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Abstract 

 

Understanding population structure and resource selection are essential for wildlife management 

and conservation. I assessed the population structure and resource selection of elk (Cervus 

elaphus) in central Ontario. I used fuzzy and hierarchical cluster analyses to elucidate elk 

population structure based on spatial data collected from 41 radio-collared elk. I assessed 

impacts of habitat quality on space use using the minimum convex polygon (MCP) and fixed 

kernel methods. I evaluated resource selection by elk in winter, spring, summer, and fall, from 

December 2011 to August 2013, using resource selection functions (RSF’s). I used a generalized 

linear mixed model (GLMM) to evaluate resource selection functions and used Akaike 

information criterion (AICc ) to select the best model of 20 candidate models constructed a 

priori. Models included parameters representing resources known to be important to elk: 

elevation, aspect, slope, distance to roads and water, and habitat. Both fuzzy and hard clustering 

indicated that elk in Central Ontario occur in a metapopulation that includes 5 subpopulations. 

The largest cluster consisted of a core group of 22 radio-collared elk located in Burwash with 

several satellite subpopulations spread along a 50km long north-south axis and a small 

subpopulation to the west located in Worthington. Survival rates among subpopulations were 

similar ranging from 0.71 to 0.83; however, anthropogenic causes of mortality were predominant 

only in the Burwash subpopulation. Space use and density of elk differed between core and 

satellite subpopulations. Resource selection by elk differed by time of day and season. In all 

seasons, elk selected open habitats at night and more forested areas during the day. Elk avoided 

areas close to roads in spring, but selected them in winter at night. Elk selected higher elevations 

in winter and for south facing slopes in spring and fall.  Elk displayed strong crepuscular activity 

patterns in all seasons; however, movements were limited in winter. Understanding population 

structure is important in order to develop appropriate management plans. My results support the 

conclusion that population structure can be reliably assessed using spatial data. Resource 

selection is a dynamic process that changes with seasons, as well as animal activity across the 

diel period. Resource selection should include time of day in order to obtain a complete picture 

of resources important to a particular species and to support the conservation of habitats used for 

various animal activities.  
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General Introduction  
 

Population ecology is the cornerstone of the management and conservation of any 

species. Populations may take various forms based on decision-making criteria used to define 

them, such as biological, political or research-based criteria (Mayr 1970). Biological populations 

have been traditionally defined as a group of interbreeding individuals in a given location (Mayr 

1970). The physical boundaries of biological populations are often arbitrarily delineated, based 

on political decisions, and thus fail to incorporate meaningful ecological processes. 

Understanding and describing populations are influenced by spatial and temporal scales (Thomas 

and Kunin 1999; Schaefer 2006). A population may seem continuous at a regional level, but may 

be composed of several spatially disjunct subpopulations at a local level (Morrison 2002). 

Assessing population structure is a critical component of understanding population dynamics and 

implementing appropriate management and conservation decisions. Spatially-structured 

subpopulations may operate as metapopulations, interconnected through limited dispersal, and 

therefore require different management strategies than a single continuous population (Levins 

1969; Hanski 1991; Wiens 1996) 

  Population processes are affected by the way individuals encounter and respond to the 

landscape. Understanding animal space use has been a central focus of ecology (Kernohan et al. 

2001). The area an animal requires to secure adequate food, shelter and mating opportunity is 

defined as a home range (Burt 1943). Quantifying individual home range sizes reveals the area 

needed for animals to meet their daily and annual habitat requirements. Spatial behaviour of 

animals can reveal the factors influencing population processes such as site fidelity, interspecific 

competition, intraspecific competition and predation risk (Lagos et al. 1995; Williams et al. 



2 
 

2002; Larkin et al. 2004; Bjørneraas et al. 2012). Study duration and objectives are important 

considerations in assessing animal space use. Seasonal fluctuations in food availability and 

changes in animal behaviour can influence space use (Harris et al. 1990). Specified time periods 

are now commonly used to characterize animal space use such as seasonal, annual or 

multiannual home ranges (Kernohan et al. 2001). Home ranges ultimately provide important 

information on the minimum area of resources required to support functioning, self-sustaining 

populations.  

Resources can be defined broadly as any abiotic or biotic elements directly used by an 

animal (Morrison 2002). Resources need to be quantified into measurable units and when 

resources are used disproportionately to availability, use is thought to be selective (Manly et al. 

2002). Researchers have increasingly chosen a resource selection approach over strictly habitat 

selection, because it can account for variables that influence selection over static habitat types 

(McLoughlin et al. 2010). Resource selection has become a dominant tool for management and 

conservation, because it allows for the prioritization of resources for the focal species. Resources 

that are selected are assumed to positively influence fitness; however, quantification of this is 

difficult and rarely achieved (Boyce and McDonald 1999; Johnson et al. 2004). Resource 

selection occurs in a hierarchical fashion and is influenced by both spatial and temporal scales 

(Johnson 1980). Research has commonly ignored or failed to address temporal changes in 

resource selection by animals, resulting in incomplete pictures of wildlife and habitat 

relationships (Morrison et al. 1998). Sampling from a limited window in time can also overlook 

important resources associated with different animal behaviours (Palomares and Delibes 1992). 

Elk (Cervus elaphus) were once common across most of North America (Ranta 1979). 

Unregulated hunting, land use conflicts and habitat loss resulted in their extirpation from the 
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eastern half of the continent (Ranta 1979). The last known elk in Ontario was shot in 1893 

outside of North Bay (Seton 1927). Elk are a keystone species because they are  important both 

ecologically and economically. During the early 1930s, several attempts to reintroduce elk into 

Ontario failed (Ranta 1979). During the late 1990s, 443 elk were reintroduced into Ontario over 

four years (Rosatte et al. 2007). Burwash, Ontario was one of four release sites in the province, 

where over 170 elk were released (Rosatte et al. 2007). A small remnant herd of elk persisted in 

Burwash and the French River from former reintroductions. The current provincial population 

estimate is 648-916 (MNR website). Spatial behaviour and forage selection of the remnant 

population was studied prior to restoration efforts (Brown 1998; Jost et al. 1999). Martin (2011) 

investigated acclimatization to the new habitat by the reintroduced elk and whether highway 

construction disturbed their spatial behaviour. A complete picture of elk resource selection has 

yet to emerge and important questions remained unanswered. What is the current elk distribution 

in central Ontario, 15 years post-restoration? How does resource selection by elk change with 

season and time of day? What are the seasonally-critical resources for elk? The objectives of this 

thesis are to better understand population structure and resource selection across different 

temporal scales through the seasons. The specific objectives for my thesis can be summarized as 

follows: 

 Determine the spatial distribution of elk in central Ontario  

 Assess the impact of habitat quality on elk spatial behaviour, 

 Determine effects of temporal scale on resource selection 

 Determine daily movements and activity patterns for elk. 
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Chapter 1: Metapopulation dynamics and space use by reintroduced elk 

(Cervus elaphus) in central Ontario  
 

 

Introduction 
 

Accurate delineations of populations are paramount for understanding of population 

ecology and applications to, wildlife management and conservation. Populations, previously 

defined as an entity (Berryman 2002), are becoming increasingly viewed as a concept as they 

change with the parameters used to define them, such as spatial extent (Schaefer 2006). 

Populations are increasingly being defined by the spatial arrangement of individuals (Bethke et 

al. 1996; Mauritzen et al. 2002; Kamler et al. 2013).  The most appropriate scale to evaluate 

spatial structure will vary depending on the objectives or questions being addressed (Thomas and 

Kunin 1999). Recent research has identified the subpopulation as an appropriate spatial scale to 

obtain information meaningful to biological processes, such as population dynamics (Schaefer et 

al. 2001; McLoughlin et al. 2002; Edwards et al. 2008). 

Populations without any apparent spatial structure are deemed continuous or panmictic, 

where all individuals within the population freely mix and densities are uniform (Gilpin 1996). 

In the simplest terms, a metapopulation is a population of populations that is spatially structured 

(Hanski 1998). Originally coined by Levins (1969), metapopulation theory was modelled after 

the theory of island biogeography, characterized by different local extinction and recolonization 

rates of suitable habitat patches based patch size and distance to source populations (MacArthur 

and Wilson 1967). In classic metapopulation theory, each habitat has an equal probability of a 

dispersal event, the rate of colonization is proportional to the fraction of unoccupied habitats, and 
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each sub-population has the same extinction probability (Levins 1969; Levins 1974). Therefore, 

population persistence is a function of the rate of colonization being greater than the extinction 

probability. The Levins model assumes that there is no spatial correlation between the state of 

habitat patches, and that there are only two recognized states (vacant or at carrying capacity). 

However, Hanski (1991), and others (Harrison 1991; Simberloff 1995; Wiens 1996) state that 

relatively few natural systems conform to this model of metapopulation dynamics. More 

commonly, natural metapopulations consist of habitat patches of varying size and quality, 

indicating different extinction probabilities and thus more accurately reflect source-sink 

dynamics (Pulliam 1988; Hanski 1991). Hanksi (1991) further illustrates this example by 

describing four classes of metapopulations: 1) patchy, effectively a single population; 2) 

classical, following Levins’ model; 3) non-equilibrium, where patches operate as separate 

metapopulations; and 4) mainland-island, where a large population that is relatively immune to 

extinction  is surrounded by smaller satellite subpopulations with higher extinction probabilities. 

At its inception, metapopulation theory did not capture much of the attention of the 

scientific community. It was not until almost 20 years later that interest in metapopulations 

began to explode (Metz and Gyllenberg 2001). The explanation is simple; as habitat 

fragmentation increased globally at an alarming rate, many species occurred in habitat patches 

isolated from surrounding populations, thus forming metapopulations (Gutiérrez and Harrison 

1996; Stith et al. 1996; Hunter 2002; Baguette and Schtickzelle 2003; Wiegand et al. 2005; 

Cushman 2006). Analysis of population structures has often been focused on populations in 

highly fragmented landscapes, or species that are highly endangered (Beier 1996; Tero et al. 

2003). Many conservation initiatives, including restoration ecology, have used the framework of 

metapopulations, and often practitioners have no choice but to restore species in remaining local 



8 
 

habitat patches (Bleich et al. 1996). Few studies have assessed population structure in continuous 

landscapes, and even fewer have looked at the population structure of a species reintroduced. 

Wildlife restoration is becoming increasingly popular in conservation biology and post-release 

monitoring has largely focused on dispersal and survival (Kurzejeski et al. 1988; Warren et al. 

1996; Carrie et al. 1999; Gross et al. 2000; Young 2002; Ryckman et al. 2010; Yott et al. 2011), 

while few studies have addressed the structure of restored populations. Here I assess the spatial 

structure of elk (Cervus elaphus) 15 years after re-introduction, in an unfragmented landscape. I 

hypothesized that elk spatial structure would be panmictic because the landscape is fairly 

homogenous, consisting of unfragmented forests. If there are no physical or ecological barriers, 

dispersal throughout the study area should be high. Previous research in the study area has 

described two distinct groups of elk, one in Burwash and one occupying the French River delta 

(Ranta 1979; Brown 1998), therefore at most I would expect to find two distinct spatially 

structured subgroups. I also hypothesized that space use will be inversely related to habitat 

quality with larger space use occurring in poorer quality habitats because of reduced food 

availability.  

Materials and Methods  

Study Population 

 

Elk were reintroduced into Ontario in the early 1900s (Ranta 1979). Concerns over liver 

fluke (Fascioloides magna) transmission to cattle led to the removal of most elk populations in 

Ontario. A small remnant population of elk persisted in Burwash, and along the French River, 

20-40 km south of Sudbury (Ranta 1979, Brown 1998; Jost 1999). In the late 1990’s, elk were 

reintroduced into four different locations in Ontario over a four year period (Rosatte et al. 2007). 

Burwash received 172 elk between 1998 and 2001 (Rosatte et al. 2007). Elk were released over 
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15 years ago in Ontario and are now considered acclimatized to their environment in Ontario 

(Martin 2011). 

Study Area 

 

The study took place in central Ontario, from Georgian Bay north to highway 17 near the 

City of Greater Sudbury (Figure 1). The study area is located in the Great Lakes St. Lawrence 

Eco-Region, dominated by forests interspersed with lakes, rivers and wetlands. The area is 

typical of post-glacial Precambrian Shield landscape, with numerous granite ridges and shallow 

soils. Climate is classified as continental, consisting of cold temperatures, warm summers and 

the absence of a dry season (Peel et al. 2007). Mean annual temperature from the Sudbury airport 

from 1981 to 2010 is 4.1°C (Environment Canada 2013). Snowfall occurs from November to 

March and snow depth measurement on site throughout winter of 2012-2013 frequently 

exceeded 60cm. Forested regions are a mix of deciduous Populus spp., Acer sp., Quercus spp., 

Betula spp., and coniferous Pinus spp., Picea spp., and Abies balsamea tree species. The study 

area consists mostly of intact wilderness with a major highway bordering the study area to the 

east and trans-Canada highway bisecting the area east-west on the northern fringe. A railway line 

runs north-south through the center of the study area.  

Animal Capture/Monitoring  

 

At the onset of the present research, 24 adult females with functioning VHF collars were 

already present in the study area (Martin 2011). Elk were captured using net guns fired from 

helicopters. In February 2012, 13 elk (2 males and 11 females) were fitted with VHF radio-

collars (LMRT, Lotek Wireless, Newmarket, ON), equipped with a mortality sensor.  In 

addition, 6 adult females were fitted with GPS collars (Iridium, Lotek Wireless, Newmarket, 
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ON) programmed to record a location every hour.  I attempted to distribute collars evenly among 

groups throughout the landscape, and to use the 6 GPS collars on elk in the core area. Elk groups 

were located using a combination of aerial surveys from helicopters and reports from the public. 

All radio collared elk were located weekly using standard radio telemetry techniques (White and 

Garrott 1990). Bearings were recorded from the highest possible local elevation point using the 

loudest signal method (Springer 1979). Bearings were recorded using a Silva compass with the 

declination adjusted to 10°W. Locations were estimated using mostly 3 bearings and 

occasionally 2, due logistic restraints, if the difference in angles was >30°. Triangulation was 

completed using 1:50,000 UTM, Zone 17 topographic maps. Elk were radio tracked during 

daylight hours from 2 hours after sunrise to 2 hours prior to sunset. Telemetry error was 

evaluated by placing dummy collars throughout the study area. Location error was 170m (SE ± 

20.5m n=56). Mortality signals were investigated immediately upon change in pulse rate to 

determine cause of death. Cause of death was determined by the presence of predator sign (scat, 

tracks), external injuries and field necropsies were conducted when predation was not evident. 

Aerial surveys were flown twice a year in early winter and late winter using an EC 130 Ministry 

of Natural Resources (MNR) helicopter. GPS collar data were sub-sampled to retrieve 4 fixes per 

day separated by 6 hour intervals, thus retaining one fix per 24 hour period at 04:00, 10:00, 16:00 

and 22:00 hours, respectively. Only fixes that had a positional dilution of precision of ≤ 5 and 3 

dimensional vertical fix status were used in the analysis.  

Spatial Analysis 

 

Annual home range sizes were calculated for each individual that had a sufficient number 

of relocations. To determine sufficient relocations, each individual home range size was 

calculated using a minimum convex polygon (MCP) (Mohr 1947) and bootstrapped using 100 
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iterations. Individual home range size estimates that did not reach an asymptote were discarded. 

Asymptotes were typically obtained between 25 and 50 radio locations for VHF collared elk. 

Fixed kernel home range size estimates were calculated for each elk that had sufficient 

relocations. Fixed kernel estimates with the least squares cross validation (LSCV) method were 

used to calculate the utilization distribution for 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 

probabilities to assess space use throughout the utilization distribution. MCP was because it is 

the oldest and most widely used estimate and it allows for comparison to older studies. Kernel 

estimates were also used because they are more accurate estimates in many situations. Sample 

sizes varied among individuals; however, evidence suggests that differences in home range size 

estimates are explained more by variance among individuals than by different home range 

estimation methods, once a sufficient number of relocations are obtained (Borger et al. 2006). 

Home range size was compared between elk occurring in high density to elk occurring in low 

density using an unpaired t test. Elk association was assessed using Assoc1 software in order to 

meet the assumptions of animal independence (Weber et al. 2001). Of the elk that were closely 

associated (within 200m, 70% of the time), only one was randomly selected for analysis. 

Cluster Analysis 

 

Fuzzy clustering (Odeh et al. 1992) was used to assess the spatial organization of elk in 

my study area. Individuals used for cluster analysis required at least 7 months of data. I 

calculated the median easting and northing in the Universal Transverse Mercator coordinate 

system for each animal to perform the cluster analysis similar to Bethke (1996) and Schaefer et 

al. (2001). The median was chosen as the most appropriate measure of central tendency, because 

it is unbiased to non-normal distributions and not sensitive to outliers (Bethke 1996; Zar 1999). 

Applying Fuzzy c means clustering to a data set requires selecting a weighting exponent (m), 
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which determines the degree of fuzziness applied to the membership coefficients. At m=1, the 

algorithm equates to a hard clustering analysis where membership is exclusive. Previous work 

has shown that m performs optimally from 1.5 to 3 (Bedzek et al 1984). I chose m = 2 to obtain 

relative fuzzy classification. Results were investigated by varying m from 1.5 to 3 and consistent 

results were obtained across the spectrum. In order to determine the appropriate number of 

clusters, the average silhouette width of 2 to 15 clusters was calculated. The average silhouette 

width is a validation for cluster analysis and measures tightness and separation of each cluster 

(Rousseeuw 1987). Average silhouette width is maximized when the appropriate number of 

clusters is selected (Rousseeuw 1987).  

Hard clustering was used for comparative purposes. I used hierarchical clustering 

(Ward’s method) with Euclidean distance. Hard clustering evaluates clusters based on all or 

nothing, where members either are, or are not part of a cluster, as there is no graded membership 

assigned. I determined the appropriate number of clusters by comparing the sum of squared error 

for a number of cluster solutions and identified an elbow in the plot (Everitt and Hothorn 2009). 

The elbow in the plot indicates that additional clusters do not have a strong impact in reducing 

the sum of squared error.  Results were displayed using a dendrogram. Hard and fuzzy cluster 

analysis was performed using the Cluster package in R (Maechler et al. 2013). 

Based on the results of the cluster analysis, individuals were assigned to the cluster where 

they had the highest membership coefficient. All relocations of elk belonging to a cluster were 

pooled. Space use for each cluster was evaluated with a fixed kernel method for 95% and 50% 

(core) probabilities to visualize spatial distribution of the cluster using the smoothing parameter 

plugin in Geospatial Modeling of the Environment (Beyer 2012). The plugin smoothing 

parameter was used instead of LSCV because several elk were pooled resulting in large numbers 
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of relocations near boundaries and LSCV often fails to converge (Gitzen et al. 2006). The degree 

of overlap was calculated for clusters that had overlapping boundaries at the 95% level. Overlap 

was calculated using the “utilization distribution overlap index” (UDOI), because it also 

considers the probability of use in the estimation (Fieberg and Kochanny 2005). Measures of 

UDOI were calculated in R using “adehabitatHR” (Calange 2006).  Distances among core use 

areas (50% fixed kernel) were calculated for each cluster and finite survival rates were calculated 

for each identified cluster. 

Results 

 

From December 2011 to August 2013, 3143 VHF relocations were obtained from 36 

individual elk. Individual elk relocation numbers ranged from 4 to 136. Of the 6 GPS collars, 5 

experienced failure prior to the projected retrieval date. GPS collar activity ranged from 7 to 18 

months.  

Cluster Analysis 

 

Fuzzy c means clustering and hard clustering provided consistent groupings for elk 

spatial data. Both fuzzy and hard clustering resulted in 5 clusters (Figures 1.2 and 1.3). Average 

silhouette width was highest (0.7) for 5 clusters (Figure 1.2), indicating a good resolution into 

well-defined clusters (Figure 1.4). Average maximum membership coefficient for each animal 

was 0.76 and ranged from .61 to 0.98 (Table 1.1). The largest cluster consisted of 22 elk located 

in Burwash with an average silhouette width of 0.76. French River represented a cluster 

consisting of 4 animals with an average membership coefficient of 0.71. Raft Lake, an area 

immediately south of the City of Greater Sudbury, was a cluster containing 6 individuals with an 

average membership coefficient of 0.82. Another cluster was defined in Worthington with 2 elk, 
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approx. 30km west of the City of Greater Sudbury. The cluster with the lowest average silhouette 

width was Sled Lake, containing 7 individuals with an average membership coefficient of 0.61. 

This group appeared to be the most sporadic with subgroups located within the cluster. Aerial 

surveys confirmed this, as the locations of the members of this cluster were the hardest to 

predict. This was reflected in the more fuzzy classification of this cluster. Raft Lake and Sled 

Lake were the two subpopulations with the closest linkage distance (Figure 1.5). 

Dispersal events between subpopulations were not frequently observed. Only one elk 

dispersed from one subpopulation to another during the course of the study. Elk 151.781 spent 

two winters with the Burwash subpopulation, but dispersed to the Worthington subpopulation in 

August 2013. Each subpopulation occupied spatially distinct areas (Figure 1.6). Elk in the 

Burwash subpopulation had range overlap with the Sled Lake subpopulation only during winter. 

Elk from Burwash and Sled Lake subpopulations were occasionally observed together in winter; 

however, members of the Burwash subpopulation moved south each spring with no spatial 

overlap in any other season. Members of the Sled Lake subpopulation were never found in the 

field complex. Only the French River subpopulation contained elk whose individual home ranges 

did not overlap with other members of the same subpopulation. 

From December 2011 to August 2013, 9 mortality events were investigated. Wolf (Canus 

lycaon) predation and train collision were the most common sources of mortality (Table 1.2). 

The Burwash sub-population contained the largest number of animals and had the highest 

incidence of mortality, accounting for 55% of the detected mortality events. The most common 

cause of death in Burwash was train collision, accounting for 60% of the mortality events, 

followed by wolf predation (20%), and gunshot (20%). There is no open season for elk in this 

study area and the gunshot mortality was a case of mistaken identity by a hunter. Raft Lake, Sled 
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Lake and French River each had one wolf predation event. One elk in Sled Lake died of 

unknown causes. The unknown cause of death occurred 2 months after capture, so post capture 

myopathy was ruled out. Throughout the duration of the study there were several confirmed elk 

sightings outside of the current known elk distribution range (Figure 1.1). In October 2012, a 

young bull elk washed up on the shore of Badgley Island, west of Killarney, approx. 50km from 

the closest subpopulation. In February 2013 a young bull elk was photographed on a farmer’s 

field in New Liskeard, approx. 150km northeast of any known elk subpopulation. Also, in 

February 2013, two cow elk were seen by the regional MNR biologist in Gogama, approx. 

150km north of any known elk subpopulation. Hunters regularly report elk sightings and 

breeding activity (bugling) around Agnew Lake, approximately 30km west of the Worthington 

subpopulation. In August 2012 a young bull was photographed from the north shore population, 

one of the other release sites in Ontario, and had travelled over 80km to the town of Webwood, 

approximately 40km west of the Worthington subpopulation.  

Space Use and Density 

 

The Burwash subpopulation had the highest density of elk, as determined by aerial 

surveys, and occupied the smallest range area with the exception of Worthington. Members of 

the Worthington group were collared in February 2013 and I obtained only 7 months of spatial 

data for those animals. High apparent density resulted from the limited space used by the 2 

collared elk and limited time of observation. One of the elk was re-collared from the original 

release in 1999, and likely restricted its space use due to old age. Thus data from the 

Worthington subpopulation should be viewed with caution. Population density ranged across 

subpopulations from 0.05 elk/km
2
 at French River to 0.88 elk/km

2 
at Burwash (Table 1.3). 
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Out of the 5 subpopulations identified by the cluster analysis, 3 had population ranges 

with some degree of mutual overlap (Figure 1.6). The Sled Lake subpopulation range overlapped 

with the Raft Lake subpopulation to the north, and with the Burwash subpopulation to the south. 

The UDOI overlap for the Sled Lake subpopulation was greater for Raft Lake (0.39) than for 

Burwash (0.14). There was no overlap between 50% core use areas among any subpopulations. 

Distances between core use areas among subpopulations ranged from 11.1 to 58.1km (Table 

1.4). 

In order to compare individual home range sizes, elk in low density subpopulations were 

pooled because of low sample sizes. This resulted in the comparison of individual home ranges 

from the highly dense core, Burwash subpopulation with individual elk home ranges from lower 

density surrounding satellite subpopulations. Worthington was excluded from this analysis 

because they had less than one year of data. In total, 39 elk had a sufficient number of radio 

telemetry locations for home range analyses. Of the 39 elk, 22 belonged to the core (Burwash 

subpopulation) and 17 were pooled from surrounding satellite groups. Of the 17 elk from 

satellite groups, 4 were from the French River subpopulation, 6 were from Raft Lake and 7 were 

from Sled Lake. Space use was consistently larger for satellite subpopulations compared to the 

core (Burwash subpopulation) for MCP (P<0.01), 95% fixed kernel (P<0.01), 50% core use 

areas (P<0.01), and throughout the utilization distribution (Figures 1.7 and 1.8). 

Average MCP home range estimate for elk from the Burwash subpopulation was 47.1 

km
2
 (SE = 4.3). Average MCP home range estimate for members of satellite groups was 74.6 

km
2
 (SE = 8.4; Figure 1.6). Average space use using the 95% fixed kernel method for core and 

satellite groups was 47.9 km
2
 (SE=6.3) and 86.4 km

2
 (SE = 13.3), respectively. Mean core use 

area estimates (50% fixed kernel) were 11.3 km
2
 (SE = 1.6) and 21.5 km

2
 (SE = 3.6) for core and 
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satellite groups, respectively.  Space use was consistently larger across the utilization distribution 

for satellite individuals, as compared to those from the core (Figure 1.8). 

 

Discussion 

 

I found strong evidence for the existence of an elk metapopulation in the study area. Both 

hard and fuzzy clustering methods found optimal solutions at 5 clusters. Of the different 

metapopulations described by Harrison (1991), elk in the Sudbury area appear to resemble the 

mainland-island structure, with an obvious core surrounded by smaller satellite groups. 

Interestingly, subpopulations surrounding the core were smaller in regards to numbers and 

density, but utilized a larger area. Similarly, individual space use by elk in the satellite 

subpopulations was significantly larger than for the members of the core subpopulation. 

Decreased space use and higher density in the core subpopulation may indicate higher habitat 

quality. The core subpopulation had an atypical habitat feature of 7.5 km
2
 of abandoned farm 

fields from a former federal prison that elk actively selected (Chapter 2). In the studied elk 

population, there were no physical barriers among subpopulations and spatial structure could be 

regulated by density-dependent habitat selection (Morris 1989). My study was limited to mostly 

female spatial behaviour. Only 2 young males (both under 2.5 years of age) were radio-collared. 

Although in some populations young males are more likely to disperse (Greenwood 1980), both 

males remained in their designated subpopulations. It is possible that the metapopulation 

structure would be somewhat different if adult males were included in the analysis. The mating 

system in elk is characterized by mature bulls competing for harems of cows. Despite bull 

dominance over other males, movement patterns of calf:cow groups during the rut is primarily 
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dictated by one or more adult females. Subpopulation formation in elk may be driven by female 

spatial behaviour, as seen in caribou (Schaefer et al. 2001).  

True metapopulation structures, following the original definition of Levins (1969), are 

rarely observed in natural populations (Harrison 1991). Variations described by Harrison (1991) 

are more commonly observed. The Tule elk (Cervus elaphus spp. nannodes), similar to other elk 

across North America, was almost hunted to extinction. The current population of Tule elk went 

through an extreme bottleneck, and has since been translocated into numerous areas across 

California (McCullough et al. 1996; Williams et al. 2004). A metapopulation of Tule elk in 

California has been created by translocation; however, natural metapopulations have been 

identified in restoration areas, specifically the Owens Valley population (McCullough et al. 

1996). Most identified metapopulations have resulted from landscapes becoming highly 

fragmented (Wiegand et al. 2005; Cushman 2006). In central Ontario elk and the Tule elk 

example, metapopulations were established after translocation, demonstrating the utility of the 

metapopulation model also in the study of habitats that are not highly fragmented. 

Metapopulations are not static regardless of the model they resemble. Metapopulation 

persistence is influenced by demographic, genetic and environmental stochasticity (Shaffer 

1981), predation, competition (Levins 1974), habitat (Harrison 1991), and anthropogenic 

disturbances (Ehrlich and Ehrlich 1981). A great utility of applying graded membership within 

and among subpopulations is the potential for identifying underlying mechanisms related to 

dispersal and metapopulation dynamics (Schaefer and Wilson 2002). In my study, the duration 

and sample size were insufficient to identify meaningful demographic trends in any 

subpopulation. Longer term studies, however, may be able to use fuzzy clustering to monitor 

temporal changes in metapopulations. I found a strong 5 cluster solution; however, one cluster 
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(Sled Lake) had a higher degree of fuzziness associated with its cluster. With lower individual 

membership coefficients and the lowest average silhouette width, could mean different extinction 

and dispersal probabilities for this subpopulation. Individuals with a reduced maximum 

membership coefficient could also be more likely to disperse. Alternatively, the overall 

heterozygosity may be greater in subpopulations that have lower membership coefficients from 

reduced philopatry and possibly increased gene flow. Incorporating fuzzy analysis into 

metapopulation models could reveal deterministic cause-and-effect relationships. Intense 

monitoring of populations could relate changes in fuzzy clustering analysis to changes in 

population density, habitat alterations, and other influential factors. Recently, fuzzy clustering 

analysis has been applied in numerous locations to identify population structures of caribou 

(Schaefer et al. 2001; Schaefer and Wilson 2002; Courtois et al. 2007; Shuter and Rogers 2012; 

Schaefer and Mahoney 2013) and white tailed deer (Klaver et al. 2008). Here, I applied fuzzy 

clustering to elk for the first time to reveal population structure. The ability of fuzzy clustering to 

incorporate ambiguity among natural populations should make it a powerful tool for unraveling 

the dynamics and spatial structure of populations (Schaefer and Wilson 2002). 

The probability of extinction in each subpopulation may vary and the studied elk 

population structure may also reflect possible source – sink dynamics (Pulliam 1988). The 

relatively high density of elk in Burwash, along with the atypical habitat (the abandoned field 

complex), may represent higher habitat quality, and thus a source. The lower densities of elk and 

increased space use of surrounding satellite subpopulations may reflect lower habitat qualities 

with some, possibly, representing sinks. Sinks can only be identified with long-term trends in 

reproductive success and dispersal rates. Using population density as an indicator of habitat 

quality, however, can be misleading (Van Horne 1983). Animal densities can be a misleading 
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indicator of habitat quality when estimates are not taken during the limiting season (e.g. winter), 

when multi-annual variability in a populations is caused by small scale variation in food 

abundance, and finally, when dominant individuals exclude subordinates from high quality 

habitats (Van Horne 1983). My estimates were derived from early and late winter aerial surveys, 

circumventing the first concern. Since all elk subpopulations were in relatively close proximity 

to one another, small scale changes in food abundance due to abiotic factors were likely to 

equally affect all subpopulations. Lastly, territorial behaviour is largely limited to prime bulls 

during the breeding season (late summer to early fall). The other possibility, however, is that 

higher density exists in Burwash because this is the location of one of the release sites. This is 

unlikely, because 2 additional release sites were located near Halifax Lake, approximately 14 km 

west of Burwash and elk from these release sites either dispersed to Burwash or outlying areas, 

and opted not to winter in the release area. If the surrounding subpopulations were identified as 

sinks, this would impact elk management decisions. Sink habitats are known to have high 

abundances of predators (Lloyd et al. 2005). In my study area, predation by wolves occurred in 

all elk subpopulations, indicating that predators were present throughout the area. Density of 

wolves among subpopulations may differ and would be interesting to evaluate.  

Metapopulations and source-sink dynamics can be influenced by density-dependent 

habitat selection (Morris 1989). In my study, elk subpopulations may have been structured on the 

basis of density dependent habitat selection and the ideal free distribution. The ideal free 

distribution theorizes that individuals should distribute themselves across the landscape at all 

times in order to maximize their fitness (Fretwell and Lucas 1970; Fretwell 1972). As the core 

population density increases, individual reproductive success would be expected to decrease 

(Morrison 1989; Coulson et al. 1997). Elk may occupy lower quality habitats in surrounding 
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subpopulations without incurring any loss in fitness if they follow the ideal free distribution 

model. 

  A major issue in evaluating the spatial structure of a population is that it is scale sensitive 

(Thomas and Kunin 1999). Populations can exist on multiple scales and vagueness among them 

is the cornerstone to a more inclusive population concept (Schaefer 2006). I studied population 

structure at the local scale and scaling up would likely produce different results. There were four 

separate elk release areas in Ontario (Rosatte et al. 2007), separated by 200 km or more. 

Evaluating the population structure at a regional level may reduce the metapopulation structure 

in the Burwash/French River region into a single panmictic population. Determining the 

population structure throughout the province could provide insights into the success and status of 

elk. If elk were to establish metapopulations at a larger scale, it would have a positive impact on 

restoration of elk in Ontario. One of the essential requirements in metapopulation dynamics is 

the genetic connectivity among subpopulations (Levins 1969). If elk subpopulations showed 

even low levels of connectivity at a larger scale, it would enhance their genetic diversity and 

reduce extinction probabilities.   

Conclusions and Management Implications 

 

Elk spatial distribution in the Sudbury area reflects a metapopulation structure. 

Subpopulations are spatially structured and dispersal between even the farthest separated 

subpopulations was observed. Because of the spatial structure, management decisions 

implemented in one subpopulation cannot be assumed to impact neighbouring subpopulations. 

The observed metapopulation structure is most similar to the mainland/islands metapopulation 

model. In metapopulation management, this would translate into differing conservation 
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priorities. The Burwash subpopulation was identified as an obvious core (and potential source) 

and thus, is most important to manage for the continued persistence of the metapopulation. 

Human-induced mortality was the greatest cause of reduced survival in the Burwash 

subpopulation. Therefore I recommend that mitigation of human-caused mortality in the core 

area be a priority. Understanding the whole metapopulation dynamics could also have important 

management implications. It is thus recommended that survival rates within each subpopulation 

be evaluated in order to determine whether smaller satellite subpopulations are indeed sinks, 

reliant on immigration from the source, or if they are self-sustaining at lower densities following 

the ideal free distribution theory. The metapopulations in the study area would benefit from 

monitoring of juvenile elk survival in each subpopulation to determine cause-specific mortality 

and dispersal. A metapopulation was found based on spatial data of elk, it would also be 

interesting to see if the same population structure is found using genetic samples for each 

identified subpopulation.  
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Figure 1.1. Elk range consisting of a minimum convex polygon around all elk 

 radio locations and confirmed elk sightings.   
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Figure 1.2. Average silhouette width for clusters 2 to 15 on spatial data for 41 elk in  

the Sudbury area. Appropriate number of clusters is defined when average silhouette 

width is maximized (K=5). 
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Figure 1.3. Within group sum of squares for clusters 2 to 15 using Ward’s method. 

Appropriate number of clusters is indicated by a bend or elbow in plot (K=5). 
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Figure 1.4. Silhouette plot for fuzzy membership coefficients of 41 elk in the Sudbury area. Plot 

is 5 clusters Si= average silhouette width for each cluster 1:5. Cluster 1 = Burwash, cluster 2 = 

French River, cluster 3 = Raft Lake, cluster 4 = Sled Lake, cluster 5 = Worthington.  
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Figure 1.5. Cluster dendrogram of elk collar frequencies in the Sudbury area binned into a 5 

cluster solution using hierarchical agglomerative clustering (Ward’s method) based on 

Euclidean distance. A=Burwash, B= French River, C= Worthington, D= Sled Lake, E= Raft 

Lake. 
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Figure 1.6. Elk metapopulation structure in the Sudbury region. Solid lines represent pooled 

individuals that have a maximum fuzzy membership coefficient > 0.7. Dashed lines represent 

pooled individuals that have a maximum membership coefficient < 0.7. Subpopulation 

boundaries are delineated using 95% fixed kernel estimates and the Plugin smoothing parameter. 
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Figure 1.7. Boxplot showing home range size estimates (MCP) for elk belonging to core and 

satellite groups. Difference was significant with and without outliers (P<0.05). Error bars 

represent range of values and circles represent outliers. 
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Figure 1.8. Elk space use across the utilization distribution for core and satellite subgroups in the 

Sudbury area. Bars represent standard error of the mean. Diamonds represent the core 

subpopulation and squares represent the satellite groups. 
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Table 1.1. Average maximum fuzzy membership coefficients 

 for 5 subpopulations of elk in the Sudbury area. SE = standard  

error of the mean, N= number of elk assigned to cluster. 

 Subpopulation Mean (SE) Min       Max            N 

Burwash 77.6 (3.2) 47 92 22 

French River 75.8 (3.0) 70 81 4 

Raft Lake 82.3 (7.1) 48 94 6 

Sled Lake 61.2 (4.5) 43 76 7 

Worthington 98 (0) 98 98 2 
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Table 1.2. Cause-specific mortality events for 4 subpopulations of radio collared elk in the 

Sudbury region in 2012/2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cause of Mortality Number of Cases Year Subpopulation 

Wolf predation 4 2012/2013 Burwash (1), French 

River (1), Sled Lake (1), 

Raft Lake (1) 
Train collision 3 2013 Burwash (3) 

Gunshot 1 2012 Burwash (1) 

Unknown 1 2012 Sled Lake (1) 
  

Total 9  Burwash (5), French 

River (1), Sled Lake (1), 

Raft Lake (1) 
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Table 1.3. Elk density and survival rate among the 5 subpopulations 

in the Sudbury area. 

Subpopulation             Density elk/km2         SE       Survival rate 

Worthington 0.51 0.21                      N/A 

Sled 0.22 0.05 0.71 

Raft 0.17 0.03 0.83 

French 0.05 0.01 0.75 

Burwash 0.88 0.06 0.78 

*N/A – survival rate not available 
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Table 1.4. Distance (km) between core use areas (50% fixed kernel) of 5 

subpopulations identified for elk in the Sudbury area.  

  Burwash    French River       Sled Lake        Raft Lake 

Burwash 
    French River 17.8 

   Sled Lake 11.1 28.4 
  Raft Lake 18.3 39.2 11.6 

 Worthington 47.2 58.1 36.9 39.5 
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Chapter 2: Seasonal space use and diel patterns of resource selection by elk 

(Cervus elaphus) in central Ontario 

 

Introduction  

 

 Understanding animal space use and resource selection is fundamental to management 

decisions and land use practices in conservation and wildlife management. Resource selection is 

firmly rooted in the theory of natural selection and will favour animals that utilize resources that 

differentially increase their fitness relative to their conspecifics (Manly 1985). Understanding 

resources critical to a particular species is essential for increasing our knowledge of factors 

driving ecological processes. Typically, no one resource or habitat can satisfy all the needs of an 

animal, and therefore different resources may be used for different activities or during different 

seasons (Manly 2002; Boyce 2006; Moe et al. 2007; Godvik et al. 2009). A common trade-off in 

ecology exists when high quality forage exists in habitats that may have a higher risk of 

predation. Therefore animals must make a decision between secure resting locations with low 

food availability and high quality food patches in riskier environments (Mysterud and Ims 1998). 

Resource selection is a dynamic process and is influenced by a variety of factors including 

predation (Creel et al. 2005), population density (van Beest et al. 2013a), food availability 

(Johnson and Sherry 2001), anthropogenic disturbances (Sawyer et al. 2006) and spatial and 

temporal scales (Beyer and Haufler 1994; Boyce et al.  2003).  

 Space use is a function of an animal’s ability to meet all of its energetic and reproductive 

requirements and can be affected by seasonal distribution of resources (Luccarini et al. 2006). 

Space use by animals was first formally described by Burt (1947), who defined a home range as 

the area normally traversed by an individual while foraging, mating and rearing young. Useful 
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additions to the definition of home range include a defined probability of locating the animal, as 

well as a specified time period (i.e. multi-annual home range, annual home range and seasonal 

home range; Kernohan et al. 2001). Spatial behaviour of an animal is influenced by numerous 

factors including body mass, sex and age (Mysterud et al. 2001), forage availability (Anderson et 

al. 2005) and predation (Gower et al. 2008).  

Resource selection is now commonly evaluated using resource selection functions (RSFs) 

(Boyce and McDonald 1999; Boyce et al. 2002). A RSF is defined as any function that is 

proportional to the probability of a resource unit being used (Manly et al. 2002). In order to 

determine resource selection, used resources are compared to unused (used/unused design) or are 

compared to resources assumed to be available (use/available design) (Manly et al. 2002). When 

resources are used disproportionately to their availability, use is thought to be selective (Johnson 

1980). A hierarchy in resource selection exists, starting with the geographic range of a species 

(1
st
 order selection), selection of a home range within the geographic range (2

nd
 order selection),  

selection of resources within the home range (3
rd

 order selection) and finally the procurement of 

a food item at a feeding station (4
th

 order selection) (Johnson 1980). There are 3 study designs 

that can assess resource selection in wildlife populations summarized by Thomas and Taylor 

(1990). Design 1 assesses selection at the population level where used resources are compared to 

those available across an entire study area. In Design 1, individuals are not identified and 

selection is assumed to be equal among all individuals within the population. Design 2 identifies 

individual resource use from marked individuals in the population, but availability is assumed to 

be the same for all individuals. Design 3 is similar to design 2, except that resource availability is 

measured separately for each individual.  
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Several researchers have focused on spatial scales in resource selection (Schaefer and 

Messier 1995; Rettie and Messier 2000; Boyce et al. 2003; McLoughlin et al. 2004; Beasley et 

al. 2006; Ciarniello et al. 2007a). However, few studies have addressed the effect of temporal 

scales on resource selection despite time being more influential on resource availability in many 

circumstances (Fahrig 1992). Selection can change when availability of resources increases or 

decreases, creating a functional response or variation based on trade-offs between activities such 

as foraging and resting (Mysterud and Ims 1998). Animals require different resources for such 

activities and considering these activities occur on a daily basis, determining resource selection 

across the diel period should reveal novel insights into animal resource requirements. Research 

has found changes in resource selection based on time of day in cervids (Bier and McCullough; 

Beyer and Haufler 1994; Godvik et al. 2009), bears (Moe et al. 2007) and carnivores (Onorato et 

al. 2011). Changes in resource selection are expected with changing availability of resources, 

requiring study duration to be as short as possible (Manly et al. 2002). Seasonal changes in 

availability of resources have resulted in RSFs separated by this temporal scale (Boyce 2006). 

Trade-offs associated with a finer temporal scale based on the time of day are important and 

often overlooked (Mayor et al. 2009).  

Research assessing the effects of temporal changes on resource selection are lacking 

compared to studies assessing the effects of spatial scales. It has been well established that 

selection varies across spatial scales; however, less is known about the variation in selection 

within a single scale across the diel period. Currently, resource selection data are used to guide 

management and conservation decisions regarding land use practices and are based on sampling 

methods using only daytime sampling of animals. In this study I assessed the temporal effects of 

resource selection and space use during four seasons across the diel period in a large herbivore, 
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the North American elk (Cervus elaphus). I hypothesized that resource selection would differ 

throughout the diel period because of trade-offs associated with foraging and resting behaviours. 

Thus I predicted that high quality open foraging areas would be utilized primarily during 

nocturnal hours, while sheltered, forested areas would be selected during the day. I also tested 

the hypothesis that seasonal space use would be inversely related to food availability. I predicted 

that space use and daily movements would be larger in winter due to reduced food availability 

and smallest during summer when food availability is greater. 

Methods 

Study population 

 

I studied a reintroduced population of elk in central Ontario. Elk were reintroduced from 

Elk Island National Park from 1998 to 2001. In my study area, 172 elk were reintroduced over a 

four year period (Rosatte et al. 2007). Now acclimatized to their environment, elk have changed 

from exploratory to home ranging behaviour (Martin 2011). The current population size estimate 

is 180-200 animals (Joe Hamr pers comm). 

Study Area  

 

The study was conducted in Burwash, Ontario (46° 14' 34.894" N,  80° 51' 10.454" W) 

located 48km south of the City of Greater Sudbury. The study area is located in the Great Lakes 

St. Lawrence eco-region, a transitional mixed wood zone between the boreal forest to the north 

and the Carolinian forest to the south. The area consists mainly of conifer and hardwoods in a 

mixed heterogeneous forest. Common tree species include white spruce (Picea glauca), balsam 

fir (Abies balsamea), black spruce (Picea mariana), jack pine ((Pinus banksiana), white pine 

(Pinus strobus), largetooth aspen (Populus grandidentata), trembling aspen (Populus 
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tremuloides), white birch (Betula papyrifera), red oak (Quercus rubra) and red maple (Acer 

rubrum). Common understory species include blue bead lily (Clintonia borealis), lily of the 

valley (Mianthemum canadense), bush honey suckle (Diervilla lonicera), bunchberry (Cornus 

canadensis), starflower (Trientalis borealis), trout lily (Erythronium americanum) and false 

Solomon’s seal (Mianthemum racemosum).  The climate is continental, cold with warm summers 

and no dry season (Peel et al. 2007). Snow accumulates from November through March. In the 

winter of 2012, snow accumulation from the Sudbury airport measured 250.4cm (Environment 

Canada 2012). An early spring led to a fast melt and the area was snow free by March 16. The 

winter of 2013 had similar snow accumulation of 248.7cm (Environment Canada 2013); 

however, below average spring temperatures caused the onset of the snow-free period to be 

delayed until April 26. Snow depth frequently exceeds 60cm from onsite measurements. The 

area has numerous granite ridges with elevations ranging from 200m – 270m above sea level. 

The average elevation throughout the study area is 228m above sea level. The study area is 

bordered by a major 400 series highway to the east with newly installed wildlife fencing and 

wildlife over and underpasses. A CNN railway runs from north to south through the study area. 

The study area is dominated by forests (63%), interspersed with numerous wetlands (5%). A 

unique feature of this area is the persistence of large open grassland habitats (12%, approx. 

7.5km
2
), remnant from an industrial prison farm operational from 1914 to 1973. The eastern half 

of the property has been transferred to the Department of National Defence (DND) which 

currently uses the area for training. A very small amount of logging has occurred in the study 

area (3%). The study area supports healthy populations of both moose (Alces alces) and white 

tailed deer (Odocoileus virginianus). The predator assemblage is rich and diverse including black 
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bear (Ursus americanus), gray wolf (Canis lupus), eastern wolf (Canis lycaon), coyote (Canis 

latrans), lynx (Lynx canadensis) and bobcat (Lynx rufus). 

Animal Capture/ Monitoring 

 

Elk were captured aerially by net guns fired from helicopters. Captured animals were 

fitted with a cattle ear tag to facilitate identification of individuals.  Six females were fitted with 

GPS Iridium (Lotek wireless Newmarket, ON) collars, programmed to take a fix every hour for 2 

years. Three adult female and two male (2.5 years old) were fitted with VHF radio collars 

(LMRT, Lotek wireless Newmarket, ON ). Animal capture was approved by animal care 

protocol # 2012-01-01 at Laurentian University. In addition, 13 female elk with functioning VHF 

collars were already present in the study area (Popp et al. 2013). VHF collared individuals were 

radio-tracked weekly during the day and at night. Day was defined as the interval from at least 

one hour post sunrise to one hour prior to sunset. Night was defined as the period between one 

hour post sunset to one hour before sunrise. Elk were tracked using standard telemetry 

techniques (White and Garrott 1990). Locations were estimated through triangulation with a 

standard H or a Yagi 3 element antenna using a Lotek SRX 400 telemetry receiver or a bio 

tracker receiver (FW9Biotracker). Three bearings were used to accurately estimate an animal’s 

position on most occasions; however, due to logistic constraints, only 2 bearings were used if the 

difference in angles was > 30°. Locations were triangulated on a topographic map scale 1:25 000 

UTM Zone 17T. Location estimates encompassed all field conditions during both day and night, 

as well as leaf-on and leaf-off periods throughout all seasons. Error was evaluated by placing 

dummy collars throughout the study area in locations frequented by elk. Location error was 

170m (SE ± 20.5m n=56).   
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GPS collars were screened for accuracy using Positional Dilution of Precision (PDOP) 

error estimates and vertical fix status. Only those that acquired a 3 dimensional vertical fix were 

included in the analysis. In order to obtain precise location estimates, I retained fixes with a 

PDOP of ≤ 5, reducing mean error to 9m (D’Eon et al. 2002). One issue often encountered in 

telemetry studies is the duration of time between subsequent fixes. Intervals too short in time 

may not allow successive locations to be treated as independent, a common assumption for most 

habitat selection analyses (Erickson et al. 2001). Intervals recorded too far apart yield a low 

number of samples for the study, making inferences about populations difficult. Current GPS 

technology allows for the collection of large amounts of data and in order to meet independence, 

some studies would need to discard over 90% of the data, which is unrealistic. Multiple locations 

obtained per day from GPS collars are frequently used in analyses (Sawyer et al. 2007; Proffitt et 

al. 2010; Meisingset et al. 2013). In order retain as much GPS information as possible; I used 4 

fixes per day separated by 6 hour intervals. One fix was kept for hours 04:00, 10:00, 16:00 and 

22:00 each day. This allowed for 2 fixes per day and 2 fixes per night periods each day. Both 

VHF and GPS locations were visually screened in Arc GIS to ensure each location was plausible. 

To identify closely-associated individuals, association coefficients were calculated for each elk 

in the study area using Assoc1 software based on a temporal association of 70% and a spatial 

association of 200m (Weber et al. 2001). If two or more individuals were found to be associated, 

one was randomly selected to be retained for analysis. 

Seasonal Space Use 

 

Seasonal home ranges were delineated for each individual with at least 10 radio telemetry 

points during a given season (Courtois et al. 2007); however, most elk had >25 relocations per 

season. Seasons were delineated based on elk behaviour following Popp et al. (2013): winter (1 
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Janurary-31 March), spring (1 April-30 June), summer (1 July–30 September) and fall (1 

October-30 December). Individuals with seasonal home ranges for consecutive seasons (i.e 

spring 2012 and spring 2013) were averaged. Differences in seasonal space use were assessed 

using the conventional minimum convex polygon (MCP) (Mohr 1947) and fixed kernel methods 

(Seaman and Powell 1996), using the Least Squares Cross Validation smoothing parameter to 

identify 95% and 50% (core) utilization distributions. MCP home range estimates were 

computed using Geospatial Modelling of the Environment (Beyer 2012). Kernel estimates were 

computed using R package adehabitatHR (Calenge 2006). Differences in space use between 

seasons were assessed using a linear mixed model with individual elk as a random effect in the R 

package nlme (Pinheiro et al. 2013).  

Seasonal Movements 

 

Seasonal movements were calculated for the 6 elk outfitted with GPS iridium collars and 

organized in to 4 seasons as previously described. Daily movements were determined by 

calculating consecutive step lengths for all relocations and summed for a 24 hour period. 

Movements across the diel period were assessed for each season. Step lengths consisted of 

straight line distances between two consecutive fixes and were calculated for each elk for each 

hour over each 24 hour period. Movements across the diel period were categorized into 

previously described seasons in order to identify daily activity bouts. Only fixes with hourly 

intervals were used for step length calculations and time periods where data was censored were 

removed from analysis. Step lengths were averaged for each individual for each season for each 

24 hour period and then averaged across individuals.  Differences in daily movements between 

seasons were assessed using a linear mixed model and Tukey’s post-hoc test to determine 

differences between the means 
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Resource Selection 

 

Habitat cover types were derived from the Ontario Ministry of Natural Resources 

(OMNR) Forest Resources Inventory (FRI) maps (2010). The original classification categorized 

9 different polygon types; 1) brush and alder (areas containing “noncommercial” tree species or 

shrubs typically associated with poorly drained sites dominated by speckled alder (Alnus incana 

ssp. rugosa)), 2) developed agricultural land (lands which are cultivated for growing crops and 

abandoned agricultural lands), 3) grass and meadow (farm areas devoted to pasture for 

domesticated animals including abandoned grass and meadows), 4) open wetland (wet open 

areas containing mosses, grasses, sedges and small herbaceous plants),  5) rock (areas of barren 

or exposed rock supporting less than 25% scattered trees), 6) treed wetland (areas of dry or wet 

muskeg with widely spaced stunted trees), 7) unclassified areas (manmade non-forested areas, 

including utility corridors and gravel pits, mostly cleared of trees), 8) water (all water areas 

including lakes, ponds, reservoirs, streams and rivers) and 9) forest (forested areas capable of 

producing trees and supporting tree growth). Forest types were further broken down into 6 

discrete forest types; lowland conifer (dominated by black spruce on poorly drained soils), 

conifer upland (mixed spruce, jack pine and fir stands on upland sites), Great Lakes St. Lawrence 

pines (white and red pine dominated stands), intolerant hardwoods (forest stands consisting 

primarily of trembling aspen, white birch, and balsam poplar (Populus balsamifera)), tolerant 

hardwoods (primarily maple) and upland mixed (mixed forest stands primarily spruce, jack pine, 

balsam fir and poplar). A small amount of logging has occurred in the area over the past 10 

years. An updated GIS layer of logging activity in the area was obtained from the local forestry 

company (Vermillion Forest Management Ltd). A layer called CCUT was created for the logging 

activities in the last 10 years. Of the 9 originally classified polygon types, 4 were retained for 
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habitat analyses and 6 were added. Water, open wetland and treed wetland were removed 

because they had not been found to be important to elk or, because elk rarely used these habitats 

causing perfect or near perfect separation in the model. Developed agricultural land was 

combined with grassland habitats and forest was broken down into forest structure type. Conifer 

lowlands were removed because they rarely occurred in the study area. This resulted in 10 

available habitat types; 1) brush and alder (BSH, 6%), 2) recently logged areas (CCUT 3%), 3) 

Great Lakes St. Lawrence Pines (GL_PINE 7%), 4) conifer upland (coniferU 3%), 5) intolerant 

hardwoods (Intol_H 38%), 6) tolerant hardwood (Tol_H 5%), 7) upland mixed (UP_M 13%), 8) 

grass and meadow (GRS 12%), 9) rock (RCK 4%) and 10) unclassified (UCL 3%).   

Additional factors known to be important to elk (elevation, aspect, slope, distance to 

roads and distance to water), were also included in resource selection models. Elevation was 

obtained from a Digital Elevation Map (DEM) (OMNR 2006). Using Arc GIS v 10.0, DEM was 

transformed into a slope map in degrees and an aspect map ranging from 1 to 360°. Because of 

the issue of circular data (1 and 360 are extremes on the number scale but both represent a 

northern aspect), data were transformed using trigonometric functions as described by Zar 

(1999). The sine function was used to create a variable “eastness”, where numbers close to 1 

represent eastern aspects and numbers close to -1 represented western aspects. The sine of angles 

0° and 180° are 0 and angles < 180 are positive while angles > 180° are negative. Similarly, 

cosine of the angle was used to create a continuous variable for “northness”. The cosine of 

angles 90° and 270° = 0, and is positive for angles 0° < a < 90° and for 270° < a < 360°. The 

cosine is negative for angles between 90° and 270°.  Values close to 1 represent northern aspects 

while values close to -1 represent southern aspects. Distance to roads and distance to water were 

calculated using the proximity tool in Arc GIS.  
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Seasonal resource selection was evaluated using resource selection functions (RSF; 

Manly et al. 2002). RSFs are attractive because they are capable of including both continuous 

and categorical variables. RSF models were calculated using logistic regression fitted with the 

logit function in the R package lme4 (Bates et al. 2013). A set of 20 candidate models was 

developed a prior based on resources known to be important to elk (Table 2.1; Brown 1998; 

Boyce et al. 2003; Anderson et al. 2005; Sawyer et al. 2007; Proffitt et al. 2010). Akaike 

information criteria (AICc) for small sample sizes were used to rank models (Burnham and 

Anderson 2002). A generalized linear mixed model (GLMM) was used with individual elk 

included as a random effect in order to account for individual variation in sample size (equation 

1) (Gilles et al. 2006). Therefore the RSF took the form: 

 ( )    [
 ( )

   ( )
]                                        eqn (1) 

where    are covariates with fixed regression coefficients       is the mean intercept, and    is 

the random intercept (random effect), equal to the difference between the mean intercept    for 

all groups and the intercept for group   . 

RSF models were calculated for each season and separately for day and night resulting in 

8 top models being selected out of 160 candidate models. Pearson correlation matrices were 

calculated for all continuous variables. Any variables that were moderately correlated (>0.5) 

were not included in the same model. All statistics were performed using R (R core team 2012). 

Resource availability was measured differently for VHF and GPS collared individuals. Because 

VHF fixes were separated by a longer time interval (up to one week), it was assumed that the 

entire home range was available between each subsequent fix. This was validated by the daily 

movement patterns of GPS collared elk. For each VHF relocation, 5 random locations were 
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generated within the 100% MCP, to assess availability. Availability and use were measured 

separately for each individual elk resulting in a Design 3, 3
rd

 order selection study design 

(Johnson 1980). Thus, each individual elk had different resources available but it was the same 

for each season. Because the GPS collar fixes were separated by 6 hour intervals, the entire home 

range of the animal was not realistically available because an individual could not traverse its 

whole home range in 6 hours. To account for this, I used a similar approach to that of Arthur et 

al. (1996). Because movement rates change with time of day (Ager et al. 2003), a circular buffer 

equal to the 95 percentile of movements for GPS collared elk of that time interval was centered 

on the previous time interval to measure availability (i.e. for the 10:00 fix, availability was 

measured by placing a circular buffer around the 04:00 fix, equal to the 95
th

 percentile of 

distance moved by GPS collared elk from 04:00 to 10:00). Within each buffer, 5 random points 

were generated. This design is not considered to be case control because availability was 

measured by how much the animal was capable of moving and not by how much the animal had 

actually moved. 

 

Results 

 

From December 2011 to September 2013, 2183 VHF relocations were obtained for 18 

individuals. Number of fixes per individual ranged from 4 to 154 with a mean of 114 (SE = 

9.24). Of the 6 GPS collars deployed, 1 animal was not part of the Burwash subpopulation and 

was not used in the analysis of space use or resource selection. All of the 5 remaining GPS 

collars experienced collar malfunction; 2 collars were active for 168 and 198 days respectively, 

and the 2 longest lasting collars were functional for 527 and 533 days respectively. One GPS 
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collar retrieved from a dead elk was redeployed, replacing a failed collar but lasted only another 

75 days. Mean fix success was high at 98.5%, and GPS screening for accurate fixes resulted in 

removal of 8% of the data. After the GPS data were sub-setted for 4 fixes per day separated by 6 

hour intervals, the number of usable fixes per collar ranged from 521 to 1465 with a mean of 

1009 (SE = 173.76).  

Over the course of the study, 5 mortality events of collared animals were investigated. In 

the winter of 2013, 3 elk were killed by train collisions, 1 elk was accidentally shot by a deer 

hunter in November 2012, and 1 elk was killed by wolves in February 2012.  

Seasonal Space Use 

 

Elk did not display typical migratory behaviour characterized by summer and winter 

ranges separated by long distances. Elk did display semi-migratory behaviour; during mid-winter 

they moved to the northern part of their range and utilized areas not visited during the summer. 

Elk movements appeared to be dependent on snow depth. When grazing was limited by deep 

snow, elk moved to parts of their home range characterized by higher elevations. The distance 

travelled was short (approx. 3km), but led to the use of distinct areas not used in the absence of 

snow. Space use differed among seasons for MCP (F3, 57 =10.17, P<.0001) and 95% utilization 

distributions (F3, 57 =3.99, P<0.01) but no difference was found in the size of core use areas 

among seasons (F3, 57 =1.87 P=0.11). For MCP home range estimates, summer space use was 

significantly less than winter (P<0.01), spring (P<0.001) and fall (P<0.001) (Figure 2.1). 

Summer space use was only significantly smaller than spring (P<0.01), using the 95% fixed 

kernel estimates. For all 3 space use estimates, summer utilization distributions were the 

smallest, while spring were the largest. Winter space use in 2012 was significantly larger than in 
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the winter of 2013 (F1, 12 = 18.75, P<0.001). There was no significant difference in space use 

between spring 2012 and spring 2013 (F1, 11 =3.17925, P=0.1022) or between summer 2012 and 

summer 2013 (F1, 14 =0.30130, P=0.5917). 

Daily Movements 

 

Daily movements were greatest in spring (  = 3412.64m/day, SE= 308.71), smallest 

during winter (   = 1606.79m/day, SE = 142.80) and differed significantly among seasons (F3, 11 

=27.2697, P<0.0001). Winter daily movements were significantly lower than those in summer 

(P<0.0001), spring (P<0.0001), and fall (P<0.0001).  Elk daily movements remained relatively 

consistent across spring summer and fall seasons (Figure 2.2).  

Elk displayed strong crepuscular movement patterns throughout the diel period in all 

seasons with peaks in movement associated with dawn and dusk (Figure 2.3). Elk displayed 

crepuscular activity in winter, but the magnitude of movements was smaller in comparison to 

spring, summer and fall. Spring movements peaked at 08:00 hours (   = 279.20m/h, SE = 37.33) 

and again at 21:00 hours (   = 337.83m/h, SE = 40.41). Hourly movements reached their lowest 

levels in mid-day at 12:00 (   = 76.55m/h, SE = 19.54). During summer, elk movements peaked 

again at 08:00 hours (  = 302.46m/h, SE = 44.36) and 21:00 hours (   = 267.66m/h, SE = 42.12), 

and lowest movement rates were recorded at 13:00 hours (   = 52.79m/h, SE = 11.85). Fall 

hourly movement rates peaked at 09:00 hours (   = 286.28m/h, SE = 36.70) and at 19:00 hours 

(  = 235.41m/h, SE = 49.09). Hourly movements reached their lowest rate during fall at 13:00 

hours (   = 47.76m/h, SE = 12.59). During winter, elk movements peaked at 09:00hours (  = 

117.18m/h, SE = 14.81) and at 18:00 hours (  = 100.01m/h, SE = 13.58). Lowest movement 

rates in winter across the diel period occurred at 05:00 hours (   = 34.30m/h, SE = 6.01). 
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Resource Selection 

Spring 

The two top RSF models for spring during the day included distance to water, habitat and 

northness, distance to roads and habitat as important covariates. Day spring habitats selected by 

elk were recently logged areas and intolerant hardwood forests. Compared to the reference 

category, most habitat types were used less than available.  Elk selected southern aspects, 

avoided water and avoided habitats close to roads. The top RSF models for spring during the 

night were models 1 and 15 accounting for 0.46 and 0.36 of the model weight, respectively 

(Table 2.2). The top model indicated strong selection for steep slopes with eastern and southern 

aspects during the night (Table 2.3). Similarly to daytime resource use, elk avoided areas close to 

roads and close to water at night. Most habitat types were found to be significant in the model, 

except for conifer upland and tolerant hardwoods. Grassland habitats were the most highly 

selected habitat type, followed by recently logged areas, unclassified lands and rock. Conifer 

upland had a positive   coefficient; however, it was not significantly selected. Brush and alder 

habitats were strongly avoided, as were most of the other forest types (Table 2.3)  

Summer 

 

The top summer RSF model during the day carried 0.69 of the model weight (Table 2.4). 

During the day in summer, elk selected higher elevations on plateau’s. The only habitat type 

significantly selected compared to the reference category was the recently logged areas. The top 

RSF model in summer during night included only distance to water and habitat (Table 2.5). Elk 

selected areas closer to water during the night and open habitats, such as grassland, unclassified 

and recently logged areas. Conifer upland habitats were used significantly more than available 
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during the night but significantly less than available during the day. Rock habitats were avoided 

during both day and night in the summer. 

Fall 

 

There was no clear top RSF model for predicting elk resource selection in the fall during 

the day. Models 5 and 8 carried 0.57, and 0.42 of the model weight, respectively (Table 2.6). 

Model 5 included elevation and habitat as important predictors for elk distribution (Table 2.7). 

Model 8 included elevation, northness and habitat. In both models, elk selected higher 

elevations, conifer upland habitats and intolerant hardwood forest stands. In Model 8, elk 

selected for south-facing aspects. The top RSF model for night in the fall carried the majority of 

model weight 0.84 and included elevation and habitat (Table 2.6). Elk selected higher elevations, 

grassland, unclassified, recently logged areas, conifer upland and rock habitats (Table 2.7). 

Winter 

 

Winter RSF top models for both day and night carried the majority of model weight 0.98 

and 1 respectively (Table 2.8). During the day, the most important variables selected were 

elevation and habitat. Elk selected higher elevation and selected for the dominant forest type, 

intolerant hardwoods, during the day (Table 2.9). Winter RSF during the day was the only period 

in which all other habitat type coefficients were negative in relation to the reference category 

(Table 2.9). The top winter night RSF model carried all of the model weight and included 

elevation, slope, distance to roads, distance to water and habitat. Elk selected higher elevations, 

areas close to roads, steeper slopes and areas close to water (Table 2.9); selected habitats were 

grassland, unclassified and rock. Elk avoided roads during the day but selected areas close to 

roads with steeper slopes during the night. Conifer upland and tolerant hardwood forests were 
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utilized during the night but the selection coefficient was not significant. Rock habitats were 

selected during the night but not during the day. 

Discussion  

a.) Resource Selection 

(i) Habitat 

Elk resource selection patterns changed seasonally but differences in resource selection 

were more pronounced throughout the diel period (Figure 2.4). In all seasons, elk avoided open 

areas such as grasslands and unclassified habitats during the day, but these habitats were highly 

selected during the night. Elk selected the intolerant hardwood forest type most commonly 

throughout all seasons which is consistent with previous studies of elk in eastern North America 

(Jost 1999; Jenkins et al. 2007, Popp et al. 2013).  Aspect, elevation, distance to roads, distance 

to water, slope and habitat were all influential predictors of elk resource selection; however, their 

importance varied with season. Previous habitat selection studies on elk in this region have not 

found selection of grasslands habitats (Brown 1998, Martin 2011, Popp et al. 2013). This was 

most likely due to the bias inherent in sampling only during the day. In the present study, elk 

utilized grassland primarily during the night, consistent with other studies of elk and red deer that 

found nocturnal foraging in open areas (Figure 2.5; Figure 2.6; Beyer and Haufler 1994; Adrados 

et al. 2008; Schaefer et al. 2008; Godvik et al. 2009). Godvik et al. (2009) found that red deer 

habitat selection in Norway was generally consistent across seasons, but changed throughout the 

diel period. Godvick et al. (2009)  also found selection for pastures during the night and a shift to 

forested areas during the day. Not all studies however have found a primarily nocturnal use of 

grasslands. In Montana, elk were most commonly found in grassland flats during both the day 

and night periods (Proffit et al. 2010).  
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Risk of predation by wolves has been demonstrated to alter habitat selection and group 

size in elk (Creel et al. 2005; Gower 2008; but see White et al. 2008). Human hunting pressure 

can also influence elk habitat selection, causing individuals to shift from foraging in preferred 

meadows into more forested areas that provide cover (Morgantini and Hudson 1985). It has been 

observed that wolves hunt primarily during the night and early morning (Becker et al. 2008; 

Gower et al 2008). The primary response of elk to wolf attacks is to flee (Becker et al. 2008; 

McNunlty et al. 2007; White et al. 2008). Inhabiting open areas during higher predation risk 

times would allow the flight response to be most effective as obstructions in forested habitats 

may hinder elk movement more so than wolf movements. Mao et al. (2005) found that elk 

selected grasslands and open areas less in the summer after wolves were reintroduced into 

Yellowstone National Park; however, selection of open areas increased in the winter. Wolf 

predation on elk is largely limited to winter snow cover periods (Mao et al. 2005). During the 

period of highest predation risk for elk (winter), Mao (2005) found that they increased their use 

of open areas, suggesting that gregarious behaviour in open areas is an effective anti-predator 

strategy. Elk in our study area selected grassland habitats throughout the year, but less in winter 

compared to other seasons. Interestingly, Kittle et al. (2008) found that elk did not avoid areas 

where wolf activity was present within the scale of the home range. In my study area, there is no 

open hunting season for elk. The primary factors influencing resource selection by elk would 

thus be limited to predation risk, anthropogenic disturbance, thermal cover, and food availability. 

 

 (ii) Aspect 

 

Aspect was included in the top RSF models for spring and fall. South facing slopes were 

selected in both seasons during day and night periods. During the spring, south facing slopes are 
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the first to become snow free allowing for earlier plant development, offering high nutritional 

forage to elk. This is consistent with other studies that have found the selection for south facing 

aspects in spring (Coe et al. 2011). Utilizing southern slopes in spring would enable elk to 

quickly replenish body reserves depleted during winter. During the late fall, temperatures begin 

to cool and snow can begin to accumulate. Selection of south facing slopes during the cooling off 

period may provide thermal advantages to elk and assist in thermoregulation. Interestingly, 

aspect was not part of the top models in winter for day or night periods. Several studies have 

found that elk select south facing slopes during winter (Unsworth et al. 1998; Sawyer et al. 2007; 

Coe et al. 2011) but see Baasch et al. (2010) for conflicting results. In my study, elk were 

frequently found using south facing slopes in winter, but the parameter was never included in top 

models. This may be because of the topography in the area in that on ridge tops, aspect may 

become irrelevant. Others have found that elk select northern aspects during summer because of 

cooler temperatures, denser cover and high quality forage (Millspaugh et al. 1998; Skolvin et al. 

2002); however, this pattern was not observed in my study. 

(iii) Elevation 

 

Similar to other studies (Skolvin et al. 2002). I found elevation to be an important 

predictor of elk distribution across the landscape. Elk selected higher elevations in summer, fall, 

and winter but preferred lower elevations in spring. Elevation was the only significant predictor 

variable besides habitat during the day in winter. Selection of higher elevation in winter was 

similar to previous findings in my study area (Kittle et al. 2008). Kittle et al. (2008) found 

elevation to be more important than predation risk. Elk in my study area selected higher 

elevations because of the limited topography, where ridge tops frequently have shallower wind 

swept snow, and may provide a vantage point to scan for predators. This is in contrast to elk in 
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western North America which select lower elevations in winter as higher mountainous areas are 

subject to extreme snow accumulation (Sweeny and Sweeny 1984; Boyce et al. 2003).  

(iv) Distance to roads 

 

The influence of roads on space use by elk has been of great interest and is well studied 

(Perry and Overly 1977; Lyon 1979; Witmer and DeCalesta 1985). Current research shows that 

elk generally tend to avoid roads (Rost and Bailey 1979; Lyon 1983; Rowland et al. 2000; 

Stewart et al. 2010; Montgomery et al. 2013). Unsworth et al. (1998) found that selection for 

forested habitats by elk increased when roads were present within their home range. In eastern 

North America, reintroduced elk in Wisconsin avoided roads at larger scales, but selected areas 

closer to roads within the home range (Anderson et al. 2005). Similarly, I found that during most 

seasons elk were negatively associated with roads; however, distance to roads was only included 

in top models for spring day/night and winter night periods. During spring, elk avoided roads in 

both day and night periods. It has been shown that human disturbances can decrease elk calf 

survival (Phillips and Aldredge 2002). Elk may select areas away from roads in order to 

minimize disturbance during the neonate period when calves are most vulnerable. Avoidance of 

roads by elk is also related to traffic volumes as secondary roads with lower traffic volumes can 

be utilized by elk as travel corridors and foraging opportunities (Baasch et al. 2010). In my 

study, elk selected areas close to roads in winter at night. Elk selection of areas close to roads 

during winter has been reported by (Sawyer et al. 2007); however, the authors suggested that this 

may have been due to decreased human activity and traffic volumes during the winter. They 

further suggested that if winter traffic volumes increased to summer levels, they would expect 

elk to exhibit a similar avoidance of roads. In our study area, there should be no seasonal 

difference in traffic volume for the majority of the roads as they are open and maintained year 
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round and their range is bordered by a major 400 series highway. Elk tracks and craters (specific 

foraging events from digging through snow), are frequently observed along roadsides and elk 

may be attracted to these zones during winter for foraging opportunities when food availability is 

at its lowest. Roadsides are frequently seeded with a highly nutritious pasture seed mix and may 

enhance forage biomass in these areas. Another possibility is that elk may be exhibiting predator 

avoidance behaviour at a larger scale, as wolves are known to avoid areas of human activity 

(Whittington et al. 2005). Regardless, use of resources close to roads by elk during winter at 

night may create a higher risk of vehicle collision as road conditions are poorer, and visibility is 

limited. Meisingset et al. (2013) also found that elk were more likely to cross the road or use 

areas in closer proximity to roads during the night in winter and autumn. 

b.) Seasonal Space Use 

 

My hypothesis that high summer food availability significantly reduces space use by elk 

was supported. Winter space use was expected to be greatest because food availability is lowest; 

however, it was not significantly different from spring or fall space use.  Spring ranges were the 

largest for all space use estimates. Smallest ranges would be expected in the spring due to 

mobility restrictions associated with calving and calf rearing. Space use by elk increased during 

this period, possibly because they seek out high quality forage patches to recoup energy lost 

during winter. Alternatively, elk may display larger space use due to calving as they seek out 

isolated areas associated with cover in the proximity of quality feeding patches. I did not find 

any difference in space use between years for spring and summer; however, space use differed 

significantly between the winters of 2012 and 2013.  In 2012, the Sudbury area experienced a 

relatively mild winter with an early thaw and unseasonably warm temperatures during the month 

of March. In contrast, the winter of 2013 was relatively severe with below average temperatures 
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and the snowpack persisting well into April. This difference in space use between years likely 

reflects the severity of the winter and demonstrates how severe winters can negatively impact 

space use by elk. Anderson et al. (2005) found that elk home ranges were smaller when food 

availability was greater. Studying 3 distinct elk populations in Alberta, Yellowstone, and 

Wisconsin, they concluded that elk home range size was inversely related to forage biomass. 

Furthermore they found that home ranges were larger in winter compared to summer, 

compensating for lack of food availability due to snow, and food quality from plant senescence. 

Despite the negative relationship between food availability and animal space use, many studies 

involving large-bodied herbivores in temperate regions have found restricted or reduced activity 

and space use during winter in relation to snow depth (Mysterud et al. 2001; Dussault et al. 

2004;  Luccarini et al. 2006; Rivrud et al. 2010; van Beest 2011). Elk are large herbivores and 

larger animals are capable of storing higher levels of fat reserves suggesting that they may be 

able to reduce space use during winter and live off reserves (Mysterud et al. 2001). As winter 

typically results in poorer quality and reduced abundance of food, many ungulates lose mass 

during the winter. Jerina (2012) found that unfed red deer in Slovenia had home ranges 3 times 

larger than those exposed to long term supplementary feeding, suggesting that space use can be 

ultimately related to food availability.  

 

c.) Daily movements 

 

Elk in my study area displayed consistent daily movement rates across seasons except for 

winter when daily movements were significantly lower than in all other seasons. I found that elk 

displayed a strong crepuscular activity pattern with greater movement occurring around dusk and 
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dawn, a common pattern frequently observed in elk elsewhere and in other cerivds (Beier and 

MucCullough 1990; Green and Bear 1990; Ager et al. 2003; Kie et al. 2005; Webb et al. 2010; 

Webb et al. 2011). Average daily movements during snow-free periods were similar to those 

reported for elk in other regions (Brook 2010; Webb et al. 2011)). Wichrowski et al. (2005) 

found that elk reintroduced into Kentucky had significantly different movement rates among 

seasons, but found no differences between sexes; they reported highest daily movement rates 

during winter. The difference in movement rates during winter between Kentucky and Ontario is 

likely influenced by snow cover presence in our study area. Elk in Manitoba, where climate is 

similar to that in Ontario, showed lowest movement rates during winter (van Beest et al. 2013b), 

as did moose in Quebec (Leblond et al. 2010). Interestingly, I found movements were smallest 

during winter, but seasonal space use was smallest in summer. The apparent lack of relationship 

between daily movements and space use may be related to forage availability and quality. During 

the summer, forage is locally abundant allowing elk to utilize a smaller area while obtaining 

sufficient food. Winter mobility is likely restricted by snow conditions; however, forage 

selection may also play an important role in determining space use by elk. Elk, characterized as 

intermediate feeders, typically switch from a graminoid-dominated diet, to a browsing diet once 

snow conditions prevent access to ground level vegetation (Christianson and Creel 2007). 

Browse forage is more patchily distributed and although elk have lower daily movements during 

the winter, their overall space use may be larger in order to maintain minimum energy intake 

levels.  

Resource selection has become a dominant tool used by managers and biologists to 

identify important habitats across various wildlife taxa. While some researchers admit that RSFs 

may be affected by time of day (Boyce et al. 2003, Ciarniello  et al. 2007b), relatively few have 
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addressed these concerns in subsequent research. Researchers have identified changing resource 

selection patterns in wildlife from day to night periods (Mysterud et al. 1999; Schwartz and 

Arthur, 1999; Onorato et al. 2010); however, the majority of resource selection studies do not 

consider time of day. I found that there was a greater difference in resource selection across the 

diel period than among seasons. Boyce et al. (2003) pointed out that changes in seasonal 

variation in food abundance and distribution should provide sufficient grounds for seasonal RSF 

models. RSFs should continue to be evaluated by season; however, the inclusion of time of day 

in RSF models would substantially increase valuable knowledge about resource selection across 

the diel period. For species known to be active during nocturnal hours this is paramount in order 

to obtain a complete picture or resource selection. Moe  et al. (2007) studying brown bears found 

that habitat selection changed between day and night and including all samples into a model 

across the entire 24 hour period showed no selection. In the present study, such a pooling of data 

would have resulted in grassland habitats not being selected by elk even though they were 

significantly selected during all seasons. In order to understand the habitat requirements of any 

species, all activity states must be addressed by resource selection modelling, including foraging 

and resting. 

 

Conclusions and Management Recommendations 

 

Elk displayed a trade-off in resource selection between different activity states. During 

the night, elk used highly productive foraging habitats such as grasslands and recently logged 

areas. During the day, elk selected cover in forested habitats. Elk resource selection changed 

among seasons and no one model could adequately describe elk resource selection for multiple 
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seasons, as well as both day and night periods.  Seasonal space use was smallest during summer 

and daily movements were restricted during winter. The atypical Burwash abandoned field 

complex provides a unique habitat that elk actively select. Natural colonization of tree and shrub 

species will degrade this habitat over time. It is recommended that this grassland habitat be 

maintained through prescribed burning or thinning of colonizing tree species to allow favoured 

elk habitat to persist. Elk selected for areas close to roads in winter at night. This could 

potentially increase the risk of vehicle collisions in this area. Although highway mitigation such 

as fencing is present in the study area, it is generally absent from the winter range except for a 

small 200m stretch of fence. It is therefore recommended to increase mitigation such as fencing 

in this area.  
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Figure 2.1. Elk seasonal home range using minimum convex polygon method 

(MCP km
2
). n = number of elk with radio collars tracked in each season. Error 

bars represent standard error of the mean. 
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Figure 2.2. Mean daily movements of elk in spring (N=6), summer (N=6), fall (N=5)  

and winter (N=4). Error bars represent standard error of the mean. 
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Figure 2.3. Elk activity patterns and mean hourly step length throughout the diel period in winter 

(N=4), spring (N=6), summer (N=6) and fall (N=5). 
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Figure 2.4. Map of study area with different habitat types (see methods for full 

description) and elk relocations from GPS and VHF collared animals during day and 

night periods for spring, summer and fall 2012 and 2013. 
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Figure 2.5. RSF estimates for habitat types for spring, summer, fall and winter during 

daytime. Significant if error bars (95% confidence intervals) do not overlap with 0. Intolerant 

Hardwood Forests is the reference category. BSH = Brush and Alder, CCUT= Recently 

Logged Areas, ConiferU= Conifer Upland, GL_Pine= Great Lakes St. Lawrence Pine, Tol_H 

= Tolerant hardwood forest, Up_M = Upland Mixed, GRS = Grassland, RCK = Rock, UCL = 

Unclassified Habitats 
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Figure 2.6. RSF estimates for habitat types for spring, summer, fall and winter during 

nighttime periods. Significant if error bars (95% confidence intervals) do not overlap with 0. 

Intolerant Hardwood Forests is the Reference Category. BSH = Brush and Alder, CCUT= 

recently logged areas, ConiferU= Conifer upland, GL_Pine= Great Lakes St. Lawrence Pine, 

Tol_H = Tolerant hardwood Forest, Up_M = Upland Mixed, GRS = Grassland, RCK = Rock, 

UCL = Unclassified Habitats 

 

 

 

 

 

 

 

 

 

 

 

-8

-6

-4

-2

0

2

4
ẞ

 C
o

e
ff

ic
ie

n
t 

 

Habitat Type 

winter

fall

spring

summer



80 
 

Table 2.1. Covariates included in 20 a prior RSF models and number of parameters (fixed 

effects only). 

Model Covariates              K 

1 Elevation+Slope+Northness+Eastness+NearW+NearR+Habitat 16 

2 NearW + NearR + Habitat 13 

3 NearW + Habitat 12 

4 NearR + Habitat 12 

5 Elevation + Habitat 12 

6 Northness + Eastness + Habitat 13 

7 NearR +Northness+Habitat 13 

8 Elevation + Northness + Habitat 13 

9 Northness + Elevation+ NearR + Habitat 14 

10 Northness + Elevation + NearR + NearW + Eastness + Habitat 16 

11 Northness + Elevation + NearR 4 

12 NearW + Eastness+ Northness + Elevation + NearR 6 

13 NearW + NearR 3 

14 Slope + Habitat 12 

15 Slope + Elevation + Northness + NearR + Habitat 15 

16 Eastness + Elevation + NearR + Habitat 15 

17 Elevation + NearR + Northness + NearW + Habitat 15 

18 Elevation + Slope + Habitat 13 

19 Slope+Elevation + NearW + NearR+ Habitat 15 

20 Elevation + Slope + Eastness + NearW + Habitat 15 
*The variable habitat is categorical and consists of 10 habitat types 

NearW represents distance to water 

NearR represents distance to roads 
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Table 2.2. Top 5 models characterizing elk resource selection in central 

 Ontario in spring for day and night time periods. K represents the  

number of fixed effects included in model,   = model weight. Model 

covariates described in Table 2.1. 

Season Model #            K AICc ∆AICc    
      

Spring Day 3 11 8538.40 0.00 0.49 

 
7 12 8538.67 0.27 0.43 

 
8 12 8543.67 5.27 0.04 

 
6 12 8544.67 6.27 0.02 

 
2 12 8545.67 7.27 0.01 

Spring Night 1 14 6370.00 0.00 0.46 

 
15 13 6370.50 0.50 0.36 

 
9 14 6372.00 2.00 0.17 

 
17 12 6378.67 8.60 0.01 

 
8 15 6383.00 13.00 0.00 
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Table 2.3. Top spring RSF models for day and night periods with lower 

and upper bound 95% confidence intervals.  

  Spring Day Spring Night 

    lower upper   lower upper 

(Intercept) -2.614 -4.889 -2.485 -2.336 -3.735 -0.937 

Slope - - - 0.037 0.016 0.057 

Elevation - - - -0.005 -0.011 0.000 

NearR -0.009 -0.016 -0.002 -0.002 -0.003 -0.001 

Eastness - - - 0.148 0.056 0.240 

Northness -0.179 -0.264 -0.094 -0.269 -0.368 -0.170 

NearW - - - -0.001 -0.001 0.000 

BSH -0.769 -1.087 -0.451 -1.058 -1.530 -0.585 

CCUT 0.589 0.361 0.817 1.145 0.888 1.403 

ConiferU -0.154 -0.466 0.159 0.352 -0.024 0.728 

GL_Pine 0.003 -0.191 0.185 -0.486 -0.742 -0.229 

Tol_H -0.669 -0.988 -0.350 -0.073 -0.430 0.285 

Up_M -0.568 -0.779 -0.356 -0.831 -1.150 -0.511 

GRS -0.415 -0.629 -0.202 1.487 1.282 1.692 

RCK 0.015 -0.286 0.316 0.430 0.091 0.770 

UCL -1.410 -1.999 -0.822 0.892 0.583 1.201 

*Significance is determined by 95% confidence intervals that do not include 0  

highlighted in bold. 

† For Habitat covariates, Intolerant Hardwood Forest was used as the reference category. 

BSH = Brush and Alder, CCUT= Recently Logged Areas, ConiferU= Conifer Upland, 

GL_Pine= Great Lakes St. Lawrence Pine, Tol_H = Tolerant hardwood forest, 

 Up_M = Upland Mixed, GRS = Grassland, RCK = Rock, UCL = Unclassified Habitats 
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Table 2.4. Top 5 models characterizing elk resource selection in central 

 Ontario in summer for day and night time periods. K represents the  

number of fixed effects included in model,   = model weight. Model 

covariates described in Table 2.1.  

Season Model #            k AICc ∆AICc    

Summer Day 18 12 5137.00 0.00 0.69 

 
5 11 5139.33 2.33 0.21 

 
3 11 5142.33 5.33 0.05 

 
14 11 5142.33 5.33 0.05 

 
8 12 5149.00 12.00 0.00 

Summer Night 3 11 4891.33 0.00 0.95 

 
5 11 4898.33 7.00 0.03 

 
2 12 4901.00 9.67 0.01 

 
18 12 4901.00 9.67 0.01 

 
14 11 4903.33 12.00 0.00 
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Table 2.5. Top summer RSF models for day and night periods with lower 

and upper bound 95% confidence intervals. 

  Summer Day Summer Night 

     lower upper    lower upper 

(Intercept) -6.801 -8.625 -4.978 -6.778 -8.792 -4.764 

NearW - - - 0.001 0.000 0.001 

Elevation 0.015 0.008 0.023 -   - - 

Slope -0.051 -0.081 -0.022 - - - 

BSH -0.360 -0.722 0.003 -0.381 -0.905 0.143 

CCUT 0.489 0.190 0.788 1.647 1.348 1.947 

ConiferU -0.620 -1.133 -0.107 0.807 0.346 1.267 

GL_Pine 0.054 -0.184 0.292 -0.028 -0.359 0.304 

Tol_H -1.682 -2.366 -0.998 -2.123 -3.530 -0.716 

Up_M -0.590 -0.873 -0.307 -1.154 -1.735 -0.573 

GRS -0.376 -0.650 -0.102 2.216 1.971 2.462 

RCK -1.995 -3.009 -0.982 -1.098 -2.115 -0.081 

UCL -0.793 -1.381 -0.206 1.798 1.463 2.133 

*Significance is determined by 95% confidence intervals that do not include 0  

highlighted in bold. 

† For Habitat covariates Intolerant Hardwood Forest was used as the reference category. 

BSH = Brush and Alder, CCUT= Recently Logged Areas, ConiferU= Conifer Upland, 

GL_Pine= Great Lakes St. Lawrence Pine, Tol_H = Tolerant hardwood forest, 

 Up_M = Upland Mixed, GRS = Grassland, RCK = Rock, UCL = Unclassified Habitats 
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Table 2.6. Top 5 models characterizing elk resource selection in central 

 Ontario in fall for day and night time periods. K represents the number 

 of fixed effects included in model,   = model weight. Model 

 covariates described in Table 2.1. 

Season Model #           K AICc ∆AICc    

Fall Day 5 11 3939.00 0.00 0.57 

 
8 12 3939.57 0.57 0.43 

 
18 12 3951.57 12.57 0.00 

 
9 13 3954.67 15.67 0.00 

 
15 14 3980.00 41.00 0.00 

Fall Night 8 12 3620.57 0.00 0.85 

 
5 11 3624.00 3.43 0.15 

 
18 12 3637.57 17.00 0.00 

 
9 13 3637.67 17.10 0.00 

 
17 14 3663.00 42.43 0.00 
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Table 2.7. Top fall RSF models for day and night periods with lower 

and upper bound 95% confidence intervals. 

  Fall Day Fall Night 

  
  lower upper   lower upper 

(Intercept) -14.547 -16.495 -12.599 -12.022 -14.198 -9.847 

Northness - - - -0.288 -0.424 -0.151 

Elevation 0.048 0.040 0.056 0.032 0.023 0.041 

BSH 0.190 -0.238 0.618 -0.161 -0.966 0.644 

CCUT -0.053 -0.517 0.411 1.961 1.523 2.400 

ConiferU 0.887 0.511 1.264 1.101 0.547 1.654 

GL_Pine -0.508 -0.909 -0.107 0.083 -0.509 0.675 

Tol_H -1.111 -1.575 -0.648 0.149 -0.411 0.710 

Up_M -1.203 -1.646 -0.760 -0.597 -1.243 0.049 

GRS -0.624 -1.003 -0.245 2.816 2.520 3.113 

RCK 0.004 -0.351 0.359 1.116 0.677 1.556 

UCL -0.631 -1.253 -0.010 2.793 2.427 3.158 

*Significance is determined by 95% confidence intervals that do not include 0  

highlighted in bold. 

† For Habitat covariates Intolerant Hardwood forest was used as the reference category. 

BSH = Brush and Alder, CCUT= Recently Logged Areas, ConiferU= Conifer Upland, 

GL_Pine= Great Lakes St. Lawrence Pine, Tol_H = Tolerant hardwood forest, 

 Up_M = Upland Mixed, GRS = Grassland, RCK = Rock, UCL = Unclassified Habitats 
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Table 2.8. Top 5 models characterizing elk resource selection in central 

 Ontario in winter for day and night time periods. K represents the  

number of fixed effects included in model,   = model weight. Model 

covariates described in Table 2.1. 

 
model #           K AICc ∆AICc    

Winter Day 5 11 4919.00 0.00 0.99 

 
18 12 4927.57 8.57 0.01 

 
8 12 4932.57 13.57 0.00 

 
9 13 4943.67 24.67 0.00 

 
4 11 4953.00 34.00 0.00 

Winter Night 19 14 4000.00 0.00 1.00 

 
3 11 4040.00 40.00 0.00 

 
2 12 4047.57 47.57 0.00 

 
17 14 4073.00 73.00 0.00 

 
12 5 4089.29 89.29 0.00 
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Table 2.9. Top winter RSF models for day and night periods with lower 

and upper bound 95% confidence intervals. 

  Winter A Winter Night 

           lower upper          lower upper 

(Intercept) -7.252 -8.774 -5.729  -9.792 -11.606 -7.978 

Elevation     0.020 0.014     0.026     0.020     0.013     0.028 

NearR -      - - 0.004 0.003 0.005 

slope - - - 0.107 0.084 0.130 

BSH   -1.016   -1.592   -0.440 0.035 -0.517 0.586 

CCUT -0.910 -1.679 -0.140 -3.295    -5.944 -0.646 

ConiferU -0.626 -1.203 -0.049 0.010 -0.526 0.545 

GL_Pine -2.452 -3.448 -1.456 -2.401 -3.829 -0.972 

Tol_H -0.143 -0.440 0.154 0.266 -0.060 0.592 

Up_M -0.646 -0.939 -0.354 -0.447 -0.800 -0.094 

GRS -0.721 -1.079 -0.362 0.752 0.448 1.056 

RCK -0.003 -0.283 0.277 0.499 0.198 0.800 

UCL -1.408 -2.090   -0.727 1.037 0.616 1.457 

*Significance is determined by 95% confidence intervals that do not include 0  

highlighted in bold. 

† For Habitat covariates Intolerant Hardwood forest was used as the reference category. 

BSH = Brush and Alder, CCUT= Recently Logged Areas, ConiferU= Conifer Upland, 

GL_Pine= Great Lakes St. Lawrence Pine, Tol_H = Tolerant hardwood forest, 

 Up_M = Upland Mixed, GRS = Grassland, RCK = Rock, UCL = Unclassified Habitats 
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General Conclusions 

 

Elk in the Sudbury area appear to have distributed themselves across the landscape in a 

metapopulation structure, most closely resembling a mainland/island pattern, with a core 

population in the Burwash area surrounded by satellite subpopulations. Dispersal to the most 

distant subpopulation from the core was observed. Elk were also confirmed in numerous areas 

outside of the current elk population range, indicating that dispersal is taking place at a larger 

scale, or additional subpopulations exist that have remained undetected. Space used by elk was 

significantly smaller for individuals residing the core subpopulation compared to the surrounding 

satellite groups. Increased space use and lower population densities may be an indication of 

lower habitat quality in satellite subpopulations compared to the core subpopulation in Burwash. 

Adult survival rates were moderately high in all subpopulations. Railway collision was the 

leading cause of elk death in the Burwash subpopulation. Mitigating railway mortality would 

greatly increase adult survival rates. Monitoring survival and recruitment rates among the 5 

subpopulations identified in the metapopulation would reveal novel insights into population 

dynamics and possibly identify if surrounding satellite subpopulations are sinks, or likely to 

remain viable on their own. In the present study, an elk metapopulation was observed based 

strictly on spatial data, but it would interesting and informative for management to investigate 

whether this metapopulation structure is also observed at the genetic level.  

Observations of resource selection by elk in the Burwash subpopulation were effected by 

variations in temporal scale. Elk resource selection changed with seasons, but differences were 

more pronounced from day to night. Elk selected grassland habitats during the night and 

intolerant hardwood forests during the day in all seasons. In order to obtain a clear picture of 

resource selection by any animal that is active both day and night, 24 hour sampling subdivided 
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by time of day should be considered in the analysis. None of the tested RSF models accurately 

characterized resource selection for elk across seasons or the diel period, indicating that resource 

selection is a dynamic process, changing with food availability and activity of the animal.  

 

Summary and Recommendations:  

 Elk in the Sudbury area have established a metapopulation structure with a core 

subpopulation in Burwash, surrounded by satellite subpopulations resembling a 

mainland-island structure. 

 Satellite subpopulations have lower elk densities and greater individual space use, 

indicating possibly lower habitat quality. 

 Resource selection changed more drastically from day to night than among seasons, 

indicating that management activities need to consider behaviour across the diel cycle. 

 Elk actively selected the grassland habitat in Burwash and its conservation should be a 

management priority. 

 Human caused mortality in the core population was the largest factor reducing elk 

survival in Burwash. Mitigating train elk collisions would improve elk survival in 

Burwash 

 

 


