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IAA-AAS-DyCoSS2-14 -01-03

SELF-ORGANISING LOW EARTH ORBIT CONSTELLATIONS FOR
EARTH OBSERVATION

Garrie S. Mushet˚and Colin R. McInnes:

This paper presents a novel method of manipulating the spatial pattern of a frac-
tionated micro-satellite constellation in Low Earth Orbit. The method developed
allows satellites to manipulate the longitudinal position of their ground-tracks over
the Earth’s surface, such that they pass over specified targets. This is achieved
firstly by pairing satellites on the constellation to the targets on the Earth’s sur-
face, and then by developing an artificial potential field controller to define the
thrust commands which move the satellites into the appropriate orbital slots to
converge upon their targets. The latter is achieved using Coupled Selection Equa-
tions - a dynamical systems approach to combinatorial optimisation.

INTRODUCTION

To date, most satellite constellation applications have involved static constellations where satel-
lites on common orbits maintain fixed relative positions, including Galileo, Globalstar, and the GPS
constellations.1, 2, 3 As a result, the key goal of traditional constellation design has been to minimise
the number of satellites with respect to mission coverage requirements.4, 5

However, recent developments in low-cost spacecraft technologies, miniaturisation and mass-
production, are widening access to space, and are predicted to give rise to future deployments of
much larger satellite constellations than those which have been traditionally implemented.6, 7 Such
constellations offer many operational advantages over single-satellite platforms. For example, con-
stellation reliability is increased, as the failure of a number of agents does not comrpomise the
constellation as a whole. Additionally, since satellite demand is not uniformly distributed across
the Earth’s surface in most constellation applications, a self-organising micro-satellite constella-
tion which allocates resources to match demand could offer a more efficient alternative to current
constellations which provide static coverage irrespective of demand.

To enable such constellations, a new paradigm in satellite control must be realised, as the tradi-
tional approach of satellite constellation control, in which ground operators design and command
station-keeping manoeuvres does not scale effectively to applications in which the number of space-
craft extends into the hundreds or even thousands. In addition, current operations only allow for
small manoeuvres to maintain satellite positioning. For lower operational costs, faster response
times, and improvements in the flexibility of the constellation, on-board autonomous control and
decision-making protocols are likely.

There has been much work in the literature on the use of autonomous constellation control, but
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this has mainly been for small station-keeping manoeuvres noted above, and not for complete re-
configuration of a small satellite constellation.8, 9, 10, 11, 12, 13, 14

This raises a unique set of engineering challenges. The use of resource-limited micro-satellites
on such a constellation limits their individual operational capability. For best results, it is likely that
the satellites could be fractionated - i.e. the constellation would consist of heterogeneous satellites
with specific capabilities, which must collaborate to achieve mission goals. In addition, on-board
computation must be performed across the many members of the constellation due to the limited
computing performance of each agent, and results effectively communicated throughout the con-
stellation. There is growing support in the literature for effective distributed/parallel computing
capabilities amongst small satellite constellation members.15, 16, 17

This paper presents a novel solution to the problem of autonomous task allocation and reconfig-
uration / manoeuvring for a self-organising micro-satellite constellation in Low Earth Orbit. The
method allows satellites, which are placed on Low Earth Orbits with repeat ground tracks, to shift
their ground tracks such that they pass over targets on the Earth’s surface to which they are assigned.
This is achieved using Coupled Selection Equations - a dynamical systems approach to combinato-
rial optimisation whose solution tends asymptotically to a Boolean matrix describing the pairings
of satellites and targets which solves the relevant assignment problem.18 Satellite manoeuvres are
actuated by low thrust propulsion, and thrust commands are generated by an artificial potential field
controller which incorporates the Coupled Selection Equation output.

The remainder of this paper is organised as follows. The next section introduces the constellation
model used, which consists of two polar low Earth orbital planes containing Earth imaging satellites,
where the satellites on each image different wavelengths. The relevant dynamics associated with
constellation ground tracks are investigated. In the section which follows, the task assignment
problem relevant to the constellation design is introduced, and Coupled Selection Equations are
introduced as a solution to the assignment problem. The artificial potential field controller is then
derived in the penultimate technical section. Results from a demonstration simulation are then given
and discussed. Finally, extensions of the method are discussed, and conclusions are given.

CONSTELLATION DESIGN AND GROUND TRACK DYNAMICS

In this paper, a constellation is designed with two circular orbits inclined at an angle of 60˝ to
the equatorial plane, with the planes separated by right ascension of the ascending nodes, such that
∆Ω “ 180˝.

The nominal semi-major axis, anominal, is set such that the satellites have a repeat groundtrack,
with an orbital period set in a 16:1 ratio with the Earth’s rotational period, i.e. anominal “ 6, 640 km.

On each orbit, N satellite members are initially azimuthally equispaced, as described by Equa-
tion (1), and depicted in Figure 1.

ai0 “ anominal

fi0 “
2πpi´ 1q

N

,

/

/

.

/

/

-

pi “ 1, . . . , Nq (1)

where f is the true anomaly of the satellites.

In addition, the constellation will be fractioned such that the satellites on one orbit are of one
type, and the satellites on the other are of another type. In this paper, an Earth observation mission
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Figure 1. Depiction of satellite constellation design.

application is investigated in which, for example, the satellites on one orbit image at a specific
wavelength, whilst the others image in a separate wavelength, enabling multi-spectral imaging.

The trajectories of each satellite are propagated according to the Gaussian form of the variation
of Keplerian elements given in Equations (2)-(7).
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(7)

where a is the semi-major axis, e is the eccentricity, i is the inclination, ω is the argument of perigee,
Ω is the right ascension of the ascending node, M is the mean anomaly, v is the orbital speed, f is
the true anomaly, r is the orbital radius, h is the specific angular momentum, b is the semi-minor
axis, p is the semi-parameter, µ is the standard gravitational parameter of Earth, and at, an and ah
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are the spacecraft accelerations in the directions tangential and normal to the velocity vector, and in
the out-of-plane direction, respectively.

It is assumed that the spacecraft only have the ability to thrust in the tangential direction, that the
satellite orbits remain quasi-circular throughout the low-thrust manoeuvres, and that there will be
no out-of-plane motion. Orbit precession due to J2 is ignored in this initial study.

Applying these assumptions, the equations of motion simplify to those given in Equations (8)-
(13)

9a “ 2
b

a3

µ at (8)

9e “ 0 (9)
9i “ 0 (10)

9ω “ 0 (11)
9Ω “ 0 (12)
9f “

b

µ
a3

(13)

In order to enable tasking of each satellite, the orbit kinematics can be used to define the ground
tracks. The position vector for a satellite on a circular orbit in the PQW reference frame, in which
the origin lies at the Earth’s centre, P̂ points to the orbit perigee, Q̂ points out of the orbit plane,
and Q̂ completed a right-handed coordinate system, is given in Equation (14).

rPQW “ rr cospfq, r sinpfq, 0sT (14)

This can be transformed to the Earth Centred Earth Fixed (ECEF) reference frame, as shown
in Figure 2 in which the origin again lies at the centre of the Earth, but with the X-axis pointing
along the Greenwich meridian, the X-axis pointing to the North pole, and the Y -axis completing a
right-handed coordinate system, via a series of matrix tranformations as given in Equation (15)˚.

rECEF “ R3pθqR3pωqR1piqR3pΩqrPQW (15)

where θ is the Greenwich sidereal hour angle.

Taking the arbitrary choice of ω “ 0 for the circular orbits, this results in Equation (16).:

rECEF “ r

¨

˝

cpfqcpΩqcpθq ´ spfqspΩqcpθq ´ cpfqspΩqcpiqspθq ´ spfqcpΩqcpiqspθq
cpfqcpΩqspθq ´ spfqspΩqspθq ` cpfqspΩqcpiqcpθq ` spfqcpΩqcpiqcpθq

cpfqspΩqspiq ` spfqcpΩqspiq

˛

‚ (16)

The elements of the position vector in the ECEF reference frame can be used to calculate the
longitude, λ, and latitude, φ, of the sub-satellite point, providing a trace of the satellite ground track
over its orbit, as given by Equations (17)-(18).

tpλq “
ry
rx
“

cpfqcpΩqspθq ´ spfqspΩqspθq ` cpfqspΩqcpiqcpθq ` spfqcpΩqcpiqcpθq
cpfqcpΩqcpθq ´ spfqspΩqcpθq ´ cpfqspΩqcpiqspθq ´ spfqcpΩqcpiqspθq

(17)

˚Rotation matrices given in Appendix.
:sinpψq, cospψq and tanpψq are shortened to spψq, cpψq and tpψq from this point onwards due to some lengthy

equations.
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Figure 2. Visualisation of the relationship between the PQW reference frame, and
the ECEF reference frame.

spφq “
rz
r
“ spiqspf ` Ωq (18)

Finally, since θ “ ωCt ` θ0, where ωC is the earth’s rotational speed and t is the time variable,
and f “ 9ft ` f0, θ can be substituted for θ “ ηpf ´ f0q ` θ0, where η is the ratio of the satellite
orbital period to the period of the Earth’s rotation (in this paper η “ 1{16), to make f the only
independent variable of the longitude and latitude equations as in Equations (19)-(20).

tpλq “
ˆ

cpfqcpΩqspηpf ´ f0q ` θ0q ´ spfqspΩqspηpf ´ f0q ` θ0q`

cpfqspΩqcpiqcpηpf ´ f0q ` θ0q ` spfqcpΩqcpiqcpηpf ´ f0q ` θ0q

˙

{

ˆ

cpfqcpΩqcpηpf ´ f0q ` θ0q ´ spfqspΩqcpηpf ´ f0q ` θ0q´

cpfqspΩqcpiqspηpf ´ f0q ` θ0q ´ spfqcpΩqcpiqspηpf ´ f0q ` θ0q

˙

(19)

spφq “ spiqspf ` Ωq (20)

In this paper, the aim is to shift the satellite ground tracks of assigned satellites in longitude,
such that the ground track passes over specified targets. This is achieved by moving the satellite to
different positions on its orbit. The arc of true anomaly by which the satellite must shift, ∆f , is
calculated using the equations for latitude and longitude.

Consider two satellites on the same circular orbit, but shifted in true anomaly, hence Ω1 “ Ω2 “

Ω, i1 “ i2 “ i, and f1 “ f2´∆f . Now, if we consider the latitude equation for the second satellite
at time t “ t0 “ 0, and assuming that θ0 “ 0, it can be shown that:

tpλ2p0qq “ cpiq
ˆ

spΩqcp∆fq ` cpΩqsp∆fq
cpΩqcp∆fq ´ spΩqsp∆fq

˙

(21)
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Now, we consider the first satellite at a time t “ t0`∆t “ ∆f
9f

, i.e. after the satellite has traversed
∆f to arrive at the same latitude where satellite 2 was at t “ 0, it can be shown that the longitude
of satellite 1 is given by:

t pλ1p∆tqq “

ˆ

cpΩqc p∆fq s pη∆fq ´ spΩqs p∆fq s pη∆fq`

spΩqcpiqc p∆fq c pη∆fq ` cpΩqcpiqs p∆fq c pη∆fq

˙

{

ˆ

cpΩqc p∆fq c pη∆fq ´ spΩqs p∆fq c pη∆fq´

spΩqcpiqc p∆fq s pη∆fq ´ cpiqcpΩqs p∆fq s pη∆fq

˙

(22)

The longitudinal shift, ∆λ, is then given by subtracting the arctangent of Equation (22) from the
arctangent of Equation (21), as given in Equation (23).

∆λ “ λ2p0q ´ λ1p∆tq (23)

By applying the trigonometric identities in Equations (24)-(26), it can be shown that Equa-
tion (23) simplfies to Equation (27).

spη∆fq “

η
ÿ

k“0

ˆ

η

k

˙

ckp∆fqsη´kp∆fqs
ˆ

1

2
pη ´ kqπ

˙

(24)

cpη∆fq “

η
ÿ

k“0

ˆ

η

k

˙

ckp∆fqsη´kp∆fqc
ˆ

1

2
pη ´ kqπ

˙

(25)

t´1pαq ´ t´1pβq “ t´1

ˆ

α´ β

1` αβ

˙

(26)

So that
∆λ “ ´η∆f (27)

Hence, the shift in longitude of the ground track is dependent only on the change in orbital
position, and the ratio of the orbital period to the period of Earth’s rotation. For example, for a
period ratio of 16, a 10˝ Westward longitudinal shift requires the satellite to move to an orbital slot
160˝ ahead of its nominal position.

The required ∆λ for any satellite to converge upon a target of known latitude and longitude
to which it is assigned is calculated using Equations (19)-(20). First Equation (20) is solved for f
given φ “ φtarget. Solutions in f are then passed to Equation (19) to calculate the satellite longitudes,
λsatellite, at those positions. The required longitudinal shifts for each f solution is then calculated
according to Equation (28).

∆λ “ λsatellite ´ λtarget (28)

The smallest ∆λ is found, and passed to Equation (27) to calculate the required shift in orbital
position, ∆f , which is actuated using the artificial potential field controller described later in the
paper.

The problem of assigning satellites to targets will now be considered.
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TASK ASSIGNMENT AND COUPLED SELECTION EQUATIONS

The problem of task allocation can be stated, in the context of this paper, as the problem of
assignment pairs of satellites to targets on the Earth’s surface, subject to some constraint.

In the case of a fractionated/disaggregated satellite constellation, where multiple types of satellite
must be allocated to each target, this problem statement is best modelled mathematically by the axial
three-index assignment problem.18, 19 For a constellation of two orbital planes and Ntgt targets on
the Earth’s surface, where the number of satellites on the first and second plane are given by Nsat1
and Nsat2 respectively, this is stated as accordng to Eqs. (29) - (32).

minimise
c

c “
ÿ

i,j,k

CijkXijk (29)

subject to
ÿ

i

Xijk “ 1, @pj, kq P Ntgt ˆN1 (30)

ÿ

j

Xijk “ 1, @pi, kq P Ntgt ˆN2 (31)

ÿ

k

Xijk “ 1, @pi, jq P N1 ˆN2 (32)

Here, N1, N2, and Ntgt are the numbers of satellites of type 1 (on orbit 1), type 2 (on orbit 2) and
of targets, respectively. Then c is the total cost of the assignments made, Cijk is the cost associated
with pairing satellites j and k to target i, and Xijk is the Boolean variable which describes whether
or not the assignment is to be made, as according to Eq. (33).

Xijk “

"

1 if satellites j & k are to visit target i
0 otherwise

(33)

The constraints described by Equations (30)-(32) represent the requirement that each pair of
satellites can only be assigned to one target, and each target can only be assigned to one pair of
satellites. As a result, X “ rXijks is a permutation matrix. In most micro-satellite applications,
and in the mission scenario considered in this paper, it is desirable that multiple pairs of satellites be
assigned to each target to increase the quality of service delivered by the constellation. To achieve
this, targets are represented multiple times within the assignment problem depending on the number
of imagers required.

Coupled Selection Equations are proposed as an elegant and efficient method of solving this
assignment problem.18 A selection equation is a dynamical system in which the modes of the
system are matched against one another in a competition in which only one mode will win, while
all other modes vanish, as depicted an example time evolution of the one-dimensional Coupled
Selection Equation shown in Fig. 3, where ξ represents the coupled selection variables, in this case
for i “ 1, 2, ...5.

In such a one-dimensional case, and in the most basic problems, this behaviour may seem trivial.
However, in more complex situations and in higher dimensions, the coupled selection equations
provide efficient solutions in the presence of complex interactions between the modes.

Additionally, coupled selection equations can be described as gradient flows with asymptotically
stable equilibria. As a result, a simple first order Euler method integrator is sufficient for numeri-
cally propagating the equations, and convergence is usually reached within just a few hundred time
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Figure 3. Typical time evolution of coupled selection equations for 5 competing modes, i “ 1, 2, ..., 5.

steps. This is beneficial for implementation on a fractionated micro-satellite constellation, as the
computing demand on the constellation would not be significant.

Due to the tendency for the highest initial values to persist in the coupled selection equation
evolution, the assignment problem must be transformed to a maximisation problem rather than a
minimisation problem. This is achieved simply by applying a linear transform to the costs to convert
them to winnings, which are equivalent quantities to be maximised, as described in Equation (34).

Wijk “ ´γCijk ` δ, γ ą 0, γ, δ P R@pi, j, kq P Ntgt ˆNsat1 ˆNsat2 (34)

In this particular case, the three-index Coupled Selection Equation is best suited to solve the axial
three-index assignment problem. This equation is given in Eq. (35).

9ξijk “ ξijk

¨

˝1` p3β ´ 1q ξ2
ijk ´ β

¨

˝

ÿ

i1

ξ2
i1jk `

ÿ

j1

ξ2
ij1k `

ÿ

k1

ξ2
ijk1

˛

‚

˛

‚ (35)

where ξijk is the coupled selection variable describing the strength of the connection between target
i and satellites j and k.

The coupled selection variables are initialised with the winnings associated with each possible
pairing, and their converged solution after integration provides the Boolean matrix which solves the
assignment problem. The coupled selection equations restrict the values of ξijk to the interval [0,1].
Hence, in the linear transformation described in Equation (34), γ “ pmaxpCqq´1 and δ “ 1 so as
to normalise the initial coupled selection variables to the required range.

An example of the evolution of the three-index coupled selection equation is shown in Fig. 4, in
a case where 3 satellites of type 1 and 3 satellites of type 2 must be allocated to 3 targets on the
Earth’s surface.
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Figure 4. Time evolutions of coupled selection equation variables - the radius of each
sphere represents strength of pairing between the associated targets and satellites.
Top left after 0 time steps, top right after 40 time steps, bottom left after 90 time steps,
and bottom right after 140 time steps.

Here, the top 3x3 layer represents the possible combinations of satellites from each type which
can visit the first target, the middle 3x3 layer represents the possible combinations which can visit
the second target, etc. The figure shows the convergence of the equations, which takes just a few
seconds of computation. In the final converged state, only one sphere remains in each layer, indicat-
ing that the appropriate pairs to be allocated to each target has been decided. The time evolutions of
these 9 coupled selection variables take just 140 time steps to converge, with the time steps needing
for convergence scaling well with the number of agents available to perform computations.

In this work, the cost is defined as the sum of the phase angles which the satellite in each pair
must traverse to align their ground tracks with the target, as described in Equation (36).

Cijk “ ∆fij `∆fik (36)

This definition has been chosen as the phase angle is proportional to the time taken for conver-
gence in the minimum-time target visition problem, and also is proportional to the fuel expended in
the minimum-fuel target visitation problem.
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ARTIFICIAL POTENTIAL FIELD CONTROLLER

Once the satellites have been allocated to targets by the converged solution of the coupled selec-
tion equations, low-thrust commands are generated by an artificial potential field controller which
incorporates the coupled selection equation output.

In this paper a thrust-coast-thrust profile is adopted, in which the satellites traverse the required
phasing angles by raising or lowering their orbit semi-major axis by a fixed offset, aoffset, with
respect to the nominal semi-major axis for the repeat ground track orbit. The satellites then return
to the nominal orbital radius once they have reached the target orbital slot. This is characterised by
Equation (37).

adesired “

"

anominal ´ aoffsetε |∆f | ą |∆freturn|

anominal |∆f | ď |∆freturn|
(37)

where ε is a variable which is 1 when the satellite lags its target, and must lower the orbit to
traverse the phase angle, or -1 when the satellite leads the target, and must raise the orbit, and
∆freturn is the phase angle through which the satellite would traverse as it thrusted towards the
anominal. This is calculated analytically at each time step.

The artificial potential field is designed accoording to Equation 38.

V “
1

2

N1ˆN2
ÿ

j“1

paj ´ adesiredq
2 (38)

where adesired is switched between the nominal orbit, and an offset from this nominal orbit de-
pending on whether the satellite has arrived at the a target, or must drift towards it.

As a result of the parabolic shape of the potential function, convergence can be assured as long
as the rate of change of the potential function is always negative.

The derivative of Eq. 38 is given by Eq. 39.

9V “
N1ˆN2
ÿ

j“1

9aj paj ´ adesiredq (39)

Substituting the simplified satellite dynamics, a control law can be derived to ensure the derivative
is always negative, as given in Eq. 40.

atj “ ´ζsgn paj ´ adesiredq (40)

where ζ is a parameter describing the maximum acceleration magnitude available to the satellite.
The value of ζ was set to 0.1 mm/s2, equivalent to a 100 kg spacecraft with 10´2 N of available
thrust, with aoffset “ 15 km.

MISSION SCENARIO SIMULATION

In this mission scenario simulation, 10 satellites were placed on the constellation, 5 on each of
the orbits described in previous sections, initially equally spaced in true anomaly around orbits. A
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Table 1. Simulation Scenario Details

Target Target Longitude [deg]
Target Positions (lat,long)

(deg)
No. Of Satellites

Per Target

1 126 33.8 2
2 -875 12.6 3

target scenario was simulated in which two targets appear on the Earth’s surface, each demanding 2
and 3 pairs of satellites respectively, as detailed in Table 1.

Figure 5 shows the satellite ground tracks before any manoeuvring has taken place. It can be seen
that the ground track coverage is uniform across the Earth’s surface. However, although coverage
is generally comprehensive, the quality of service available at any given location is poor due to the
limited capabilities of individual satellites.

Figure 5. Satellite repeat ground tracks for 1 Earth rotation before manoeuvring at
t “ 0 days. General coverage is good, but with low capabilities in each satellite, the
quality of service at any location is low.

Figure 6 displays the time history of the 125 Coupled Selection variables. The behaviour shown
here indicates the complex interactions involved in the numerical propagation of the Coupled Selec-
tion Equations. In the first 100 integration steps, the majority of the variables vanish to zero, losing
the competition. Others converge to one of two values constituting an unstable equilibrium of the
system. Noise is added to the system at this stage to encourage convergence to stable equilibria, and
at that point, the remaining variable compete, with the final 5 reaching convergence after close to
600 time steps.

In addition, the computational simplicity of the method is indicated by how few time steps are
required for convergence. This increases as the number of targets, satellites and orbits (and hence

11
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Figure 6. Time histories of coupled selection variables, indicating the complex inter-
actions involved in the convergence of complicated multi-dimensional constellations.

dimension of the Coupled Selection Equation) increase, but not to unmanagable timescales and,
depending on the processing availability distributed throughout the constellation, will only required
computation times on the order of minutes.

After the coupled selection equations have converged satellites have been assigned to the targets
in pairs, and initiate the thrust-coast-thrust phasing manoeuvres defined in the previous section. In
this scenario, it takes 5.5 days of manoeuvring and an average δv expenditure per satellite member of
0.027 ms´1 before the ground tracks are shifted above their respective targets, as shown in Figure 7.
In addition, the time histories of satellite phase angles with respect to the orbital slots to which they
were assigned are showin Figure 8.
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Figure 7. Satellite repeat ground tracks for 1 Earth rotation after manoeuvring at
t “ 5.5 days. Quality of service at targeted locations is now increased due to clustering
of ground tracks over target.
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Figure 8. Time histories of satellite phase angles.
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CONCLUSIONS AND FUTURE WORK

This paper has demonastrated a novel method of enabling a self-organising micro-satellite con-
stellation, capable of manipulating its repeat ground-tracks to pass over specified targets on the
Earth’s surface. The use of coupled selection equations allows the constellation to autonomously
allocate agents to targets, and an artificial potential field controller has been designed according to
Lyapunov stability theory to generate the required thrust commands.

The effectiveness of the method has been demonstrated in a mission scenario, in which two polar
orbital planes containing different types of Earth imaging satellites are allocated in pairs to targets on
the Earth’s surface. The satellites are shown to converge upon the targets within a few days of low-
thrust manoeuvring, providing the coverage necessary to meet the image resolution requirements of
the mission.

Future work will focus on adapting and developing the method for other mission scenarios. In
addition, the fidelity of the simulation will be increased, as orbital perturbations such as the J2 effect
will be included and the potential field controller will be adapted to account for these perturbations.
The potential field controller will also be extended to include collision avoidane and co-location
terms once for the satellites have arrived at the same orbital slot. In addition, the full dynamics will
be explored, with additional control terms to counteract increases in eccentricity, etc.
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APPENDIX: ROTATION MATRICES

Rotation matrices used in the derivation of the analytical ground-tracks are given below:

R1pψq “

¨

˝

1 0 0
0 cpψq ´spψq
0 spψq cpψq

˛

‚ (41)

R2pψq “

¨

˝

cpψq 0 spψq
0 1 0

´spψq 0 cpψq

˛

‚ (42)

R3pψq “

¨

˝

cpψq ´spψq 0
spψq cpψq 0

0 0 1

˛

‚ (43)
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