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Abstract

It is discussed how the Weyl geometric generalization of Rieman-
nian geometry relates to Jordan-Brans-Dicke theory and how it leads
to a weak generalization of Einstein gravity. The generalization of
geometry goes back to Weyl’s proposal of 1918; the generalization of
gravity was proposed by Omote, Utiyama, Dirac and others in the
1970s. Here we reconsider the conceptual potential of this approach
for establishing links between gravity, the electroweak sector of ele-
mentary particle physics, and cosmology. We explore the possibility
of unifying the Higgs field of the standard model, imported to Weyl
geometry, with a (non-minimally coupled ) gravitational scalar field in
a common Lagrangian probed at different energy levels.

1. Introduction

When Johann Friedrich Herbart discussed the “philosophical study” of sci-
ence he demanded that the sciences should organize their specialized knowl-
edge about core concepts (Hauptbegriffe), while philosophy should strive

. . . to pave the way for transitions between concepts . . .

in order to establish an integrated system of knowledge.1 In this way phi-
losophy and the specialized sciences were conceived as a common enterprise
which only together would be able to generate a connected system of knowl-
edge and contribute to the “many-sidedness of education” he wished.

This is not necessarily what is usually understood by “metatheory”, but
the concept of the workshop which gave rise to this volume was to go beyond
the consideration of working theories in themselves and to reflect on possi-
ble mutual connections between different spacetime theories, and perhaps
∗Wuppertal University, Department C, Mathematics, and Interdisciplinary Centre for
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1“. . . und gilt uns [im philosophischen Studium, E.S.], dem gemäß, alle Bemühung,

zwischen den Begriffen die gehörigen Uebergänge zu bahnen . . . ” (Herbart 1807, 275,
emphasis in original).
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beyond. This task comes quite close to what Herbart demanded from ’spec-
ulation’ as he understood it. In this contribution I want to use the chance
offered by the goal of the workshop to discuss how Weyl geometry may help
to ‘pave the way for transitions’ between certain segments of physical knowl-
edge. We deal here with connections between theories some of which came
into existence long after the invention of Weyl geometry, and are far beyond
Weyl’s original intentions during the years 1918 to 1923.

Mass generation of elementary particle fields is one of the topics. In
general relativity mass serves as the active and passive charge of the gravi-
tational field; high energy physics has made huge progress in analyzing the
basic dynamical structures which determine the energy content, and thus
the gravitational charge, of field constellations. The connection between
high energy physics and gravity is still wide open for further research. Most
experts expect the crucial link between the two fields to be situated close
to the Planck scale, viz ‘shortly after the big bang’, with the Higgs “mecha-
nism” indicating a phase transition in the early universe. This need not be
so. The Weyl geometric generalization of gravity considered here indicates
a simpler possibility of a structural connection between gravitation and the
electroweak scalar field, independent of cosmological time. The dilationally
invariant Lagrangians of (special relativistic) standard model fields translate
to scale invariant fields on curved spaces in an (integrable) Weyl geometry.
The latter offers a well adapted arena for studying the transition between
gravity and standard model fields. Scalar fields play a crucial role on both
sides, the question will be inhowfar they are interrelated mathematically and
physically.

Similar, although still more general, questions with regard to the transi-
tion from conformal structures to gravity theory have already been studied
by Weyl. In his 1921 article on the relationship between conformal and pro-
jective differential geometry (Weyl 1921) he argued that his new geometry
establishes a peculiar bridge between the two basic geometrical structures
underlying general relativity, conformal and projective. The first one was
and still is the mathematical expression of the causal structure (light cones)
and the second one represents the most abstract mathematization of in-
ertial structure (free fall trajectories under abstraction from proper time
parametrization). Weyl indicated a kind of ‘transition’ to a fully metric
gravity theory into which other dynamical fields, in his case essentially the
electromagnetic one, could be integrated. He showed that a Weylian metric is
uniquely determined if its conformal and its projective structures are known.
In principle, such a metric could be determined by physically grounded struc-
tural observations without any readings of clocks or measurements with rods;
i.e., Weyl geometry allows to establish a connection between causal structure,
free fall and metrical geometry in an impressingly basic way.

To make the present contribution essentially self-contained, we start with
a short description of Weyl geometry, already with physical meaningful in-
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terpretations in mind, exemplified by the well-known work of Ehlers/Pir-
ani/Schild (section 2). In a first transition we see how Jordan-Brans-Dicke
(JBD) theory with its scalar field, ‘non-minimally’ coupled to gravity, fits
neatly into a Weyl geometric framework (section 3). The different “frames”
of JBD theory correspond to different choices of scale gauges of the Weylian
approach. Usually this remains unnoticed in the literature, although the ba-
sic structural ingredients of Weyl geometry are presupposed and dealt with
in a non-explicit way.

The link is made explicit in a Weyl geometric version of generalized
Einstein theory with a non-minimally coupled scalar field, due to Omote,
Utiyama, Dirac e.a. (WOD gravity), introduced in section 4. Strong rea-
sons speak in favour of its integrable version (IWOD gravity) close to, but
not identical with, (pseudo-) Riemannian geometry. An intriguing parallel
between the Higgs field of electroweak theory and the scalar field of IWOD
gravity comes to sight if one considers the gravitational coupling and self-
interaction terms as potential function of the scalar field. In its minimum,
the ground state of the scalar field specifies a (non-Riemannian) scale choice
of the Weyl geometry which establishes units for measuring mass, length,
time etc. In his correspondence with Einstein on the physical acceptability
of his generalized geometry Weyl conjectured, or postulated, an adaptation
of atomic clocks to (Weylian) scalar curvature. In this way, according to
Weyl, measuring devices would indicate a scaling in which (Weylian) scalar
curvature becomes constant (Weyl gauge). This conjecture is supported, in
a surprising way, by evaluating the potential condition of the gravitational
scalar field. If, moreover, the gravitational scalar field ‘communicates’ with
the electroweak Higgs field, clock adaptation to the ground state of the scalar
field gets a field theoretic foundation in electroweak theory (section 5). The
question is now, whether such a transition between IWOD gravity and elec-
troweak theory indicates a physical connection or whether it is not more
than an accidental feature of the two theories.

Reconsidering Weyl’s scale gauge condition (constant Weylian scalar cur-
vature) necessitates another look at cosmological models. The warping of
Robertson-Walker geometries can no longer immediately be interpreted as
an actual expansion of space (although that is not excluded). Cosmological
redshift becomes, at least partially, due to a field theoretic effect (Weylian
scale connection). From such a point of view, much of the cosmological ob-
servational evidence, among it the cosmological microwave background and
quasar distribution over redshift, ought to be reconsidered (section 6). The
enlarged perspective of integrable Weyl geometry and of IWOD gravity elu-
cidate, by contrast, how strongly some realistic claims of present precision
cosmology are dependent on specific facets of the geometrico-gravitational
paradigm of Einstein-Riemann type. Many empirically sounding statements
are insolvably intertwined with the data evaluation on this basis. Transition
to a wider framework may be helpful to reflect these features – perhaps not
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only as a metatheoretical exercise (section 7).

2. On Weyl geometry and the analysis of EPS

Weyl geometry is a generalization of Riemannian geometry, based on two
insights: (i) The automorphisms of both, of Euclidean geometry and of spe-
cial relativity, are the similarities (of Euclidean, or respectively of Lorentz
signature) rather than the congruences. No unit of length is naturally given
in Euclidean geometry, and likewise the basic structures of special relativiy
(inertial motion and causal structure) are given without the use of clocks and
rods. (ii) The development of field theory and general relativity demands a
conceptual implementation of this insight in a consequently localized mode
(physics terminology).2

Based on these insights, Weyl developed what he called reine Infinitesi-
malgeometrie (purely infinitesimal geometry) (Weyl 1918b, Weyl 1918a). Its
basic ingredients are a conformal generalization of a (pseudo-) Riemannian
metric g = (gµν) by allowing point-dependent rescaling g̃(x) = Ω(x)2 g(x)
with a nowherere vanishing (positive) function Ω, and a scale (“length”)
connection given by a differential form ϕ = ϕµdx

µ, which has to be gauge
transformed ϕ̃ = ϕ−d log Ω when rescaling (gµν). The scale connection (ϕµ)
expresses how to compare lengths of vectors (or other metrical quantities)
at two infinitesimally close points, both measured in terms of a scale, i.e., a
representative (gµν) of the conformal class.3

2.1 Scale connection, covariant derivative, curvature

Metrical quantities in Weyl geometry are directly comparable only if they
are measured at the same point p of the manifold. Quantities measured
at different points p 6= q of finite, i.e., non-infinitesimal distance can be
metrically compared only after an integration of the scale connection along
a path from p to q. Weyl realized that this structure is compatible with a
uniquely determined affine connection Γ = (Γµνλ) (the Levi-Civita connection
of Weylian geometry). If gΓ

µ
νλ denotes the Levi-Civita connection of the

Riemannian part g only, the Weyl-Levi-Civita connection is given by

Γµνλ = gΓ
µ
νλ + δµνϕλ + δµλϕν − gνλϕ

µ. (1)

The covariant derivative with regard to Γ, denoted by ∇ = ∇Γ.
2In mathematical terminology, the implementation of a similarity structure happens at

the infinitesimal, rather than at the local, level. For a concrete (“passive”) description of
(i) and (ii) in a more physical language, see Dicke’s postulate cited in section 3.1.

3For more historical and philosophical details see, among others, (Vizgin 1994,
Ryckman 2005, Scholz 1999), from the point of view of physics (Adler/Bazin/Schiffer
1975, Blagojević 2002, Higa 1993, Scholz 2011a, Quiros 2013), and for the view of differ-
ential geometers (Folland 1970, Higa 1993) (as a short selection in all three categories).
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Curvature concepts known from “ordinary” (Riemannian) differential ge-
ometry follow, as every connection defines a unique curvature tensor. The
Riemann and Ricci tensor, Riem,Ric are scale invariant by construction,
although their expressions contain terms in ϕ, while the scalar curvature
involves “lifting” of indices by the inverse metric (and is thus scale covariant
of weight −2, see below).

Field theory gets slightly more involved in Weyl geometry, because for
vector and tensor fields (of “dimensional” quantities) the appropriate scaling
behaviour under change of the metrical scale has to be taken into account. If
a field, expressed by X (leaving out indices) with regard to the metrical scale
g(x) = (gµν(x)) transforms to X̃ = ΩkX with regard to the scale g̃(x) as
above, X is called a scale covariant field of scale, or Weyl weight w(X) := k
(usually an integer or a fraction). Generally the covariant derivative, ∇X,
of a scale covariant quantity X is not scale covariant. However, scale covari-
ance can be reobtained by adding a weight dependent term. Then the scale
covariant derivative D of a scale covariant field X is defined by

DX := ∇X + w(X)ϕ⊗X . (2)

For example, ∇g is not scale covariant, but Dg is. Moreover, one finds that
Dg = ∇g + 2ϕ⊗ g = 0; i.e., in Weyl geometry g appears no longer constant
with regard to the Weyl-Levi-Civita derivative ∇ but with regard to the scale
covariant derivative D.

In physics literature an affine connection Γ with ∇Γg 6= 0 is usually
regarded as “non-metric”, and ∇Γg is considered its non-metricity.4 These
concepts hold in the Riemannian approach. In Weyl geometry, on the other
hand,

∇Γg = −2ϕ⊗ g (3)

expresses the compatibility of the affine connection Γ with the Weylian met-
ric represented by the pair (g, ϕ). Geodesics can be invariantly defined as
autoparallels by the Weyl-Levi-Civita connection (so did Weyl himself). But
but one can just as well, in our context even better, consider scale covariant
geodesics of weight −1 (see section 6.1).

Under a change of scale g 7→ g̃ = Ω2g and the accompanying gauge trans-
formation for the scale connection ϕ 7→ ϕ̃ = ϕ − d log Ω, the compatibility
condition transforms consistently, ∇Γg̃ = −2ϕ̃ ⊗ g̃. Equ. (3) ensures, in
particular, that geodesics (i.e., auto-parallels) with initial direction along a
nullcone of the conformal metric remain directed along the nullcones. This
is the most important geometric feature of metric compatibility in Weyl
geometry.5

4See the contribution by F. Hehl, this volume.
5Weyl understood the compatibility of the scale connection with the metric in the sense

that parallel transport of a vector X(p) by the affine connection along a path γ from p
to q to X(q) leads to consistency with length transfer along the same path. Compare
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2.2 Weyl structures and integrable Weyl geometry (IWG)

In recent mathematical literature a Weyl structure on a manifold is defined
by a pair (C,∇) consisting of a conformal structure C = [g] (an equivalence
class of pseudo-Riemannian metrics) and the covariant derivative of a torsion
free linear connection ∇, constrained by the condition

∇g + 2ϕg ⊗ g = 0 ,

with a differential 1-form ϕg depending on g ∈ C.6 The change of the confor-
mal representative g 7→ g̃ = Ω2 g is accompanied by a change of the 1-form

ϕg̃ = ϕg − d log Ω , (4)

i.e., by a “gauge transformation” as introduced by Weyl in (Weyl 1918a).
Formally, a Weyl metric consists of an equivalence class of pairs (g, ϕg) with
scale and gauge transformations defining the eqivalences. Given the scale
choice g ∈ C, ϕg represents the scale connection,.

In Weyl’s view of a strictly “localized” (better: infinitesimalized) met-
ric, metrical quantities at different points p and q can be compared only
by a “transport of lengths standards” along a path γ from p to q, i.e., by
multiplication with a factor

l(γ) = e
∫ 1
0 ϕ(γ′) . (5)

l(γ) will be called the length or scale transfer function (depending on p, q and
γ). The curvature of the scale connection is simply the exterior differential,
f = dϕ with components, fµν = ∂µϕν − ∂νϕµ, where ∂µ := ∂

∂xµ .
For vanishing scale curvature, f = 0, the scale transfer function can

be integrated away, i.e., there exist local choices of the scale, g̃, with van-
ishing scale connection, ϕg̃ = 0. In this case one deals with integrable Weyl
geometry (IWG). Then the Weyl metric may be locally represented by a Rie-
mannian metric;7 we call this the Riemann gauge (equivalently Riemannian
scale choice) of an integrable Weyl metric. In this gauge the Weyl tensor
does not contain terms in ϕ. For integrable Weyl geometry vanishing of the
Riemann tensor, Riem = 0 is of course equivalent to local flatness.

Whether a reduction to Riemannian geometry makes sense physically,
depends on the field theoretic content of the theory. If a scalar field plays
a part in determining the scale — physically speaking, if scale symmetry is
broken by a scale covariant scalar field — the result may well be different
from Riemannian geometry (see below, sections 4ff.).

the compatibility condition given, in a different mathematical framework, by (Ehlers/Pi-
rani/Schild 1972).

6 (Higa 1993, Calderbank 2000, Ornea 2001)
7Here “local” is used in the sense of differential geometry, i.e., in (finite) neighbour-

hoods. Physicists usage of “local”, in contrast, refers in most cases to point-dependence
or “infinitesimal” neighbourhoods. In the following, both language codes may be used,
not always with further specification. The respective meaning ought to be clear from the
context.
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2.3 From Ehlers/Pirani/Schild to Audretsch/Gähler/Straumann

Weyl originally hoped to represent the potential of the electromagnetic field
by a scale connection and to achieve a geometrical unification of gravity
and electromagnetism by his “purely infinitesimal” geometry. The physi-
cal difficulties of this appoach, usually presented as outright inconsistencies
with observational evidence, have been discussed in the literature (Vizgin
1994, Goenner 2004). But, of course, there is no need to bind the usage
of Weyl geometry to this specific, and outdated, interpretation. Since the
early 1970s a whole, although minoritarian and heterogeneous, literature of
Weyl geometric investigations in the foundations of gravity has emerged. In
this contribution I want to take up, and pursue a little further, an approach
going back to M. Omote, R. Utiyama, and P.A.M. Dirac, which was later ex-
tended in different directions (section 4, below).8 But before we follow these
more specific lines we have to briefly review the foundational aspects of Weyl
geometry for gravity theory analyzed in the seminal paper of J. Ehlers, F.
Pirani and A. Schild (1972) (EPS).

Like Weyl in 1921, these three authors based their investigation on the
insight that the causal structure of general relativity is mathematically char-
acterized by a conformal (cone) structure, and the inertial structure of point
particles by a projective path structure. They investigated the interrelation
of the two structures from a foundational point of view in a methodology
sometimes called a “constructive axiomatic” approach. Their axioms pos-
tulated rather general properties for these two structures and demanded
their compatibility. EPS concluded that these properties suffice for specify-
ing a unique Weylian metric (Ehlers/Pirani/Schild 1972).9 The axioms of
Ehlers, Pirani and Schild were motivated by the physical intuition of inertial
paths (of classical particles) and the causal structure. Other authors inves-
tigated connections to quantum physics. J. Audretsch, F. Gähler, N. Strau-
mann (AGS) found that wave functions (Klein-Gordon and Dirac fields) on a
Weylian manifold behave acceptable only in the integrable case. As a crite-
rion of acceptability they studied the streamlines of wavefront developments
in an WKB approximation (WKB: Wentzel-Kramers-Brioullin) and found
that, for ~→ 0, the streamlines converge to geodesics if and only if dϕ = 0,
i.e., in the case of an integrable Weyl metric (Audretsch/Gähler/Strau-
mann 1984). For consistency between the geodesic principle of classical par-
ticles and the decoherence view of the quantum to classical transition, that
seems to imply integrability of the Weyl structure seems necessary.

8The interpretation of the quantum potential in Weyl geometric terms proposed by
(Santamato 1984, Santamato 1985) and others seems to indicate a completely different
route of attempted “transitions” than reviewed here. It is not further considered in the
following.

9For the compatibility see fn. 5. A recent commentary of the paper is given by
Trautman (2012). How f(R) theories of gravity may lead back to the EPS paper is
discussed in (Capoziello e.a. 2012).
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The gap between the structural result of EPS (Weyl geometry in general)
and the pseudo-Riemannian structure of ordinary (Einstein) relativity was
considerably reduced in the sense of integrability, but still it was not clear
that the Riemannian scale choice of IWG had to be chosen. The selection of
Riemannian geometry remained ad hoc and was not based on deeper insights.
It had to be stipulated by an additional postulate involving clocks and rods.
The transition from the EPS axiomatics to Einstein gravity still contained
a methodological jump and relied on reference to observational instruments
external to the theory, which Weyl wanted to exclude from the foundations
of general relativity.10 So even after the work of EPS and their successors
the question remained whether the transition to Riemannian geometry and
Einstein gravity is the only one possible. Alternatives were sought for by
a different group of authors who started more or less simultaneous to EPS,
investigating alternatives based on a scale invariant Lagrangian (section 4)
similar to the one studied by Jordan, Brans, and Dicke in the Riemannian
context. It was not noticed at the time that even the latter is naturally
placed in the framework of Weyl geometry.

3. Jordan-Brans-Dicke theory in Weyl geometric perspective

In the early 1950s and 1960s P. Jordan, later R. Dicke and C. Brans (JBD)
proposed a widely discussed modification of Einstein gravity.11 Essential for
their approach was a (real valued) scalar field χ, coupled to the traditional
Hilbert action with Lagrangian density

LJBD = (χR− ω

χ
∂µχ∂µχ)

√
|det g| , (6)

where ω is a free parameter of the theory. For ω → ∞ the theory has
Einstein gravity as limiting case. All three authors allowed for conformal
transformations, g̃ = Ω2g, under which their scalar field χ transformed with
weight −2 (matter fields and energy tensors T of weight w(T ) = −2 etc.).12

Jordan took up the discussion of conformal transformations only in the sec-
ond edition of his book (Jordan 1952), after Pauli had made him aware of
such a possibility. Pauli knew Weyl geometry very well, he was one of its ex-
perts already as early as 1919 but neither he nor Jordan or the US-American
authors looked at JBD theory from that point of view.

10Although in his 1918 debate with Weyl, Einstein insisted on the necessity of clock and
rod measurements in general relativity as the empirical basis for the physical metric, he
admitted that rods and clocks should not be accepted as fundamental. He reiterated this
view until late in his life (Einstein/Schilpp 1949, 555f.), cf. (Lehmkuhl 2013).

11(Jordan 1952, Brans 1961, Dicke 1962); for surveys on the actual state of JBD the-
ory and its applications to cosmology see (Fujii 2003, Faraoni 2004), for a participant’s
recollection of its history (Brans 2005).

12Weights rewritten in adaptation to our convention.
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3.1 Conformal rescaling in JBD theory

For introducing conformal rescaling Dicke argued as follows:

It is evident that the particular values of the units of mass, length,
and time employed are arbitrary and that the laws of physics
must be invariant under a general coordinate dependent change
of units (Dicke 1962, 2163)[emph. ES].

By “coordinate dependent change of units” Dicke indicated a point depen-
dent rescaling of basic units. In the light of the relations established by the
fundamental constants (velocity of light c, (reduced) Planck constant ~, el-
ementary charge e and Boltzmann constant k) all units can be expressed in
terms of one independent fundamental unit, e.g. time, and the fundamental
constants (which, in principle can be given any constant numerical value,
which then fixes the system).13 Thus only one essential scaling degree of
units remains and Dicke’s principle of an arbitrary, point dependent unit
choice came down to “passive” formulation of Weyl’s localized similarities
in his scale gauge geometry.14 It was not so clear, however, how Dicke’s
postulate that the “laws of physics must be invariant” under point depen-
dent rescaling ought to be understood in JBD theory. Its modified Hilbert
term was, and is, not scale invariant and assumes correction terms under
conformal rescaling (vanishing only for ω = −3

2).
On the other hand, the principles of JBD gravity were moved even closer

to Weyl geometry by all three proponents of this approach considering it
as self-evident that the Levi-Civita connection Γ := gΓ of the Riemannian
metric g in (6) remains unchanged under conformal transformation of the
metric. Probably the protagonists considered that as a natural outcome of
assuming invariance of the “laws of nature” under conformal rescaling.15 In
any case, they kept the affine connection Γ fixed and rewrote it in terms of the
Levi-Civita connection g̃Γ of the rescaled metric, g̃ = Ω2g, with additional

13The present revision of the international standard system SI is heading toward imple-
menting measurement definitions with time as only fundamental unit, uT = 1 s such that
“the ground state hyperfine splitting frequency of the caesium 133 atom ∆ν(133Cs)hfs is
exactly 9 192 631 770 hertz” (Bureau SI 2011, 24f.). In the “New SI”, four of the SI base
units, namely the kilogram, the ampere, the kelvin and the mole, will be redefined in
terms of invariants of nature; the new definitions will be based on fixed numerical values
of the Planck constant, the elementary charge, the Boltzmann constant, and the Avogadro
constant (www.bipm.org/en/si/new−si/). The redefinition of the meter in terms of the
basic time unit by means of the fundamental constant c was implemented already in 1983.
Point dependence of the time unit because of locally varying gravitational potential will
be inbuilt in this system. For practical purposes it can be outlevelled by reference to the
SI second on the geoid (standardized by the International Earth Rotation and Reference
Systems Service IERS).

14Compare principles (i) and (ii) at the beginning of section 2.
15If the trajectories of bodies are governed by the gravito-inertial “laws of physics” they

should not be subject to change under transformation of units. The same should hold for
the affine connection which can be considered a mathematical concentrate of these laws.
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terms in partial derivatives of Ω. Let us summarily denote these additional
terms by by ∆(∂Ω),16 then

Γ = g̃Γ + ∆(∂Ω) .

Conformal rescaling, in addition to a fixed affine connection, have become
basic tools of JBD theory.

3.1 IWG as implicit framework of JBD gravity

The variational principle (6) of JBD gravity determines a connection with
covariant derivative ∇ = g∇ and a scalar field χ. The theory allows for
conformal rescalings of g and χ without changing ∇. That is, JBD theory
specifies a Weyl structure (C,∇) with C = [g]. Transformation between dif-
ferent frames happen in this framework, even though this remains unreflected
by most of its authors.

In the JBD tradition, a choice of units is called a frame. In terms of Weyl
geometry such a frame corresponds to the selection of a scale gauge. Two
frames play a major role:

• Jordan frame: the one in which ∇ = g∇ (metric g the one of (6)),

• Einstein frame: the one in which the affine connection is directly de-
rived from the Riemannian metric, χ̃ = const.

The Jordan frame is such that, by definition, the dynamical affine connection
is identical to the Levi-Civita connection of g. Expressed in Weyl geometric
terms, this implies vanishing of the scale connection, ϕ = 0. Thus this frame
correponds to what we have called the Riemann gauge of the underlying
integrable Weylian metric (section 2). In Einstein frame the scalar field (6= 0
everywhere) is scaled to a constant; we may call this the scalar field gauge. In
this gauge, the gravitational “constant” appears as a true constant, contrary
to Jordan’s motivation. By obvious reasons, Jordan tended to prefer the
other frame; thus its name.

Clearly in the Einstein frame JBD gravity does not reduce to Einstein
gravity, as the affine connection is deformed with regard to the metrical
component of the gauge. Scalar curvature in Einstein frame can easily be
expressed in terms of Weyl geometrical quantities, but usually it is not.
Practitioners of JBD theory prefer to write everything in terms of g̃, take
its Levi-Civita connection g̃Γ as representative for the gravito-inertial field
and consider the modification terms as arising from the transformation from

16For our purpose the explicit form of ∆(∂Ω) is not important. R. Penrose noticed that
the additional terms of the (Riemannian) scalar curvature are exactly cancelled by the
partial derivative terms of the kinematical term of χ if and only if ω = − 3

2
. In this case

the Lagrangian (6) is conformally invariant (Penrose 1965).
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Riemann gauge to scalar field gauge. Sometimes they appear as additional
(“fifth”) force.17

From our point of view, we observe:

• Structurally, JBD theory presupposes and works in an integrable Weyl
structure, although its practitioners usually do not notice.18

• Scale covariance, not scale invariance, is the game of JBD theoreticians.
That lead to a debate (sometimes confused), which frame should be
considered as “physical” and which not. Jordan frame used to be the
preferred one. In the recent literature of JBD some, maybe most,
authors argue in favor of Einstein frame as “physical” (Faraoni 1999).

• Some authors studied the conformally invariant version of the JBD La-
grangian, corresponding to ω = −3

2 , and investigated the hypothesis of
a conformally invariant theory of gravity at high energies, which gets
“spontaneously broken” by the scalar field taking on a specific value
(Deser 1970, Englert/Gunzig 1975). That was achieved by adding addi-
tional polynomial terms in χ with coefficients usually of “cosmological”
order of magnitude. Problems arose in the conformal JBD approach
from the sign of ω; a negative sign indicated a “ghost field” with nega-
tive energy (Fujii 2003, 5).19

• Empirical high precision tests of gravity in the solar system concen-
trated on the Jordan frame and found increasingly high bounds for the
parameter ω. To the disillusionment of JBD practitioners, ω was found
to be > 3.6 · 103 at the turn of the millenium (Will 2001); today these
values are even higher. So the leeway for JBD theory in Jordan frame
deviating from Einstein gravity became increasingly reduced. That
does not hinder authors in cosmology to assume Jordan frame mod-
els for the expansion of universe shortly after the big bang.20 Shortly
after the big bang, the world of mainstream cosmology seems to be
Feyerabendian.

From the Weyl geometric perspective, a criterion of scale invariance for ob-
servable quantities supports preference of the Einstein frame. In any case,
Weyl geometry is a conceptually better adapted framework for JBD gravity
than Riemannian geometry. Perhaps that was felt by some physicists at the
time. Be that as it may, about a decade after the rise of JBD theory two

17For a critical discussion see (Quiros e.a. 2013).
18A discussion from a slightly different view can be found in (Romero e.a. 2011, Quiros

e.a. 2013, Almeida/Pucheu e.a. 2014).
19Some authors choose to switch the sign of the “gravitational constant”, e.g. (Deser

1970, 250). This strategy indicated that there is a basic problem for the conformal JBD
approach (ω = − 3

2
) in spite of its attractive basic idea.

20E.g. (Guth/Kaiser 1979, Kaiser 1994, Bezrukov/Shaposhnikov 2007, Kaiser 2010).
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groups of authors in Japan and in Europe, indepently of each other, started
to study a similar type of coupling between scalar field and gravity in a Weyl
geometric theory of gravitation.

4. Weyl-Omote-Dirac gravity and its integrable version (IWOD)

In 1971 M. Omote proposed a Lagrangian field theory of gravity with a scale
covariant scalar field coupling to the Hilbert term like in JBD theory, but
now explicitly formulated in the framework of Weyl geometry. A little later
R. Utiyama and others took up the approach for investigations aiming at an
overarching theory of strongly interacting fields and gravity.21 Indepently
P.A.M. Dirac initiated a similar line of research with a look at possible
connections between fields of high energy physics, gravity and cosmology
(Dirac 1973). It did not take long until the idea of a spontaneously broken
conformal gauge theory of gravitation was also considered in the framework
of Weyl geometry.22 Then the obstacle of a negative energy (“ghost”) scalar
field or wrong sign of the gravitational constant, arising in the strictly con-
formal version of JBD theory, did no longer show up.23 Here we are not
interested in historical details, but aim at sketching the potential of the
approach from a more or less philosophical point of view.24

4.1 The Lagrangian of WOD gravity

The affine connection of Weyl geometry is scale invariant; the same holds for
its Riemannian curvature Riem = (Rκλµν) and the Ricci tensor Ric = (Rµν)

as its contraction.25 Scalar curvature R = gµνRµν is scale covariant of weight
w(R) = w(gµν) = −2. Coupling of a norm squared real or complex scalar
field26 φ of weight −1 to the scalar curvature of Weyl geometry gives, for
the Lagrangian density of the modified Hilbert term

LHW = LHW
√
|det g| = −α|φ|2R

√
|det g| , (7)

21(Omote 1971, Omote 1974, Utiyama 1975a, Utiyama 1975b, Hayashi/Kugo 1979) —
thanks to F. Hehl to whom I owe the hint to Omote’s works.

22(Smolin 1979, Nieh 1982, Cheng 1988, Hehl 1995).
23Cf. fn. 19.
24For a first rough outline of the history see (Scholz 2011b). For a commented source

collection of much wider scope (Blagojević/Hehl 2012).
25We use abbreviated symbols of geometrical objects, Riem,Ric, ϕ,∇ etc. together with

their indexed coordinate description. The whole collection of indexed quantities will be
denoted by round brackets like in matrix notation, e.g. Ric = (Rµν) or ϕ = (ϕ1, . . . , ϕn),
in short ϕ = (ϕµ). The latter is somehow analogous to ϕµ in “abstract index notation”,
often to be found in the literature. In our notation the bracketed symbol stands for
the whole collection of indexed quantities, the unbracketed symbol for a single indexed
quantity ϕµ ∈ {ϕ1, . . . , ϕn}.

26Later the scalar field is allowed to take values in an isospin 1
2
representation of the

electroweak group, section 5.
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a total weight −2 − 2 + 4 = 0 amd thus scale invariance.27 If R denotes
just that of Riemannian geometry and if one adds the kinematical term of
the scalar field, Penrose’s criterion for conformal invariance only holds for
α = −1

6 . It is crucial to realize that in the Weyl geometric framework local
scale invariance holds for any coefficient. By reasons which will become
apparent in the following, we shall usually write the constant as α = ξ2.

Conformal rescaling leads to different ways of decomposing covariant or
invariant terms into contributions from the Riemannian component g and the
scale connection ϕ of a representative (a “scale gauge”) (g, ϕ) of the Weylian
metric. We characterize these components by subscripts put in front; e.g.
for scalar curvature the decomposition is summarily written as R =gR+ϕR,
with gR the scalar curvature of the Riemannian part g of the metric alone
and ϕR the term due to the respective scale connection. For dimension n = 4
of spacetime one obtains (independently of the signature)

ϕR = −(n− 1)(n− 2)ϕλϕ
λ − 2(n− 1)g∇λϕλ = −6ϕλϕ

λ − 6g∇λϕλ , (8)

where g∇ denotes the covariant derivative (Levi-Civita connection) of the
Riemannian part g of the metric. Of course, the merging of scale dependent
terms to scale invariant aggregates is of primary conceptual import, besides
being calculationally advantageous.28

The dynamical term of the scalar field

Lφ =
1

2
Dνφ

∗Dνφ , Lφ = Lφ
√
|det g| (9)

with scale covariant derivative DνΦ = (∂ν − ϕν)Φ, according to equ. (2), is
scale invariant, as w(Lφ) = −4.

A polynomial potential for the scalar field V (φ) leads to a scale invariant
Lagrange term if and only if the degree of V is four, i.e., for a quartic
monomial

LV = −εsigλ|φ|4 , LV = LV
√
|det g| , (10)

where εsig specifies a signature dependent sign.29

Considering the scale connection ϕ as a dynamical field, the “Weyl field”
with its quantum excitation, called “Weyl boson” or even “Weylon” by Cheng
(1988), makes it natural to add a Yang-Mills action for the scale curvature
f = (fµν):

LYMϕ = −β
4
fµνf

µν (11)

So did Omote, Dirac and later authors.30

27w(
√
|det g|) = 1

2
4 · 2 = 4, w(LHW ) = −2− 2 = −4

28The authors of the 1970s usually did not use the aggregate notation.
29εsig = 1 for sig = (1, 3) i.e., (+−−−) and εsig = −1 for sig = (3, 1) ∼ (−+ ++).
30Dirac, curiously, continued even in the 1970s to stick to the interpretation of the scale

connection as electromagnetic potential. No wonder that this prposal was not accepted
even in the selective reception of his work.
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The whole scale invariant Lagrangian of Weyl-Omote-Dirac gravity in-
cluding the scalar field, neglecting for the moment further couplings to mat-
ter and interactions fields, is given by LWOD = LR2 + LHW + Lφ + LV +
LYM ,where LR2 contains all second order curvature contributions. They
seem to be necessary when (perturbative) quantization is studied (Capozziello/Faraoni
2011, 18ff., 62ff.).31

LWOD = LR2 − ξ2|φ|2R− εsigλ|φ|4 +
1

2
Dνφ

∗Dνφ− β

4
fµνf

µν (12)

Formally it contains a Brans-Dicke like modified Hilbert action, a “cosmo-
logical” term, quartic in φ, and dynamical terms for the scalar field and the
scale connection. The Weyl geometric expressions for scalar curvature and
scale covariant derivative ensure scale invariance of the Lagrangian density
LWOD = LWOD

√
|det g|. Scale invariance forces the polynomial part of the

potential with constant coefficients to be exclusively quartic.

4.2 From WOD to IWOD gravity

A closer look at the WOD-Hilbert term shows that, because of equ. (8), it
contains a mass-like term for the scale connection (the “Weyl field”):

−m2
ϕ ϕλϕ

λ = −6ξ2|φ|2ϕλϕλ (13)

If WOD describes a realistic modification of Einstein gravity, its Hilbert
term has to approximate the latter very well under the limiting conditions
|φ| → const, ϕ → 0. Then ξ2|φ|2 must be comparable to the inverse of
the gravitational constant ξ2|φ|2 ≈ [~c](16πG)−1 =

m2
Pl

16π with Planck mass
mPl.32 Then the mass of the “Weylon” (Cheng) turns out to be just a little
below the Planck mass:

mϕ ≈
1

3
mPl (14)

Variation of the Lagrangian shows that it satisfies a Proca equation with
this tremendously high mass (Smolin 1979, Cheng 1988).

If one assumes a physical role for the Weyl field, its range would there-
fore be restricted to just below the Planck scale. On all scales accessible to
experiments or to direct observation the curvature of the Weyl field there-
fore vanishes effectively. This result agrees with the integrability result of
Audretsch, Gähler and Straumann on the compatibility of Weyl geometry
with quasi-classical relativistic quantum fields (section 2). For all practi-
cal purposes we can thus safely go over to integrable Weyl geometry. In

31Signs are chosen sucht that φ has positive energy density (no ghost field) (Fujii 2003,
5); read (Blagojević/Hehl 2012, equ.(8.5)) with care (their α is negative) and (Blagojević
2002, equ. (4.46)) with a critical mind.

32m2
Pl = ~c

G
; equivalently ξ2|φ|2 ≈ 1

2
M2
Pl, if written in terms of the “reduced” Planck

mass MPl :=
√

~c
8πG

.
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four space-time dimensions the collection of quadratic curvature terms then
reduces to LR2 = −α1R

2 − α2R
λνRλν (Lanczos 1938).33

For occasions in which LR2 may be neglected,34 the Lagrangian of inte-
grable Weyl-Omote-Dirac (IWOD) gravity reduces effectively to

LIWOD = −ξ2|φ|2R− εsigλ|φ|4 +
1

2
Dνφ

∗Dνφ . (15)

That is very close to the Lagrangian used in recent publications on Jordan-
Brans-Dicke theory, e.g. (Fujii 2003). In Riemann gauge it agrees literally
with the “modernized” JBD Lagrangian in Jordan frame; in other gauges
(frames) the derivative terms of the rescaling function are “hidden” in the
Weyl geometric terms.35

4.3 The dynamical equations of IWOD

Variation of the Lagrangian with regard to the Riemannian component of
the metric leads to an Einstein equation very close to the “classical” case;
but now the curvature terms appear in Weyl geometric form.36 For LIWOD

without further matter terms the modified Einstein equation becomes

Ric− R

2
g = Θ(φ) = Θ(I) + Θ(II) , (16)

where the right hand side is basically the energy-momentum Θ(φ) of the
scalar field (multiplied by (ξ|φ|)−2). It decomposes into a term proportional
to the metric, Θ(I), therefore of the character of “dark energy”, and another
one, Θ(II):

Θ(I) = |φ|−2

(
−DλDλ|φ|2 + εsig

ξ−2

2
λ|φ|4 − ξ−2

4
Dλφ

∗Dλφ

)
g

Θ(II)
µν = |φ|−2

(
D(µDν)|φ|2 +

ξ−2

2
D(µφ

∗Dν)φ

)
(17)

33The reduced form is assumed in (Nieh 1982, 389), (Smolin 1979, 260), (Drechsler/Tann
1999b, 1028). It also covers the simplified expression of the gravitational Lagrangian in
Mannheim’s conformal gravity built on Lconf = CλµνκC

λµνκ, with C the Weyl tensor
(Mannheim 2005).

34P. Mannheim indicates that this may be acceptable only in the medium gravity regime;
he considers the conformal contribution to extremely weak gravity as crucial (Mannheim
2005).

35The old version of the JBD parameter corresponds to ω = 1
2
ξ−2. Contrary to what

one might think at first glance, (15) does not stand in contradiction to high precision solar
system obervations, because the scale breaking condition for the scalar field by the quartic
potential prefers scalar field gauge (“Einstein frame”) – see below.

36If one varies the Riemannian part of the metric g and the affine connection Γ separately
(Palatini approach), the variation of the connection leads to the compatibility condition
(3) of Weyl geometry (Poulis/Salim 2011, Almeida/Pucheu e.a. 2014). That gives addi-
tional (dynamical) support to the Weyl geometric structure. Further indications of its
fundamental role comes frome a completely different side, a f(R) approach enriched by
an EPS-like property (Capoziello e.a. 2012).
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The (“ordinary”) summands with factor ξ−2 are derived from the kinemat-
ical φ-term of the Lagrangian; the other summands arise from a boundary
term while varying the modified Hilbert action. Because of the variable fac-
tor |φ|2, the boundary term no longer vanishes like in the classical case.37

The additional term is often considered as an “improvement” of the energy
momentum tensor of the scalar field (Callan/Coleman/Jackiw 1970).38

All terms of the modified Einstein equation of IWOD gravity (16) are
scale invariant,39 although the geometrical structure is richer than conformal
geometry. Of course there arises the question whether such a geometrical
framework may be good for physics, without specifying a preferred scale;
i.e., before “breaking” of scale symmetry. We shall see in the next section
that there is a natural mechanism for such ‘breaking’, which may even be of
physical import, although it is not mandatory at the classical level on purely
theoretical grounds.

Constraining the variation to integrable Weylian metrics leaves no dy-
namical freedom for the scale connection; thus no dynamical equation arises
for ϕ.40 Varying with regard to the scalar field, on the other hand, gives a
Klein-Gordon type equation:

DνD
νφ+ 2(ξ2R+ 2εsigλ|φ|2)φ = 0 (18)

In a way, the scale connection ϕ and the scalar field φ are closely related.
It is possible to scale φ to a constant, then in general ϕ 6= 0; on the other
hand one can scale ϕ = 0, then in general φ 6= const. The ’kinematical’
(descriptive) freedom of ϕ is essentially governed by the dynamics of φ. The
scalar field Φ, not the scale connection ϕ encodes the additional dynamical
degree of freedom in the integrable (IWOD) case, far below Planck scale.

4.4 Ground state of the scalar field

There are no reasons to assume that φ represents an elementary field. Like
all other scalar fields of known physical relevance it may characterize an
aggregate state. From our context we may guess that it could represent an
order parameter of a collective quantum state (a condensate?) of the Weyl
field. Such an conjecture can already be found in (Hehl e.a. 1988, 263),

37(Tann 1998, 64ff.),(Blagojević 2002, 96ff.), (Fujii 2003, 40ff.).
38Callan, Coleman, and Jackiw postulated these terms while studying perturbative

scattering theory in a weak gravitational field. They noticed that the ordinary energy
momentum tensor of a scalar field does not lead to finite matrix elements “even to the
lowest order in λ”. The “improved” terms lead to finite matrix terms to all orders in λ
(Callan/Coleman/Jackiw 1970).

39Sometimes the scale transformations are called “Weyl transformations” in this context,
e.g. in (Blagojević 2002).

40The variation of the Riemannian component of the metric can be restricted to Riemann
gauge (g, 0). Note the analogy to the variation in JBD gravity of the Riemannian metric
with regard to the Jordan frame.
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(Hehl 1995, 1096), and similarly already in (Smolin 1979, Nieh 1982). Here
we are not interested in details of the dynamics given by its variational Klein-
Gordon equation, but mainly in the ground state which may be indicative
for the transition to Einstein gravity.

Transition to integrable Weyl geometry is not yet sufficient to get rid of
rescaling freedom. A full breaking of scale symmetry — like that of any other
gauge group — contains two ingredients:

(a) effective vanishing of the curvature (field strength) at a certain scale,

(b) physical selection of a specific gauge.41

Here only step (a) has been taken. (b) involves a ground state of the scalar
field with respect to the biquadratic potential given by its gravitational cou-
pling if the scalar field has the chance to govern the behaviour of physical
systems serving as “clocks” or as mass units (see section 5).

For field theoretic investigations signature sig(g) = (1, 3) is best suited,
so that εsig = +1. Abbreviating the gravitational terms we get LIWOD =
1
2Dνφ

∗Dνφ− Vgrav(φ) with

Vgrav(φ) = ξ2|φ|2R+ λ|φ|4 . (19)

In most important cases, scalar curvature R of cosmological models is
negative.42 Thus the effective gravitational potential of the scalar field is
biquadratic and of “Mexican hat” type with two minima symmetric to zero,
like in electroweak theory. Here, however, the coefficient of the quadratic
term ξ2R is a point dependent function, but may be scaled to a constant.

The scalar field assumes the gravitational potential minimum for

|φo|2 = −ξ
2R

2λ
(in reciprocal length units). (20)

Of course, there is a scale gauge in which |φo| assumes constant values.
We call it the scalar field gauge (of Weyl geometric gravity). Starting from
any gauge (g, ϕ) of the Weylian metric, just rescale by Ω := C−1|φo| with
any constant C. Because of it having scale weight −1, the norm of the scalar
field then becomes |φ0(x)| = C in inverse length units; equivalently in energy
units

|φ0(x)|[~c] = C~c =: |φogr| (21)
41“Physical” means a selection with observational consequences. Mathematically, the

selection of a gauge corresponds to the choice of a section (not necessarily flat) in the
corresponding principle fibre bundle, at least locally (in the sense of differential geometry).

42The higly symmetric Robertson-Walker models of Riemannian geometry, with warp
(expansion) function f(τ) and constant sectional curvature κ of spatial folia, have scalar
curvature gR = −6

(
( f
′

f
)2 + f ′′

f
+ κ

f2

)
in signature (1, 3) ∼ (+ − −−). For κ ≥ 0, or at

best moderately negative sectional curvature, and accelerating or “moderately contracting”
expansion, gR < 0.
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with some constant energy value |φogr|.
A necessary and sufficient condition that φogr satisfies the dynamial equa-

tion of the scalar field (18) is the vanishing of the scale covariant d’Alember-
tian, DνD

νφ = 0. In scalar field gauge that is equivalent to the condition
for the scale connection43

∇νϕν − ϕνϕν = 0 .

With C such that ξ2C2 = (16πG)−1[ c
4

~c ] (G gravitational constant) the
coefficient of the IWOD-Hilbert term (15) goes over into the one of Einstein
gravity. Then

|φogr| = ξ−1

(
~c5

16πG

) 1
2

=
1

4
√
π
ξ−1EPl ∼ 0.1 ξ−1EPl , (22)

and the coupling constant ξ2 turns out to be basically a squared hierarchy
factor between the scalar field ground state in energy units and Planck energy
EPl.

4.5 A first try of connecting to electroweak theory

It seems tempting to consider the electroweak energy scale v as a candidate
for the gravitational scalar field,

|φogr| = v ≈ 246GeV .

In this case, the value of the hierarchy factor would be ξ = EPl
4
√
π v
∼ 1016.

With
λ ∼ 10−56, (23)

the value of the scalar field’s ground state is located, by (20), at the elec-
troweak scale:44

[~c]|φo| = ~c
ξ
√
|R|√
2λ
∼ 1016−33+28 eV ∼ 1011 eV , |φo| ∼ 1016 cm−1 (24)

This observation indicates a logically possible connection between Weyl
gravity (IWOD) and electroweak theory, although the order of magnitude
of λ looks rather suspicious. In section 5 we explore a similar, but more
convincing transition assuming a (global) scale change between |φogr| and
electroweak energy, v = χ|φogr| (χ a real constant).

43In the models considered in section 6 this condition will be satisfied.
44Here |R| ∼ H with H = H1 ≈ 7.6 · 10−29 cm−1, respectively ~cH ≈ 1.5 · 10−33 eV ∼

10−32 eV . In section 6 we find good reasons to consider R = 24H2 (54). Correspondingly
a more precise value for λ would be λ =

E2
Pl

16πv4
24(~cH2)2 ≈ 2 · 10−56.
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4.6 Scale invariant observables and a new look at ‘dark energy’

It is easy to extract a scale invariant observable magnitude X̂ from a scale
covariant field X of weight w(X) = k. One only has to form the proportion
with regard to the appropriate power of the scalar field’s norm

X̂ := X : |Φ|−k = X|φ|k ; (25)

then clearly w(X̂) = 0.
Scale invariant magnitudes X̂ are directly indicated, up to a globally

constant factor in scalar field gauge, i.e., the gauge in which |φo| = const.45

Conceptually the problem of scale invariant magnitudes is solvable, even with
full scaling freedom, but there are physical effects which lead to actually
breaking scale symmetry. Atomic “clocks” and “rods” (atomic distances)
express a preferred metrical scale. They stand in good agreement with other
periodic motions of physics on different levels of magnitude.

The ordinary energy-momentum terms with scale covariant derivatives of
φ in (17) get suppressed by the inverse squared hierarchy factor ξ−2 ∼ 10−32,
or even smaller (see section 5.4). Only the λ-term corresponding to the old
cosmological term survives because it is of fourth order in |φ| and |φ| is “large”
(24). In the ground state it can be expressed in terms of scalar curvature,
(20). Then the energy-momentum of the scalar field simplifies to:

Θ(I) ≈
(
−R

4
− |φ|−2DλDλ|φ|2

)
g =: Λ g (26)

Θ(II)
µν ≈ |φ|−2D(µDν)|φ|2 (27)

Taking traces on both sides of the (IWOD) Einstein equation shows that
for the vacuum, i.e., matter free, case

|φ|−2DλDλ|φ|2 = 0 . (28)

These identities signal a remarkable change in comparison with Einstein
gravity and its problems with the cosmological constant. Θ(I) represents a
functional equivalent to the traditional “vacuum energy” term, but here it is
due to the scalar field. The coefficient Λ in (26) depends dynamically on the
geometry of IWOD gravity. Moreover, Θ(II) is an additional contribution to
the energy momentum of the scalar field (27). It seems possible that some
of the effects ascribed to dark matter in the received view may be due to
it. Before we turn to such questions (section 6), we have to come back to
electroweak theory. We still have to find out whether there is a chance for
the scalar field to determine the rate of clock ticking and to influence the
units of mass.

45In (Utiyama 1975a) the Weyl geometric φ is called a “measuring field”; see also (Scholz
2011a).
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5. A bridge between Weyl geometric gravity and ew theory?

Let us try to explore whether the Weyl geometric setting may contribute
to conceptualizing the “generation of mass” problem of elementary parti-
cle physics. Mass is the charge of matter fields with regard to the inertio-
gravitational field, the affine connection of spacetime. In flat space, and thus
special relativity, that may fall into oblivion because there the affine connec-
tion is hidden under the pragmatic form of partial derivatives only. The ex-
ercise of importing standard model fields to “curved spaces”, i.e., Lorentzian
or Weyl-Lorentzian manifolds, is conceptually helpful even if it is done on
a quasi-classical level as a first step. Using the the Weyl geometric ver-
sion seems all the more appropriate, as the Lagrange terms of the standard
model of elementary particle physics (SM) are either already conformally
invariant, like the electromagnetic action FµνFµν

√
|detg| (and the other ew

boson terms), or can be made so by using the scale covariant derivatives (see
below).

5.1 Importing standard model fields to IWG

The contributions to the special relativistic (Lorentz invariant) Lagrange
density L(ψ)dx of the standard model of elementary particles are invariant
under dilations in Minkowski space. Dilational invariance is closely related
to unit rescaling, but not identical. Assigning Weyl weight w = −d to a
a field ψ of dilational weight d (ofte called “dimension”) gives an invariant
Lagrangian density under global unit rescaling in special relativity.46 Unit
rescaling can be made point dependent, if the fields can be generalized to
the Weyl geometric framework.

An energy/mass scale is set by breaking scale invariance via the Higgs-
e.a. mechanism.47 One usually assumes that the Higgs field is an ele-
mentary scalar field with values in an isospin-hypercharge representation
(I, Y ) = (1

2 , 1) of the electroweak group Gew = SU(2)×U(1).48 At least two
generations of particle physicists have been working in the expectation that
this scalar field is carried by a massive boson of rest mass at the electroweak
level (∼ 100GeV ). Experimenters at the LHC have recently found striking
evidence for such a boson with mass mH ≈ 125 − 126GeV (Collaboration
ATLAS 2012, Collaboration CMS 2012).

46Under the active dilation of Minkowski space x 7→ x̃ = Ωx (Ω > 0 constant) a
field ψ of dilational weight d transforms by ψ(x) 7→ Ωdψ(Ω−1x) (Peskin/Schroeder 1995,
682ff.). Invariance of the action S =

∫
L(ψ)dx holds if

∫
L(ψ(x))dx =

∫
L̃(x)Ω−4dx.

That is the case if and only if L̃ = Ω4L, thus d(L) = 4 and w(L) = −4 for Lagrangians
invariant under dilations. Rescaling η = diag(1,−1,−1,−1) by η 7→ η̃ = Ω2η leads to

L
√
|det η| = L̃

√
|det η̃| and thus to a scale invariant Lagrange density.

47Spelt out, Brout-Englert-Guralnik-Hagen-Higgs-Kibble “mechanism”.
48With the ordinary Gellmann-Nishijima relation Q = I3 + 1

2
Y usually assumed in the

literature. Drechsler uses a convention for Y , such that Q = I3 + Y .
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Without going into much detail, it can be stated that all the fields and
differential operators of the standard model Lagrangian can be imported
into Weyl geometry.49 That can be done globally if the underlying spacetime
manifoldM is assumed to be spin, otherwise only locally.50 As Dirac spinors
ψ are usually considered having weight w(ψ) = −3

2 , the Weyl geometric scale
covariant derivative D and Dirac operator /∂ become

Dψ = ∇Ψ− 3

2
ϕ⊗Ψ

/DΨ = i[~c] γl(DΨ)l , (29)

with γl (l = 0, . . . 3) Dirac matrices.51

We rebuild crucial aspects of the Higgs field in our framework by extend-
ing the scalar field of IWOD gravity to an electroweak bundle of appropriate
maximal weight for Gew, (I, Y ) = (1

2 , 1). Then the scalar field turns into a
field Φ with values in a point dependent representation space isomorphic to
C2,52

Φ(x) = (φ1(x), φ2(x)) . (30)

5.2 Two steps in the geometry of symmetry breaking

The usual “mechanism” for electroweak symmetry breaking on the quasi-
classical level consists of two components.

(I) By a proper choice of SU(2) gauge Φ(x) is transformed into the “down”
state at every point; Φ(x) = (0, φ(x)).

49(Drechsler/Mayer 1977, Drechsler 1991, Drechsler/Tann 1999b, Cheng 1988, Nishino
2004, Nishino/Rajpoot 2007, Scholz 2011a). For the Riemannian case see (Frankel 1997,
chap. 19) and for a conformal version of the standard model (Meissner/Nicolai 2009).
In the Weyl geometric case, one has to be aware that the “lifting” of the orthogonalized
Levi-Civita connection (representation of (1) in orthogonal tetrad coordinates) to the spin
bundle incorporates contributions of the scale connection ϕ in the chosen scale gauge. On
the other hand, the dependence on ϕ in the Yukawa term cancels (Blagojević 2002, 81,
ex.1), if one uses the hermitian symmetrized version. Not so, of course, in the unsym-
metrized variant of the Yukawa term, which is usually considered in the special relativistic
SM.

50M is spin, iff it admits a global SL(2,C) bundle; then the Dirac operator can be
defined globally, otherwise only locally (in the sense of differential geometry). A sufficient
criterion is H2(M,ZZ2) = 0.

51In 1929, Weyl and Fock noticed independently that in this construction a point depen-
dent phase can be chosen freely without affecting observable quantities. That implied an
additional U(1) gauge freedom and gave the possibility to implement a U(1)-connection
(Scholz 2005b). Their original proposal to identify the latter with the electromagnetic
potential was not accepted because all fermions would seem to couple non-trivially to the
electromagnetic field. Pawłowski (1999) gives the interesting argument that in electroweak
theory the hypercharge field can be read as operating on the spinor phase, exactly like
Weyl and Fock had proposed for the electromagnetic field (Weyl 1929, Fock 1929b).

52Mathematically speaking, Φ is a section in an associated vector bundle with (I, Y ) =
( 1

2
, 1) of the electroweak principal bundle.
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(II) The (squared) norm, physically spoken the expectation value < Φ∗Φ >
(the same as that of φ∗φ in (I)), is assumed to lie in a minimum of a
quartic (“Mexican hat”) potential.

The first step (I) presupposes the ability to specify “up” and “down”
states with regard to which the “diagonal” subgroup of SU(2) with generator
σ3 = i

2 diag(1,−1) is defined. Otherwise the U(1) subgroup could be any
of infinitely many conjugate ones.53 Stated in more physical terms: How do
we know in which “direction” (inside C2) the 3-component of isospin has to
be considered? This question, already important in special relativistic field
theory, becomes pressing in a consequently “localized” (in the physical sense)
version of the theory; i.e., in passing to general relativity.

In the following we shall consider the Weyl geometrically extended Higgs
field Φ and investigate whether the (complex valued) down state component
φ(x) of the Higgs field may be related to the gravitational scalar field.

It seems natural to assume that the ground state of the electroweak vac-
uum field Φ(x) defines the down state of the vacuum representation of the
electroweak group, (I, Y ) = (1

2 , 1), at every point x. Thus a subgroup
U(1)o ⊂ SU(2) is specified as the isotropy group (fix group) of Φ(x) at
each point. It singles out the I3 and charge eigenstates in all associated
representations of Gew, and thus for the elementary fields. In consequence,
an adapted basis in each of the representation spaces can be chosen at every
point, such that wave functions of the up/down states get their usual form.
The scalar field, e.g., goes over into the form of “unitary gauge”

Φ(x) = (0, φ(x)) , (31)

and the only degrees of freedom for Φ are those of φ, a complex valued field
like the one in section 4.

In this way the Higgs field specifies at each point x ∈ M a subgroup
U(1)o ⊂ SU(2), mathematically a maximal torus of SU(2), in Gew =
SU(2) × U(1). The eigenspaces of U(1)o are the I3 eigenstates of the cor-
responding isospin representation spaces with I ∈ {1

2k| k ∈ IN}. In physical
terms, the ew dynamics is “informed” by the Higgs field how the weak and
the hypercharge group (or Liealgebra) are coordinated in the generation of
electric charge, also for other (fermionic) representation spaces.54 In this
sense, the electroweak symmetry does not treat every maximal torus (U(1))

53There are infinitely many maximal tori subgroups, all of them can serve with equal
right as “diagonal” (Cartan) subgroup. The “localization” (in the sense of physics) allows
to make the selection point dependent.

54Experiment has shown that for left handed elementary fields (and for the “vacuum”)
I = 1

2
. At any point of spacetime the charge eigenstates of left handed elementary matter

fields are specified by the dynamical structure of the vacuum as the eigenstates (I3 = ± 1
2
)

of U(1)o and Q = I3 + 1
2
Y . (I, Y ) = ( 1

2
,−1) for (left-handed) leptons, (I, Y ) = ( 1

2
, 1

3
) for

(left-handed) quarks, and (I, Y ) = ( 1
2
, 1) for the “vacuum”. For right handed elementary

fields the isospin representation is trivial, (I, Y ) = (0, 2Q).

22



subgroup of the SU(2) ⊂ Gew equivalent to any other. The Higgs field,
encoding an important part of the physical vacuum structure, seems to be
crucial for the distinction.

In this way the Higgs-e.a. mechanism, can be imported to the general
relativistic framework. The whole structure can still be transformed under
point dependent SU(2) operations without being spoiled, i.e., it may be
gauge transformed.55 And even more importantly, if a su(2) or gew connec-
tion of nonvanishing curvature, i.e., an electroweak field, is present,56 it is
not reduced to one of vanishing curvature by the pure presence of the scalar
(Higgs) field. In that respect, gauge symmetry remains intact in the sense of
both automorphism structure and dynamics.

The metaphor of “breaking” gauge symmetries has been discussed broadly,
often critically, in philosophy of science, cf. (Friederich 2011). It did not pass
without objection among physicists either, e.g., (Drechsler 1999a). For an
enlightening historical survey of the rise of the electoweak symmetry breaking
narrative and its important heuristic role see (Borrelli 2012, Karaca 2013).
From our point of view, it would not seem a happy choice to speak of “break-
ing” the SU(2) symmetry at this stage. But it is true that the physical spec-
ification of the U(1)o subgroup (maximal torus) in SU(2) by the scalar field
allows to introduce standard sections (I3 bases) and preferred trivializations
of the representation bundles, corresponding to step (b) in the characteriza-
tion of section 4 (above footnote 41). In this sense, one can say that breaking
of electroweak symmetry is foreshadowed by the presence of the scalar field.

Breaking the dynamical symmetry will be accomplished when, in addi-
tion, the physical conditions for an effective vanishing of the SU(2) curvature
component are given (step (a) in section 4.4). That will be the result of the
gauge bosons acquiring mass, rather than the origin and explanation of mass
generation, while the mass splitting of the fermions is “foreshadowed” by
the physical choice of U(1)o subgroup (the “I3 direction” in more physical
terms). We come back to this point in a moment.

The second step of the usual ew symmetry breaking scenario, (II) in
the characterization above, consists of reducing the underdetermination of
the (squared) norm of Φ, respectively the expectation value of Φ∗Φ. In the
ordinary Higgs-e.a. mechanism that is achieved by ad hoc postulating a
quartic potential of “Mexican hat” type for the Higgs field. In the IWOD

55“Active” gauge transformations operate on the whole setting of Φ(x), U(1)o and the
corresponding frame of up/down bases — similar to the diffeomorphisms of general rela-
tivity, considered as gauge transformations; they carry the metrical structure with them.
The active transformations can be countered by “passive” ones which, in mathematical
terminology, are nothing but adapted change of trivialization of the principle fibre bundle
and accompanying choices of standard bases (I3 eigenvectors) in the associated represen-
tation spaces. After a joint pair of active and passive gauge transformations the wave
functions expressed in “coordinates” remain the same.

56Curly small letters like su(2) and gew denote the Liealgebra of the corresponding
groups.
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approach, a similar potential for the gravitational φ is naturally given by
(19), with ground state in (20).

Crucial for the Higgs-e.a. mechanism is the fact that covariant derivative
terms of the scalar field in ew theory (the ew bundle) lead to mass-carrying
Lagrange terms for the gauge fields, which are nevertheless consistent with
the full gauge symmetry. This is, of course, just so in the ew-extended IWOD
model. The kinematical term of the scalar field becomes now

LΦ =
1

2
D̃νΦ∗D̃νΦ , (32)

D̃µΦ := (∂µ − ϕµ +
1

2
gWµ +

1

2
g′Bµ)Φ ,

where the Wµ and Bµ denote the connections in the su(2) and u(1) compo-
nent of the electroweak group respectively. The ew covariant derivative terms
of (32) lead to formal mass terms for the ew bosons, which from the outset
are scale covariant.57 After the settling of Φ in a ground state Φo = (0, φo),
|φ|o = v, and after a change of basis (Glashow-Weinberg rotation) they turn
into explicit mass terms

m2
W =

g2

4
v2 , m2

Z =
g2

4 cos Θ2
v2 , (33)

with cos θ = g (g2 + g′2)−
1
2 like in special relativistic field theory.58

Already in the special relativistic case it is much more difficult to establish
Gew and scale invariant Lagrangian densities for the fermionic fields and in
particular Yukawa-like mass terms.59 The transfer to the Weyl geometric
context is a smaller problem, once that has been achieved.60 It consists
basically in the adaptation of the Dirac operator (29) to the Weyl geometrical
case. Summing up, the resulting Lagrangian can be written for electrons in
the simplified form

Le = ψ∗e/Dψe − εsig[~c]µe|Φ|ψ∗ψ , (34)

with ψ∗ =tψ (ψ complex conjugate, t transposition), µe the coupling coeffi-
cient for the interaction of φ and the electron Dirac field.

Mass acquirement of fermions and the weak gauge bosons results from
their interactions with the Weyl geometric scalar field Φ extended to the
electroweak sector, e.g. for the electron

me = µe[hc]|Φoew| = µev , (35)
57 1

4
g2|Φ|2WµW

µ and 1
4
g′2|Φ|2BµBµ.

58For the generalization to IWOD see, e.g., (Cheng 1988, Scholz 2011a).
59Decomposition in chiral (left and right) states and the transformation on mass

eigenstates for quarks (Cabibo-Kobayashi-Maskawa (CKM) matrix) and leptons (Maki-
Nakagawa-Sakate (MNS) matrix) have to be taken into account. The Yukawa Lagrangian
for the fermions are simplest, if written in unitary gauge (31), but are gauge invariant, cf.
fn 55.

60(Drechsler 1999a, Nishino 2004, Scholz 2011a), compare (Meissner/Nicolai 2009).
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where |Φoew| designates the norm of the ground state of the scalar field
extended to th electroweak sector.

Once the weak bosons have acquired mass mw, the range of the exchange
forces mediated by them is limited to the order of lw = ~c

mc2
∼ 10−16 cm. At

distances d � lw the curvature of the weak component of Gew vanishes ef-
fectively and the weak gauge connection can be “integrated away”, i.e., the
symmetry can be reduced to U(1). As a result, electroweak symmetry is
broken down to the electromagnetic subgroup, because of the mass acquire-
ment of the weak bosons – not the other way round. In this way the physical
connotations of our stepwise reduction of symmetry deviate from the stan-
dard account, although the formal structure of the Higgs-e.a. mechanism
has been taken over in most respects.

5.4 Higgs field and IWOD scalar field, a change of energy scales?

We now have to address the question whether mass might be “generated”
by an indirect coupling of the elementary fields to gravity, mediated by the
scalar field of IWOD gravity. If so, that would be a convincing solution of
the mass problem.61 Before we can judge that we have to review the problem
of the coefficients in (19) which do not agree with those of ew theory. The
two Lagrangians of the gravitational scalar field and of the standard model
(vacuum sector) are:

Lgr = (−ξ2|φ|2R− λ|φ|4 +
1

2
Dνφ

∗Dνφ+ . . .)
√
|det g| , (36)

Lsm = (µ2|Φ|2 − λ|Φ|4 +
1

2
DνΦ∗DνΦ + . . .)

√
|det η| , (37)

with η the Minkowski metric, |Φ|2 = Φ∗Φ, and µ2, λ the effective values for
the quadratic and quartic coefficients of the SM Lagrangian at the ew energy
level.62

61One must not forget that in ew theory we only deal with small rest and bare masses
of the elementary fermions and the weak gauge bosons. The bulk mass of the world is
dynamically generated by the quantum-chromodynamical effects in hadron bound states
(Dürr e.a. 2008).

62Another interesting proposal for studying the connection between scale invariant grav-
ity and the SM of particles has recently been made in (Quiros 2013, Quiros 2014). I.
Quiros adds a term of the form M2

Pl
2
R to the Lagrangian (36) (R the Weyl geometric

scalar curvature). A similar addition of terms can be found in gravity theories studying
the “inflationary phase” of the present standard cosmology, but there it is a scale symme-
try breaking term (R Riemannian scalar curvature and MPL a “true” constant). Quiros
avoids the breaking by the rescaling convention w(MPl) = −1, very natural in Weyl geo-
metric approach for energy quantities. But in his approach the electroweak scalar field is
dynamically decoupled from gravity; thus it does not seem to have a chance for bridging
the gap between ew theory and gravity for clock scaling as discussed in our section 5.5.
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An immediate identification of the gravitational scalar field and the Weyl
geometrically extended Higgs field, like in section 4.5, is impossible because of
the huge orders of magnitude difference. It would seem unplausible anyhow,
because (present) gravitational observations and elementary particle physics
probe the vacuum at rather different energy scales. The mass-like quadratic
coefficient µ2, and with it the mass of its quantum excitations, mh, underly
perturbative corrections quadratic in the heaviest mass scale Λ at which new
phenomena appear,

∆µ2 ∼ ∆m2
h ∼ Λ2 . (38)

If the SM is an effective theory with no empirically accessible “beyond”, the
radiative corrections are dominated by the mass of the top quark, Λ ∼ mtop ≈
173GeV . From the vantage point of high energy physics the quadratic coef-
ficient of Φ in Lgr vanishes, and the essential contributions to µ2 and to the
Higgs mass mh are due to the quadratic corrections:

µ2 ∼ ∆µ2 ∼ m2
h ∼ m2

top ∼ (100GeV )2

If we find no experimental evidence for particles beyond the SM, we ought
to scrutinize the assumption that the uncorrected mass of the scalar field
may be derived from its gravitational coupling. The latter is so small that
it can be neglected at the level of high energy physics. Then the widely
discussed naturalness problem of the standard model may dissolve (in a way
quite “naturally”). Of course this conjecture has to be checked in detail by
calculations in perturbative quantum field theory.63

In a first, very rough, approximation such quantum corrections may be
compared to a (global) change of units. If one considers a global change
of, e.g., the unit of length uL 7→ ũL = χ−1uL (χ a constant factor), the
associated units of energy transform like uE 7→ ũE = χuE . For the nu-
merical values l of distances the condition l uL = l̃ ũL implies l 7→ l̃ = χl.
Substituting new reference units for the volume element

√
|det g| in a La-

grangian density, without change of the covariant field quantities, expresses
a corresponding change in energy scales for the observations.

L = L
√
|g| 7→ L̃ = L

√
|g̃| = Lχ4

√
|g| ←→ L̃ = χ4L

63Our conjecture of a link between the gravitational scalar field and the Higgs field comes
close to the idea of S. Coleman and E. Weinberg of “spontaneous symmetry breaking” by
radiative corrections of a massless scalar field (Coleman/Weinberg 1972). There remains
an important difference: the uncorrected mass is not zero in the Weyl geometric approach
and its perturbative corrections deal with quantum effects of gravity. Although these have
their own difficulty, the actual state of perturbative methods in quantum gravity may allow
to test the conjecture quantitatively (Buchbinder/Odintsov/Shaprio 1992, Dvali 2013). In
(Scholz 2011a) and the first version of this paper the practically vanishing mass of the
Weyl geometric gravitational scalar field has been discussed – incorrectly – as an argument
against a Higgs quantum excitation on a mass scale as expected in high energy physics.
The quadratic radiative corrections should have been taken into account already there.
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Such a transition of Lagrangians expresses an ‘active change’ (global and
classical) of energy scales. While multiplication of the Lagrangian by a
constant, L ∼ L′ = constL, does not change classical dynamics, it has in-
teresting effects on the coefficients of the scalar field. We can now pose our
question in the form: Does it makes sense to assume the SM Lagrangian to
be (approximately) related to the gravitational one by a global scale trans-
formation, Lsm ≈ χ4Lgr?

If so, non-dimensional couplings ought to be approximately identical,
here λgr ≈ λsm, while the dimensional coupling of the standard model is
rescaled to that in gravity by µ2 ≈ χ2ξ2|R|. Because of (20) R is related to
the gravitational ground state,

R = −2λ ξ−2|φogr|2 , thus µ2 ≈ 2λχ2|φogr|2 . (39)

In scalar field gauge |φo| and with it R are constant. That seems non-
sensical, from a Riemannian point of view; not so, however in the Weylian
framework. If the scalar curvature part gR due to the Riemannian compo-
nent of the Weylian metric becomes large, the correcting components ϕR due
to the scale connection outweigh that change such that R =gR+ϕR remains
constant. In Riemann gauge this corresponds to an increase of φ in regions
of strong gravity.

An easy calculation shows that the compatibility conditions with effective
values for µ, λ of the ew theory and compatibility with Einstein gravity (22)
can be met by64

χ ∼ 1013, |φogr| ∼ 10−2 eV, ξ ∼
Epl
|φogr|

∼ 1030, λ ∼ 10−2 . (40)

We then arrive at a two stage hierarchy,

grav. scale |φogr|
1013

−→ ew scale |φoew| = v
1016

−→ Planck scale Epl .

In this approach the gravity level of the scalar field’s energy value is
close to the geometric mean of the smallest and largest energy scales in the
universe, H[~] and EPl:

H[~]
1031

−→ |φogr|
1030

−→ Epl (41)

That places the “hierarchy” question into a wider context.
Summarizing we state the hypothesis:

The Weyl geometrically extended Higgs field Φ and the gravitational scalar
field φ of IWOD gravity may form two aspects of the same vacuum field

64Compatibility to ew data as in (Degrassi e.a. 2012): λ(ew) = λ(Mtop) ≈ 0.126
4
, v ≈

246GeV, µ =
√

2λ v ≈ 62GeV. On the other hand H[~] ≈ 10−33 eV, R ≈ −24H2 (see
section 6.2); compatibility with Einstein gravity: ξ2|φogr| = E2

Pl
16π

.
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structure. Probably Φ represents a state function of an underlying quantum
collective.

Both Lagrangians are essentially one and the same; they can be trans-
formed approximately into another by a global change of energy scale. It
has to be checked whether the classical link by a global scale transforma-
tion can be corroborated by radiative corrections in the transition from
|φogr| ∼ 10−2 eV to |φoew| = v. If so, the energy ground state of the Higgs
field v = |φoew| = χ|φogr| arises from radiative corrections to its coupling to
gravity, equ. (20).

5.5 A Weylian hypothesis reconsidered

It is easy to see that quantum mechanics is able to establish a mechanism
of how the norm (expectation value) of φoew regulates atomic “clocks” and
“rods”. Atomic spectra depend on the mass of the electron (35).65 The
energy eigenvalues of the Balmer series in the hydrogen atom are governed
by the Rydberg constant Rryd,

En = −Rryd
1

n2
, n ∈ IN . (42)

The latter (expressed in electrostatic units) depends on the fine structure
constant α and the electron mass, thus finally on the norm of Higgs field:66

Rryd =
e4me

2~2
=
α2

2
mec

2 =
α2

2
µe |φoew|c2 (43)

If masses of elementary fermions depend on indirect coupling to gravity
as in the argued in 5.4, the Rydberg “constant” scales with φ before scale
symmetry breaking, while the electron charge is a true (nonscaling) constant.
In scalar field gauge (after scale symmetry breaking) the Rydberg constant
becomes

Rryd =
α2

2
χµe |φogr| c2 (44)

and gets rescaled with |Φ|. Similarly, the usual atomic unit of length for
a nucleus of charge number Z is the Bohr radius lBohr = ~

Ze2me
and gets

rescaled just as well, like |φ|−1.
That is, typical atomic time intervals (“clocks”) and atomic distances

(“rods”) are regulated by the scalar field’s ground state |φoew| and, if the
hypothesis |φoew| = χ|φogr| is correct, by the ground state of the gravitational
scalar field.67 That is of great importance for the value of Weylian scalar
curvature after scale symmetry breaking.

65The dimension-less coefficient µe of the electron must here, of course, include radiative
corrections of the bare mass.

66Vacuum permissivity εo = (4π)−1; then e2 = 2αεohc = α~c.
67Cf. fn. (13); of course the calculation of the spectral lines of 133Caesium is more

involved, but the dependence on electron mass remains.
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The scaling condition (39) and (44) give a surprising justification to an ad
hoc assumption introduced by Weyl during his 1918 discussion with Einstein.
Weyl conjectured that atomic spectra, and with them rods and clocks, adjust
to the “radius of the curvature of the world” (Weyl 1922, 309). In his view,
natural length units are chosen in such a way that scalar curvature is scaled
to a constant, the defining condition of what we call Weyl gauge. In the
fourth edition of Raum - Zeit - Materie (translated into English by H.L.
Brose) he wrote:

In the same way, obviously, the length of a measuring rod is
determined by adjustment; for it would be impossible to give to
this rod at this point of the field any length, say two or three
times as great as the one that it now has, in the way that I can
prescribe its direction arbitrarily. The world-curvature makes it
theoretically possible to determine a length by adjustment. In
consequence of this constitution the rod assumes a length which
has such and such a value in relation to the radius of curvature
of the world. (Weyl 1922, 308f.)

The electroweak link explored in section 5.4 could justify a feature of
Weyl geometric gravity which was introduced Weyl in a kind of “a priori”
speculative move. In the 5th (German) edition of Raum - Zeit - MaterieWeyl
already called upon Bohr’s atom model as a first step towards justifying his
scaling conjecture:

Bohr’s theory of the atom shows that the radii of the circular
orbits of the electrons in the atom and the frequencies of the
emitted light are determined by the constitution of the atom, by
charge and mass of electron and the atomic nucleus, and Planck’s
action quantum.68

At the time when this was written Bohr had already derived (42) and
(43) for the Balmer series of the hydrogen atom and for the Rydberg constant
(Pais 1986, 201). If the link between the scalar fields of gravity and of ew
theory outlined above is realistic, Weyl’s argument was a halfway marker
on a road towards the bridge between gravity and atomic physics. Of course
there was no chance, at the time, for anticipating the electroweak pillar of
the bridge.

6. Another look at cosmology

It is of interest to see how cosmology looks from the vantage point of IWOD
gravity, not only in order to test the latter’s formal potentialities on this

68“Die Bohrsche Atomtheorie zeigt, daß die Radien der Kreisbahnen, welche die Elektro-
nen im Atom beschreiben und die Frequenzen des ausgesendeten Lichts sich unter Berück-
sichtigung der Konstitution des Atoms bestimmen aus dem Planckschen Wirkungsquan-
tum, aus Ladung und Masse von Elektron und Atomkern . . . ” (Weyl 1923, 298).
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level of theory building but also because certain features of recent obser-
vational evidence of cosmology are quite surprising: dark matter and dark
energy, distribution and dynamics of dwarf galaxies, lacking correlation of
metallicity with redshift of galaxies and in quasars (i.e, no or, at best, highly
doubtful indications of evolution), too high metallicity in some deep redshift
quasars and the intriguing, but as yet unexplained, distribution of quasar
numbers over redshift.69 It would not be surprising if some of these develop
into veritable anomalies for the present standard model of cosmology. At
least they indicate that some basic changes in the conceptual framework for
cosmological model building seems to be due.

At the moment we cannot claim that these (potential) anomalies will
be resolved by Weyl geometric gravity. But they are sufficient reason for
reflecting the status of present cosmology and to compare it with alterna-
tive approaches. Weyl geometric gravity is not the only alternative “on the
market”; many others are being explored.70 Some of them may be worth
considering in philosophical ‘meta’-reflections on cosmology, complementary
to philosophical investigations centered on more mainstream lines of inves-
tigation in cosmology.71

6.1 Robertson-Walker models in IWOD gravity

One often uses approximate descriptions of cosmological spacetime by models
with maximal symmetric spacelike folia, i.e., Robertson-Walker manifolds
with metric of the form

g̃ : ds̃2 = dτ2 − a(τ)2dσ2
κ , (45)

dσ2
κ =

dr2

1− κ r2
+ r2(dΘ2 + sin2 Θ dφ2) .

The underlying manifold is M ≈ I × S(3), with I ⊂ IR and S(3) three-
dimensional. S(3) is endowed with a Riemannian structure of constant sec-
tional curvature κ, locally parametrized by spherical coordinates (r,Θ, φ).72

For Weyl geometric Robertson-Walker models behaviour and calculation
of cosmological redshift is very close to what is known from the standard

69(Kroupa 2010b, Kroupa e.a. 2010a, Sanders 2010, Hasinger/Komossa 2002, Cui 2011,
Schneider e.a. 2007, Tang/Zhang 2005).

70Some of them have been reviewed from a contemporary history view in (Kragh 2006,
Kragh 2009a, Kragh 2009b) and the (quasi) steady state approach in (Lepeltier 2005). Less
discussed are different kinds of static or neo-static approaches (Crawford 2011, Masreliez
2004, Scholz 2005a, Scholz 2009), or explorations of unconventional views on vacuum
energy like in (Fahr 2007). The number of publications which accept the present standard
cosmology in the observable part but develop alternatives to the “big bang” singularity
seems to be rising, among them (Penrose 2010, Steinhardt/Turok 2002, Bojowald 2009).

71Very selectively, (Smeenk 2005, Rugh 2009, Beisbart 2009).
72Here φ is the usual designation of an angle coordinate. Contextual reading disentangles

the dual meaning for φ we allow here. — For a survey of models with less symmetry
constraints see (Ellis/van Elst 1998), but consider the argumentation in (Beisbart 2009).
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approach. The energy of a photon describing a null-geodesic γ(τ) considered
by cosmological observers along trajectories of a cosmological time flow unit
vector field X(p), p ∈M , X = x′(τ), is given by E(τ) = g(γ′(τ), X(γ(τ))).73

Cosmological redshift is expressed by the ratio

z + 1 =
E(τo)

E(τ1)
=
g(γ′(τo), X(γ(τ0)))

g(γ′(τ1), X(γ(τ1)))
. (46)

As we are working with geodesics of weight −1, w(X) = −1, and w(g) = 2,
energy expressions for photons with regard to cosmological observers are
independent of scale gauge; so is cosmological redshift.

In the standard view the warp function a(τ) is considered as an expan-
sion of space with the cosmological time parameter τ . After an embedding of
Einstein gravity into the IWOD generalization this view is no longer manda-
tory.74 Even more, it does no longer remain convincing. If electroweak
coupling – or any other mechanism leading to an analogous scale gauge be-
haviour – is realistic, Robertson-Walker geometries are better considered in
Weyl gauge, i.e., scaled to constant scalar curvature in the Weylian general-
ization rather than in Riemann gauge. In consequence, a large part of what
appears as “space expansion” a(τ) in present cosmology, perhaps even all of
it, becomes encoded after rescaling to Weyl gauge in the scale connection ϕ.
Then the cosmological redshift seems no longer mainly due to expansion, but
to field theoretic effects expressed by the scale connection.

The counter argument that a quantum mechanical explanation is lacking
and a necessary prerequisite for accepting the explanation is self-defeating;
the explanation by space expansion does not rely on one either. Expansion
or scale connection, both are essentially (gravitational) field theoretic effects
and, in a scale covariant theory, even mutually interchangable.

6.2 A simple model class: Weyl universes

In Weyl geometric static geometries the whole cosmological redshift is due to
ϕ. Toy models of IWOD gravity leading to neo-static geometries have been
studied in (Scholz 2009). The balancing condition between matter and the
scalar field assumed there did not yet take the link to ew theory into account;
thus the dynamical assumptions of (Scholz 2009) differ from those discussed
here and could lead only to provisional results. The strong constraint for
the scalar field, established by the potential condition, changes the situation

73Cf. (Carroll 2004, 110, 116), for Weyl geometric generalizations, e.g., (Poulis/Salim
2011, Romero e.a. 2011).

74Every Riemannian model (M, g) with Lorentzian spacetimeM and metric g can easily
be considered as an integrable Weyl geometric model with Weyl metric [(g, 0)]. If the
dynamics is enhanced by a scalar field and scalar curvature of the model is 6= 0 the
extension is dynamically non-trivial.
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and implies a striking result with regard to dynamic equilibrium and even
stability.75

In the Robertson-Walker view these models assume a linear warp function
a(τ) = Hτ .76 Weyl gauge leads to a non-expanding spacetime, of course now
with a non-vanishing scale curvature which contains all the information of
the former warp function. After reparametrization of the timelike parameter
τ = H−1eHt, the Weylian metric is given by

ds2 = dt2 −
(

dr2

1− κ r2
+ r2(dΘ2 + r2 sin2 Θ dφ2)

)
= dt2 − dσ2

κ (47)

ϕ = (H, 0, 0, 0) .

These models have been called Weyl universes, in particular Einstein-Weyl
universes for κ > 0 (Scholz 2009). They are time homogeneous in a Weyl
geometric sense.77

The cosmological time flow remains static x(τ) = (τ, x̃) with x̃ ∈ S(3).
Coefficients of the Weyl-Levi-Civita connection are easily derived from the
classical case, in particular Γ0

00 = H. The parameter

ζ :=
κ

H2
(48)

characterizes Weyl universes up to isomorphism (Weyl geometric isometries).
The increment in cosmological redshift in Weyl universes is constant, and

thus
z + 1 = eHt (49)

or z + 1 = eHc
−1d for signals from a point of distance d on S(3) from the

observer.78 In Weyl gauge it is described by the time component of the scale
connection, ϕo = H.

Ricci curvature (independent of scale gauge) and scalar curvature in Weyl
gauge are79

Ric = 2(κ+H2)dσ2
κ , (50)

R = −6(κ+H2) . (51)
75Even so, the toy examples of (Scholz 2009) can be taken as indicative of how strong

the differences between Einstein gravity and IWOD gravity may be, even though on solar
system level they are practically negligible.

76Reparametrization of the time coordinate in Riemann gauge gives the picture of a
“scale expanding cosmos” (Masreliez) with exponential scale growth ds2 = e2HT (ds2−dσ2

κ).
H the Hubble parameter observed today, cf. fn (78).

77Time translation t 7→ t + ∆t goes in hand with scale transfer function l = eH∆t

according to equ. (5); compare the “scale expanding” cosmos of Masreliez, last footnote.
78More precisely, one could distinguish between the time dimensional Hubble constant

Ho ≈ 2.27 10−18 s−1 and its length dimensional version H1 = H0c
−1 ≈ 7.57 10−29 cm−1

with its inverse, the Hubble distance H−1
1 ≈ 4.28Mpc.

79Cf., e.g., (O’Neill 1983), or any other textbook about Robertson-Walker spacetimes.
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In Weyl gauge the left hand side of the generalized Einstein equation (16)
has timelike component 3(κ + H2) and spacelike entries (κ + H2)gii, i.e.
−(κ+H2)dσ2

κ, (i = 1, . . . , 3). That is familiar from classical static universe
models. The absolute value of negative pressure p gii is here |p| = κ + H2,
i.e., one third of the energy density 3(κ+H2). The only difference to classical
Einstein universes is marked by the H2 terms.

Classically static universes are stricken by tremendous problems, in fact
inconsistencies, with regard to their dynamics. It turned out impossible to
stabilize them by a cosmological vacuum energy term, or by substitutes.
That is completely different for the energy momentum of the scalar field
(26), (27), (28). Calculation of the scale covariant derivatives of |Φ|2 ∼ R =
−6(κ+H2) leads to80

Θ(II) = diag (6H2g00,−2H2g11,−2H2g22,−2H2g33) , (52)

and
Θ(I) =

3

2
(κ+H2)g (53)

for Weyl universes (26), (28). Comparison with (50, 51) shows that the
Einstein equation holds for exactly one value of spatial curvature,81

κo = 3H2 , i.e., ζo = 3 then Ro = −24H2. (54)

A heuristic consideration indicates that the Einstein-Weyl model with
ζ = 3 seems to be stable inside the parameter space of Robertson-Walker
spacetimes without matter. If space curvature varies (under the constraint
of constant spacelike curvature) to κ = κo+∆, both the energy density ρ and
the absolute value p of the negative pressure of the scalar field increase by
3
2∆. The equilibrium condition known from the classical case requires ρ = 3p
(Raychaudhury equation in the simplest case). For ∆ > 0, i.e., comparatively
“too small” radius of curvature, the negative pressure wins over contractive
energy density of the scalar field and spacelike geometry expands; for ∆ < 0
the dynamics works the other way round. This indicates that the scalar
field of IWOD gravity pushes spacetime on large scales towards an Einstein-
Weyl universe with parameter ζo = 3 and stabilizes it there. This heuristic
consideration is supported by numerical simulations.

We shall call this special case the stable Einstein-Weyl universe (vac-
uum case). Of course, more detailed investigations for the dynamical be-
haviour are necessary. It would be particularly interesting to see whether
the Einstein-Weyl universe, ζo = 3, is stable even under weaker symmetry

80Be aware that the scale covariant derivatives DiDi|Φ|2 6= 0 for i = 1, 2, 3 (wrong
calculation in (Scholz 2009).).

81κ = 3H2 corresponds to Λ = 6H2 with relative value ΩΛ = 2. Note that the
“dark matter” term Θ(II) has positive pressure, characterized by p

ρ
= 1

3
, and contributes

ΩΘ(II) = 2 to the relative energy density.
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conditions, perhaps even without any. That will be difficult to investigate;
but if so, it would give strong theoretical support for this model.82

The stabilization of the Einstein-Weyl universe needs no additional mat-
ter besides the energy momentum contribution of the scalar field. In fact,
the relative value of energy density in comparison with the critical density
ρcrit = 3H2

8πG is here Ωφ := Θ00/(3H
2) = 4. The present estimate for bary-

onic matter is just one percent of it, Ωbar ≈ 0.04. With regard to a stable
Einstein-Weyl universe, baryonic matter may impress only small perturba-
tions onto the symmetric spacetime solution, even if it is highly inhomoge-
nously distributed.83 If a non-negligible homogeneously distributed matter
component is added, stability seems to hold only for a matter model with
positive pressure pm = 1

3ρm (plasma?), not for “dust”.84

6.3 Theory ladenness of cosmological observations

Positive curvature for spatial folia and static geometry stand in harsh con-
trast to many features of the present standard model of cosmology. More-
over, observational evidence of the cosmic microwave background CMB and
from supernovae magnitude-luminosity characteristics, measured with such
impressing precision during the last decades, seem to outrule such a model.
At first glance all that seems to speak against an empirical relevance of the
transition/link between electroweak theory and cosmology and Weyl geo-
metric gravity. But we should be careful. If we want to judge the empirical
reliability of a new theoretical approach we have to avoid rash claims of
refutation on the basis of empirical results which have been evaluated and
interpreted in a theoretical framework differing in basic respects from the
new one. Theory-ladenness of the interpretation of empirical data is par-
ticularly strong in the realm of cosmology. Enlarging the symmetry of the
Lagrangian by scale invariance comes down to a drastic shift in the consti-
tutive framework for the formulation of physical laws. Judgement of such a
shift demands careful comparative considerations. That has to be kept in
mind in particular for the evaluation and conclusions drawn from the high
precision studies of the cosmic microwave background (Planck and WMAP
data).

In the Weyl geometric approach, cosmological redshift looks like a field
theoretic effect on the classical level; it is modelled by the (integrable) scale
connection rather than by “space expansion”. Perhaps a better physical un-
derstanding arises after quantization. The CMB could turn out to be a

82There seem to be certain analogies to Hamilton flow in the study of the Poincaré
conjecture. Could it be that the scalar field evolves the spatial folia toward the maximally
symmetric case?

83That agrees well with observations.
84Some authors assume the origin of the diffuse X-ray background in a thin intergalactic

plasma of high temperature, with estimations of Ωplasma ≈ 0.2 (Crawford 2011) or even
higher (Fischer 2007).
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quantum physical background equilibrium state of the Maxwell field excited
by stellar and quasar radiation, rather than a relic radiation.85 The correla-
tion of the tiny inhomogeneities in the temperature distribution with large
scale matter structures would be independent of the causal evolution postu-
lated in the present structure formation theory, supported by the assumption
of CDM. Likewise there seems to be no reason why the flatness conclusion
from CMB data should be stable against a correspoding paradigm change.

Supernovae data have to be reconsidered in the new framework, in partic-
ular with view on possible observation selection effects.86 Galaxy evolution
would look completely different, as no big bang origin would shape the over-
all picture. In particular Seyfert galaxies and quasars can be understood as
late developmental stages of mass accretion in massive galactic cores. Jets
emitted from them seem to redistribute matter recycled after high energy
cracking inside galactic cores. Structure formation would have to be recon-
sidered.87 Nuclear synthesis would no longer appear as “primordial” but
could take place even more in stars, on a much larger time scale than in
the recieved view, and in galactic cores, respectively quasars. The Lithium
6/7 riddle might dissolve as unspectacularly as indicated for the naturalness
problem of the Higgs mass (section 5.4).

Regenerative cycles of matter mediated by galactic cores, quasars and
their jets are excluded as long as cosmology is based on Einstein gravity by
the extraordinary role of its singularity structures (“black holes”). But these
have to be reconsidered in the Weyl gravity approach.

Because of the Weyl gauge condition, local clocks tick slower in regions
of strong gravity (large gR) also in comparison with Riemann gauge. The
resulting conformal rescaling demanded by the potential condition (20), Weyl
gauge (39), and their influence on the rate of spectral clocks (42) changes
the picture of the spacetime metric near singularities of the Riemann gauge
(and also in comparison to Einstein gravity). We cannot be sure that the
singularity structure is upheld. Conformal rescaling may change the whole
geometry, similar to the effect that an initial singularity may be due to a
“wrong” (Riemannian) scaling of Robertson-Walker geometry in the case of
Einstein-Weyl universes.

Much has to be done. But why should one head toward such an enterprise
of basic reconsideration of the cosmological overall picture? Only a few as-
tronomers or astrophysicists dare to tackle this task at the moment. Among
them, David Crawford has been investigating, for some time, how well dif-

85Already I.E. Segal argued that on an Einstein universe the quantized Maxwell field
will, under very general assumptions, build up an equilibrium radiation of perfect Planck
characteristic (Segal 1983).

86For a detailed argument that strong observation selection effects may come into the
play in the selection procedures of the SNIa data see (Crawford 2011, sec. 4.6); for a first
glance at supernovae data from the point of view of Einstein-Weyl universes (Scholz 2009).

87For a sketch of such a picture see (Fischer 2007) or (Crawford 2011).

35



ferent classes of observational cosmological evidence fits into the picture of
a comological model with static spherical spatial folia. The outcome is not
disappointing for this assumption (Crawford 2011). The choice between an
expanding space model or a (neo-)static one seems to be essentially deter-
mined by underlying (explicit or implicit) principles of gravity theory.88

Certain basic problems of the the standard picture are being discussed
in the present discourse on cosmology. There are different strategies to
overcome them. The most widely known approaches for explaining the
unexpected outer galaxy dynamics ascribe these effects to “dark matter”
(Sanders 2010). Less well known, but perhaps even more important, recent
observations of distribution and dynamics of dwarf galaxies indicate a basic
inconsistency with the structure formation theory of the standard approach
(Kroupa e.a. 2010a). Such diverging strategies seem a worthwhile object for
metatheoretical investigations in a pragmatic sense.

The concentration on new classes of observational evidence is often cru-
cial for the process of clarifying mutual vices and virtues of competing the-
ories. That is the reason why we want to have a short glance at quasar
distribution before we finish.

6.4 A geometrical explanation of quasar distribution?

On larger scales the evolution and distribution of quasars deliver already
plenty empirical evidence, not so well in agreement with the “old” picture.
Quasar data of the Sloan Digital Sky Survey (SDSS) the 2dF group and
others outweigh by far the supernovae observations in number, precision and
redshift range (Tang/Zhang 2005, Schneider e.a. 2007). A striking fact is
that there is no indication of evolution of metallicity in quasars or galaxies
on the timeline, i.e., in correlation to redshift.89

Even more striking is the distribution of quasars in dependence of red-
shift. It shows a distinctive slightly asymmetric bell shape with a soft peak
between z ≈ 0.9 and 1.6 and at first a rapid, then slackening, decrease after
z ≈ 2 (fig. 1).90 In standard cosmology the regular distribution curve is a

88Crawford assumes a peculiar dynamics of “curvature cosmology” which claims to re-
main in the framework of Einstein gravity. It seems doubtful that this conception can be
defended. But here we are mainly interested in the detailed investigation of observational
evidence in parts I, II of (Crawford 2011).

89The observation in (Hasinger/Komossa 2002) of a z ≈ 3.91 quasar with extremely high
metallicity (Fe/O ratio about 3) is, at the moment, not more than an extreme example
but already considered as irritating for the standard picture of star, galaxy, and quasar
evolution (Cui 2011).

90Best data come from the 2dF collaboration and the Sloan Digital Sky Survey
(Schneider e.a. 2007, Tang/Zhang 2005). Here we take the data of SDSS 5th data re-
lease; total number of objects 77429 (fig. 1 upper curve), SDSS corrections for selection
effects reduces the total number by half (Schneider e.a. 2007); the total number of the
corrected collective is 35892. The maximum of the corrected distribution is manifestly a
little above z ≈ 1; the authors give z = 1.48 as the median of the collection.
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Figure 1: Redshift distribution of quasars from SDSS, 5th data release,
width of redshift bins 0.05; upper curve raw data, lower curve corrected for
selection effects; source (Schneider e.a. 2007, Fig. 3).
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Figure 2: Redshift distribution of quasars from SDSS, 5th data release,
corrected for selection effects (zig-zag curve), in comparison with equally
distributed objects, volume increments over redshift bins of width 0.05, in
Einstein-Weyl universe ζ = 3 (dotted curve).
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riddle which calls for ad hoc explanations of quasar formative factors. From
our point of view, the distribution pattern would be easy to explain: It is
very close to the volume increments of the backward lightcone with rising
redshift in the stable Einstein-Weyl universe (fig. 2).91

The deviation of the SDSS number counts from the calculated curve of the
stable Einstein-Weyl universe consists of fluctuations and some remaining,
rather plausible, observational selection effects: a moderate excess of counts
below Z = 1 and a suppression of observed quasars above z ≈ 2. All in all,
the curves agree surprisingly well with the assumption of an equal volume
distribution of quasars in large averages in the stable Weyl universe.

The conjugate point on the spatial sphere is reached at z = eHπ/c −
1 = e

π√
3 − 1 ≈ 5.13 (r = 1√

κ
radius of the sphere). Interpreted in this

model, quasars and galaxies with higher redshift than 5.13 would be images
of objects “behind” the conjugate point and must have counterparts with
lower redshift on “this” side of the latter. For terrestrial observers the two
images are antipodal, up to the influence of gravitational deflection of the
sight rays. In principle, it should be possible with present observational
techniques to check the “prediction” of the Einstein-Weyl model of paired
antipodal objects for the highest redshift quasars and galaxies. The pairing
of redshift and magnitudes are easy to calculate. But gravitational deflection
of light disturbs the direction and local deviation from spherical symmetry
close to the conjugate point blurs the focussing of light rays and, with it,
affects magnitudes and redshift. Therefore an effective observational decision
on this question might be difficult to achieve.

At the moment such consequences have not yet been studied in sufficient
detail. Maybe they never will, unless some curiosity of experts in gravity the-
ory and in cosmology, both theoretical and observational, is directed towards
studying some of the more technical properties of the IWOD approach.

For the ‘metatheoretical’ point of view, it becomes apparent already here
and now, that critical properties of our present standard model of cosmol-
ogy are not as firmly anchored in empirical evidence as often claimed. They
are highly dependent on the interpretive framework of Riemannian geom-
etry which assumes a transcendental constitutive role for Einstein gravity.
Although we have very good reasons to trust this framework on closer, sur-
veyable cosmic scales (at least on the solar system level), it is not at all
clear whether we ought to trust its extrapolation to the gigantic scales far
above cluster level. The proposal of modified Newtonian dynamics (MOND)
for explaining galaxy rotation curves may be a sign that we cannot be sure,
in terms of high precision, of Einstein gravity even already at outer galaxy
level.92

91The maximum is reached around the equator of the spatial sphere. For κ = 3H2 the
equator corresponds to redshift zeq = eH

π
2

(
√

3H)−1

− 1 ≈ 1.47 (49).
92For other anomalous evidence see, e.g., the study of dwarf galaxies in (Kroupa e.a.
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7. Review of ‘transitions’

We have seen how Weyl geometry offers a well structured intermediate step
between the conformal and (projective) path structures of physics and a
fully metrical geometry (section 2). Riemannian geometry is only slightly
generalized structurally if the Weyl geometric scale connection is integrable.
Quantum physics gives convincing arguments to accept this constraint for
considerations far below the Planck scale (Audretsch/Gähler/Straumann,
section 2.3, and mass of the “Weyl boson”, section 4.2). As the Lagrangian
of elementary particle physics is invariant under point-dependent rescaling, a
scale invariant generalization of Einstein gravity is a natural, perhaps neces-
sary, intermediate step for bridging the gap between gravitation theory and
elementary particle fields. It does not seem unlikely that integrable Weyl
geometry may be of further help in the search for deeper interconnections
between gravity and quantum structures.

In the 1980s Jordan-Brans-Dicke theory was explored for similar reasons,
although in a different theoretical outlook and, up to now, without striking
success (Kaiser 2006, Kaiser 2007). A conceptual look at Jordan-Brans-Dicke
theory shows that the latter’s basic assumptions presuppose, usually with-
out being noticed, the basic structure of integrable Weyl geometry (section
3). From a metatheoretical standpoint it seems surprising that this has been
acknowledged explicitly only very recently (Quiros e.a. 2013). The Weyl
geometric view makes some of the underlying assumptions clearer and sup-
ports the arguments of those who propose to consider the Einstein frame as
the “physical” one (although this is an oblique way of posing the question).
Physicists often seem to withhold from such metatheoretical considerations
by declaring them as formal – and “thus” – idle games. Philosophers of
physics are of different opinion. That this game is not idle at all, can be
seen by looking at the transition from JBD theory to Omote-Utiyama-Dirac
gravity (WOD). WOD gravity has a Lagrangian close to JBD theory, but is
explicitly formulated in Weyl geometric terms (section 4). Historically, the
transition from JBD to WOD gravity took place in the 1970s; but only a
tiny minority of theoreticians in gravity and field theory contributed to it
from the 1980s and 1990s until the present.93

It may be that the mass factor of the scale connection (“Weyl field”) close
to Planck scale has suggested the belief that Weyl geometric gravity is an
empty generalization as far as physics is concerned. This conviction seems to
be widespread even among those physicists who have considered this line of
thought at all. We have shown that this is not the case. Although the scale
connection ϕ can play the role of a dynamical field in its own right only close

2010a); compare fn. 69.
93Of course other contributions could be mentioned. Perhaps most extensive, and not

yet mentioned here, are the contributions of N. Rosen and M. Israelit, cf. the provisional
survey in (Scholz 2011b).
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to the Planck scale – where it may be important for a transition to quantum
gravity structures – it is an important geometric device for studying the
dynamics of the interplay of the Weyl geometric scalar field with measuring
standards (scale gauges) on lower energy scales. It is therefore not negligible
even in the integrable version of Weyl-Omote gravity (IWOD) and closely
related to the scalar field φ which has to be considered as the new dynamical
entity in the integrable case and may represent a state function of a quantum
collective close to the Planck scale.

By conceptual reasons, IWOD does not need breaking of scale co- or in-
variance; it allows to introduce scale invariant observable magnitudes with
reference to any scale gauge of the scalar field (section 4.6). There are phys-
ical reasons, however, to assume such breaking if one takes the potential
condition for the scalar field’s ground state into account. A quartic poten-
tial of Mexican hat type arises here from the gravitational coupling of the
scalar field. Formally, it is so close to the potential condition of the Higgs
mechanism in electroweak theory that it invites us to consider an extension of
the Weyl geometric scalar field to the electroweak sector (section 5). We then
recover basic features of the so-called Higgs mechanism of electroweak the-
ory, but now without assuming an elementary field with an ‘ordinary’ mass
factor in the classical Lagrangian. From a metatheoretical point of view this
closeness allows to illucidate the usual narrative of "symmetry breaking” in
the electroweak regime. It seems natural to consider the possibility that
mass acquirement of weak bosons and elementary fermions comes about by
coupling to gravity via the scalar field. Weyl geometric gravity shows a way
of how that could happen (section 5.4). But of course we cannot judge, at
the moment, whether such a link indicated by IWOD is more than a seducive
song of the syrenes. In order to clarify this point it could be helpful to under-
stand the scalar field’s excitations under quantization. Perhaps the approach
to perturbative quantum field theory on curved spaces, developed in the last
few years by Holland, Wald, Fredenhagen and others, can be transferred to
the Weyl geometric context (Bär/Fredenhagen 2009).

From the point of view of the IWOD generalization of Einstein gravity
we have reasons to seriously reconsider our view of cosmology. The potential
condition established by the electroweak link of the scalar field breaks scale
symmetry in such a way that Weyl geometric scalar curvature is set to a
constant. That corresponds to an idea of Weyl formulated in 1918 (section
5.5). It forces us to have a new look at the Robertson-Walker models of
classical cosmology, re-adapted to the Weyl geometric context.

The consequences of such a shift cannot yet be spelled out in detail. Toy
models of constant scalar curvature and time homogeneity have been looked
at. One of them turns out to be preferred dynamically if the electroweak link
of the scalar field is taken into account. Then the Einstein-Weyl universe
with κ = 3H2 becomes a dynamically consistent vacuum solution. It seems
to be stabilized by the scalar field’s energy momentum (section 6.2). Cer-
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tain empirical data, in particular from quasar distribution and metallicity,
indicate that it would be premature to dismiss this model as counterfactual
(section 6.4).

The dark energy riddle changes character already at the quasi-classical
level by the metric proportional part of the energy momentum of the scalar
field Θ(I). A road to a deeper physical understanding may open if the link
between the Higgs field and the gravitational scalar field, sketched in section
5.4, can be corroborated. Even the question of dark matter might get a new
face, if the the gravitational effects described in these terms can be explained
by the part of the scalar field’s energy momentum Θ(II) not proportional to
the metric. At the moment this is only a speculation; an important open
question would be to study the quantitative behaviour of inhomogeneities of
Θ(II) around galaxies and clusters in the IWOD approach.

In the end, the question is whether a MOND-like phenomenology can
be recovered for constellations modelling galaxies by IWOD gravity. At the
moment it seems that the static non-homogeneous isotropic vacuum solutions
of IWOD reduce to the Schwarzschild-deSitter family of Einstein gravity
with constant scalar curvature (6= 0). If a Birkhoff-type theorem holds in
IWOD gravity, it would be the only one. A chance for recovering MOND
phenomenology may lie in the study of rotating solutions of the Newman-
Kerr type in the IWOD framework.94

Finally there is a fundamental argument in favour of the model. We
should not forget that a (neo-) static universe of the Einstein-Weyl type
would bring back energy conservation to cosmology.95 Einstein-Weyl uni-
verses have a group of automorphisms of type SO(4)× IR, inside the larger
group of (“gauge like”) diffeomorphisms as in Einstein general relativity. The
time homogeneity symmetry (IR,+) of the cosmological model would allow
to recover integral energy conservation for local inhomogeneities which agree
asymptotically with the cosmological model. Already this difference to the
expanding space view might induce physicists and philosophers alike to seri-
ously consider the advantages and problems of a paradigm shift from the ex-
panding view to the Einstein-Weyl framework, although many of the deeply
entrenched convictions of present cosmology had to be given up.

It is sure that the received view of cosmological redshift as an effect of
“space expansion” would have to be modified and had to include a strong
component from the Weylian scale connection (section 6.1). Rescaling of the
metric, in particular in regions of strong gravity (high Riemannian compo-
nent of scalar curvature), changes the effective measure of time and length

94This hint is due to G. Ellis.
95The expression “neo-static” is a reminder that the constant time component of the

scale connection ϕ = (H, 0, 0, 0) has certain important effects not present in the classical
static solution of the Einstein equation. Moroever, changing matter distribution gives an
overlay of time dependent deviations from the isotropic and homogeneous spaces of the
(idealized) model.
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so strongly that in this regime no immediate transfer of geometrical insight
from classical gravity to the new context is possible. It would no longer be
clear that cosmological geometry necessarily contains an initial singularity,
nor localized singularities even though the external dynamics might mimick
structures of the black hole type if considered in Einstein gravity.

Herbart – talking about metaphysics – described transitions between es-
tablished theories, which he called “different formative stages” of knowledge,
as revolutions which have to be traversed before research can generate con-
cepts necessary for a “distinguished enduring” state (Herbart 1825, 198, 199).
He also was well aware of the “manifold delusions (mannigfaltige Täuschun-
gen)” which our knowledge has to pass before such an enduring state can be
reached.96 It seems that also in cosmology we still may have to leave behind
“manifold delusions”, before we have a chance to arrive at an enduring pic-
ture of how the universe in the large and the foundations of physics may go
together.
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