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II. Abstract 
 

An electrocardiogram (ECG) is a bioelectrical signal which records the heart‘s 

electrical activity versus time. It is an important diagnostic tool for assessing heart 

functions. The interpretation of ECG signal is an application of pattern recognition. 

The techniques used in this pattern recognition comprise: signal pre-processing, QRS 

detection, creation of variables and signal classification. In this research, signal 

processing and programs implementation are based in Matlab environment.  The 

processed simulated signal source came from the SIMULAIDS® interactive ECG 

simulator™ device and the actual heart signals came from actual patients that suffer 

from various heart disorders, as well as healthy persons that hadn‘t recorded any 

form of heart condition in the past. 

 For the creation of the database in this research, 5 types of ECG waveform 

were selected from the ECG simulator device. These are normal sinus rhythm (NSR), 

ventricular tachycardia (VT poly), ventricular fibrillation (VF), Atrial fibrillation (A 

FIB) and supra ventricular tachycardia (SVT). An essential part of this research was 

the development of a portable high resolution ECG device, capable of connecting 

with, either an ECG simulator device, or recording real human data. This device is 

able to produce higher resolution than normal ECG devices and high values of Signal 

to Noise Ratio (SNR).   

Matlab was used to develop a program that could further examine, analyze 

and study the ECG samples. Since the heart waveform can be simulated by cubic 

spline interpolation, this feature was used by the implemented Matlab program. The 

ECG samples were normalized and processed to produce 4 specific coefficients. 

These 4 coefficients of cubic spline were used in the applied methodology in order to 

evaluate and separate the various heart disorders with mathematical terms and 

equations. The database created was compared with the real human samples that 

were taken and passed through the same data process. Through this step, the entire 

data process and implementation was not only confirmed, but also proved that the 

capability to diagnose heart disorders was possible. 

Based on the results of the applied methodology, the categorization of heart 

disorders without actual clinical examination is possible. Further analysis of each 

group of results, can lead to heart disorder prediction. Also given are further 

suggestions to plan experiments for future work. 
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  1. Introduction 

 

1.1 Aims of investigation 

 

In 1992, 42% of adult deaths in USA was caused by heart diseases as scientific 

researches point that as the mean average of population getting older heart diseases 

are growing. A timely diagnosis and prevention is very needful and also there is a 

tension to avoid costly and same times dangerous methods of examination and 

surgical operation.     

Electrocardiogram is common practice for diagnosis of heart diseases and is 

based on measurement of electrical activity on the body surface caused by the 

function of heart. 

Eithoven in 1903 developed further the theory of cardiac signals which was 

acquaintance from 1889, while he is also the person in charge for the import of 

significances that is used until today while it determined and the points from which 

the signals should be received. Finally it developed the basic theory round the ECG, 

central regard of which is the modelling of heart as a time-rating dipole. 

The fundamental practice for recording the cardiac signals is the measurement 

of a voltage difference between two points in the body. Eithoven had assign three 

leads (I, II, III) derived from the arms and the left leg. Since then, 9 other leads 

developed in order the examiner to have a complete picture of the heart function.   

 The Einthoven three lead recordings are reported with Latin numbers I, II, III. 

These are defined as:  

 

I = B LA – B RA  

II = B LL – B RA  

III = B LL – B LA  

 

where RA = Right Arm, LA = Left Arm, LL = Left Leg.  The three signal recordings 

are not independent of each other but are related with II = I + III. 

In today it is scientifically accepted that the same diseases in two different 

patients have the same influence in the cardiosignal and differentiate its morphology 
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in the same way giving us the opportunity to recognize the disease. The unchangeable 

morphology of the two derivatives of the cardiosignal gives also the possibility to 

proceed in the study and creation of patterns that recognize the disease. So, patients 

that are examined have the same heart disorders in order to see which parameters of 

the cardiosignal remain stable, which change and if there is any relation between this 

change and the gravity of the disease. Another way to exam the heart functionality is 

by measuring the chaotic morphology of the cardiac signal. 

The principal aim of the project is to develop new algorithms for analysis of the 

electro cardio signal waveform and also to create a portable and accurate ECG 

analyser in order to succeed a) timely diagnosis, b) avoid costly diagnosis, c) 

improvement of today methods, d) improve the pro- surgical planning –decrease the 

surgical risk and e) supply the research of the heart and heart diseases.    

In order to success the original goal, initially a development of an ECG analyser 

containing new and powerful signal processors and also analog filters had to be made. 

A computer software developed in Matlab for analysing the cardiac signals, placing 

the input signals into digital filters and lead to scientific results about the 

methodology and the diagnosis of a disease followed and initiated the research. 

 

1.2 Project Objectives 

 

The principal objectives of the work are: 

 Literature survey of previous and current developments in the field. 

 Develop (design and construction) of an electro cardiographer with high 

resolution in very low bio-electrical signals. Portable and connectable with 

computers. 

 Development of software in Matlab based on the theoretical analysis about 

these bio-signals. This program will provides the possibility of a very 

circumstantial analysis of cardiac signals either to time domain or to frequency 

domain.   

 Creation of a database consisted of simulated cardio signals categorized in 

groups. A deep mathematical, physical and statistical analysis will be carried 

out in order to find any common points between signals of the same disease or 
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even a pattern than a disease follows and change the cardiac signal in the time 

domain, frequency domain, first and second derivative or chaos. 

 Further development of the software in order to be able to compare new 

signals with signals of the database and through an analysis of derivatives, 

chaos and a comparison is capable for diagnosis.  

 Compare real human samples with the theoretical model. 

 Finalization of the portable device and statistical analysis of the capability. 

 

1.3 Summary 

  

 In the following chapter of the research, a detailed analysis of the way a 

human heart works and sends biosignals throughout the body is explained. A more 

comprehensive analysis of the cardiovascular signals is quoted.  

In chapter three, a physiological background of the heart is analyzed 

thoroughly with the analysis of signal variability to be expanded in every detail. 

Notable interest shows the induction of chaos theory in ECG in this chapter. Another 

very interesting part of this chapter is where common heart rhythms and arrhythmias 

are explained. 

In chapter four the methods of investigation are discussed. This includes not 

only the ECG hardware created for this research, but also the software that was 

implemented with the application "MATLAB". The ways of acquiring an ECG from 

adults and kids are also mentioned.  

The main function used in this research, that is Cubic Splines, and the 

necessary routine creation are thoroughly explained in chapter five. Here the main 

simulating device used for exporting various heart conditions in order to create a 

well established signal database is introduced. A way to correlate the factors of the 

various heart conditions collected and analyzed is explained and presented with real 

human samples compared with the theoretical model. 

 In the last chapter, conclusion and further development of the research are 

presented.
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2. Literature survey 

 

2.1 The heart and electrical signals 

 

The human heart, one of the most studied organs in biology, is a hollow mass of 

mainly striated muscle fibers. It is situated slightly to the left of the middle of the 

thorax, underneath the breastbone (the sternum), at a position surrounded by the lungs 

(Figure 1). It is most essential to life, since its function is to pump blood through the 

blood vessels to the entire body by repeated, rhythmic contractions. It is the active 

center of the human cardiovascular system, circulating blood in the entire organism as 

a medium for transporting substances such as oxygen, nutrients, blood cells, enzymes, 

antibodies, as well as collecting the corresponding counterparts as wastes, toxins or 

external agents for disposal. 

 

 

Figure 1. Heart and lungs.[1]  

The heart consists of four chambers, namely the two upper atria and the two 

lower ventricles. The number of chambers followed the evolutionary pattern of the 
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vertebrates, which prevents a blend of arterial and venous blood in the closed 

circulatory system.  

The high energy consumption of homeotherms, i.e. the avian and mammals, 

requested a higher efficiency of oxygen transport by clearly separating oxygenated 

and deoxygenated hemoglobin within the circuit. Indeed, the number of the chambers 

in the heart in terms of their specific functions as well as their structures and 

geometries are important in the expression of the pathology of this organ studied in 

this work. The atria serve as buffers for blood entering the heart from which it is 

transferred to the ventricles. The ventricles are the actual pumps that propel the blood 

into the circulatory system. The valves between the atria and ventricles maintain 

coordinated unidirectional blood flow from the atria to the ventricles. Thevenous 

blood returning from the peripheral vessels enters the right atrium, through which it 

passes to the right ventricle and is sent to the lungs through the pulmonary artery. The 

blood, rich with oxygen and free of carbon dioxide by diffusion at the pulmonary 

alveoli, is passed to the left atrium from which it enters the left ventricle. The latter 

forces the blood into the aorta from which it enters the entire circulatory system 

(figure 2).  

 

 

 

Figure 2. Heart as the main pump of the cardiovascular system. Schematic diagram 

of blood flow in the human heart and nomenclature of principal anatomical 

features.[2] 
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Every normal single beat of the heart involves a sequence of these well-organized 

events, which constitutes the cardiac cycle. In a cardiac cycle, the aforementioned 

sequence consists of three major stages, namely the atrial systole, the ventricular 

systole and the complete cardiac diastole. The atrial systole is the phase which 

comprises the contraction of the atria and the corresponding influx of blood into the 

ventricles. Once the blood has fully left the atria, the atrioventricular valves close, 

preventing backflow into the atria. This closing of the valves (semilunar and 

atrioventricular) is the origin of the familiar beating sounds of the heart. The 

ventricular systole consists of the ventricular contraction and the efflux of blood into 

the circulatory system. Once the blood is expelled from the ventricles, the pulmonary 

and aortic semilunar valves close. The final complete cardiac diastole involves the 

relaxation of the atria and ventricles in preparation for the refilling phase of 

circulating blood. The whole cycle of blood circulation within the system is governed 

almost completely by the fluid mechanics regulated by the muscular contraction of the 

heart. 

 

 

 2.1.1 Bioelectricity of the heart 

 

The cardiac muscle, a spontaneously contracting, self-exciting tissue, develops 

the driving force governing the fluid mechanics of the circulatory system by 

converting biochemical energy to kinetic energy. The contraction of the muscle is 

triggered by an electric stimulation, that is, the onset of a bioelectric signal called the 

action potential (AP).  

 

 

Figure 3. Schematic of action potential propagation over a cell membrane. 
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The action potential is the general term for an all-or-none active electric impulse 

traveling along the cell membrane (Figure 3).  

In the neural system, it functions as a messenger between cells, while in 

muscles, it regulates the contraction of fibers. It is generated by exchanges of 

electrically charged ions across the cell membrane via ion channels, [3] creating a 

local potential bias above a triggering threshold between the two sides of the 

membrane. In its relaxed state, the inside of a cardiac myocyte is at a negative 

potential with respect to the outside, the resting potential. If the absolute value of this 

resting potential is reduced below a threshold level, a cascade of ion kinetics is 

induced, entailing chain reactions of potential dynamics propagation to the 

surrounding cell membrane (figure 4).  

The resting potential of a cell membrane is generated by an electrochemical 

equilibrium of charges (ions) on each side of the membrane. The action potential 

reflects the local acute non-linear depolarization from this resting potential, followed 

by a repolarization phase of return to the resting potential.  

 

Figure 4. Action potentials. (A) AP of neurocytes. (B) AP of cardiomyocytes [4] 
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The dynamics of the inward and outward electric current is regulated by the opening 

and closing of the gates (ion channels) and is ruled by the electrochemical diffusion of 

the ions [5]. The transport of ions that regenerate the initial equilibrium is an active 

procedure carried out by the ion pumps. There is a brief time interval, called the 

refractory period, during which the membrane is not excitable between two successive 

action potentials.  

In the case of cardiac muscle, the action potential is the signal that activates the 

contraction of the cardiomyocytes by propagating from cell to cell over the whole 

tissue. There are, nonetheless, preferential pathways along fast conducting bundles 

that effect the organization of the contraction of the chambers.  

 

Figure 5. Temporal relationships between the ventricular action potential (top) 

and the ECG (bottom). The QRS complex, T wave and QT interval are indicated. Both 

signals are functions of the same timescale on the x axis; the y axis plots voltage, with 

a gain that is roughly 100-fold higher for the ECG than for the action potential (that 

is, the absolute signal amplitude is about 100-fold smaller for the ECG).[6] 

 

The rhythmic sequence of the cardiac cycle is initiated by the sinoatrial (SA) 

node and regulated by the atrioventricular (AV) node. The sinoatrial node, known as 

the cardiac pacemaker, is located in the upper front wall of the right atrium and is 

responsible for the initiation of action potential propagation that contracts the atria. 

Once the propagation reaches the atrioventricular node, situated in the lower right 

atrium, it is conducted through the bundle of His, the left and right bundle branches, 

and to an extensive network of Purkinje fibers which trigger the contraction of the 
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ventricles. The AV node regulates the timing of transmission of the excitation to the 

ventricles, creating a delay between the contractions of the two groups of chambers 

which enhances the filling of the ventricles prior to their contraction. 

The physiological activity of the myocardium involves associated 

electromagnetic phenomena that are expressed as electric potential dynamics inside 

the entire body. As early as in the 19th century it became clear that the heart 

generated electricity. The first to systematically approach the heart from an electrical 

point of view was Augustus Waller, working in St Mary‘s Hospital in Paddington, 

London. [7] He used a mercury capillary electrometer to measure the electromotive 

changes on the body surface arising from the beat of the mammalian heart, and of the 

human heart in particular (figure 6). 

 

 

 

Figure 6 Potential inequalities over the body surface,[7]  
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2.1.2 Body surface potentials and Electrocardiogram 

 

The electromagnetism linked to the electrophysiology of the heart is a direct 

expression of the cardiac mechanical function. Hence, the observation of the electric 

activity as body surface potentials (BSP) is an efficient and non-invasive manner of 

estimating the functional state of the heart. The time course of the resulting potential 

differences between any two points on the body surface is called Electrocardiogram 

(ECG).  

 

 

Figure 7. Picture of an early ECG recording performed by Willem Einthoven in 

1903.[8] 

 

 

Following Waller, a major breakthrough in cardiac electrophysiology was 

reached when Willem Einthoven, working in Leiden, the Netherlands, used a string 

galvanometer in 1901 to record ECGs. By measuring the potential differences 

between the two hands and the left foot (figure 7), Einthoven assigned the letters P, Q, 

R, S and T to the various deflections, and described the electrocardiographic features 

of a number of cardiovascular disorders.[9] He received the Nobel Prize in Physiology 

or Medicine for his discovery in 1924.  

Nowadays, the electrodes used in clinical practice to record the standard 12-

lead ECG are placed on the two hands (VR and VL), the left foot (VF), and at six 
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precordial positions (V1 to V6) as presented in figure 7. These nine electrodes located 

over the surface of the human body capture the electric activity of the heart from 

different angles reconstructing the spatial dynamics of the heart‘s electric activity. A 

display of the three limb leads in the form of a triangle on the frontal plane is referred 

to as Einthoven‘s triangle. The mean value of the instantaneous potentials is used as 

the reference of the ECG signals, known as the Wilson Central Terminal (WCT) 

reference (figure 8). The ECG is the prime tool in cardiology, and has its main 

function in screening and diagnosis of cardiovascular diseases in clinical practice. 

Because of the strong link (direct and indirect) between cardiac function and electric 

potential dynamics observable on the body surface, many cardiac diseases can be 

monitored through the expressed potential differences. 

 

 

Figure 8. Electrode positions of a standard 12-lead ECG and the derived leads. 

The three limb electrodes form an equilateral triangle in the frontal plane called the 

Einthoven triangle (right panel). The potential reference for all other leads is 

Wilson‟s Central Terminal (WCT) defined as the mean value of the potentials at 

electrodes VR, VL and VF, corresponding to the position of the center of gravity of 

Einthoven‟s triangle.[4] 

 

According to the well-established definition of waveforms observable on each 

lead, the ECG has a wide use for indicating pathologies such as cardiac arrhythmias, 

ischemia, or conduction abnormalities. 
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Figure 9. An example of standard ECG recording during normal sinus rhythm. 

The twelve derivations are potential differences specifically defined between 

electrodes. I, II and III are potential differences between the limb electrodes as shown 

in figure 8. aVR, aVL and aVF are the “augmented” VR, VL and VF, respectively, 

signifying the 1.5-fold voltage between the corresponding electrode and the WCT 

reference. This is a historical custom in which, for instance, aVR was measured as VR 

–   (V L + V F), which simply resulted as aV R =  VR. V1 to V6 are the potential 

differences between the corresponding precordial electrodes and the WCT 

reference.[4] 

 

2.1.3. Electrophysiology 

 

Electrophysiology is the study of the electrical properties of biological cells and 

tissues. It involves measurements of voltage change or electric current on a wide 

variety of scales from single ion channel proteins to whole organs like the heart. In 

neuroscience, it includes measurements of the electrical activity of neurons, and 

particularly action potential activity. Classical electrophysiology techniques involve 

placing electrodes into various preparations of biological tissue. The principal types of 

electrodes are simple solid conductors, such as discs and needles (singles or arrays), 

tracings on printed circuit boards, and hollow tubes filled with an electrolyte, such as 

glass pipettes. The principal preparations include first of all living organisms, excised 

tissue (acute or cultured), dissociated cells from excised tissue (acute or cultured), 

artificially grown cells or tissues, or hybrids of the above. [10] 

 

Many particular electrophysiological readings have specific names: 

 For the heart it is called Electrocardiography  
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 For the brain Electroencephalography  

 From the cerebral cortex Electrocorticography 

 For the muscles Electromyography  

 For the eyes Electrooculography  

 For the retina Electroretinography  

 For the olfactory receptors in arthropods Electroantennography  

 For the auditory system Audiology  

 

2.1.3.1. Electrophysiology of the Heart 

Like all living cells at rest, the cardiac muscle cell or myocyte is polarized, so 

that the potential inside the cell, which called intracellular space, is negative with 

respect to the outside, which called interstitial space.  

The transmembrane potential is defined as the potential difference across the 

surface membrane of the cell. It is controlled primarily by three factors. The first is 

the concentration of ions on the inside and outside of the cell, 

particularly , , , and . The second factor is the permeability of the cell 

membrane to those ions through specific ion channels. The last factor is the activity of 

electrogenic pumps (e.g., / -ATPase and Ca2+ transport pumps) that maintain 

the ion concentrations across the cell membrane. Because K+ concentration is high 

inside the cell and low outside, a chemical gradient for K+ to diffuse out of the cell is 

found. In opposite,  and chemical gradients for an inward diffusion are 

found. The natural tendency of sodium and potassium ions is to diffuse across their 

chemical gradients to attempt to reach their respective equilibrium potentials, with 

sodium diffusing into the cell and potassium diffusing out.  

However, the resting cell membrane is approximately 100 times more 

permeable to potassium than to sodium, so that more potassium diffuses out of the 

cell than sodium diffuses in. This permeability to potassium is due to potassium 

channels that are open at the resting voltage. As a result, the dominant outward leak of 

potassium ions produces a polarizing current that establishes the cell‘s resting 

potential of roughly -70 mV [11].  
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2.1.3.2. The Action Potential of a Single Cell of Working 

Myocardium 

 

 

By applying an external stimulus, cells of excitable tissues can be polarized. An 

action potential can be produced by a sequence of influx and out flux of multiple 

captions and anions through the cell membrane. Once a cardiac cell is getting excited, 

an electrical stimulation to the cells that lie adjacent to it and furthermore to all the 

cells of the heart will be propagated [12]. The action potential has five phases, 

numbered from zero to four. A typical action potential for a cardiac myocyte in the 

left ventricle is shown in figure 10. 

 

 

 

Figure 10. The Action Potential of a single cell of working Myocardium.[13] 

 

Phase 4 represents the resting transmembrane potential, in other words, this 

voltage can be measured if the cell is not stimulated. This phase of the action potential 

is associated with the diastole of heart chambers. Phase 0 is known as the rapid 

depolarization phase. The maximum rate of depolarization of the cell, /dt, is 

determined by the slop of curve corresponding to this phase. This phase is associated 

with opening of the fast  channels, rapidly increasing the membrane conductance 

to  (gNa) and a rapid influx of  ionic current (INa) into the cell. In fact, the 
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fast sodium channel has two gates, the h gate and m gate, whose interaction allows 

 to enter the cell through this channel. At rest, the m gate is closed and h gate is 

open, but when the transmembrane potential approaches a threshold (about -60 mV), 

the m gate opens quickly while the h gate closes slowly. After a very short time, both 

gates will be open changing the sign of the transmembrane voltage to positive value 

(round +20 mV), to the so-called overshoot. The closure of the fast channel after 

a short time and the slower outflow of potassium through the potassium channels are 

tending to restore the initial state of the membrane generating the phase 1. The 

balance between inward movement of  (ICa) through Ltype calcium channels 

and outward movement of K+ through potassium channels sustains the phase 2 (or so-

called plateau) of the action potential. Cardiac myocytes have different characteristics 

of the plateau phase. During this phase the fast sodium channels are not active 

keeping the cell immune to any external stimulus. Therefore, it is called refractory 

period. In the phase 3 of the action potential,  will be accumulated in the 

xtracellular space leaving the intracellular space. This action is responsible for the 

repolarization of the cell. The cell can be depolarized again in this period by very 

large stimuli, therefore it is called refractory relative period. Finally,  channels 

close when the transmembrane potential is set back to the resting phase and the initial 

concentration of ions is rapidly restored by means of Na-K pumps and Na-Ca 

exchangers. The myocytes throughout the heart have different time course of action 

potentials (figure 11). 
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Figure 11. The resting voltage and action potential electrophysiology of a single cell 

of working Myocardium[14]. 

 

2.1.3.3. Excitation Propagation and Cardiac Contractions 

 

Cardiomyocytes consist of three systems: a sarcolemmal excitation system that 

participates in spread of action potential (AP) and functions as a switch initiating 

intracellular events giving rise to contraction, an intracellular excitation-contraction 

coupling (ECC) that converts the electric excitation signal to a chemical signal and 

activates the contractile system, a molecular motor based on formation of chemical 

bridges between actin and myosin. 

 

1. The Excitation System: This system is responsible to maintain the resting 

potential, create an action potential and facilitate spreading the AP. The cardiac cycle 
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is initiated from the excitation system of SA node. The rapid change in the voltage 

during an AP causes the activation in the excitation system. Consequently, the 

neighboring cells will be depolarized. As a result, an electrical impulse, also called the 

cardiac electrical wavefront, propagates through the conduction system of the heart 

and spreads from cell to cell throughout the myocardium in the way that the atrial and 

ventricular contraction (depolarization) and relaxation (repolarization) will happen 

with the correct timing in the healthy heart [15]. 

 

 

 

 

Figure 12. Schematic diagram of the major cellular components involved in 

contraction of the myocyte.[16] 

 

2. The Excitation-Contraction Coupling System: Excitation-contraction 

coupling (ECC) is established by the sarcotubular system, an arrangement of 

specialized sarcoleman and intracellular membranes that controls and amplifies the 

ability of AP to switch the contractile system on and off by creating electrochemical 

signals between the sarcolernma and intracellular organelles. When a myocyte is 

depolarized by an AP. calcium ions enter the cell during phase 2 of the action 
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potential through L-type calcium channels triggering a subsequent release of 

calcium that is stored in the sarcoplasmic reticulum (SR) increasing the 

intracellular calcium concentration from about 10
-7

 to 10
-5

 M. The released 

calcium binds to troponin-C (TN-C) that is part of the regulatory complex attached 

to the thin filaments. When calcium binds to the TN-C, this induces a 

conformational change in the regulatory complex such that troponin-I (TN-I) 

exposes a site on the actin molecule that is able to bind to the myosin ATPase 

located on the myosin head. This binding results in ATP hydrolysis that supplies 

energy fora conformational change to occur in the actin-myosin complex [17]. 

 

3. The Contractile System: The building block of the contractile system is 

the sarcomere. The result of the changes made by the released calcium in ECC is a 

movement between the myosin heads and the actin. The actin and myosin filaments 

slide past each other thereby shortening the sarcomere length. This ratcheting cycle 

occurs as long as the cytosolic calcium remains elevated. At the end of phase 2 of 

APcycle ends when new ATP binds to the myosin head, displacing the ADP and the 

initial sarcomere length is restored. 

 

2.1.3.4. The Generation of an Electrocardiogram and the 

Dominant Cardiac Vector 

 

The Electrocardiogram (ECG) represents a temporal and spatial summation of 

the extracellular fields of the action potentials generated by millions of cardiac cell. It 

describes the different electrical phases of the cardiac cycle. ECG provides a measure 

of the electrical currents generated in the extracellular fluid by the changes in the APs. 

At any given instant, only a group of cells out of millions of individual cells in the 

myocardium depolarizes simultaneously. They can be represented as an equivalent 

current dipole source to which a vector is associated, describing the dipole‘s time-

varying position, orientation, and magnitude [15]. The dominant vector describing the 

main direction of the electrical wavefront can be defined as a summation of the 

vectors of all current dipoles in the heart at a certain time instant. 

 



Chapter 2: Literature survey 

Antonopoulos John – PHD Research  Page 30 
 

2.2. Cardiovascular variability signals 

 

The sinus rhythm fluctuates around the mean heart rate, which is due to 

continuous alteration in the autonomic neural regulation, i.e. sympathetic-

parasympathetic balance. Periodic fluctuations found in heart rate originate from 

regulation related to respiration, blood pressure (baroreflex) and thermoregulation. 

Parasympathetic (vagal) regulation to the heart is inhibited simultaneously with 

inspiration, and the breathing frequency coincides with fluctuations observed in heart 

rate [18]. Furthermore, thoracic stretch receptors and peripheral hemodynamic 

reflexes also result in respiratory arrhythmia [19]. Respiratory arrhythmias are 

consequently due to parasympathetic regulation and can be excluded by atropine or 

vagotomy [19]. The maximal amplitude of respiratory related heart rate fluctuation is 

found at breathing rate of 6 cycles per minute, because the fluctuation increases as 

respiration rate achieves the frequency of the intrinsic baroreflex-related heart rate 

fluctuations [20]. 

The fluctuations due to blood pressure regulating mechanisms originate from 

self-oscillation in the vasomotor part of the baroreflex loop [20]. These fluctuations 

coincide with synchronous oscillations in blood pressure called Meyer waves [21]. 

Increase of sympathetic nerve impulses strengthen and sympathetic or 

parasymphatetic blockade weaken these fluctuations in heart rate [22, 23]. 

Changes in peripheral resistance produce low frequency oscillations in heart 

rate and, for example, in systolic blood pressure. Thermal stimulation given on the 

skin can be used to stimulate the oscillations, which are originally due to 

thermoregulatory adjustment of peripheral blood flow [20]. These fluctuations are 

controlled by the sympathetic part of the autonomic nervous system. 

The overall autonomic function is controlled by a central command from the 

brain. However, the autonomic nervous system operates as a feedback system, and 

heart rate is thus regulated by many reflexes which may increase or decrease the 

sympathetic or parasympathetic activity or both of them [24]. Reflexes can act 

simultaneously and their interactions may be complex. The arterial baroreceptor 

reflex originates from receptors located in the arteries such as carotid sinuses and 

aortic arch. The increase in blood pressure excites baroreceptors producing an 
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augmented efferent vagal and reduced sympathetic activity. Peripheral arterial 

chemoreceptors located in the carotid and aortic bodies produce, most often, an 

increase in the rate and depth of respiration. Because this reflex influence on heart 

rate through respiration, the effects may be covered by other respiratory responses. 

The coronary chemoreflex (Bezold-Jarisch reflex) can cause bradycardia and is 

significant in pathological states such as myocardial ischemia and infarction. Atrial 

receptors stretched by the increase in atrial volume and some of them by atrial 

contraction, the response being linked directly to atrial pressure. These volume 

receptors cause an increase in heart rate and operate through the sympathetic nerves 

producing their response very slowly. There exist also other cardiovascular reflexes 

coming from receptors located e.g. in pulmonary arteries, lungs and muscles. 

The physiological importance of heart rate can be demonstrated by an axiomatic 

relation in which cardiac output (CO) can be defined by a product between heart rate 

and stroke volume (SV) as CO = HR · SV. Because heart rate and stroke volume are 

not independent of each other, the definition of cardiac output is not always so 

straightforward in terms of physiological adjustment. 

The rate of depolarization of the cardiac pacemaker defines heart rate. The 

sinoatrial (SA) node, the atrioventricular (AV) node and the Purkinje tissue can be 

regarded as potential pacemaker tissues in a heart. As the fastest depolarization rate is 

found in the sinoatrial node and the depolarization impulse spreads through the 

conduction system to other pacemakers before they spontaneously depolarize, the 

sinoatrial node usually defines the heart rate. However, failing to produce a normal 

pacemaker impulse, other pacemaker tissues can act as a cardiac pacemaker. 

 

Table 1. Model of a normal ECG 
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Figure 13. ECG Analysis 

 

Autonomic neural regulation of the heart is determined by its sympathetic and 

parasympathetic parts. The parasympathetic nerves are connected to the sinoatrial 

node, the AV conducting pathways and the atrial and ventricular muscles as well as 

coronary vessels. Sympathetic nerve fibers innervate the SA node, the AV conducting 

pathways, coronary vessels and the atrial and ventricular myocardium [25]. Both 

divisions of the autonomic nervous system always have some activity which 

continuously regulates the function of the heart. Heart rate response therefore presents 

a balance between sympathetic and parasympathetic (vagal) regulation which can be 

considered also as an antagonist function. 

Heart rate has a major effect on ventricular repolarization duration (VRD), but 

the autonomic nervous system also regulates directly the repolarization of the 

ventricles. In addition, electrolytic factors, age and gender have an effect on it. It has 

been shown that when the autonomic nervous system regulates VRD there are similar 

periodic fluctuations as seen in heart rate [26]. 

 

2.2.1. Changes of signal variability connected to 

specific diseases 

 

A decrease in vagal neural activity into the heart may result in diminished HRV 

after myocardial infarct (MI) leading to the prevalence of symphatetic neural 
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regulation and to electrical instability [27]. Reduced heart rate variability is also 

associated with an increased risk for ventricular fibrillation and sudden cardiac death 

[28, 29]. Changes in long term RR interval dynamics with beat-to-beat RR interval 

alternans is concluded to precede the spontaneuous onset of sustained ventricular 

tachyarrhythmias [30]. Results obtained using spectral analysis of HRV suggests a 

change of sympatho-vagal balance toward symphatetic dominance and a diminished 

vagal tone in patients surviving an acute myocardial infarction [27, 31]. Cardiac 

diseases such as congestive heart failure, coronary artery disease and essential 

hypertension are also associated with a reduced vagal and an enhanced sympathetic 

tone, which change heart rate variability dynamics [20, 32]. Because HRV analysis 

can be regarded as a noninvasive, reproducible and an easy to use method reflecting 

the degree of autonomic control of the heart [33], it has been widely used to diagnose 

the autonomic dysfunction due to diabetic neuropathy (34, 35, 36]. It has been 

generally observed, that overall HRV is reduced and sympatho-vagal balance may be 

altered during tilt maneuver or standing in diabetic patients [32, 25].  

Although HRV is used in a wide range of clinical applications, diminished HRV 

has only been generally accepted as a predictor of risk after acute myocardial 

infarction and as an early warning of diabetic neuropathy. Diminished HRV can 

predict mortality and arrhythmic events independently of other risk factors after acute 

myocardial infarction, and long-term HRV analysis have proven to be a more definite 

predictor compared to a short-term analysis [27]. Heart rate variability analysis should 

also be joined with other risk factors so as to improve the predictive use. Any heart 

disease (left ventricular hyperthrophy, heart failure, etc.) can modify repolarization 

duration [37]. Anomalies in repolarization duration are signs of electrical instability in 

the heart and can lead to malignant arrhythmias such as ventricular fibrillation and 

Torsades de Pointes. Analysis of ventricular repolarization duration dynamics 

provides essential information on a propensity for ventricular arrhythmias, because 

some life-threatening arrhythmias arise in myocardial tissue. Altered dynamics of the 

VRD, and the events of the alternating T wave amplitude particularly in patients with 

the long QT syndrome as well as with structural heart disease at fast heart rates, 

suggest that the analysis of the ventricular repolarization dynamics may provide an 

important clinical tool [38]. 
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2.2.2. Other events modifying signal variability 

 

Several pharmaceutical interventions can be used to modify heart rate dynamics 

as shown by human [39] and animal [3] studies. Atropine administration has been 

used to prove the connection between vagal neural activity and high frequency 

(respiratory related) fluctuation in RR interval time series [23]. Scopolamine 

significantly augments heart rate variability [40] which suggests an increasing 

coincident vagal activity into the heart. The effect of β-adrenergic receptor blockades 

has been studied after myocardial infarction [41, 42]. There are also studies on the 

effect of antiarrhythmic drugs such as flecainide and propafenone, as well as 

encainide and moricizine on the heart rate dynamics [31, 43, 5]. A study of the effect 

of β-adrenergic blocker (nadolol) on ventricular repolarization duration and its 

dynamics was made. The finding was that the length of repolarization duration was 

shorter, the signal variance was greater and the spectral pattern was shifted to higher 

frequencies due to this medication. A change of the dynamic relationship between 

ventricular repolarization duration and heart rate has been observed as a consequence 

of nadolol administration with normal patients [26, 44]. 

Heart rate variability has been employed to investigate the short and long term 

autonomic responses to physical and mental exercise. It has been observed that the 

increase in respiratory related fluctuation, the total HRV reduction and the recorded 

signal become more nonstationary as the intensity of the dynamic physical exercise 

increases [45]. Heavy physical exercise has been shown to augment low-frequency 

(LF) fluctuations in heart rate, and the recovery of the spectral pattern may last even 

48 hours after finishing exercise [46]. The sympatho-vagal balance seems to change 

towards sympathetic dominance e.g. in hypertensive patients. Long term physical 

exercise has positive effects on hemodynamics and neural control mechanisms, for 

example, by lowering the arterial pressure in hypertensive patients [47] and increasing 

baroreflex gain in patients with ischemic heart disease [48] An overall observation, 

also related to dynamic mental stress, is an increase of the sympathetically- and a 

decrease of vagally-mediated fluctuations in heart rate [7]. 
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2.2.3. Various time series 

 

 RR interval time series 

 

The basic procedure used for determining the heart rate and its fluctuations is 

described below. An electrocardiogram (ECG) is measured, using appropriate data 

acquisition equipment. The time elapsing between consecutive heart beats is defined 

as that between two P waves, when a P wave describes the phase of atrial 

depolarization. In practice, it is the QRS complex that is used to obtain the time 

period between heart beats. This complex is detected in the R wave, because it has a 

very clear amplitude and better frequency resolution than the P wave, and a much 

better signal-to-noise ratio. The time interval between the P and R waves can be 

assumed and has been shown to be constant [21]. Defining the times of occurrence of 

two consecutive R waves as s(t) and s(t+1), t = 1,…, N, the expression 

 is obtained for a time period in milliseconds. This x(t) is called the RR 

interval time series or else the times to which it refers are simply called RR intervals. 

A heart rate time series [min−1] can be obtained by y(t) = 1000 · (60/x(t)) and the 

mean heart rate is simply . These formulae indicate a nonlinear 

relationship between the values in a given time series, which should be taken into 

account when comparing the results obtained by time and frequency domain 

approaches [49]. At the moment, RR intervals seem to be the more frequently used 

time series in heart rate variability (HRV) analysis. For a discussion of the choice 

between different time series (tachograms), [50]  

 

 VRD time series 

 

QT time interval in electrocardiographic signals has been used to perform both 

static and dynamic analyses of the duration of the ventricular repolarization. There 

exist difficulties in the detection of the onset of Q wave and the offset of T wave due 

to poor signal-to-noise ratio and varying ECG morphology. For these reasons other 
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estimates, such as RTmax interval, has been widely used. Moreover, this provided a 

motivation to investigate and compare the noise sensitivity of different 

QT interval estimates. Because Q-S time interval is a result of the depolarization 

period of the ventricles, it is actually more correct to measure the time interval 

between the R and T waves as one is interested in the changes occurring within the 

ventricular repolarization period. R wave has been used to estimate the start of the 

repolarization period because searching for the offset of S wave can be difficult. The 

maximum (apex) of T wave has been often regarded as a more reliable estimate for 

the end of the repolarization period than the T wave offset. The total repolarization 

duration, i.e. time interval between the offsets of S and T waves, can further be 

analyzed with respect to early and late repolarization duration as well as 

repolarization area [51]. In this work the objective will be on the measurement of the 

repolarization duration in the ambulatory ECG. 

The 24-hour ambulatory ECG has certain problems and drawbacks because the 

signal is corrupted by noise from various sources and also several conditions may 

alter the ECG morphology. The ambulatory ECG is usually acquired with a sampling 

frequency of 128 Hz giving a time resolution of 7.81 ms for each sample, which is too 

low for QT interval variability measurement. It has been suggested that the QT 

interval should be determined at least with resolution of 1 ms, which would require 1 

kHz sampling frequency for ECG signal. In an ambulatory measurement setting, with 

data acquisition times lasting up to 24 hours, the sampling frequency cannot be that 

high, because then the amount of the stored data rises rapidly. In present ambulatory 

ECG analysis systems the possibility of exporting a beat-to-beat QT time series 

extracted with high time resolution is also lacking. These problems have been solved 

by exporting raw ECG data and, by oversampling ECG signal [52] or by interpolating 

waveforms [53] a better time resolution for the time interval measurement results. 

 

APD time series 

 

The local ventricular repolarization duration can be measured by placing a 

contact electrode in a ventricular muscle. Rate-dependent dynamics of VRD obtained 

from the right ventricular apex provides an example. This approach can solve the 

above mentioned problems related to the ambulatory QT measurement. However, 

measuring monophasic action potentials (MAP) is an invasive procedure. The 
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duration of repolarization phase, which is termed as action potential duration (APD), 

is estimated as a time interval between the onset and offset of the action potential. The 

offset is defined as the maximal positive derivative of the upstroke phase of the action 

potential waveform. The offset can be defined at time points where the waveform has 

come down 15, 30, 50 and 90 % from the maximal amplitude of the MAP. Most often 

used definitions are 50 and 90 % points. The APD time series are extracted from the 

consecutive waveforms and the beat-to-beat analysis is performed. 

 

2.2.4. ECG waveform detection 

 

The RR and QT interval measurement [54] was based on an implementation of 

an algorithm described previously [55] and the detection scheme will be briefly 

reviewed here. The basic concept of the algorithm is to look for the zero crossing 

points, the crossings of certain experimentally-determined threshold values, as well as 

the local maximum or minimum values of the differentiated ECG signal d(t) and its 

low-pass filtered version f(t). 

The differentiator and the low-pass filter were modified according to the 

sampling rate in order to obtain an optimal frequency response. The sampling rate of 

the analyzed ECG was one parameter of the waveform detection procedure and in this 

way, the preprocessing filters and the algorithm itself can adapt to the different 

sampling rates. 

The flowchart of the implemented waveform detection procedure is shown in 

Tikkanen‘s work [54] The first step is to calculate the signals d(t) and f(t), which is 

done for the whole period of the ECG selected for analysis. The waveform detection 

procedure continues by determining the initial value of the threshold value  used to 

search the maximum absolute value of the QRS in the signal f(t). The threshold value 

Hn+1 is continuously updated during the waveform detection using the equation [55]. 

 

 ,  (2.1) 

 

Where  is the absolute value of the signal f(t) at the detected fiducial R 

wave position of the beat n. 
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The initialization of the average of RR intervals  and the first RR interval 

value are then obtained. The  value is later used to check the calculated value of 

a new RR interval and thus provides a basis for identifying the QRS complex.  

The initial position of a QRS complex is detected using an adaptive threshold 

method determined by the RR interval average value [54]. After that, the algorithm 

continues to search the position of the R wave. In the present approach, the fiducial 

point of the R wave was detected using three methods: at the maximum amplitude 

upwards or downwards from the baseline, or at the zero crossing point of the signal 

f(t) during the QRS complex. The last technique was implemented in the original 

algorithm by Laguna et al. (1990). It was found that, in some cases, a more accurate 

definition can be obtained, if the fiducial point of the R wave is defined at the 

maximal upward amplitude of QRS. With this algorithm, an accurate determination of 

the R wave is an absolutely necessary condition for a reliable Q wave detection. After 

detecting the R wave position and updating the threshold  and  , the onset of 

Q wave is searched keeping the R wave position as a reference point. Here it should 

be mentioned, that examining the pattern of the Q wave is made by analyzing the 

differentiated signal d(t) and not the signal f(t), because the signal d(t) includes the 

high frequency components of the Q wave. Next the T wave maximum and T wave 

end are detected from the signal f(t). The following definition for the limits of a search 

window calculated from the R wave position was used: 

 

   (2.2) 

 

where a and b are parameter values in the procedure. This definition is a slightly 

different one from the given by Laguna et al. As the threshold for T wave end was 

used the value Hs = f(Ti)=2, Ti denoting the position of the maximal downward or 

upward slope after the T wave maximum. 

Finally, a value of QT interval is calculated using the relation QT(n) = 

, where  and  are the positions of T 

wave end and the onset of the QT time interval during the beat n. The analysis of the 

next cardiac beat is started 150 ms after the last T wave end is defined. 

The effects of the four alternative definitions of the QT interval onset on the 

analysis of QT interval dynamics were compared: true QRS onset, R wave maximum, 
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ascending or descending maximal slopes of the R wave. One reason for this was quite 

practical: in some circumstances dealing with ambulatory ECG, the determination of 

the QRS onset seems to be uncertain e.g. because of a missing Q wave and the 

relatively low sampling rate. In the original implementation of this algorithm, the Q 

wave onset found is rejected if the difference between Q wave and R wave fiducially 

points are larger than 80 ms [55]. In that case, QRS onset is defined in the onset of R 

wave. 

 

2.2.5. Ambulatory HRV data 

 

The aim of recording RR intervals has been to gain information about the neural 

regulation of the heart and the circulatory system. Observing the changes occurring 

over long periods of time (i.e. several hours) requires ambulatory recording, which is 

usually performed using standard commercial equipment (Holter devices). This 

provides procedures for ECG signal acquisition and analysis, extracting the RR 

interval time series from the ECG signal and analyzing them. The sampling frequency 

typically used for an ECG signal with Holter devices is 128 Hz (as explained in 

2.2.3.), which means a timing accuracy of 7.81 ms for R wave detection. Thus a low 

sampling frequency produces inaccuracies in RR interval measurement and bias in the 

analysis. A timing accuracy of the order of 1 ms would be desirable for the 

assessment of chaos, for example. 

One factor affecting ambulatory HRV measurement is circumstances that vary 

with time, i.e. the fact that external conditions can be far from stable. This may 

produce nonstationary changes in a time series and make the assessment of the 

physiological events more difficult, or even impossible, than under stable laboratory 

conditions. A method for separating non-periodic (nonstationary) changes from 

periodic ones has been proposed by Sapoznikov D, Luria M & Gotsman M [59]. 

Variable conditions may also produce periodic fluctuations which become summed in 

the time series, making it difficult to distinguish the regulatory processes from each 

other. This can obviously lead to misinterpretations in some circumstances. 
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2.2.5.1. Accuracy of HRV measurement 

 

The accuracy of spectral estimates performed on RR intervals obtained from 

ambulatory Holter systems has been studied by Pinna G, Maestri R, Cesare AD, 

Colombo R & Minuco G [56]. It has been observed that the centre and dispersion of 

the estimation error changes from one Holter system to another. There are large inter-

recorder differences and variable spectral distortion among selected spectral bands. 

Use of the Fourier spectral estimate gave more stable results than did the AR spectral 

estimate in ten minute ECG sequences. The main factor limiting the accuracy of the 

RR interval measurement was the low frequency with which the ECG signal was 

sampled, a topic discussed theoretically by various scientists [56, 57] concluded that 

spectral analysis of RR interval time series with very low variability may be seriously 

altered when performed on an ECG signal acquired using a Holter system. 

The accuracy of spectral estimates of HRV was investigated by generating a 

simulated RR interval time series of variable length (180-540 seconds) using an 

autoregressive model from a set of recordings and adding Gaussian noise [58]. The 

accuracy of Fourier (Blackman-Tukey) and AR spectral estimates could then be 

evaluated in terms of the normalized bias and variance. The results showed that the 

bias (systematic error) of the estimate was a less important factor than the variance 

(random error). Both decreased as the length of the time series increased, but the 

variance decreased more rapidly. The power estimate was most stable in the HF band, 

while that in the VLF band had the highest variance. No minimum length was 

proposed for a time series, but it was concluded that even with the shortest record the 

bias made a less significant contribution to the estimates. It was pointed out that a 

relative high variability in spectral parameters is typical of RR interval time series, 

and that this should be noted in the analysis of the short time series. 

 

2.2.5.2. Reproducibility of HRV measurements 

 

There are a number of factors that affect HRV measurements, and obtaining 

precisely controlled conditions is problematic. Furthermore, variability is always seen 

between repeated measurements. From this point of view, it is essential to study both 

short-term (over several days or couple of weeks) and long-term (over 6-7 months) 
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reproducibility of the analyses, even though this can be a tedious task.A few 

published investigations on the reproducibility of HRV exist, e.g. [9, 59, 60, 23, 61]. 

An investigation the short-term reproducibility of HRV measurements in 

patients with chronic stable angina and found no significant changes in the time or 

frequency domain parameters between two 24 hour ambulatory ECG recordings was 

made [67]. The short-term and mid-term (over one month) stability of spectral 

parameters studied in healthy young subjects in the past [9]. It was observed that the 

intra-observer and inter-observer reproducibility of spectral analyses are high under 

controlled conditions. No employment of any standardization for breathing frequency 

or volume was made. 

A study of the short and long-term reproducibility of HRV measurements in 

normal subjects was made [60]. The conclusion was that time domain parameters, as 

evaluated over the whole 24 hour recording, can be expected to be reproducible 

during relatively stable conditions but frequency domain parameters calculated for ten 

minute ECG sequences were reproducible only under known stable conditions, as 

factors of other than neural origin can greatly alter the spectrum. The measurement of 

total power needed resting conditions to produce reproducible results. Respiratory 

oscillations in the spectrum (high frequency component) can be measured 

reproducibly during controlled breathing. The low frequency component was 

reproducible, particularly at rest and during tilt, which indicates that these fluctuations 

are quite stable. The reproducibility of the power estimates when normalized by 

reference to the total power seemed to be no better than that of the real values. It 

should be noted that the time domain parameters were not reproducible if they were 

evaluated from ten minutes sequences instead of the whole 24 hour period. 

The results of analyses performed on signals of short (e.g. five to ten minutes) 

and long (possibly 24 hours) duration seem to differ. A suggestion is that analyses of 

long signals may homogenize the results and give better reproducibility of the 

frequency domain parameters [60]. In analyses performed on 24 hour recordings, the 

results have often been calculated for short sequences and then averaged over the 

whole recording. The authors also conclude that frequency domain parameters should 

be evaluated from short signals and under controlled conditions to minimize the 

effects of disturbing factors [60]. Recording the respiratory activity would probably 

help to explain the RR interval fluctuations. It should be mentioned that the amount of 

heart rate variability depends on the subjects. Thus, the reproducibility observed in the 
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case of normal subjects, for example, cannot be assumed to occur in patients with 

cardiac diseases [60]. 

 

2.2.5.3. Artifacts in RR interval time series 

 

When the activity of the autonomic nervous system (ANS) is evaluated in terms 

of HRV, variations in the sinus rhythm of the heart and the RR interval time series 

analyzed should contain only normal RR intervals. The RR intervals obtained from 

ambulatory recordings, however, often include abnormal intervals, which do not 

represent the sinus rhythm and differ in length from normal RR intervals. These can 

arise from rhythm disturbances (ectopic beats) or errors in the detection of QRS 

complexes of technical or physiological origin. These artifacts lead to spurious 

transient spikes in the resulting RR interval time series. The computation of HRV 

indices can be unfavorably affected by the presence of even a small number of such 

transients. In addition to high-frequency transient spikes, non-periodic low frequency 

changes in the sinus rhythm, i.e. normal physiological or emotional responses of the 

heart, which are easily encountered in long-term recordings, can have adverse effects 

on some HRV indices. 

As the interest in HRV increases, more efforts are being made to understand the 

effects of artifacts and artifact processing techniques on HRV measurements [62, 63, 

64]. If the number of transient spikes in a RR interval time series is small, it is 

possible to reject them or correct for them, and thus to obtain a smooth signal 

consistent with normal RR intervals. Data segments containing frequent artifacts, 

however, should be rejected from further analysis. Detrending can be used to remove 

the effects of non-periodic low-frequency changes in RR intervals. The amount of 

rejected data and the artifact detection criteria and correction techniques used should 

be taken into consideration when discussing the reliability and reproducibility of 

different HRV approaches. 
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2.2.5.4. Errors in the detection and classification of QRS 

complexes 

 

The detection of QRS complexes (R waves) always precedes the further 

processing of a RR interval time series. Achieving an accurate, artifact-free RR 

interval time series requires optimal electrode positioning. Ambulatory ECG 

recording is exposed to many technical and physiological disturbances which are not 

easily prevented or controlled, and consequently errors in the automatic detection of 

QRS complexes cannot always be avoided. That is, the accuracy of QRS detection 

can be affected; the detector can miss normal QRS complexes or spuriously detect 

additional events within normal RR intervals. A missed R wave will lead to an 

interval, which is approximately twice as long as the average interval, while a 

detection of an additional event within a normal interval will lead to two shorter 

intervals, the sum of which equals the real interval. Unfortunately combinations of 

missed and false detections exist, resulting in difficulties in artifact identification. 

It can be impossible to tell on the basis of RR interval data alone whether the 

cause of an artifact is physiological or technical. In addition, information is needed on 

the underlying shape of the ECG signal. Considering the activity of the ANS system, 

however, the origin of the artifact is not important, since all abnormal RR intervals are 

not useful for further analysis. A review of software QRS detection in ambulatory 

monitoring has been published by Pahlm & Sornmo (1984) [65] 

Along with detecting QRS complexes, most algorithms used with commercial 

long-term ECG devices attempt to classify them according to type, as ―normal‖ (i.e. 

originating from sinus rhythm) or ―abnormal‖ (ectopic). Randomly occurring ectopic 

(extra) beats are frequently encountered in normal ―subjects‖ but if an ectopic beat is 

mistakenly analyzed as normal, an artifact is induced into the time series, since the 

RR intervals connected with an abnormal beat differ in length from normal intervals. 

Thus the role of this classification can be very important, however errors in QRS 

classification are not rare [66, 64]. Therefore systems including QRS classification 

may require effective artifact correction in the same way as systems without this 

classification. While single ectopic beats can be corrected to allow further analysis, 

segments containing pathological rhythm disturbances are usually rejected. The 

classification of ectopic beats can, according to their occurrence in time relative to 
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surrounding beats, form the basis for the selection of the correction method [67]. 

Ectopic beats can be interposed extra-systoles, compensated extrasystoles, or phase-

shifted extra-systoles. 

 

Disturbances of physiological origin 

Errors in QRS detection arise from disturbances and extraordinary waveforms 

in the measured ECG signal [65, 68]. Abnormal initiations of the heart beat (ectopic 

beats) can lead to a variety of morphologies of QRS complexes and cause difficulties 

in both their classification and their detection. Potential physiological sources of 

errors also include: abnormally large P or T waves, and myopotentials similar enough 

to QRS complexes in amplitude and frequency content to cause spurious detection. 

Variations in the position of the heart with respect to the measuring electrodes and 

changes in the propagation medium between the heart and the electrodes, both being 

dependent on the position and breathing of the patient, can cause: sudden changes in 

the amplitude of the ECG signal and morphology of the QRS complex, leading to 

missed QRS complexes, as well as low frequency baseline shift. The ability of the 

QRS detector to tolerate variations in ECG waveforms depends on the recognition 

criteria themselves and the pre-processing of the raw ECG data, of which the most 

essential part is filtering [69, 14]. 

 

Disturbances of technical origin 

Like physiological changes in the ECG signal, the tolerance of different QRS 

detection procedures can vary with respect to technical disturbances [69,14]. These 

include movement of electrodes (relative to the skin and heart) or other changes in 

conductivity between the electrodes and the skin, which can result in rapid baseline 

shift. Capacitively or inductively coupled disturbances, e.g. power line interference 

and extra peaks originating from the movement of wires or discharges of static 

electricity when clothes, skin, electrodes and wires chafe against each other in the 

presence of dry air and skin can also cause disturbances. 

 

Problems at the electrode-skin interface 

Most of the disturbances in automatic QRS detection are connected with 

electrodeskin impedance, since poor conductivity between the electrodes and the skin 

both reduces the amplitude of the ECG signal and increases the probability of 
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disturbances[70]. Along with pathological arrhythmias, problems at the electrode-skin 

interface are the most common reasons for having to reject large segments of RR 

interval data in HRV analyses. The need to take account of the interaction of the skin 

with the electrodes is commonly described in the literature dealing with the non-

invasive recording of surface potentials, but the mechanism of the disturbances caused 

by rapid impedance changes has been not described. The reason may lie in the fact 

that problems with electrode contacts can be avoided if the electrodes are correctly 

attached, electrode paste is used and the tests are performed at rest. Even at normal 

activity levels, electrode paste usually improves conductivity between the skin and the 

electrodes enough to prevent problems. Movement of the electrodes relative to the 

skin and the heart, caused by rapid motion on the part of the subject, can give rise to 

sudden changes in electrode-skin impedance and consequently a baseline shift in the 

measured ECG signal. These problems due to unavoidable movement of the 

electrodes are especially frequent in exercise tests, and are accentuated further if the 

electrodes are loose or the subject has unusually high skin impedance. 

The larger the electrode-skin impedance, the smaller the relative impedance 

change needed to cause a major shift in the baseline of the ECG signal, and if the skin 

impedance is extraordinarily high, it may be impossible to detect the QRS complexes 

reliably in the presence of body movement. In such cases the sudden baseline shifts 

may be of such amplitude that they lead to the saturation of the voltage amplifier or 

confuse the automatic gain control (AGC). The exact electrode-skin impedance 

depends largely on the electrode and the type of electrolyte used, the properties of the 

subject's skin and the measurement frequency. If the skin is dry, the electrode-skin 

impedance can be as high as several hundred kilo-ohms at frequencies below 100 Hz. 

Three-electrode leads are usually better than two-electrode ones, since a separate 

ground electrode is available.  

If the electrode-skin impedance is high, a distribution of charges and subsequent 

potential difference can be generated on both sides of the interface or between the 

electrodes. The origin of such a potential difference can be electrode offset potential 

or an unequal local distribution of charges on the skin surface generated, for example, 

by static electricity. When an impedance change takes place at the electrode-skin 

interface, the potential differences drive a current over the electrodeskin – tissue – 

skin - electrode circuit, or parts of it, and a shift in voltage is measured by the 

differential amplifier. Due to the transient form of the current and the high-pass 
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property of the ECG amplifier, the baseline returns to normal after some time. Once 

the skin impedance becomes lower due to sweat gland activity, baseline shifts are no 

longer generated. Besides eliminating these impedance changes, the improved 

conductance puts an end to the unfavorable effects of static electricity, because the 

charges are rapidly equalized over the body surface and on the electrodes. When the 

sweat glands are filled with conducting sweat (sweat can be considered the equivalent 

of 0.3 % saline), many low-resistance parallel pathways result, thus significantly 

reducing the electrode-skin impedance and alleviating the problems [71]. A further 

lowering of the impedance takes place due to hydration of the skin. 

 

2.2.5.5. Non-periodic changes in RR intervals 

 

Conventional mathematical analysis methods such as standard deviation, 

correlation and power spectrum analysis presuppose that the data are stationary in the 

wide sense. This means that in the case of HRV analysis the sinus rhythm of the heart 

can be approximated as stable. This approximation holds best over a short period and 

under steady-state conditions. In addition to the transient spikes mentioned earlier, 

non-periodic changes in the heart rhythm can impair the stationarity of the signal and 

have adverse effects on HRV indices. Non-periodic changes can be induced in a RR 

interval time series by normal responses of the heart to physical activity, emotional 

stimuli or reflexes of various kinds. 

The question might arise as to whether it is permissible to correct an RR interval 

time series for abnormalities if their background is physiological. As discussed 

earlier, a correction procedure should be employed for ectopic beats, since they do not 

carry information on the sinus rhythm, but the need to correct for nonperiodic changes 

in the sinus rhythm, e.g. by removing the changes in the HR trend, depends largely on 

the application and on the mathematical HRV indices used. When day-to-day 

variation is to be studied in a single subject, for example, it is important to detrend the 

data series so that the statistics regarding frequently-occurring parameters can be 

compared. If conventional methods are used, the correction of non-periodic changes 

in heart rhythm should be preferred, since rough nonstationary sequences in the RR 

interval data can bias the results of the analysis. Detrending is usually applied to cut 

down on the effects of nonperiodic low-frequency changes in RR intervals. 



Chapter 2: Literature survey 

Antonopoulos John – PHD Research  Page 47 
 

 

2.2.5.6. Limitations and effects of artifacts 

 

In view of the non-periodic nature of the artifacts in RR interval time series, it is 

clear that spectral domain methods in general and time domain methods based on the 

calculation of standard deviations and mean values are sensitive to artifacts in the 

automatic measurement of RR intervals. Experiments have shown that pNN50 and 

indices based on the calculation of standard deviation are more sensitive to artifacts 

than the HRV index (the number of normal-to-normal intervals of modal duration) or 

TI NN (triangular interpolation of the normal-to-normal histogram) [72]. A 

comparison of methods for the removal of ectopy is also presented [62]. 

Mulder (1992) describes the effect of artifacts in considerable breadth, placing 

emphasis on spectral methods [67]. The impulse-like deviation in RR interval time 

series caused by errors in QRS detection, both missed R waves and additional 

triggers, and also interposed ectopic beats have a similar effect on the power spectrum 

in that power is increased at all frequencies. The effect of a phase-shifted ectopic beat 

is similar in form but smaller in amplitude. As the number of corrupted beats (not 

consecutive) increases, the total spectral variability grows linearly, while in the case 

of more consecutive artifacts, e.g. intervals of twice the normal length the Fourier 

transform of an artifact complex is no longer flat but follows the form of a sinc-

function, adding more power to the lower frequencies. As can be observed in Figure 

14, the effect of compensated ectopic beats is markedly different, i.e. their 

contribution is large at higher frequencies and small at lower frequencies. 

Responses of the heart to physical activity or emotional stimuli clearly affect the 

mean values, standard deviation and low frequencies of the RR spectrum (see Figure 

14). Detrending is usually used to remove low frequency baseline shifts by 

subtracting a fitted polynomial. There is also another method, based on the ratio 

between the peak power and bandwidth of the LF range in the power spectrum [66]. A 

wavelet filtering approach is used to remove very slowly oscillating components from 

RR interval data [74].In long term measurements, stationarity can be achieved better 

if the data are first divided into shorter segments which are analyzed one by one and 

then averaged. When using Fourier transform-based approaches, however, 

compromises must be made between the requirements of stationarity and good 
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frequency resolution, since the frequency resolution of the FFT algorithm is better if 

longer segments are analyzed at a time. 

 

 

 

 

Figure 14. RR time series obtained from a healthy young subject when asleep (top). 

The ECG signal includes a compensated ectopic beat, producing the sequence 

normal-short-long-normal in the RR intervals. Power spectrum estimated by the 

modified covariance method with a model of order 20 (bottom left). The estimate 

include the sum spectrum (solid line) and the spectra of the separate components 

(dashed lines). First-order difference plot of the RR intervals (bottom right).[75] 

 

 

2.2.5.7. Correction of abnormal RR intervals 

 

The decision as to whether a deviating interval should be corrected or not, 

usually forms the most difficult step in the removal of abnormal intervals. A segment 

of an RR interval time series is accepted for further analysis if the number of qualified 
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intervals exceeds a preset acceptance percentage which varies widely according to the 

application and the patient group, a typical figure being around 95 % as in Mulder et 

al. [67] and Pitzalis et al. [60]. There are no specific recommendations in the 

literature as to the maximum number of artifacts one can interpolate or accept. 

 

Figure 15. RR time series obtained from a healthy young subject, including an abrupt 

change in RR intervals due to physical activity (top). Power spectrum estimated by the 

modified covariance method with a model of order 20 (bottom left). First-order 

difference plot of the RR intervals (bottom right). [75] 

 

2.2.5.8. Detection and correction of artifacts 

 

Error detection algorithms attempt to distinguish normal intervals from 

abnormal ones. The optimum would be for the algorithm to adapt to the data and 

derive the error detection criteria from the distribution indices of the normal-to-

normal intervals. An algorithm which automatically identifies artifacts and corrects 

them in a RR interval time series is presented by Berntson et al. [76]. It can be noticed 

from the literature, however, that relatively simple detection criteria supported by 

additional visual verification are still being used in computerized artifact detection in 
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connection with HRV measurement. This is explained by the fact that results obtained 

with simple procedures are not distinctively poorer than those arising from more 

complex solutions [67]. As the normal intra-subject and inter-subject variability in 

heart rhythm is large, automatic adjustment of the criteria can be difficult. Short and 

sudden surges are usually treated successfully by most methods, but the decision on 

whether deviating intervals resulting from non-periodic physiological fluctuations 

should be corrected is more problematic. So far, researchers have wanted to solve the 

most critical questions during the visual verification after computerized detection. 

The simple artifact detection criteria described in the literature include absolute 

upper and lower limits for acceptable intervals (e.g. 300 - 1500 ms), absolute or 

relative differences from the previous RR interval (e.g. 20 - 40 %), from the following 

RR interval, from the previous accepted interval, from the mean, from the mean 

updated by previously accepted intervals or from a fitted polynomial representing the 

baseline. Malik et al. [71] used four simple detection criteria and found none of them 

to be significantly better than the others. As a single detection criterion always has its 

particular weaknesses, a combination of criteria should be preferred [64]). 

There are two basic methods for removing individual artifacts from an analysis: 

total exclusion of abnormal intervals or substitution of a better matching value. The 

exclusion approach is widely used, suits well for time domain analysis, and can also 

be used with frequency domain analysis if only a few beats are to be excluded, where 

as the substitution approach is used relative widely with both time domain and 

frequency domain analysis. 

The substitution can take the form of simply replacing the abnormal value with 

a local mean or median value, but more sophisticated procedures include linear, non-

linear or cubic spline interpolation methods or more complicated predictive modeling. 

The substitution approach can be used with good justification in a physiological sense 

if the artifact is known to be of technical origin, while if it is due to a physiological or 

mental factor, both approaches can be used with success. The comparison, by 

Lippman et al. [62], of methods for removing ectopy from 5- minute RR sequences 

showed that the simple deletion method and the more complex non-linear predictive 

interpolation method gave the best results. In general, the removal of abnormal 

intervals tends to increase the low frequency component of the spectrum and reduce 

the standard deviation, but it should be noted that the sum of the intervals after 

correction does not always equal the sum of the original intervals. A correction 
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procedure, presented by Mulder [67], attempts to retain the total time, and this 

approach can be successful if the sinus rhythm is not disturbed during a period of 

disturbances; however, short intervals connected with phase-shifted extra systoles can 

make it impossible to preserve the sum of the intervals. 
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3. Analysis of signal variability 

 

3.1. Interpolation of the ECG signal 

 

As seen earlier, the ECG was interpolated in order to increase the sampling rate 

of the measured signal. That is important because of the relatively low sampling rate 

(often 128 Hz) of the ambulatory ECG. The objective is to increase sampling rate to 

obtain, for example, a more accurate measurement of the end of the T wave. Speranza 

et al. [52] utilized this technique in order to gain an improved resolution of the RT 

interval variability measurement. They checked the performance of the technique and 

showed that the interpolation caused a distortion in the QRS complex, but did not 

affect the T wave. The difference was less than 3 % of the peak-to-peak amplitude of 

the original signal, when the ECG was sampled at 250 Hz and interpolated to 1 kHz, 

and was comparable to the signal digitized at 1 kHz [52].  

Interpolation is the process of increasing sampling rate by an integer factor M, 

that is, upsampling by M. First, the time base of the signal is changed so that M − 1 

zero valued samples are placed between each sample pair of the original signal x(t) (t 

= 1, 2, …., N). This new sequence is defined by 

 

,    (3.1) 

 

For instance, when having a signal sampled at 128 Hz and interpolating it to 

1024 Hz sampling rate (interpolation by factor 8), 7 zeros are placed between each 

sample pair. Thus, the time interval between each sample pair changes from 7.81ms to 

0.98 ms. 

A symmetric, linear phase, FIR digital filter was used. This filter resamples data 

at a higher rate using low-pass interpolation. This allows the original data x(t) to pass 

through the filter unchanged and interpolates M − 1 values between data samples such 

that the mean square error between them and their ideal values is minimized [78]. The 

length of the designed filter is 2ML+ 1, where M is an integer factor used to increase 

sampling rate and L is an integer factor determining the degree of the filter. The cutoff 
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frequency α was given in radians (0 < α ≤ 1,0), so that the input data is assumed to be 

band-limited with the frequency απ/M.  

The increase in sampling-rate obtained by the addition of M −1 zeros between 

successive values of x(t) results in a signal y(t) whose spectrum Y(ωy) is an M-fold 

periodic repetition of the input signal spectrum X(ωx) [79]. Since only the frequency 

components of x(t) in the range 0 ≤ ωy ≤ πΜ  are unique, the images of X(ω) above 

 should be rejected by passing the sequence V(t) through a lowpass filter. 

The frequency response of the filter can be ideally given as 

 

HM(ωy)= ,                                 (3.2) 

 

where C is a factor required to normalize the sequence y(t). 

 

3.2. Time domain analysis and indices 

 

Time domain analysis of RR interval time series covers histogram and 

scattergram analysis, and the calculation of several common statistical indices. In 

many studies, these indices are compared with frequency domain parameters, and the 

correlations between these parameters are also calculated. 

 When dealing with the interpretation of parameters such as histograms, it should be 

pointed out that they do not in general contain any information on periodic 

fluctuations in RR intervals. Respiration frequency, for example, cannot be observed 

on the basis of these parameters, nor can the variance related to a specific frequency 

band (i.e. spectral component) be measured by these indices if RR intervals without 

any band-pass filtering are considered. Time domain indices tend instead to rather 

measure the average variability in time series or maximum amplitude of the 

variability, depending on the nature of the index considered. See Kleiger et al. [80] 

and references therein, for a more detailed discussion on the use of time domain 

parameters. 

There are several statistical indices which have been used to describe heart rate 

variability, e.g. average, median, deviation between maximum and minimum values 

(range), standard deviation (sd) and root mean square of successive differences 
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(RMSSD). The formulation of these is well known and they do not require complex 

calculations. The statistical properties of a time series x(t) are often described using 

basic indices such as the mean x and standard deviation sx, which can be obtained 

from the given data as follows: 

= ,  =   (3.3) 

 

The variance is the square of the standard deviation, var(x(t))=sx
2
. The coefficient of 

variation and the range, i.e. the deviation between the maximum and minimum values 

in a time series, are formulated as 

 

     (3.4) 

   (3.5) 

 

The mean square of successive differences (RMSSD) is calculated for the purposes of 

HRV analysis by 

   (3.6) 

 

Certain ―modified‖ indices also exist, such as ―the percentage of difference between 

adjacent normal RR intervals greater than 50 ms computed over the entire 24 hour 

ECG recording‖ (pNN50) or ―the mean of the standard deviations of all normal RR 

intervals for all 5 minutes segments of a 24 hour ECG recording‖ (SDNNIDX) [81, 

82]. 

3.3. Analysis of distribution 

 

The distribution of RR intervals can be analyzed in terms of a histogram of the 

time series [83, 84] in which the ―frequencies‖ in the histogram bins may be 

expressed in absolute numbers or as relative ―frequencies‖ of the time series values. 

The histogram has also been presented either by drawing a line between the bins or by 

giving the portions of the time series values numerically [85].  

A few parameters generated for the analysis of RR interval histograms are 

introduced in Baevskij et al. [85]. The bin having the largest ―frequency‖ is termed 
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the mode of histogram and the ―amplitude‖ of this mode has also been observed. The 

width of the histogram base, i.e. the maximal deviation in time series values, has been 

proposed as another basic measure of RR interval variability. Several parameters may 

be constructed from these three elementary measures.  

Casolo et al. [86] used the width of the histogram base as a measure of total 

variability, and defined the width at levels of 10% and 50% of the maximum height of 

the histogram. Odemuyiwa et al. [87] approximated the shape of the histogram as a 

triangle in order to reduce the effect of less marked variabilities.  

The results produced by the histogram naturally depend on the bin width used. 

If a large bin width is chosen, the histogram will be vague in shape, while a small bin 

width will accentuate unimportant details. It is worth noting that the bin width of a 

histogram should remain constant in order to allow rational comparison of the 

absolute results. A simple estimate for bin width is given by Scott D [88] 

 

HN=3.49(sx/N
3
),    (3.7)  

 

where sx is the standard deviation of N time series values. The estimate takes the 

variability in time series into account by using the standard deviation. This expression 

can be used successfully with approximately Gaussian data [88]. In practice, the bin 

width can be selected to be near the estimate HN. The estimation of frequency 

distributions has been studied in Willard K & Connelly D [89], where different non-

parametric methods using both simulated and real data are compared and 

improvements to the histogram are proposed. 

 

3.4. Frequency domain analysis 

 

Spectral estimates can be studied by integrating over a given frequency band or 

by decomposing the spectrum into components. The first approach can be performed 

with Fourier and autoregressive (AR) techniques, but the latter is possible only with 

AR techniques. 

One problem affecting integration of the spectrum is definition of the frequency 

bands. Doing this signal by signal would be quite a laborious task, because it would 

mean checking all the estimates manually. Frequency ranges can be defined by an 
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experimental procedure or obtained from the literature and kept constant, but 

problems will arise when the locations of components vary between signals. The 

definition of frequency ranges has been studied experimentally by Jaffe et al.[90], 

where the aim is to optimize the ranges to some extent. Use of the spectrum 

decomposition procedure gives estimates for the component spectrum and powers. In 

addition, the central frequencies as well as the power estimates can be utilized to 

search for the appropriate components. Use of the maximum of component spectrum 

and the band width of the component to detect periodic fluctuations is discussed in 

Sapoznikov et al. [73]. The mean, median and central frequency has been used to 

obtain the characteristic frequency of a specific band in Korhonen [91]. Several 

definitions exist for the frequencies of the components in a RR interval time series 

spectrum, as summarized in the following short description: 

 

 The very low frequency (VLF) component is found at frequencies f < 0:04 Hz 

[25]. These fluctuations in RR intervals are due to thermoregulation 

mechanisms [20]. Some low frequency trends or nonstationarities may also 

exist, which can be observed in the form of increased power at low 

frequencies in the spectrum. 

 The low frequency (LF) component is usually observed around f = 0.1 Hz. 

This is mainly due to the systems regulating blood pressure [25, 92] and 

reflects the autonomic sympathetic tone in heart rate regulation [93,94] 

although it has also been suggested that parasympathetic regulation plays 

some role in it [19, 23]. 

 The high frequency (HF) component will be often found in the frequency band 

0:15 < f < 0:40 Hz, which is related to the frequency of respiration (e.g. cycle 

length T = 4 s, f = 0:25 Hz) [95, 21] and is often called respiratory sinus 

arrhythmia (RSA). The amplitude and frequency of this component are closely 

related to the respiration volume and frequency [96, 97]. The HF component 

has been considered a measure of parasympathetic neural regulation of heart 

rate [98, 94, 23]. 

 

Sometimes an ultra low frequency (ULF) component is defined with a 

frequency band of f < 0:0033 Hz [8]. The balance between sympathetic and 
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parasympathetic neural regulation is often measured by the ratio of the power 

estimates for the LF and HF components (LF/HF ratio) [22, 94] An RR time series for 

a healthy young subject is shown in Figure 16, together with a spectrum estimated 

using an AR model, showing the components of spontaneous RR fluctuation 

described above and a pole diagram representing the locations of the poles of the 

parametric model on the complex z-plane. In this example, the model order was 

selected by visually examining the spectrum when the order 16 gave a reasonable 

result. The power spectrum estimate represent the sum spectrum (solid line) and the 

spectra of the separate components related to respective pole pairs (dashed lines). 

 

 

3.4.1. On the use of spectral analysis 

 

The use of frequency domain analysis in different clinical circumstances has 

been extensively reviewed in Rienzo et al. [99], Malliani et al. [22], Kamath & Fallen 

[25] and Öri et al. [81]. Spectral analysis has been often performed for RR interval 

time series including 256 or 512 values [102], the recording lasting several minutes 

depending on the heart rate. Analyses of this kind can provide information on short 

term fluctuations in RR intervals. 

Short term fluctuations and their changes over several hours can be studied with 

ambulatory recordings (24 hour Holter recordings), a long recording being segmented 

into shorter RR interval time series of 512 values, as for instance described in Cerutti 

et al. [100] and Furlan et al. [102]. Such a short time series can be assumed to 

conform better with the stationarity requirement for the relevant spectrum estimation. 

Circadian variation in spectral parameters has been studied in Furlan et al. [102] and 

Huikuri et al. [93], and long term RR interval recordings in Bianchi et al. [103], 

Rienzo et al. [104],  Malik et al. [105]. 
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Figure 16. RR time series obtained from a healthy young subject under resting 

conditions (top). Power spectrum estimated by the modified covariance method with a 

model of order 16 (bottom left). The corresponding pole diagram (bottom right).[202] 

 

 

 

and Saul et al. [95]. Long term variation in autonomic neural regulation has been 

studied using the VLF and ULF components mentioned above, and the spectrum has 

been calculated from the whole 24 hour recording. The spectrum has been reported to 

have the shape 1/f  [107, 106]. 

 

2.3.4.2. Mathematical background to spectral analysis 

 

The RR interval time series includes information of wide origin and its nature 

will hardly allow an assumption of wide sense stationarity in the strict statistical sense 

under any conditions. The RR intervals should rather be understood as being 

approximately stationary at most, whereupon the analysis would give relevant results 

in a medical sense. There may exist sections which can very well be assumed to be 

(almost) stationary, and also sections that are far from allowing such an assumption. It 
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is often necessary to divide a recording into shorter stationary sequences. 

Nonstationarities include transient phenomena and slowly varying changes (trends), 

the identification of which is more difficult. The theory of many approaches is 

nevertheless based on the assumption of signal stationarity. In this context, a 

calculated spectrum for a RR interval time series, for example, is understood as a 

―model" for periodic fluctuations rather than as a ―true‖ spectrum. 

Let x(t) be a stationary process defined at discrete values t = 0, ±1, ±2, …. 

The autocovariance function will be written as [108] 

 

 (3.8) 

 

and the autocorrelation function will then be r(k) = r(k)/r(0). Here the mean value of 

the process x(t) is defined, using the expectation operator μ = E{x(t)}. For a wide-

sense stationary process, the mean value is constant and the autocorrelation satisfies 

the property r(n1, n2) = r(n1 – n2) = r(k).  

Assuming that x(t) is a zero mean stationary process, there must exist an 

orthogonal process Z(ω) such that [108] 

 

 (3.9) 

 

and where ,  and . 

This is called the spectral presentation of a discrete stationary process. 

The autocovariance sequence is 

(3.10) 

and the power spectral density is 

(3.11) 
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3.4.3. Spectrum estimation using a periodogram 

 

 

Let us divide the N-point process x(t) into K non-overlapping segments, each 

having M points. The Fourier transform of the p:th segment can be written as 

 

(3.12) 

 

The periodogram estimate of the spectral density function of a single data segment is 

given by 

 

(3.13) 

 

If the periodograms of K segments are averaged, the estimate is called a Bartlett 

averaged periodogram. It should be noted here that the periodogram is only one way 

of estimating the spectrum of the process, and is by no means a ―definition‖ of the 

spectrum. 

Modifications of the averaged periodogram also exist, among which the Welch 

periodogram is introduced. In this method, data segments are allowed to overlap by 

50% or 70%, for example, and each data segment will be weighted with a window 

function before calculating the periodogram. As a result, one has for the periodogram 

of each segment 

 

(3.14) 
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The factor = −1 =1( )2 is a normalization factor for the power in the window 

function w(t). The Welch periodogram estimate will be then an average of these 

periodograms: 

 (3.15) 

The statistical properties of periodograms are discussed by Priestley (1981) and 

Kay (1988). 

Sometimes one may need to approximate a periodogram more closely, which 

can be done by using the zero padding procedure [109]. This is performed by 

extending the data set with zeros, and taking the Fourier transform of the whole data 

set. This operation does not achieve any better resolution in the spectrum, however, 

although the frequency spacing will be denser. Zero padding actually interpolates the 

values of the measured spectrum at more frequencies, producing a smoother 

spectrum. 

 

 

3.5. Parametric modeling of time series 

 

Parametric modeling of time series has some advantages over non-parametric 

(Fourier) methods. Here only autoregressive (AR) models are examined and the focus 

is on spectral estimation, which has been the main object of interest in HRV analysis. 

There are many algorithms for obtaining estimates for AR parameters, e.g. methods 

based on estimation of the autocorrelation sequence (Yule-Walker), the Burg 

algorithm, and least squares linear prediction algorithms (including the modified 

covariance method) [109, 110]. There are also adaptive algorithms such as least mean 

square (LMS) and recursive least square (RLS), which update the parameter estimates 

as a new data sample becomes available [110]. 

Estimation of the signal spectrum with AR models enables the frequencies of 

spectral components to be determined more exactly than by non-parametric 

estimation. The frequency estimates can be calculated after determining the poles of 

the parametric model. Tracking of the pole locations in the complex z-plane can be 

utilized when monitoring spectral changes in time series, for example. Furthermore, 
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the powers of the spectral components and their balance can be estimated more 

accurately. Estimation of the AR spectrum does not need windowing of the time 

series as can be the case with the Fourier spectrum.  

Let us define an autoregressive model for a stationary time series x(t) as 

follows: 

(3.16) 

 

where ak are the model parameters to be estimated, e(t) is the residual time series or 

error process, and p is the model order. The estimates for the model parameters, 

can now be regarded as the ―components‖ observed in the power spectrum 

estimate, which are to be fitted into the time series x(t) in order to minimize the 

process e(t) in some sense.  

The power spectrum of the process x(t) is given as Px(z) = H(z)H(1=z)Pe(z), 

which can be written 

         (3.17) 

 

where the Z transform of the above recursion is 

 

  (3.18) 

 

and Pe(z) = σ
2

e denotes the spectrum of the residual time series. Let us estimate the 

power spectrum of x(t). Assuming an AR process of order p, it can be written: 

 

(3.19) 

 

where  is the estimated variance of e(t), and pk are the poles of the model. This 

can also be given by using the estimates and denoting z = exp(iω): 
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  (3.20) 

 

The spectrum of the single component can be estimated by the following expression: 

 

  (3.21) 

 

assuming that ω≈ωk and z = exp(iω). For the constant ck can be written 

 

(3.22) 

 

Now the frequency ωk is related to the pole pk. It is assumed that a part of the estimate 

AR(z), ck, will be constant when ω≈ωk. The AR spectrum estimate should follow the 

relation AR(z) ≈  (z), i.e. the spectrum is the sum of the spectrum estimates of 

the components. 

 

 

3.6. Estimation of the powers related to 

components 

 

It was defined, above, the spectrum estimate of a single component related to 

the pole pk. It may sometimes also be useful to estimate the power associated with a 

component. In HRV analysis, powers are estimated in order to evaluate the strength 

and balance of autonomic regulation.  

The power of a component observed at frequency ωk can be estimated by 

utilizing the residue of the function analyzed [111, 110] 
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   (3.23) 

 

where the residue of  is determined for the pole pk. The operation 

 denotes the real part of the function. The total power associated with the 

spectrum and the residues of the function are related as follows: 

  (3.24) 

Furthermore, the total power of the signal should be equal to the sum of the power 

estimates of the components, .Finally, the estimated power of a 

single component is calculated by 

   (3.25) 

 

where z = pk  and . Now q=1 for a real pole and q=2 for a 

complex pole.  is the estimate for the prediction error variance at the given model 

order.  

In HRV analysis, the power estimates are sometimes presented in normalized 

units [n.u.] instead of absolute units [ms
2
]. The power estimate in normalized units 

will be [94] 

  (3.26) 

 

where represents the power estimate of very low fluctuations in a signal (f<0.03Hz) 

and  the total power of the signal. It is obvious that 0 < (ωk)n.u. ≤100. 

 

Model order selection 

 

It is essential to choose an appropriate model order, but the task can be a 

problematic one. The order of the AR model has a major effect on the spectral 

estimate for a time series. Too low an order will result in a smoothed spectrum, and 



Chapter 3: Analysis of signal variability 

Antonopoulos John – PHD Research  Page 65 
 

too high an order will increase the resolution of the spectrum and may introduce 

spurious peaks. The estimate for the power associated with a single component is also 

dependent on the order that is selected. The orders p = 15 − 20 are often satisfactory 

with RR interval time series, giving a meaningful spectrum. Minimization of the 

prediction error variance is alone not a sufficient method for model order selection in 

the case of AR models, since decreases as the order increases [112], but this 

decrease should smooth out after a certain order, indicating that the optimum has been 

reached. The autocorrelation function of a residual time series can also be studied, and 

if the model order is correct the residuals should be uncorrelated. The locations of the 

poles in the complex z-plane should then be quite stable.  

Several penalty function methods for model order selection exist that utilize the 

prediction error variance, e.g. FPE (final prediction error) and AIC (the Akaike 

information criterion)[112]. It is expected that these criteria may fail in real world 

time series. They provide a basis for model order selection, but the final decision has 

to be made by a subjective inspection. If one can assume that the properties of time 

series do not change significantly from one such series to another, one probably will 

not make a serious mistake by choosing a relatively high model order and keeping it 

constant.  

 

Bispectrum estimation 

 

A potential tool for future RR interval variability analysis may be the estimation 

ofthe bispectrum. The power spectrum is based on the second order statistics of the 

time series, but the bispectrum make use of third order statistics. By definition, a 

gaussian random process has a zero higher-order spectrum of order two (bispectrum) 

[113], which allows the study of the deviation from the gaussianity or to suppress 

gaussian noise. The method also contains information about the phase character of the 

signal, which is failed with the methods based on the second order statistics. 

Moreover, the bispectrum estimation can be used in detection and characterization of 

the nonlinearities by analysis of quadratic phase coupling in the frequency domain. A 

preliminary study on quadratic phase locking in HRV can be found in Calcagnini et 

al. [114] 
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3.7. Time frequency analysis 

There may be a need for monitoring the spectral properties of the signal as time 

elapses, especially, when ―long‖ time periods are under consideration. The temporal 

location of the spectral components may give more information than one single 

spectrum. The short-time Fourier transform (STFT) is a linear Time Frequency 

Representation (TFR) used to present changes in the signal that vary with time. The 

Fourier transform does not explicitly show the time location of the frequency 

components, but some form of time location can be obtained by using a suitable pre-

windowing window [115]. The STFT can be defined for x(t) as 

 

 (3.27) 

 

(t,ω) is a local spectrum of the signal x(s) around the analysis time s, because 

multiplying by the short window g*(s - t) suppresses the signal outside the 

neighborhood around the time s = t. The properties of the window g*(s) also have an 

effect on the calculated STFT [115, 116].  

The time-frequency resolution of the STFT is limited by the time-frequency 

product, i.e. having a small time resolution means poor frequency resolution, or vice 

versa. The resolution is also constant as a function of the frequency, which is due to 

the window chosen for the STFT [116].  

As an example of quadratic TFRs, the Wigner distribution (WD) is given: 

 

 (3.28) 

 

Detailed reviews of several types of time frequency representation and their 

application can be found in Cohen [117], Hlawatsch & Boudreaux-Bartels [115] and 

Loughlin [118], for instance. 
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3.8. Time-variant spectral analysis 

 

Techniques have recently been developed and demonstrated that allow the 

tracking of spectral parameters as time elapses. Approaches of this type have also 

been called time-variant spectral analysis or time-frequency analysis. For a detailed 

description of the algorithms and methodologies proposed and for some experimental 

studies, see references Basano et al.[119], Bianchi et al. [103], Cerutti et al. [100], 

Keselbrener & Akselrod [120], Lee & Nehorai [121], Mainardi et al. [122, 123], 

Novak et al. [96, 97]. The advantages of these methodologies are associated mainly 

with reducing the influence of nonstationarities and monitoring transient cardiac 

events occurring in long-term recordings. 

In Cerutti et al. [100], a procedure of compressed spectral arrays (CSA) was 

implemented which can reduce the spectral data obtained from 24 hour ambulatory 

ECG recordings. The method was based on the calculation of AR spectral estimates 

for successive RR interval segments, and checking whether a new spectrum differs 

significantly from the preceding one. 

Time-variant spectral analysis was introduced into HRV analysis by Lee & 

Nehorai [121], and particularly for the analysis of 24 hour ambulatory recordings by 

Bianchi et al. [103]. Here the AR parameters are estimated by the recursive least 

square (RLS) approach, and the time-variant power spectrum is given as 

 

   (3.29) 

 

with and t denoting the time index. Mainardi et al. 

[122] introduced two algorithms for recursive tracking of the pole displacements of an 

estimated AR model. The procedure was formulated and tested in more detail in 

Mainardi et al. [123]. The algorithms were based on the classical linearization 

approach and recursive calculation of the roots of a polynomial (Bairstow method). 

The discrete Wigner distribution (DWD) was applied to heart rate variability 

analysis in Novak & Novak [96], and a modified algorithm was proposed for auto- 

and cross-DWD. The cross-terms were suppressed by means of a smoothing data 

window and a Gauss frequency window [97]. This approach has been employed 
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further in a study of the influence of respiration on heart rate [96], showing its ability 

to estimate spectral changes in nonstationary RR interval time series. 

Keselbrener & Akselrod [120] proposed a selective discrete Fourier transform 

algorithm (SDA) for time-frequency presentation of cardiovascular time series. This 

approach is very close to the STFT, and involves calculating the spectra with short 

time windows, but SDA utilizes a shorter window for high frequencies in the 

spectrum and a wider window for low frequencies.  

Fourier transform-, autoregressive and time-frequency representation (TFR)- 

based power spectral estimators applied to nonstationary time series are compared in 

Pola et al. [124], the results of which show that TFRs such as SPWD (smoothed 

pseudo Wigner distribution) and RWED (running windowed exponential distribution) 

should be utilized when good time resolution or the preservation of instantaneous 

power is essential. RWED has proved to be efficient in reducing the cross-term 

amplitudes, but SPWD is more capable of evaluating the mean power in the time-

frequency plane. It can also be concluded that one problem entailed in the classical 

estimators is the dependence of the time resolution on the observation window, which 

often means a poor time resolution for the oscillations observed in cardiovascular time 

series. 

On the whole, increased interest is being shown in time-variant spectral analysis 

or the monitoring of spectral parameters as a function of time. These techniques seem 

to offer approaches for overcoming the requirement for signal stationarity. 

 

 

3.9. Wavelet analysis 

 

The wavelet transform (WT) is a fairly new approach in the field of biomedical 

time series analysis, and only a few published articles exist on its use in HRV 

analysis, although it seems to possess some obvious advantages over classical time-

frequency analysis methods, see Akay et al. [115] and Tsuji & Mori (1994). The 

motivation for applying the wavelet transform to the analysis of ECG signal and RR 

interval time series lies mainly in the monitoring of nonstationary signals and the 

long-term evolution of the power spectrum. 
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General and also more detailed theoretical discussions on the wavelet transform 

and its applications to biomedical signal processing can be found in references Akay 

(1995), Clouet et al. [15], Cohen & Kovacevic [126], Hess-Nielsen & Wickerhauser 

[127], Karrakchou et al. [128] Rioul & Vetterli [116], Thakor & Sherman [129] and 

Unser & Aldroubi [130]. WT as a tool in the time-dependent spectral analysis 

approach to stochastic processes has been discussed by Priestley [131], especially the 

term ―frequency‖ in connection with nonstationary time series. 

 

3.9.1. Continuous wavelet transform  

 

As a starting point, the continuous wavelet transform (CWT) is introduced and 

then extended to the theory of discrete (multiresolution) wavelet and wavelet packet 

transform, which are used to decompose the signal. CWT is defined for a signal x(t) 

by [132] 

   (3.30) 

 

where a and b is the scaling and translation factor. Different versions of wavelet 

functions ψa,b(t) are obtained from the basic wavelet by 

 

    (3.31) 

 

where a and b are real numbers (a ≠  0). The wavelet function ψab(t) has a constant 

norm in the space L
2
( ) of square integrable functions due to the normalizing factor 

 . The continuous wavelet transform is invertible with [126] 

 

  (3.32) 

 

if the wavelet function satisfies the admissibility condition 
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where is the Fourier transform of the wavelet function ψa,,b(t). The constant Cψ 

is finite only if (0) = 0 or equivalently 

 

 

 

To ensure that the wavelet function decays quickly to zero and is thus well localized 

in the time domain, the following relation should be fulfilled [132] 

 

  (3.33) 

 

which is a subtly stronger condition than integrability of the function ψa,b(t). This also 

satisfies the admissibility condition as | |≤Β|ω with β = min (α, 1) B being a 

constant.  

By analogy with the Fourier transform, which uses a complex exponential 

exp(iωt) as its basis function, the wavelet transform utilizes the function ψab(t) to 

represent a signal as a linear superposition of basic functions. The physical term 

frequency ω is related to complex exponential functions and does not have a direct 

interpretation when other functions such as wavelets are being considered (Priestley 

1996). One can observe from the above formulation that wavelets are indexed with 

the parameters a and b instead of the variable ω. Actually, wavelet functions are 

located in time by the parameter b, while a denotes to the width of the wavelet. This 

leads to the interpretation that the wavelet transform can describe local properties of a 

time series x(t) in the neighborhood of each time point rather than global ones as the 

standard Fourier transform do. 

It was shown earlier that the short time Fourier transforms is a function 

of the variables t and ω that has a certain location in time. The width of the window 

g(t) was constant for all ω, so that all frequencies were evaluated with the same 
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resolution. In the case of wavelet transform, a large value of the scaling factor a 

stretches the basic wavelet function and allows the analysis of low frequency 

components of the signal. The small value of a gives a contracted version of the basic 

wavelet, and then allows the analysis of high-frequency components, respectively. In 

other words, the wavelet transform uses a short time interval for evaluating higher 

frequencies and a long time interval for low frequencies, high frequency components 

of short duration can be observed successfully. The properties naturally depend 

strongly on each wavelet function.  

The frequency resolution of the wavelet transform is poor at high frequencies 

and good at low frequencies, which means that the time resolution at high frequencies 

will be good and that at low frequencies, will be poor [117].  The time-frequency 

resolution even in this case cannot be arbitrarily good, but is thus limited by the rules 

analogous to the well known Heisenberg's uncertainty principle. 

Priestley [117] derived an expression for the time-dependent spectrum of a 

stochastic process: 

 (3.34) 

 

which allows the squared modulus of wavelet coefficients to be interpreted as a time-

dependent spectrum. It is assumed here that the mother wavelet has a complex form 

(t) = exp(2πit), and its squared Fourier transform | m(ω)|
2
 is suitably concentrated 

around ω = ωm. Although the term frequency should be understood with care and in a 

somewhat heuristic sense, time-frequency analysis is probably one of the most 

powerful features of the wavelet approach in this context. 

 

3.9.2. Discrete wavelet transform 

 

By choosing fixed values a =  and b = , m, n = 0, ±1, ±2, …, got for 

the discrete wavelet transform (DWT) [132]: 

 

 



Chapter 3: Analysis of signal variability 

Antonopoulos John – PHD Research  Page 72 
 

 

Values α0 = 2 and b0 = 1 construct discrete wavelets ψm,n(t) = 2
-m/2

 ψ (2
-m 

t-n) used in 

multiresolution analysis constituting an orthonormal basis for L
2
(ℝ). To obtain a 

complete characterization of x(t) using discretized wavelets ψm,n(t), and further, to 

recover x(t) from the discrete transform in a numerically stable manner, wavelet 

function should constitute a frame. The transform between the signal and the wavelet 

function should be bounded above and below: 

 

   (3.35) 

 

with A > 0, B <1. If frame bounds A and B are equal, then the frame is called tight. 

 

3.9.3. Multiresolution wavelet analysis 

 

In multiresolution analysis successive approximation subspaces Vj fulfill the 

property Vj  Vj+1 with 

 

 

 

The multiresolution feature follows from the condition that all the spaces are 

scaled versions of the central space V0: 

 

 

 

The space V0 has to be also invariant under integer translation: 

 

 

 

for all n  ℤ. A scaling function φm,n (t) V0 is also required which is an orthonormal 

basis in V0, where φm,n(t) = 2
-m/2

 φ(2
-m

 t − n). Under these assumptions, the 
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multiresolution scheme involves an orthonormal wavelet basis of  

– so that 

 

 

 

where Pm is the orthogonal projection onto space Vm. The signal x(t) is consequently 

obtained by 

 

 

The decomposition of the signal x(t) using discrete analysis wavelet functions ψj,k(t) 

and discrete scaling functions φK;k(t) can be given on different scales as follows: 

 

 

 

where dj(k) are the wavelet coefficients (detailed signals) at scale 2
j
 and αΚ (k) is the 

scaling coefficients (approximated signal) at scale 2
Κ
. In Figure 17, the idea of 

discrete wavelet analysis is presented by means of a wavelet decomposition tree. A 

decomposition onto dyadic scales associates the frequency content of the signal and 

scales as 

 

 

for j = 1, 2,…. The signal spectrum includes the range 0 − π rad and Δωj is the 

frequency band corresponding the level j. 

 

3.9.4. Sub band filtering 

 

Multiresolution analysis comprises a hierarchical and fast scheme to compute 

the wavelet coefficients of an analyzed signal. The scheme involves the computation 
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of sequentially coarser approximations of x(t) and the difference in signals between 

two consecutive levels. In the sub band filtering approach the computation consists of 

the analysis and the synthesis steps which correspond to the decomposition and the 

reconstruction stages in wavelet analyses [133]. The discrete wavelet transform can be 

implemented by the scaling (low pass) and wavelet (high pass) filters 

 

   (3.36) 

 

and 

 

  (3.37) 

 

 

Figure 17. A wavelet signal decomposition presented by a tree structure.[6] 

 

being quadrature mirror filters (QMF) [132]. The estimation of the detail signal at 

level j will be done by convolving the approximate signal at level j−1 with the 

coefficients g(n). Convolving the approximate signal at level j−1 with the coefficients 

h(n) gives an estimate for the approximate signal at level j. The analysis step 

(decomposition stage) involves filtering the approximate signal and retaining every 

other sample of the filter output (down sampling). The synthesis step then involves up 

sampling and filtering to obtain a reconstructed signal. In Figure 18, the 
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decomposition and reconstruction stages in a sub band filtering scheme establishing a 

filter bank are presented. 

 

3.9.5. Wavelet packet analysis 

 

If one defines the scaling function W0(t) = φ(t) and the wavelet function W1(t) 

= ψ(t), then it can be written for functions Wm(t), m = 0, 1, 2, …, as 

   (3.38) 

and 

  (3.39) 

 

Figure 18. A schematic presentation of a sub band filtering procedure using filter 

banks. The operations 2 and  2 stand for down sampling and up sampling by 

two.[6] 

 

The analyzing functions called wavelet packet atoms are given in an orthogonal case 

as 

    (3.40) 
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where j is a scale parameter, n is a time-localization parameter and parameter m gives 

roughly the number of ―cycles‖ included in the oscillating waveform. Wavelet packet 

can be considered as a waveform whose oscillations persists for many cycles but are 

still finite. With fixed value of j the function Wj,m,n(t) analyzes the signal around the 

position 2j  n at the scale 2j . The analyzed frequencies are roughly given by n=2N 

with n = 0, 1,…, (2j − 1). 

Wavelet packet analysis is a generalization of wavelet analysis offering a richer 

decomposition procedure. Both detailed and approximated signals are split at each 

level into finer components. A set of details and approximations is called the wavelet 

packet decomposition tree. 

 

3.9.6. Optimization of the wavelet packet decomposition 

 

Wavelet (multiresolution) decomposition allows searching an optimal 

decomposition among L trees if a signal of length N = 2
L
 has been decomposed at L 

levels. Wavelet packet analysis involves the selection of an optimal decomposition 

tree among at most 2
L
 different subtrees of depth L. The optimization can be based on 

e.g. the minimization of the entropy of analyzed signal, where the optimized 

decomposition is called the best tree. The idea is to look at each node of the 

decomposition tree and quantify the information to be gained by performing each 

split. 

 

Figure 19. A wavelet packet signal decomposition presented by an optimized tree 

structure.[6] 
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The entropy can be obtained by many approaches, for example, the Shannon entropy 

[15] is defined as (x) = . In Figure 19, the optimized wavelet 

packet decomposition tree is shown, which schematically presents the idea of this 

procedure. 

 

3.10. ECG signal preconditioning  

 

There are many sources of noise in a clinical environment that can degrade the 

ECG signal. A noisy ECG signal extracted from the MIT/BIH database is shown in 

Figure 20.  

 

Figure 20. Typical ECG signal with noise  

 

The common sources of ECG noise are:  

 

• Power line interference,  

• Muscle contraction noise,  

• Electrode contact noise,  

• Patient movement,  

• Baseline wandering and ECG amplitude due to respiration,  

• Instrumentation noise generated by electronic devices used in signal processing, 

• Electrosurgical noise, and other, less significant noise resource.  

 

A brief description of these noise signals will be discussed as follows (Friesen G. M. and 

Jannett C. T. et al., 1990) [134]: 
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 Power line interference 

Power line interference consists of 50 Hz pickup and harmonics, which can be 

modeled as sinusoids and combination of sinusoids (Furno G. S. and Tompkins W. J., 

1983). Typical parameters: Frequency content-50 Hz (fundamental) with harmonics; 

Amplitude-up to 50 percent of peak-to-peak ECG amplitude. 

 

 Muscle contraction noise, 

Muscle contraction noise causes artificial milivolt-level potentials to be generated. 

The baseline electromyogram is usually in the microvolt range and therefore is usually 

insignificant. Typical parameters: Standard deviation-10 percent of peak-to-peak ECG 

amplitude; Duration-50 ms; Frequency content-dc to 10000 Hz. 

 

 Electrode contact noise, 

Electrode contact noise is transient interference caused by loss of contact between 

the electrode and skin, which effectively disconnects the measurement system from the 

subject. Typical parameters: Duration-1s; Amplitude-maximum recorder output; 

frequency-50 HZ time constant-about 1s. 

 

 Patient movement, 

Patient movements are transient (but not step) baseline changes caused by variations 

in the electrode skin impedance with electrode motion. Typical parameters: Duration-

100-500 ms; amplitude-500 percent of peak-to-peak ECG amplitude. 

 

 Baseline wandering and ECG amplitude due to respiration, 

The drift of the baseline with respiration can be represented as a sinusoidal 

component at the frequency of respiration added to the ECG signal. Typical parameters: 

Amplitude variation-15 percent of peak-to-peak ECG amplitude; Baseline variation-15 

percent of p-p ECG amplitude variation at 0.15 to 0.3 Hz 

 

 Instrumentation noise generated by electronic devices used in signal processing, 

and artifacts generated by electronic devices in the instrumentation system. 

 

 Electrosurgical noise, 

Electrosurgical noise completely destroys the ECG and can be represented by a large 

amplitude sinusoid with frequencies approximately between 100 kHz and 1 MHz. Typical 
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parameters: Amplitude-200 percent of peak-to-peak ECG amplitude; Frequency content-

Aliased 100 kHz to 1 MHz; Duration-1-10s. 

 

Motivation 

The frequency of the baseline wander, as stated before, is usually in a range 

below 0.1 Hz in rest ECG and 0.65 Hz during stress test. Therefore, its presence will 

be reflected in the higher level DWT approximation coefficients. This is actually the 

basic phenomenon behind this approach aiming to eliminate the distortion of baseline 

wander in measured ECG signals. This elimination is accomplished by decomposing 

the noisy ECG signal, contaminated with baseline wander into a certain number of 

levels n using Discrete Wavelet Transform (DWT). The highest level , i.e. the nth 

level, approximation coefficients (AC) are supposed to represent the low frequency 

baseline variation signal. In the filtering algorithm proposed here, the nth level AC are 

set to zeros. When a mother wavelet, e.g. coifflet 4, is arbitrarily chosen and DWT 

decomposition is carried out on one ECG signal with a sample frequency equal to 1 

kHz, it was noticed that each of the 8th, 9th and 10th level approximation coefficients, 

when time-aligned to the original ECG, resemble the baseline wander. Figure 20 

shows this resemblance. It is not very clear, as seen from figure 20, which level 

approximation coefficients represent the baseline wander signal the best in general. 

However, the following two issues need to be further investigated: 

 

1. Which mother wavelet should be applied for DWT analysis on the noisy ECG 

to achieve the best results? 

2. What value of n should be chosen? In other words, up to which level the ECG 

signal needs to be decomposed? 

 

In order to answer these two questions, the following simulation is carried out. 

 

Simulation 

 

Before dealing with real ECGs, artificial signals were chosen for 

experimentation. These artificial signals are in fact mixtures of artificial free-of-noise 
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ECG signals and artificial baseline variation signals. Thus, with a clear knowledge of 

the component signals, the performance of filtering could be judged. 

 

 

Figure 21. The 8th, 9th and 10th level approximation coefficients for an ECG signal 

with a sample frequency equal to 1 kHz and using Symlet4 as mother wavelet: (a) the 

ECG signal (b) the 8th level approximation coefficients (c) the 9th level 

approximation coefficients (d) the 10th level approximation coefficients.[135] 

 

 

Artificial noise-free ECG beats were generated by means of the algorithm used to 

generate noise-free ECG for Savitzky-Golay filter simulator and filter in Matlab 

Environment (Signal Processing Toolbox). Figure 22 shows an example of the 

generated noise-free ECG . The sampling frequency was assumed to be 1 kHz, or in 

other words the span of 1000 samples is 1 second. The data length was taken to be 

25000 samples, i.e. 25 seconds. In this case each beat should have a span of 1000 

samples for 60 bpm (beats per minute) ECG and hence there would be 25 beats in 

total. For different bpm, the span of ECG beat was varied accordingly and hence the 

total number of ECG beats. To find out the suitable mother wavelet and the 

decomposition level n, tests were carried out on 650 artificially generated noisy ECG 

signals. Thirteen noise-free ECG signals in the range of 60 to 180 bpm (increment 

step value of 10 bpm) were created as discussed above. At the same time, a set of fifty 

sinusoidal signals with frequencies ranging from 0.01-0.5 Hz (with increment step 
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value of 0.01 Hz) were created in order to simulate the baseline wander. Thereafter, as 

result, 650 test signals in total were synthesized by mixing the artificial ECG signals 

with artificial baseline wander signals in one to one correspondence. Now, on each of 

the 650 test signals, the mixture signals, DWT analysis was carried out taking a total 

of 29 mother wavelets under consideration, i.e. symlet1, symlet2, ... symlet12, 

coiflet1, coiflet2, ... coiflet5, Daubechies1 (Haar), Daubechies2, ..., Daubechies12. By 

applying DWT decomposition a symmetric boundary value replication of the signal 

under decomposition in each level is employed during the convolution with analysis 

filters or synthesis filters in order to deal with border distortions. The extension is 

done on both sides with the length of the half of the low-pass filter or high-pass filter. 

On every test signal, for each of the mother wavelets, the following procedure was 

adopted. 

 

Figure 22. An example of the noise-free ECG generated by Savitzky-Golay filter 

simulator in Matlab environment. The sample frequency is 1kHz and the heart rate is 

120 beats per minute.[135] 

 

 

 

1. Initialize n=1; i.e. no. of decomposition levels for DWT. 

2. Decompose the test signal till n levels (maximal n here is chosen equal to 12) 

and get the DWT coefficients An, Dn, Dn−1, Dn−2,...,D1, where Ai = ith level 

approximation coefficients and Di = ith level details coefficients. 
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3. Perform the following two reconstructions: 

 

 First Reconstruction: With An to be all zeros, a reconstruction of the signal is 

possible. The signal, reconstructed in this way is called the ECG 

reconstruction. It should resemble the original noise-free ECG (with which 

the test signal is synthesized) for higher values of n. 

 

 Second Reconstruction: Set all the coefficients other than An (i.e. the details 

coefficients, Dn, ..., D1) to zeros and reconstruct the signal. The signal, 

reconstructed in this way is called the Baseline Reconstruction. It should 

resemble the original baseline variation signal (with which the test signal is 

synthesized) for higher values of n. 

4. Judge the resemblance between the original and reconstructed signals by 

means of correlation. Two correlation coefficients (CE & CB) were calculated, 

where CE is the percentage result correlation between the original noise-free 

ECG and the ECG reconstruction, or First Reconstruction and CB= 

correlation between original baseline variation signal (low frequency sinusoid) 

and the ‘baseline Reconstruction‘. 

5. Repeat steps 2 to 4 for n = 1,...,12. 

6. Furthermore, the whole above-mentioned process from step 1 to 5 was 

repeated for 29 different mother wavelets applied on the same test signal. 

Finally, for each test signal, two matrices were constructed, the first one 

includes all CE values and the other one includes all CB values. Each matrix is 

of size 12×29 and has the structure illustrated in figure 23. 

 

 

Figure  23. The structure of each matrix derived from the baseline simulation process: C 
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devotee either CE or CB. The 1st to 12th column represents Symlet Wavelets of 1st to 

12th order (sym1, sym2, ...sym12), the 13th to 17th column represents I, Coiflet 

Wavelets of 1
st
 to 5th order (coif1, coif2, … coif5) and the remaining 18

th
 to 

12
1h

 column represents Daubechies Wavelets of I
st
 to 12

1h
 order (db1, db2, …, db12,). 

For 650 test signals, there were 1300 correlation matrices in total, half for CEs 

and half for CBs. In addition two more matrices were computed, the first one is 

denoted as CEmean and represents the mean matrix of the 650 CE matrices, whereas 

the second one is denoted as CBmean and represents the mean matrix of the 650 CB 

matrices[135] 

Simulation Result 

At this stage, the positions of the first L greatest elements in both matrices. 

CEmean and CEmean, were identified. The value of L was taken in this case equal to 

five. L = 5, because only the five greatest values in both matrices were greater 

than 99.99%. The positions are found to be exactly the same in both matrices, that 

is, the highest element occurs in the same position (same row and column number) 

in both matrices . The same is also true for 2
nd

 highest and so on. All of these five 

highest elements are found at the row corresponding to n = 9. 

Discussion 

From the simulation result, the baseline wander signal can be located perfectly 

at the 9
th

 level approximation coefficients of Daubechies11 mother wavelet from a 

baseline-wander distorted ECG signal sampled at 1000 Hz.  

 

Table 2. Results obtained from the baseline simulation done on 650 artificial 

test signals 

 

Depending on subband theory in DWT, the 9
th

 level approximation coefficients of a 

signal sampled at 1000 Hz represents the signal in the [0 - 0.9766] Hz range. 

Therefore, some adaptation procedures are required for the system to handle 
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equivalently ECG signals with different sampling frequencies. One of these 

procedures is simply to resample the signal under study to 1000 Hz. This procedure is 

actually a time-demanding solution, especially in the case of multi-channel ECG or 

long-time ECG. 

The second possible solution is to calculate the frequency band for all possible 

approximation coefficients decomposition levels of Daubechies11 mother wavelet, 

and then choose the frequency band nearest to the one obtained with the simulation, 

namely the [0-0.9766] Hz range. The corresponding decomposition level to that 

chosen band is indeed the level whose approximation coefficients need to be 

canceled. This method is able to eliminate the baseline drift without any distortion of 

ST segment as observed with conventional high pass filters, namely the second order 

Butterworth filter with 0.5 Hz cut off frequency (see figure 24). Moreover, it can be 

applied equally well to short and long duration ECG signals. This filtered ECG shows 

around 97% similarity to the noise-free ECG. [130] 

 

 

Figure 24. The influence of using a high-pass filter to remove the baseline wander on 

the ECG morphology and ST segment: In blue: the original noise-free ECG signal 

sampled at 1kHz and added to artificial 0.1 Hz baseline wander sin signal. In red: the 

filtered ECG obtained using the second order Butterworth filter with 0.5 Hz cut off 

frequency. The similarity (percentage correlation coefficients) between the noise-free 

and the filtered ECG signals is equal to 96.9 % and a large distortion in ST segment 

and the ECG morphology is noticed.[135] 
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3.11. Non-linear and scale-invariant analysis 

of the Heart rate 

 

The heart rate of healthy subjects fluctuates in a complex manner. These 

nonstationary and nonlinear fluctuations are related mainly to a nonlinear interaction 

between competing neuroautonomic inputs: parasympathetic input decreases and 

sympathetic stimulation increases the heart rate. Meanwhile, heart pathologies may 

decrease the responsiveness of the heart and lead to a failure to respond to the external 

stimuli. Evidently, such pathologies lead to an overall reduction of the heart rate 

variability (HRV). Understanding the diagnostic and prognostic significance of the 

various measures of HRV has a great importance for the cardiology as a whole, 

because unlike the invasive methods of diagnostics, the required measurements are 

low-cost and are harmless for the patients. A particularly important application is the 

prognostics of the patients with increased risk of sudden cardiac death. While the 

―linear measures‖ of HRV are nowadays widely used in clinical practice, the 

importance of more complicated measures has been hotly disputed in the scientific 

literature during the recent decades.  

 

3.11.1. Scale-independent measures 

 

Recent studies have shown that scale-invariant characteristics can be 

successfully applied to the analysis of the heart rate variability (132-135). However, 

this conclusion has been disputed and certain scale-dependent measures (particularly, 

the amplitude of the wavelet spectra at specific time-scale) have been claimed to 

provide better results [137]. The scale independent methods have been believed to be 

more universal, subject-independent, and to reflect directly the dynamics of the 

underlying system, unlike the scale-dependent methods which may reflect 

characteristics specific to the subject and/or to the method of analysis [138]. Opposing 

argument has been that certain heart disorders affect the heart rate variability at a 
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specific scale or range of scales; owing to this circumstance, at the properly chosen 

time-scale, scale-dependent measures may provide a useful information [137].  

The simplest relevant scale-independent measure is the Hurst exponent H, 

which has been introduced to describe statistically self-affine random functions  

of one or more variables [139]. Such a function is referred to as fractional Brownian 

function and satisfies the scaling law 

 

 

 

Note that  is a special case of ordinary Brownian function — the 

increments of the function are delta-correlated, and  can be thought to be the 

displacement of a Brownian particle as a function of time . Therefore, in the case of  

, there is a negative longrange correlation between the increments of the 

function. Analogously,  corresponds to a positive correlation. Note that the 

early scale-invariant studies of HRV were based on power spectra [44, 47], an aspect 

closely related to the scaling exponent .  

Many phenomena in nature exhibit this kind of scale-invariance, and lead to 

fractional Brownian time-series [139]. The same is true for the heart rate variability: 

after filtering out short-scale components with  (corresponding to the 

respiratory rhythm, to the bloodpressure oscillations, and to the pathological Cheyne-

Stokes respiration), the fluctuation function , defined as 

 

    (3.41) 

 

revealed a good scaling behavior [140]. While for healthy patients, the 

increments of the heart rhythm were found to be significantly anticorrelated resulting 

in , the heart rhythm of the patients with dilated cardiomyopathy was 

essentially Brownian with  [132]. In the case of the patient groups, there 

was no significant correlation between the diagnosis and the Hurst exponent, and 

there were many healthy subjects with , see Figure 25 Finally, various 

techniques, such as detrended fluctuation analysis [141], detrended time series 

analysis [142], and wavelet amplitude analysis [143] have been proposed to fine-tune 

the Hurst-exponent-based approach. 
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Figure 25. The fluctuation function F(v) is plotted versus the time lag _. Almost 

straight line indicates a good scaling behavior  (here with 

).[135] 

 

 

Complex non-stationary time-series cannot be described by a single scaling 

exponent H. Indeed, simple scaling behavior is expected if there is a Gaussian 

distribution of increments. However, even in the case of Gaussian functions, the 

scaling exponent is not necessarily constant over the whole range of scales. Instead, it 

can be a slow (eg. logarithmic) function of the scale, so that other descriptions (such 

as stretched exponentials) may be required. Physiological time-series are typically 

non-Gaussian. For such functions, scale-invariance can be very complicated. A non-

exhaustive way to describe such behavior is to calculate the multifractal spectrum of 

Hurst exponents [144]. Therefore, it is not surprising that the human heart rate signal 

was found to obey a multi-affine structure [145,138].  

Qualitatively, a multifractal time-series behaves as follows. If the whole time-

series is divided into short segments, each segment can be characterized by its own 

Hurst exponent h (referred to as the Lipschitz-Holder exponent). Then, the 

distribution of segments of fixed values of h is self-similar, and is described by a 
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fractal dimension . Technically, the spectrum  can be calculated by the 

means of wavelet transform, cf. [138]. This scheme includes the calculation of the 

scaling exponents  (referred to as the mass exponents), which describe, how the 

 moment of the wavelet transform amplitude scales with the wavelet width. 

The scaling exponents (2) and  (5) have been found to have a significant prognostic 

value (for the post-infarction prognosis) [138]. The wavelet transform amplitudes, 

calculated for a specific wavelet width  have been claimed to be of even 

higher prognostic value [137]. However, independent studies have shown that the 

scale-invariant measures seem to be superior tools [146]. It should be also noted that 

the wavelet transform amplitude at a fixed time-scale is closely related to the linear 

measure SDANN. Substituting the robust standard deviation by a wavelet transform 

amplitude is a technical fine-tuning which cannot be expected to result in a 

qualitatively new information. 

 The multifractal structure of the heart rate signal has several consequences. 

Thus, the  order structure function (a concept borrowed from the theory of the 

fully-developed turbulence) of the heart rate interval has a scaling behavior, with the 

scaling exponent being a function of  [147]. Note that this spectrum of 

exponents is very closely related to the above-mentioned  spectrum (both 

describing the same physical phenomenon, differences being of a technical kind). 

However, the wavelet-transform-based technique makes a more complete utilization 

of the underlying data and therefore,  spectrum can be expected to yield 

somewhat superior prognostic and/or diagnostic results. 

Another aspect related to the multifractal nature of the heart rhythm, is the 

multiscale entropy (MSE) [148]. While the single-scale entropies (approximate 

entropy, Shannon entropy) are related to the short-time dynamics of the heart rhythm 

and to the probability distribution function of points in the reconstructed phase space, 

the multiscale entropy extends these concepts to longer time-scales. MSE is not 

directly reducible to the multifractal spectra  [or ]; however, both 

techniques address the question of how wide is the range of dynamics for the mean 

heart rate (averaged over a time ), depending on the time-scale . The clinical 

usefulness of the MSE is still unclear (apart from the fact that it has been claimed to 

distinguish between healthy subjects and patients with congestive heart failure [148]) 
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3.11.2. Intermittency of the HRV 

 

Multifractal spectrum addresses only one aspect of the non-Gaussianity of the 

time-series increments by revealing the possible range of scaling laws for the long-

range [at time-scale of many  heartbeat intervals] dynamics of mean heart 

rhythm. However, the short time variability of heart rhythm is also fluctuating in a 

complex manner. It has been pointed out that the NN-sequences of healthy subjects 

consist of intertwined high- and low variability periods [149]. This conclusion can be 

easily verified by a simple visual observation of the NN-sequences, see Figure 26. 

The quantitative analysis of such a behavior is based on the distribution law of the 

low variability periods [150],  

 

 

 

Figure 26. For healthy patients, the high- and low-variability periods of the heart 

rhythm are intertwined.[135] 

 

which will be discussed below. Another aspect of such an intertwining is the 

clustering of the periods of similar mean heart rate: the heart rate signal can be 

divided into segments of different mean heart rate, with distinct boundaries between 

these segments; there is a power-law segment-length distribution of the segments 

[151]. 

In order to analyze quantitatively the intertwining of high- and low-variability 

periods, distribution of low-variability periods and showed that typically was 

studdied, it follows a multi-scaling Zipf‘s law. Originally, the Zipf‘s law has been 

formulated by G. K. Zipf for the frequency of words in natural languages [52]. For a 

given language (e.g. English), the frequency (the number of occurrences divided by 

the total number of words) of each word is calculated on the bases of a large set of 
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texts. The ranks are determined by arranging the words according to their frequency 

 the most frequent word obtains rank , the second frequent —  etc. It 

turns out that for a wide range of ranks (starting with ), there is a power law 

, where . This law is universal, it holds for all the natural 

languages and for a wide variety of texts [152]. Furthermore, similar scaling laws 

describe the rank-distribution of many other classes of objects, as well. Thus, when 

cities are arranged according to their population , the population of a city _, 

with  [152]. Another example is the income-rank relationship for companies; 

here again  is seen[152]. In the most general form, the law can be formulated 

as , and  is not necessarily close to unity [144]. This more general 

form of the law can be applied to the distribution of scientists according to their 

citation index, to the distribution of  internet sites according to the number of visitors 

etc. The Zipf‘s law is characteristic to such dynamical systems at statistical 

equilibrium, which satisfy the following conditions: (a) the system consists of 

elements of different size; (b) the element size has upper and lower bounds; (c) there 

is no intermediate intrinsic size for the elements. The human heart rate, when divided 

into the low-variability periods, satisfies all these requirements. The duration of these 

periods varies in a wide range of scales, from few to several hundreds of heart beats. 

Thus, one can expect that the rank-length distribution r follows the Zipf‘s law,  

 

.                                                          (3.42) 

 

First a definition of the local heart rate variability as the deviation of the heart rate 

from the local average has to be made, 

 

 

 

the local average is calculated using a narrow (≈ 5-second-wide) Gaussian weight-

function. Then, the low-variability regions are defined as consecutive sequences of 

intervals with ; the length  of such a region is measured as the number 

of beats in the sequence. Further, all the low-variability regions are numbered (to 

identify them later), and arranged according to their length; regions of equal length 

are ordered randomly. In such a way, the longest observed region obtains rank 
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, second longest — , etc. Typically, the length-rank relationship reveals 

multiscaling properties, i.e. within a certain range of scales, the scaling law (2) is 

observed, the scaling exponent  being a (non-constant) function of the threshold level,  

; see Fig. 2.13.  

 

 

Figure 27. Multi-scaling behavior: the rank of low-variability intervals is plotted 

against the length of the intervals. The scaling exponent depends on the threshold 

value .[135] 

 

It is not surprising that the scaling behavior is not perfect. Indeed, the heart 

rhythm is a non-stationary signal affected by the non-reproducible daily activities of 

the subjects. The non-stationary pattern of these activities, together with their time-

scales, is directly reflected in the rank-length law. This distribution law can also have 

a fingerprint of the characteristic time-scale (10 to 20 seconds) of the blood pressure 

oscillations (which modulate the level of HRV, cf. [21, 61]). It should be emphasized 

that the problem of the non-reproducible daily activities affects also the reliability of 

the other scale-invariant measures and is probably the main obstacle preventing the 

clinical application of the seemingly extremely efficient diagnostic and prognostic 

techniques. Finally, there is a generic reason why the Zipf‘s law is non-perfect at 

small rank numbers: while the Zipf‘s law is a statistical law, each rank length curve is 

based only on a single measurement. In particular, there is only one longest low-
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variability period (likewise, only one most-frequent word), the length of which is just 

as long as it happens to be, there is no averaging whatsoever. For large ranks, the 

relative statistical uncertainty can be estimated as . The distribution function of 

the low-variability periods as a whole contains a significant amount of diagnostically 

valuable information, which is not covered by any other (linear or nonlinear) measure 

of HRV. The most part of this information seems to be reflected (according to the 

Student test analysis using the test groups of Table 1) by the parameters  (the 

rank of the interval with ),  (the maximal observed rank), and   

(the scale at which the scaling law breaks; for a precise definition [150]). These 

measures allow a clear distinction between the healthy subjects and the IHD, VES, 

and PCI groups [142], see also Table 3. 

 

TABLE 3: p-values of the Student test. Data in the topmost triangular region (with 

label A) are calculated using the parameter ln τend. Triangular region B corresponds 

to the parameter ln rmax [64]. Gray background highlights the tests with the adjusted 

significance  The control parameter value  has been used. 
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3.12. Common heart rhythms and arrhythmias 

 

Above the ways an ECG should be performed in general were referred, next 

follows the most common heart rhythms and arrhythmias as presented in an ECG 

graph. The electrical impulses generated in the SA node control the rhythm of the 

heart. Any disturbance of the normal sinus rhythm is called arrhythmia. In general, 

arrhythmia may occur in the heart either when depolarization is initiated by other 

pacemaker cells exhibiting accelerated automaticity as compared to the SA node, or 

when the conduction of the electrical impulses is altered, that is, when the conduction 

of the cardiac cells is partially or completely blocked causing a propagation delay of 

the impulse or conduction failure [153, 154, 155, 156]. Arrhythmia can be classified 

regarding the site of its origin. 

 

3.12.1. Sinus Rhythm 

 

SA node is the original source for the normal sinus rhythm with a rate between 

50 and 100 beats per minute at rest. Sinus bradycardia and sinus tachycardia are 

defined as a rhythm below 50 and above 100 respectively. The heart rate is influenced 

by external perturbations like physical and mental stress and it is influenced by the 

continual variation of the balance between the parasympathetic and the sympathetic 

activities of the autonomic nervous system. Numerous studies on analyzing the 

dynamics of spontaneous heart rate variability has been done during the recent years. 

This research aimed for diagnosing and predicting cardiovascular diseases and life-

threatening arrhythmias [157, 158, 159]. 

 

3.12.2. Premature Beats 

The normal sinus rhythm is sometimes interrupted by a beat occurring before 

the expected time of the next sinus beat and is therefore referred to as a premature 

beat. In addition the terms ‘ectopic beat‘ and ‘extrasystole‘ are frequently used 

synonyms [155]. When the ectopic beat is originated from the atria, it is called 

supraventricular premature beat (SVPB) and when its origin is from the ventricles, it 
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is called ventricular premature beat (VPB). Ventricular premature beats, also known 

as premature ventricular contraction (PVC) or heart palpitations, are characterized by 

a premature broad QRS complex with duration greater than 120 ms, and without 

preceding P wave, see figure 28.  

 

 

Figure 28. The premature ventricular contraction (PVC).[160] 

 

 Bigeminy, Trigeminy and Quadrigeminy are defined as every normal beat is 

followed by one, two and three premature beats respectively, see figure 29. as an 

example of Bigeminy.  

 

 

 

Figure 29. An example of Bigeminy[160] 

 

Whereas, if a premature beat occurs after one, two, or three normal beats, they 

will be defined as (1:1 extrasystole), (2:1 extrasystole) and (3:1 extrasystole) 

respectively. Two consecutive VPBs are called a couplet, see figure 30; three 

consecutive VPBs are called a triplet. Three or more consecutive VPBs are called a 

salvos or ventricular tachycardia. In VPBs the ventricular impulses are conducted 

retrogradely to the atria, at least partially. Therefore about 50% of them are 

discharging the sinus node. Monomorphic VPBs are called also unifocal because they 

generate from the same focus. Whereas, Polymorphic VPBs generate from the several 

focus. Most of the VPBs have a right bundle-branch block (RBBB)-like pattern or 

right bundle-branch block (RBBB)-like pattern.  
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Figure 30. An example of Couplet.[160] 

 

3.12.3. Atrial Arrhythmia 

 

One or multiple atrial ectopic foci are responsible for many of the various 

rhythm disturbances causing atrial arrhythmias. If the ectopic focus is located between 

SA node and AV node, the P wave will be abnormal and sometimes negative in the 

ECG. When the ectopic focus is located near to the AV node the atria and the 

ventricles will be depolarized at the same time making P wave coincide with QRS 

complex in the ECG. 

 

3.12.3.1. Atrial Tachycardia 

Increasing the automacity in the pacemaking cells of one or multiple foci within 

the atria, atrial tachycardia will increase the heart rate. The P wave sometimes appears 

in the ECG coinciding with the previous T wave or even the previous QRS complex 

[149155 

 

3.12.3.2. Atrial Flutter and Atrial Fibrillation 

 

In these kinds of atrial tachyarrhythmias, the atria and the ventricles are not 

synchronized. The cause of both arrhythmias is a continuous reentry of an electrical 

impulse in the atria. The reentry mechanism starts when an impulse depolarizes 

receptive myocytes neighboring an area of relatively longer refractory periods. When 

the originally inactive area becomes activated, the impulse may propagate back 

towards the area which was initially depolarized. If the latter has had time to recover 

and to depolarize again, the reentry circle will be repeated. The high rate of atrial 

contraction will lead to a slow blood inflow through the atria increasing the chance for 

a clot to be produced [155]. The clot afterwards might cause a stroke or severe 
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damage to any other part of the body. In case of atrial flutter, the atria beat regularly 

at a rate of around 300 beats per minute. The ventricles are protected from this high 

rate by a refractory AV node. In the ECG, a sawtooth-like regular waveform, also 

called F waves or flutter waves, appears, see figure 31. Atrial fibrillation is a faster 

and more chaotic rhythm than atrial flutter. This kind of arrhythmia is produced by 

multiple reentry circuits within the atria producing a high rate of atrial contraction 

between 400 and 700 beats per minute in a chaotic fashion. Fibrillation waves, f 

waves, are multiform and irregular, see figure 32. 

 

 

Figure 31. Atrial Flutter.[160] 

 

 

Figure 32. Atrial fibrillation.[160] 

 

3.12.4. Ventricular Arrhythmia 

 

Reentry mechanisms within the ventricles are responsible for establishing the 

ventricular arrhythmia which include ventricular tachycardia, ventricular flutter, and 

ventricular fibrillation. 

 

3.12.4.1. Ventricular Tachycardia 

 

Ventricular Tachycardia (VT) defines the case of having in the ECG three 

consecutive Premature Ventricular Complexes (PVCs) or more. VT is a severe 

arrhythmia that often impairs heart function considerably and may be a precursor of 
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ventricular fibrillation. The QRS duration of the PVCs in case of VT should be 0.14 

sec or greater and the heart rate should be between 100 and 240 beats per minute. VT 

may be sustained, that is it can last seconds, minutes or hours. It may be also non-

sustained when it lasts less than 30 seconds. There are three type of VT that differ in 

morphology, clinical significance and often in etiology: 

 

1. Monomorphic VT : It is the most frequent type which can be sustained or 

nonsustained. It is called ‘Ventricular flutter‘ with a rate above 200 beats per minute. 

The most current etiology of monomorphic VT is a coronary heart disease (CHD). 

The prognosis of VT generally depends on the type and severity of the heart disease. 

 

2. Polymorphic VT of type ’ Torsade de Pointes’ : Torsade de points VT is 

characterized by a special ECG morphology, where QRS complexes change their 

polarity around the isoelectric line. This type of VT will usually terminate 

spontaneously after several seconds or will degenerate into ventricular fibrillation in 

relatively rare cases. This type of VT will be presented in details later in this chapter. 

 

3. Polymorphic VT without ’Torsade de Pointes’ : Polymorphism of QRS complexes 

without Torsade de Pointes is occasionally seen in patients with severe myocardial 

damage. Degeneration into ventricular fibrillation is quite common. 

 

3.12.4.2. Ventricular Flutter 

It is an organized rapid rhythm of the ventricles. QRS complex as well as T 

wave and P wave cannot be seen in the ECG, see figure 33. Ventricular flutter can 

develop into ventricular fibrillation. 

 

 

Figure 33. An example of ventricular flutter. [160] 
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3.12.4.3. Ventricular Fibrillation 

 

It is much more chaotic rhythm than the ventricular flutter which can lead to 

cardiac arrest and loss of consciousness, see figure 34. The condition can often be 

reversed by the electric discharge of DC current from a defibrillator. 

 

3.12.5. Wolff-Parkinson-White Syndrome 

 

This syndrome is characterized by the presence of an accessory atrioventicular 

pathway located between the wall of the right or left atria and the ventricles, known as 

the Bundle of Kent. This pathway allows the impulse to bypass the AV node and 

activate the ventricles prematurely. Consequently, an initial slur to the QRS complex, 

known as a delta wave may be observed. The QRS complexes are wide, more than 

0.11 sec, indicating that the impulse did not travel through the normal conducting 

system. The PR is shortened, to less than 0.12 sec, because the delay at the AV node 

is bypassed. Treatment would involve surgical removal or ablation of one of the 

pathways [161].  

 

 

Figure 34. An example of ventricular flutter. [160] 
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3.12.6. Heart Conduction Blocks 

 

A heart conduction block is defined as a blockage of the electrical conduction 

system of the heart at any level. Blocks that occur within the sinoatrial node (SA 

node) are described as SA nodal blocks. Blocks that occur within the atrioventricular 

node (AV node) are described as AV nodal blocks. Blocks that occur below the AV 

node are known as infra-Hisian blocks [162]. 

 

3.13. Heartbeat Morphologies 

 

Abnormal heartbeat morphologies can be seen in many arrhythmic cases. 

Morphological abnormality of the heartbeat can be reflected also by the abnormal 

structural conditions of the heart, such as ischemia and myocardial infarction as well 

as atrial and ventricular hypertrophy (mass enlargement) and pericarditis 

(inflammation of the pericardium). Furthermore, abnormalities in beat morphology 

can be due to the mutations in ion channels controlling cellular repolarization of the 

heart, such as Long QT Syndrome, Brugada Syndrome. Other important arrhythmias, 

which are sometimes linked to mutations in ion channels, are T wave alternans and 

polymorphic VT type Torsade de ‘Pointes‘, etc... 

 

3.13.1. Ischemic Heart Disease 

 

Ischemic Heart Disease (IHD), also known as Coronary Artery Disease (CAD), 

is a disease characterized by reduced blood supply to the heart. It is usually felt as 

angina, especially if a large area is affected [163]. Due to the deposition of cholesterol 

plaques on their walls, the blood vessels will be narrowed or even blocked. This will 

reduce or stop providing oxygen and nutrients to the myocytes leading to the death of 

that area of heart tissue and causing a possible heart attack. Electrocardiography 

(ECG) may be normal in several patients at rest between the episodes of pain with a 

possibility for a depression or an elevation of the ST segment and a T wave inversion 

in several leads. In cases of infarction, there will be ST segment elevation in the ECG, 

which may gradually evolve. An exercise testing (Treadmill Test-TMT) is often 
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indicated in patients who have symptoms of IHD but have normal ECG patterns 

[164]. 

 

3.13.2. Myocardial Infarction 

 

Acute myocardial infarction (AMI or MI), also known as a heart attack, is a 

serious, sudden heart condition. It causes sometimes loss of consciousness. It occurs 

when the blood supply to a part of the heart is interrupted, causing death of the local 

heart tissue. The severity of heart attacks can vary relating to the size the affected 

area, which disturbs the normal propagation pathways and causes abnormal direction 

of the electrical impulse. ECG waves of an individual with MI differ significally from 

the normal ECG waves. There are many morphological varieties of infarction ECG 

waves depending on the position and size of the infarction in the myocardium. 

 

3.13.3. Long QT Syndromes 

 

An abnormally long delay between the depolarization and the repolarization of 

the heart ventricles is a disease defined as long QT syndrome (LQTS). Specific 

mutations in ion channels controlling cellular repolarization underlie the various 

congenital forms of long- QT syndrome [165, 166, 167]. Individuals with LQTS have 

a prolongation of the QT interval in the ECG. The two most common types of LQTS 

are genetic and drug-induced. Mutations to one of several genes, which are tending to 

prolong the duration of the ventricular action potential (APD) and lengthening the QT 

interval, is the cause of genetic LQTS. These LQTS can be inherited in an autosomal 

dominant or an autosomal recessive fashion. The autosomal recessive forms of LQTS 

tend to have a more severe phenotype, with some variants having associated 

syndactyly or congenital neural deafness [168, 169]. A number of specific genes loci 

have been identified that are associated with LQTS. Because exogenous factors such 

as antiarrhythmic drugs causing the acquired form of LQTS operate on the same ion 

channels implicated in congenital LQTS, both forms of the disease may share 

common electrophysiological mechanisms [170]. Drug induced LQT is usually a 

result of treatment by anti-arrhythmic drugs such as amiodarone or a number of other 

drugs that have been reported to cause this problem. Some anti-psychotic drugs, such 
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as Haloperidol and Ziprasidone, have a prolonged QT interval as a rare side effect. 

Because Long QT syndrome can lead to ventricular arrhythmias, it can cause 

ventricular fibrillation which is sometimes associated with syncope (loss of 

consciousness) and sudden cardiac death (SCD) [171, 169]. 

 

1. LQT1: It is the most common type of long QT syndrome, making up about 

40 to 55 percent of all cases. The LQT1 gene KCNQ1 has been isolated to 

chromosome 11p15.5. KCNQ1 codes for the voltage-gated potassium channel 

KvLQT1 that is highly expressed in the heart. It is believed that the product of the 

KCNQ1 gene produces an alpha subunit that interacts with other proteins (particularly 

the mink beta subunit) to create the IKs ion channel, which is responsible for the 

delayed potassium rectifier current of the cardiac action potential [169]. Homozygous 

mutations in KVLQT1 leads to severe prolongation of the QT interval (due to near-

complete loss of the IKs ion channel), and is associated with increased risk of 

ventricular arrhythmias and congenital [172, 169]. 

2. LQT2: It is the second most common gene location that is affected in long 

QT syndrome, making up about 35 to 45 percent of all cases. It involves a mutation of 

the human ether-a-go-go related gene (HERG) on chromosome 7. The HERG gene 

(also known as KCNH2) is part of the rapid component of the potassium rectifying 

current (IKr), That is, the IKr current is mainly responsible for the termination of the 

cardiac action potential and therefore the length of the QT interval. The normally 

functioning HERG gene allows protection against early after depolarization (EADs). 

Most drugs that cause long QT syndrome do so by blocking the IKr current [172, 

169]. 

3. LQT3: It involves a mutation of the gene that encodes the alpha subunit of 

the Na+ ion channel. This gene is located on chromosome 3p21-24, and is known as 

SCN5A (also hH1 and NaV1.5). This mutation slows down the inactivation of the 

Na+ channel, causing prolongation of the Na+ influx during depolarization. 

4. LQT4: It involves a mutation in an anchor protein Ankyrin B which anchors 

the ion channels in the cell. This kind of LQT occurs very rarely. 

5. LQT5 & LQT6: LQT5 involves a mutation in the gene KCNE1 encoding for 

the potassium channel beta subunit MinK. In the same manner, LQT6 involves a 

mutation in the gene KCNE2 which encodes for the potassium channel beta subunit 

MiRP1. 
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6. LQT7: It is also called Andersen-Tawil syndrome. It involves a mutation in 

the gene KCNJ2 encoding for a potassium channel protein Kir 2.1. [173, 169]. 

7. LQT8: Also called Timothy‘s syndrome. It is due to a mutation in the 

calcium channel Cav1.2 encoded by the gene CACNA1c. 

 

3.13.4. Brugada Syndrome 

 

Brugada syndrome is due to a mutation in the gene that encodes for the sodium 

ion channel in the cell membranes of the myocytes. Gain-of-function mutations in this 

gene lead to elongation of the cardiac action potential [100, 102] The pattern seen on 

the ECG is persistent ST elevations in the electrocardiographic leadsV1-V3 with a 

right bundle branch block (RBBB) appearance with or without the terminal S waves 

in the lateral leads that are associated with a typical RBBB. A prolongation of the PR 

interval is also frequently seen [174, 175]. The cause of death in Brugada syndrome is 

ventricular fibrillation. The treatment is done via implantation of an implantable 

cardioverter-defibrillator (ICD) continuously monitoring the heart rhythm and 

defibrillating an individual if ventricular fibrillation is detected [174,175]. 

 

3.13.5. T-Wave Alternans 

 

T-Wave alternans (TWA) is an ECG phenomenon characterized by beat-to-beat 

alternation or oscillations of the morphology, amplitude, and /or polarity of the T 

wave, see figure 35. TWA is commonly observed in the acquired and congenital and 

long-QT syndromes (LQTS). Moreover, it is very important prognostic indicator in 

that it is commonly observed just preceding episodes of Torsade de Pointes [176, 177, 

178]. The study in [179] examines the cellular and ionic basis for TWA induced by 

rapid pacing under condition of mimicking the LQT3 from the congenital LQTS in an 

arterially perfused canine left ventricular wedge preparation. They recorded 

transmembrane action potentials from epicardial, M, endocardial cells and 6 to 8 

intramural unipolar electrograms simultaneously together with transmural ECG and 

isometric tension development. 
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Figure 35. An example of T-wave alternans taken from an ECG tape (Pfizer Inc.). 

[160] 

 

 

A wide spectrum of T-wave and mechanical alternans is produced by increasing 

the pacing rate from cycle length (CL) of 500 to 400 to 250 ms in presence of sea 

anemone toxin. Acceleration to CLs of 400 to 300 ms produced mild to moderate 

beat-to-beat TWA of cells in M region. Acceleration to CLs of 300 to 250 ms caused 

more pronounced beat-to-beat TWA and APD of the M region, leading to a reversal 

repolarization sequence across the ventricle wall and thus to alternation in the polarity 

of T-wave. Torsade de Pointes occurred after an abrupt acceleration of CL associated 

with marked TWA. In almost all cases, electrical and mechanical alternans were 

concordant. Both ryanodine and low [Ca2+] completely suppressed alternans of the T 

wave and shortened APD, suggesting a critical role for intracellular Ca2+ cycling in 

the maintenance of TWA. T wave alternans, observed at rapid rates under long-QT 

conditions, is caused by the alternation of the M-cell action potential duration (APD), 

leading to exaggeration of transmural dispersion of repolarization during alternate 

beats, and thus the potential for development of Torsade de Pointes. The pathologic 

states with TWA are long QT syndrome, myocardial ischemia and infraction, heart 

failure, sudden infant death syndrome and drug-induced Torsade de Pointes [180]. 
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There is some evidence that TWA is linked to alternations in cellular calcium 

homeostasis, which significantly influences the action potential duration (APD) [181]. 

Potassium channels may also play an important role in ischemia-induced TWA. The 

different sensitivity of KATP channel activation during ischemia between epicardium 

and endocardium may be linked to TWA at the cellular level [182, 183, 184, 185]. 

Macroscopic TWA has been reported in patients with the long QT syndrome [177, 

186, 187, 179]. Prolongation and unstable state of the ventricular action potential may 

produce the macroscopic TWA and result in the polymorphic VT known as Torsade 

de Pointes. The prognostic value of microscopic TWA has not yet been assessed in 

patients with the long QT syndrome. In patients with the Brugada syndrome, some 

reports have revealed that intravenous administration of class Ic antiarrhythmic drugs 

induced macroscopic TWA and resulted in VF [188, 189]. These results suggest that 

in the Brugada syndrome class Ic antiarrhythmic drugs may accentuate the underlying 

sodium channel abnormalities, produce an unstable state of repolarization, increase 

the triggering of PVC, and induce VF. On the other hand, Ikeda et al. [190] reported a 

low prognostic value of microscopic TWA in patients with the Brugada syndrome. 

Elevated levels of spatial heterogeneity of repolarization as assessed by second central 

moment analysis in [191] appear to underlie the progression from elevated TWA 

levels to more complex patterns and increased risk for VF. Detection of T-wave 

heterogeneity (TWH) could prove useful in elucidating and clarifying mechanisms of 

VF. TWH monitored in precordial leads could contribute to stratifying risk for life-

threatening arrhythmias, such as Torsade de Pointes.  

 

3.14. Torsade de Pointes 

 

The original name of Torsade de Pointes (TDP) comes from French language 

and means ‘twisting of the points‘, since QRS complexes wing up and down around 

the isoelectric axis periodically and in a chaotic fashion changing their morphology 

from beat to beat, see figure 36, reminding the original author of the Torsade de 

Pointes movement in ballet. It is also referred to as torsade or cardiac ballet [176, 177, 

178], TDP is a life-threatening arrhythmia closely linked to abnormal cardiac 

repolarization [192, 193, 194]. The typical initiation of TDP in ECG signal is after, 

so-called short-long-short (SLS) cycle sequences, see figure 36. 
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TDP is associated normally with marked prolongation of QT interval to 600 ms 

or greater. The etiology and management of torsade are quite different from generic 

VT cases including polymorphous VT, which are not associated with a prolonged QT 

interval. Therefore, it is critically important to differentiate between these entities. 

The delay in phase III of the action potential, which is mediated by the HERG 

potassium channel, is the underlying basis for the rhythm disturbance. The 

dysrhythmia is allowed to emerge because of the prolonged period of repolarization 

and the inhomogeneity of repolarization time among myocardial fibres. Although the 

precise mechanism of Torsade de Pointes has not been established, recent in vivo 

studies [195, 196], prefused wedge studies [197, 170, 198], and clinical observations 

made with monophasic AP recordings [199, 198] have presented evidence in support 

of the hypothesis that an early after depolarization-induced, triggered response  

 

 

 

Figure 36. The typical initiations of TDP in ECG signal after short-long-short 

cycle sequences. The morphology of QRS complexes during its episode is also 

illustrated. [160] 

 

 

initiates Torsade de Pointes but that the arrhythmia is maintained by a re-entrant 

mechanism. TDP is also characteristic of the congenital long QT syndrome, one form 
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of which is caused by mutations in the HERG gene which encodes the major 

repolarizating potassium channel Ikr. Furthermore, HERG appears to be the main 

molecular target for drugs which cause QT prolongation. Cardiac safety is now a 

major issue in new drug development, because there is increasing awareness that 

many nonantiarrhythmic drugs can prolong the QT interval and provoke TDP [126]. 

Moreover, TWA is very important prognostic indicator in that it is commonly 

observed just preceding episodes of Torsade de Pointes [176, 177, 178]. The 

mechanisms by which dysfunction at the molecular level translates into functional 

electrical instability leading to torsade de points (TDP) in LQTS are poorly 

understood [165]. Previous clinical [177] and experimental [200, 196] observations 

suggest two hypotheses regarding the electrophysiological basis of TDP. One theory 

states that TDP arises from triggered activity in competing ventricular foci. Evidence 

for the triggered activity hypothesis stems from experimental observations [200, 186] 

and computer models [201] demonstrating an enhanced propensity of cardiac 

myocytes to generate early after depolarizations (EADs) in response to factors that 

prolong the action potential duration (APD). Because TDP observed in patients is 

associated with conditions favoring the development of EADs experimentally, TDP 

was attributed to EAD-induced triggered activity. This mechanism, however, was 

challenged because rapid rates accompanying the onset of TDP abruptly shorten 

repolarization, thereby eradicating the prerequisite condition for EAD-mediated TDP. 

The second proposed mechanism is based on the association between dispersion of 

repolarization (DOR) and TDP, suggesting involvement of reentrant excitation. For 

example, patients with congenital LQTS manifest increased dispersion of QT interval. 

Moreover, recent observations from surrogate models of LQTS suggest a role for 

reentrant activity involving relatively large circuits around the cardiac chambers [195, 

195]. However, focal (ie, nonreentrant) patterns of activation were also observed in 

these models, raising additional uncertainty regarding the underlying cellular 

mechanisms. Because the Iks current density of the midmyocardial cells (M cells) is 

relatively weak, they are more sensitive to many APD prolongation conditions than 

epicardial and endocardial cells [202] and they can play an important role in 

arrhythmias which are dependent on delayed cardiac repolarization, such as LQTS. 

Therefore, a transmural optical mapping system was developed to demonstrate a 

specific role of M cells in generating functional heterogeneities of repolarization that 

support intramural reentry in LQTS [165]. This system is able to measure electrical 
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heterogeneities between hundreds of cells spanning the ventricular wall, so that a 

functional topography of M cells as well as their role in promoting transmural DOR 

and arrhythmias in the presence of cell-to-cell electrotonic interactions can be 

established. Their data clearly implicate reentry as the mechanism for sustenance of 

TDP. It has been found that M-cell zones produced discrete refractory borders, which 

were directly responsible for conduction block and reentry that underlie TDP. It has 

been exhibited that M cells can express markedly different APDs from neighboring 

cells even on multicellular tissues under conditions of normal cell-to-cell coupling, 

and that M cells are not necessarily distributed uniformly across each transmural layer 

[165]. Despite relative normalization of the M-cell APD on subsequent beats, reentry 

persisted as the leading edge of the wavefront propagated into the recovering tail of 

the circuit. Such dynamic M-cell APD adaptation undoubtedly accounted for the 

rapidly changing trajectories of the reentrant circuit producing the characteristic 

polymorphic ECG morphology of TDP. The presence of uniform propagation on the 

epicardium may explain the appearance of a monomorphic waveform configuration in 

certain ECG leads but not others. Taken together, these findings suggest the existence 

of a single rotor during TDP that initially forms in the transmural wall and 

subsequently meanders into deeper layers of myocardium [91]. Reentrant Mechanism 

of TDP : The mechanism underlying TDP in this model is shown in a representative 

example in figure 37. After a single premature stimulus (S2), the impulse blocked in 

the region of most delayed repolarization (Figure 37 A, cells c, d, m1, and m2). The 

S2 wavefront, however, successfully propagated in the orthodromic direction (along 

the axon direction) (Figure 37 A, sites a‘ through e‘), circumventing (surrounding) the 

region of delayed repolarization (Figure 37 A, hatched area). The zone of block of the 

premature beat (Figure 37 A) coincided with the region of most delayed repolarization 

after the S1 beat (Figure 37 R). When the former sites of block (sites c and d) 

regained excitability, the orthodromic impulse conducted from site e back to site a 

(Figure 37 B), thereby completing the first beat of reentry. A broad area of functional 

conduction block was present during the initial beats of reentry; however, because of 

pronounced rate adaptation of M cells, these refractory islands rapidly collapsed and 

were replaced by functional lines of block on subsequent beats (Figures 37 C through 

F). The polymorphic ECG characteristics of TDP were attributable to the fact that 

lines of block and trajectory of the reentrant circuit varied from beat to beat, initially 
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within the mapped transmural surface and subsequently meandering into deeper 

myocardial depths. Similar reentrant mechanisms were observed in all experiments. 

 

 

Figure 37. Repolarization map during drive train S1-S1 pacing (R) and 

depolarization maps during single premature S2 (A) and ensuing TDP caused by 

transmural reentry (B through F). S2 was applied on the epicardial surface in the 

wake of the refractory barrier (R) produced by the island of M cells extending from 

the mid-wall to the epicardial surface. The S2 beat failed to propagate into the region 

of prolonged refractoriness (cells c, d, m1, and m2), causing block of the antidromic 

impulse while propagating in a counter clockwise (orthodromic) fashion around the 

refractory region formed by M cells [165]. 



Chapter 4: Methods of investigation 

 

Antonopoulos John – PHD Research  Page 109 
 

4. Methods of investigation 

 

4.1. ECG hardware 

 

Taking cardiac data requires a recognition system as simple as possible (in order 

to avoid high noise from the measurement itself and of course to keep the cost of the 

retail reproduction low etc). A construction of a system where the output can lead to a 

simple sound card of an average personal computer was created. The construction is 

portable and simple as possible, but in the same time very accurate and reliable.  

 

4.1.1. ECG 

 

ECGs are normally displayed with 25 mm on the horizontal axis representing 

one second, or 40 ms/mm. The vertical axis is usually 10 mm per mVolt. This means 

that a 1 mm square on the plot represents 0.04 s in time and 0.1 mV in voltage. There 

are conventions for labeling certain characteristic points on the ECG curve with 

letters. The distance from one of the prominent ‗R‘ peaks to the next represents 

exactly the time between two heartbeats: this lets us readily determine the pulse rate 

(figure 38). This rate, expressed in beats per minute (or BPM) is displayed by the 

computer, and the pulse itself can optionally be output as an audio signal. 

 

 

Figure 38. The interval between two consecutive points marked „R‟ in the ECG 

trace gives the time between heartbeats 
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4.1.2 Signal processing 

 

Measuring an ECG using a computer requires demanding real-time processing, 

most of which is carried out in software. The hardware takes the form of an 

instrumentation amplifier (Figure 39) and has the job of amplifying the weak signal 

from the sensor (which has an amplitude of approximately 1 mV) by a factor of 

around 1,000, and attenuating DC, common-mode, and high-frequency components. 

To obtain an (at least relatively) clean ECG signal it is necessary carefully to filter out 

any interference. This was done in software using a biquad infinite impulse response 

filter. The filter can be configured for any of the required responses: low-pass, high-

pass, band-pass and notch. A 50-Hz rejection filter removes interference originating 

from the mains, and other interference is attenuated using a further high-pass filter. 

Since the signal is obtained from electrodes on the skin it is possible that there will be 

a slowly-varying offset voltage: this is removed using a DC blocking filter. The main 

pulse of the ECG could be extracted using a band-pass filter, giving a signal from 

which it is straightforward to measure the pulse rate. The Java program allows display 

of either the original signal or the filtered version. The various filter functions can be 

selected and configured by the user, and the effect on the processed signal can be 

clearly seen. The pulse rate is calculated from its autocorrelation function, 

determining the period by comparing the signal against itself with a time offset. 
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Figure 39. Circuit of the instrumentation amplifier, with galvanical isolation between 

input and output provided by an optocoupler. 
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4.1.3 Instrumentation amplifier 

 

The circuit (Figure 39) can be divided into two blocks: the instrumentation 

amplifier itself at the input and the optocoupler isolation amplifier at the output. The 

signal is amplified biquad operational amplifier IC1, type TL084 (or the lower-noise 

TL074). IC1.A and IC1.B are non-inverting amplifiers, feeding the inputs of 

differential amplifier IC1.C. This arrangement is known as an ‗instrumentation 

amplifier‘. P1 allows adjustment to obtain best common- mode rejection. Coupling 

capacitor C3 at the input to the next stage, built around IC1.D, blocks the DC 

component of the output of the instrumentation amplifier. To minimize the effect on 

low-frequency signals the time constant of the RC network formed by C3 and R10 is 

more than three seconds. This means that it will take at least this long for the voltage 

across the capacitor to stabilize when power is applied: this delay can be avoided by 

pressing reset button S1. Optocoupler IC3 is driven by IC2. The type TS921 used is a 

‗rail to rail‘ opamp, which means that it can be driven to either extreme of its supply 

voltage range. Its output can deliver up to 80 mA, although only approximately 2.2 

mA is needed to drive the transmit LED in the optocoupler.  

 

Figure 40. There are no SMDs on the single-sided printed circuit board, and so 

assembly is straightforward. 
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The current through the transmit LED is controlled using feedback from one of 

the receiver diodes in the optocoupler fed in to the inverting input of the operational 

amplifier. The result is that the voltage across R16 (the bias resistor for the second 

receiver diode) is equal to that across R14 and hence to the voltage at the non-

inverting input to IC2. In other words, the voltage at the output of IC1.D appears 

across R16, but with galvanic isolation. C11 prevents high-frequency oscillation of 

the driver. The final opamp at the output of the circuit acts as a buffer amplifier. This 

makes for a low-impedance output, which is also short-circuit proof thanks to the 100 

Ω resistors R17 and R18, forming a low-pass filter at the output in combination with 

C9. The complete galvanic isolation between input and output of the circuit provides 

for extra safety. The instrumentation amplifier and the output stage should be 

powered from separate batteries. 

 

4.1.4. Components and construction 

 

For resistors R3, R4 and R5 low-noise metal film types were used. C10 

provides DC decoupling for the input amplifiers, which prevents weak muscle signals 

from swamping the signal from the heart. Instead of the tube, disposable self-adhesive 

ECG electrodes can be used. In order to do so, the capacitor would be replaced by a 

wire link.  

 

 

Figure 41. The populated prototype board explained. 
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If the TS921 should prove hard to obtain, a type TL071 can be substituted at the cost 

of reducing the dynamic range of the circuit somewhat. The 43 kΩ resistor (value 

from the E24 series) can also be replaced by a different value, adjustment of P1 

compensating for the difference. IC3 is supplied with its pins bent at a right angle. To 

fit the circuit board they needed be bent apart (Figure 41): this was necessary in order 

to guarantee the necessary isolation gap. P1 can be adjusted for best common mode 

rejection. For best results a connection of the inputs of the instrumentation amplifier 

and adjustment of P1 to minimize the amplitude at the output of the 50 Hz signal 

picked up by the circuit was necessary. This measurement can be done using the 

Matlab program as will be seen later on. The heart signal sensor used for the tests 

consists of two adapters that can grab naked cables or metallic tips of patches like the 

ones used for measuring ECG signals onto humans. This is more convenient and 

makes the device portable with minimum loss of signal and minimum input of 

undesired noise that could jam the measurements. The same grabbers were used to 

connect the audio cable that connects the PC to the audio line (or microphone input). 

Most computers use a 3.5 mm stereo jack. 

 

4.2. Matlab as a tool for creating new ECG 

analysis program 

 

 Now that the ECG board is complete, the only thing needed to be done is the 

software, e.g. the programs that not only reads the signals, but also processes them. 

For this purpose Matlab was chosen for creating the necessary software. Matlab 

(which is an abbreviation of the words MATrix LABoratory) is a particularized 

program, optimized to perform calculations in the field of mechanics and in general to 

resolve scientific matters. It started as a program for calculations between 

mathematical tables, but in time it evolved into a program capable to resolve any 

scientific issue. 

Matlab implements the language of Matlab and provides a wide library of 

special functions so the user can program them and have the solution in his matters, 

much easier and with greater accuracy. This extensive library of the predefined 

functions helps resolve complex issues much easier in MATLAB than in other 

computer languages like Fontran or C. Here, while proceeding, it will be clear that a 
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wider use of these tools and functions which leads to the creation of new equations 

and programs. All these will help to creating different parameters in ECG and in 

general they will help in the process. 

 Matlab is the appropriate tool for the creation of this research since it can 

perform multitasking analysis from a combination of mathematical models, signal 

analysis models and simulation analysis. It is compatible with a computers soundcard 

in order to use it as an input for the signals extracted from the ECG device. It has the 

capability to perform digital signal processing thru a variety of internal predefined 

functions for modeling. MATLAB comes complete with an extensive library of 

predefined functions that provide tested and prepackaged solutions to many basic 

technical tasks. MATLAB includes tools that allow a program to interactively 

construct a graphical user interface (GUI) for his or her program. With this capability, 

the programmer can design sophisticated data analysis programs that can be operated 

by relatively-inexperienced users. 

 

4.3. New functions created for this research 

(to read files ECG of ECG hardware) 

 

The first program created to Matlab was about the need to read the signals that 

are leaded from the output of the construction, to the input of the sound card. This 

program is consisted from the following lines: 

 

Fs=11025; 

Signal=wavrecord(10*Fs,Fs); 

 

These lines are used to read a healthy cardiac signal from the simulator (Rate: 

72Bpm) and the output is shown in figure 42. The variable Fs is the waveform rate 

(11025 KHz) and the 10*Fs are the seconds measured, which are 10 (figure 43). 
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Figure 42. Output of an SNR 

 

As seen in figure 43, in 10 seconds the simulated heart gave 12 beats. If the 

measurement is expanded in 60 seconds, the simulator would give 72 heartbeats, 

which is confirmed from the user manual of the simulator. 

 

 

Figure 43. The 110250 spots are divided with the waveform rate which was 11.025 

KHz and the graphical now is in seconds. 

 

This is the basic command that will be used in the program in the graphical interface, 

so checking and reading of the board is made. 
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Figure 44. The starting page of the program in which only the drawing output 

and the box where the insertion of the seconds measured are shown. The “run” 

button performs the original routine. 

 

 

Figure 45. Figure 43 as shown in the graphical interface of the program. 

 

Next step on the analysis and process of the heart signals is the calculation or 

the heart rate. In order to do so, a measurement of how many times a higher state in 
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the signal in 10 seconds time is seen, had to be done. Then an escalation of it to 60 

seconds is followed. From figure 43 it became obvious that in 10 seconds time the 

construction measured 12heart beats, thus 72 heart beats per minute (hbpm). For the 

needs of a fast measure of the heart rate a program that is consisted from the 

following lines was created: 

 

clc 

clear a % to clear a 

clear b % to clear b 

clear n1 % to clear n1 

clear x1 % to clear x1 

clear n % to clear n1 

clear x % to clear x1 

 

john=0; 

  

x=signal; % x equals our signal 

  

xx=x/max(x); % normalizing amplitude by divide signal 

with its maximum value  

 

nn=[1:length(xx)]'/11025; % axis x is the length divided 

by the waveform rate 

 

b=0; % we equal b to zero 

 

a=imextendedmax(xx,1);  

 

for i=2:length(a)-1 

    if a(i)==1 & a(i-1)==0 & a(i+1)==1  

        amin=(i); 

    end 

    if a(i)==1 & a(i-1)==1 & a(i+1)==0 % 

          amax=(i); 

          v(i)=max(xx(amin:amax)>0.85); % we record the 

max variable of the temporary xx which corresponds to the   

top states 

 

    end 

end 

 

n1=nn(a); 
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x1=xx(a); 

 

plot(nn,xx,n1,x1,'r.') %  we plot our signal and the top  

states it calculated 

 

peaksno=sum(v~=0); % we calculate all of the peaks 

 

Rhythm=(peaksno*60)/length(nn) % we calculate the rate, 

based on the minutes it recorded.  

 

With the above program calculation of the heart rate and the coding works is 

made as follows. At first all the variants equals to zero. Then the variable x is stated 

as the signal and that variable xx is the normalized signal. Next, nn are the numbers 

of the horizontal axis that define time, in seconds because earlier all of the numbers 

were divided to 11025 which is the waveform rate (Hz). 1 Hz is 1 circle per second, 

so 11025Hz are 11025 circles per second, so since the signal has measured 110250 

spots, it has counted 10 seconds. Then with command imextendedmax(xx,1); 

the program equals 1 with all the values that are around the top. In this way, a board 

(board a) that is consisted by 1 and 0 is created. With commands ―for‖ and ―if‖, 

isolation of the entire areas one by one and search the max xx for each one follows. 

This way ―board V‖ which is consisted by ―xx‖ and ―0‖ is created (where there is not 

a tag due to non existence of peak, 0 is inserted). Next with command sum(v~=0) 

all the max values are measured. With Rhythm=(peaksno*60)/length(nn) 

all the max values from the seconds which the construction measured in 60 in order to 

define the rate per minutes are escalated. This code was installed to the program in 

figure 45 along with the capability of the manual calculation of the heart rate. This 

function was installed due to some cases the heart disorder is so great that the earlier 

and standard thresholds couldn‘t help. Also this capability to manually calculate the 

heart rhythm in case someone would want to double check the output of the program 

(figure 46). 
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Figure 46. The program 

  

Matlab is consisted by a variety of equations and functions in its libraries which 

are used to insert in any created program in order to process measurements much 

easier.  Another function which borrowed from the Matlab library is fitting using the 

―spline‖ method. The spline fitting is a method of data intepolaration. 

 

4.4 Cubic Splines  

 

It is well known that interpolation using high-order polynomials often produces 

ill- behaved results. There are numerous approaches to eliminating this poor behavior. 

Of these approaches, cubic splines are very popular. In MATLAB, there are basic 

cubic spline, ppval, mkpp, and unmkpp. Of these, only spline appears in the 

MATLAB documentation. However, help text is available for all these functions. In 

the following sections, the basic, feature of cubic splines as implemented in these M-

file functions is demononstrated. In addition, an alternative to cubic splines, called a 
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piecewise cubic Hermite interpolating polynomial is considered. This piecewise 

polynomial is computed by the function pchip and returns a piecewise polynomial just 

as spline does. 

 

4.4.1 Basic features  

 

In cubic splines, cubic polynomials are found to approximate the curve between 

each pair of data points. In the language of splines, these data points are called 

breakpoints. Since a straight line is uniquely defined by two points, an infinite number 

of cubic polynomials can be used to approximate a curve between two points. 

Therefore, in cubic splines, additional constraints are placed on the cubic polynomials 

to make the result unique. By constraining the first and second derivatives of each 

cubic polynomial to match at the breakpoints, all internal cubic polynomials are well 

defined. Moreover, both the slope and curvature of the approximate polynomials are 

continuous across the breakpoints. However, the first and last cubic polynomials do 

not have adjoining cubic polynomials beyond the first and last breakpoints. As a 

result, the remaining constraints must be determined by some other means. The most 

common approach, which is the default for the function spline, is to adopt a not-a-

knot- condition. This condition forces the third derivative of the first and the second 

cubic polynomials to be identical, and likewise for the last and second-to- last cubic 

polynomials.  

Based on the above description, one could guess that finding cubic spline 

polynomials required solving a large set of linear equations. In fact, given n 

breakpoints, there are n-1 cubic polynomials to be found, each having 4 unknown 

coefficients. Thus, the set of equations to be solved involves 4(n-1) unknowns. Thus, 

if there are 50 breakpoints, there are 50 equations in 50 unknowns. Luckily, these 

equations can be concisely written and solved using sparse matrices, which is what 

the function spline uses to compute the unknown coefficients.  

4.4.2 Piecewise Polynomials 

In its most simple use, spline takes data x and y and desired values xi, finds the 

cubic spline interpolation that fit x and y, and then evaluates the polynomials to find 
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the corresponding yi values for each xi value. This matches the use of 

. Consider the example: 

 

 

Figure 47. Spline Fit 

 

>> x=0:12; 

>> y= tan (pi*x/ 25); 

>> xi =linspace (0,12); 

>>yi=spline (x, y, xi); 

>>plot (x, y, ‘o’, xi, yi) 

>>title (‘Figure 20.1: Spline Fit’ 

 

This approach is appropriate if only one set of interpolated values is required. 

However, if another set is needed from the same set of data, it doesn‘t make sense to 

recompute the same set of cubic spline coefficients a second time. In this situation, 

one can call spline with only the two arguments, for example, 

 

>>pp=spline(x,y) 

pp= 

  form : ’pp’ 

  breaks : [0 1 2 3 4 5 6 7 8 9 10 11 12] 

  coefs : [12x4 double] 

  order : 4 

  dim  : 1 
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When called in this way, spline returns a structure containing the , or 

piecewise polynomial form, of the cubic splines. This structure contains all the 

information necessary to evaluate the cubic splines for any set of desired 

interpolation. The  structure is also compatible with the optional Spline 

Toolbox available with MATLAB. Given the pp-form, the function  evaluates 

the cubic splines. For example 

 

>>yi=ppval(pp.xi): 

Computes the same yi values computed earlier. Similarly, 

 

>>xi2=linspace (10, 12); 

>>yi2=ppval (pp.xi2); 

 

uses the pp-form again to evaluate the cubic splines over a finer spacing restricted to 

the region between 10 and 12.  

 

>> xi3=10:15; 

>> yi3=ppval (pp.xi3) 

>> yi3= 

3.0777    5.2422    15.8945   44.0038   98.5389    

188.4689 

 

shows that cubic splines can be evaluated outside the region over which the cubic 

polynomials were computed. When the data appears beyond the last or before the first 

breakpoint, the last and first polynomials are used respectively to find interpolated 

values.  

The cubic splines pp-form given above, stores the breakpoints and polynomial 

coefficients, as well as other information regarding the cubic splines representation. 

This form is a convenient data structure in MATLAB since all information is stored in 

a single structure. When a cubic spline representation is evaluated, the various fields 

in the pp-form must be extracted. In MATLAB this process is conveniently performed 

by the function unmkpp. Using this function on the above pp-form gives  
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>> [breaks. Coefs. Npolys. Ncoefs. Dim] = unmkpp (pp) 

 

Breaks=  

columns 1 through 12 

0 1 2 3 4 5 6 7 8 9

 10 11 

Column 13 

12 

coefs= 

  0.0007 -0.0001  0.1257  0 

  0.0007 0.0020  0.1276  0.1263 

  0.0010 0.0042  0.1339  0.2568 

  0.0012 0.0072  0.1454  0.3959 

  0.0024 0.0109  0.1635  0.5498 

  0.0019 0.0181  0.1925  0.7265 

  0.0116 0.0237  0.2344  0.9391 

  -0.0083 0.0586  0.3167  1.2088 

  0.1038 0.0336  0.4089  1.5757 

  -0.1982 0.3542  0.7967  2.1251 

  1.4948 -0.2406  0.9102  3.0777 

  1.4948 4.2439  4.9136  5.2422 

  Npolys=12 

  Ncoefs=4 

  Dim=1 

 

Here breaks contains the breakpoints, coefs is a matrix whose ith row is the 

ith  cubic polynomial, npolys is the number of polynomials, ncoefs is the number 

of coefficients per polynomial, and dim is the spline dimension. Note that this pp-

form is sufficiently general that the spline polynomials need not be cubic. This fact is 

useful when the spline is integrated or differentiated.  

In prior versions of MATLAB, the pp-form from was stored in a single 

numerical array rather than a structure. As a result, unmkp was valuable in separating 

the parts of the pp-form from the numerical array. Given the simplicity of the 

structure form, one can easily address the fields directly and avoid using unmkpp 

entirely. However, unmkpp continues to support the prior numerical array pp-form, 

thereby making process of extracting the parts of a pp-form transparent to the user.  

Given the broken-apart form above, the function mkpp restores the pp-form, for 

example: 
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>> pp=mkpp (breaks, coefs) 

pp= form: ‘pp’  

breaks: [0 1 2 3 4 5 6 7 8 9 10 11 12] 

coefs: [12 x 4 double] 

pieces: 12 

order: 4  

dim: 1 

 

since the size of the matrix coefs determines npolys and ncoefs they are not 

needed by mkpp to reconstruct the pp-form. 

By using the spline for data interpolaration, the goal for the program is to 

calculate, for the n seconds of measurement, the exact polynomials needed. The idea 

of heart signals comparison is based in the deviation of the factors of the polynomials, 

which will be discussed further in the analysis and process section. 

 

4.5. Routine creation 

 

For the spline functionality, during command input of the program at first the 

necessary routines in the system were created, so that each signal being inserted 

automatically calculates spline and shows the outcome in figure 48.  

 

Figure 48. Spline fit in program 
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Also a box in which the user can see the standard deviation of the 4 factors was 

added. In the program all the necessary commands are inserted in order to show in an 

extra graph outside of the program the plot of pp.coefs of the spline fit (figure 49). 

 

 

Figure 49. pp.coef of the spline fit 

 

  

Another function added to the program so that can help in the diagnose, the user 

himself will perform, is the function of the calculation of the parameters set (standard 

deviation of 4 spline coefs) as a reference samples from various conditions. Figure 50 

displays the user interface of the program after this install. The pop-up menu includes 

reference samples measured from the specific equipment and are the following: 
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In the box above the pop-up menu the factor elements are displayed, as set for 

the specific signals. In the next box the heart rhythm for the specific signal/disease is 

also seen. 

 

 

 

Figure 50. Standard deviation of 4 coefs 

 

 

4.6. Acquisition 

 

In order to perform a correct ECG, users ought to follow a raw of rules. All the 

cable equipment should be in good condition and, if possible, not crooked. The user 

should be aware of the full potential of the ECG and all the necessary tools for the 

procedure must be in place. The environment is necessary to be clean, sorted and 

quiet for the patient so that he can feel comfortable. 

Helping the patient to lie down comfortably on the examination bed is the first 

thing to do. The inner part of the ankles and wrists must be wet before any cables can 

be attached. Then the sticky pads are applied. 
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Figure 51. Patients performing ECG. A patient must be calm in order the ECG 

has reliable readings.[203] 

 

For children there are special sticky pads of smaller size of that of the adults. Even 

smaller ones are used for infants. The patient should stay as calm and still as possible 

and he shouldn‘t talk or be scared during the procedure or this would show an 

undesirable reading on the ECG. The ECG is a simple procedure that lasts in only a 

few minutes. In the most cases it does not cause pain and does not disturb the patient. 

 

4.6.1. Usual difficulties during the procedure 

 

It is not always easy for an ECG to take place despite it is a very easy 

procedure. Lots of factors can leverage the results of the ECG. Age, patience, mental 

condition, physical condition, fatigue and anxiety are some of them. How cooperative 

a patient can be is the first and foremost factor. It is very important for the patient to 

remain calm, relaxed and to retain fear or panic of his thoughts.  

The most uncooperative patients are kids that, as all, do not trust strangers, and 

cannot stay still long enough for the procedure to take place. They usually feel fear 

because they can‘t understand what will happen in the next moments. 
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Figure 52. Children are often the most demanding patients; they should be distracted 

so that they remain calm throughout the process.[204] 

 

They feel queer because they must take of their clothes in front of strangers. 

Depending to the patients age they sometimes get scared that something bad is about 

to happen or even start speculating on their condition. They can be tired from 

previous tests taken part earlier in the day and do not have enough patience for 

―another test‖. Children are the most demanding patients and it is not easy to persuade 

them to stay calm during an ECG. Adults on the other hand are not easy to relax, due 

to stress, fatigue and pressed schedule, or even fear that something wrong is 

happening to them. So the best thing to do is to explain with simple words the 

procedure of the test in order to calm the patient. It is highly advised to take the 

pressure and pulse of the patient for a more complete picture of the cardiac function. 

 

4.6.2. Factors that influenced the readings and ways of 

confrontation 

 

From all the ECG examinations, the most demanding ones are usually the ones  

that involves children. It is difficult to approach and persuade a child and to discipline 

it in the needs and rules of the procedure. The trick is to carry it out like it is a game in 

order to let it go and to get calm. In adults another type of problems is usually 

involved. For instance, intense hairy bodies or even strong sweat can interfere in the 
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reading of the ECG due to the not good appliance of the sticky pads. A long lasting 

dermatologic situation in the area of the thorax, a deep trauma or a burn could cause 

pain and worry the patient. The use of mobile phones is strictly restricted during the 

test, because the interference they cause can alter the efficiency of the ECG, or even 

the output data of the test. Another factor is the level of communication and 

consciousness of the patient. The way he reacts can difficult the reading of the ECG. 

A bad mental condition or stress can increase the heart beats and give the wrong 

impression during the test. Finally, intoxicated patients do not get reliable readings 

due to the rhythmic disorders they may indicate. 
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5. Simulation techniques 

 

It has been obvious from scientists from the past years, and mentioned earlier in 

this research, that the heart signals tend to show a repetition if they compare their 

shape and data for the same functions between individual persons. 

 

 

Figure 53. The main tools for data collection, measurement and process. 

 

For the needs of not only diagnose, but also prediction as explaining later, a use 

of a heart beat signal simulator is needed in order to create a reference database of 

signals that will be used for analysis. This database is needed so that with the proper 

process a comparison of them with the readings extracted from a patient is applicable. 

 

5.1. Simulating device 

 

In this research, The Simulaids® ECG generator™ was used (figure 54). This 

particular device is a very useful, reliable and easy to use generator. It has the ability 
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to simulate 17 arrhythmias in both adult and pediatric rates. It can perform both three 

and four lead monitoring and obtain rhythm and defibrillate directly through paddles 

with optional manual adaptors.  

 

 

Figure 54. The Simulaids interactive ECG simulator 

 

It has the ability to simulate the below heart conditions and combined variations 

of them.  

 V. Fib  

 V. Tach (Fast)  

 V. Tach (Slow)  

 V. Tach (Polymorphic)  

 Fib  

 Flutter  
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 SVT  

 Sinus Tach  

 Sinus with PVCs  

 Asystole  

 NSR  

 Junctional Brady  

 Sinus Brady  

 2nd degree type I A-V block  

 2nd degree type II A-V block  

 2nd degree type II A-V block with PVCs  

 3rd degree A-V block  

 Generate realistic 3-lead or 4-lead ECG rhythms. The RA, LA, and LI 

signal morphologies create accurate representations of the QRS, P, and T axes.  

 

5.2. Simulated signals 

 

In the figures bellow, the reference signals measured with the simulator and the 

program are presented. All the signals have been measured for 10 seconds with 

waveform frequency at 11025Hz and have been normalized based in the maximum 

state. 

 

Figure 55. NSR 
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Figure 56. VTfast 

 

 

Figure 57. VTslow 
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Figure 58. VTpoly 

 

 

 

 

 

 

 

Figure 59. VF 
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Figure 60. AFIB 

 

 

 

 

 

Figure 61. SVT 
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Figure 62. ASYS 

 

5.3. Heart rhythm estimation 

 

In chapter 4.3, the new functions created in Μatlab for the calculation of the 

heart rate were introduced and a detailed analysis of the way of performed 

calculations was presented. This procedure is based on the calculation of the max 

states located in the final graph of the measurement. 

In order to do so, as mentioned, all the top states are written down after 

normalization of them with max state. In many cases it is possible for the 

measurement of the max states to be proven inaccurate, because the program will 

measure all the max states, regardless which condition is the graph referred to. 

Thus it is obvious that the basic given data in calculation of the heart rate is the 

visual recognition from the user. It is up to the user himself to understand whether the 

observed reading is, not only decease, but also that its heart rhythm reading has a 

meaning of existence. This happens due to the fact that the simulator isn‘t built to 
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perform a continuous 24/7 observation of a patient, but to perform a single, time 

based reading, for a dedicated amount of time given. 

In Table 4 are values the program calculated for various types of heart 

conditions and the values that should be based in the bibliography. 

 

Table 4: Comparison between measured BPM and actual BPM based in 

bibliography 

 

SIGNAL Measured bibliography 

NSR 72 60 - 100 

VTfast 186 100 - 240 

VTslow 144 100 - 240 

AFIB 132 110 - 300 

AFLTR 156 130 - 180 

SVT 222 175 - 250 

Pedi NSR 90 75 - 120 

Pedi VTslow 144 100 - 240 

 

 

5.4. Heart rhythm disorders 

 

In chapter 4.3, there was a reference about the new functions. The use of spline 

fit for the heart signals analyze was chosen and the standard deviation of each 

particular signal was defined as representative factors. In case of asystole, as 

mentioned earlier, a factor has not been calculated, due to the reason that, only during 

optical recognition of the heart signal, one can conclude that there is no pulse in the 

heart. 

In order to better study the disorders and possible correlations, the final program 

developed in chapter 4.3 was used in order to do repeated measurements in the 

Simulaids® ECG generator™ studied in chapter 3.7.1. More specifically, around 50 

measurements in each heart condition studied, was performed. By doing so, a 

reasonably large enough data pool for statistic reasons was created. 
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In each measurement, the program calculated the standard deviation from each 

one of the four factors. These four factors (four standard deviation outputs) were 

recorded for each of the fifty measurements performed, per each heart condition. Next 

follows the calculation of the average expected value the four factors have, in each 

heart condition individually. In the following table, the average value of these four 

factors of spline coef, for the above reference signals, for 50 simulations following by 

their respective graphs is presented. 

 

Table 5: The four factors of spline fit which are given from the average values 

of 50 measurements 

 

 1
st
 coef 2

nd
 coef 3

rd
 coef 4

th
 coef 

NSR 1,729884E+09 257584,24 29,854568 0.1611928 

VTpoly 2,13E+09 324286,74 42,401066 0,25210052 

VF 3,86E+09 573317,08 57,513844 0,34683454 

AFIB 1,82E+09 272227,38 41,018404 0,22626798 

SVT 1,79E+09 270306,88 44,918436 0,2476587 

 

As it is being clear from Table 4, between the heart conditions forms some 

differences that lead to the conclusion that there might be able to interpret the results 

and perform a diagnose for the disorder or not of the heart. 

After a lot of repetitive measurements and various calculations and graph 

plotting, it is concluded that the best and more secure way to study heart conditions 

and find the possible correlations they might have, is a bipolar plot of coef No 4 VS 

coef No3, that is consisted from the fifty repeated measurements per heart condition, 

for all heart conditions (Figure 63). 
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Figure 63. Data with the necessary groups. 

 

An important conclusion can be exported while possessing figure 63. It is the 

capability to mathematically separate the actual heart disorders from the healthy 

signals. Secondly, there is an opportunity to evaluate the condition of a patient. To 

further evaluate and get a safer conclusion, further study of the rest of the factors, may 

occur. The only exception is where the measured factors are as followed: Factor No 3 

around 60 to 70 and factor No4 to be around 0.4. There, it is pretty obvious that VF is 

the referred disease. 

In an effort to better separation of the heart disorders with the help of the factors 

calculated, a 3D graph of factors 2, 3 and 4 was plotted. 

In Figure 65, it is seen that the values that represent the NSR are in lower levels 

than any other value from any other signal. The VF conditions factors are righter and 

extend higher than the other signals. The VT condition is at the left of VF and NSR, 

but can differ than AFIB and SVT conditions because it is higher and on the right of 

them. AFIB condition differ than SVT because it is lower and on the left of it. So with 

the help of figure 64 it is now brighter than ever that mathematically, a separation of 

heart conditions with these 3 factors can be made. 
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Figure 64. 3D graph of factors 2, 3 and 4. 

 

By moving further the study, a better understanding whether there is any linear 

relationship between the 3 factors needed to be done. So a linear fit for these 3 factors 

was done and discovered that factors 3 and 4 are linearly connected with an equation 

of  equal to 0.96. 

 

Figure 65. Linear fit with all its parameters. 
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5.5. Real Heart Signals 

 

As this research continues, the first group of recorded data of real subjects is at 

the stage of comparison with the theoretical model. This group includes 35 volunteers, 

12 of them are supposed to be NSR. The rest 23 patients have already been diagnosed 

with heart disorder and receive the appropriate medical treatment by their doctors. 

These patients were used in order to evaluate the accuracy of the theoretical model. 

All of the 35 characteristic values of the volunteers are shown in figure 66 while 

figure 67 represents the necessary grouping. Again, as it is obvious from Figure 68, 

these subjects are scattered through the area of the theoretical model that represents 

all the diseases. As shown in figures 68, 69, 70 and 71 the values are gathered inside 

the groups of each heart disorder. 

 

 

Figure 66: Figure 64 including the actual heart signals 

 

All of the subjects have these pre mentioned heart disorders and are already 

taking medication from their attending doctor. The first conclusion that can be 

exported from the following figures is the verification of the theoretical model as the 

actual signals took their place in the expected positions. 
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Figure 67: Figure 66 with groups in the actual heart signals and simulated 

NSR 

 

Figure 68 shows the simulated VF signals and the actual subjects that are 

diagnosed with VF, all the actual patients are located in the same area with the 

simulated VF. 

 

 

Figure 68: VF simulated signals with the actual VF patients 
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In figure 69 there is the same comparison but this time with the VT poly 

signals and at the same time the actual patients that are diagnosed with VT poly. 

 

 

Figure 69: VT poly simulated signals with the actual VT poly patients 

 

SVT simulated signals comes next in figure 70, again followed by the actual 

patients with SVT. 

 

 

Figure 70: SVT simulated signals with the actual SVT patients 
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Figure 71 shows the simulated AFIB signals and the Actual patients that are 

diagnosed with AFIB, all the actual patients are located in the same area with the 

simulated AFIB. 

 

 

Figure 71: AFIB simulated signals with the actual AFIB patients 

 

In figure 72 there are the NSR signals including all the healthy persons. 

 

Figure 72: NSR simulated signals with the actual healthy people. 
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While processing and plotting their characteristic values in the theoretical 

model, as it is obvious from Figure 72 and better isolated in figure 73, four of them 

tend to show a high risk of heart defect since they are separating from the located 

NSR area.  

 

Figure 73: The four actual healthy people that are instructed to further 

investigate their health. 

 

These persons were later interviewed; some of them confirmed that they 

experienced some sort of heave, or tachycardia after stress. They were suggested to 

further investigate these symptoms. 

 

5.6. Differences between the theoretical model and 

various others 

 

Through the years, in cardiac signal analysis are applied various methods of 

approach to both study of the heart and the analysis to explore the possibility of 

segregation of heart disorder and possible prediction. But in all these methods, 

extensive use of multiple equations and mathematical models is required, which they 

demand powerful dedicated servers. At the same time they are unreachable for 

scientists with lower mathematical profile where they require a simpler and specific 
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pattern for recognition and further study of various heart disorders. In the following 

paragraphs some of the most widely spread cases with various and complex models 

and approximates are presented. 

In 2006 Neascu et all, study two forms of signals, from healthy and stressed 

people, in various approaches, like Power spectrum, Correlation, wavelet maps, return 

maps etc. Their results does not exceed from the already known, that the function of 

the heart is complex enough, but in they end up in the conclusion that though the 

semi-quantitative tests applied to the ECG signal analysis are not able to provide 

specific information regarding the intrinsic mechanisms of the heart, they might lead 

to a more ―colored‖ picture of the modifications induced by the physiological 

condition of stress [205]. In the approach studied by this research, the use of multiple 

equations is not used; on the contrary the obvious is being modeled. In figure 75 the 

ECG of a calm person and a stressed one is shown. Without the need to further get to 

the internal mechanisms that produce these differences, simply the diversity is being 

modeled and represented with the created bi-plot program. Later it is possible to 

notice whether different stress factors affect differently in the morphology of the 

signal, but for the time being, the differentiation can be done with the suggested 

simple approach. Nevertheless as shown in figure 74, artificially stressed persons 

were differentiated from the healthy group of subjects without approaching the 

patients group.  

Figure 74: Left ECG: a “normal” ECG VS a “stressed” ECG of the same individual 

person [205]. 

 

In 2005, Zhang et all, studied cardiac signals with the use of Principal 

component Analysis and Support Vector Machines. They conclude in the already 
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known fact that under circumstances, PCA and SVM can give some elements to 

evaluate ECG [206]. But in his case as well as other papers [207] the need of complex  

dedicated servers are needed for a simple diagnose, so when it comes to prediction, 

that is even more complex. Considering the fact that the main purpose of this research 

was to study ECG and approach them through a simplified methodology, both PCA, 

as well the use of neural networks was out of the question. 

From the current study it has been obvious that the simple separate of diseases 

with 3D plot (figure 64) is totally safe and can directly incorporate as a subprogram of 

the main computing software through commands ―if then else‖. These commands in 

each new measurement, examine the factors of coefs 2, 3, 4 and cubic spline to decide 

in which group the measured signal is part of. 

The use of SVM could complete the safe separation of the specific group in 

case the research required could not easily be separated. Its use was not considered 

necessary to apply, and foremost it was not applicable in the timeframe of this 

research, due to the fact that the main disadvantage of SVM is that if the number of 

features is much greater than the number of samples, the method is likely to give poor 

performances. In this part of the research the analysis was made with mainly 

simulated signals as reference signals of each heart disorder since the amount of real 

signals is not in the same analogy. From the simulated signals it is obvious that the 3D 

plot diagram (Figure 64) was enough for the separation. However, from a practical 

point of view perhaps the most serious problem with SVMs is the high algorithmic 

complexity which preferably should be avoided since, as mentioned earlier, it uses 

part of the ECG signal and not the entire form of it. 

In conclusion, there is a wide variety of studies and papers that use SVM and 

PCA for ECG analysis. In all these cases the methodologies are based in specific 

attributes of the signals, such as the width, or the amplitude of the QRS area. Yet 

there are methodologies that use the method of cubic spline in order to correct ECG 

from baseline drift or to model some of its areas like QRS. 

This methodology approach in the contrary to all the pre-mentioned models 

does not examine some areas of ECG, but through modeling the entire ECG and 

configures it as an equation with specific factors. These factors are unique for each 

ECG signal, so if a manual change of them appears then the original ECG signal will 

be altered. But, in any time of the research, when the groups of patients are completed 
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with the theoretical model and an extra analysis in a specific group is essential, then 

SVM method can be applied to analyze parts of the ECG signals database. 
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6. Conclusions and further development of the 

research 

 

6.1. Conclusions 

 

In conclusion, through this research it is proven that the evaluation of a heart 

signal can be done with mathematical equations or with specific algorithms. In these 

algorithms there is a capability to evaluate a heart signal and analyze with safety 

whether it belongs to a healthy heart or not. It can even clarify with relative ease, in 

case of a non healthy heart, the heart condition it suffers. 

As for the capability to predict the appearance of a disorder, the results were 

very promising. A group of 35 individual persons were used in order to apply their 

characteristic patterns in the theoretical model. As mentioned earlier, 22 persons are 

actual patients that have diagnosed heart disorders and are already taking medication 

from their attending doctors. The values from these patients are located not only 

inside the general group of the simulated non-healthy ECGs (figure 70), but also in 

the dedicated groups of the simulated ECGs, as seen in Figures 68 - 72. The rest 13 

persons don‘t have any history related to heart diseases. As expected, these data 

signals are plotted in the same group of the simulated NSR signals (figure 72). In 

figure 73 there are 4 persons that their characteristic values tend to show a distance 

from the rest NSR signals, simulated and real, and tend to approach the ones with 

various diseases. This tendency was expected in order to prove whether the theoretical 

model is correct regarding the capability to predict the appearance of a disorder. 

These individual persons were later interviewed and confirmed that they experience 

some short of heave or tachycardia after stress. They were suggested to further 

investigate those symptoms by visiting a doctor. So, figure 73 exports great 

expectations that there is a possibility a heart condition may occur when a signal of a 

healthy heart diverges from the limits of a SNR signal. Then a more systematic 

monitoring should take part, in order to see if this speculation is correct. Increased 

chances of occurrence of heart disorder has a heart in which its values go way beyond 

the values of a NSR and get closer to the values indicating heart malfunction. They 
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appear in the ―pre heart disorder area‖ which is the area between the two main groups 

(figure 73). 

All the results presented in this research, lead to a breakthrough methodology 

as the comparison of coefficient factors and heart disorder groups measured, shows 

continuity as seen in the linear fit graph (figure 63). Based to all the above, the novel 

methodology, as well as the theoretical novel applied are highly accurate, not only for 

heart disorder categorization, but also for heart disorder prediction analysis. 

 

6.2. Further development 

 

To further develop the research; more human data is needed especially from 

people with no history of heart diseases but with the characteristic patterns alike the 

ones of figure 73. These people tend to show a distance from the rest NSR signals, 

simulated and real, and are included in the ―pre heart disorder area‖.  

Next step is the comparison of the groups and also the individual readings 

collected, with the theoretical model. Notable attention needs the affect of age and sex 

in the rates of the model. It is highly important to understand how the advance (of 

each heart disorder) factor affects the theoretical model. It is significant to 

observewhetherthisfactordecreasesorincreasesthedispersionofthepoints in the areas 

where the theoretical model limits the disorder. 

At this point, a further research is required, that deals with the monitoring of 

this group with continuous measurements in order to check whether the prediction 

model is totally accurate. Meaning, if the future group of subjects located in the ―pre 

heart disorder area‖ like the 4 people in this research, who despite not having a 

recorded heart disorder history, their measurements excluded them from the ―NSR‖ 

group, confirms a heart abnormality through future clinical tests, then can be said that 

the heart disorder prediction model, presented in this research is totally accurate. The 

separation of the patient readings should be divided into groups, and the grouping 

could be based onto age or sex. This research should need one attending doctor in 

order to examine persons on a monthly basis, not necessarily in hospitals or medical 

departments since measurements will be taken only from the novel signal analyzer 

presented in this research. Also repeated tests every 3 months in hospital units are to 

take place, that include: Stress test, ECG, blood samples, cholesterol and triglycerides. 
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If during the research someone from the group proves to evolve a heart disorder, then 

the subject should automatically be removed from the monitoring group since is 

characterized as ―patient‖ and is moved to a different database. The goal of this post 

research is to observe the transition of the particular subject readings as they progress 

though time, how its factors change and how they evolve in the theoretical model. In 

case of correlation of the movement rate to the areas with heart disorders in time, this 

wills outcome a different version of the prediction model which could include a time 

prediction parameter. 

As for the novel ECG analyzer that is developed for the needs of this research, 

mild updates are needed in order to become a more user friendly device. The 

improvement of the external appearance which includes the appropriate casing and 

documentation will make it more elegant and help it find its way in the retail market. 

Secondly and most important is the development a communication accessory that 

cooperates with the device and can transfer the readings directly to the computer as 

raw data without the use of the sound card. This could be done by sending the data 

with some form of wireless communication from the existing technology such as 

Bluetooth and Wi-Fi; after all, they are widely spread to the market. Alternatively, 

redesign of the device and installation of a wireless input-output controller compatible 

with one, if not all, of the previously mentioned technologies. In this way each 

individual patient could perform a simple test to himself and send the data after 

collecting them from device directly to the doctor via his mobile phone or PC by 

email, without even having to visit him.Finally all this future research will contribute 

to a further investigation of the heart physiology and of course, to predict a human 

heart disorder. 
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Appendices 
 

1. Circuit structure 

 

The list of the components used to construct the ECG recording system follows: 

 

Resistors 

R1, R2, R4, R6, R7, R19-22 = 10 

R3, R5 = 22kΩ 1% 

R8 = 47kΩ 

R9 = 42kΩ 

R10, R11 = 3MΩ 

R12 = 150kΩ 

R13 = 4kΩ 

R14, R16 = 47kΩ 

R15 = 220Ω 

R17, R18 = 100Ω 

R23, R24 = 1MΩ 

P1 = 10kΩ preset 

 

Capacitors 

C1, C2 = 27pF 

C3, C10 = 1μF 63V, 5mm lead pitch (no electrolytic cap) 

C4 = 100nF 

C5-C8 = 100μF 16V radial 

C9 = 1nF 

C11 = 22pF 

 

Semiconductors 

IC1 = TL074 DIP14 

IC2, IC4 = TS921 or TL071 DIP8 

IC3 = IL300 
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2. Changes in the Third Edition of MATLAB 

 
Some of the major changes include: 

 Case-sensitive function and directory names on all platforms. 

 Function handles. 

 The use of an end statement at the end of functions. 

 Nested functions. 

 Math operations with single and integer data types.  

 Major revision of the GUI code, including the addition of panels, 

button groups, and toolbars. The code auto- generated by guide has been 

totally changed. Frames have been deprecated. 

 Major revisions to programming tools, such as the addition of 

conditional breakpoints and the mlint tool to check for poor programming 

practices within an M-file. 

 
2.1. The advantages of MATLAB for technical programming  

 
 

MATLAB has many advantages compared to convectional computer languages 

for technical problem solving. These include: 

1. Ease of Use  

MATLAB is an interpreted language, like many versions of Basic. Like Basic, it 

is very easy to use. The program can be used as a scratch pad to evaluate expressions 

typed at the command line, or it can be used to execute large prewritten programs. 

Programs may be easily written and modified with the built-in integrated development 

environment and debugged with the MATLAB debugger. Because the language is so 

easy to use, it is ideal for educational use and for the rapid prototyping of new 

programs.  

Many program development tools are provided to make the program easy to 

use. They include an intergraded editor/debugger, on-line documentation and 

manuals, a workspace browser, and extensive demos. 

2. Platform Independence 

MATLAB is supported on many different computer systems, providing a large 

measure of platform independence. At the time of this writing, the language is 

supported on Windows NT/2000/XP, Linux, UNIX, and the Macintosh. Programs 

written on any platform and the data files written on many platforms written in 

MATLAB can migrate to new platforms when the needs of the user change. 

3. Pre-Defined Functions  

MATLAB comes complete with an extensive library of predefined functions 

that provide tested and prepackaged solutions to many basic technical tasks. For 

example, suppose that you are writing a program that must calculate the statistics 

associated with an input data set. In most languages, you would need to write 

subroutines of functions to implement calculations such as the arithmetic mean, 

standard deviation, median among others. These and hundreds of other functions are 

built right into the MATLAB language, making your job much easier.  

4. Device-independent plotting  
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Unlike other computer languages, MATLAB has many integral plotting and 

imaging commands. The plots and the images can be displayed on any graphical 

output device supported by the computer on which MATLAB is running. This 

capability makes MATLAB an outstanding tool for visualizing technical data. 

5. Graphical user interface  
MATLAB includes tools that allow a program to interactively construct a 

graphical user interface (GUI) for his or her program. With this capability, the 

programmer can design sophisticated data analysis programs that can be operated by 

relatively-inexperienced users. 

6. MATLAB Compiler 

MATLAB‘s flexibility and platform independence are achieved by compiling 

MATLAB programs into a device-independent p-code and then interpreting the p-

code instructions at run-time. This approach is similar to that used by Microsoft‘s 

Visual Basic Language. Unfortunately, the resulting programs can sometimes execute 

slowly because the MATLAB code is interpreted rather than compiled. 

A separate MATLAB compiler is available. This compiler can compile a 

MATLAB program into a true executable that runs faster than the interpreted code. It 

is a great way to convert a prototype MATLAB program into an executable suitable 

for sale and distribution to users. 

MATLAB is a huge program with an incredibly rich variety of functions. Even 

the basic version of MATLAB without any toolkits is much richer than other 

technical programming languages. There are more than 1000 functions in the basic 

MATLAB product alone, and the toolkits extend this capability with many more 

functions in various specialties.  

 

2.2. Disadvantages of MATLAB 

 
 

MATLAB has two principal disadvantages. The first is that it is an interpreted 

language and therefore can execute more slowly than compiled languages. This 

problem can be mitigated by properly structuring the MATLAB program, and by the 

use of the MATLAB compiler to compile the final MATLAB program before 

distribution and general use. 

The second disadvantage is cost: a full copy of MATLAB is five to ten times no 

more expensive than a conventional C of Fortran compiler. This relatively high cost is 

more than offset by the reduced time required for an engineer or scientist to create a 

working program, so MATLAB is cost-effective for businesses. However, it is too 

expensive for most individuals to consider purchasing. Fortunately, there is also an 

inexpensive Student Edition of MATLAB, which is a great tool for students wishing 

to learn the language. The Student Edition of MATLAB is essentially identical to the 

full edition.  

A graphical user interface (GUI) is a pictorial interface to a program. A good 

GUI can make programs easier to use by providing them with a consistent 

appearance, and with intuitive controls such as pushbuttons, edit boxes, list boxes, 

sliders, and menus. The GUI should behave in understandable and predictable 

manner, so that a user knows what to expect when he or she performs an action. For 

example, when a mouse click occurs on a pushbutton, the GUI should initiate the 

action described on the label of the button.  
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This chapter contains an introduction to the basic elements of the MATLAB 

GUIs. It does not contain a complete description of components or GUI features, but 

it does provide us with the basics required to create functional GUIs for your 

programs. 

 

2.3. How a graphical user interface works  

 
 

A graphical interface provides the user with a familiar environment in which to 

work. It contains pushbuttons, toggle buttons, lists, menus, text boxes, and so forth, 

all of which are already familiar to the user, so that he or she can concentrate on the 

purpose of the application instead of the mechanics involved in doing things. 

However, GUIs are harder for the programmer, because a GUI-based program must 

be prepared for mouse clicks (or possibly keyboard input) for any GUI element at any 

time. Such inputs are known ―aw‖ events, and a program that responds to events is 

said to be event driven.  

The three principal elements required to create a MATLAB Graphical User 

Interface are: 

 

1. Components. Each item on a MATLABGUI (e.g., pushbuttons, labels, edit 

boxes) is a graphical component. The types of components include graphical controls 

(pushbuttons, toggle buttons, edit boxes, lists, sliders, etc) static elements (text boxes), 

menus, toolbars and axes. Graphical controls and text boxes are created by the 

function uicontrol, and menus are created by the functions uimenu and 

uicontextmenu. Toolbars are created by function uitoolbar. Axes, which are used to 

display graphical data, are created by the function axes. 

 

2. Containers. The components of a GUI must be arranged within a container, 

which is a window on the computer screen. The most common container is a figure. A 

figure is a window on the computer screen that has a title bar along the top, and that 

can optionally have menus attached. In the past, figures have been created 

automatically whenever data was plotted. However, empty figures can be created with 

the function figure, and they can be used to hold any combination of components and 

other containers. 

 

The other types of containers are panels   

 

3. Callbacks. Finally, there must be some way to perform an action if a user 

clicks a mouse on a button or types information on any keyboard. A mouse click or a 

key press is an event, and the MATLAB program must respond to each event if the 

program is to perform its function. For example, if a user clicks on a button to be 

executed. The code executed implements the function of the button to be executed. 

The code executed in response to an event is known as a callback. There must be a 

callback to implement the function of each graphical component on the GUI. 

As mentioned in advantage 6, the compiler can transform the program into an 

independent program installed into any computer. In order to do this, besides the 
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compiler, another program with the extension .exe is necessary which will install into 

the computer/client all the necessary libraries. 

For the needs of this research a graphical interface was developed in which the 

user can perform readings with the novel hardware developed, but also to perform 

calculations in the signals and to compare them with reference signals. 

 

3. Source code for the created MATLAB program 

 

 

function varargout = untitled(varargin) 

% UNTITLED M-file for untitled.fig 

%      UNTITLED, by itself, creates a new UNTITLED or raises the 

existing 

%      singleton*. 

% 

%      H = UNTITLED returns the handle to a new UNTITLED or the 

handle to 

%      the existing singleton*. 

% 

%      UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in UNTITLED.M with the given input 

arguments. 

% 

%      UNTITLED('Property','Value',...) creates a new UNTITLED or 

raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before untitled_OpeningFunction gets 

called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to untitled_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

% Edit the above text to modify the response to help untitled 

% Last Modified by GUIDE v2.5 28-Jan-2010 12:48:19 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @untitled_OpeningFcn, ... 

                   'gui_OutputFcn',  @untitled_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 



Appendices 

Antonopoulos John – PHD Research  Page 170 
 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

 

% --- Executes just before untitled is made visible. 

function untitled_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to untitled (see VARARGIN) 

 

% Choose default command line output for untitled 

handles.output = hObject; 

 

% Update handles structure 

guidata(hObject, handles); 

 

% UIWAIT makes untitled wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

 

 

clc 

global NSR 

global VTfast 

global VF 

global VTslow 

global VTpoly 

global AFIB 

global SVT 

global ASYS 

load('matlab_02.mat','NSR','VTfast','VF','VTslow','VTpoly','AFIB','SV

T','ASYS'); 

% --- Outputs from this function are returned to the command line. 

function varargout = untitled_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

function edit1_Callback(hObject, eventdata, handles) 

% hObject    handle to edit1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of edit1 as text 

%        str2double(get(hObject,'String')) returns contents of edit1 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

Here the variables are set. Matlab_02.mat that 

contains the reference values is loaded 
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% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global VTfast 

global NSR 

global signal 

global signalmikos 

global time1 

global xx 

global nn 

global x 

axes(handles.axes1); 

time1char=get(handles.edit1,'string'); 

time1=str2num(time1char); 

%signal=wavrecord(time1*11025,11025); 

signal=NSR; 

signalmikos=[1:length(signal)]'; 

plot(signalmikos/11025,signal); 

x=signal; 

xx=x/max(x);  

nn=signalmikos/11025;  

function edit4_Callback(hObject, eventdata, handles) 

% hObject    handle to edit4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of edit4 as text 

%        str2double(get(hObject,'String')) returns contents of edit4 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global NSR 

global signal 

global signalmikos 

global time1 

global nn 

global xx 

clear a  

clear b  

clear n1  

clear x1  

Here the program reads the box 

named ―edit 1‖ and reads the 

seconds it has to record. It 

waverecords and normalizes the 

recorded signal with command 

x/max(x) and transforms x into 

sec  
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clear x 

clear n 

nikos=0; 

x=signal; 

xx=x/max(x);  

nn=signalmikos/11025;  

b=0; 

a=imextendedmax(xx,0.9);  

for i=2:length(a)-1 

    if a(i)==1 & a(i-1)==0 & a(i+1)==1   

       amin=(i); 

    end 

    if a(i)==1 & a(i-1)==1 & a(i+1)==0  

          amax=(i); 

          nikos(i)=max(xx(amin:amax))>0.85;  

    end 

end 

n1=nn(a); 

x1=xx(a); 

plot(nn,xx,n1,x1,'r.') 

b=sum(nikos~=0); 

set(handles.edit4,'string',(b*60/time1)); 

function edit5_Callback(hObject, eventdata, handles) 

% hObject    handle to edit5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of edit5 as text 

%        str2double(get(hObject,'String')) returns contents of edit5 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit5_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global time1 

noofpeaks=str2num(get(handles.edit5,'string')); 

set(handles.edit7,'string',(noofpeaks*60)/time1) 

function edit7_Callback(hObject, eventdata, handles) 

% hObject    handle to edit7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of edit7 as text 

%        str2double(get(hObject,'String')) returns contents of edit7 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit7_CreateFcn(hObject, eventdata, handles) 

Here the number of peak and 

eventually the heart rate is 

calculated 

Calculation is simple and is 

based into how many times a 

rate higher than 0.85 is shown. 

All the signals are normalized, 

meaning that higher value in y 

axis is 1. 



Appendices 

Antonopoulos John – PHD Research  Page 173 
 

% hObject    handle to edit7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on button press in pushbutton5. 

function pushbutton5_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global NSR 

global signal 

global signalmikos 

global time1 

global nn 

global xx 

pp=spline(nn,xx); 

v=ppval(pp,nn); 

plot(nn,xx,'b.',nn,v,'r') 

pp1=mean(pp.coefs(100:end,1)); 

pp2=mean(pp.coefs(100:end,2)); 

pp3=mean(pp.coefs(100:end,3)); 

pp4=mean(pp.coefs(100:end,4)); 

ppcoefs=[pp1 pp2 pp3 pp4]; 

set(handles.edit9,'string',ppcoefs); 

 

% --- Executes on button press in pushbutton6. 

function pushbutton6_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

zoom 

function edit9_Callback(hObject, eventdata, handles) 

% hObject    handle to edit9 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit9 as text 

%        str2double(get(hObject,'String')) returns contents of edit9 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit9_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit9 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on selection change in listbox1. 

Here the program performs spline fit in 

the normalized signal. With plot it prints 

with red over the normal that is blue. 

Meanwhile it prints in the box named 

―edit9‖ the variables it calculated 
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function listbox1_Callback(hObject, eventdata, handles) 

% hObject    handle to listbox1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: contents = get(hObject,'String') returns listbox1 contents 

as cell array 

%        contents{get(hObject,'Value')} returns selected item from 

listbox1 

 

% --- Executes during object creation, after setting all properties. 

function listbox1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to listbox1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: listbox controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit10_Callback(hObject, eventdata, handles) 

% hObject    handle to edit10 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: get(hObject,'String') returns contents of edit10 as text 

%        str2double(get(hObject,'String')) returns contents of edit10 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit10_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit10 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

% --- Executes on selection change in popupmenu1. 

function popupmenu1_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Hints: contents = get(hObject,'String') returns popupmenu1 contents 

as cell array 

%        contents{get(hObject,'Value')} returns selected item from 

popupmenu1 

global NSR 

global VTfast 

global VF 

global VTslow 

global VTpoly 

global AFIB 

global SVT 

global ASYS 

global a 

element=get(handles.popupmenu1,'value'); 
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if element==2 

    xref=NSR; 

end 

if element==3 

    xref=VTfast; 

end 

if element==4 

    xref=VTslow; 

end 

if element==5 

    xref=VTpoly; 

end 

if element==6 

    xref=VF; 

end 

if element==7 

    xref=AFIB; 

end 

if element==8 

    xref=SVT; 

end 

if element==9 

    xref=ASYS; 

end 

xxref=xref/max(xref);  

nnref=[1:length(xxref)]'/11025;  

ppref=spline(nnref,xxref); 

ppref1=mean(ppref.coefs(:,1)); 

ppref2=mean(ppref.coefs(:,2)); 

ppref3=mean(ppref.coefs(:,3)); 

ppref4=mean(ppref.coefs(:,4)); 

pprefcoefs=[ppref1 ppref2 ppref3 ppref4]; 

set(handles.edit10,'string',pprefcoefs); 

 

% --- Executes during object creation, after setting all properties. 

function popupmenu1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: popupmenu controls usually have a white background on 

Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit11_Callback(hObject, eventdata, handles) 

% hObject    handle to edit11 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit11 as text 

%        str2double(get(hObject,'String')) returns contents of edit11 

as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit11_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit11 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

Here there is the popup menu that is installed in 

the program in order for the user to choose a 

particular signal and to see in the next box the 

reference numbers of spline fit for the specified 

signal. 
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% handles    empty - handles not created until after all CreateFcns 

called 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 


