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Abstract

Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent
neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the
more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate
possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model
which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is
presented. The proposed computational model successfully accounts for well known psychophysical effects for static
contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas.
This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and
reveals how a common general architecture may account for several different fundamental processes, such as visual
saliency and brightness induction, which emerge early in the visual processing pathway.
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Introduction

Brightness induction (BI) is the modulation of the perceived

intensity of an area by the luminance of surrounding areas. BI

provides a striking demonstration that visual perception of a given

stimulus does not only depend on purely sensorial information (i.e.

light) reaching the retina from such a stimulus but also on how the

light is spatially distributed in its surroundings. Although early

visual cortical areas are traditionally associated with the encoding

of surface boundaries, their role in surface perception, and thus

luminance perception, is still a matter of debate [1,2]. The study of

BI, which has been thoroughly investigated from a psychophysical

perspective, offers an excellent opportunity to investigate the

neural mechanisms that underlie brightness perception and the

role of early visual cortical areas in such processing. To this end,

computational neuroscience may prove an invaluable asset in

bringing together psychophysical and neurophysiological experi-

mental evidence with theoretical models that help establish links

between them.

As reviewed in [3–5], the visual system processes information at

different levels of complexity, which can be broadly classified into

low-level, mid-level and high-level vision processes. The low-level

approach to brightness perception finds its origin in Ewald

Hering’s view, whereby adaptation and local interactions were

regarded as crucial mechanisms at a physiological level. In

contrast, the high-level approach finds a clear association with

Hermann von Helmholtz’s view. He considered visual perception

as a product of unconscious inference that occurs when our visual

system performs its best guess as to what is in the visual scene.

Following this view, both the sensory information but also prior

experiences constitute the basis of the perceptual process, and BI

would merely be a byproduct of the inferential process.

As will be demonstrated throughout this work, we conclude, in

agreement with previous works (e.g. [6–10]), that a low-level

approach can go a long way in accounting for BI phenomena. We

furthermore propose a neurodynamical model that explains the

mechanisms underlying such phenomena. The model takes into

consideration the experimental evidence reviewed in the next

sections. This model is therefore grounded on a vast body of work

that is also critically revised herein. Thus, we first review several

widely reported psychophysical effects that are crucial to unveil

basic properties of BI, then the literature on neurophysiological

correlates of BI, and, finally, a selection of computational

approaches modeling the neural activity in the areas previously

found to be relevant (i.e. mainly V1), and which are at the core of

the model proposed in this work.

Psychophysical Evidence Unveiling Fundamental Aspects
of BI

In this section we review several psychophysical effects that

reveal important aspects about the nature of the processes

underlying BI. These effects are subsequently taken into consid-

eration to assess the behavior of the proposed neurodynamical

model. As will be discussed later, different models have successfully

reproduced a broad variety of BI effects. Our motivation to

investigate a neurodynamical model of BI is to both reproduce an

ensemble of effects and scrutinize the neural mechanisms

underlying them. Moreover, we address this challenge such that

our modeling effort can be embedded in a global framework on

visual information processing in the brain.
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Commonly, BI effects are classified according to the perceptual

direction of change, that is whether the change in brightness of the

visual target departs from that of the surroundings (i.e. brightness

contrast [11]) or otherwise tends to approach it (i.e. brightness

assimilation [12]). One of the oldest known examples of brightness

induction is the simultaneous brightness contrast (SBC) effect [11].

SBC is usually described as a homogeneous change in the

brightness of a gray patch, which looks darker when located on a

white background than a gray patch of the same luminance on a

black background (see Figure 1A). A common explanation for

SBC, grounded in the filling-in tradition, is that the brightness of

the patch is determined by the information at its edges and is

subsequently filled-in to the internal area. A second well-known

example of brightness induction is the so called grating induction

(GI) effect, an effect that produces a spatial brightness variation (i.e.

a grating) across an otherwise homogeneous gray patch [13] (see

Figure 1B). Not surprisingly, homogeneous brightness filling-in

cannot account for GI. Accordingly, several brightness models

have been proposed that incorporate non-homogeneous filling-in

mechanisms [10,14]. Nonetheless, it has been argued that these

two phenomena (SBC and GI) may just be manifestations of the

same underlying mechanisms [6] since, in fact, both of them

constitute examples of brightness contrast.

Another well known BI effect is the White effect, whereby

equiluminant gray test patches placed on top of either black or

white bars in a square grating appear to have different brightness

(see Figure 1C). Interestingly, a key aspect driving this effect is the

contrast with the bar upon which the test patch is situated by

effectively determining its immediate neighborhood. The White

effect can thus switch from assimilation to contrast depending on

the actual spatial configuration, which further suggests that

assimilation and contrast also share the same underlying

mechanisms [6,8,15].

No further examples of BI are introduced in this section

(although some others will be reported in the Results section to

demonstrate the potential of the proposed model) since the most

basic phenomenological aspects regarding a common substrate for

assimilation and contrast are already addressed in the examples

considered here. The computational model developed in this work

will propose a unified and biophysically inspired mechanistic to

account for all of these aspects.

Previous Computational Models of BI
Some of the most successful computational models of luminance

perception were developed using multi-scale approaches to low-

level vision. By considering operators emulating responses similar

to those found in the receptive fields of neurons in early vision

areas [16], they can account for a variety of effects [7–9]. The

main differences between the models derive from the way the

operators interact with each other and whether they are are

combined with a contrast-sensitivity-function (CSF) (see [9] for a

review).

This is the case for the unified brightness model based on

difference of Gaussians (DOG) filters (i.e. low-level isotropic filters)

originally proposed by Blakeslee and McCourt [6]. The authors

later extended this model [7] by non-linearly pooling oriented

differences of Gaussians (ODOG) (i.e. anisotropic filters) and

adding a normalization procedure to equalize the global response

at each orientation. Robinson et al. [17] later constrained the

normalization to make it more neurally plausible and, as a

consequence, were also able to reproduce more illusions. These

models share with the Kingdom and Moulden’s MIDAAS [18] a

number of features (e.g. spatial scale filtering and combining inputs

across scales) but add the presence of more spatial frequency filters

Figure 1. Illustration of some brightness induction effects. (A)
Simultaneous brightness contrast (SBC), (B) grating induction (GI), and
(C) White effect.
doi:10.1371/journal.pone.0064086.g001
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and a weighting scheme adjusted to match psychophysical data

instead of making use of a set of rules.

Similarly, D’Zmura and Singer [19,20] developed another

multiresolution perceptual model in which the contrast of the

surround was introduced by means of the so-called spatial pooling

of contrast. By also making use of a multiscale and multi-

orientation approach, Otazu et al. [9] hypothesized that bright-

ness induction was performed mostly between features of similar

spatial frequency and orientation. The model considered a

psychophysically determined CSF that explicitly included the

observation distance. One of the most significant merits of the

model was that it allowed the unification of brightness assimilation

and brightness contrast in a single mathematical framework and,

importantly, using a unique set of parameters.

The success of this type of model in capturing the main

characteristics of BI phenomena strongly suggests that accounting

for the operations performed by filters akin to early stage cortical

neuronal receptive fields (e.g. multiscale spatial frequency and

orientation selectivity, and normalization) is of utmost importance.

Thus, although admittedly, higher-order visual processes might

also play a role in luminance perception, the results of these

models (as discussed by [7]) argue persuasively against the need of

invoking higher-order inferential processes to explain the mech-

anisms underlying BI effects. Furthermore, the low-level approach

offers an appealing connection between physiology and psycho-

physics, which has in turn been at the basis of most computational

models of BI (including ours).

A different approach to tackle BI modeling attempts to build

perceptual representations that keep the geometric structure of

scenes. To this end, Pessoa et al. [10] proposed a network model

that uses contrast-driven and luminance-driven representations,

from which boundaries are extracted, and the neural activity is

spread within ‘‘filling-in’’ compartments. This model produces a

one-dimensional response profile that is assumed to be isomorphic

with the percept. The ‘‘filling-in’’ is governed by a diffusive

process, whereby boundaries act as gates of variable resistance to

diffusion, and takes place before the contrast and luminance

signals are recombined to deliver the output of the model. The

network model includes the notions of simple and complex cells

responses (with ON and OFF channels for simple cells) and,

importantly, feedback competition between complex cells. Being

grounded on Grossberg’s work (e.g. [14,21]), it can be allocated

within a larger framework that addresses biological vision in a

broader context than luminance perception.

In contrast to the previous approaches, which attempt to model

different aspects of human physiology or perception, Corney and

Lotto [22] used artificial neural networks to emulate the process of

experiential learning from stimuli with feedback from the

environment. These authors, thus, posit their model within the

framework of visual ecology. Their results suggest that ‘‘illusions’’

(which include BI effects and are reframed in their work as the

condition in which the true source of a stimulus differs from what

is its most likely, and thus perceived, source) arise because (i)

natural stimuli are ambiguous, and (ii) this ambiguity is resolved

empirically by encoding the statistical relationship between images

and scenes in past visual experience. Interestingly, a recent study

presented by Coen-Cagli et al. [23] relates the computational and

ecological principles underlying contextual effects and suggests

that the influence of the context on a target stimulus is determined

by their degree of statistical dependence. This provides a link

between the two approaches and, as will be stressed later, lends

statistical support to the theory that V1 computes visual saliency, a

notion that is closely related to principles of the model that we

propose for explaining BI effects.

As emerges from this introduction, BI offers an experimental

paradigm that can be employed to investigate fundamental aspects

of visual information processing in the human visual system. To

this end, we propose a biophysically-based neurodynamical model

of BI which, in contrast to most of the previous models, also

accounts for the dynamical evolution of the system, thus allowing

to explore dynamical stimuli and to probe fundamental aspects of

visual information processing in early vision. Although this is a

feature that is shared with the network model proposed by Pessoa

et al. [10], it is worth noting that they only consider one-

dimensional static stimuli.

Neurophysiological Correlates of BI
Although striate cortex is traditionally regarded as an area

mostly responsive to sensory (i.e. retinal) information, neurophys-

iological evidence suggests that brightness information might be

explicitly represented in V1. Such evidence has been observed

both in anesthetized cats [2,24], where neuronal response

modulations have been found to follow luminance changes outside

the receptive fields (RF), in macaque monkeys [25], and in human

fMRI measurements [26]. EEG recordings further support that

brightness perception correlates with early activity in the striate

cortex, suggesting that induction phenomena are essentially

bottom-up [5].

In particular, Rossi and Paradiso [24] reported brightness

changes in the receptive field (RF) of V1 cells covered by uniform

gray illumination when the luminance of rectangular flanking

regions was modulated sinusoidally in time. They found that the

responses of retinal ganglion cells never correlated with brightness

whereas many neurons in striate cortex and a small fraction in the

LGN responded in a phase-locked manner at the temporal

frequency of the flank modulation. This was the case even though

the flanks were 3–7u beyond the edges of the RF, thus providing

experimental support for the hypothesis that brightness informa-

tion, and not just contrast, is explicitly represented in the responses

of neurons in V1. This supports the view that neural represen-

tations of object surfaces exist already in V1 and suggests that

lateral interactions, known to play an important role in mediating

contextual effects (e.g. [27,28]), may also underlie BI. In contrast,

van de Ven et al. [1] report a stronger correlate of BI in fMRI

measures in V2 than in V1. However, the authors also claim that

their results do not exclude a possible contribution of V1 to

brightness perception.

Thus, recalling all of this converging evidence suggesting a

relevant role of V1 in brightness perception and hence, in BI, the

neurodynamical model proposed in this work focuses in V1 and

accounts for the contextual effects therein occurring, which we

hypothesize are at the basis of BI. In the next section, we review

previous computational models of V1 which have addressed

contextual effects from different perspectives and with different

aims.

Computational Models of V1 Neuronal Activity and
Contextual Effects

The notion of contextual influences on visual processing is

broad since it might refer to the effect that stimuli present at

different points in space or time have on other stimuli, but may

also involve more complex constructs such as attention or memory

[29]. In this paper, we only consider contextual influences arising

from interactions in which information in one spatial region of the

visual image affects the interpretation of another region.

Although higher cortical areas may undoubtedly play an

important role in the processing of contextual effects through

modulatory feedback, some phenomena may also be explained by

Neurodynamical Model of Brightness Induction in V1

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e64086



the dynamic interplay between feedforward projections and

horizontal intracortical connections in V1. Series et al. [30]

review experimental and theoretical progresses in the description

of the so-called ‘‘Center/Surround’’ modulations and their neural

basis. To this end, they distinguish three different types of models:

(i) phenomenological models which aim at characterizing the response

properties within the context of a visual information processing

algorithm, (ii) structural models which aim at characterizing the

biophysical neural mechanisms that are responsible for the

physiological data, and (iii) optimized models that try to predict

the physiological data from an optimized strategy of visual coding.

In this work, we are interested in the structural approach while

we also try to establish links with phenomological approaches

which have been previously employed to investigate BI. However,

it is worth pointing out that studies such as the one presented by

Coen-Cagli et al. [23] contribute to build bridges between the

three approaches.

Central to the work presented in this article is the neurodyna-

mical model of V1 originally proposed by Li [31] to explain

contour integration. This model has also been successfully applied

to explain several contextual effects such as figure–ground and

border effects [32], visual saliency [33] (and other related ones

such as pop-out and asymmetry in visual search [34]), and

preattentive segmentation [35]. It largely relies on local intra-

cortical interactions mediated by horizontal connections to

reproduce all of these effects. It has gained convincing experi-

mental evidence (both neurophysiological and psychophysical, e.g.

[36,37]) regarding one of its main predictions, i.e. the existence of a

saliency map in V1. Notably, the results reported by Coen-Cagli

et al. [23] lend further statistical support to the theory that V1

computes visual saliency, a strong prediction of Li’s model. In later

sections (Results and Methods, as well as in Texts S1–S4), a full

account of this model will be presented.

Results

As previously stated, to understand the neural basis of BI, a

minimal (although biophysically-inspired) computational model of

visual object representation in V1 is considered. The proposed

model is based on that introduced by Li [31,35], which was

originally developed to investigate the neurodynamical basis of

contour integration and pre-attentive visual segmentation in V1.

To the best of our knowledge, the modeling effort presented in this

work constitutes a new approach to BI which tackles directly its

neurodynamical basis. Thus, although Li’s model itself has been

extended in two ways (later discussed), it is the overall framework

proposed in this work which mainly conveys the novelty.

As in Li’s original model (described in detail in the Methods

section and in Text S1), visual stimuli are characterized as

neuronal signals at discrete spatial locations. At each of these

locations, a V1 hypercolumn is composed of S|K unit pairs (one

excitatory and and one inhibitory unit per pair), as illustrated by

the schematic representation of the network architecture shown in

Figure 2A. Each unit within a hypercolumn is characterized by a

triplet [i, s, h], where i is the RF center, s is the preferred spatial

frequency, for s = 1, 2,…, and h~
kp

K
is the preferred orientation,

for k = 1, 2,…K . Note that each unit in the model corresponds to

a mathematical abstraction of a local neuronal population formed

by cells of the same type and selectivity.

The response of the model is mainly determined by both its

input image Iish (or sequence of input images It
ish

� �
t~1,:::,N

), and

the interactions between the different neuronal populations. In

particular, a unit in one hypercolumn can interact with another

unit in a different hypercolumn both via monosynaptic excitation

through the excitatory-excitatory horizontal connections described

by J, and disynaptic inhibition via the excitatory-inhibitory

connections described by W , as sketched in Figure 2B. The

matrices J½ish,js’h’� and W½ish,js’h’� are the key terms of the model

since they strongly determine the dynamical behavior of the

network. The matrix J½ish,js’h’� indicates how the neural activity of

excitatory unit xish at position i, scale s and orientation h is related

to the neural activity xjs’h’ at position j, scale s’ and orientation h’.
As in [35], the monosynaptic excitation J is strong for cells at

neighboring positions which have similar orientations and are

coaligned, thus leading to a connectivity pattern with a typical

bow-tie shape since J predominantly links cells with aligned RFs

for contour enhancement. In contrast, W mainly links cells with

non-aligned RFs for surround suppression. The structure of both J
and W are sketched in Figure 2C,D for any two neuronal

populations selective to the same (or similar) scale.

Regarding the modifications introduced in the original model

[35], on one side, our model considers a complete multiscale and

multiorientation wavelet decomposition of the visual stimuli, thus

allowing for the processing of arbitrary images rather than just the

simple edge models originally considered [31,35]. On the other

side, we have further introduced scale interactions in the model by

establishing connections between neuronal populations with

different preferred spatial frequencies. The existence of connec-

tions of such kind is in agreement with psychophysical experiments

[38,39] and was also predicted by [40]. We hypothesize that the

effect of scale and orientation can be modeled independently such

that J½ish,js’h’� (similarly, W½ish,js’h’�) can be written as the product

l(s{s’)Js
½ih,jh’� (similarly, l(s{s’)W s

½ih,jh’�), where Js
½ih,jh’� (similarly,

W s
½ih,jh’�) is akin to the monosynaptic excitation (dysynaptic

inhibition) term in the original model (see Text S1), and l(:) is a

symmetric Gaussian-like function that peaks at 0 and decreases

rapidly.

In the model, the excitatory and inhibitory cells have membrane

potentials xish and yish, respectively, and their outputs are obtained

from sigmoid-like positive non-linear and non-decreasing functions

gx(xish) and gy(yish), which represent the firing rates. The

membrane potentials obey the following differential equations

for an input image chacterized as Iish:

_xxish~{axxish{gy(yish)

{
P

Ds,Dh=0 y(Ds,Dh)gy(yiszDshzDh)zJ0gx(xish)

z
P

j=i,s’,h’ J ish,js’h’½ �gx(xjs’h’)zIishzI0,

_yyish~{ayyishzgx(xish)z
P

j=i,s’,h’ W ish,js’h’½ �gx(xjs’h’)zIc:

8>>><
>>>:

ð1Þ

Further details about the model including the explicit mathe-

matical expressions of the synaptic coupling strengths J and W
and the rest of undefined terms are presented in the Methods (or

Text S1). As for the visual input (Iish), in this work, both static and

dynamic stimuli have been considered. Whereas static stimuli have

been broadly studied in psychophysics and have yielded a large

body of well-characterized BI effects (some of which have been

previously reviewed), dynamic stimuli (herein, temporal modula-

tions of surface luminance) are gaining increasing interest because

they can be directly correlated with neurophysiological measure-

ments. In the case of static stimuli, the input to the network follows

the complete wavelet decomposition previously presented in [9]

(see also Text S2). In contrast with the classical Gabor

decomposition, which is often used to model the receptive fields

Neurodynamical Model of Brightness Induction in V1
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of V1 cells [16], the wavelet decomposition has an inverse

transform, which allows us to build a perceptual image. Thus, the

visual stimulus I is decomposed according to the following

formula:

Ii~
Xns

s~1;h~h,d1,v,d2

vishzci, ð2Þ

Figure 2. Schematic of the V1 model. (A) The visual input is sampled in a 2-dimensional discrete regular grid (here reduced to a single dimension
for the sake of clarity). At each point on the grid, an ensemble of units representing neural populations sensitive to different spatial frequencies and
orientations regularly distributed within the interval ½0,p), and which share the same receptive field center, is located, thus emulating a V1
hypercolumn. A population of excitatory neurons in one hypercolumn can interact with another excitatory population in another hypercolumn both
through monosynaptic excitation J or though disynaptic inhibition W . A population of excitatory neurons in one hypercolumn can interact with
itself through self-excitation J0. The output of the layer of excitatory units is sent to higher visual areas. (B) Each hypercolumn is composed of a set of
excitatory and inhibitory cells tuned to different spatial frequencies (i.e. scales) and orientations depicted in the sketch. A neuron population sensitive
to a given spatial frequency s and orientation h in the hypercolumn at retinotopic position i interacts with another neuron population sensitive to
spatial frequency s’ and orientation h’ in the hypercolumn at retinotopic position j both directly through monosynaptic excitation J½ish’,js’h’� and
disynaptic inhibition W½ish’,js’h’�. Panel (C) sketches the weights of the excitatory connections J½ish’,js’h’� to the postsynaptic unit ½i,s,h�, and (D) sketches
the weights of the inhibitory connections W½ish’,js’h’� to the unit ½i,s,h�. Both J and W are translation invariant.
doi:10.1371/journal.pone.0064086.g002
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where vish correspond to the multiresolution planes, ci is the

residual plane, s denotes the spatial scale, h represents the

orientation (i.e. h horizontal, d1 first diagonal, v vertical, and d2

second diagonal), and i means the i-th multiresolution coefficient

and establishes its spatial location. The coefficients vish are derived

from a multiscale and multiorientation wavelet decomposition

which separates the (achromatic) image into different spatial

frequency and orientation components (reminiscent of striate

single-cells receptive fields).

For a given input image, the perceptual image reflecting the

perceived intensity, or brightness, of a static stimulus is recovered

using:

I ’i~
Xns

s~1;h~h,d1,v,d2

M(vz
ish):vz

ish

z
Xns

s~1;h~h,d1,v,d2

M(v{
ish):v{

ishzci,

ð3Þ

where M(v+
ish) is the temporal average of the model output over

several oscillation cycles. Depending on the visual stimuli, the

system settles into an oscillatory steady state, and temporal

averages of gx(xish) over several oscillation cycles (i.e. 12

membrane time constants [35]) are used as the output of the

model.

When recovering the perceptual image,M(v+
ish) effectively acts

as a weighting function of the wavelet coefficients while, in turn, it

depends on such coefficients. Since the polarity of contrast

information must be preserved in order to enable the reconstruc-

tion of the perceived image, a separation into positive and negative

coefficients (reminiscent of the separation into ON and OFF

channels found in LGN and thoroughly discussed in previous

computational models [10,21]) has been considered (i.e. vz
ish:vish

if vishw0, and v{
ish:vish if vishv0).

In the dynamic case, the modulation of luminance in the visual

display is seen as a sequence of image frames I tf gt~1,:::,N . Each

frame is decomposed in the same way as a static stimulus, which

leads to sequences of multiresolution coefficients vt
ish

� �
t~1,:::,N

and residual planes ct
i

� �
t~1,:::,N

. The expression for a sequence of

perceived images in the dynamical context is equivalent to that

obtained for static stimuli.

I
0t
i ~

Xns

s~1;h~h,d1,v,d2

M(vt z
ish ):vt z

ish

z
Xns

s~1;h~h,d1,v,d2

M(vt {
ish ):vt {

ish zci,

ð4Þ

where, however, M(vt+
ish ) corresponds to the direct output of the

excitatory cells without averaging over time, namely gx(xt+
ish ). A

thorough description of the parameters of the model is given in

Text S1.

Static Stimuli
In this section, we apply the model to the classical effects of

static BI outlined in the introduction and analyze the results

obtained. Special emphasis is paid to the mechanisms underlying

such results. Moreover, in order to explore the potential and scope

of the proposed model, we further consider an ensemble of

different BI effects widely reported in the literature and compare

them with the results predicted by our model.

Simultaneous brightness contrast. Figure 3A,C shows two

different instantiations of the SBC effect, corresponding to two

different scales. In both cases, the gray patch is predicted to be

perceived darker when it is surrounded by a bright background

and ligther when it is located on a dark background. In

Figures 3B,D, we see that the model correctly predicts the

changes in brightness of the gray patch. The underlying

mechanisms explaining why the model predicts SBC can be

summarized as follows. Consider the gray patch on the right side

of the stimulus. The neural population sensitive to its spatial

frequency will show a strong response. Note that all the

orientations are equally represented here, so the analysis is valid

for any of them. Very locally, since few model cells respond to the

patch, excitatory cells of the same type mutually contribute to the

activity of each other by virtue of monosynaptic excitation J. On

the other hand, in the area surrounding the patch there is no

similar feature with non-zero contrast at the same frequency.

Accordingly, around the gray patch the activity of the excitatory

cells sensitive to similar orientations and frequencies is very low.

This causes the inhibition of the excitatory cells responding to the

patch to be low since inhibition is mediated by the neighboring

excitatory activity through disynaptic inhibition W . Thus, there is

an increase in the excitatory activity of the population sensitive to

the spatial frequency of that patch. The modification of the initial

activity of the excitatory cells produced by the visual input through

the recurrent interactions thus results in brightness contrast. This

effect can be considered as a direct illustration of the workings of

Li’s model, which is designed to uncover disruption in input

homogeneity. It is worth pointing out that, since we have

introduced a mechanism which allows the consideration of a wide

range of spatial frequencies, the model is able to detect disruption

at very different scales, as illustrated by Figure 3D. The preceding

reasoning is independent of the polarity of the contrast (as long as

the separation between the two polarities is kept) as illustrated by

the fact that the increase in the activity of the excitatory neural

populations responding to the spatial frequency and orientations of

the left patch also results in brightness contrast and produces a

decrease in the perceived luminance with regard to the original

luminance of the gray patch on the right.

Grating induction effect. Figure 4A shows an illustration of

the GI effect. The central horizontal patch between the two

sinusoidal gratings has constant luminance but is perceived as a

sinusoidal grating in counterphase to the upper and lower

sinusoidal stripes. Figure 4B shows that the alteration of the

luminance is also correctly predicted by the proposed model. This

chiefly arises because any location on the central patch between

two depressions (resp. peaks) of the upper and lower stripes

produces a strong activity in the neural population sensitive to its

spatial frequency and orientation (here, mainly horizontal) as a

consequence of the difference in luminance. This occurs for both

contrast polarities (i.e. white-gray-white and black-gray-black).

Since there are no similar features at the same frequency in the

surrounding area, and similarly to the case discussed above for

SBC, there is an increase in the excitatory activity of the

population under consideration and virtually no inhibition from

the neighboring units (defined locally by the spatial locations

covered by the connectivity matrix W ), this causes the mean firing

rate of these units to increase and induces contrast with respect to

the two depressions (resp. peaks), resulting in the sinusoidal profile

in counterphase to the upper and lower sinusoidal stripes.

White effect. Figure 5A provides an example of the White

effect whereby the gray rectangle on the left is perceived darker

Neurodynamical Model of Brightness Induction in V1
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than the one on the right. Figure 5B shows how the proposed

neurodynamical model reproduces the White effect. The main

features characterizing the overall operation of the model can be

described as follows. Consider the gray patch on the left side of the

stimulus. For this gray patch, the strongest neural responses that

can be encountered will, of course, correspond to those

populations selective to the spatial frequency corresponding to

the size of the patch and whose receptive fields have either a

vertical orientation (for the black-gray-black transition along the

horizontal direction) or, to a lesser extent, a horizontal orientation

(for the white-gray-white transition along the vertical direction).

Importantly, the neural responses of nearby populations selective

Figure 3. Simultaneous contrast effect. (A,B) Examples of the simultaneous brightness contrast (SBC). (B,D) Model prediction. Here, and in the
following figures showing brightness profiles, visual stimulus (black solid curve) refers to the profile of the luminance stimulus and brightness (red
solid curve) corresponds to the profile of the perceived luminance as predicted by the model. According to the model, the gray rectangle is perceived
darker when it is surrounded by a bright background and brighter when it is surrounded by a dark background, in agreement with perception.
doi:10.1371/journal.pone.0064086.g003

Figure 4. Grating induction effect. (A) Example of the grating induction (GI) effect. (B) Model prediction. The panel shows the original luminance
of the horizontal stripe (black dashed curve) and the brightness predicted by our model (red solid curve), which changes in counterphase to the
upper and lower horizontal sinusoidal luminance gratings (black solid curve), in agreement with psychophysical observation.
doi:10.1371/journal.pone.0064086.g004
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to the vertical orientation are, in fact, even stronger, when the

background grating is considered since it shares with the patch the

same spatial frequency and vertical orientation and has more

contrast, thus resulting in a strong excitatory activity in its

surround. Hence, there is a strong contribution to the inhibitory

activity through disynaptic inhibition W , which causes the

excitatory activity of the units responding to the patch to decrease.

Accordingly, the model implements assimilation of the patch

brightness by that of the dark vertical stripes in lateral contact.

Moreover, regarding the white-gray-white transition along the

vertical direction, the situation is equivalent to that found for the

SBC and GI effects in that brightness contrast is implemented and

the overall perceptual direction of change results in a lowering of

the brightness. The same explanation holds for the patch on the

right side by simply inverting the polarity of the transitions.

Mach bands. The phenomenon known as Mach bands

corresponds to the perception of a bright and a dark band at both

sides of a ramp between two plateaus whose luminance is constant

(see Figure 6A). In Figure 6B, we show that the model is also able

to reproduce this effect. To understand the main mechanisms of

the model responsible for this effect, the edge on the right side of

the ramp will first be considered. As a consequence of the ramp, a

diffuse boundary (edge) with vertical orientation emerges. Thus,

the neurons mostly sensitive to such an orientation will exhibit a

strong activity when compared to the rest of neurons sensitive to

different orientations in the same hypercolumn. Furthermore, the

cells which are aligned along all the locations corresponding to

such a diffuse edge, and sharing the same orientation sensitivity,

will benefit from an enhanced activation as a consequence of the

recurrent connections derived from the connectivity matrix J.

Since no further colinear features (i.e. nearby edges with the same

contrast polarity) are present in the stimulus, the inhibitory activity

onto these excitatory cells, as mediated by W , will become

negligible. As a consequence, an increase in the excitatory activity

of the neuronal cells colinear to the diffuse edge will take place,

thus giving rise to the emergence of a bright band. A similar

reasoning explains the dark conspicuous band on the left of the

ramp when the opposite polarity is considered.

More results are provided in Text S3. In particular, we address

the influence of relative orientation on BI and, importantly, come

up with a prediction on its effect (see Figure S1 in Text S3). We

also consider the Chevreul effect (see Figure S2 in Text S3).

Dynamic Stimuli
We have so far reported the results obtained for a number of BI

effects when static stimuli are considered. Nonetheless, one of the

Figure 5. White effect. (A) Example of the White effect. (B) The mean firing rate predicted by the model differs at the two locations corresponding
to the two rectangles (around columns 80 and 170 of the image, respectively) whose (physical) luminance is equal, in agreement with perception.
doi:10.1371/journal.pone.0064086.g005

Figure 6. Mach bands effect. (A) A dark band and a bright band appear at the edges of regions whose luminosity is constant. (B) The mean firing
rates predicted by the model agree with the illusion that there are two conspicuous bands at the edges between the ramp and the plateaus.
doi:10.1371/journal.pone.0064086.g006
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main strengths of the proposed model is that being a dynamical

model it provides a full description of the temporal evolution of the

system, which is of utmost interest when considering dynamical

stimuli. Thus, we further tested our hypothesis that contextual

influences in V1 play a central role in luminance perception in a

dynamical context. As reviewed in the Introduction, Rossi and

Paradiso [24] reported brightness changes in the activity of

neurons in V1 even though no modulations of luminance were

induced in their classical receptive fields. Figure 7A,B illustrates

the kind of stimuli used by Rossi and Paradiso. In Figure 7A, a

central band was covered by a uniform gray illumination. Some

white and dark bars were added over a central receptive field. The

luminance of the central gray part and that of the white and dark

bars were held constant. The luminance of flanking regions was

modulated sinusoidally in time keeping their mean luminance at

the same level of the central uniform gray band. They reported

that for low temporal frequencies of the sinusoidal modulation, a

large population of neurons in striate cortex responded to

luminance variation beyond their receptive fields. In addition,

these neurons responded in a phase-locked manner, namely in

antiphase to the flanks, at the temporal frequency of the sinusoidal

modulation of the flank luminance, even though the flanks were 3–

7u beyond the edges of the receptive fields. There was, however,

no perceived modulation of the activity when no light reached the

classical receptive field of the neurons, as in the stimulus shown in

Figure 7B.

We investigated the response of our neurodynamical model to

Rossi and Paradiso’s stimuli. Figure 8A shows that the model

accounts for luminance changes outside the classical receptive

field. Specifically, the firing rate of the population of neurons

sensitive to high spatial frequencies whose receptive fields are

centered in the central uniform gray band shows sinusoidal

activity. To assess the difference in phase between the luminance

modulation in the flanks and the response of the neuronal

population at the center of the central band, the neural response

was time-convoluted with a sliding square weighting function with

a period equal to the inverse of the modulation rate (as done by

Rossi and Paradiso, cf. Figure 3 in [24]). The temporal frequency

of the modulation coincides with that of the luminance of the

flanks, but the response is in counterphase, in agreement with the

experimental results reported by Rossi and Paradiso in [24]. It is

worth noting that the flanks are at a distance of 2.5 receptive fields

from the location of the neurons sensitive to the highest spatial

frequency (Figure 8B).

The underlying mechanisms explaining why the model repli-

cates the counterphase modulation of the brightness can also be

understood by paying special attention to the dynamical evolution

of the inhibition between neighboring neural populations sensitive

to similar spatial frequencies and orientations. In Figure 7, the

neural population with receptive fields showing a preference for

vertical edges and the highest spatial frequencies is inhibited by the

neural population responding to the edges emerging from the

modulation of the luminance in the flanks. The higher the

luminance variation, the more pronounced will be the edges, thus

leading to stronger neuronal responses (i.e. higher firing rates) at

the boundaries of the flanks. Such activity will be fed back into the

excitatory neurons at the central gray band as inhibitory currents

thus inducing the counterphase effect encountered since the

propagation of the signal is effectively immediate when compared

to the low temporal frequency (i.e. 2 Hz) of the driving signal.

Interestingly, the inhibitory effects (and thus the modulation

observed) in the central units decreases when the difference

between the orientation of the edges created by the flanks and the

preferred orientation of these units increases, as shown in

Figure 8B. This phenomenon, which is a consequence of the

structure of the connectivity matrices (see Figure 2(D)), is also a

prediction of our model.

Finally, the influence of luminance modulation beyond the

classical receptive field is removed when the neuron population at

the central flank has no proper activity, as can be seen in

Figure 8C,D, in line with Rossi and Paradiso’s experiment.

Relation with Previous Models
As emphasized in previous sections, the main difference

between the model presented in this work and other models of

brightness induction lies in that, in addition to reproducing

classical BI effects, it aims at apprehending plausible neuronal

mechanisms underlying BI, for both static and dynamic induction

phenomena. Thus, although gaining biological plausibility has an

added cost (namely an increase in the number of degrees of

Figure 7. Spatial configuration of the dynamic stimuli. (A) The stimulus is composed of three equally-sized rectangular regions. The luminance
of the two areas flanking the central gray area is modulated sinusoidally in time (as indicated by the thick black arrows) whereas the static center
region of the stimulus had a luminance equal to the time-average luminance of the modulated flanks. (B) The stimulus is similarly composed of three
equally-sized rectangular regions, the luminance of the two flanking areas is modulated as described in (A), but no light is shed on the central region,
and hence on the indicated receptive field. As observed in [24], the brightness of the static central area varies in counterphase to the flanks when the
corresponding neuron population has induced activity from its own receptive field (A) but not when this activity is null (B).
doi:10.1371/journal.pone.0064086.g007
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freedom), it also carries some crucial advantages, i.e. a single model

focused on the effect of contextual influences in V1 can account

for several fundamental processes simultaneously, a feature that is

highly desirable when modeling brain function. In addition, the

parameters have not been chosen arbitrarily, but are essentially

shared with Li’s model [35], and are based on available

neurobiological evidence. A general description of the most

successful computational models of BI is available in the

introduction. It is worth noting, for instance, that another model

in the literature has a similar focus [10], but is restricted to static

one-dimensional stimuli. In this section, we concentrate on the

resemblance of the model with two prominent models using a

multiscale approach to low-level vision, namely the BIWaM and

the ODOG model.

The mathematical formulation we adopt for constructing the

predicted perceptual image is equivalent to that described in the

BIWaM model presented in Otazu et el. [9]. However, in this last

model, instead of using a term similar to M(vish) (i.e. the output

from the proposed neurodynamical model) to mediate the

reconstruction of the image, the authors consider the following

function:

Ipercep(x,y)~
Xn

s~1

X
o~v,h,d

C’(_ss,zctrl(x,y; s,o)):vo
s (x,y)zcn(x,y),

where C’(_ss,zctrl(x,y; s,o)) (see [9] for details) is built on the notion

of CSF but is modified to account for the following three

assumptions: (i) brightness assimilation is only performed when

both central and surround stimuli have similar spatial frequencies

within a frequency range of about one octave, (ii) brightness

assimilation is strongest when the central stimulus and the

surround stimulus have identical orientations, whereas for

increasing relative spatial orientations brightness assimilation is

weakest and brightness contrast is strongest, and (iii) when the

luminance contrast of the surround features increases, brightness

assimilation increases (i.e. brightness contrast decreases) and vice

versa.

Since the proposed neurodynamical model shares with the

BIWaM the wavelet decomposition, it makes sense to ask whether

these assumptions can be accounted for as an emergent effect of

the topological and the dynamical properties of our model. It turns

out that the connectivity matrices J and W promote effects

compatible with the second assumption since neurons that respond

to similar orientations are more strongly connected than neurons

responsive to rather different orientations. Furthermore, neurons

responding to the same or one octave apart spatial frequencies are

more strongly connected than those tuned to different spatial

frequencies. Finally, one of the key aspects of the BIWaM model is

the weighting that modulates the CSF employed in the

reconstruction of the image by considering the relative contrast

Figure 8. Response to the dynamic stimuli. (A) Output of the model in response to the stimulus outlined in Figure 7A. The black solid curve
describes the sinusoidal oscillations of the luminance of the flanks, the black dashed curve represents the luminance of the central part of the
stimulus and the red solid curve gives the brightness of this central part, according to the model. The model agrees with the perception that the
brightness of the static central area varies in antiphase to the flanks. (B) shows the modulation of the firing rate of neuron populations sensitive to
the highest frequency and located in the center of the stimulus due to the modulation of the flank luminance. The modulation of the flanks
luminance takes place outside their classical RF since the two flanks are separated by 24 pixels (or units) and the diameter of the RFs of these neurons
is 5 pixels. The induced modulation is high for the population of neurons that share their preferred orientation with the neurons that best respond to
the edges created by the flanks, namely the vertical orientation (green solid curve), and is low if the difference between orientations is high, as for the
diagonal (brown solid curve) and horizontal (blue solid curve) orientations. (C,D) Output of the model in response to the stimulus outlined in
Figure 7B. According to the model, induction is lost when there is no inherent activity in the central part of the stimulus, in line with the observations
described in [24].
doi:10.1371/journal.pone.0064086.g008
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of a central feature compared to the contrast of its surround

features. In particular, this is done by means of the variable

zctrl(x,y; s,o) whose definition is based on the ratio r~
s2

cen

s2
sur

, where

scen refers to the standard deviation of the filter responses to the

central feature and ssur corresponds to that of the surroundings. In

our model, such an effect is implemented dynamically by the

cooperative and competitive processes taking place between the

neurons at the central location (cen) and those located in the

surroundings (sur). Furthermore, the non-linearity instantiated by

the function zctrl(x,y; s,o)~
r2

1zr2
finds its neurophysiological

counterpart in the divisive normalization introduced through

Inorm.

The model proposed in this work also shares with the ODOG

model two of its essential features, namely multiscale spatial

frequency sensitivity and orientation specificity. It is also worth

pointing out that the proposed model provides interesting insights

into the cortical mechanisms underlying the Blakeslee and

McCourt model [7]. In particular, we have conducted a study to

reveal whether the proposed network reproduces an operation

akin to the differential weighting discussed in [7]. To this end,

several sinusoidal gratings characterized by different spatial

frequencies were considered as input stimuli to the network and

the gain between the output of the model and its input was

analyzed. As a result, a gain function with a slope of 0.092 in log-

log coordinates (r2~0:85, pv10{5) is obtained (see Figure S3 in

Text S4) that resembles the power function with slope 0.1 that was

used to weigh the filters considered by Blakeslee and McCourt

model [7] and is consistent with the shallow low-frequency fall-off

of the suprathreshold CSF [6] associated with the high-contrast

stimuli employed throughout this last work.

Discussion

This study reports the results from a computational investiga-

tion into the neuronal mechanisms underlying several BI effects

observed either in human psychophysics [6,9,11,13] or in

neurophysiological recordings [2,24–26], which have been ob-

tained from different modalities and species. We further attempt to

provide new evidence that sheds some light on the view that BI

may, at least partially, be explicitly represented in V1. This is in

contrast to the more common assumption that the striate cortex is

an area mostly responsive to sensory information.

The proposed model has been built up on a minimal

neurodynamical model of V1 [31] which has been successful in

accounting for a number of other contextual effects (e.g. visual

saliency, segmentation, contour-enhancement, etc). This study

therefore suggests that BI shares with visual saliency and these

other contextual effects a common neural circuitry. The proposed

model inherits from Li’s model the topological structure of the

network which grants a prevalent role to the horizontal

connections. This, in fact, constitutes one of the strengths of the

model as it is embedded in a larger framework aiming to explain

other fundamental processes of biological vision and has found

supporting experimental evidence both in psychophysics [41] and

neurophysiology [36]. Thus, the study of BI, beyond being an

exciting research topic on its own, leads to a scenario that can help

reveal some fundamental aspects of visual information processing

in the human visual system. It is with this motivation that we have

addressed this investigation. Consequently, an effort has been

made throughout this work to frame our results in a larger picture

and relate them to other basic visual processes.

Notably, one of the main strengths of the proposed model is its

biological motivation. In contrast to previous approaches (e.g.

[6,7,9]), which emulate basic findings by imposing high-level

constraints (e.g. contrast normalization, modulation of scale effects

by means of a CSF, etc), these become emergent properties of the

proposed network and are derived from well-known built-in

cortical mechanisms and structural properties such as synaptic

connectivity or divisive normalization. From a neuronal perspec-

tive, divisive normalization is a widespread computation in a

variety of sensory systems [42]. Recent results clearly show that

contrast sensitivity is continuously regulated and normalized over

the whole activated V1 cortical surface by means of a dynamic

normalization pool [43]. The proposed network model includes a

normalization term (as discussed in [31,35]), which in fact may be

at the basis of the contrast normalization operation invoked by [7]

to promote the equalization of the global response at each

orientation. Interestingly, contrast normalization has been found

to play a central role in explaining the transition from assimilation

to contrast effects as, for instance, that found in the White effect

[6,7,15].

Furthermore, by providing direct predictions of neural activities,

the proposed neurodynamical model can be validated both in a

direct way by means of neurophysiological measures but also in an

indirect way by means of surrogate psychophysical percepts. In

this sense, the fact that our model is able to reproduce the

neurophysiological recordings reported in [24] provides strong

support for its overall validity. This is complemented by the

general agreement with perceptual data encountered when dealing

with the static stimuli. Although it is beyond the scope of this study

to address issues such as neural decoding in order to build visual

percepts, what we claim with the reported inverse transforms is

that the model outputs are compatible with the expected percepts.

Accordingly, a simple inverse method is able to reproduce such

percepts on the basis of the visual inputs and how these are

modified through contextual effects.

As already pointed out, one of the unique features of this study

is precisely that both static and dynamic visual stimuli have been

investigated. This suggests that the mechanisms that have been

identified are robust across stimuli and can be closely related to

neural representations at realistic time scales. This follows from the

fact that the model is a neurodynamical system that can naturally

deal with any kind of visual stimulus, in contrast to most other

successful formulations (e.g. [6,7,9]), which do not incorporate

dynamical aspects.

It is worth noting that some of the existing models which

account for dynamical effects, i.e. [10,14,21], do rely on the

existence of filling-in signals. These theories suggest that surface

brightness is represented explicitly by neural signals in cortical

visual field maps, which are initiated by contrast signals at the

stimulus borders. By using functional magnetic resonance imaging

(fMRI) to search for such neural ‘‘filling-in’’ signals, Cornelissen

et al. [44] found no evidence for these kinds of signals and

concluded that the visual field maps of human V1 and V2 do not

contain filled-in, topographical representations of surface bright-

ness (and color). In contrast, our model reflects mechanisms for

which converging experimental evidence exists [36,42,43,45].

Since BI can be simply regarded as a contextual effect, recurrent

networks of excitatory and inhibitory neurons provide a conve-

nient framework for modeling. However, the specificities of the

different BI effects can only be captured provided appropriate

connectivity matrices are considered. It is worth noting, for

instance, that some induction effects (e.g. SBC, Mach, or

Chevreul, among others) can already be recovered by considering

the raw gray level images as visual inputs to a simplified 1D
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version of the proposed model in which the synaptic connectivities

are defined by means of unidimensional gaussian functions of

different widths. In that case, the behavior of the interactions that

J and W implement is akin to a center-surround mechanism.

However, when 2D stimuli such as arbitrary images are

considered, orientation is likely to become relevant and raw gray

level values can no longer be used. Instead, Gabor-like filter

responses and connectivity matrices akin to those reported in this

study must be considered. Although Li [35] already suggested that

this should be done, one of the contributions of this work is that we

have effectively implemented this notion by considering a

complete wavelet-decomposition that makes use of a set of filters

similar to a Gabor filter bank, thus keeping a biological substrate,

while allowing for the reconstruction of a perceptual image on the

basis of the modified output for validation purposes.

Moreover, our model also includes scale selectivity and

interactions between the scales. Neither of these aspects were

considered in Li’s original model [31,35]. On the one hand, by

including scale selectivity, we have been able to account for BI

effects that occur at different spatial scales (see for instance the

SBC reported in the Results section). On the other hand, although

not critical to reproduce the reported results, the existence of scale

interactions has been suggested by psychophysical experiments

[38,39] and also predicted by [40].

Throughout this investigation, a close analysis of the mecha-

nisms underlying the reported BI effects has revealed that

inhibition is of utmost importance to enable the emergence of

the observed perceptual effects. Interestingly, this is an observation

that coincides with the prevalent role that inhibition has long been

acknowledged to play in modeling other cognitive processes such

as working memory [46] or decision making [47]. Thus, for

instance, sustained neural activation during the delay period is the

mechanism that most attention has received from the modeling

community to model working memory, and attractor networks

have proven to be successful to account for this phenomenon (e.g.

[46,48]). Local inhibition is, in this context, necessary in order to

enable stable states with spontaneous rates and an average

synaptic long-term potentiation (LTP) in specific populations is

required to give rise to local attractors with sustained high firing

rates during the delay period. Moreover, working memory

capacity, for instance, critically depends on the constraints that

lateral inhibition imposes to the mnemonic activity [49,50].

Similarly, in decision making, inhibition naturally mediates the

competition between neural populations coding for the different

alternatives and must be carefully set up for the network to operate

in an appropriate regime. Thus, although it is indeed the interplay

between collaborative (i.e. in this work mediated by means of the J
matrix) and competitive (i.e. in this work mediated by means of the

W matrix) that gives rise to the emergence of the appropriate

system dynamics, the role that inhibition plays appears to be

especially critical as is the case, for instance, of establising the

number of memories that can be actively maintained in working

memory [51].

In this work, we have also attempted to provide insights into the

cortical mechanisms underlying previous phenomenological mod-

els such as those by Blakeslee and McCourt [7] and Otazu et al.

[9]. Notably, some of the constraints imposed in these models have

emerged from the neuronal network structure and its associated

prescribed dynamics. In particular, we have recovered the power

function with slope 0.1 that was used to weigh the filters

considered by Blakeslee and McCourt model [7] that is consistent

with the shallow low-frequency fall-off of the suprathreshold CSF

associated with the high-contrast stimuli employed, and have

discussed some neural mechanisms underlying the emergence of

perceptual images built from the same multi-scale and multi-

orientation wavelet decomposition of the visual stimuli reported by

Otazu et al. [9].

Finally, in the last years, the role of oscillations in multiple

neurocognitive processes has received considerable attention.

Interestingly, one of the pecularities of the proposed model is

the oscillatory nature of its outputs. This, as argued by Li [35], is a

relatively common feature of networks of excitatory and inhibitory

neurons. The model has therefore the potential to explore the role

that such oscillatory activity may have for encoding different

aspects of BI. Indeed, Biederlack et al. [52] reported some

suggestive evidence that rate enhancement and neuronal synchro-

nization could contribute complementary codes of BI and further

investigations in this area are certainly interesting.

A further extension of the model could certainly come from its

generalization into color opponent space in order to reproduce

chromatic induction effects, which would be important both from

a fundamental perspective (i.e. gaining further understanding

about color vision) but could also have an enormous impact in

technological applications within the field of image processing.

Taken together, we propose a neurodynamical model of V1

from which BI emerges naturally. This model is embedded in a

general framework to investigate contextual effects in V1 and,

importantly, offers plausible explanations of the mechanisms

yielding BI based on neural mechanisms. Finally, the model also

makes specific firing rates and behavioural predictions and

suggests how these can be related with manipulable experimental

variables. In this sense, the study confirms the usefulness of

computational neuroscience approaches to investigate neural

processes and offers predictions which may be used to guide, in

a principled way, the design of experiments in order to further

explore BI.

Materials and Methods

Computational Model Description
The multiresolution wavelet decomposition is based on the à

trous algorithm [53] (see detail in Text S2). The wavelet basis

functions, or mother wavelets, are not strictly Gabor functions, but

are smooth, symmetric, highly concentrated in both space and

frequency, and have similar profile. This algorithm has two main

advantages. First, it is undecimated (all the planes have the same

resolution, independently of the spatial frequency they correspond

to), which is a required property for the decomposition to be

translation invariant. This point is of importance since, together

with the invariance with respect to translation of the connectivity,

it makes the whole system translation invariant. Furthermore, this

decomposition allows every spatial frequency to be represented at

each position representing a hypercolumn, in accordance with the

architecture of the cortical integration region in monkey striate

cortex [54].

The coefficients vish derived from a multiscale and multi-

orientation decomposition (Equation 1) are then half-wave

rectified to preserve information regarding contrast polarity. The

corresponding values vz
ish and v{

ish are then normalized in the

range vish[½1,4� [35]. In the case of a static stimulus (resp. of a

dynamic stimulus), the minimum and maximum of the multi-

resolution coefficients over all positions, all scales, and all

orientations (resp. and all frames) are respectively set to the

minimum and maximum values in that range. Then, all the

minimum values (equal to 1) are set to 0. These normalized

coefficients v+
ish, or vt+

ish

� �
t~1,:::,N

, are then used to initialize the

activity gx(xish) and serve as the input Iish to the network that feeds
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the excitatory cells xish. For static stimuli, the visual input Iish

persists over time.

For simulating the dynamic of the model, we used a discrete

time implementation. An Euler integration scheme of first order

was used to numerically integrate the coupled differential

equations describing the dynamics of the system. The time step

was dt~0:01t, where t is the membrane time constant (t~10 ms

[35]). When considering a static stimulus, this input is constant

over all the time membrane constants handled in the computation

[31]. In the dynamic case, the relation between the frequency of

oscillation f of a stimulus sinusoidally modulated in time and the

temporal behavior of the model, which is dictated by its

membrane time constant t, is computed as follows: during every

time membrane constant t, the stimulus undergoes a change

corresponding to a (f =t)-th part of a period.

Supporting Information
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NeuroV1/BrightnessInduction/.
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Text S4 Supplementary Material. Frequency gain of the
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