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Abstract

An important, if not very well known, problem that af-

flicts many web servers is duplicate client browser re-

quests due to server-side problems. A legitimate request

is followed by a redundant request, thus increasing the

load on the server and corrupting state at the server end

(such as, the hit count for the page) and at the client

end (such as, state maintained through a cookie). This

problem has been reported in many developer blogs and

has been found to afflict even popular web sites, such

as CNN and YouTube. However, to date, there has not

been a scientific, technical solution to this problem that

is browser vendor neutral. In this paper, we provide such

a solution which we call GRIFFIN. We identify that the

two root causes of the problem are missing resource at

the server end or duplicated Javascripts embedded in the

page. We have the insight that dynamic tracing of the

function call sequence creates a signature that can be

used to differentiate between legitimate and duplicate re-

quests. For efficiency reasons, instead of raw function

call sequence, we use the function call depth as the signal

and apply an efficient autocorrelation computation to de-

tect the duplication. We apply our technique to find unre-

ported problems in a large production scientific collabo-

ration web service called HUBzero, which are fixed upon

reporting the problems. Our experiments show an aver-

age overhead of 1.29X for tracing the PHP-runtime on

HUBzero across 60 unique HTTP transactions. GRIFFIN

has zero false-positives (when run across HTTP transac-

tion of size one and two) and an average detection accu-

racy of 78% across 60 HTTP transactions.

1 Introduction
We live in a world where web page views are worth brag-

ging rights and cold hard cash. Big web sites tout the

number of page views. Also, provisioning of servers for

hosting web content is done by monitoring the number

of page requests. If the number trends high, a decision

is made to provision more servers. This is typically done

through human deliberation, but in some leading edge

deployments, through automatic means as well [8, 5].

Web page views are monetized through various means,

such as, increasing the amount charged to an advertiser

for ad placement on the page, increasing the number of

advertisements shown for the page, and so on. Web page

views are calculated, simply put, by tracking the num-

ber of requests sent by client web browsers for that page.

Could this simple but fundamental view of the web world

be afflicted by a little known problem?

The affliction of duplicated web requests Yes indeed!

The affliction is duplicate web requests. In this, the client

web browser sends two requests for the same web page,

the second being a redundant duplicate request. This af-

fliction does not affect poorly run web sites alone. It af-

flicts two of the top 10 most visited sites — CNN and

YouTube [27]. Our tests (with Chrome) show that at

least 22 out of top 98 (on April 4, 2014) globally ranked

Alexa [1] web sites give a duplicate request on accessing

their homepages. On the academic side, we found that

it affects HUBzero, a widely used open source software

platform (originating from Purdue) for building powerful

Web sites that support scientific discovery, learning, and

collaboration [24]. The duplicated request issue causes

two obvious problems. First, there is a spike in the traffic

directed to the web server, caused by fruitless requests.

For a web site that receives lots of views, this doubling

can have a crippling effect due to increasing the network

as well as the computational load. The increase in com-

putational load becomes significant due to the fact that

many content-rich pages today are dynamically gener-

ated by running complex, demanding scripts at the server

end. Second, there is the potential problem of user state

corruption. If the web site is tracking state, either by

cookies or in another way, there is the possibility of cor-

rupting this data.

Why do duplicate web requests happen? There are

two root causes for the problem of duplicate web re-

quests, which have been separately pointed out in many



developer forums and blog posts [3, 4, 29]. The first

cause is the incorrect way in which browsers handle

missing component names, or empty tags, such as, <img

src="">, <script src="">, and <link href="">.

Equivalently, this could be caused by JavaScript which

dynamically sets the src property on either a newly cre-

ated image or an existing one:

1 v a r img = new Image ( ) ;
2 img . s r c = ” ” ; / / More r e a l i s t i c a l l y , t h e RHS w i l l

be some code t h a t w i l l r e s o l v e t o t h e empty
s t r i n g

The most readable and comprehensive treatment of this

first cause can be found in [3]. We will refer to this first

root cause as missing resource cause. The second cause

is the same Javascript being included in the page twice,

or more number of times [27]. This is the root cause be-

hind the duplicate web requests in CNN and YouTube.

Two main factors increase the odds of a script being du-

plicated in a single web page: team size and number of

scripts. It takes a significant amount of resources to de-

velop a web site, especially if it is a top destination. In

addition to the core team building the site, other teams

contribute to the HTML in the page for things such as

advertising, branding, and data feeds. With so many peo-

ple from different teams adding HTML to the page, it

is easy to imagine how the same script could be added

twice, e.g., CNN and YouTube’s main pages have 11 and

7 scripts respectively. A plausible scenario is two de-

velopers are contributing JavaScript code that requires

manipulating cookies, so each of them includes the com-

panys cookies.js script. Both developers are unaware that

the other has already added the script to the page. This

increases the time for the page to load along with the

duplicate web requests problem. We will refer to this

second root cause as duplicate script cause.

How to fix the problem? The “missing resource cause”

happens because the HTML specification, version 4 [6]1

is silent on this seemingly esoteric aspect. Even though

the specification indicates that the src attribute should

contain a Uniform Resource Identifier (URI), it fails

to define the behavior when src does not contain a

URI. Consequently, different browsers behave in differ-

ent ways. For example, Internet Explorer (IE) sends the

duplicate request to the directory of the page rather than

the page itself, while Firefox and Chrome send the du-

plicate request to the page itself. Further, the behavior

of different browsers for handling different missing re-

sources is different, e.g., IE does not initiate a duplicate

request with missing script while Firefox and Chrome

do. The overall approach to handling this could be to

write server-side code that will catch a similar request

1HTML4 is the latest version of the specification, except for a W3C

“Candidate Recommendation” for HTML5 dated 04 February, 2014.

arising close in time to the original request and corre-

lated with finding a missing URI in a tag. However, due

to the differences in browser behaviors and for different

tags, this would lead to ungainly code, with case state-

ments for a large number of different cases. An indirect

evidence comes from the fact that though this problem

has been known for a while (since at least 2009), this so-

lution is seldom deployed. The “duplicate script cause”

of course has no easy solution available currently. The

solution is mainly process-based — enabling better com-

munication and coordination between developers writing

or using scripts to create web pages. Thus, hopefully,

the situation where two different developers include the

same script on the same page or, more subtly, incorpo-

rate different but overlapping scripts on the same page,

can be avoided.

Our solution approach In this paper, we present a

general-purpose solution to the above problem, in a sys-

tem called GRIFFIN2. By “general-purpose”, we mean

that the solution applies unmodified to all kinds of re-

sources and browsers. The solution has at its heart the

observation that the duplicate web requests cause a re-

peated signal, for some definition of “signal”. The sig-

nal should be defined such that it can be easily traced

in a production web server, without impacting compu-

tation or storage resources and without needing special-

ized code insertion. We find that the function call depth is

the signal that satisfies these conditions, while preserving

enough fidelity that the repeated sequence can be easily

and automatically discerned. To automatically discern

the repeated pattern, we use the simple-to-calculate au-

tocorrelation function for the signal and at a lag, equal

to the size of the web request (in terms of number of

HTTP commands), GRIFFIN sees a spike in autocorrela-

tion which it uses to flag the detection.

When tested over a wide range of buggy and non-

buggy behavior, we find that GRIFFIN performs well

with respect to both the detection and the false posi-

tive. For example, we evaluate GRIFFIN on the produc-

tion NEEShub web portal at Purdue, which is the portal

created out of an ongoing NSF center called NEES, for

providing computational tools and data upload/download

facilities to earthquake scientists and engineers all over

the US [19]. NEEShub has been operational since 2009

and has had 105,000 users over the last 12 month period.

So a problem in it cannot be easily dismissed as a cor-

ner case in an obscure site. We find that GRIFFIN has no

false positive and an 78% detection accuracy. To make

GRIFFIN feasible in real production settings, we adopt a

mix of synchronous and asynchronous approaches, both

without modifying the application’s source code, or even

2GRIFFIN is a mythical creature with the front legs, wings, and head

of a giant eagle, and the body, hind legs, and tail of a lion. It is often

used to guard treasures.
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needing access to the source code. Synchronously we

capture the call stack depth, using a built-in functionality,

in the tracing tool called SYSTEMTAP. The SYSTEM-

TAP tool is highly efficient and has already been used in

prior efforts for analyzing the properties and behavior of

software systems [14]. Then, asynchronously, GRIFFIN

calculates the autocorrelation function for various lags,

filters the values, and flags a detection when the value

exceeds a threshold. In addition to detection, GRIFFIN

also provides some diagnostic insight, i.e., gives an idea

of the module where the root cause lies. It does this by

inserting probes through SYSTEMTAP, determining the

lag at which the autocorrlation function has a peak, and

correlating the two to determine the suspect module.

Our contributions in this paper can be summarized as

follows.

1. We provide automatic detection of duplicate web re-

quests in a manner that is generic to any web server

and works across different web clients and different

root causes of the problem.

2. We develop code to extract the signal from amidst

a plethora of tracing data. We zoom in on the

right signal to use through insights born out of trou-

bleshooting web servers. Our method has in fact

been merged within the SYSTEMTAP code reposi-

tory.

3. We evaluate our scheme with a popular production

web portal for science. We report on the perfor-

mance overhead as well as error coverage from our

evaluation.

2 Example Bug Case
The manifestation of the duplicate web request can be

silent or non-silent. Silent implies there is no visual

indication of the problem at the client web browser,

while in the non-silent case, there is such an indica-

tion. With the NEEShub home page, we observed a

non-silent manifestation whereby multiple images are

not shown as depicted in Figure 1. An example of the

silent case is that the browser after downloading the mul-

tiple Javascripts, generates duplicate web request from

the multiple Javascripts.

Here we present a bug-case that was observed for the

beta release of the main web portal of our NSF center

called NEEScomm, meant for providing a cyberinfras-

tructure for earthquake engineers and scientists through-

out the US www.nees.org. GRIFFIN was able to de-

tect it before the code update made it to the produc-

tion site, and thus avoided the duplicate request problem.

On accessing the homepage, the images that appear as

part of background were missing (Figure 1). Listing 1

presents the code modifications that fixed the problem

Figure 1: Duplicate bug-manifestation (with missing im-

ages) before and after the fix

(no duplicate requests seen from client). In Listing 1,

$slide->mainImage variable does not resolves to the

image XYZ.jpg location. Instead, it resolves to the NUL

character. Manual inspection revealed that the images

were missing. To verify, we hard-coded a valid image

location and it fixed the duplicate problem. Listing 2

shows the runtime state of the rendered HTML in Firefox

browser. On lines 3 and 10, the empty url() is observed,

while on line 4, the src field in <img> tag having a value

of ”/” pinpoints the root cause for the duplicate request

to the base URL.

1 −−− a / modules / mo d fp ss / t mp l / Movies / d e f a u l t . php

2 +++ b / modules / mo d fp ss / t mp l / Movies / d e f a u l t . php

3 −<sp an s t y l e =” b ack g ro u n d : u r l (<?php echo $ s l i d e−>mainImage ; ?>) no−
r e p e a t ; ”>

4 + <sp an s t y l e =” b ack g ro u n d : u r l ( media / sy s t em / i mag es /XYZ . j p g ) no−r e p e a t ; ”>

5 −<img s r c =”<?php echo $ s l i d e−>mainImage ; ?>” a l t =”<?php echo $ s l i d e−>
a l t T i t l e ; ?>” />

6 + <img s r c =” media / sy s t em / i mag es /XYZ . j p g ” a l t =”<?php echo $ s l i d e−>
a l t T i t l e ; ?>” />

7 −<sp an c l a s s =” n a v i g a t i o n−t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l (<?php echo

$ s l i d e−>t h u mb n ai l Imag e ; ?>) no−r e p e a t ; ”>&nbsp ;</ span>

8 + <sp an c l a s s =” n a v i g a t i o n−t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l ( media / sy s t em /

i mag es /XYZ . j p g ) no−r e p e a t ; ”>&nbsp ;</ span>

Listing 1: Code modification to fix unnecessary

duplicate requests

1 <d i v c l a s s =” s l i d e ” s t y l e =” p o s i t i o n : a b s o l u t e ; o p a c i t y : 0 ; z−i n d ex : 8 9 ; ”

>

2 <a c l a s s =” s l i d e− l i n k ” h r e f =” / f p s s / t r a c k / 3 5 / L3Jlc291 , , ”>

3 <sp an s t y l e =” b ack g ro u n d : u r l ( ) no−r e p e a t ; ”>

4 <img a l t =”NEEShub R e l e a s e 5 . 0 ” s r c =” / ”>

5 </ sp an>

6 </ a>

7 .

8 .

9 .

10 <sp an c l a s s =” n a v i g a t i o n−t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l ( ) no−r e p e a t ; ”>

</ sp an>

Listing 2: Runtime state of generated HTML as

observed by Firebug

To understand how current browser versions (Chrome

32, Firefox 26) behave under unexpected input,

we did a synthetic injection in HTML tags: <span

style:background=X>, <img src=X>, <script

src=X>, <iframe src=X>, <link href=X>. Here

X, the injected character, had ASCII codes in the range

32-126 excluding alphanumeric characters. We found

that, in addition to duplicate requests due to empty

strings which have been reported before [3], the char-

acters ’?’ and ’#’ also resulted in duplicate requests.

<span style:background=SPACE,EMPTY> resulted

3



in a duplicate request for both browsers. For Firefox,

<img src=SPACE>, <script src=SPACE,EMPTY>,

and <link href=SPACE> created duplicate requests.

These injections provide evidence that browsers do

behave differently and erroneously under unexpected

special characters for URIs.

3 Design
Here we detail the design of GRIFFIN to detect duplicate

web requests. At a high level, it comprises three steps:

model application behavior at the web server (in terms

of the function calls and returns), create a signal of the

function call depths, and compute the auto-correlation of

the signal to trigger detection. Figure 2 shows these steps

in GRIFFIN.

3.1 Synchronous Tracing
Tracing can be divided into static or dynamic tracing.

Static tracing involves modifying the application’s

source code to insert tracing statements followed by

compilation and execution. Dynamic tracing involves

instrumentation of live, in-production applications

without needing to stop and restart them. Dynamic

tracing can be sub-divided into asynchronous or syn-

chronous tracing. Asynchronous tracing takes samples

at regular intervals, from a running application, easing

the possible impact on performance but also opening

up the possibility of missing important events between

samples. Synchronous tracing captures pre-defined

events (function calls in our case) within the source

code. In this work, we use synchronous tracing as it

meets our following tracing framework goals.

1. The tracing should be done dynamically, i.e., the

tracer should be able to connect and disconnect to

an already running application without the need of

stopping, recompiling and restarting.

2. The application should not be polluted with instru-

mentation within its source code.

3. The instrumentation should provide enough func-

tion call context for triggering post-detection diag-

nosis, e.g, the name of the called function, filename,

classname of the object calling the function etc.

4. The instrumentation overhead should be small

enough to debug problems in the production envi-

ronment in an online setting.

We leverage SYSTEMTAP [17], a tracing/probing

framework that can provide synchronous tracing data on

Linux hosts. SYSTEMTAP is built on the same archi-

tecture as the well-known DTrace [12] tool for Solaris

systems and can provide event-tracing across the whole

1
2 p ro b e p r o c e s s ( ” / u s r / l i b / ap ach e2 / modules / l i b p h p 5 . so ” ) . p r o v i d e r ( ” php ” ) .

mark ( ” f u n c t i o n e n t r y ” )

3 {

4 p r i n t f ( ”PHP : %d %d => %d %s f i l e :%s l i n e :%d cl assn ame :% s\n ” ,

g e t t i m e o f d a y u s ( ) , t i d ( ) , t h r e a d i n d e n t d e p t h ( 1 ) ,

u s e r s t r i n g q u o t e d ( $ arg 1 ) , u s e r s t r i n g q u o t e d ( $ arg 2 ) ,
$arg3 , u s e r s t r i n g q u o t e d ( $ arg 4 ) ) ;

5 }

6
7 p ro b e p r o c e s s ( ” / u s r / l i b / ap ach e2 / modules / l i b p h p 5 . so ” ) . p r o v i d e r ( ” php ” ) .

mark ( ” f u n c t i o n r e t u r n ” )

8 {

9 p r i n t f ( ”PHP : %d %d <= %d %s f i l e :%s l i n e :%d cl assn ame :% s\n ” ,

g e t t i m e o f d a y u s ( ) , t i d ( ) , t h r e a d i n d e n t d e p t h (−1) ,

u s e r s t r i n g q u o t e d ( $ arg 1 ) , u s e r s t r i n g q u o t e d ( $ arg 2 ) ,

$arg3 , u s e r s t r i n g q u o t e d ( $ arg 4 ) ) ;

10
11 }

Listing 4: php.stp SYSTEMTAP script with function-

entry/return probes
1
2 PHP : 1392668507729050 22061 => 1 ” a ” f i l e : ” /www/ a b c . php ” l i n e : 1 8

c l assn ame : ” ”

3 PHP : 1392668507729120 22061 => 2 ” b ” f i l e : ” /www/ a b c . php ” l i n e : 5
c l assn ame : ” ”

4 PHP : 1392668507729134 22061 => 3 ” c ” f i l e : ” /www/ a b c . php ” l i n e : 1 1

c l assn ame : ” ”

5 PHP : 1392668507729146 22061 <= 2 ” c ” f i l e : ” /www/ a b c . php ” l i n e : 1 1

c l assn ame : ” ”

6 PHP : 1392668507729158 22061 <= 1 ” b ” f i l e : ” /www/ a b c . php ” l i n e : 5

c l assn ame : ” ”

7 PHP : 1392668507729167 22061 <= 0 ” a ” f i l e : ” /www/ a b c . php ” l i n e : 1 8

c l assn ame : ” ”

Listing 5: Output of php.stp SYSTEMTAP script

system stack: kernel, applications, system-services, in-

terpreters (PHP, Python, Perl, Java), databases, etc. This

ability to look through the whole system with low probe-

point programming overhead makes SYSTEMTAP a bet-

ter fit than other tools like PIN [23] and Valgrind [26].

To enable tracing, SYSTEMTAP allows to write probe-

point scripts. Probe-point scripts tell SYSTEMTAP two

things. (1). What event do you want to trace? (2). What

do you want to print at the traced event-location?. An

example output of tracing function calls in PHP for the

program in Listing 3 with SYSTEMTAP tracer-script in

Listing 4 is shown in Listing 5. abc.php invokes the

function call-chain (a()→b()→c()) from main-method.

php.stp, that traces abc.php, has two probe-points, for

function-entry and function-return. At both entry and re-

turn, php.stp logs, in order of their appearance in the

printf call, timestamp, thread-id, function call depth,

funcation name, file name, line number, and class name,

if available. Other than thread indent depth(long)

function, all the other functions are natively available in

SYSTEMTAP .

f u n c t i o n a ( ) { f u n c t i o n b ( ) { f u n c t i o n c ( ) {

echo ” Func a ” ; echo ” Func b ” ; echo ” Func c ” ;

b ( ) ; } a ( ) ; c ( ) ; } }

Listing 3: abc.php, where a() calls b() and b() calls c()

3.2 Modeling Application Behavior

For modeling purposes, we define a numeric metric

called function call-depth that represents the runtime

4



Figure 2: Overview of the duplicate-detection workflow.

function call-depth. At every function-call, the call-

depth is incremented and at every return, it is decre-

mented. Our foundational intuition for modeling appli-

cation behavior is that the flow of an application can be

roughly represented by how function call depth changes.

The function call depth sequence for a given high-level

web operation can be considered as a fingerprint of the

high-level operation. For further exploration of this in-

tuition, let us first define some terms: web-request, web-

click, http-transaction. Starting from the lowest level,

a web request is the HTTP request sent by the web

browser, such as, GET and POST. A web click is a hu-

man user clicking in the browser to send web requests.

A single web click can generate multiple web requests.

A set of web clicks done in a particular sequence, as per-

mitted by the workflow in the website, is called an http

transaction. An http transaction can consist of one or

more web clicks; in typical usage this will be more than

one web click. An example of an http-transaction of size

two is going to the homepage followed by going to the

login page (HomePage→Login).

Now coming back to our intuition for detecting du-

plicate web requests, consider that a duplicate web re-

quest will create a duplicated signal of the function call

depths. It is easy to concoct a synthetic example where

this intuition is violated. For example, consider two le-

gitimate consecutive web clicks and the corresponding

web requests: (a (b (c c’) b’) a’) (d (e (f f’) e’) d’) giv-

ing a call-depth sequences of (1 2 3 3 2 1) (1 2 3 3 2 1).

This would give the appearance to GRIFFIN of duplicated

web requests. However, we find that for real web pages,

the length of web clicks in terms of the number of func-

tion calls and returns tends to be much larger. This kind

of accidental matching of the function call depth signal

happens only very rarely for these real situations.

To get the call-depth at runtime, we add a func-

tion called thread indent depth(long) to SYSTEM-

TAP ’s native scripts. This function returns a num-

ber corresponding to the depth of nesting. We call

this function thread indent depth(1) in the probe-

point SYSTEMTAP script (Listing 4). Here, the argu-

ment one means that at every function-call, increment

the depth by one. We submitted this function to the SYS-

TEMTAP repository and it has been merged (commit-

id:cecdb2dddae55b510814dc8a6d7510e5fa5e0d9f) into

SYSTEMTAP ’s master-branch and is available out-of-

the-box after SYSTEMTAP is installed [9].

3.3 Duplicate Detection Algorithm
With the function call-depth sequence captured, the next

goal is to detect whether the sequence has a repetitive

pattern and to do this efficiently with respect to time.

To do this, we use a common signal analysis technique

to detect repeating patterns, auto-correlation [31] of the

function call-depth signal. Auto-correlation of a signal x

is defined by Rxx (Equation 1) as a function of lag-value

t, where t varies from zero (perfect signal match with

Rxx=1) to n, the sequence length in terms of the number

of function calls and exits. Ideally for GRIFFIN to detect

duplicate web requests resulting from a single user web

click, it would be possible to segment the web requests

for each web click. But that is not always possible in

practice, as we discuss in Section 4.1. Auto-correlation

can be viewed as a sequences of shift, multiply, sum op-

erations for all lag values on function call-depth signal.

Intuitively, we are using auto-correlation to estimate the

similarity between the signal and its time shifted versions

for various values of the time shift. If the function-depth

signal is exactly repeated twice, we expect to see a peak

of 0.5 around the lag value of n/2.

Rxx[t] =
Ct

C0
where t=0,. . . ,n

Ct =
1

n

min(n−t,n)

∑
s=max(1,−t)

[Xs+t − X̄ ][Xs− X̄]

(1)

We present the auto-correlation-based duplicate-

detection algorithm in Figure 3. After auto-correlation

computation for all lag-values, we find the index at which
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1 /∗ Compute au to−c o r r e l a t i o n f o r a l l l a g s ∗ /
2 X ← l o a d s i g n a l v a l u e s
3 X̄ ← g e t mean v a l u e
4 C0 ← 0
5 Rxx[t] ← g e t an empty a r r a y of s i z e n

6 Threshold ← 0 . 4
7 f o r each t i n r a n g e n :
8 sum ← 0
9 f o r j ← 0 ; j < n ; j++:

10 sum ← sum + (X [ j]− X̄)∗ (X [ j+ t]− X̄)
11 sum ← sum / n

12 i f t = 0
13 C0 ← sum

14 Rxx[t] ← sum /C0

15
16 /∗ Get t h e i n d e x where au to−c o r r e l a t i o n f i r s t

becomes n e g a t i v e ∗ /
17 index ← 0
18 f o r each t i n r a n g e n :
19 i f Rxx[t] < 0
20 index ← t

21 b r e a k
22
23 /∗ Check i f au to−c o r r e l a t i o n i s g r e a t t h a n

t h r e s h o l d beyond index ∗ /
24 f o r i ← index ; t o end of s equence
25 i f Rxx[t] ≥ Threshold

26 P r i n t Duplicate Request Detected!
27 b r e a k

Figure 3: Algorithm to detect duplicate messages from

function call-depth signal.

the auto-correlation first becomes negative, call this t0.

For values of auto-correlation beyond t0, we find if there

is any value greater than a threshold value τ . If yes, we

flag a duplicate-detection. For the duplication of a set of

web requests once, we expect ideally an auto correlation

peak of 0.5. But to tolerate the normal variation in func-

tion call-depth signal, we set the threshold τ to be a little

lower than 0.5. We report on our sensitivity empirical

study in Section 5.3. The reason for starting the search

beyond t0 is that then we eliminate the high values of au-

tocorrelation that we will see due to the original signal

being correlated with itself with small time lags.

3.4 Usage Modes

We envision GRIFFIN to work in two scenarios, pre-

production testing and in-production. In testing, devel-

oper’s have control of the environment and trace seg-

mentation is not an issue. Here, a possible concern by

developers could be GRIFFIN’s detection latency, which

is in order of seconds. Also, there are several works

that show speed-up of autocorrelation-like functions us-

ing parallelization in software [11] and hardware like

FPGAs [21], GPUs [22]. For in-production mode, op-

erators’ main concern could be the overhead of config-

uring and tuning GRIFFIN and the application tracing

overhead, which is incurred in the critical path of all

web requests and responses. GRIFFIN’s configuration

is minimal with only one threshold parameter for which

we provide a recommendation (threshold=0.4) with our

1 g l o b a l r e m o t e i p

2
3 / / P ro b e 1 : Apache p ro b e t o g e t ip−a d d r e s s o f i n co mi n g web−r e q u e s t

4 p ro b e p r o c e s s ( ” / u s r /∗b i n / ap ach e2 ” ) . f u n c t i o n ( ” a p p r o c e s s r e q u e s t ” )

5 {

6 r e m o t e i p [ t i d ( ) ]= u s e r s t r i n g ( @cast ( $r−>c o n n e c t i o n , ” c o n n r e c ” )

−>r e m o t e i p )

7 }

8
9 / / P ro b e 2 : p ro b e t h a t r e c e i v e s t h e h t t p−r e q u e s t from Apache i n t h e PHP

r u n t i m e

10 p ro b e p r o c e s s ( ” / u s r / l i b / ap ach e2 / modules / l i b p h p 5 . so ” ) . f u n c t i o n ( ”

p h p a p a c h e r e q u e s t c t o r ” )

11 {

12 p r i n t f ( ”APACHE: %d %d %s\n ” , g e t t i m e o f d a y u s ( ) , t i d ( ) ,

u s e r s t r i n g q u o t e d ( $r−>u n p a r s e d u r i ) ) ;

13 }

14
15 / / P ro b e 3 : php f u n c t i o n−e n t r y

16 p ro b e p r o c e s s ( ” / u s r / l i b / ap ach e2 / modules / l i b p h p 5 . so ” ) . p r o v i d e r ( ” php ” ) .
mark ( ” f u n c t i o n e n t r y ” )

17 {

18 p r i n t f ( ”PHP : %d %d %s => %d %s f i l e :% s l i n e :%d cl assn ame :% s\n ” ,

g e t t i m e o f d a y u s ( ) , t i d ( ) , r e m o t e i p [ t i d ( ) ] ,

t h r e a d i n d e n t d e p t h ( 1 ) , u s e r s t r i n g q u o t e d ( $ arg 1 ) ,

u s e r s t r i n g q u o t e d ( $ arg 2 ) , $arg3 , u s e r s t r i n g q u o t e d (

$ arg 4 ) ) ;

19 }

20
21 / / P ro b e 4 :

22 p ro b e p r o c e s s ( ” / u s r / l i b / ap ach e2 / modules / l i b p h p 5 . so ” ) . p r o v i d e r ( ” php ” ) .

mark ( ” f u n c t i o n r e t u r n ” )

23 {

24 p r i n t f ( ”PHP : %d %d %s <= %d %s f i l e :% s l i n e :%d cl assn ame :% s\n ” ,

g e t t i m e o f d a y u s ( ) , t i d ( ) , r e m o t e i p [ t i d ( ) ] ,

t h r e a d i n d e n t d e p t h (−1) , u s e r s t r i n g q u o t e d ( $ arg 1 ) ,
u s e r s t r i n g q u o t e d ( $ arg 2 ) , $arg3 , u s e r s t r i n g q u o t e d (

$ arg 4 ) ) ;

25 }

Listing 6: SystemTap probes for tracing

sensitivity analysis. In fact, this simplicity was appeal-

ing enough for us that we adopted this scheme in fa-

vor of more complex, and potentially better-performing,

schemes that have a plethora of parameters. The tracing

overhead with SYSTEMTAP is low enough as it is. To

further minimize the tracing overhead, an operator can

run GRIFFIN in time intervals of low load on the web

server .

4 Experimental Setup

4.1 Configurations: Hardware, Software,

Tracing

NEEShub infrastructure is running Apache/2.2.16 (De-

bian) web server in Prefork MPM (Multi-Processing

Module) [2] mode, i.e., with multiple processes and one

thread per process, on a VM with Intel(R) Xeon(R)

CPU E5-2643 0 @ 3.30GHz with 6GB RAM. The PHP-

runtime (libphp5.so) version is 5.3.3 and is compiled

with --enable-dtrace option in order for SYSTEM-

TAP (ver 2.4) to be able to intercept PHP-function calls

and returns with its probes.

Listing 6 presents the SYSTEMTAP probes used for

synchronous tracing. The objective that we discuss here

is how to segment multiple users so that the analysis can

be done on web clicks from a single user. This segmen-

tation is conceptually done using a combination of fields

such as, source IP address, port, etc. For ease of exposi-

tion, in the discussion in this section we will use IP ad-

dress as the proxy for this combination. In Listing 6, we

show the SYSTEMTAP probes that GRIFFIN inserts. On
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receiving a web request, Apache probe (Probe 1) fires

first. When probe 1 fires, we record the IP address of

the incoming web-request in a global variable with the

key equal to the Apache thread id. Since the design is

such that the same thread id is going to complete the

web click request, so, whenever subsequent probes fire

they have the same thread id. The probe at the interface

between the Apache web server and the PHP module is

probe 2. Probe 3 gets triggered at all function calls in

the PHP module and probe 4 at all function returns in the

PHP module. In probes 2, 3, and 4, we read the global

variable to get the IP address corresponding to thread id

of the current thread. Thus, even though the IP address

is visible only to probe 1, inward-situated probes 2-4 can

also access the client-distinctive information. In terms

of frequency, most probe 1’s have a corresponding probe

2; each probe 2 gives rise to many probes 3 and 4. This

is due to the design, common to most content-rich web

sites, that dynamic content is generated through the PHP

module and the PHP module invocations traverse a long

chain of libraries. For example, for the NEEShub, on

an average a single web click results in a total of 67,071

function calls and returns in the PHP module.

Figure 4: Probes that fire in the life-cycle of an HTTP

request

4.2 Evaluation Metrics

We evaluate GRIFFIN’s detection performance with tradi-

tional definitions of accuracy and precision (Equation 2).

We establish the ground truth through manual verifica-

tion, at client-end, by checking duplicate requests for

each web-click using browser debugging tools, Firebug

and Chrome-dev-tools. We measure the overhead of

GRIFFIN in two areas, tracing overhead and detection

overhead. Tracing-overhead is the fraction of total time,

taken by SYSTEMTAP ’s probes while processing a given

web-click. Detection overhead or detection latency is

measured in the standard way as the time elapsed for all

the detection steps—getting the signal as input, comput-

ing auto-correlation, determining the trigger point, and

sweeping through a series of time lag values to detect if

there is a peak corresponding to the duplicate web re-

quest.

Accuracy =
T P+TN

T P+TN +FP+FN

Precision =
T P

T P+FP

(2)

4.3 NEEShub Infrastructure

We apply GRIFFIN to a large-scale real setup called

NEEShub [19], a system built with HUBzero [24] open

source software platform. HUBzero is a proven dy-

namic website building technology to support scientific

research and educational activities. HUBzero has over 29

documented hubs [7] operating across various scientific

disciplines. In addition to building dynamic websites,

HUBzero provides a modular architecture that helps to

quickly build tools (for data-analysis, simulation etc) for

a given scientific discipline. We can view NEEShub as

an instance of HUBzero where the website and tools

are developed for Earthquake Engineering discipline.

NEEShub architecture is composed of a front-end web-

server and a back-end database. NEEShub’s website

usage shows an increasing yearly trend of number of

unique users who logged into the website for past four

years. Additionally, after its inception in 2009, the an-

nual webserver hits for last 3 years has been over 32 mil-

lion. Both, webserver hits and increasing website users

mean that any duplicated web requests can cause a per-

formance bottleneck or may lead to unneeded hardware

upgrade.

5 Evaluation

5.1 Experimental Workload

GRIFFIN’s testing was conducted on a replica of the pro-

duction site (www.nees.org), technically referred to as a

“staging machine” where developers merge their code af-

ter doing the unit testing on their own development box.

We made no modifications or synthetic error injections.

Therefore, we expected to find few, if any, problems with

the website.

We tested GRIFFIN’s duplicate-detection performance

by sending a total of 60 HTTP transactions of varying

sizes. The size of a transaction is measured by the num-

ber of web clicks incorporated within the transaction.

Thus, the transaction HomePage→Login has a size of

two. Also, for the analysis (autocorrelation computa-

tion), the signal is considered the entire transaction. We

used 20 transactions for each of the sizes 1,2,3. These

60 HTTP transactions were executed following different

possible user workflows as enabled by the web portal.

We tried to cover all the workflows that a typical user

would follow while visiting the website. This is enabled
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by our having worked as part of the NEES team for 3+

years.

Ideally, the analysis in GRIFFIN will consider the

traces corresponding to a single web click from a sin-

gle user. The combination of IP address, source port,

etc. is meant to segment different users. Within a single

user, we expect that different web clicks are handled by

threads of different IDs. We empirically validated that

this is always the case for all our transactions. This is

explained by the design of the Apache web server, which

has a maximum number of concurrent requests that can

be served, given by the parameter MaxClients with a

default value of 256. For Apache Prefork MPM, this

translates to the total number of processes. When a re-

quest processing is completed, the process becomes idle

and after an expiry time, is killed off. If the next re-

quest arrives within the expiry time, then with a prob-

ability 1
MaxClients

, it will be handled in a process with

the same thread ID. If the next request arrives after the

expiry time, then there is only an infinitesimal chance

that it will be processed with the same thread ID. To ac-

count for these probabilities, plus other Apache modes

(multi thread, etc.), we also evaluate GRIFFIN’s perfor-

mance with HTTP transactions of size greater than one.

For HTTP transaction size greater than one, we are mim-

icking the situation where the duplicate request happened

due to one web-click (e.g., HomePage) but GRIFFIN ana-

lyzed two (e.g., HomePage→Login) or three web clicks

(e.g., HomePage→Login→LoggingIn) together.

5.2 Accuracy and Precision Results

Out of the 7 duplicate request problems (among the

60 HTTP transactions),GRIFFIN was able to correctly

find 4 duplicated requests i.e., HomePage, Topics-page,

SimulationWiki-page and Wiki-page. SimulationWiki

page was due to a Javascript-based duplication, while

the other three were due to missing-resources. GRIF-

FIN missed 3 cases of duplicated requests, warehouse,

simulation and education pages.

GRIFFIN’s accuracy and precision with different

HTTP transaction sizes is presented in Table 1. GRIF-

FIN provides an average accuracy of 80% across HTTP

transactions of size one and two with no false posi-

tives. With three web clicks, GRIFFIN’s performance

degrades– here 0% precision is misleading in the sense

that out of the 20 HTTP transactions of size three,

only one (HOMEPAGE→LOGIN→LOGGINGIN) had

a duplicate request which GRIFFIN did not detect.

GRIFFIN falsely flagged 4 out of 20 transactions giv-

ing a false positive rate of 20% for HTTP trans-

actions of size three. The reason why GRIF-

FIN did not detect HOMEPAGE web-click within

HOMEPAGE→LOGIN→LOGGINGIN transaction is

due to the significant difference of LOGGGINGIN func-

tion call-depth signal from the signals of HOMEPAGE

and LOGIN web clicks (see the increase in function call-

depth signal between index 100K to 150K in Figure 6).

Here, HOME and LOGIN web clicks have an average

function call-depth of 15.61 and 15.47 respectively while

LOGGINGIN has an average of 32.42 making it signifi-

cantly different. With HTTP transaction of size 3, GRIF-

FIN is performing its analysis after combining these three

signals into one. Thus, the divergence in the single com-

bined signal means that the autocorrelation values, even

with one duplication, tend to be low, and stay below the

threshold. In practice, the HTTP transactions of size 3

will be very rare because of the discrimination that GRIF-

FIN will be able to do using the thread ID.

Accuracy Precision

one-click 90% =
18

20
100% =

3

3

two-clicks 70% =
14

20
100% =

4

4

three-clicks 75% =
15

20
0% =

0

4

Table 1: Summary of Performance results

With the ideal (and practically common) case of anal-

ysis over HTTP transaction of size 1, GRIFFIN shows

90% accuracy and 100% precision. As an example, the

function call-depth and autocorrelation for HOME web-

transaction is presented in Figure 2. We see that the au-

tocorrelation has a clear peak value of 0.4998 near a lag-

value of 40,000 which is detected by GRIFFIN (with a

threshold set at 0.4). Manual checking, both at user-end

and at server-end revealed that HOME web-request (”/”)

is being sent twice by the user’s browser. Further inspec-

tion on the server revealed that a field called hits in the

back-end database is incremented on every HOME web-

transaction. We reported this hitherto unknown problem

to the web developer at NEES, and it was subsequently

fixed and not pushed into the production environment.

Testing GRIFFIN with HTTP transactions of size 2, we
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Figure 5: HOME→LOGIN→LOGGINGIN: Function

call-depth signal for three web clicks from browser
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Figure 6: HOME→LOGIN→LOGGINGIN: Autocorre-

lation for three web clicks from browser

observe a drop in accuracy (to 70%). This happens due

to the significant variability in the basic signal due to the

very different nature of the function call invocations in

the two web clicks. Expectedly, autocorrelating a diver-

gent signal gives low autocorrlation values, which some-

time fall below the GRIFFIN threshold, which has a de-

fault value of 0.4.

5.3 Sensitivity and Overhead

GRIFFIN’s sensitivity to different parameters, sequence

length, threshold and number of traced contiguous web

clicks is critical from a usability perspective. With an

increasing number of contiguous web clicks, GRIFFIN’s

accuracy and precision drop. The pattern of accuracy

decreasing with increasing number web clicks holds true

with increasing sizes of the traces. We present GRIFFIN’s

sensitivity with different thresholds in Figure 7. Looking

at Figure 7a and Figure 7b, we set GRIFFIN threshold to

0.4 as the default value for GRIFFIN to provide us zero

false positives, i.e., 100% precision. The user can de-

crease the threshold for fine tuning her system, but we

suggest to not go below 0.35 (based on Figure 7b) as that

can result in possible false positives.

The detection latency as a function of the sequence

length (i.e., the number of trace events due to SYSTEM-

TAP probes) is shown in Figure 8. It shows the ex-

pected behavior of greater latency with increasing se-

quence length. This is due to a larger number of auto-

correlation computations for a longer trace length. How-

ever, the upper range of the sequence length is typically

about 100K and with that we have a detection latency of

about half a minute, which should be fast enough to be

useful for the subsequent manual process of fixing the

problem. The average tracing overhead across the 60

tested HTTP transactions is 28.6% with a standard devi-

tation of 10.0%. The overhead for HTTP transactions for

each size is presented in Table 2. The tracing overhead

Figure 8: Detection Latency

is independent of the length of the sequence and the dif-

ferences seen are due to statistical variations. This over-

head can be reduced simply by removing all the fields in

the traces, say as in Listing 4, except for the thread ID

(needed for segmentation), function call depth (needed

for detection), and filename (needed for diagnostic con-

text, as explained below in Section 6).

Tracing Over-
head (Avg)

Tracing Over-

head (Std.
Dev)

Sequence
Length (Avg)

Sequence

Length (Std.
Dev)

one-click 24.0% 6.6% 67,071 54,165

two-clicks 32.8% 11.6% 131,511 76,630

three-clicks 29.1% 9.1% 141,427 33,727

Table 2: Tracing Overhead

6 Discussion
GRIFFIN’s Diagnostic-context: When GRIFFIN detects

duplicate web-requests, a diagnostic-context about the

detection would help the developers as a starting point

for debugging. At detection-time, in addition to the auto-

correlation value, we also have the lag when this autocor-

relation value exceeded the threshold, call this tmax. We

use tmax alongwith the information provided by probe-2

(Figure 4), a probe that records the HTTP-request go-

ing from apache-core to PHP-runtime, to provide the

diagnostic-context. With the tmax, we get the nearest next

fired probe-2 and extract a high-level component (mod-

ule name) from the file name. For the duplicate bug of

Figure 1, this simple scheme is able to flag mod fpss

module in Joomla, the Content Management System, on

which HUBzero is built.

ID-based Trace Segmentation: Given two parallel

web-clicks from two different users, the segmentation-

problem (as discussed in Section 5) of getting a per-user

click-trace can be solved using a variety of IDs avail-

able at the server-end. Specifically, for Apache server,

the data structures, request rec (created whenever the

server accepts an HTTP request from client) and conn -

rec (an internal representation of TCP connections in

Apache) can help in filtering. An interesting scenario

occurs when the same IP address represents different

users, e.g., multiple users behind a NAT (Network Ad-

dress Translation) server. In this case simply segment-
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(a) One-click (b) Two-click (c) Three-click

Figure 7: Sensitivity of GRIFFIN for each of one, two and three-clicks

ing users by IP address will not work and additional

information, e.g., port number is needed. This can be

achieved with writing an Apache probe with SYSTEM-

TAP intercepting the function ap process connection

(which is invoked in the call-chain for every incoming

web-request) and reading the port field using cast($c,

"conn rec")->remote addr->port.

Simple Strawman Schemes: Given that we have the

function call depth and the sequence length, a sim-

ple scheme for detection of duplicate requests can be a

threshold for each of the two parameters. Though simple

in theory, we will need to maintain and learn per-web-

request type thresholds, e.g., different thresholds for each

of Homepage, Login etc. Additionally, as the application

is developed new web-requests would have to be bench-

marked for learning the threshold. We think that for a

busy operator, this poses too much of configuration over-

head. An attraction of GRIFFIN is that it requires little

configuration for detecting a wide variety of duplicate

request problems. Another possible technique is to use

logs at the server and use some heuristic to flag detection

when similar requests are received within a small time

window. Such a scheme though would be fragile in prac-

tice and be unable to handle natural variations in user

request patterns.

7 Related Work
Most of the existing approaches to handle duplicate re-

quests are not at the application-level. TCP [13] is the

classic example that uses sequence numbers along with a

windowing-based mechanism to do duplicate detection

of IP packets. Stateless protocols like HTTP have to

deal with the request-response nature and maintain state

at the application-level. Application-level works include

similarity detection [28] deployed at web-proxy caches

to eliminate redundant network traffic, duplicate-content

detection [30] with clustering and similarity metrics [16].

These are directed at generic payloads and are therefore

less accurate than GRIFFIN in general. Another related

area is schemes for avoiding the occurrence of duplicate

requests in the first place, which are complementary to

GRIFFIN. These schemes are implemented either on the

client-end [20] or on the server-end [25].

Finding relevant system events to detect and diag-

nose failures is often equated to the problem of finding

a needle in a haystack. Over the last decade, several

researchers have proposed solutions to this challenging

problem [15, 32, 10, 18]. The high-level objective here

is to mine vast amounts of system data to find relevant

signatures for failures. Once “syndromes” [15] or signa-

tures are created [32], these can be used to detect prob-

lems in the future efficiently. Present day data centers

often suffer from tens of minutes to hours of downtime

due to inherent difficulties in diagnosing and fixing such

failures. [10] and [18] partially automate this process,

thereby, reducing manual effort and downtime. Our work

falls within this broad umbrella. We automate the pro-

cess of detecting duplicated web requests by looking at a

compressed signal from system events, specifically func-

tion calls and returns.

8 Conclusion
In this paper, we have presented a systematic method and

an automated tool called GRIFFIN for detecting an im-

portant problem that afflicts many web servers, namely,

duplicate client browser requests. This causes an artifi-

cially high load on servers and corrupts server and client

state. Culling together many blog posts and developer fo-

rum reports, we identify the two fundamental root causes

of the problem and come up with a solution that han-

dles both, without needing special case logic for the two

root causes or for different browsers. We use GRIF-

FIN for detecting the problem in a production web portal

for an NSF center at Purdue and identify that the prob-

lem is more widespread than previously identified. Our

evaluation on the production site revealed no false posi-

tive. The dynamic system tracing using SYSTEMTAP is

lightweight and the detection latency small enough (less

than half a minute) as to be useful in practice. Our contri-

butions were considered significant enough that the prob-

lem was fixed in the web portal and our addition to the

dynamic tracing facility was accepted in its official re-

lease.
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