

they were the models which had the highest R
2
 for linear fits: 2010 NAIP  unshadowed 

NDVI, and 2010 NAIP adjusted NDVI above 2 m. Confusion matrices are shown in 

tables 4.4 and 4.5; both had 74% overall accuracy. 

Table 4.4: Confusion matrix, 2010 NAIP unshadowed NDVI 

Classification Omission 

Reference < 25% 25-50% >50% Total error 

< 25% 15 5 0 20 0.25 

25-50% 2 13 2 17 0.24 

>50% 1 2 7 10 0.30 

Total 18 20 9 47 

Commission error 0.17 0.35 0.22 0.26 

Table 4.5: Confusion matrix, 2010 NAIP adjusted NDVI above 2m (scheme A) 

Classification Omission 

Reference < 25% 25-50% >50% Total error 

< 25% 19 1 0 20 0.05 

25-50% 6 10 1 17 0.41 

>50% 0 4 6 10 0.40 

Total 25 15 7 47 

Commission error 0.24 0.33 0.14 0.26 

Given that the predictive value appears to be roughly the same for the 2010 NAIP 

NDVI, whether shadowed pixels have their values adjusted or are simply removed, the 

adjusted version has the advantage that it allows predictions to be made for all pixels. The 

2010 NAIP NDVI was chosen for use in fusion with LiDAR data, and for mapping based 
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on classification (shown in Appendix A) and will be referred to as “scheme A” from here 

on, for the purposes of comparison. 

4.2 LiDAR 

Classification was performed in JMP Pro 9 using post-fire LiDAR only, and pre-

and post-fire LiDAR (differenced LiDAR), in combination with NAIP 2010 adjusted 

NDVI above 2m. Using only post-fire LiDAR, the best model (scheme B) used: 

- NAIP 2010 adjusted NDVI above 2m (NDVI) 

- 50
th

 percentile/mean height of points above 2m (p50/mean) 

- 50
th

 percentile/mode height of points above 2m (p50/mode) 

- Standard deviation of height of points above 2m (St. Dev.) 

- Percent of points in the 16-17m height bin (d17m) 

The decision tree for this classification is shown in figure 4.2. Vertical distributions of 

LiDAR returns for each plot, organized by class according to this classification, can be 

found in appendix C. 

37 



 

Mortality 

< 25% 

Mortality 

25-50% 

Mortality 

> 50% 

 

 
Figure 4.2: Deccision tree for Imagery and post-fire LiDAR (schheme B) 

 

The confusion matrix for this model is shown in table 4.6; overall accuracy was 85%. 

Table 4.6: Confusion mattrix, Imagery and post-fire LiDAR (scheme B) 

Classification Omission 

Reference < 25 5% 25-50% >50% Total error 

< 25% 17 7 2 1 20 0.15 

25-50% 11 15 1 17 0.12 

>50% 00 2 8 10 0.20 

Total 18 8 19 10 47 

Commission error 0.006 0.21 0.20 0.15 
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Using differenced LiDARR, the best model (scheme C) included:  

- NAIP 2010 adjustted NDVI above 2m (NDVI) 

- Change in skewneess of height of points above 2m (�skew) 

- Change in mediann of absolute deviations from mode of height of points above 2m 

(�MADmode) 

- Change in percentt of points in the 4-5m height bin (�d5m) 

- Change in percentt of points in the 6-7m height bin (�d7m) 

- Change in percentt of points in the 24-25m height bin (�d25m) 

The decision tree for this classification is shown in figure 4.3. 

Mortality 

< 25% 

Mortality 

25-50% 

Mortality 

> 50% 

 

Figure 4.3: Decision tree  for Imagery and differenced LiDAR (scheme CC) 
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The confusion matrix for this model is shown in table 4.7; overall accuracy was 83%. 

Table 4.7: Confusion matrix, Imagery and differenced LiDAR (scheme C) 

Classification Omission 

Reference < 25% 25-50% >50% Total error 

< 25% 18 2 0 20 0.10 

25-50% 1 16 0 17 0.06 

>50% 0 5 5 10 0.50 

Total 19 23 5 47 

Commission error 0.05 0.30 0.00 0.17 

Maps of wall-to-wall estimates of mortality made based on all three schemes can 

be found in appendix A. For scheme A, the adjusted NAIP 2010 NDVI was used, since 

the overall accuracy was the same whether shadowed pixels were adjusted or removed, 

and the adjusted image covers forested area that the clipped image does not. The percent 

of the fire area by class for each estimate are shown in table 4.8; however, scheme B does 

not cover the entire fire area due to the extent of the 2008 LiDAR data. For the purpose 

of making fair comparisons, the other two estimates were clipped to the extent of the 

2008 LiDAR data and the percent area recalculated, with the results shown in table 4.9. 

(The area that is ‘missing’ in the 2008 data is approximately 100 ha, or about 3.5% of the 

fire area.) Maps showing estimates of mortality by all three schemes for a portion of the 

study area, including areas which were salvage-harvested, are shown in figure 4.4. 

Scheme A had much higher error of omission in the moderate-mortality class than 

did either of the classifications which used LiDAR data. As shown in tables 4.8 and 4.9, 

in figure 4.3, and on the maps in appendix A, a greater area is classified as moderate-

mortality when LiDAR data are used (much greater in the case of the differenced 

LiDAR). Scheme C, which had the highest error of omission in the high-mortality class, 
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has a very small area classified as high-mortality. Generally, the patterns observed on the 

wall-to-wall predictions mirror what can be seen from the confusion matrices. Although 

all of the available quantitative data were used in generating these predictions, so that no 

external validation can be done, we do have some additional qualitative data available, in 

the form of the salvage harvest area. Salvage harvesting was carried out in areas with a 

relatively high degree of damage. We would expect to see the shapes of the salvage 

harvest areas roughly mirrored in the distribution of the higher-mortality classifications. 

Based on this information, it is apparent that scheme C has missed some areas of high 

mortality. Between the other two options, results are more mixed: scheme A has much 

more of the largest salvage-harvest area shown (in the lower half of each frame) 

classified as high-mortality, however, several smaller areas which were harvested are 

classified mostly in the low- and moderate-mortality groups, while scheme B has these 

areas mostly split between the moderate-  and high-mortality groups. Moving back to the 

realm of that which can be measured: aside from having the highest overall accuracy, 

classification based on post-fire LiDAR has the lowest error of omission in the high 

mortality class. Given managers’ likely preference for errors of commission rather than 

errors of omission in the highest mortality class, this is probably the best interpretation 

available based on these data. 
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Figure 4.4: Estimated mortality in study area by 3 methods 

Table 4.8: Percent area by mortality class, Lockheed Fire 

Percent of fire area by class 

Imagery + Imagery + 

Mortality Imagery post-fire LiDAR differenced LiDAR 

< 25% 42.07 29.02 30.60 

25-50% 21.46 25.41 53.22 

> 50% 36.47 45.57 16.19 

Table 4.9: Percent area by mortality class, clipped to extent of 2008 LiDAR coverage 

Percent Area 

Imagery + Imagery + 

Mortality Imagery Post-fire LiDAR differenced LiDAR 

< 25% 42.26 29.24 30.60 

25-50% 20.91 25.29 53.22 

> 50% 36.83 45.58 16.19 
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4.4 Salvage harvesting 

One aspect of the data which has not yet been discussed is the potential impact of 

salvage harvesting on this analysis. Following the fire, salvage harvesting was conducted 

under an emergency notice before any remote sensing data (except for the QuickBird 

imagery) were collected. Although limited in scope (10 of the 47 plots used had at least 

one tree removed; 24 total trees were removed from included plots), this harvesting may 

have altered the radiometric signature of plots, and almost certainly altered the LiDAR 

metrics used. In order to assess the likelihood that salvage harvesting affected the results, 

all metrics chosen by the CART procedure were plotted against mortality of trees 10” 

DBH and greater, with points coded by salvage harvest status. These plots are shown in 

figure 4.5. It does not appear that plots which were (or may have been) harvested in the 

salvage operation have different values for any of the metrics used, or that those values 

have a different relationship with mortality. 
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Figure 4.5: Classificationn metrics vs. mortality by salvage status 

As mentioned, QuuickBird imagery captured after the fire and befoore salvage 

harvesting took place werre available. Figure 4.6 shows the NDVI which was used from 

the NAIP 2010 imagery pplotted against the QuickBird NDVI, with plots ccoded by 

whether or not they were harvested. A difference due to harvesting wouldd appear as a 

difference in the relationsship between the two NDVIs, which there does aappear to be. It is 

possible, then, that the siggnal of plots which were harvested is noticeablyy changed in the 

NAIP image, however, wwith only 10 plots, it difficult to be sure of the rellationship. Given 

that the relationship betwween mortality and NAIP NDVI does not appear to be different, it 

is reasonable to use the NNAIP NDVI instead of the QuickBird. 
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Figure 4.6: NAIP 2010 adj. NDVI above 2 m vs. QuickBird NDVI 

45 



 

 

 

 

 

 

 

  

 

  

 

   

   

  

   

  

 

    

 

 

   

  

   

Chapter 5 

Discussion and Conclusions 

This study demonstrates that remote sensing data can be used to estimate plot-

level tree mortality resulting from wildfire with a modest degree of accuracy. Using a 

single, freely available post-fire image, mortality was estimated with 74% accuracy. 

Although approximately 40% of plots in the higher two mortality classes were 

misclassified, importantly, no plots with high mortality (> 50%) were classified as low 

mortality (< 25%), or vice-versa. Examination of the map of this prediction for the entire 

fire area (Appendix A) suggests that too much area was classified as low-mortality by this 

method; the confusion matrix suggests that much of this area should have been classified 

as moderate. 

The addition of LiDAR data is associated with significant extra cost unless data 

gathered for some other purpose happens to be available. At present, the question for 

anyone considering the use of LiDAR data for predicting mortality or characterizing fire 
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severity will be whether this extra cost is justified by increased accuracy. As more uses 

are developed for the data, however, collection becomes more economically feasible. In 

addition, anecdotally, it appears that the extent of acquisitions in increasing, and the 

future will likely bring more widely available, higher quality inexpensive or free LiDAR 

data. In this study, the fusion of imagery with post-fire LiDAR data improved overall 

accuracy from 74 to 85%. Most of the improvement is in plots which were incorrectly 

classified as low-mortality and which are in fact moderate-mortality. On the other hand, 

classification using post-fire LiDAR is less accurate when it comes to low-mortality 

plots, and classifies one of these plots as high-mortality, which is one of only two plots 

which were misclassified across two classes – the other being in the unshadowed NDVI 

classification. 

Two of the variables selected in scheme B – p50/mean and p50/mode - describe 

the skew in the data. The standard deviation is used in combination with p50/mode – 

where both are low, mortality is higher. Similarly, where the ratio of p50/mean is low, 

mortality is high, as it is where p50/mean is higher but the percentage of returns from 16-

17m is low. To state this another way, for similar values of NDVI, mortality is lower 

where p50/mean and d17 are high – where there are more returns higher in the canopy, by 

two different measures. 

The fusion of imagery and pre- and post-fire LiDAR in a change-detection 

approach is not supported by this study. There was a slight decrease in overall accuracy 

compared to post-fire LiDAR fused with imagery, and this strategy yielded the lowest 

accuracy in the highest-mortality class of all strategies explored. Half of the plots with 

mortality greater than 50% were misclassified as moderate-mortality. 
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Similarly to scheme B, scheme C used variables describing the skew and variation 

in the data set – in this case, �skew and �MADmode – and change in normalized 

densities in three height bins, from 4-5, 6-7, and 24-25 m. Where �MADmode was 

higher (positive or only slightly negative), and �d25m was positive, mortality was higher, 

which seems counterintuitive. Where �d7m and �d5m were negative, mortality was 

lower, which seems reasonable if the change was due to more returns higher in the 

canopy, but this is not certain – it could also be due to a higher proportion of returns 

below those thresholds. 

Unless pre- and post-fire data collections are made with differencing in mind, they 

will likely differ in density, which affects both DEM generation and canopy metrics in 

complex ways, interacting with slope and cover. These effects likely confound the 

relationships between metrics and actual aboveground structure, making relationships 

with mortality (or other attributes) difficult to detect. In addition, data sets may have been 

separated into files of manageable sizes using different grids, as was the case in this 

study. Differences in density and in gridding make calculation of differenced metrics 

much more complex and time-consuming than metrics from a single dataset. As a result, 

in most cases, differencing would have to yield a significant improvement in accuracy to 

justify the additional time and effort. 

Outside of statements which have already been made about overall accuracy and 

accuracy within specific classes, there is no way to evaluate which of the three maps of 

estimated mortality is the most accurate without collecting additional field data. Between 

schemes A and B either appears plausible, and scheme B is associated with higher overall 

accuracy. Between schemes B and C, although the overall accuracy of the classifications 
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is the same, scheme B is likely a better representation. It is difficult to believe that only 

16% of the fire area experienced greater than 50% mortality in trees over 10” DBH, and 

we know from the results that plots with high mortality were misclassified as moderate-

mortality. Given the choice between over- and under-estimating mortality, at the same 

overall accuracy, it is safer to over-estimate. Hypothetically, if salvage harvesting were 

proposed for all areas with greater than 50% mortality: field verification of the 46% of 

scheme B classified as high-mortality (1,130 ha) will be quicker than verification of the 

16% of scheme B classified as high-mortality (390 ha) plus checking the additional 53% 

(1,280 ha) classified as moderate-mortality, much of which likely experienced mortality 

over 50% as well. 

It is unlikely that the estimates of mortality for the entire fire area based on this 

study (shown in Appendix A) are the most accurate which could be produced by a similar 

method. Not only do the 47 plots used represent only 0.12% of the total fire area (0.15% 

of the area with some canopy above 2m), they are concentrated in a relatively small area 

of generally similar vegetation. Had the goal of this study been the generation of an 

accurate estimate of the distribution of mortality across the forested area burned, a larger 

sample, distributed across space as well as differing forest types, would have been taken. 

However, using high-quality inventory data which was already available, we have 

demonstrated the utility of remote sensing data in estimating mortality, and explored the 

relative value of various methods of interpretation of that data as well as the additive 

value of LiDAR data. 
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5.1 Imagery 

Imagery alone explained almost half of the variability in mortality that was seen 

in the field data. Two sets of digital aerial photography and one set of satellite imagery 

were experimented with in this study. The NAIP photos, which provided the best results 

(once shadowed pixels were removed or adjusted) have the additional benefit of being the 

least expensive. The downside to this imagery is that it is collected on a 3-year cycle, so 

while the timing was good for this study, that will not be the case for the majority of fires. 

Paying to have an area flown is also an option, as is paying for satellite imagery, both of 

which were also explored. Collecting aerial photos specifically for use in a project or 

study has the benefit that the timing of acquisition can be controlled, subject to 

availability of contractors. While there is a penalty in terms of cost and/or resolution, and 

likely of accuracy as well (in this study, the satellite images had notably larger errors in 

the two positions which were checked), satellite imagery has the best temporal resolution, 

with many satellites covering the entire planet every 14-20 days. This means that, if 

contractors are not available to fly your project when you want, or if the decision to 

purchase imagery is made after the optimal window to collect images, satellite imagery 

may be the best option. 

A variety of manipulations of imagery were experimented with as part of this 

study. Results for NDVI, dNDVI, and tasseled-cap transformations (for QuickBird 

imagery) can be found in section 4. In general, NDVI was found to be the best predictor 

of mortality – better than dNDVI, which was somewhat surprising. One likely reason for 

this is that the before and after images are not phenologically matched as recommended 

by Key and Benson (2006). Had there been available imagery from the spring of 2009 
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and 2010, it is possible that dNDVI would have performed better than a simple post-fire 

NDVI. 

The adjustment of shadowed pixel values prior to calculation of NDVI is a novel 

technique, which was developed on the spot, due to need. A similar technique was used 

by Sarabandi et. al. (2004), although their method also adjusted for differences in 

standard deviation. The NDVI was originally developed using Landsat data, which, with 

a 250 pixel size, does not have the same type of shadows that the data used here, with 

resolution between 30 cm and 2.4 m, do. Although dividing the difference in bands by the 

sum is supposed to account for differences in illumination, it would appear that, with 

much higher resolution data, this is not adequate. The technique used here, or the slightly 

more involved adjustment used by Sarabandi  et. al., may be a necessary step prior to 

calculation of NDVI from high-resolution imagery with substantial areas of deep shadow. 

5.1.1 Spry Imagery 

The relatively poor results obtained using the Spry imagery is something of a 

mystery. The Spry photos were taken at a relatively low elevation, which causes 

relatively large displacements, but these appear to have been handled well by the 

orthorectification process. The other result of this process is that the Spry imagery is a 

mosaic of a greater number of smaller individual scenes. The CFI plots in this study 

straddle two individual scenes from different flight lines, with slightly different 

illumination. A sample area from the sidelap of these two scenes was cropped out, and the 

values of the red and infrared bands examined, as shown in figure 5.1. These pixel values 

represent the same area, so that any difference is the result of illumination. 
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Figure 5.1: Pixel values from sample of Spry images 

In theory, calculation of NDVI accounts or controls for differences in 

illumination. As can be seen in the comparison of NDVI from the same sample area, 

shown in figure 5.2, there is a difference in values, although it appears smaller in 

magnitude than that seen in the raw band values. It seems possible that the remaining 

difference in values, resulting only from differences in illumination, is a factor in the 

lesser utility of this imagery in explaining variability in mortality. 
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Figure 5.2: NDVI from sample of Spry images 

5.1.2 Masking 

The simplest fusion of LiDAR data and imagery in this study was the use of 
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canopy masks generated from LiDAR data to clip imagery to the extent of tree canopies. 

This technique substantially improved the relationship between NDVI and mortality. 

While these gains do not, by themselves, justify the collection of LiDAR data, the 

technique is relatively simple, and, unlike the rest of the analysis, could be done with 

already existing pre-fire data. 

5.2 Limitations and sources of error 

5.2.1 Sample size 

The primary limitation of this study is the relatively small sample size. The 47 

plots used represent only 1.25% of the study area. More importantly, each plot classified 

represents a change in accuracy slightly over 2%, so that the resolution of the differences 

in accuracy with different strategies is not particularly fine. Additionally, the minimum 

number of plots per node, set at 5, was reached in several nodes. A larger sample size 

would have yielded more resolution and better accuracy in describing the difference in 

results using different data, as a result of the smaller proportion of the data represented by 

each plot, as well as greater certainty about the ultimate accuracy of predictions, as a 

result of a greater number of plots per node.  

5.2.3 Spatial accuracy 

Plot locations used in this study were measured with a Garmin 60 C Sx, which is 

a recreational-grade unit. While their ultimate accuracy is lower than that of mapping-

grade units, personal experience working in the study area has demonstrated that 

currently available mapping-grade units will not establish a position in many plot 
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locations. The accuracy of positions established by recreational-grade units is generally 

accepted to be less than that of mapping-grade units, but is not the subject of much 

published literature. However, a similar unit, deployed in forested conditions, had 

average RMSE of 16.88 m, with the authors calculating 95
th

 percentile RMSE to be 29.22 

m (Danskin, Bettinger, Jordan, & Cieszewski, 2009). Using these values, the average plot 

would have an error representing approximately 64% of the plot area – this is the 

proportion of the remote sensing data that is outside the field plot. The 95% error stated is 

nearly equal to the plot diameter – only 3% of the remote sensing data sampled would be 

from the actual area of the field plot. The consequences of errors in plot locations are 

probably less than might be suggested by the percentages stated, given that some area 

immediately outside plots will contain canopies of trees which are in fact located within 

those plots, while a similar area which is in fact part of the plot will contain canopies of 

trees which are outside the plot. In addition, fire characteristics and effects cannot be 

expected to be drastically different over the space of a few meters. Assuming that the first 

3 m outside field plots are still a reasonable sample, the average plot’s sample has an 

error of 51% of the sampled area (although a similar percentage of the larger hypothetical 

field ‘plot’ is sampled – 35% vs. 36%), while the 95% error of 29.22 m would sample 7% 

of the ‘plot’ (9% of the sample data would be within the ‘plot’). Figure 5.3 illustrates 

these example cases. 
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Figure 5.3: Illustration of plot errors and areas 

The accuracy of the remote-sensing data used for this study is given in section 3, 

and is much smaller than the likely errors in plot positions. The two sources of error 

(error in the data being extracted and error in the locations for which that data was 

extracted) interact in complex ways in terms of magnitude and direction. Errors may be 

offsetting or may compound, and a small number of plots could easily have virtually no 

error, or very large errors. There is no way of saying which plots have more or less, but it 

seems that, on average, a little more than half of the remote-sensing data used was from 

areas outside the CFI plots. This almost certainly had a negative effect on the accuracy of 

predictions. When working with remote sensing data in a forested environment, 

especially one with rugged topography, it is unrealistic to assume that field and remotely-

sensed data can be perfectly matched. Two strategies could have been used to reduce the 
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amount of error in this study: more exact location of field plots, or larger plots. As 

mentioned previously, at present, higher-accuracy GPS units are not generally able to 

establish a position in most of the study area, leaving traditional surveying as the only 

option to more precisely locate the field plots. After reviewing the condition of the forest 

after the fire, it was established that this would not be practical, and possibly even unsafe. 

As for the size of plots, this study used pre-existing plots, so that increasing their size was 

not possible, however, the use of larger plots is suggested for any future similar studies, 

to minimize the effects of errors in plot locations and in remote-sensing data. 

5.2.4 Salvage harvesting 

As discussed in section 4.4, 10 of the 47 plots used in this study were partially 

harvested prior to collection of remote sensing data. Although it does not appear that 

harvesting altered the relationship between NDVI and mortality, it is possible that it 

affected relationships between LiDAR variables and mortality. 

5.2.5 Adjustment of NAIP reflectance values 

The use of average band values for a sample area to adjust raw values of bands 1 

and 4 prior to calculation of NDVI could have introduced some bias into the calculated 

NDVI values. The facts that plot values were generally similar for clipped vs. adjusted 

NDVI, and that overall the two performed similarly at predicting mortality, tend to 

support the notion that adjustment did not negatively influence plot NDVI values. 

5.2.6 Errors in mortality data 

The mortality data used for this study was collected by student interns and 

temporary employees at Swanton Pacific Ranch, under the supervision of resource 
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manager Steve Auten, whose Master’s thesis compared the accuracy of initial assessment 

to that of assessment 3 years following the fire. Overall, initial assessment was 87.9% 

accurate, including smaller diameter classes which had lower accuracy (Auten, 2012). It 

can reasonably be assumed that a few trees which were removed during salvage 

operations may have actually survived the fire, meaning that the percent mortality for a 

few plots may be slightly inaccurate. In addition, it is possible – although plots were 

assessed for 3 years and each year’s assessments compared to find inconsistencies – that 

some trees were mistakenly misclassified. 

5.3 Recommendations for further study 

The relatively small number of plots used in this study precluded the separation of 

the data into training and validation sets. External validation of the model(s) generated, 

through the collection of additional mortality data, would provide valuable information 

about the true accuracy of the models. Data could be gathered from within the study area, 

or from similar forestland in adjoining watersheds which was subject to the same fire, if 

adjoining landowners were agreeable, since the data sets used for this study cover the 

entire burn area (with the exception of the pre-fire LiDAR, which did not prove 

particularly useful in any case). Alternatively, or in addition, it would be interesting to see 

if the predictors which were of value in this forest/fire were also the most useful in 

another fire, in a similar coast redwood forest. There have been several fires in similar 

forestland in the last ten years. The Martin Fire burned 210 hectares near Bonny Doon, 

the Summit Fire burned 1,728 hectares near Corralitos, and the Basin Complex Fire 

2
burned 659 km  in the Ventana Wilderness of the Los Padres National Forest – all in 

57 



 

 

   

    

    

  

  

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2008. Post-fire LiDAR data may be available for at least a portion of some of these areas. 

It is, of course, possible that another significant forest fire will occur in the next few years 

in the Santa Cruz mountains. If there were an opportunity to collect LiDAR soon after 

another fire in the area, it could provide a valuable comparison to this study. 

Another approach to estimating mortality would be to model fuels using the 

combination of imagery and LiDAR data, similar to work by Jakubowski et. al. (2013), 

and estimate mortality as a result of fire severity by modelling the fire. While this 

approach is outside the scope of this study, the data are available, and it would be 

interesting to compare the results of the two approaches. 
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Appendix A 

False-color Infrared Area Map 
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Appendix B 

Maps of Estimated Mortality 
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Appendix C 

Imagery Georeferencing Accuracy Data 

Coordinate values are in State Plane Coordinate System, CA zone III: 

Staub House 

Image Northing (ft) Diff Easting (ft) Diff Error (ft) 

NAIP 2009 1,850,807.99 (0.81) 6,060,396.39 (0.82) 1.16 

NAIP 2010 1,850,804.17 3.01 6,060,388.75 6.82 7.45 

NAIP 2012 1,850,806.61 0.57 6,060,384.93 10.64 10.65 

QuickBird 2008 1,850,789.59 17.59 6,060,421.73 (26.17) 31.53 

QuickBird 2009 1,850,814.94 (7.76) 6,060,359.23 36.33 37.15 

Spry 2010 1,850,810.08 (2.90) 6,060,395.35 0.22 2.91 

Surveyed values 

1,850,807.18 6,060,395.56 
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Red House 

Image Northing (ft) Diff Easting (ft) Diff Error (ft) 

NAIP 2009 1,850,132.37 (3.26) 6,057,786.93 4.26 5.37 

NAIP 2010 1,850,125.01 4.10 6,057,782.96 8.23 9.19 

NAIP 2012 1,850,133.21 (4.10) 6,057,786.65 4.54 6.11 

QuickBird 2008 1,850,136.24 (7.13) 6,057,760.67 30.52 31.34 

QuickBird 2009 1,850,190.40 (61.29) 6,057,641.57 149.62 161.69 

Spry 2010 1,850,130.92 (1.81) 6,057,786.85 4.34 4.71 

Surveyed values 

1,850,129.11 6,057,791.19 
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Appendix D 

LiDAR Height Distributions, scheme B 
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