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ABSTRACT 

A comparison has been made of the relationship between microstructure and microhardness 

developed by surface melting Nanosteel SHS 7170 Fe-Cr-B alloy powder onto a plain carbon 

steel surface. This powder was initially developed as a high velocity oxy fuel sprayed coating 

giving a strength ten times that of mild steel, and is particularly suitable for surface protection 

against wear and corrosion.  In this study, the alloy powder was injected into the laser melted 

surface, while a preplaced powder was melted using the gas tungsten arc welding (GTAW) 

technique. The laser track consisted of fine dendrites and needle-like microstructures which 

produced a maximum hardness value of over 800 HV, while the GTAW track produced a 

mixture of equiaxed and columnar grain microstructures with a maximum hardness value of 
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670 HV. The lower hardness values are considered to be associated with dilution and grain 

size.  

Keywords: Coating, Steel, Fe-Cr-B powder, Laser, GTAW torch, Microstructure, Hardness. 

 

1 INTRODUCTION 

Laser coating substrates such as aluminium, steels and titanium is known to improve the wear 

and corrosion resistance compared to the untreated substrate.1, 2 The  process generates a 

quality coated layer having minimal distortion and a small geometric dilution. But the 

technique involves a high cost of equipment and is relatively uneconomical due to the slow 

processing speed.3-5 For some applications, laser processing is unfavourable for total surface 

coating. An alternative, developed from gas tungsten arc welding (GTAW) has been found to 

be adequate for modifying the surface layer of the base metal, 6-10 but this method generates a 

large geometric dilution. Three comparisons between GTAW and laser coating techniques 

have been undertaken previously. Xu et al11 reported that following coating a Co based alloy 

powder onto a SUS403 stainless steel base metal, the dilutions for the diode laser cladded 

samples were 4 and 7%, using output powers of 500 and 600 W, respectively. On the other 

hand, the GTAW samples produced dilutions of 41 and 46% with heat inputs of 12~15 kJ cm-

1 (100 and 120 A). In other work, Kaul et al., 12 studying the microstructure of a 1.2 mm thick 

sheet of stabilized 17 wt-% Cr stainless steel, observed columnar grains growing from the 

resolidified melt front to meet the axial grains at the centerline after both GTAW and CO2 

laser melting. The microhardness values for both GTAW and laser processed samples ranged 

from 200 to 230 HV(100 g) and 245 to 270 HV(100 g), respectively. Using a 

40CrMnMo7(1.2311) tool steel as the base metal and filler wire, Vedani 13 found that the 
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hardened layer produced on a Nd-YAG laser melted sample was 300 µm in thickness, while 

it was 10 times deeper for the GTAW track. In two of these studies, stainless steel surfaces 

were modified either with or without adding Co based alloy powder, while in the third case, a 

tool steel substrate was used employing a tool steel powder.  

The Nanosteel SHS 7170 powder used in this work is a multicomponent alloy system with a 

high glass forming ability (GFA) and is known to be particularly suitable for surface 

protection against wear and corrosion.14, 15 The nanoscale microstructure of ~100 nm in 

diameter, possessed by the SHS 7170 gas atomized powder, is reported to provide a unique 

combination of high hardness and toughness, giving a strength ten times that of conventional 

steel.16 A very limited amount of work has been reported previously on the use of this alloy 

powder  which was developed  as a high velocity oxy fuel (HVOF) sprayed coating.17-19  

The motivation for this work was to explore the suitability and understand the relationships 

between microstructure and microhardness in the coatings of the Fe-Cr-B alloy powder for 

use in surface engineering a mild steel substrate using processes other than HVOF. Two 

techniques were compared, each with two sets of conditions: (a) melting preplaced SHS 7170 

alloy powder on a steel surface using a conventional GTAW torch, and (b) processing by 

powder injection into a laser melted steel surface. The melt features of the Fe-Cr-B alloy 

coating produced on plain carbon steel using both laser and GTAW surface engineering 

techniques were compared in part I, 20 while in this paper (part II), relationships between the 

microstructure and hardness development in the re-solidified tracks are considered. 

 

2  EXPERIMENTAL 

A coaxial YLR-2000 ytterbium fiber laser with a wavelength at 1070 nm and a single phase 

GTAW machine type TIG165 were used to produce the coated samples under the processing 
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conditions, which are given in Tables 1 and 2, respectively. SHS 7170 gas atomized Fe-Cr-B 

alloy powder was used as the reinforcing material to produce single tracks on the mild steel 

(BS08015) substrate surface. The full chemical composition provided by the manufacturer is 

18-22Cr, 3.9-7Mo, 5-6.5W, 2-4.9Mn, 0.3-1.9Si, 3-4B, and <0.4C (all in wt-%) with a 

nominal size in the range of 15 to 53 ȝm.  

Metallographic specimens from the track vertical cross sections were prepared using a 

standard technique and polished cross-sections were etched with acidic ferric chloride 

solution (25 g of FeCl3, 25 mL of HCl and 100 mL of distilled water). Further details of the 

experiment work and substrate are described in part I. 20  

 A JEOL JSM 5600 scanning electron microscope was used to study the microstructure and a 

Wilson Wolpert microhardness testing machine was used to determine the hardness of the 

samples at 200 gf with 10 s delay. An average of three readings was used. The error in the 

microhardness data was ±5 HV.  The heat inputs for the laser and GTAW processing were 

calculated using standard expressions from literature; 19, 22, 23 for laser processing, E = P/sD, 

where P is the laser power, s scanning speed or the velocity of the work-piece and D is the 

diameter of the laser spot: for GTAW processing, E = ȘVI/s, where V is voltage, I is current, s 

is scanning speed and Ș is efficiency of energy absorption, which was 48%. Details of the 

processing conditions, calculated energy inputs and dilutions for the melted tracks are given 

in Tables 1 and 2.  It is to be noted that the coupling factor of laser beam is influenced by the 

substrate material and any powder injected during melting. Because of uncertainty this factor 

has not been considered here in calculating the laser energy. 

 

3 RESULTS AND DISCUSSION 

3.1 Microstructure 
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A re-solidified layer formed after the powder, which had melted, alloyed with the molten 

substrate layer. The melt cross-sections of both laser processed tracks and GTAW tracks were 

hemispherical in shape, as described in part I 20, and have also been observed previously. 24-27 

The variation in geometric dilution was reflected in the development of the microstructure, 

composition and hardness in the coatings produced by the two surface melting techniques.  

Following laser processing, the geometric dilution is relatively low, as seen in Table 1, while 

after melting using the GTAW processing technique, is very high because of the high heat 

input, Table 2.  

The microstructure at the central region of the 125 J mm-1 laser processed track consisted of 

equiaxed dendrites, Fig. 1a with traces of all elements of the alloy powder present in the EDX 

spectrum (Fig. 1b). Also, these processing conditions produced columnar dendrites, seen in 

Fig. 1c. In the coating processed by the laser with 188 J mm-1 heat input, the microstructure 

consisted of needle-like dendrites at the central region of the melt pool, Fig. 2a. The EDX 

analysis from this region in Fig. 2b shows a higher chromium concentration compared to that 

of Fig. 1b, suggesting a decreased dilution under this processing condition. At the re-

solidified melt front, an interdendritic microstructure between the needle- like dendrites and 

columnar dendrites was observed, Fig. 2c. This suggests that the columnar dendrites have 

grown from the melt matrix interface against the direction of heat flow, while needle-like 

dendrites grew towards the heat source. The columnar dendrites in Fig. 2c are very small 

compared to those in the track processed at 188 J mm-1, Fig. 1c.  

No martensitic microstructures were observed in the melt pool of any of the laser tracks. 

However, the HAZs of both laser and GTAW tracks consisted mainly of martensitic 

microstructures. 
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The faster specimen speed associated with the 125 J mm-1 energy, Table 1, which allowed 

only a short time for powder injection, resulted in a smaller powder volume delivered into the 

melt. This generated a having a high fluidity, which took a long time to solidify. The result 

was the formation of with large columnar dendrites at the melt front and an axial 

microstructure ahead of this columnar structure (Fig. 1). The higher volume of injected 

powder associated with the 188 J mm-1 track was believed to have produced a lower 

temperature melt than that using 125 J mm-1. Upon fast freezing, this resulted in smaller 

dendrites (Fig. 2), which were about 40 µm long, compared to 100 µm long dendrites after 

the 125 J mm-1 processing (Fig. 1). A greater dimensional dilution in the 125 J/mm track 

(Table 1) was the overwhelming consequence of the reduction of elements, particularly of 

chromium in Fig. 1b compared to the low speed laser track produced at 188 J/mm (Fig. 2b). 

The microstructures in Figs. 1c and 2c show a planar crystallization at the interface, which 

means the formation of a good metallurgical bonding between the coating and the base metal. 

From the interface to the centre of the melt pool, cellular and dendritic solidification occurred 

in an opposite direction to the heat flux. Planar crystallization has been reported at the 

interface; subsequently dendrites in the coated layer grow epitaxially along the direction of 

heat flow towards the center of the re-solidified melt pool. 28  

 A consideration of the GTAW tracks, which were processed at 1008 and 1296 J mm-1 energy 

inputs, showed that the microstructures consisted of columnar grains at the melt front and 

equiaxed grains in the central region of the melt; the columnar grains grew from the melt 

interface. Compared to grains of the 1008 J mm-1 track seen in Fig. 3, the 1296 J mm-1 track 

produced coarser grains, Fig. 4. The average width and length of the columnar grains were 9 

and 28 µm, for the 1008 J mm-1 track and 14 and 43 µm, for the 1296 J mm-1 track, 

respectively. By comparison, the diameters of the equiaxed grains were 13 and 18 µm for the 
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1008 and 1296 J mm-1 tracks, respectively. Variations in the melt temperature and 

solidification rate are considered to be responsible for the generation of the coating 

microstructures having grains of different dimensions.  

Gas tungsten arc melting processing induced a greater dimensional dilution and melting of 

the Fe-Cr-B powder than laser processing. This created a vigorous mixing and hence the 

concentration of alloying elements was significantly lower (Figs. 3b and 4b) than those of the 

laser tracks (Figs. 1b and 2b). The cooling rate, which was higher in the laser tracks, has a 

profound effect on the melt composition and microstructure.  

With GTAW processing, it is considered that a faster cooling rate occurred following an 

energy input of 1008 J mm-1 compared to the 1296 J mm-1. This resulted in less time for the 

elemental segregation and solidification, leading to the formation of a small grain 

microstructure as seen in Fig. 3. The longer solidification period after the 1296 J mm-1 

processing, was associated with larger grains, Fig. 4. A similar explanation concerning the 

variation in grain size of the microstructure has been reported previously.11  

 

3.2 Microhardness  

The hardness depth profiles of the melt cross- sections presented in Fig. 5 show greater 

hardness values in laser tracks than those in GTAW tracks. The maximum hardness of the 

laser track processed at 125 J mm-1 is 790 HV compared to 880 HV in the 188 J mm-1 track. 

The higher hardness found in the 188 J mm-1 track is considered to be related to the smaller 

size of dendrites as seen in Fig. 1a. The greater volume of powder delivery in the higher 

energy 188 J mm-1 track produced a lower temperature melt which resulted in a faster cooling 

and also a lower dimensional dilution of 41%, compared to that in the 125 J mm-1 track 

(Table 1). The high hardness developed in the coating layer was retained to a depth of 560 

µm and then reduced sharply to the base hardness of about 180 HV. A thin layer with a 
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hardness about 430 HV followed the melt layer for all tracks, which is the HAZ. A similar 

hardness development in laser tracks was reported by others.29
 

In the GTAW tracks, the average hardness values ranged from 588 HV for 1296 J mm-1 

processing to 670 HV at 1008 J mm-1, retained to respective melt depths of 1.80 mm and 1.30 

mm. The lower hardness (588 HV) of the 1296 J mm-1 GTAW track may be related to its 

coarser microstructure, as seen in Fig. 4, compared to finer microstructure of the 1008 J mm-1 

track with higher hardness values (Fig. 3). Compared to the base metal hardness of 180 HV, 

that in the laser tracks was 4 to 5 times greater, while that in the GTAW tracks increased by 3 

to 4 times. It is to be noted that according to the manufacturer’s specification, the Nanosteel 

powder hardness falls within the range 900 to 1100 HV. Therefore, the maximum hardness of 

the coatings produced in this work are lower than the hardness of the Nanosteel powder, and 

dimensional dilution is considered to be responsible for development of these lower hardness 

regions. The 1008 J mm-1 GTAW track with 87% dilution (Table 2) has hardness of 670 HV, 

which reduced to 588 HV when dilution was 95% after melting at 1296 J mm-1. Similarly the 

laser track with 41% dilution processed with an energy input of 188 J mm-1 had a maximum 

hardness of 880 HV, which decreased to 790 HV when dilution increased to 63% after 

melting at 125 J mm-1 energy input. The results of the present investigation are in agreement 

with the work of Colaco et al.29  The hardness of coating layer was affected primarily by 

dilution and secondly by microstructure, especially that  associated with  the size of dendrites. 

Li et al.30 also observed that the hardness values of coatings are primarily affected by the 

dimensional dilution followed by dendrite structures. 

 

4 CONCLUSIONS 
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The investigation on microstructure and hardness of Fe-Cr-B powder coatings on plain 

carbon steel processed by laser and GTAW surface engineering techniques revealed that:  

 The microstructure of the laser tracks consisted mainly of dendrites. The 125 J mm-1 track 

produced columnar and equiaxed dendritic microstructure, while the 188 J mm-1 track had a 

more needle-like microstructure. The microstructure of the GTAW tracks consisted of 

columnar grains at the melt front and axial grains at the melt center; the grains were larger 

with the higher energy input.  

 Compared with the base metal hardness of 180 HV, the maximum hardness developed in the 

laser tracks was 4 to 5 times greater, but only 3 to 4 times more in the GTAW tracks. 

Compared to the 188 J mm-1 laser track, the hardness was lower in the 125 J mm-1 track, 

while a higher hardness was achieved by the low energy melting (1008 J mm-1) in GTAW 

tracks. Large geometric dilution is considered to be partially responsible for the reduced 

hardness development in both laser and GTAW processing. 

 The processing conditions for both laser and GTAW techniques require optimization to 

achieve the maximum hardness levels attainable using Nanosteel SHS 7170 Fe-Cr-B alloy 

powder. 
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Table 1: Laser processing conditions. 

Sample 1 Heat input: 125 J mm
-1

; Speed: 600 mm min
-1

 

Dilution: 63% 

 Sample 2 Heat input: 188 J mm
-1

; Speed: 400 mm min
-1

  

Dilution: 41% 

Power (Output power) 

Laser waveform 

Power feed nozzle angle 

Shielding gas (Argon) 

Offset distance 

Spot size 

Powder feed rate/Blown 

Carrier gas 

Etching solution 

1200 W 

1070 nm 

0O  

10 L min-1 

7.24 mm 

0.96 mm 

6 g min-1 

10 L min-1 

HCl+HNO3+Glycerol at 1:3:3 
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Table 2: Gas tungsten arc welding processing conditions. 

Sample 3 Heat input: 1008 J mm
-1

; Current: 70 A  

Dilution: 87% 

Sample 4 Heat input: 1296 J mm
-1

; Current: 90 A  

Dilution: 95% 

Voltage 

Travelling speed 

Powder application 

Powder amount 

Shielding gas (Argon) 

GTAW electrode 

Offset distance 

Etching solution 

30 V 

1 mm s-1 

Preplaced using PVA binder 

0.5 mg mm-2 

20 L min-1 

Ø2.4 mm thoriated tungsten 

1 mm 

Nital 
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List of Figure Captions: 

 

 

 Fig. 1: SEM microstructures of the 125 J mm-1 laser track showing (a) equiaxed 

dendrite at the center region, (b) EDX traces from the centre region of the melt pool 

and (c) columnar dendrites grown from the melt front. 

 

 Fig. 2: SEM microstructures of the 188 J mm-1 laser track showing (a) needle like 

dendrite at the center region, (b) EDX traces from the centre region of the melt pool 

and (c) a variety of dendrites at the melt front. 

 

 Fig. 3: SEM microstructures of the 1008 J mm-1 GTAW track showing (a) fine grain 

lamellar structure at the center region, (b) EDX traces from the centre region of the 

melt pool and (c) columnar grains at the melt front. 

 

 Fig. 4: SEM microstructures of the 1296 J mm-1 GTAW track showing (a) coarse 

grain lamellar structure at the center region, (b) EDX traces from the centre region of 

the melt pool and (c) columnar grains at the melt front. 

 

 Fig. 5: Coated track hardness values for different processing conditions and depths. 
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a b 

 

c 

 

Fig. 1: SEM microstructures of the 125 J mm-1 

laser track showing (a) equiaxed dendrite at the 

center region, (b) EDX traces from the centre 

region of the melt pool and (c) columnar 

dendrites grown from the melt front. 
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a 

     b 

c 

 
Fig. 2: SEM microstructures of the 188 J mm-1 

laser track showing (a) needle like dendrite at 

the center region, (b) EDX traces from the 

centre region of the melt pool and (c) a variety 

of dendrites at the melt front. 
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a 
b 

 

c 

 

Fig. 3: SEM microstructures of the 1008 J mm-1 

GTAW track showing (a) fine grain lamellar 

structure at the center region, (b) EDX traces 

from the centre region of the melt pool and (c) 

columnar grains at the melt front. 
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Fig. 4: SEM microstructures of the 1296 J mm-1 

GTAW track showing (a) coarse grain lamellar 

structure at the center region, (b) EDX traces 

from the centre region of the melt pool and (c) 

columnar grains at the melt front. 
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Fig. 5: Coated track hardness values at different processing conditions and depths. 
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