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Optimal models for visual recognition !

Matevz Kovaci¢, Bojan Kverh, and Franc Solina

1 Introduction

Over the years building models of objects from sensory data has been tackled in
various ways. Following [1], model based recognition methods are divided into
graph theoretic and non graph theoretic. Graph theoretic methods use graphs as
a representation for objects and scenes. An object is divided into parts. Nodes of
a graph that describes an object characterize the parts of the object and arcs of
the graph represent spatial relations among parts of the object. Recognition of
an object in the scene is performed as search for a subgraph isomorphism between
the scene graph and each of the model graphs. In non graph theoretic methods,
local features are used to describe the object. Grimson and Lozano-Peres 3],
used a constrained tree search to efficiently coordinate values of point features
and surface normals in models to those found in the scenes.

We are not interested in comparing the efficiency of the models in terms of
time and space complexity, but to select the most probable model among the
predetermined set of classes of models.

Suppose the scene consists of an object represented as a set of points in a two
dimensional plane. For the sake of the argument, let us limit the set of possible
models to the set of single valued functions. If there are n such points then the
object can always be explained by a model of a form of a polynomial of degree
up to n — 1. Statistical measures would prefer such a model over, say, a much
simpler model such as a linear curve which, for example, misclassifies a single
instance in our set of observations. Clearly, the measure of a model justification
must take into account the complexity and the accuracy of a model.

In general, there is an infinite number of models which explain the data. A
crucial question is which model to choose. There are four principles for model
Justification. William of Ockham proposed the principle known as Occam’s razor:
if there are alternative explanations for a phenomenon, then, all other things
being equal, we should select the simplest one?. Identification of the ’simplicity
of an object’ with 'an object having short effective description’ is the adaptation
of Occam’s razor principle to science. From the set of consistent models M of
observations of objects E we should choose the one which is the shortest:

arg A}rlelil,t I(M) M is consistent with E,

where I(z) = —log, P(z) denote the information of event z.

1 This work was supported by the Ministry of Science and Technology of Republic of Slovenia
(Project J2-6187), European Union Copernicus Program (Grant 1068 RECCAD), and by U.S.
— Slovene Joint Board (Project #95-158).

2According to Bertrand Russel, the actual phrase used by William of Ockham was: "It is
vain to do with more that can be done with fewer.”
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Fisher’s mazimum likelihood principle says that for given data E the model M
which maximizes the posterior probability of data given model should be selected:

arg max P(E|M) = arg Jnin I(E|M) .

We may observe several characteristics provided by empirical data or considera-
tions based on symmetry probabilistic laws etc., which can be used as constraints
in determining the model given data. Usually, these constraints are not sufficient
to determine the distribution of models. E.T. J aynes proposed the mazimum en-
tropy principle which is used to select the appropriate prior distribution of mod-
els given constraints. Maximum entropy selects the prior probability of models
Pi = pr; Which maximize the entropy function and is consistent with obtained
constraints

n
argmax H(py,...,p,) = — Z p; log, p; Pi is consistent with constraints

=1

For example, consider a loaded die (n = 6). If we observed that the average
throw gives the average a, we have two constraints

n
Zipi = a
=1
n
Zpi = 11
11

which must be taken in consideration in maximizing the entropy. Observe that
if we selected any prior distribution of models which would not maximize the en-
tropy given constraints we would decrease entropy (i.e. add information) without
justification.

Rissanen [12] advocates the use of information content of observations relative to
a model which is called Minimum Description Length (MDL) principle. Accord-
ing to the MDL principle not only the accuracy of the model given data but also
the complexity of the model should be taken in the consideration when selecting
the appropriate model of the data. The MDL principle balances two factors:
the encoding of a model and the encoding of data given the model. The selected
model minimizes the sum of the encoding of the model and the data given model:

amrgl\f]nﬁij\ll1 {I(M) +I(E|M)}

In the process of growth (specialization) of a model the number of misclassified
instances of data decreases and so does the encoding of data given refined model;
on the other hand, specialization results in the increase of the model encoding,
since the length of a model increases.

It can be proven (see [8], pp. 316-317) that both, the maximum likelihood prin-
ciple and the maximum entropy principle are special cases of the MDL principle.
The paper describes the use of MDL principle in selecting appropriate models of
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objects. In Sect. 2 MDL principle is briefly presented. It is shown that the ML
(maximum likelihood) principle is a special case of MDL principle. Finally, in
Sect 3 an approximate encoding for non graph theoretic models are presented. A
greedy algorithm for model selection is presented in Sect 4. The algorithm takes
the line segments obtained by the Hough transform [13] on an edge image and
eliminates unnecessary edges based on the MDL principle.

2 MDL Principle—an Overview

Since there will generally be several models that explain objects we need a sound
basis for grading models. From the set of all possible models M we shall choose
the most probable model. Let P(M ) be the probability of model M in the set
of all possible models (the definition of P(M) will be discussed in Sect 3) and
let P(E) be the probability of object E in the given scene(s). If we assume that
the above events are independent, we can express the probability of the model
M given object E in the scene(s) using Bayes’ theorem:

P(E|M) P(M)

P(M|E) = BE)

Since the probability P(E) is constant for all M € M it follows that the order-
ing of probability of models depends only of P(E|M) P(M). If we express this
product using information instead of probabilities it follows immediately that the
most probable model given E is the one which minimizes the expression:

arg min {I(E|M) +I(M)} . (1)

Equation 1 balances two factors: I (E|M) the information needed to encode ob-
servations E given model M which decreases when M gets more specialized; but
on the other hand this causes the increase of I (M), the information needed to
encode M itself, and vice versa. Using Bayes’ Theorem we have

](E[M)+I(M)=I(M|E')+I(E) . (2)
Using (2), we can rewrite (1):
arg A%IRA{I(EIM) +I(M)} = argAfIneljr\xd{I(MlE) +I(E)}
Since I(E) is constant (the set of scenes and objects in them is fixed), we have
wug min (I(EIM) + 1)} = arg min (1(M|E))
= arg max {P(M|E)} ®3)

which states that Rissanen’s MDL principle actually maximizes P(M|E) over
M.
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The purpose of concept formation is information compression; a model describes
or "explains” given data. A model M compresses data E if

I(E) > I(M) + I(E|M).

The most compressible hypothesis is the one with minimal encoding length and
with the greatest posterior probability (see Eq 3).

Since results from algorithmic information theory have shown that finding an
optimal encoding of a model is equivalent to the halting problem (9], a decid-
able coding scheme approximation must be adopted for calculating I(M). The
problem of calculating I(M) will be discussed in detail in Sect. 3.

3 Approximate Encoding of Models

If we want to apply the MDL principle to model selection we have to compute,
according to Eq 1 the probabilities P(E|M) and P(M). The former is usually
easy: if we have enough scenes and objects the relative frequency of the success
of recognizing object E among all objects in the scene(s):

correct(M, E)

P(EIM) = correct(M, E) + incorrect(M, E)

is a good approximation.

The evaluation of P(M) (i.e. I(M)) is more difficult. How to define the proba-
bility (the information) of a model? The exact formulation is beyond the scope
of this paper (see [8] for the details); let us just state that the information of the
model equals the length of the shortest program that produces a model. Since
finding the shortest program that produces a model is undecidable (see [9]), we
have to approximate I(M). Therefore we need to encode a model as well as we
can to obtain a good approximation of P(M).

The importance of simple explanations has a long history in modeling visual
data. Gestalt psychologists summarized their observations in a number of Gestalt
principles, one of them being the law of Prédgnanz, or the minimum principle,
which states that the visual field will be organized in the simplest or the most
likely possible way [4]. Recently, simplicity in terms of the MDL principle has
found its applications in computer vision [10, 7, 2, 5, 11]. The MDL principle
was proposed, for example, to select the appropriate scale of observing visual
data [15].

In the following subsection we encode the information needed to encode a non
graph theoretical model. The program that decodes the model is omitted since
it is assumed to be fixed and known in advance.

3.1 Model Encoding

In the following we restrict ourselves to modeling binary edge images (the ap-
proach can be easily extended to intensity images). Following the MDL principle,
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we seek to compress the image by using models for description of the image. To
evaluate the compression we propose a model for the encoding of intensity images
and two models for binary images which enable us to determine the compression
of image using a model. The MDL principle will also be used for searching for
the most probable model of the image from the set of possible models.

An m x n intensity image with k levels of intensity can be encoded as a message of
length m x n with k code symbols. Using coding based on stochastic complexity
[6], the code length for such a message is:

f k-1 f 7rk/2

where f; > 0 is the frequency of symbol (intensity) 7 in the image, and f = ¥ f;.
For example, the encoding of m x n binary image with p zeroes takes

L(p)m X n—p).

Let us now consider an alternative way of encoding a m x n binary image. If we
apply an edge detection algorithm the resulting line segments can serve as the
model of the image. Every line segment can be encoded by the coordinates of its
end points. If the image is presented by k line segments, we have to encode 2 k
points in the m x n image which takes (see Eq 4)

I(M) =L(2k,m xn—2k). (5)

Every black point in the image is modeled by exactly one line segment. If there
are s line segments and f; > 0 points is modeled by the i-th line segment, the
information needed to encode the points to segments mapping takes

Lp,s=L(fl:~--’fs)~ (6)

Let Py = {p1,...,py,} be the set of points which belong (i.e. are modeled by) to
the segment s defined by points A and B. (see Fig. 1).

Using line segment s to model the point p; = (z;,y,) we only need to encode T;
since y; can be computed using the equation of the line segment s. Note that
in the case that the line segment s does not accurately model the point pj, the
error 6, ; must also be encoded to determine yj- Every point in our model is
represented by its z coordinate and the error of its corresponding line segment
model

p; = (2;,y;) = (2, kz; + 85 + n)

where line segment s is defined as y = kz + n. To encode points belonging
to segment s we first need to encode the z coordinate for every point. We
may choose the segment s = (4, B) = (z(A),y(A),z(B),y(B)) in such a way
that all z coordinates of points in P, fall within [z(A),z(B)]. Clearly, the z
coordinate of every point in Py can be mapped to X, = [0,z(B) — z(4) + 1].
Let X5 = {fs,z |z € X{A fsz > 0} be the non-zero part of frequency distribution
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. rPj

63,]' %

Yi=kz; +n

Figure 1: A set of points p1,...,pj,...,ps, modeled by line segment (A, B)

of = coordinates of points in Ps mapped onto X. To encode the z coordinates
of points in P, using segment s and mapping X we need

Lsx, = Ly, ., ex.}(fs,z:) (7)

bits of information.

The set of corrections of a line segment model s of points in P; is coded in a
similar fashion as the coding of z coordinates of points in Ps;. Let A be the non-
zero part of frequency distribution of corrections of model s of P;. To encode the
corrections needed to determine P, using line segment s as a model of points in

P, we need
Lsa, = Ly, 5.ea,)(fs,8) (8)

To summarize, the information needed to encode the points P; given model s is
the sum of encodings given in Egs 7-8. The encoding of the complete model M
of image of p points which consists of s line segments is the sum of the encodings
of the constituent line segment models with addition of the mapping of points to
line segments encoding

k]
I(M)=Lps+ > (Lix, +Lia,)

i=1

4 Algorithm

The implementation of the MDL principle to modeling of binary edge images
with line segments is relatively simple. According to Eq 1 we search for minimal
(i.e. most compressive) model of the image. In our case candidate models are sets
of line segments. The input image is a typical result of processing an intensity
image with an edge finder operator. Such edge images must be typically “cleaned”
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before higher level processing such as stereo matching or recognition can start.
Typically such “cleaning” operations consist of: thinning of edges, filling small
gaps, linking of edge elements, different kinds of filtering etc. Running the Hough
transform on an “uncleaned” edge image results in a multitude of overlapping
lines. Different methods, for example cluster analysis [14], are proposed to select
a subset of lines obtained by the Hough transform. We propose to use the MDL
principle to select from this multitude of possible line models only the necessary
ones. The algorithm starts with the full model (all line segments resulting from
the Hough transform) then applies a local peak detection and a treshold in Hough
space. Each edge point is then assigned to the closest line segment according to
Euclidian distance. Line segments that do not contain enough points (usually
15) are deleted so that the remaining ones can be handled by the algorithm.
We need to reduce the number of line segments because our algorithm has time
complexity of O(n?), where n is the initial number of line segments. The main
algorithm gradually refines the model by removing line segments from the model.
It stops when there is no refined model which would be more compressive as the
current model. We are not interested in global optimization over a set of possible
models since this would be intractable. Besides, the experiments show that local
optimization produces satisfactory results.

The algorithm performs a greedy search in the space of possible models mini-
mizing the sum of the encoding of the model and of the image given the model.
In every iteration of the algorithm we remove the line segment which results in
the most compressive model. Let M = {l1,...,1,} be the original model of the
image E consisting of n line segments. We obtain the approximation of the most
compressive model as

1. Repeat

2. C=I(M)+I(E|M) { complexity of the current model }
3. For every line segment [, € M

4. M =M - {lx}

5. If I(M') + I(E|M') < I(M) + I(E|M)

6. Let M = M’

7. Until C > I(M) + I(E| M)

5 Experiments

We performed several experiments on finding segment models of binary edge
images. The initial model of a binary edge image was obtained by performing the
Hough transform. The transform usually results in a model with many redundant
line segments. When the above selection algorithm proceeds, the majority of line
segments are removed. The snapshots of the process are given in Fig. 2.
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(e) (f)

Figure 2: The algorithm performance: (a) original image (b) edges found by an
edge operator (c) line segments found by the Hough transform (d) broken up

line segments (e) remaining line segments after deleting those with less than 15
points (f) final model of the image
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On noisy images the Hough transform produces many spurious lines. Scattered
points which are far from, but on the same line as actual edges, cause the ex-
tension of the corresponding line models (see Fig. 2(c)). Therefore, we may
use the above algorithm also for searching the modifications of the line segments
produced by Hough transform before the actual selection of line segments.

The algorithm for breaking such line models is completely the same as described
above, but instead of refining the model by eliminating line segments, we break
them into more parts to obtain better models of the image. Results are shown in
Fig 2(d). Fig. 2(e) shows the line segments remaining after deletion of the ones,
containing less than 15 points and Fig. 2(f) the final result.

6 Conclusions

Minimum description length (MDL) principle can be used as a method for model
construction from sensory data. The application of the MDL principle requires
the computation of information content of the model. The paper describes the
generic encoding for a non graph theoretic model. For demonstration, modeling
of edges with straight line segments was performed. This example demonstrates
that instead of heuristic approaches such low-level image processing tasks can be
founded on sound theoretical basis.

The issue of time complexity of object reconstruction is briefly addressed. It is
proposed that models with various time complexity and accuracy should be used
to achieve optimal time complexity along with high reconstruction accuracy.
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