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The Large Hadron Collider rf station-beam interaction strongly influences the longitudinal beam 

dynamics, both single-bunch and collective effects. Nonlinearities and noise generated within the radio 

frequency (rf ) accelerating system interact with the beam and contribute to beam motion and longitudinal 

emittance blowup. Thus, the noise power spectrum of the rf accelerating voltage strongly affects the 

longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by 

the rf components and the configuration of the low level rf (LLRF) feedback loops. In this work we present 

a formalism relating the longitudinal beam dynamics with the rf system configurations, an estimation of 

collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF 

parameters and configurations. 
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I. INTRODUCTION 

The Large Hadron Collider (LHC) rf system consists of 
eight rf stations per beam. The rf system accelerates the 
beam during the ramp, compensates the small energy 
losses during coasting, and also provides longitudinal fo
cusing. The beam and the rf station are two dynamic 
systems with a strong interaction, which complicates 
stability considerations for the composite system. A sim
plified block diagram of the LHC rf system is shown in 
Fig. 1. 

Each rf station includes an accelerating superconducting 
cavity, a 330 kW klystron, and the low level rf (LLRF) 
system consisting of the klystron polar loop and the im
pedance control feedback system. The superconducting 
cavity has an R=Q of 45, a resonance frequency of 
400.8 MHz, and a mechanical tuner with a 100 kHz range. 
The cavity voltage and loaded quality factor QL are set to 
1 MV and 20 000, respectively, during injection and to 
2 MV and 60 000 during physics, for nominal intensity 
beams. The klystron polar loop used at the LHC acts 
around the klystron to reject power supply perturbations 
and compensate the gain and phase shift of the nonlinear 
klystron at low frequencies for different operation points. 
The feedback system controls the accelerating fundamen
tal impedance of the rf station to achieve longitudinal 
stability. It incorporates digital and analog paths, as well 
as the 1-Turn feedback (comb), which acts to reduce the 
impedance at the synchrotron sidebands. 

PACS numbers: 29.20.db, 29.27.Bd 

Single-bunch longitudinal emittance growth as well as 
beam stability related to collective effects are examined in 
this paper. Both of these longitudinal dynamics effects are 
strongly coupled to the effective impedance of the rf 
station and the configurations of the feedback loop. The 
rf configuration is defined by the design choices of com
ponents and signal levels, as well as the operational choices 
of variable parameters. Different approaches on the com
ponent and parameter selection can have a significant 
effect on the stability and characteristics of the beam. 
In this work, the LHC LLRF system has been modeled 

with the existing technology implementation. The effect of 
the operational choices on controller settings is then inves
tigated. The objective of this work is to verify high-current 
and upgraded operating conditions of the LHC, study 
optimal configuration techniques to achieve minimum rf 
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station effective impedance, estimate noise and stability 
limits of the system, and possible impacts of technical 
aspects of the implementation. An ultimate goal is to use 
this knowledge to build a base of future impedance-
controlled rf and LLRF system techniques for upgrades 
of existing or future machines. 

Section II outlines the major noise sources of the system 
and defines their relationship with the rf accelerating volt
age noise. In Sec. III a quantitative description of the 
relationship between the noise spectral density and the 
longitudinal beam emittance will be presented, as a func
tion of the rf loop configuration and the system noise. With 
this formalism and the simplification from Sec. II, it is then 
possible to study the single-bunch dynamics for rf configu
rations of interest, as shown in Sec. IV. The stability 
criterion for coupled-bunch instabilities, the estimated 
growth rates, and the sensitivity of collective effects on 
the rf parameters are discussed in Sec. V. 

II. NOISE SOURCES 

The single-bunch longitudinal emittance growth greatly 
depends on the noise level in the rf accelerating voltage. 
The major noise sources in the rf system include compo
nents in the LLRF boards, the rf reference (local oscilla
tor), the klystron driver amplifier, the klystron power 
supply, low frequency sources (microphonics, ground vi
brations, cooling system, etc.), the effect of the nonuniform 
beam current on the rf cavity voltage, and more. The 
spectrum of these sources spans from very low to very 
high frequencies. 

The models presented in this paper work for both low 
frequency and wideband sources. Initial measurements 
suggest that the LLRF noise contributions are indeed wide-
band, but that there are also significant contributions from 
the rf reference (local oscillator) at low frequencies. The 
quantitative results presented in this paper assume wide-
band sources for simplicity, in particular the LLRF noise 
and the klystron driver amplifier, as shown in Fig. 2. The 
LLRF noise includes several contributions such as the 
digital quantizing noise and arithmetic noise in digital 
signal processing, thermal noise, analog/digital demodula
tor, and modulator. Based on an understanding of the 
engineering implementation of the system, these sources 
can be considered broadband and incoherent. 

It should be noted that the klystron power supplies 
introduce coherent noise at the 50 Hz harmonics in all 
the stations. The synchrotron frequency crosses the 
50 Hz line during the ramp, which can lead to a resonant 
effect [1]. The longitudinal emittance growth formalism 
presented in this work does not include this phenomenon. 

The individual noise sources for the LLRF components 
are distributed throughout the electronics of the system. To 
be able to effectively study the various contributions, it is 
helpful to concentrate them in two equivalent noise sources 
located either at the input of the LLRF board, or the output 
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FIG. 2. (Color) Noise sources. Blocks in red represent the major 
noise sources, in blue are the equivalent noise sources for 
simulations purposes, and the other components are shown in 
green. 

of the klystron polar loop (the input of the modulator), as 
shown in Fig. 2. Both of these sources are in baseband and 
can be modeled as two independent sources in the in-phase 
(i) and quadrature (q) channels, for a total of four noise 
sources. 
The accelerating voltage noise is modeled in amplitude 
ðtÞ and phase  cavðtÞ. To calculate the relationship 

between an input vector perturbation at the mth source 
acav 

 mnmðn tÞ ¼  i 
mnq

and the amplitude or phase of the cavity voltage, we 
linearize the response of the rf station around the operation 
point and determine the impulse response hmðtÞ between 
the output and the input, " #  !    m hm hm m hm acavðtÞ ai aq ni a mð
 m ¼ 

hm hm
 m ðtÞ ¼  

hm
 n tÞ; 

cavðtÞ  i  q nq  

where  denotes convolution and hm ¼ ½hm hm ] and hm
½hm  q]. 

a ai aq  ¼ 

 ih
m

Since the system is linear, we can use superposition to 
get !  X hm acavðtÞ a¼  nmðtÞ; (1)

hmðtÞ cav  m 

where the summation is over all the noise sources. The 
impulse responses hmðtÞ depend on the operational con
figuration of the rf station. 

III. FORMALISM FOR BUNCH LENGTH
 
ESTIMATION
 

During a long store, the bunch energy spread and lon
gitudinal emittance shrink due to the small synchrotron 
radiation damping, whereas any noise injected in the ac
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celerating rf voltage leads to longitudinal emittance 
blowup. Optimally, these two mechanisms should balance 
and the beam should keep a constant bunch length. In this 
section, a formalism relating the bunch emittance growth 
with the noise in the accelerating voltage is presented. The 
accelerating voltage depends strongly on the configura
tions of the rf station and the LLRF feedback systems. 

Following [2], it can be shown that the longitudinal 
equations of beam motion are 

Y!rf _ ¼ E 
Eo (2) 

1 
E_ ¼ ½qVo sinð s þ Þ -UradðE þ EoÞ];To 

where , E are the phase and energy of the particles with 
respect to the synchronous particle, the rf voltage is Vrf ¼ 
Vo sinð þ Þ, Y is the slip factor, Eo the beam energy, s 
To the revolution period, q the charge of a proton, !rf the 
angular rf frequency, the phase of the synchronouss 
particle, and UradðEÞ the synchrotron radiation energy 
emitted by a particle of energy E over a turn. It should 
be noted that even though this equation is defined for a 
single particle, it extends to the whole multiparticle bunch. 
This set of equations can be described as a stochastic 
differential equation. 

The cavity amplitude noise acavðtÞ and phase noise 
ðtÞ are sampled by the beam with a period To resulting 

in the perturbations aðtÞ and ~ðtÞ. In the presence of these 
perturbations, the beam motion Eq. (2) becomes 

cav 

Y!rf _ ¼ E
 
Eo
 

1 
E_ ¼ fqVo½1 þ aðtÞ] sin½ þ - ~ðtÞ]sTo 

-UradðE þ EoÞg 
1 ¼ ðqVo½1 þ aðtÞ]fsinð Þ cos½ - ~ðtÞ]sTo 

þ cosð Þ sin½ - ~ðtÞ]g -UradðE þ EoÞÞ: (3)s 

For small energy oscillations, E and are close to zero, 
so it is possible to linearize around the synchronous parti
cle coordinates. Then, Eq. (3) becomes 

1 
E_ ¼ ðqVofsinð Þ þ ½  - ~ðtÞ] cosð Þ þ  aðtÞs sTo 

X sinð Þg -Uo - EDÞs 

1 ¼ ðqVof½ - ~ðtÞ] cosð Þ þ  aðtÞ sinð Þg - EDÞ;s sTo 

(4) 

where D = 2Uo=Eo with Uo the synchrotron radiation of 
the synchronous particle, and qVo sinð Þ ¼  Uo. The secs 

ond order perturbation term aðtÞ½ - ~ðtÞ] cosð Þ =  0s 
has been dropped. 
It is obvious from Eq. (4) that the phase noise is much 

more significant than the amplitude noise, since is close s 
to 180°, so that 

½ - ~ðtÞ] cosð Þ »  aðtÞ sinð Þ:s s 

Therefore, using Eqs. (2) and (4), and assuming that the 
amplitude noise is negligible, we get the linearized longi
tudinal equations of motion: 

_Y!rf qVrf ð0Þ D _ ¼ E E_ ¼ ½ - ~ðtÞ] - E; (5)
Eo !rf To To 

_where Vrf ð0Þ ¼  !rf Vo cosð sÞ is the rf gradient for the 
synchronous particle. 
The particle beam samples the cavity phase noise ðtÞcav 

every revolution harmonic, so that 

1X
~ðtÞ ¼  oðt - kToÞ ðtÞcav 

k¼-1 

1X X ¼ oðt - kToÞ hm nmðtÞ 
k¼-1 m 

according to Eq. (1). To simplify the notation, and since the 
noise sources are uncorrelated, the analysis is carried using 
a generic representation for one of the terms in the sum
mation over m, so that 

1X
~ðtÞ ¼  oðt - kToÞðhg ngÞðtÞ; 

k¼-1 

where ðhg; ngÞ could be either ðh i; niÞ or ðh 
q 
; nqÞ. The 

approximation of the sampling by an impulse is still valid 
for the ensemble of equations of all particles in a bunch, 
since the 1 ns bunch is very fast compared to the period of 
the loop dynamics (approximately 3 fs, since the band
width of is roughly 300 kHz). cav 
To simplify the equations of motion, E is transformed to 

a normalized momentum p, 

Y!rf p ¼ E;
Eo 

so that Eq. (5) becomes 

_ ¼ p _p ¼ -!2 
s - 2ap þ !2 

s 
~ðtÞ; (6) 

where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s 
!s ¼ - Yq _Vrf ð0Þ 

EoTo 
a ¼ 

D 
2To 

: 

The vector 

X ¼ 
p 

is defined, so that Eq. (6) can be rewritten as 
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cdX ¼ AXðtÞdt þ dv;  z ¼  : 
!rf

where     
0 1 dv 0 Following the procedure outlined in [3,4], the autocorrela-A ¼	 ¼ ~ðtÞ ¼  K ~ðtÞ: -!2 -2a dt !2 
s s tions of the perturbation R ~ ~ and output Rxx, as well as 

their cross correlation R ~ x, are determined. It should be 

noted that R ~ ~ and R are wide sense stationary:~ x 

To estimate the bunch length  z, it is necessary to 
determine the second order moment of , since

R ~ ~ðt2 - t1Þ ¼  E½ ~ðt2Þ ~ðt1Þ] ¼
Z t1 

R ~ xðt2 - t1Þ ¼  E½ ~ðt2Þ ~ðt1 -1 Z t1 ¼ R ~ ~ðt2 - t1 -1 2 
 2 ðt2; t1Þ 4Rxxðt2; t1Þ ¼

E½pðt2Þ ðt1Þ]" # Z t2 0 ¼ eAe R 

   P1 P1 
k¼-1 oðt2 - kToÞhgðt2Þ E½ngðt2Þngðt1Þ] k¼-1 oðt1 - kToÞhgðt1Þ" #	 " # Z0 T t1	 0 T 

Ae	 Ae- eÞ] e de ¼ R ~ ~ðt2 - t1 þ eÞ e de 

!2 ~ x -1 s 

where E½x] denotes the expectation value of the random 
variable x, eAe is a matrix exponential, and AT indicates the 
transpose of matrix A. 

Since the system is linear and stable, the expressions in 
Eq. (7) converge to equilibrium values defined by the noise 
power and synchrotron radiation damping. These equilib
rium values can be estimated by setting 7 ¼ t2 - t1 and 
then taking the limit of Eq. (7) as  t1, t2 ! 1, since Rxx is 
asymptotically wide sense stationary, to get   

Rxxð7Þ ¼  eA7 0 
0 !

0	 
4 R ~ ~ð7Þ e -AT 7 (8) 
s

which gives the correlation matrix due to the noise pertur
bation filtered by both the rf station and the beam dynam
ics. By applying the Fourier transform to Rxxð7Þ from 
Eq. (8) and substituting for the noise autocorrelation 
R ~ ~ ð7Þ from Eq. (7), the power spectral density SgðfÞ of 
XðtÞ due to the generic term is obtained: 

ðfÞBHSgðfÞ ¼  BgSNg g ; (9) 

where the superscript H denotes transpose complex con

!2 
s " # 
0 T - eÞ e -Ae de 
!2 
s 3 

E½ ðt2Þpðt1Þ] Z t2 5 ¼ 
 2 
pðt2; t1Þ -1 

ðt2 - t1 - eÞde; 

jugate, SNg 
ðfÞ ¼  F fE½ngðt1Þng " 

Bg ¼ ð27ifI - AÞ-1 
0 

0 

0 

!2 
s 

HgðfÞ " 
¼ ð27ifI - AÞ-1 

0 

0 

0 

!2 
s 

ðt2Þ]g, and Bg is given by # 1X
oðf - kfrevÞ 

k¼-1 

# 1X
Hgðf - kfrevÞ; 

k¼-1 

where frev is the beam’s revolution frequency, HgðfÞ ¼  

!2-1	 s 

" #	 (7) 
0 

Aee E½ ~ðt2 - eÞxT ðt1Þ]de 
!2 
s 

F ½hgðtÞ] is the frequency response of the rf station for a 
particular source and channel, and ð27ifI - AÞ-1 is a 
matrix transfer function characterizing the beam filtering 
of the noise spectrum. 
Extending the analysis to all noise sources and channels, 

the total spectral density SxðfÞ is given by X 
SxðfÞ ¼  Ni 

ðfÞðBm 
q q½Bi mSm 

i ÞH þ BmSm ðfÞðBmÞH]: (10)Nq 
m 

Then, the square of the equilibrium bunch length  2 isz 
given by

 2 2 Z 1 
 2 
z ¼ 

c
 2 ¼ 2 

c 1 0  
SxðfÞdf (11)

!2 !2 0 0 0rf rf 

since the autocorrelation Rxxð7Þ is an even function. 
It is obvious from Eqs. (10) and (11) that the bunch 

length depends on the noise power spectrum injected, 
filtered by the corresponding rf station and beam transfer 
functions as intuitively expected. The aliasing effect of 
the periodic sampling of the accelerating voltage signal 
can also be seen. This aliasing effect practically folds 
the bandwidth of the closed loop rf station response 
( = 300 kHz) on the band between DC and frev ¼ 
11:245 kHz. The aliasing greatly enhances the effect of 
the noise on the beam dynamics and multiplies the noise 
power spectrum by almost a factor of 30. From this analy
sis it also follows that the aliased and loop shaped noise 
power spectral density at the synchrotron frequency fs is 
critical for the determination of the equilibrium bunch 
length, as seen from the beam transfer function depicted 
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nels, noise is only injected in one point at a time during the 
120 simulations. For a given transfer function HgðfÞ it is then 

B
ea

m
 T

ra
n

sf
er

 F
u

n
ct

io
n

 (
d

B
) 

FIG. 3. (Color) Beam transfer function during physics defined 
by ½1 0]ð27ifI - AÞ-1½0 !2]T . As expected, the resonance is at s 
the synchrotron frequency of about 22 Hz for the physics 
configuration. The resonance is even sharper during injection 
due to the longer synchrotron radiation damping time. 

in Fig. 3, which shows the relationship between the beam 
phase and the sampled cavity phase. 

It should be noted that with this treatment, the individual 
noise sources with power spectrum density SN ðfÞ can be 
shaped or colored noise sources. This is an advantage of 
this formalism over a similar analysis using the Fokker-
Planck equation, which cannot be extended to colored 
noise sources, or to white noise sources shaped by the 
dynamics of the rf station, as discussed in [5,6]. 

In this treatment we considered a single rf station. It is 
obvious from this result that the equilibrium bunch length 
will depend on the total power sampled by the beam. By 
superposition, this will be equal to the sum of the power 
introduced to the beam from all the rf stations. 

IV. AN APPLICATION TO SINGLE-BUNCH
 
DYNAMICS
 

Because of the very low synchrotron radiation of the 
protons in the LHC and the use of klystrons as final 
amplifiers in the rf stations, the LHC longitudinal beam 
emittance greatly depends on rf station perturbations and 
noise. Earlier studies [7] have determined the substantial 
variation of the LHC bunch length, but have considered the 
rf system as a generator in steady state. In this work, rf 
dynamics are now included, as well as the aliasing effect of 
the beam’s periodic sampling of the cavity voltage on the 
noise power spectrum. 

The equilibrium value of the bunch length can be calcu
lated by evaluating the integral of SxðfÞ as shown in 
Eq. (11), by establishing the transfer function HgðfÞ for a 
given operation point, and using the known linearized 
beam dynamics defined by matrix A and the injected noise 
power spectral density SNg 

. 

Since it is impossible to separate the contributions to the 
total cavity noise from the various noise sources and chan
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possible to determine the noise power spectral density SNg 

that will achieve ð1Þ ¼ ð0Þ, thus keeping the initial 
beam distribution during a store. These values are a useful 
metric of the total power injected to the beam for each 
channel and noise source. Thus, they are significant of the 
relative importance of all the sources. This is very helpful 
for the analysis of the system performance, since all of the 
major noise sources can be modeled by an equivalent white 
noise source in the bandwidth of the rf loop. 
As a result, different operation points provide different 

noise levels at the accelerating voltage. The changes of the 
rf station phase noise floor level due to different settings of 
the LLRF feedback loops are studied, to determine the 
sensitivity of the longitudinal beam emittance on various 
rf parameters. With these results it should be possible to 
determine in the future what technical components domi
nate the noise level and how changes in digital quantizing 
choices and analog components impact the emittance 
growth. 

A. Transfer function estimation: Time-domain 
simulation 

To determine the transfer function between the noise 
sources and the phase of the rf accelerating voltage, a time-
domain simulation of the LHC rf station-particle beam 
interaction is used [8]. The time-domain simulation allows 
a simple representation of analog and digital components, 
as well as the inclusion of nonlinear elements. By linear
izing around each operation point, it is possible to deter
mine the frequency domain transfer function. The close 
relationship between the LHC and PEP-II rf systems al
lows the use of previous experience and tools from PEP-II 
operations on the LHC studies [9,10]. Detailed descrip
tions of the systems have been presented for PEP-II [9] and 
LHC [11]. 
The simulation captures the architecture, parameters, 

technical implementation, nonlinearities, and engineering 
details of the LLRF and rf systems. Noise effects, quantiz
ing effects in digital systems, and dynamic range effects 
could also be introduced. All components shown in Fig. 1 
are included in the simulation. Because of the computation 
complexity, it is only reasonable to run the simulation for 
the equivalent of tens of milliseconds of real machine time. 
It is then possible to extract beam and station parameters to 
study the longitudinal beam dynamics and the rf station 
operation. The time-domain simulation has also been used 
as a development environment for the LHC optimization 
and configuration tools [12,13]. 

B. rf station configurations of interest 

Each operation point is defined by the rf station configu
ration; the set of values for all the adjustable loop parame
ters. These parameters are (1) beam parameters, such as the 
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beam energy and average beam current, (2) high-level rf 
station settings: the klystron operation point, the cavity 
voltage, detuning, and loaded quality factor QL, and 
(3) the LLRF parameters, analog/digital loop gain G, 
controller phase , and 1-Turn feedback gain and delay. 
The choices of values for this work is described below. 

For each operation point, the beam and high-level rf 
parameters are predetermined. Based on these operational 
conditions and the current technical implementation of the 
LHC rf system, the LLRF parameters are then adjusted to 
reduce the cavity fundamental impedance presented to the 
beam, while satisfying rf loop stability requirements. The 
optimal values are determined for each configuration, us
ing the same LHC optimal configuration tools as in the real 
system [12–14]. 

1. Beam parameters 

During normal operations, each of the LHC’s rings is 
filled from the Super Proton Synchrotron with particles at 
an energy of 450 GeV and then ramped to the collision 
energy (nominally 7 TeV per beam). There are three inter
esting stages of the LHC operation: at the beginning of 
injection (Io ¼ 0 A), at the end of injection with maximum 
current at low energy, and the physics/collision phase at 
higher energy. The beam and rf station dynamics change 
considerably during these steps. 

At the nominal current of 0.58 A, the LHC klystrons will 
be operating at approximately 297 kW close to the maxi
mum value of 330 kW. Therefore, the LHC klystrons are 
operated close to saturation. In order to separate possible 
saturation effects in this work, studies are conducted at 
both the nominal current of 0.58 A DC and at the more 
conservative value of 0.3 A DC. 

2. High-level rf settings 

For the studies presented in this paper, the cavity voltage 
Vc and loaded quality factor QL are set to 1 MVand 20 000, 
respectively, during injection and to 2 MV and 60 000 
during the physics phase. 

The LHC beam current is irregular around the ring due 
to the bunch pattern and the voltage is kept constant over 
the turn thanks to the rf and 1-Turn feedback systems. If the 
cavity were to be detuned for minimum klystron power 

with the beam present, then the klystron would have to 
switch between two power levels in the presence and 
absence of beam. To minimize klystron power over one 
turn, the cavity is set using the half-detuning algorithm 
during LHC operation [14–16]. The half-detuning algo
rithm decreases the instantaneous power of the klystron in 
the absence of beam and keeps the klystron power constant 
during the changes in the beam pattern. The same scheme 
is used in the simulations presented in this work. 

3. LLRF parameters 

The LLRF parameters adjusted during this work are the 
feedback gain, the 1-Turn delay, and the loop phase. The 1
Turn feedback loop gain and phase are not adjusted during 
operations, but are set to 20 dB and 0 ° , respectively. 
Table I shows the cavity detuning fd and the LLRF 

parameters for each operational scenario considered, as 
described above. It should be noted that G and are 
reference values that define relative changes to the parame
ters set in the hardware. Using the simulation, a 9 dB gain 
margin was estimated for the 1-Turn feedback loop, close 
to the 10 dB value reported during development [17]. The 
1-Turn feedback loop delay 7d is optimized during opera
tions. For the simulation the optimal value was 87:8 fs. As  
expected, the LLRF configuration changes significantly 
during the LHC ramp, whereas during injection the 
LLRF parameters are essentially unchanged (low beam 
loading), and only the klystron forward power shows a 
noticeable effect. 
The LHC optimal configuration tools inject noise to the 

rf station for a brief period of time to characterize the rf 
station through a transfer function measurement. Because 
of beam emittance blowup concerns, the optimal configu
ration tools will not be used in the presence of beam 
according to the current operational plan. As a result, 
with the current operation plan the LLRF is optimized 
with no beam before injection, and then the LLRF is kept 
at the same settings throughout the LHC operation, thus 
significantly reducing the performance of the rf station 
compared to a situation where the parameters are adjusted 
at each stage. To estimate the effect of this operational 
scenario, the simulation is run using the optimal LLRF 
parameters calculated at Io ¼ 0 but at the physics configu
ration with Io ¼ 0:3 A. The results are reported under 

TABLE I. rf and LLRF parameters for beginning/end of injection and physics-collision 
configurations considered in this paper. 

Beam High-level rf LLRF 

Configuration Io (A) Vc (MV) QL Pkl (kW) fd (kHz) G (dB) 

Injection beginning 0 1 2 X 104 139 0 17.44 24 ° 

Injection end 0.3 1 2 X 104 149 -2:7 17.44 2.4 ° 

Physics 0.3 2 6 X 104 216 -1:35 22.35 5 ° 

Injection end 0.58 1 2 X 104 177 -5:3 17.82 2.6 

Physics 0.58 2 6 X 104 298 -2:65 23.3 8 ° 

102801-6
 



 

 

 

 

RF SYSTEM MODELS FOR THE CERN LARGE HADRON . . .  Phys. Rev. ST Accel. Beams 13, 102801 (2010) 

pffiffiffiffiffiffi 
TABLE II. Modulator and LLRF noise threshold in nV= Hz for injection configurations. 
These values correspond to the rf settings shown in Table I. 

Vmodulator VLLRF 

Configuration i q i q 

Injection beginning 7:3 X 10-2 7:9 X 10-3 3:3 X 10-2 1:3 X 10-3 

Injection end 0.58 A 8:3 X 10-2 8:4 X 10-3 9:2 X 10-3 1:2 X 10-3 

Injection end 0.3 A 9:8 X 10-2 8:0 X 10-3 1:7 X 10-2 1:3 X 10-3 

Nonoptimal injection end 0.3 A 3:3 X 10-2 6:4 X 10-3 2:1 X 10-3 5:7 X 10-4 

pffiffiffiffiffiffi 
TABLE III. Modulator and LLRF noise threshold in nV= Hz
for physics configurations. These values correspond to the rf 
settings shown in Table I. 

Vmodulator VLLRF 

Configuration i q i q 

Physics 0.58 A 

Physics 0.3 A 

Nonoptimal physics 0.3 A 

1:1 X 103 

2:4 X 103 

2:1 X 103 

270 

180 

210 

30 

120 

360 

18 

18 

29 

‘‘Nonoptimal physics’’ in Table III. In a hypothetical sce
nario, it would be possible to estimate the optimal LLRF 
parameters for physics/collision using the simulation, and 
then use those settings during injection, ramping, and 
physics. This scenario will have reduced performance at 
injection, and the corresponding results are reported as 
‘‘Nonoptimal injection end’’ in Table II. 

C. Results 

To determine the noise power threshold at the output of 
the LLRF and the modulator, the simulation is set to the 
configurations of interest and the transfer function HgðfÞ 
between the noise (i or q) and the phase of the cavity 
voltage is measured. As described in Eq. (1), the transfer 
functions for all sources and channels should be measured 
for each operational condition. The transfer function be-

equal to the initial condition for source m, can be calcu
lated using this information, so that it is possible to calcu
late the noise spectral density for each source that achieves 
that bunch length: 

2 !2 
zo rfN2 ¼ Ro 

2c2 1 BmðBmÞHdf0 

for zo 
equal to 11.24 and 7.55 cm during injection and 

physics, respectively. The results of these calculations for 
all the configurations of interest are shown in Tables II and 
III for injection and physics configurations, respectively. 
As expected, the noise threshold is significantly lower for 
the injection configurations, since the synchrotron radia
tion damping is more than 3 orders of magnitude lower. 
The very low thresholds for the injection configurations are 
not a reason for concern though, since the beam is kept in 
this condition for a short time. On the other hand, the large 
sensitivity on the synchrotron radiation and consequently 
on the beam energy levels implies that the planned low 
energy operation at 3.5 TeV will reduce the noise threshold 
limits. Furthermore, one can see the wide variation with rf 
configuration and input channel (i or q), as expected from 
the synchronous phase of = 180 ° . Table II shows the 
impact of the different configurations: the LLRF noise 
threshold is scaled by a factor of 2 when the LLRF is 
operated with the physics configuration during injection 

tween the rf accelerating voltage phase and the noise at the 
q channel at the input of the modulator is shown in Fig. 4 as 
an example. Assuming a wideband noise source of power 
constant spectral density ðNmÞ2 for source m, Eq. (11) can 
be simplified to 
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2 Z2c 1 
2 
z ¼
 ðNmÞ2 BmðBmÞHdf: 

!2 
rf 

(12)
 
0 

Then, it is possible to estimate the ratio between the phase 
modulation in the rf accelerating voltage and the noise 
source for each of the configurations. This ratio is calcu
lated using the transfer function from the whole band 

−34 

which is aliased over the frequency band from the rf 
Frequency (kHz) 

operating frequency out to the first revolution harmonic 
following Eqs. (9)–(11). FIG. 4. (Color) The transfer function between the rf accelerating 

The power spectral density for one channel in a voltage phase and the noise at the q channel at the input of the N2 
o 

modsingle rf station that achieves an equilibrium bunch length modulator f½ cavðfÞ]=½nq ðfÞ]gðrad=VÞ. 
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pffiffiffiffiffiffi 
(the noise threshold decreases to 5:7 X 10-4 nV= Hzpffiffiffiffiffiffi 
from the optimal 1:3 X 10-3 nV= Hz). Using the non-
optimal configurations lowers the noise threshold as an
ticipated. On the other hand, in Table III there is a factor of 
1.6 increase of the noise threshold when the LLRF is 
operated with the injection settings during physics (from pffiffiffiffiffiffi 
18 to 29 nV= Hz). This small increase though results in a 
substantial cost to beam stability, since the LLRF gain— 
and consequently the fundamental impedance reduction— 
is now reduced by 5 dB. 

As explained above, these results correspond to only one 
active noise source and channel at the time. They also 
represent only one of the eight stations per beam. 
Therefore, a scheme has to be devised to determine the 
final threshold. It is straightforward to show that the total 
power spectral density at the accelerating voltage phase is 
given by the sum over all channels and sources. Assuming 
uncorrelated wideband noise sources of varying constant 
spectral densities and using Eq. (1), Eq. (12) becomes 

2 X2c Z 1 
2 ¼ 8 ðNmÞ2 BmðBmÞHdfz 

!2 
0rf m 

2 X ðNmÞ2 (13) 
z ¼ 8 :
2 Þ2ðNm 
zo m o 

Therefore, the values presented in Tables II and III provide 
the weighting coefficients for the contributions of the 
individual noise sources to the equilibrium bunch length. 
As such, the noise contributions are dominated by the 
source with the lower threshold or with a significantly 
higher noise power. 

Equation (13) can be very helpful for the system de
signer, since the values Nm can be set based on the tech
nical challenges related to reducing the noise levels of each 
source. These noise levels define the design specifications 
for the LLRF and modulator boards and can be compared 
with the expected noise levels of the architecture. 
Dedicated measurements will be necessary to compare 

FIG. 5. (Color) Noise power spectral density at the output of the 
LHC rf feedback for channel Q (wideband). 

FIG. 6. (Color) Noise power spectral density at the output of the 
LHC rf feedback for channel Q (narrow band). 

with the noise of the actual implementation and verify 
the calibration of the simulation signals. 
Some initial measurements of the noise spectrum at the 

output of the LHC LLRF feedback board are shown in 
Figs. 5 (wideband) and 6 (narrow band). These measure
ments were conducted with the LLRF feedback board 
input terminated to 50i. These noise levels should be 
comparable to the levels at the input of the modulator. pffiffiffiffiffiffi 
The value of approximately 7 fV= Hz in the bandwidth 
of the accelerating cavity is higher than the thresholds in 
Table III, so a slow growth of longitudinal emittance is 
anticipated. Ongoing work will test the validity of this 
prediction. 

V. MULTIBUNCH STABILITY 

Various studies have been conducted to evaluate the 
longitudinal coupled-bunch instabilities at the LHC 
[18,19]. These studies do not include the cavity fundamen
tal impedance nor consider the effect of the LLRF imped
ance reduction feedback system though. Using the time-
domain simulation and related models presented in Sec. IV, 
it is possible to estimate the effective impedance presented 
to the beam by the rf station for any configuration. The 
coupled-bunch instabilities can then be computed to study 
the bunch centroid stability, position, and motion due to 
multibunch coupling as a function of the rf configurations. 
An advantage of the time-domain simulation approach is 

the ability to vary individual LLRF feedback parameters 
and determine their effect on the beam stability. As a result, 
the sensitivity on individual rf parameters can be esti
mated, and the possible tradeoffs between beam and rf 
station stability can be investigated. The related results 
are presented in Sec. VB. 
Impedance reduction is of fundamental importance at 

the LHC since there is no dedicated bunch-by-bunch lon
gitudinal feedback system. The substantial bunch length 
leads to stability through Landau damping. The effective 
cavity impedance though depends strongly on the LLRF 
configurations. In this section, the coupled-bunch instabil
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0.015 

ities are investigated as a function of the LLRF configura
tions to determine the stability margins for the LHC. 

0.01 

The effective cavity impedance is computed using a 
linearized model of the rf station and LLRF feedback 

0.005 

OTFB Off 
OTFB On 

−40 −30 −20 −10 0 10 20 30 40 

around the operation point [20], based on the system 
operating points determined from the nonlinear simulation 
tools. For operation with Vcav ¼ 2 MV  and Q ¼ 60 k, the 
analog/digital loop and the 1-Turn feedback provide a 

T
u

n
e 

S
h

if
t 

(H
z)

0 

−0.005 

reduction of the superconducting cavity impedance of 
about 50 dB around mode 0, as expected. 

−0.01 

Using the estimated impedance and assuming a 
Gaussian bunch, the growth rate and tune shift  !ll −0.015 

can be computed for each coupled-bunch mode l [21]: 

XYqIo 
1 

l þ j !l ¼ Zð!Þ!e 7 
2 !2 
; (14)

2f2!sEoTo p¼-1 

where Y is the slip factor, q is the charge of a proton, Io is 
the DC beam current, f is the ratio of the particle speed to 
the speed of light, !s is the synchrotron frequency, Eo is 
the beam energy, To is the revolution period, Z is the 
estimated rf station impedance contributed from all eight 
stations per beam, and 7 the bunch length in time units. 
The impedance is evaluated at frequencies ! ¼ 
ðph þ lÞ!o þ !s with !o the angular revolution fre
quency, h the harmonic number, l the mode number, and 
p any integer. Figures 7 and 8 show an example of the 
resulting modal growth rates and tune shifts for configura
tion injection end 0.3 A with the 1-Turn feedback on or off. 
The reduction of the growth rates and tune shifts for all 
lower order modes—except for mode 0—is evident. 

A. Stability criterion 

The interaction between the cavity fundamental imped
ance and the beam produces growth rates in the order of 
seconds when the LLRF feedback system is operating. 
Even though these growth rates are very slow—tens of 

−1
10

Mode Number 

FIG. 8. (Color) Tune shift for configuration injection end 0.3 A 
with 1-Turn feedback (OTFB) on or off. 

thousands of turns—they are critical, because the synchro
tron damping time is in the order of hours (approximately 
50 000 and 13 hours for injection and physics, respec
tively). Since there is no bunch-by-bunch feedback system, 
stability is determined by Landau damping—a physical 
process which stabilizes the otherwise unstable ensemble 
of oscillating particles due to a spread of their natural 
frequencies caused by the nonlinearity of the rf voltage. 
To determine stability, the criterion defined in [22–24] is  
used with the same safety margins: 

 !s 
l < ;

4 

where  !s is the synchrotron frequency spread within the 
bunch. The synchrotron frequency spread is given by

72 hL 2 
 !s ¼ !s ;

16 27R 

where h ¼ 35 640 is the harmonic number, L is the total 
bunch length (4 ), and R ¼ 4242:893 m is the LHCz 
radius. Since the LHC rms bunch length is 11.24 and 
7.55 cm during injection and collision, respectively,
 !s =4 is equal to 1.19 and 1.55 for these two cases. 
The growth rate of the most unstable mode and the max 

maximum tune shift  fmax for each configuration are 

TABLE IV. Growth rates of the most unstable mode and 
maximum tune shifts for each configuration, with the 1-Turn 
feedback on. 

Configuration max (s -1)  fmax (Hz) 

Injection end 0.58 A 0.055 0.0071 

Physics 0.58 A 0.0041 0.0011 

Injection end 0.3 A 0.033 0.0047 

Physics 0.3 A 0.0061 0.0009 

Nonoptimal injection end 0.58 A 0.083 0.0099 

−4 
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−2 

Growth OTFB Off 
Damping OTFB Off 
Growth OTFB On 
Damping OTFB On 
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FIG. 7. (Color) Modal growth rates for configuration injection Nonoptimal physics 0.3 A 0.019 0.0044 
end 0.3 A with 1-Turn feedback (OTFB) on or off. 
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reported in Table IV. Comparing the results from Table IV 
with the threshold margins of 1.19 and 1.55 for injection 
and physics, the fastest growth rate is at least a factor of 20 
smaller than the stability criterion threshold for all con
figurations. It is also obvious that the configurations at 
physics have lower growth rates than those at the end of 
injection due to the almost twentyfold increase in beam 
energy. It should be mentioned that the estimated imped
ance driven tune shifts are insignificant compared to the 
frequency spread due to the nonlinearity of the rf voltage. 

It is important to note the significant effect that changes 
of the LLRF configuration can have on the modal growth 
rates, as can be seen for the almost threefold increase in 
growth rates with the nonoptimal configurations. Even 
though the stability threshold is not crossed, it is important 
to notice the importance of the optimal LLRF tuning not 
only for the rf station stability, but also for beam stability. 
The tuning can be even more critical for lower beam 
energies. As seen from Eq. (14), the growth rates are 
inversely proportional to the beam energy Eo. During the 
initial LHC runs, the beam energy has been and will be 
kept at much lower levels than the nominal 7 TeV. To 
maintain the margin level calculated above, the current Io 
should be scaled similarly. For example, an LHC configu
ration with the nominal current of 0.58 A at an energy of 
1 TeV will cause coupled-bunch instabilities with growth 
rates 7 times higher than those presented in Table IV, and 
would probably lead to beam loss. Once again, operation at 
lower energies can have negative effects on the longitudi
nal beam dynamics. 

B. Growth rate sensitivity to LLRF parameters 

One of the important features of the LHC time-domain 
simulation is the ability to study alternative configurations 
of the rf and LLRF system, without requiring time from the 
real machine. As such, it can be used to analyze the 
sensitivity of the modal growth rates to variations of the 
LLRF parameters. These studies provide insight on the 
limits of the implementation, on the operational margins, 
and on the parameters most essential to reliable operations. 

Using the configuration at the end of injection with a 
beam current of 0.3 A as a reference, each of the following 
parameters were modified separately to understand their 
impact in the interaction between the rf station and the 
beam dynamics: Cavity detuning fd, analog/digital loop 
gain G, controller phase , and 1-Turn feedback loop gain 
Gc and phase . The variations on each case were deter-c 
mined to correspond to reasonable variations over a run. 
The system’s impedance and corresponding growth rates 
were estimated for each case. The growth rates of the 
fastest growing mode for each case are reported in 
Table V. It is interesting to see the considerable beam 
stability dependence on the controller phase and the 1
Turn feedback phase. A sixfold increase of the growth 
rates with a controller phase rotation of 10 ° reduces the 

TABLE V. Growth rate sensitivity on LLRF parameters. 

Parameter Adjustment Growth rate Change 

Nominal Value 0.033 

fd :1 kHz 0:038=0:028 þ15= - 15% 
G :3 dB  0:028=0:043 -16= þ 31% 

:10 ° 0:23=0:19 þ590= þ 490% 
Gc :3 dB  0:026=0:039 -20= þ 20% 

:10 ° 0:12=0:10 þ270= þ 220%c 

margin of operation to a factor of 3, which then limits the 
maximum reliable current for energy levels lower than 
7 TeV. This analysis shows the critical importance of care
ful tuning of the LLRF in cases where the beam stability 
margin is limited. 
It is not surprising that there are changes in LLRF 

parameters that improve beam stability. The LLRF is tuned 
in a manner that maximizes the stability of both the beam 
and the rf-LLRF loop. For example, the cavity detuning fd 
is set to minimize the average klystron power. The analog/ 
digital loop gain as well as the 1-Turn feedback loop gain 
are set to achieve predetermined gain margins. Therefore, a 
tradeoff exists between beam and loop stability. 
A similar study was performed for variations of the 1

Turn feedback delay. The total delay in the 1-Turn feed
back loop is set by a coarse delay of 100 ns increments, and 
a fine delay of 10 ps increments. In our study, no consid
erable effects on the estimated growth rates were experi
enced even when the delay was changed by a few hundred 
nanoseconds (corresponding to multiple taps of the coarse 
setting). On the other hand, a shift of even a few tens of 
nanoseconds is sufficient to bring rf station instability. 
Thus, optimal tuning of the 1-Turn feedback delay might 
not be critical for beam stability directly, but it is essential 
for rf station stability, and consequently for reliable opera
tion with beam. 

VI. CONCLUSIONS 

A theoretical formalism for the study of rf noise effects 
on longitudinal beam emittance has been developed and is 
presented in this work. With this formalism and the LHC rf 
and LLRF models and simulation [8], the effect of rf and 
LLRF configurations on the longitudinal beam emittance 
growth has been estimated. Noise threshold limits for the 
input of the modulator and the LLRF have been explored. 
These results can be helpful for noise allocation and speci
fication of technical components in future designs. 
The LHC rf and LLRF models and simulation are valu

able tools in the study of the rf station/beam dynamics 
interaction, and have been used in this work to also study 
multibunch stability. The variations of stability margins 
with operational choices and the system sensitivity on 
individual controller settings have been presented. 
Dedicated measurements at the real system are planned 

to determine the noise levels with the installed architecture 
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and compare the expected and actual beam emittance 
growth as a function of the rf noise and configuration. 
With the simulation and models any other possible con
figuration, proposed design, algorithm, or next generation 
system can be studied. 
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