
TWILL: A HYBRID MICROCONTROLLER-FPGA FRAMEWORK FOR

PARALLELIZING SINGLE-THREADED C PROGRAMS

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Douglas Gallatin

March 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/20074538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2014

Douglas Gallatin

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Twill: A Hybrid Microcontroller-FPGA
Framework for Parallelizing Single-
Threaded C Programs

AUTHOR: Douglas Gallatin

DATE SUBMITTED: March 2014

COMMITTEE CHAIR: John Oliver, Ph.D.
Professor of Electrical Engineering

COMMITTEE MEMBER: Christopher Lupo, Ph.D.
Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.
Professor of Computer Science

iii

Abstract

Twill: A Hybrid Microcontroller-FPGA Framework for Parallelizing

Single-Threaded C Programs

Douglas Gallatin

Increasingly System-On-A-Chip platforms which incorporate both micropro-

cessors and re-programmable logic are being utilized across several fields ranging

from the automotive industry to network infrastructure. Unfortunately, the de-

velopment tools accompanying these products leave much to be desired, requiring

knowledge of both traditional embedded systems languages like C and hardware

description languages like Verilog. We propose to bridge this gap with Twill,

a truly automatic hybrid compiler that can take advantage of the parallelism

inherent in these platforms. Twill can extract long-running threads from single

threaded C code and distribute these threads across the hardware and software

domains to more fully utilize the asymmetric characteristics between processors

and the embedded reconfigurable logic fabric. We show that Twill provides a sig-

nificant performance increase on the CHStone benchmarks with an average 1.63

times increase over the pure hardware approach and an increase of 22.2 times

on average over the pure software approach while reducing the area required by

the reconfigurable logic by on average 1.73 times compared to the pure hardware

approach.

Keywords: Embedded Systems, Computer Architecture, Compilers

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Previous Work 3

2.1 Hybrid Systems . 3

2.2 Automatic Thread Extraction . 6

3 Twill Overview 8

3.1 Twill Dependencies . 8

3.1.1 DSWP . 9

3.1.2 LegUp . 10

3.1.3 LLVM . 11

3.1.4 hThreads . 12

3.2 Twill . 12

3.2.1 Twill Compiler . 13

3.2.2 Twill Software Runtime 14

3.2.3 Twill Hardware Runtime 14

4 Runtime Architecture 15

4.1 Bus Architecture . 16

4.2 Semaphores . 17

4.3 Queues . 18

4.4 Hardware Threads . 19

4.5 Processor Interface . 20

v

5 Compiler Architecture 22

5.1 LLVM . 22

5.2 DSWP . 23

5.2.1 DSWP Differences . 28

5.3 HW/SW Splitting . 33

5.4 LegUp Modifications . 33

5.5 Final Steps . 34

6 Results 35

6.1 Twill DSWP Results . 36

6.2 Area Analysis . 36

6.3 Power Analysis . 38

6.4 Performance Analysis . 39

6.5 Partitioning Heuristic Effects on Performance 40

6.6 Queue Size and Latency . 41

6.7 Results Overview . 44

7 Conclusion 45

7.0.1 Future Work . 45

Bibliography 48

vi

List of Tables

6.1 DSWP Results . 36

6.2 Number of LUTs used in FPGA logic for pure HW translation by
LegUp and hybrid Twill implementation 37

vii

List of Figures

3.1 Twill Overview . 13

4.1 Twill Run-Time Hardware Architecture Overview 16

5.1 Twill Compiler Tool Flow . 23

5.2 PHI Node Example Control Flow Graph: Gray edges represent the
control flow while dotted red edges represent the fake dependencies 30

5.3 Enqueue/Dequeue Loop Matching Cases 31

6.1 Power consumption normalized to the pure Microblaze SW imple-
mentation measured using Xilinx’s power simulation tools 38

6.2 Performance speedups normalized to the pure SW implementation 39

6.3 Mips benchmark performance with various targeted partition split
points . 41

6.4 Blowfish benchmark performance with various targeted partition
split points . 42

6.5 Twill performance speedups normalized to runtime with 2 cycle
queue latency . 43

6.6 Twill performance speedups normalized to runtime with length 8
queues . 43

viii

Chapter 1

Introduction

Increasingly it is becoming common for Field Programmable Gate Array

(FPGA) manufacturers to embed microprocessors within the FPGA fabric. This

allows developers on such systems to pick and choose which parts of their appli-

cation require the speedups achievable by being implemented in hardware while

maintaining a faster development/debug cycle for the majority of the (nontime-

critical) code.

The development cycle for these kinds of hybrid systems has thus been writ-

ing assembly, C or C++ code for the microcontroller and Hardware Description

Language (HDL) code for the surrounding FPGA logic framework and then man-

ually specifying the interface between the two code sections. While this paradigm

gives the developer flexibility and control, the complexity of the HW/SW inter-

face leads to many hard-to-debug errors in all but the simplest of systems. In turn

this leads to longer development cycles and requires more experienced, special-

ized developers which often pushes many potential products to use less efficient

solutions.

Twill is designed to simplify this development cycle while simultaneously ex-

ploiting latent parallelization to increase performance. In particular, Twill is a

compiler that takes single-threaded C code as input, extracts long running threads

from that C code, transforms some of the threads into hardware, and then pro-

1

vides a runtime communication system for a hybrid CPU/FPGA System-On-A-

Chip.

In this way Twill is able to take advantage of both Instruction-Level Par-

allelism (ILP) and Thread-Level Parallelism (TLP) that may be present in the

original source while not requiring any special notation or assistance from the

developer. Twill attempts to efficiently utilize all parts of the hybrid system by

automatically balancing and redistributing the workload in a transparent fashion.

The major contribution of Twill is to integrate algorithms for ILP and TLP

parallelism into an environment suitable for small, low-powered embedded sys-

tems. It combines the strengths of previous hybrid runtime systems with the

abstraction provided by High-Level Synthesis (HLS) systems while exploiting a

higher degree of the parallelism inherent in the input program. Thus, it is able to

give very large performance speedups for these kinds of hybrid embedded systems

without requiring the programmer to have any knowledge of HDL.

The remainder of this thesis is organized as follows: Chapter 2 provides a

history of hybrid systems and highlights several state-of-the-art hybrid projects.

Chapter 3 then presents a broad overview which is followed by an in-depth de-

scription of the runtime architecture and the compiler architecture in Chapters

4 and 5 respectively. Twill’s performance results are next discussed in Chapter 6

while future work on Twill is presented in Chapter 7.

2

Chapter 2

Previous Work

There are two broad research areas that this thesis attempts to bridge. First

presented is the research dealing with hybrid CPU/FPGA systems. This is then

followed by research in automatic thread extraction for compilers.

2.1 Hybrid Systems

One of the foundational papers for the reconfigurable computing domain is

the PRISM project [24]. This project essentially connected a 10MHz M68010

processor to two Xilinx 3090 FPGAs with a 16-bit bus. At compile time the pro-

grammer selects which functions to implement in hardware and then at runtime

the function arguments are passed to the FPGAs and then the result is passed

back.

From the PRISM project spawned a multitude of reconfigurable-pipeline pro-

cessors where the researchers attempted to remove the large data transfer costs

that plagued PRISM. Recent work by Lauwereins et al. [3], Galuzzi and Bertels

[11], and Vassiliadis et al. [35] represent the state-of-the-art with this approach

where the processesor’s pipeline itself is reconfigured for the particular problem.

In parallel, projects such as GARP [16] and OneChip [37] continued with an

3

architecture more closely associated with a processor attached to an FPGA co-

processor. GARP, like most of the successors to the PRISM project, focused on

optimizing the underlying architecture and bus layout and relied on the program-

mer to write code in both traditional languages such as C and HDL in order to

take advantage of the platform. In particular, the GARP project was the first to

put a hard processor and FPGA framework on the same silicon die. In contrast,

projects such as OneChip embedded soft processors within the FPGA logic.

Once suitable hardware architectures were ironed out, several projects such

as NAPA C [13] began to focus on how to compile code for these hybrid systems.

NAPA C in particular created a new dialect of C designed to be easily synthesized

and then used pragmas to allow the programmer to specify which variables were

to be stored where and which logic blocks needed to be synthesized to the FPGA.

They were able to accomplish this with a tightly integrated hardware/software

platform that allowed for single-cycle latency transfers to and from the processor

register file. The NAPA C compiler is also able to do limited automatic loop

parallelization on the FPGA for DO-ALL loops which is the first attempt at

automatically exploiting latent TLP with a hybrid architecture.

Other hybrid compilers have been created but for the most part current work

on compilers in this field has moved into the runtime-reconfiguration space with

projects such as work by Bergeron et al. [4], Koch et al. [20], and Purnaprajna

et al. [30]. Papadimitrious et al. [28] provide a comprehensive cost-benefit

analysis of these kinds of projects. In general it seems as though the current

hardware platforms aren’t really designed for easily partitioning and parallelizing

a program across the HW/SW domains and as such these approaches tend to have

extremely high overhead in exchange for allowing multiple programs unknown at

system start time to run at once on the hardware or for the operating system

to dynamically synthesize and execute oft-run parts of programs on the FPGA

co-processor.

Still other work such as CHiMPS [31] and ROCCC [36] have attempted to

utilize hybrid systems in order to allow full ANSI-C compliant code to be run

on the FPGA. CHiMPS in particular utilizes the processor to take care of tradi-

4

tionally difficult synthesis problems such as recursion and function pointers. In

contrast, other ANSI-C compliant HLS tools such as LegUp [7] will synthesize

a processor in the FPGA framework to solve these problems. In general, all of

these HLS tools will synthesize the entire source except for the problematic parts

and while they have become very efficient at taking advantage of ILP they do

nothing to attempt to extract TLP from the input programs.

Recently, work has been published about how to determine which portions of

a program would be best for synthesizing into hardware given the unique area

verses performance trade off that such a transformation makes. In particular,

Koehler et al. [21] look at common programs where the most-executed code is

prohibitively large when synthesized in an FPGA and presents a framework to

maximize the performance/area product rather than solely the performance of

the system. Martin et al. [25] take a different approach to solve the problem

by applying past work on the NP-complete box-packing problem to determine

which processor extensions to synthesize. Similarly, Curreri et al. [10] present

a framework for measuring the performance and area of synthesized code from

various High-Level languages in order to attempt to quantify the trade off between

useful high-level language constructs and resulting code efficiency.

In the last decade several projects that attempt to provide an Operating Sys-

tem (OS) or Real-Time Operating System (RTOS) have come to fruition. In

particular, the work by Agron and Andrews [2], FOSFOR [12], ReconOS [23],

and hThreads [29] all provide operating services uniformly accessible across the

HW/SW domains. The different projects have explored different tradeoffs be-

tween the HW/SW domains. For example, the ReconOS kernel is implemented

entirely in software while the hThreads kernel is implemented entirely in hard-

ware and the other two are a hybrid. None of these projects include any sort of

automatic code partitioning and instead force the developer to explicitly create

software threads and hardware “threads” and manage all communication between

them using the OS resources.

Finally, several projects in the last several years such as LegUp [8], Spark

[14], and Liquid Metal [17] have attempted to put a run-time OS-like system

5

together with a code-partitioning compiler in order to more automatically take

advantage of these hybrid systems. Liquid Metal introduces a new Java-based

object-oriented language that allows the programmer to interact with object in-

stances across the HW/SW domains but requires the programmer to keep track

of which objects are where.

LegUp and Spark both implement a compiler/translator for traditional C

programs. LegUp was originally only an HDL translator but has recently added

limited support for calling functions across the HW/SW domains. They have a

basic automatic heuristic but encourage the programmer to annotate each func-

tion with whether that function should be implemented in HW or in SW. LegUp

does not do any sort of Thread-Level Parallelism (TLP) but does implement a

modulo-scheduler for Instruction-Level Parallelism (ILP). Also, LegUp does not

provide any primitives other than the function call for synchronization and com-

munication which makes it extremely difficult for the programmer to implement

truly parallel code.

In contrast, Spark started with a similar system to LegUp and then focused

on implementing code optimizations in order to achieve speedup. With com-

plete control over the hardware, they were able to implement several different

speculative-based optimizations with very little overhead. However, they focused

almost entirely on ILP parallelization techniques at the expense of TLP paral-

lelization.

2.2 Automatic Thread Extraction

One of the seminal papers in the computational theory of parallel programs

is the Actor model [1]. This model constructs all units of computation as an

actor that can do work, send messages, or spawn more actors in response to a

message received. Projects such as ReconOS [23] and hThreads [29] along with

Twill extend this model to essentially heterogeneous actors.

More recently, many attempts have been made to take a single-threaded pro-

6

gram and automatically extract long-running threads from it. Some research such

as the work done by Cordes et al.[9] rely on traditional methods such as linear

programming. Others such as Thies et al. [33] focus on particular applications

where the problem can be easily seen as a stream of data with different modules

transforming the data in some way. Some of the more ambitious projects such

as the Helix project [6] control the entire stack from hardware architecture to

compiler to OS. Decoupled Software Pipelining (DSWP) [27] and Kejariwal et

al. [19] both focus solely on parallelizing loops; in particular they both attempt

to minimize the communication overhead required to pass data around between

processors. In this case, the work by Kejariwal et al. is applicable to far fewer

loops than the paradigm afforded by DSWP.

Most new work in the field revolves around the idea of speculative multi-

threading such as first described without significant hardware support by Oplinger

et al. [26]. This work purposefully breaks data or control dependencies in the

program dependence graph by making assumptions about their values in order

to more efficiently parallelize the program. The program must further keep track

of these dependencies such that if any assumption is broken the program must

reset itself and proceed with the new correct assumptions. Most all of “regular”

thread extraction algorithms may be adapted to a speculative model with limited

hardware support. Some use weighted control flow graphs and heuristics as Pan

et al. [39] while still others are based off of the idea of pre-computation slices like

Quiones et al. [32] or the min-cut algorithm described by Johnson et al. [18]. The

DSWP algorithm was explicitly adapted for speculation by Vachharajani et al.

[34]. In general, all of these methods successfully achieve performance increases

under many situations where the non-speculative algorithms fall short.

7

Chapter 3

Twill Overview

Twill is a compiler and runtime system designed to extract latent Thread

Level Parallelism (TLP) and Instruction Level Parallelism (ILP) from a single-

threaded C program in order to exploit the unique characteristics of a tightly

coupled CPU/FPGA hybrid system architecture.

3.1 Twill Dependencies

Twill takes advantage of a great deal of previous work: Twill uses a modified

version of Distributed Software Pipelining (DSWP) as first presented by Ottoni et

al. [27] in order to find and extract long running threads. Twill relies upon LegUp

[7] for finding ILP in the extracted threads and for translating those threads

into HDL. LegUp and Twill’s custom compiler passes are both extensions for the

LLVM Compiler Framework [22]. Finally, it uses a custom runtime system/RTOS

heavily influenced by the hThreads [29] project.

8

3.1.1 DSWP

The DSWP algorithm original presented by Ottoni et al. [27] was re-implemented

from scratch in LLVM. The DSWP algorithm itself consists of two parts: the gen-

eration of a Program Dependence Graph (PDG) and the splitting of the original

program flow into multiple pipelined threads. The PDG is a per-function graph

that keeps track of all dependencies between instructions. Each node in the PDG

is an instruction in the function and each edge is a dependency originating from

a “tail” instruction node and terminating on a “head” instruction node. Thus

each edge designates that the tail must execute before the head. There are three

different kinds of dependencies: data dependencies which designate that the head

relies on the data generated from the tail, memory dependencies where the head

and tail instructions read-write to the same memory locations and the execution

order must be preserved, and control dependencies where the tail is a conditional

branch that determines whether the head is executed or not. On top of these

traditional dependencies tracked in the PDG, the DSWP algorithm requires sev-

eral more edges to ensure correctness in several cases described in detail in the

original paper by Ottoni et al. [27].

Once the PDG is generated, the DSWP algorithm assigns instructions to

multiple threads such that all instructions in a given Strongly Connected Com-

ponent (SCC) in the PDG are all assigned to the same partition. Furthermore,

all cross-partition edges in the partitioned PDG must form no cycles. These

two requirements essentially ensure that the threads create a pipeline or chain of

threads were data only flows one direction along the chain. In this way threads

are “decoupled” from each other such that data transfer latency between threads

is more or less inconsequential to the runtime of the system.

The original DSWP algorithm relies on synchronized hardware queues to

transfer data between threads. Two new instructions are introduced, produce

and consume, that each place or remove an 8 bit unsigned integer to or from a

queue. These instructions only block when the queue is full or empty and other-

wise can be executed in one cycle. Ottoni et al. tested their algorithm through

9

simulation on an Itanium 2 architecture with the IMPACT compiler.

Overall, Ottoni et al. found that while they did get speedups with the DSWP

approach, they essentially traded ILP for TLP since the Itanium processor was

inherently quite efficient at exploiting ILP. However, they found that DSWP pro-

vided much better results with simpler non-VLIW processors and suggested that

the benefits of DSWP would increase the simpler the processor became. Fur-

thermore, they found that the queue latency and queue sizes did not appreciably

affect runtime. Note that in their tests they only applied DSWP to a single

hand-picked loop in each benchmark and did pipeline any function calls.

Details of our implementation of the DSWP algorithm can be found in Section

5.2.

3.1.2 LegUp

LegUp [7] is an open-source HLS compiler based off of LLVM that is being

actively developed by the University of Toronto. In addition, LegUp provides

a full hybrid design flow for FPGA designs with a soft processor. They sup-

port special pragmas to help with code partitioning along with a comprehensive

profiling suite that measures area, power consumption, and performance in both

the FPGA logic and soft core. They have many optimizations to exploit ILP in

various ways in hardware. LegUp first builds a PDG for each function to be trans-

lated and then partitions the graph into stages of instructions where each stage

contains instructions that can be potentially executed at once. Programmer-

controlled heuristics are then used to adaptively control how many functional

units to include for each stage which provides a trade-off between circuit size and

exploiting ILP. LegUp also implements a version of iterative modulo scheduling

which allows it to pipeline across loop iterations.

LegUp has two different compilation flows, one for their hybrid runtime sys-

tem and one for a pure hardware HLS translation. The hybrid flow allows for

communication between a number of soft processors and the hardware circuit

at function boundaries but highly encourages the programmer to specify which

10

functions should go where. By default, LegUp will only place problematic func-

tions on the soft cores such as functions containing recursion, function pointers,

or other traditionally difficult HLS constructs. In this way, the hybrid flow of

LegUp is ANSI C compliant. However, Twill makes use of the non-hybrid design

flow of LegUp which does not support these constructs.

Overall, LegUp’s performance and area results for the hybrid flow are very

poor compared to other commercial HLS tools such as eXCite [38] while LegUp’s

pure hardware flow performs very similarly and in some cases vastly outperforms

other commercial HLS tools.

Details of how Twill uses LegUp can be found in Section 5.4.

3.1.3 LLVM

LLVM is a popular compiler and runtime framework designed to “make life-

long program analysis and transformation available for arbitrary software in a

manner that is transparent to programmers” [22]. LLVM achieves this through

two major areas: a specially designed Intermediate Representation (IR) language

and a comprehensive runtime and profiling framework for directly interpreting

this IR in a platform agnostic manner.

LLVM’s IR is very close to assembly but one key aspect that makes program

transformation easier than in other compilers is that this representation is in

Static Single Assignment (SSA) form which means that every variable or virtual

register is assigned to only once in the entire program. Special instructions that

are only allowed at the beginning of each basic block called PHI instructions are

used to assign different values to a register depending on the control flow used to

reach that basic block.

LLVM also provides a number of modular analysis and transform passes that

make implementing custom program transformation passes easier such as the

memory alias analysis, loop analysis, and dominator/postdominator tree infor-

mation.

11

Details about how Twill uses and integrates with LLVM can be found in

Section 5.1.

3.1.4 hThreads

The hThreads project [29], short for hybrid threads, is essentially an RTOS

where OS primitives can be implemented in either hardware or software. The

project has a software and hardware version of most primitives such as the sched-

uler, memory allocator, and semaphores which are explicitly switched between

by the application developer depending upon his needs. hThreads uses virtual

memory-mapped registers to provide communication between the hardware and

software modules and provides a uniform hardware interface for implementing

hardware-based “threads” in VHDL. With this setup, the application developer

can write software threads in C and hardware threads in VHDL and easily in-

terface between threads using standard operating system primitives provided by

hThreads.

hThreads also provides some limited support for HLS translation by using

the HIF compiler [5] which they have modified to fully support their RTOS

interface. Using this tool, application developers can call the RTOS software

APIs which are automatically translated into the appropriate hardware thread

interface semantics in VHDL.

3.2 Twill

Twill conceptually consists of three different parts: the compiler, the software

runtime system, and the hardware runtime system. An overview of how these fit

together can be seen in Figure 3.1. The Twill compiler first takes as input one

or more C files describing a single-threaded program. The Twill compiler then

performs thread extraction and hardware translation to output two stand-alone

programs: one in C to run on the processor and one in Verilog to by synthesized

12

Figure 3.1: Twill Overview

onto an FPGA. These programs rely on the Twill Software and Hardware run-

times which are combined with the C and Verilog programs by Xilinx tools to

produce a bitstream suitable for downloading onto an FPGA.

3.2.1 Twill Compiler

The Twill compiler is described in detail in Chapter 5. Internally it is imple-

mented as a transform pass on top of LLVM and then uses LegUp to translate the

hardware portions into Verilog. It also sets parameters for the statically defined

primitives in both the software and hardware runtime systems.

While conceptually the Twill compiler could be ANSI C compliant, it cur-

rently has the same limitations on the input C files as LegUp: no recursive func-

tions or function pointers. While this simplifies our implementation, Chapter 7

expands on how Twill could be extended to support these two constructs.

13

3.2.2 Twill Software Runtime

The Twill software runtime system is written in C and assembly. It contains

an API for interfacing the processors with the hardware runtime. The Twill

compiler generates C code for the processors with calls to these APIs in order to

perform initialization, thread management, synchronization, and communication.

The Twill software runtime system is described in more detail in Chapter 4.

3.2.3 Twill Hardware Runtime

The Twill hardware runtime system written in Verilog provides synchroniza-

tion and communication primitives for the software and hardware threads. The

generated Verilog modules from the Twill compiler include “calls” to the vari-

ous hardware primitives to provide synchronization and communication with the

other Verilog modules and the software threads running on the processors. Chap-

ter 4 describes in depth the implementation details of the Twill hardware runtime

system.

14

Chapter 4

Runtime Architecture

Twill’s runtime system is heavily influenced by the hThreads project [29]. The

runtime system has several primitives: semaphores, queues, software threads,

hardware threads, and a simple scheduler. All of the primitives are statically

configured at compile time with the exception of software threads which can

be dynamically created. Semaphores, queues, the scheduler, and the hardware

threads are all implemented in the FPGA logic in Verilog. Hardware threads are

able to interact with semaphores, queues, and the processor’s memory without

interrupting the processor while software threads have minimal API wrappers to

interact with the hardware primitives. The entire architecture overview is shown

in Figure 4.1. Each block in Figure 4.1 represents a Verilog module while each

edge represents instantiating a module. Note that the Twill module is the top-

level module and does not contain any implementation details but simply defines

global parameters used by most other modules.

The following subsections discuss the individual primitives after describing

the bus addressing system.

15

Figure 4.1: Twill Run-Time Hardware Architecture Overview

4.1 Bus Architecture

There are two main communication busses in Twill’s runtime system that

tie all of the primitives together. The first bus, the Module Bus, is the main

communications link between all of the primitives used for passing messages.

The second bus, the Memory Bus, is tied to each of the hardware threads and

the processor interface module and gives the hardware threads access to the

processor’s memory space. The two busses are hierarchical with the Generate

blocks shown in Figure 4.1 used to decrease the combinatorial logic at each stage

allowing for higher clock frequencies.

Both busses work on a message passing model. Each primitive is assigned

a unique address for the busses. When a primitive needs to send a message, it

signals to the bus arbiter and for each clock cycle the bus arbiter will specify

which primitive has control over the bus along with that primitive’s bus message.

This is designed in such a way that if there is no contention for the bus among

the primitives, a primitive’s signal will be acknowledged and its message available

on the very next clock cycle. Thus, the bus has a latency of one clock cycle and

16

a throughput of one message per clock cycle.

The bus arbiter is implemented as a modified priority decoder which always

gives priority to the processor if it is signaling and then gives priority to any

primitive sending a message to the processor and finally gives priority to the

primitive who has been signaling for the longest number of clock cycles. This is

because the processor interface with hardware tends to be the critical path since

the processor is slower at executing instructions. Furthermore, since the processor

generally takes longer to perform a task than the pure hardware threads, it tends

to signal the bus less frequently and when it does the system is designed such

that the processor’s pipeline should not be stalled at all waiting for the hardware

primitive to respond.

A message on the main message bus consists of the destination address, the

3-bit message operation, and a 32-bit data field. The destination address is

variably sized depending on the number of primitives. There are five operations:

give, take, start, stop, and ack. Most primitives only accept a subset of

the operations and the effect of the operations vary depending on what type of

primitive is located at the destination address. The primitive specific effects from

these operations are described in the following sections.

The memory bus uses the same model and timing characteristics of the main

bus but is used solely to allow the hardware threads to read and write processor

memory. A write takes one cycle while a read takes two cycles assuming no bus

contention. One hardware thread may read/write to this bus at once completely

asynchronously from what the processor is doing. Writes to memory from either

the processor or from the hardware threads take two cycles to appear in the other

domain.

4.2 Semaphores

The semaphore primitives are basic counting semaphores. Each may have a

different max count and starting counter. A give message to the semaphore will

17

raise the semaphore while a take message corresponds to a lower. The data part

of the message specifies how many times to raise or lower the semaphore. The

semaphore will respond to the calling primitive’s address with an ack message

when that primitive has successfully taken the semaphore. When the semaphore

is not locked the ack message will occur immediately on the next clock assum-

ing no bus contention. If the semaphore’s counter is already at zero then the

semaphore will wait until a give message is received. The semaphore will then

send ack messages first to the processor and then to the primitive that has been

waiting the longest. In general, it is safe to send take messages to the semaphore

from any primitive although it is not safe to send multiple take messages from

the same primitive without receiving a corresponding ack message in between

each message.

With the above architecture, the sending thread will be blocked for one cycle

for a raise operation and a minimum of two cycles for a lower operation.

4.3 Queues

The queue primitives are first-in-first-out (FIFO) queues. Each may have

a different max length and be either 1 bit, 8 bits, 16 bits, or 32 bits wide.

The queues are asynchronous but assume that a single primitive is enqueue-

ing data and a (potentially different) single primitive is dequeueing data. Thus a

semaphore or other synchronization method between primitives must be used if

more than one primitive is enqueueing the data at once or more than one prim-

itive is attempting to dequeue the data at once. A give message to the queue

enqueues the message’s data field to the queue. An ack message will subsequently

be sent back to the sender. A take message will cause the queue to send an ack

message back to the sender with the dequeued value. Internally, the queues are

implemented as a circular buffer with one more data element than the queue can

hold. On enqueue operations, an ack message will be sent back to the sender

immediately as long as the final data slot in the queue is empty. When the size+1

data slot is filled, an ack message will not be sent until a dequeue operation is

18

performed. In this way the sending primitive is stalled if the queue is full. Simi-

larly, if the queue is empty then the queue will only send the ack message for a

dequeue operation after a give message is received.

The synchronization overhead of enqueueing or dequeueing from a queue is

thus a minimum of two cycles assuming no bus contention.

4.4 Hardware Threads

Hardware threads are user written or auto-generated HDL code that perform

the desired computations. They have a simple interface to the HWInterface

modules which deal with the specifics of communicating over the busses. For

the hardware thread to perform any action, it sets the specified function code

and the desired target along with any data parameters and then sends a pulse

on a signal wire to the HWInterface. The HWInterface module then will latch

in all the data and make the appropriate call. Note that the desired function

code is just the equivalent to an enum where each function call has its own

entry. The function code does not correspond to bus operation but uniquely

specifies whether to perform an enqueue, dequeue, raise, lower, load, store, etc.

operation. Furthermore, the desired target is not the same as the address but

rather an index into a virtual array of the OS primitive implied by the function

code. For example, passing zero as the desired resource to a raise call will raise

the first semaphore while passing zero as the desired resource to an enqueue call

will enqueue to the first queue. Multiple calls to different primitives may be made

at once; the only constraint is that only one call may be initiated per cycle.

Each call will “return” to the hardware thread by the hardware interface

specifying the code and resource on the return wires along with any data that

might have been returned on the incoming data wires. In this way one function

call per cycle may return to the hardware thread. The operations that “return”

immediately on the next clock cycle assuming no bus contention are memory

store, semaphore raise, start thread, and stop thread. Operations that take

19

multiple cycles are memory load, semaphore lower, enqueue, and dequeue. The

HWInterface can also signal to the hardware thread that another thread started

or stopped it asynchronously to any pending requests.

The HWInterface module connecting the HWThread modules to the Generate

HW Threads block in Figure 4.1 is responsible for managing all of the simultane-

ous requests and their response states. It is designed in such a way as to not add

latency between the hardware thread’s operation request and sending messages

out on the bus and thus the hardware thread has the minimum cycles listed in

the other sections of synchronization overhead.

There are several special system hardware threads that handle some system-

related tasks. The first is the I/O manager which is connected to the serial

port and all of the external interrupt pins, reset signals, LED’s, and switches.

Other threads can send messages to this thread to interact with the I/O ports.

Interrupts are forwarded with one clock cycle latency to the appropriate handler

either in hardware or on the processor.

The second special system hardware thread is the timing thread which is

used to time all of the cycle counts referenced in Chapter 6. The final special

hardware thread is the scheduler. The scheduler is a simple round-robin scheduler

for the software threads which can handle threads in both blocked and waiting

states. Every period it will interrupt the processor with the new SW thread ID

to switch to. It also snoops on the message bus looking for the active thread

to become blocked in order to switch out threads. Since all of this logic is in

hardware, the only critical-path cost on the processor is a single context-switch

unlike traditional schedulers which require two context switches in addition to

running the actual scheduling algorithm.

4.5 Processor Interface

The processor interface provides the method of connecting a variable number

of Microblaze processors to the two busses. It is split into two parts: Verilog

20

code that creates the actual connections and a C library that runs on each of the

processors.

The C library provides function APIs such as Enqueue(), RaiseSemaphore(),

and StartThread(). It also provides an interrupt controller that interfaces with

the I/O hardware thread to pass interrupt sources to the proper SW thread’s

interrupt routine.

The communication between the C library and the hardware module is imple-

mented using a single Microblaze Stream. Streams are built into the Microblaze

processor and act very similarly to the hardware queues described above. There

are two instructions in the Microblaze ISA, put and get, that each take two

cycles for their data to be transfered into or out of the FPGA logic. When the

streams are full or empty they will stall the processor if the corresponding put or

get instruction is executed. It takes two put/get instructions to pass a message

to or from the processor interface. Thus since the processor interface is designed

to mask as much of the hardware overhead as possible it takes five cycles for the

processor to complete any operation with any of the hardware primitives. Be-

cause of the way the message bus priority works, the worst latency possible with

processor messages is 4 + n cycles where n is the number of processors attached

to the system.

The hardware processor interface module has only one address on the main

bus no matter how many processors there are. It internally queues and interleaves

the processor operations, simulating any multiple requests to the same primitive

from the processors. This was done to reduce the already large overhead of having

the processor communicate with the hardware primitives.

The processor interface also manages the memory between the processors and

the hardware threads. Each processor has its own copy of the memory and the

hardware threads share another copy. A simple write-update coherency scheme

is used simply because of the small size of the memories used in the project. If

the memories were larger a more sophisticated coherency scheme could be used

if needed with little adverse effect on the overall architecture.

21

Chapter 5

Compiler Architecture

Most of the design decisions in the runtime system were made in order to

optimize and simplify our DSWP implementation and the Twill compiler pass.

The Twill compiler itself is a multi-stage patchwork of other work along with

custom compiler passes. This can be seen in Figure 5.1 where each block is a

different tool used to transform the input C program into two programs, one in

C and one in Verilog.

5.1 LLVM

The first step is the standard LLVM tool-flow [22]. LLVM 2.9 is used in order

to have the LLVM IR directly compatible with the LegUp toolchain. LLVM’s

front-end is Clang which is responsible for generating LLVM IR from the input C

code. Twill calls Clang with the “-O2”, “-ffreestanding”, and “-fno-builtin” flags.

The freestanding and no-builtin flags ensure that the resulting code does not

infer LLVM intrinsics such as memset, memcpy, variatic functions, return address

manipulation, stack address manipulation, and other built-in LLVM features that

are not explicitly present in the original C source. These features are all difficult

or slow to implement in hardware and thus any optimizations Clang thinks it can

22

Figure 5.1: Twill Compiler Tool Flow

achieve by inferring these primitives will in general result in slowdowns in the

resulting code.

After Clang is run and generates as output an LLVM IR assembly file, sev-

eral builtin LLVM analysis and transform passes are run to further optimize the

program and to massage it into an easier to work with form. In particular, Twill

runs in order the LLVM passes “basicaa”, “mem2reg”, “mergereturn”, “lower-

switch”, “indvars”, “inline”, “always-inline”, “simplifycfg”, “gvn”, “adce”, and

“loop-simplify” to prepare the LLVM IR for the DSWP transform passes.

5.2 DSWP

The DSWP algorithm conceptually pipelines loops by building a complete

Program Dependence Graph (PDG) of the loop and then partitioning it into

separate threads such that data is forwarded in only one direction between the

threads. This technique was chosen as the main source of TLP parallelism because

the original authors discovered that it became more efficient as the simplicity

of the processing cores increased and because the required low-level and low

synchronization-cost queues were relatively easy to create with control over the

hardware.

We implemented the DSWP algorithm as three separate custom LLVM passes.

23

The first pass “fixes” globals by passing their addresses to all functions as pa-

rameters. Thus after this pass executes the only uses of globals in the entire

program are guaranteed to be the very first instructions in the main function

that essentially take the address of each global. This pass is done since the way

LegUp synthesizes globals is to create new memory blocks on the FPGA contain-

ing the global data. These memories do not update between different hardware

threads or between the hardware threads and the processor and thus any write to

a global variable would cause incorrect behavior. Furthermore, this simplified the

modified memory load/store operations in the LegUp source to always reference

the unified address space rather than trying to figure out which memory space

to address into. For programs with many globals, it may be more efficient to

implement a cache-coherency scheme between the distributed memories but in

practical applications it appears that the number globals actually used by a given

function are quite limited and thus the overhead involved in passing globals by

argument is relatively small.

After the custom global pass, the “deadargelim”, “argpromotion”, and “con-

stprop” stock LLVM passes are run in order to clean up any dead code or global

arguments being passed to a function that are unused. These passes also will

identify any constant globals and replace their memory lookups with constant

expressions.

The second pass builds the Program Dependence Graph (PDG) for each func-

tion. This pass relies on LLVM’s builtin “basicaa” and “loops” analysis informa-

tion. We found that LLVM’s higher level dependence analysis framework handled

call sites and arguments wrong inside of nested loops and thus re-implemented

a similar framework from scratch. Once the PDG is built this pass assigns a

weight to each instruction node in the PDG denoting how many estimated cycles

each instruction is expected to take along with how much area the instruction

is expected to take if transformed into hardware. For example, load and store

instructions are both expected to take two cycles in software while store takes

one cycle in hardware. Both load and store instructions take the minimum area

possible for an instruction in hardware since they simply call out to the hard-

24

ware runtime system. Another example is the division instruction which takes 34

cycles to complete in software and only 13 in hardware. However, it is assigned

a large penalty in hardware area since it requires a dedicated DSP block on the

FPGA or an inordinate amount of LUT blocks.

Once the PDG is generated and properly annotated, the actual DSWP pass

is run. The DSWP pass as input takes the number of initial partitions to build;

it will output at least that many independent long running threads. The DSWP

pass relies on the “postdomtree”, “domtree”, “domfrontier”, “postdomfrontier”,

and “loops” stock LLVM analysis passes. The DSWP pass runs on the entire

program rather than on each function.

For each function in the program, the DSWP pass runs a simple heuristic-

based partitioning algorithm to divide the SCCs of the PDG between the parti-

tions. The partitioning algorithm takes as input a targeted percentage of work

to be assigned to each partition. The developer specifies an initial percentage

of work to be done in the software domain as opposed to the hardware domain

and this percentage is used to generate the initial targeted percentages for each

partition. Furthermore, the partition percentages are adjusted accordingly as the

DSWP algorithm is iterated upon as a result of the function call logic described

below.

Each SCC is assigned two different estimations of its weight. The hardware

weight consists of the sum of the estimated cycle·area products that would result

by translating each instruction into hardware. The software weight consists of the

estimated number of cycles required to execute the instruction on a Microblaze

processor.

A sorted list of SCCs is maintained such that all SCCs that are valid to

place onto the current partition according to the rules described in Section 3.1.1

are in the list. Essentially this means that all SCCs on the list do not have

dependencies upon SCCs that have not been placed into a partition yet. Every

time a new partition is started, the total hardware weight and total software

weight of the SCCs currently on the sorted list are compared to determine whether

this partition will be a software or hardware partition. Once this decision is made,

25

the list is resorted according to the appropriate weight and the smallest SCCs are

added to the partition (and the list of available SCCs is updated) until the weight

surpasses the targeted percentage for this SCC at which point a new partition is

started and the process repeats.

Once the partitioning is complete, each partition is generated in a separate

function named “〈function name〉 dswp 〈partition number〉”. The functions are

filled in with their appropriate instructions according to the SCCs assigned to

that partition. Branch instructions are ignored during this step. In this step,

dependencies between SCCs are also added in the form of pairs of calls to the

special functions “Enqueue” and “Dequeue”. The dequeues are inserted into

the basic block where the dependent instruction would have been placed (this is

described more in Section 5.2.1). The enqueues are not added during this step

but are tracked in order to be added later once all partitions have been created.

Once all of a partition’s basic blocks and instructions are filled in, care is

taken to ensure that all basic blocks from the original function that contain a call

site are included in the partition’s function along with all control dependencies

that call site may have outside of the partition. At this point the newly generated

function contains all of the basic blocks and most of the final instructions minus

branch instructions and call site instructions.

At this point, all of the branch instructions are added to each basic block

and their branch targets are adjusted to the appropriate basic blocks in the new

partition function. If the basic block the branch instruction would have targeted

is not present in the new partition, the closest block that post-dominates the

missing block is branched to instead. Any conditional branches that branch only

to one block are replaced with unconditional branches.

After the branch instructions are inserted, all of the instructions’ arguments

are fixed to reference the new instructions in the partition function. Special care

is taken with PHI nodes to ensure that there is an entry for each predecessor block

and that each predecessor block is matched with the proper original predecessor

block.

26

At this point it is possible for PHI instructions to rely on data from instruc-

tions not in this partition. In these cases a dequeue function call will precede

the PHI node in the basic block which is illegal in LLVM IR definition. New

basic blocks are inserted in these cases between the specified predecessor block

and the block with the PHI node. The dequeues are then pushed into these new

blocks so that the required ordering of the instructions is preserved while the PHI

instructions remain as the first instructions in their basic block.

The above steps are repeated for each partition for the given function. Once

all of the partition functions have been created, the enqueues function calls are

placed into the partitions in the proper place. As part of this step, data conver-

sion instructions are added to both the enqueue and the corresponding dequeue

function calls in order to satisfy LLVM’s type system.

All of the partition functions for each function in the source program are built

using the above steps. Once all of the functions have been created, every single

call site in the generated partition functions are visited and adjusted to call the

proper partition’s function. At this point an analysis of the dependencies between

functions is used to determine whether it is possible to reuse queues. As queues

are reused semaphore function calls are inserted where necessary to ensure that

the assumptions about being able to reuse queues is correct.

The above entire process is repeated with different partitions assigned different

target percentages at the partitioning step since the partitions can be swapped at

function call boundaries (more information on how this happens in Section 5.2.1).

In these cases when the partition is switched the percentages assigned to those

functions will be switched and only the affected functions will be recomputed.

This can cause multiple DSWP versions of a single original function if the original

function is called in different locations in the original program. Currently this

adjustment-and-recompute step is capped at happening a maximum of two times.

The output of the DSWP pass is an LLVM IR file that contains both the

original functions and the new DSWP functions intermixed.

27

5.2.1 DSWP Differences

There are several algorithmic differences between our implementation and the

implementation described in Ottoni et al.’s original paper [27] that we discuss

below.

Function Calls

Probably the biggest difference is that our implementation of DSWP operates

on the function level rather than on the loop-level. While pipelining code outside

of loops is of questionable benefit, it allows us to implement a key extension

to the original DSWP algorithm. The original algorithm treated function calls

as a single large-latency instruction and thus would not pipeline any functions

outside of the function containing the manually designated loop to pipeline. By

extending the pipeline to the function level, our implementation treats function

calls as zero latency instructions and then sets up a special dependence so that a

sub-tree of threads will pipeline the called function. This sub-tree of threads will

reuse the existing threads in the current pipelining when there is no recursion

involved.

Therefore in our implementation, each function contains a “master” thread

and zero or more “slave” threads. The thread that the call instruction is parti-

tioned into becomes the master thread for the new function and is responsible for

passing the arguments and receiving the returned result value. The other threads

call the remaining slave versions of the function. All of the slave threads for that

function do not accept any arguments for the function and instead will create

standard enqueue/dequeue instruction pairs with the master thread only if the

partitioner gives instructions to the slave thread requiring those arguments.

Thus when a function call is found, the pipeline is rebuilt for that function

based off of the thread with the call instruction and then the old pipeline re-

sumes once the function call has finished. This does create situations where data

must flow against the direction of the original pipeline which puts the queue la-

28

tency on the critical path of the execution. It also potentially causes multiple

versions of the same function to have to be translated into each hardware thread

which increases the FPGA area required. To solve both problems, we move each

function’s master and slave threads into separate threads as long as the various

call-sites to each function cannot execute at the same time. Within a single

function, this is determined by a simple conservative heuristic which requires all

call sites to have an unbroken chain of dependencies between them in order to

be considered non-overlapping. Semaphores are used to ensure the function is

indeed non-overlapping if the function has call-sites in multiple functions. In

practice most of the time functions that do have overlapping calls tend to be sim-

ple functions that the partitioner will not partition anyways and thus the above

two problems are avoided a majority of the time.

Furthermore, this method of resolving function calls potentially switches which

partitions of a function are placed into software and hardware. Thus the function

calls are resolved as the last step in the custom DSWP algorithm and the entire

algorithm is iterated upon with different partitioning target percentage and roles

for the partitions of the particular function that is called.

Conditional Control Dependencies

Since LLVM IR is in Single-Static-Assignment (SSA) form, some of the ad-

ditional artificial conditional control dependencies introduced in the original pa-

per are not implemented. The SSA form and its PHI nodes ensures that these

scenarios cannot occur. However, there is an additional problem that LLVM’s

implementation of PHI nodes introduces. In LLVM, the PHI nodes may assign

a constant based off of the control flow entering the block. An example of this

problem is illustrated in Figure 5.2. The problem occurs when the partition that

contains the PHI node does not have any instructions in one of the preceding

basic blocks: BB2, BB3, or BB4. In this case according to [27] those basic blocks

would not be present in the partition and thus the resulting threads will not be

correct. Intuitively, the PHI node is control dependent on the branches in BB1

29

Figure 5.2: PHI Node Example Control Flow Graph: Gray edges rep-
resent the control flow while dotted red edges represent the fake de-
pendencies

and BB3 but because of how LLVM handles PHI nodes it is not possible to for-

ward the result of the branches using enqueue/dequeue instructions. Instead, we

create a pair of fake dependencies between the PHI node and the branch instruc-

tion of every block that is associated with a constant. These dependency pairs

can be seen in dotted red in Figure 5.2. This essentially forces the problematic

branches and the PHI node to be on the same partition.

Loop Matching

Another difference in our implementation is how loops are handled. In the

original implementation only one loop was handled in each program. Since func-

tions can have an arbitrary number of loops arranged in an arbitrary fashion,

care must be taken to ensure the enqueue and dequeue instructions are matched

between loops properly. For each enqueue/dequeue pair we look at the loop

structure and find the lowest loop in the original function that contains both the

instruction whose result needs to be enqueued in the master thread (defined)

30

de f ined

. . .

for () {

use

}

(a) use in a sub-

loop of

defined

for () {

de f ined

}

. . .

use

(b) define in a sub-

loop of use

for () {

de f ined

}

. . .

for () {

use

}

(c) define and use

in distinct loops

de f ined

use

(d) define and use

in same loop

Figure 5.3: Enqueue/Dequeue Loop Matching Cases

and the instruction that uses the defined instruction in the slave thread (use).

At this point there are four cases shown in Figure 5.3. Figure 5.3 (d) shows the

basic case where the loops are well matched. Trivially, the enqueue instruction

is inserted directly after the defined instruction while the dequeue instruction

is inserted directly before the use instruction.

For the case shown in Figure 5.3 (a), the enqueue instruction is inserted after

the defined instruction while the enqueue instruction is inserted at the end of all

of the use instruction’s loop preheader blocks. Similarly, for the case in Figure

5.3 (b) the dequeue instruction is inserted directly before the use instruction

while the enqueue instruction is inserted at the beginning of all of the defined

instruction loop’s exit blocks. In the case shown in Figure 5.3 (c) the enqueue

instruction is inserted in all of the exit blocks while the dequeue instruction is

inserted in all of the preheader blocks. Note that this will create asymmetric

numbers of enqueue/dequeue instructions but will ensure that for any given

control flow each loop iteration will have matching instruction numbers.

Furthermore, for every enqueue/dequeue pair a simple flow algorithm is run

31

on the lattice formed by the common dominator and post-dominator nodes to

ensure that every enqueue is matched with a corresponding dequeue. The flow

algorithm places dummy enqueue and dequeue instructions as required such that

enqueue instructions are as close to the dominator node as possible while dequeue

instructions are as close to the post-dominator node as possible.

Even after doing a flow adjustment this leads to some edge cases where naively

doing the above will break the code. Whenever the preheader blocks have succes-

sors other than the loop header or when the exit blocks have predecessors other

than blocks within the loop control flow is broken. In these cases, special basic

blocks not present in the original function must be created between the block out-

side of the loop and the blocks inside the loop. The dequeue/enqueue instruction

is then placed into this block and the branches are adjusted accordingly.

Another case where doing the above will break the code is if the use instruc-

tion is a PHI node and the dequeue instruction would be placed directly before

the PHI node. In this case a new basic block not present in the original function

is created on the control path between the basic block the PHI node is in and

the basic block the defined instruction is in. The dequeue instruction is then

placed in this basic block.

Homogeneous Threads

The final major difference between the original DSWP implementation and

our modified implementation is that since the threads are not going to be run

on homogeneous cores, the thread partitioner creates uneven partitions. It also

ensures that all allocations and deallocations across all of the function calls are

on a single special thread since a single thread must be in charge in order to keep

the heap in sync.

32

5.3 HW/SW Splitting

After the DSWP transformation is finished, the generated threads must be

split from the single LLVM IR file into HW and SW components. This stage

generates a different set of stand-alone LLVM IR for each individual HW thread

and SW thread based off of the results from the DSWP partitioner. Currently the

special memory management thread is forced to be in software to take advantage

of the standard C library’s malloc/free although it would be straightforward to

implement these two functions in hardware to allow hardware threads to manage

the memory and to relax the requirement that all memory allocations must be

on one thread. In practice, for media applications there are very few memory

allocations inside the main computation loop which makes this limitation less

problematic.

The only other special requirement for the split is that the master for the

main function is always implemented in the software so the processor drives

the entire program execution which is required for many SOC systems. After

these two threads have been assigned, the larger partition sizes are prepared for

the hardware translation while the smaller partitions are put onto any remaining

processor cores. Only one thread for each processor is assigned unless the threads

can be demonstrated not to overlap in execution time so that context switches

are avoided.

Once the individual stand-alone LLVM IR files for each thread are generated,

they are passed into the LLVM C backend for the software threads or into the

LegUp Verilog backend for the hardware threads.

5.4 LegUp Modifications

We modified LegUp in several areas to interface with the Twill hardware

runtime. First, the signals needed to interface with Twill’s hardware runtime

system were added to all generated LegUp Verilog modules. The output signals

33

for this interface are driven by a priority decoder and multiplexer combination

that allows the signals to be sourced from whichever sub-module is currently

active in the generated LegUp state machine.

All calls sites to the special functions of “Enqueue”, “Dequeue”, “Raise”,

and “Lower” are replaced with the equivalent Twill runtime hardware signaling.

Furthermore, all load and store instructions are replaced with the appropriate

signaling for interfacing with the Twill runtime hardware memory operations.

Several small modifications were made to how LegUp handles multiplies, di-

vision, memory blocks, and PLL blocks in order to use LegUp on Xilinx FPGAs

rather than the originally supported Altera FPGAs. Thus, even though Twill

has only been tested on Xilinx FPGAs the Twill tool-chain does support pro-

gramming for Altera based FPGAs.

5.5 Final Steps

Once the output C program and Verilog modules are generated, they are

imported into a Xilinx project that performs the final compilation and synthesis.

The C program is compiled with Xilinx’s version of GCC set to optimize for

performance (“-O2”). The FPGA project is setup to optimize for speed but

with no extra effort in the map and place & route algorithms. Finally, Xilinx’s

data2mem utility is used to generate a bitstream file to download to the FPGA

once the elf and bit files are generated from their respective C and Verilog code.

34

Chapter 6

Results

All of the results presented were measured on a Xilinx XUPV5 board with a

Virtex 5 FPGA. The runtime system has also been run on a Nexys 2 board with

a Spartan 3E FPGA and a ZedBoard with a Zync-7000 SOC. All of the tests

were run with only 8x32 sized queues and with one Microblaze processor. The

Microblaze processor is configured to minimize its area according to the Xilinx

tools to better simulate a constrained embedded system. All hardware modules

including Microblaze are clocked at 100MHz. All HDL code for both LegUp and

Twill was synthesized with the “optimize for performance” setting in the Xilinx

ISE Project Navigator version 14.6.

The CHStone benchmarks from [15] were used to compare Twill to both the

pure software solution and the pure hardware solution. These benchmarks are

relatively parallelizable and also are fully supported by LegUp so a baseline could

be established. Note that DFAdd, DFDiv, DFMul, and DFSine CHStone bench-

marks all utilize 64-bit values and thus were not included since Twill currently

does not support larger than 32-bit values.

35

Benchmark # Queues # Semaphores #HWThreads
MIPS 12 0 1
ADPCM 328 0 5
AES 100 0 3
Blowfish 104 2 2
GSM 65 0 3
JPEG 576 3 6
MPEG-2 47 0 4
SHA 82 0 1

Table 6.1: DSWP Results

6.1 Twill DSWP Results

A summary of the number of hardware threads, queues and semaphores cre-

ated can be found in Table 6.1. Across all of the benchmarks, the partitioner

generated a workload split of about 75%-25% between the hardware threads and

the software thread. The MIPS benchmark and SHA benchmarks both had all

of their functions inlined and thus had no function calls to generate new threads.

In contrast, the Blowfish benchmark had the largest number of functions that

couldn’t be extracted into their own thread due to the nature of its optimized

call graph.

6.2 Area Analysis

The runtime system is quite small, using on average across all of the tests 2-

4% of the FPGA. Each HWInterface module takes up 44 Look Up Tables (LUTs).

An 8x32 queue uses 65 LUTs and one DSP block. Semaphores take up 70 LUTs

with 100 primitives on the bus. The processor interface takes up 24 LUTs. The

scheduler takes up 98 LUTs and two DSP blocks. Each of the two bus arbiters

utilize 15 LUTs apiece.

Table 6.2 shows the total number of FPGA blocks used by Twill compared

against the same benchmark purely translated by LegUp. The Twill HWThreads

36

Benchmark LegUp Twill HWThreads Twill Twill + Microblaze
MIPS 2101 1830 2318 3752
ADPCM 16893 7182 28682 30116
AES 16488 8302 15338 16772
Blowfish 5872 3293 10493 11927
GSM 7397 5888 11983 13417
JPEG 31084 18443 56101 57535
MPEG-2 16295 8116 13467 14901
SHA 12956 7856 13352 14768

Table 6.2: Number of LUTs used in FPGA logic for pure HW trans-
lation by LegUp and hybrid Twill implementation

column consists of only the number of LUTs that the LegUp translated HW

threads take up. The Twill column includes the LUTs that the HW threads use

along with the runtime system queues, semaphores, busses, and memory cache

update system. Finally, the Twill + Microblaze column includes everything from

the prior columns along with the LUTs used for the Microblaze soft processor.

As can be seen the pure hardware size is always smaller than LegUp’s translation

mainly due to less functionality existing in the hardware. Adding in the overhead

of the runtime system puts Twill’s size on par with LegUp’s results which is

reasonable particularly if a hard processor is being used rather than a soft one.

On average, we see a modest 1.73 times area decrease in the space required by

the HW Threads and a slight increase of 1.35 area increase when including the

Twill runtime system.

Aside from LUTs, LegUp makes use of BRAM memory blocks to pass ar-

guments to functions and to handle arrays. Very few BRAM blocks are used

in Twill’s HW threads while most benchmarks used 10-15 BRAM blocks with

the pure LegUp synthesis. Microblaze uses 16 BRAM blocks regardless of what

code is running which provides 32kB of instruction and data memory for the Mi-

croblaze processor. In addition, with the way that Twill’s memory management

works almost all of the HW thread data is stored in the processor’s data memory

segment instead of creating new blocks. This gives all benchmarks comparable

numbers of BRAM blocks between LegUp’s pure HW translation and Twill’s

37

Figure 6.1: Power consumption normalized to the pure Microblaze SW
implementation measured using Xilinx’s power simulation tools

hybrid translation.

6.3 Power Analysis

Figure 6.1 shows the power characteristics obtained through Xilinx’s power

simulation tools. Twill is compared to LegUp’s pure HW translation normalized

to the pure software implementation running on Microblaze. As expected, the

pure HW translation has the best power performance followed by Twill and then

the pure Microblaze implementation. This is because Microblaze is really power

inefficient compared to a direct hardware implementation. With a hard processor

it could be expected that Twill’s power consumption would be less than LegUp’s

since it has to synthesize less hardware. On examining why Microblaze is so

inefficient it appears that the majority of the power consumption comes from the

multiple Phase-Lock Loops (PLLs) used internally.

38

Figure 6.2: Performance speedups normalized to the pure SW imple-
mentation

6.4 Performance Analysis

Figure 6.2 shows the performance characteristics of Twill compared to LegUp’s

pure HW translation normalized against running the benchmark directly on the

Microblaze processor. In general Twill outperforms the pure hardware imple-

mentation since it can take advantage of TLP as well as ILP. Twill on average

achieves a 1.63 times speedup over the pure hardware implementation on these

benchmarks which are designed to be easily translatable into pure hardware.

Twill also vastly outperforms a pure SW implementation on the Microblaze pro-

cessor as expected by on average 22.2 times. This speedup comes from multiple

sources: arithmetic operations such as multiply and divide are much faster in

hardware, LegUp will schedule as many instructions as possible at the same time

to exploit ILP, and Twill will run instructions on the processor at the same time

as LegUp is executing its state machine in order to exploit TLP.

Twill manages to only match the pure hardware speedup on the Blowfish

benchmark. On closer inspection, it appears that Twill chose poor partitions

for the hardware and software threads with each function call in the main loop

39

transferring the master control between the hardware and software. This causes

the function argument data to be sent back and forth several times between the

hardware and software threads before any computation on the data is performed.

Similarly, the return value alternates back and forth before finally being used

in the next iteration of the loop. We modified the heuristic specifically for this

benchmark to prevent this behavior and found a 1.89 times speedup between

the modified Twill implementation and the pure hardware implementation. This

modified heuristic also decreased the number of queues from 92 to 34 which shows

that our original heuristic for partitioning instructions into separate threads could

use some improvement.

LegUp appears to do a poor job at synthesizing the ADPCM benchmark

compared to the other benchmarks. This interpretation is consistent among the

area, power, and performance results. Some of the constructs in this program

appear to be quite difficult to synthesize which gives an advantage to Twill when

it puts these parts on the processor. This is the only benchmark shown that

utilizes division extensively which might be one of the contributing factors since

LegUp was set up to use a simple serial divider for these tests.

6.5 Partitioning Heuristic Effects on Performance

We explored the effects of changing the targeted percentage of instructions to

be placed into the partitions. Figures 6.3 and 6.4 show the changes in performance

and queue count modifying where this split point lies. As can be seen most

clearly in Figure 6.3 there is a negative correlation between the number of queues

required and the performance of Twill for a given benchmark. Furthermore, it

seems that the even splits between the HW/SW domains perform the worst. This

is probably because when the first half of most computations are computed in

SW and then the intermediate results are passed to the HW in order to finish

the computation the communication costs skyrocket while the amount of TLP

exploited remains about the same.

40

Figure 6.3: Mips benchmark performance with various targeted parti-
tion split points

Ottoni et al. found very similar results when they were experimenting with

finding the optimal partitioning for a given loop. While they were very focused

on balancing the work across threads in an optimal manner since they assumed

homogeneous threads, they found that the greedy heuristic algorithm for parti-

tioning is not particularly good at finding the optimal partition but often works

“well enough”. That seems to be the case with Twill as well. While perhaps a

more complicated heuristic could be used to achieve better results, Twill’s results

show that its automatic thread extraction through partitioning can result in a

significant performance increase without any programmer intervention.

6.6 Queue Size and Latency

One important result from the DSWP implementation described Ottoni et

al. [7] is that the algorithm was very resilient to large queue latencies and short

queue sizes regardless of the benchmark run. This was achieved by never having

the pipeline “flushed” except for at the very end of program execution. Our

implementation of DSWP potentially flushes the pipeline much more frequently

41

Figure 6.4: Blowfish benchmark performance with various targeted
partition split points

on function boundaries and so a similar experiment was conducted to determine

the resiliency of Twill to hardware queue latencies and sizes.

Figure 6.5 shows that while Twill’s resiliency depends upon the application,

overall Twill is still fairly resilient. Compared to Ottoni et al.’s original imple-

mentation of the DSWP algorithm, we have found a much bigger performance

degradation as the queue latencies are increased. On average Ottoni et al. report

a 10% slowdown with a queue latency of 100 while we found a 27% performance

decrease on average with a queue latency of 128. As noted above, this is probably

because of how Twill flushes the pipeline fairly frequently. In addition, the orig-

inal paper only optimized a single long-running loop out of the entire program

and thus any performance increase or slowdown effect will be magnified in our

full program implementation. Thus we believe that our performance decrease is

much closer to the original results than the data suggests.

Figure 6.6 shows similar results for the queue sizes. Note that for the JPEG

benchmark the 32 queue size did not fit on the FPGA. Ottoni et al. found that

they received a slowdown of 6% when reducing the queue length from 32 to 8. We

found a comparable 9.7% slowdown when comparing our queue lengths of 32 and

8. As mentioned above, our slowdown/speedup results are probably exaggerated

42

Figure 6.5: Twill performance speedups normalized to runtime with 2
cycle queue latency

Figure 6.6: Twill performance speedups normalized to runtime with
length 8 queues

43

compared to the original results; in addition, we used 32-bit queues while the

original paper used 8-bit queues.

6.7 Results Overview

Overall, we found that Twill performed very favorably across several bench-

marks compared to the LegUp pure HW implementation and the pure SW im-

plementation. We found an average 1.63 times speedup over the LegUp imple-

mentation and an average 22.2 times speedup over the pure SW implementation.

Furthermore, we found that the average FPGA area required for the Twill HW

Threads decreased by 73% and that we only had an average FPGA area increase

of 35% when factoring in the Twill runtime system overhead. Twill’s partitioning

heuristic is fairly inconsistent in finding the optimal partition and reinforces what

Ottoni et al. found with their implementation of DSWP. Overall, Twill is resilient

to changes in the queue latencies and sizes which provides some implementation

flexibility when implementing queues and other runtime primitives.

44

Chapter 7

Conclusion

In this paper we presented a new hybrid SOC compiler and corresponding

run-time system called Twill. Twill takes advantage of TLP and ILP in order to

achieve an average performance speedup of 1.63 times over LegUp’s pure hardware

translation even while reducing the amount of area needed for the reconfigurable

logic. Twill achieves this by utilizing a modified version of DSWP to extract

long-running threads from the input C source and then distributing these threads

across the hardware/software divide in a hybrid CPU-FPGA SOC.

7.0.1 Future Work

As mentioned in Chapter 3, Twill currently supports only a subset of the C

language. Notably, recursion and function pointers are currently not supported.

There is no conceptual reason preventing their implementation and we propose

several methods to deal with them. Recursion is only a problem in hardware

since there is no stack. The Twill DSWP implementation could be extended to

support the concept of barriers. At each barrier point all threads would come to

the same execution state such that all queues are empty. The recursive function

calls represented by backedges in the call graph would then be protected by these

barriers on either side with the master function call always being in software. In

45

this way, the recursive functions or chain of functions could be parallelized as

normal and then only at the recursion point would the pipeline be flushed and

restarted. This would be slower than the equivalent code written as a loop but

should still give reasonable speedups over the pure hardware implementation.

A similar system could be used to handle function pointers as well. Every-

thing up to the actual call instruction with the function pointer could be paral-

lelized. Anytime a function pointer is assigned to a new function the code must

be changed to assign the master DSWP function. The call could be protected

with barriers with the software always having master control of the called func-

tion. Furthermore, the way Twill handles function calls would have to change

slightly. Instead of having the calling function call all of the slave functions each

master DSWP function would be responsible to start the slave functions. This

would increase the overhead of function calls slightly but potentially could be

limited with points-to analysis to only the functions that could be called through

a function pointer.

Another shortcoming of Twill is that it does not support larger than 32 bit

data values to be passed inside of queues. This means that 64 bit data types and

structures that are bigger than 32 bits are not supported currently by Twill. This

shortcoming is relatively easy to overcome; one option is to enqueue/dequeue two

or more values at a time and rebuild the resulting data structure or to simply

use multiple queues to pass the data.

Another aspect of Twill that can be improved is the partitioning heuristic.

As mentioned in Section 6.4, the partitioning heuristic can have a huge impact

on the final performance of the program. More research is needed into how

different heuristics affect this performance and what the best heuristic is for

various program types.

Finally, Vachharajani et al. [34] extended the DSWP algorithm to be specu-

lative. This allowed them to greatly increase the speedup gained by the original

algorithm with a little hardware support. Since Twill has a large control over the

hardware through the reconfigurable logic, it seems relatively straightforward to

extend Twill’s DSWP algorithm to be speculative which should allow Twill to

46

extract even more long-running threads and increase the amount of TLP paral-

lelization that it can utilize.

47

Bibliography

[1] G. Agha. ACTORS: A model of concurrent computation in distributed

systems. Artificial Intelligence, 1986.

[2] J. Agron and D. L. Andrews. Building heterogeneous reconfigurable systems

with a hardware microkernel. In International Conference on Hardware Soft-

ware Codesign, pages 393–402, 2009.

[3] F. Barat, R. Lauwereins, and G. Deconinck. Reconfigurable Instruction Set

Processors from a Hardware/Software Perspective. IEEE Transactions on

Software Engineering, 28:847–862, 2002.

[4] E. Bergeron, L.-D. Perron, M. Feeley, and J.-P. David. Logarithmic-Time

FPGA Bitstream Analysis: A Step Towards JIT Hardware Compilation.

ACM Transactions on Reconfigurable Technology and Systems, 4:12–27,

2011.

[5] N. Bombieri, G. D. Guglielmo, L. D. Guglielmo, M. Ferrari, F. Fummi,

G. Pravadelli, F. Stefanni, and A. Venturelli. HIFSuite: Tools for HDL

code conversion and manipulation. In IEEE International High-Level Design

Validation and Test Workshop, pages 40–41, 2010.

[6] S. Campanoni, T. Jones, G. Holloway, G.-Y. Wei, and D. Brooks. The helix

project: Overview and directions. In Proceedings of the 49th Annual Design

Automation Conference, DAC ’12, pages 277–282, New York, NY, USA,

2012. ACM.

48

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,

S. D. Brown, and T. S. Czajkowski. LegUp: high-level synthesis for FPGA-

based processor/accelerator systems. In Symposium on Field Programmable

Gate Arrays, pages 33–36, 2011.

[8] A. Canis, J. Choi, B. Fort, R. Lian, Q. Huang, N. Calagar, M. Gort, J. Qin,

M. Aldham, T. Czajkowski, S. Brown, and J. Anderson. From Software to

Accelerators with LegUp High-Level Synthesis. In Int’l Conference on Com-

pilers, Architecture, and Synthesis for Embedded Systems (CASES), 2013.

[9] D. Cordes, P. Marwedel, and A. Mallik. Automatic parallelization of embed-

ded software using hierarchical task graphs and integer linear programming.

In International Conference on Hardware Software Codesign, pages 267–276,

2010.

[10] J. Curreri, S. Koehler, B. Holland, and A. George. Performance analysis

with high-level languages for high-performance reconfigurable computing. In

Field-Programmable Custom Computing Machines, 2008. FCCM ’08. 16th

International Symposium on, pages 23–30, April 2008.

[11] C. Galuzzi and K. Bertels. The Instruction-Set Extension Problem: A Sur-

vey. ACM Transactions on Reconfigurable Technology and Systems, 4:18–28,

2011.

[12] L. Gantel, A. Khiar, B. Miramond, M. E. A. Benkhelifa, L. Kessal, F. Lemon-

nier, and J. Le Rhun. Enhancing reconfigurable platforms programmability

for synchronous data-flow applications. ACM Trans. Reconfigurable Technol.

Syst., 5(3):14:1–14:16, Oct. 2012.

[13] M. Gokhale and J. M. Stone. NAPA C: Compiling for a Hybrid RISC/FPGA

Architecture. In Field-Programmable Custom Computing Machines, pages

126–135, 1998.

[14] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: a high-level synthe-

sis framework for applying parallelizing compiler transformations. In VLSI

Design, pages 461–466, 2003.

49

[15] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. CHStone: A

benchmark program suite for practical C-based high-level synthesis. In IEEE

International Symposium on Circuits and Systems, pages 1192–1195, 2008.

[16] J. R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfig-

urable coprocessor. In Field-Programmable Custom Computing Machines,

pages 12–21, 1997.

[17] S. S. Huang, A. Hormati, D. F. Bacon, and R. M. Rabbah. Liquid Metal:

Object-Oriented Programming Across the Hardware/Software Boundary. In

European Conference on Object-Oriented Programming, pages 76–103, 2008.

[18] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut program

decomposition for thread-level speculation. Sigplan Notices, 39:59–70, 2004.

[19] A. Kejariwal, A. V. Veidenbaum, A. Nicolau, M. Girkar, X. Tian, and

H. Saito. On the exploitation of loop-level parallelism in embedded applica-

tions. ACM Transactions in Embedded Computing Systems, 8:1–34, 2009.

[20] D. Koch, C. Beckhoff, and J. Torrison. Fine-grained partial runtime re-

configuration on virtex-5 fpgas. In Field-Programmable Custom Computing

Machines (FCCM), 2010 18th IEEE Annual International Symposium on,

pages 69–72, May 2010.

[21] S. Koehler, G. Stitt, and A. D. George. Platform-aware bottleneck detection

for reconfigurable computing applications. ACM Transactions on Reconfig-

urable Technology and Systems (TRETS), 4(3):30, 2011.

[22] C. Lattner and V. S. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis and Transformation. In Symposium on Code Generation

and Optimization, pages 75–88, 2004.

[23] E. Lubbers and M. Platzner. ReconOS: An RTOS supporting Hard and

Software Threads. In Field-Programmable Logic and Applications, pages

441–446, 2007.

50

[24] P. m. Athanas and H. f. Silverman. Processor Reconfiguration Through In-

struction Set Metamorphosis: Compiler and Architecture. IEEE Computer,

1993.

[25] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot. Constraint

Programming Approach to Reconfigurable Processor Extension Generation

and Application Compilation. ACM Transactions on Reconfigurable Tech-

nology and Systems, pages 1–38, 2012.

[26] J. T. Oplinger, D. L. Heine, and M. S. Lam. In Search of Speculative Thread-

Level Parallelism. In International Conference on Parallel Architectures and

Compilation Techniques, pages 303–313, 1999.

[27] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic Thread

Extraction with Decoupled Software Pipelining. In International Symposium

on Microarchitecture, pages 105–118, 2005.

[28] K. Papadimitriou, A. Dollas, and S. Hauck. Performance of partial reconfig-

uration in FPGA systems: A survey and a cost model. ACM Transactions

on Reconfigurable Technology and Systems, pages 1–24, 2011.

[29] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. L. Andrews.

Hthreads: A Computational Model for Reconfigurable Devices. In Field-

Programmable Logic and Applications, pages 1–4, 2006.

[30] M. Purnaprajna, M. Porrmann, U. Rueckert, M. Hussmann, M. Thies, and

U. Kastens. Runtime reconfiguration of multiprocessors based on compile-

time analysis. ACM Trans. Reconfigurable Technol. Syst., 3(3):17:1–17:25,

Sept. 2010.

[31] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and

S. J. Eggers. CHiMPS: a high-level compilation flow for hybrid CPU-FPGA

architectures. In Symposium on Field Programmable Gate Arrays, 2008.

[32] C. G. Quiones, C. Madriles, F. J. Snchez, P. Marcuello, A. Gonzlez, and

D. M. Tullsen. Mitosis compiler: an infrastructure for speculative threading

51

based on pre-computation slices. In SIGPLAN Conference on Programming

Language Design and Implementation, pages 269–279, 2005.

[33] W. Thies, V. Chandrasekhar, and S. P. Amarasinghe. A Practical Approach

to Exploiting Coarse-Grained Pipeline Parallelism in C Programs. In Inter-

national Symposium on Microarchitecture, pages 356–369, 2007.

[34] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and

D. I. August. Speculative Decoupled Software Pipelining. In International

Conference on Parallel Architectures and Compilation Techniques, pages 49–

59, 2007.

[35] N. Vassiliadis, G. Theodoridis, and S. Nikolaidis. An automated development

framework for a RISC processor with reconfigurable instruction set exten-

sions. In International Parallel and Distributed Processing Symposium/In-

ternational Parallel Processing Symposium, 2006.

[36] J. R. Villarreal, A. Park, W. A. Najjar, and R. Halstead. Designing Mod-

ular Hardware Accelerators in C with ROCCC 2.0. In Field-Programmable

Custom Computing Machines, pages 127–134, 2010.

[37] R. D. Wittig. OneChip: An FPGA Processor With Reconfigurable Logic.

In Field-Programmable Custom Computing Machines, 1995.

[38] I. Y Explorations. Ansi-c to rtl automatically. Accessed: 2014-2-20.

[39] X. yu Pan, Y. Zhao, Z. Chen, X. Wang, Y. Wei, and Y. Du. A Thread

Partitioning Method for Speculative Multithreading. In Scalable Computing

and Communications, pages 285–290, 2009.

52

	List of Tables
	List of Figures
	Introduction
	Previous Work
	Hybrid Systems
	Automatic Thread Extraction

	Twill Overview
	Twill Dependencies
	DSWP
	LegUp
	LLVM
	hThreads

	Twill
	Twill Compiler
	Twill Software Runtime
	Twill Hardware Runtime

	Runtime Architecture
	Bus Architecture
	Semaphores
	Queues
	Hardware Threads
	Processor Interface

	Compiler Architecture
	LLVM
	DSWP
	DSWP Differences

	HW/SW Splitting
	LegUp Modifications
	Final Steps

	Results
	Twill DSWP Results
	Area Analysis
	Power Analysis
	Performance Analysis
	Partitioning Heuristic Effects on Performance
	Queue Size and Latency
	Results Overview

	Conclusion
	Future Work

	Bibliography

