
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research in
Agronomy and Horticulture Agronomy and Horticulture Department

5-2014

Delay of Bud Break on 'Edelweiss' Grapevines with
Multiple Applications of Amigo Oil and NAA
Benjamin A. Loseke
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss

Part of the Viticulture and Oenology Commons

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized
administrator of DigitalCommons@University of Nebraska - Lincoln.

Loseke, Benjamin A., "Delay of Bud Break on 'Edelweiss' Grapevines with Multiple Applications of Amigo Oil and NAA" (2014).
Theses, Dissertations, and Student Research in Agronomy and Horticulture. 72.
http://digitalcommons.unl.edu/agronhortdiss/72

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ag_agron?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1264?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss/72?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages


DELAY OF BUD BREAK ON ‘EDELWEISS’ GRAPEVINES WITH MULTIPLE 

APPLICATIONS OF AMIGO OIL AND NAA 

 

By 

 

Benjamin A. Loseke 

 

 

A THESIS 

 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

 

Major: Horticulture 

 

Under the Supervision of Professor Paul E. Read 

 

Lincoln, Nebraska 

 

May, 2014



 

 

DELAY OF BUD BREAK ON ‘EDELWEISS’ GRAPEVINES WITH MULTIPLE 

APPLICATIONS OF AMIGO OIL AND NAA 

 

Benjamin Allen Loseke, M.S. 

University of Nebraska, 2014 

 

Advisor: Paul E. Read 

 ‘Edelweiss’ is an important grape cultivar grown in the Midwestern part of the 

USA.  This grapevine is tolerant to extreme winter temperatures which can be 

experienced in the areas where it is most widely grown.  ‘Edelweiss’ is one of the earliest 

cultivars in the vineyard to break bud, making it very susceptible to late spring freezes.  

The primary buds of ‘Edelweiss’ produce a significant amount of fruit, while unlike 

many other hybrids, the secondary and tertiary buds will have little to no yields, thus 

making it important to protect the primary buds from a late freeze.  The objective of this 

research was to determine if multiple applications of Naphthaleneacetic acid (NAA) or 

Amigo Oil has a greater effect on bud delay when compared to single applications.  

‘Edelweiss’ vines were treated with one, two, or three applications of NAA or Amigo Oil 

at monthly intervals starting in early January.  The purpose of the Amigo Oil and NAA 

application was to delay bud break without affecting desired characteristics such as yield 

or fruit composition.  Amigo Oil was applied at 10% concentration (v/v) and the NAA at 

1000 ppm with a custom built all-terrain vehicle (ATV) sprayer.  All treatments of 

Amigo Oil led to a significant bud break delay ranging from 3 to 11 days as compared to 



 

 

the control.  None of the treatments resulted in negative effects on yield or fruit 

characteristics.  A controlled laboratory experiment was also conducted, where single bud 

cuttings were forced in forcing solution containing 200 ppm 8-hydroxyquinoline citrate 

and 2% sucrose at 25°C under 12 hour days.  Treatments of one, two, or three 

applications of 1000 ppm NAA and 10% (v/v) Amigo Oil were applied to single buds at 

weekly intervals.  Julian days until bud break were recorded and treatment-related bud 

break delays were observed.  Two and three applications of oil significantly delayed bud 

break ranging from 14 to 24 days.  All NAA treatments led to significant bud delay 

ranging from 6 to 9 days. Grape growers in climates with the potential of late spring 

freezes may consider the use of Amigo Oil as a potential means to protect their vines 

from freeze injury.    
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CHAPTER 1 

INTRODUCTION 

Grapes have recently become an exciting new alternative crop planted in the 

Midwest United States.  With the breeding of cold hardy cultivars capable of 

withstanding Midwestern winters, grape growing has begun to expand exponentially in 

many states.  According to the Usda-Nass (2012) total acreage of grapes planted in the 

United States was 962,100 acres.  The first ever comprehensive study measuring the full 

economic impact of the grape, wine, grape juice, table grape and raisin industries, 

reported grape and grape products contributes $162 billion annually to the American 

economy (Mkf-Research, 2007).  With an increasing percentage of that economic 

contribution coming from Midwestern states it is important to begin focusing on potential 

problems grape growers encounter in these areas.   

Grapes grown in the Midwest states are commonly subjected to inconsistent 

temperature fluctuations.  Particularly in Nebraska, spring freeze is a major limiting 

factor of grape production (Qrunfleh and Read, 2010).  Grape production in areas that are 

susceptible to spring freezes is risky and can occasionally cause large economic losses to 

the vineyard.  In March of 2007, the second warmest March on record for the lower 48 

states temperatures were recorded to be an average of 6°F above normal (Guinan, 2007).  

The arrival of an early spring, like this, resulted in fruit crops and other crops being 

developmentally far ahead of schedule making them extremely susceptible to an 

oncoming freeze event.  The loss in the affected areas in Midwest states due to that 

particular freeze event was estimated to exceed one billion dollars (Guinan, 2007). 
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Appropriate site selection is the best practice for avoiding winter and spring 

freeze injury.  However, in many cases site selection is not a priority or not possible and 

vineyards are established in less than the most suitable locations.  To offset poor site 

selection, many methods to provide frost protection have been attempted and include 

wind machines, overhead irrigation, and cryoprotective chemicals.  With these methods 

being very costly, it is not economical for small growers to employ them.  In the event of  

a late spring freeze, growers hope the bud injury will affect only the primary buds, and 

secondary buds will grow after primary bud damage (Qrunfleh and Read, 2010). 

However, protecting the primary bud is essential as they produce 300 to 400% more fruit 

with clusters 135 to 190% larger than those produced by secondary buds (Wiggans, 

1926).   

One of the best strategies for protecting against spring freezes in the vineyard is 

delaying the onset of bud break in the spring.  Some methods that have been used to 

delay bud break include: delayed pruning, using various types of cryoprotective 

treatments (Dami et al., 1997), plant growth regulators and the use of alginate and 

dormant oils (Dami et al., 2000).  The first attempts of using oil were reported in the late 

1960s and early 1970s (Qrunfleh and Read, 2010).  Dormant oil was used on ‘Johnson 

Elberta’ peaches to control insects, and delayed bloom was also observed.  Applications 

of 10% soybean oil on ‘Georgia Belle’ peach trees increased internal CO2 concentrations 

and delayed bud break by six days (Myers et al., 1996).   

 Use of dormant oils on grapevines was first reported using petroleum and 

vegetable-based oils (Dami et al., 2000).  ‘Chancellor’ (an early cultivar to break bud), 

‘Chambourcin’ (late bud break cultivar), and ‘Chardonel’ (mid-season bud break 
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cultivar) grapevines were treated with two soybean oil-based adjuvants (Prime Oil and 

Amigo Oil).  Prime Oil however, was found to be highly phytotoxic to the dormant buds.  

Both treatments led to a significant delay in bud break in all cultivars where total delay 

ranged from one to twenty days (Dami and Beam, 2004). 

Plant growth regulators have also been used in the attempt to delay bud break in 

grapevines.  Applications of exogenous gibberellic acid (GA3) during the previous 

growth season delayed and inhibited bud opening in the following growing season (Lavee 

and May, 1997).  Spraying ‘Aramon’ vines with NAA at 500 to 1000 ppm in October had 

no effect, but spraying the vines in January, February, and March delayed bud break by 

16-27 days (Nigond, 1960).  Qrunfleh and Read (2010) did a similar study in southeast 

Nebraska on ‘Edelweiss’ vines and found Amigo Oil significantly delayed bud break up 

to 12 days when compared to the non-sprayed control.  NAA at 1000 ppm also delayed 

bud break by three days when compared to the non-sprayed control vines.       

‘Edelweiss’ is one of the most common wine grapes planted in Nebraska.   It is 

one of the earliest cultivars to break bud in the spring, making it highly susceptible to 

spring freeze events.  With most of the vineyards in Nebraska being less than 20 acres, 

growers cannot afford to employ freeze protection methods.  Thus it is necessary to find a 

chemical that can delay bud break by several days.  It must be cheap, easy to apply, non-

toxic to grapes and humans and require minimal labor, equipment and energy to apply.  

The objectives of this study were to: 

1. Compare the effects on bud break with multiple applications of NAA or 

Amigo Oil to 15-year-old ‘Edelweiss’ grapevines. 
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2. Determine if two or three applications of NAA or Amigo Oil have a 

greater effect on bud break than single applications of either compound. 

3. Observe any phytotoxic effects of the spray treatment to the buds and 

determine a percentage of bud mortality due to the treatments. 

4. Determine the effect of the NAA and oil on harvest and fruiting 

characteristics including: cluster number per cane, average cluster weight, 

°Brix, pH and titratable acidity (TA). 

5. Develop an efficient and effective method for applying the NAA and 

Amigo Oil to the grapevines in the winter months. 

6. Confirm the effects of NAA and Amigo Oil on ‘Edelweiss’ single-bud 

cuttings forced in a controlled laboratory environment. 
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CHAPTER 2 

 

LITERATURE REVIEW 

Grape 

 The grapevine (Vitis vinifera) belongs to the family Vitaceae which comprises 

about 60 inter-fertile wild species distributed in Asia, North America and Europe under 

subtropical, Mediterranean and continental – temperate climatic conditions (Terral et al., 

2010).  The genus Vitis includes more than 70 species (Alleweldt and Possingham, 1988) 

and some of the species currently found in Nebraska include V. aestivalis Michx., V. 

cinerea (Engelm)., V. riparia Michx., and V. vulpine L. (Kaul et al., 2006).  The North 

American V. rupestris, V.riparia or V. berlandieri, are used in breeding rootstock due to 

their resistance against grapevine pests, such as Phylloxera, Oidium and mildews (Terral 

et al., 2010). 

‘Edelweiss’ 

 ‘Edelweiss’ originated in Osceola, Wisconsin and was developed from crosses 

that date back to 1949 (Swenson et al., 1980).  The pedigree of ‘Edelweiss’ is ‘MN 78’ X 

‘Ontario’ (Smiley et al., 2008).  ‘Edelweiss’ was introduced by the University of 

Minnesota in 1980.  It was introduced as a table grape with the goal of improving table 

grape quality in cold winter regions but then became an important cultivar for white 

wine, especially when grown in Nebraska (Qrunfleh and Read, 2010). 

 The ‘Edelweiss’ vine is considered highly vigorous, producing conical shaped 

clusters that are medium in size, very loose to moderately compact and often double-

shouldered (Swenson et al., 1980).  The vine is usually trained to a Geneva Double 
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Curtain (GDC) trellis system.  Berries are round, medium sized and green skinned with a 

white bloom (Swenson et al., 1980).  Berries are also of a slip skin,  have tender flesh and 

have the lubrusca fruit flavor (Brooks and Olmo, 1997).  ‘Edelweiss’ breaks bud early, 

making it highly susceptible to spring freeze.  In addition, it is not productive on 

secondary buds (Smiley et al., 2008).  The juice is relatively low in acidity (0.6-0.8%) 

and has moderate soluble solids (14-16%) (Swenson et al., 1980).  It is also known to be 

an early maturing cultivar and Nebraska grape growers usually harvest ‘Edelweiss’ in 

August at 14-15 °Brix (Qrunfleh and Read, 2010). 

The Grape Bud 

 It is of utmost importance for grape growers to understand the anatomy and 

physiology of the grapevine in order to be successful vineyard managers.  The grape bud 

is the origin of all fruit the plant will produce so it is important to understand the anatomy 

of this structure.  The first bud which arises in the axil of the leaf subtended by a current 

season’s shoot is known as the “prompt bud”.  The bud which develops in the axil of the 

bract is the “latent bud”.  The latent bud grows slowly within the bract (Srinivasan and 

Mullins, 1981).   
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Figure 1. Normal healthy bud showing primary bud (P) bordered by the secondary (S) 

and Tertiary buds (T) (Zabadal et al., 2007).   

The primary, secondary, and tertiary buds, enclosed in the prophyll of the summer 

lateral and the two basal bracts of the primary bud, constitute the compound winter bud 

(viticulturally termed ‘eye’) of the dormant cane (Pratt, 1974).  The primary shoot 

normally grows from the previous year’s shoot (viticulturally termed ‘cane’); either 

because the terminal bud of the latter is killed by freeze or the cane has been pruned.  

Normally, the primary buds grow and the secondary and tertiary buds serve as a “backup 

system” in case the primary bud has been damaged because of frost or freeze (Hellman, 

2003).  The secondary and tertiary shoots are axillary to the two basal prophylls on the 

primary shoot and also develop a few nodes and undergo dormancy.  The secondary 

shoot usually bears inflorescences, although the tertiary usually bears none (Pratt, 1974).  

It has been shown that physical damage such as severe pruning, destruction of part of the 

vine, or a boron nutrient deficiency can result in two or all three of the buds bursting into 

growth and developing shoots (Winkler et al., 1974).  Drawings of the developmental 
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stages of the dormant bud were illustrated by Eichhorn and Lorenz (1977) and were 

modified and updated by Coombe (1995) (Appendix 1). 

Grape Cold Hardiness 

During active growth grapevines are susceptible to freeze damage, but during the 

dormant season they have the ability to supercool, which allows the bud, cane, and trunk 

tissues to become acclimated to temperatures well below -10°C (Andrews et al., 1984).  

The ability to survive is accomplished by two mechanisms described by Levitt (1980) as 

freeze avoidance and freeze tolerance.  Cane and trunk tissues during the dormant season 

tolerate ice outside the living cells.  Meanwhile, buds avoid freezing by supercooling; 

which is defined as “the ability of the contents of a cell to remain liquid at subfreezing 

temperatures”.   Cold hardiness has been defined as “the ability of dormant grapevine 

tissues to survive freezing temperature stress during autumn and winter” (Dami, 2007).  

Measuring freeze injury has become an important component in evaluating 

current grape cultivars for acclimation and deacclimation of cold hardiness.  Cold 

hardiness is measured by the term “lethal temperature 50” which is referred to as the 

LT50, the single temperature value that kills 50% of the primary bud population in 

midwinter (Dami, 2007; Gu, 1999).   

The two most commonly used methods for measuring freeze injury are oxidative 

browning and thermal analysis.  Oxidative browning is the most common and relatively 

inexpensive method of measuring tissue viability and is based on the color change of bud 

or cane tissues that occurs after freezing and thawing (Dami, 2007).  In thermal analysis, 

supercooled water can be detected using thermal analysis (TA).  By using thermocouples 
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(or thermoelectric modules) to detect the latent heat release (called an exotherm) by water 

in the bud tissue as it freezes (Dami, 2007). 

The three stages of cold hardiness are: acclimation, mid-winter hardiness, and 

deacclimation.  Acclimation is the transfer from a non-hardy to a cold hardy state.  

Response to short days and low temperatures are the natural factors which cause the 

transition (Qrunfleh and Read, 2010).  Cold hardiness is also increased when the 

temperature drops below freezing and remains below freezing through midwinter.  

Periderm formation; mobilization of carbohydrate reserves to canes, trunks and roots; and 

isolation of dormant buds from the vascular tissues in canes and trunks are complete 

shortly after leaf fall.  However, cold hardiness continues to increase as a result of 

redistribution of water within bud tissues and desiccation. 

Cold hardiness is associated with changes in proteins, enzymes and carbohydrates 

(Qrunfleh and Read, 2010).  Among the previous three, research on carbohydrate changes 

have received the most attention (Howell, 2000).  Along with carbohydrate changes, 

three other factors play an important role on cold hardiness: genotype, environment, and 

vine culture and management (Howell, 2000).  An association between cold hardiness 

and endogenous sugar content was found by Hamman et al. (1996).  Glucose, fructose, 

raffinose, and stachyose increased from the onset of cold acclimation and decreased 

during deacclimation in ‘Chardonnay’ and ‘Riesling’ grapevines (Hamman et al., 1996). 

  A combination of the three above factors is important for growing cold hardy 

grapevines and growers must address each to protect their crop from spring freeze.  

Within genotype, a preferable characteristic of a cultivar would be to acclimate quickly in 
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the fall and slowly deacclimate in the spring (Qrunfleh and Read, 2010). Gu et al. (2002) 

found that greater cold hardiness of non-vinifera cultivars is due to the ability to 

acclimate faster and deeper at low temperatures.  This is where the third factor, vineyard 

culture and management comes into play, and grape growers can directly control this 

factor.  One of the most often utilized strategies is grafting non-cold tolerant cultivars 

onto cold tolerant rootstocks.  Miller et al. (1988) found that canes and buds on rootstock 

‘C-3309’ had the most cold hardiness.  Cane and bud acclimation were faster in fall and 

deacclimation in spring was slower compared to ‘5BB’ and ‘SO4’ rootstocks.  Moreover, 

grafted ‘White Riesling’ plants were significantly hardier than own-rooted vines.  The 

different rootstocks studied had a differential influence on cold hardiness by measuring 

LT50 values.  They concluded that vines of ‘3309 C’ had the most cold hardiness and 

therefore the most desirable for winter survival.  Gu (2003) reported ‘Gewurztraminer’ 

scions on ‘3309 Couderc’ and ‘MG 420A’ rootstocks were the most cold hardy and the 

rootstocks had no significant effects on scion vegetative growth.  On the other hand, he 

found that scions on mounded ‘110 Richter’, ‘St. George’, and ‘Riparia Gloire’ 

rootstocks showed earlier bud break than the non-mounded rootstocks.    

Dormancy 

In general, deciduous fruit trees cease their growth in late fall, drop their leaves, 

enter a dormant phase in winter, and resume growth in spring (Qrunfleh and Read, 2010).  

Compared to many other deciduous fruit crops, grapevines require relatively little 

exposure to chilling to terminate rest (Chandler et al., 1937).  Erratic and/or delayed bud 

break, decreased shoot and cluster numbers per vine, and poor uniformity of fruit 

development are commonly reported in regions where grapevines suffer from inadequate 



12 

 

winter chilling (Mccoll, 1986; Shulman et al., 1983).  Chilling is required to break 

endodormancy and the chilling requirement varies among fruit trees including grapevines 

(Westwood, 1993).   The percentage of grapevine bud break generally improves with 

increased exposure to chilling temperatures (Dokoozlian, 1999).  Though much is known, 

there is still much to learn.  

Bud scales are also an important component involved in dormancy.  Iwasaki and 

Weaver (1977)  found that removal of bud scales of ‘Zinfandel’ cuttings accelerated bud 

break as well as rooting due to the ABA presence in bud scales.  In addition, Iwasaki 

(1980) showed that bud scale removal reduced the rest period of ‘Muscat of Alexandria’ 

single bud cuttings.   

The factors responsible for terminating dormancy are equally important for 

normal bud break.   Reaching the chilling requirement for dormancy termination allows 

for normal bud break (Lavee and May, 1997).  In warm-winter regions where the chilling 

requirement is not met, chemicals can be used to end the rest period.  However, currently 

available chemicals are expensive and risk phytotoxicity to the buds (Erez, 1987; Erez, 

1994; Or and Viloznyi, 1999).  Hydrogen cyanamide has been used by Or (2009) as an 

effective chemical for breaking dormancy of grape buds by inactivating catalase.  

Catalase is an enzyme containing an iron heme prosthetic group in each of its subunits 

and seems to be involved in grapevine bud break since its activity is inhibited by 

hydrogen cyanamide (Pérez and Lira, 2005).  

Surprisingly, inducing bud break has also been achieved using electricity.  

Treating scions on two year old ‘Kyoho’ grapevines with 48 or 60 V hastened bud break 
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(Kurooka et al., 1990). A greater effect was found when direct current was applied at the 

time of deepest endodormancy.  Direct current has also been used for adventitious root 

formation of the grapevine rootstock Vitis champini ‘Ramsey’ (Köse, 2007). 

Methods of Reducing Frost Damage 

 It has been said “The most effective weapon against frost damage is preventative 

action” (Trought et al., 1999).  Humphreys (1914) stated “The best time to protect an 

orchard (or vineyard) against frost is when it’s being established”.  The location is one 

aspect of determining the proper site of a vineyard that should not be overlooked.  There 

are many characteristics to consider when deciding which location would make for a 

successful vineyard.  The climate, topography, slope, and soil characteristics are just a 

few that should be assessed before making a final decision.  In areas where spring freeze 

events are likely, choosing a site with proper air-drainage can have a major impact on the 

severity of bud injury in a freeze event.  Cold air drains downhill until it is impeded by an 

obstruction (i.e. fences, windbreaks, tree lines) large enough to pool the cold air until the 

topography flattens (Jones and Hellman, 2003).   

 In many cases the most important aspect of starting a vineyard, the location, is not 

necessarily a factor that can be controlled.  In the Midwest where many small vineyards 

exist, the location is usually dependent upon the availability of land and price.  

Considering land for its characteristics listed above is not always a priority.  With this in 

mind, cultural practices must be employed to protect the grapevines from freezing.  

Trought et al. (1999) mention many practices that can protect grapevines from freezing 

and they include: late spur pruning to delay bud break, ensure inter-row herbage is 
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closely mown and provide significant protection to radiation frost by establishing vines 

on a high cordon and using a hanging curtain trellis system.  Caspari and Montano (2013) 

emphasize the use of “spare parts” when pruning the vines.  “Spare parts” indicate that 

more than one trunk, cordon and/or canes are left on the plant after pruning.  The extra 

“spare parts” make it possible to use those pieces when canes/cordon tied to the wire fail 

to grow after frost/freeze damage (Caspari and Montano, 2013). 

 Evans (2000) stated “Any crop can be protected against any freeze if 

economically warranted.  The selection of a freeze protection system is primarily a 

question of economics”    In large scale vineyards, where the potential economic loss due 

to a freeze event is much higher, more complex mechanisms are used.  These can include 

wind machines, various kinds of heaters, and overhead irrigation (similar to what is used 

in the citrus industry) (Bearden and Elkins, 1997).  Wind machines are one of the most 

commonly used form of freeze protection, however with a high cost (i.e. $1,500 - $1,800 

/ac) they are not logical options for small scale growers (Evans, 2000).  Wind machines 

(and even costly helicopters) take advantage of the inversion layer that develops over the 

vineyard by mixing layers and thus reducing freeze injury (Creasy and Creasy, 2009; 

Trought et al., 1999).  Methods such as aqueous foam (Choi and Giacomelli, 1999), 

hydrophobic particle film and a leaf coating acrylic polymer (Fuller et al., 2003) have 

also been used for freeze protection.  Unfortunately these methods have not been 

thoroughly tested and have not yet generated desired results.  A more labor intensive 

practice, but much cheaper is the use of mulching.  Gu (2003) concluded that mounding 

protected ‘Gewürztraminer’ vines from the cold winter and significantly increased 

pruning weights.   
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Inter-row management can also have a great influence on the minimum 

temperature reached in a vineyard (Trought et al., 1999).  Slater and Ruxton (1954) 

showed that temperatures 7.5 cm above a firm surface could be ~1.0°C higher than over 

loose soil.  Ground cover can also have major influence and grass cover or mulches may 

reduce temperatures by 4-6°F (Cornford, 1938; Rogers, 1957). 

Cut Flowers and Woody Plants in Forcing Solution 

 Since the availability of plant material for in vitro purposes is limited to a short 

period of time during early spring (Yang and Read, 1990), it has been suggested that the 

same forcing solution used to extend vase life in cut flowers could be used to promote 

growth in woody cuttings (Read et al., 1984).  A  chemical for forcing cuttings studied by 

many researchers is 8-hydroxyquinoline citrate (8-HQC) (Qrunfleh and Read, 2010).  

Larsen and Scholes (1965) noticed more than a doubling of vase-life in cut carnation 

flowers compared with tap water and a 2.7 fold vase life increase compared to tap water 

in snapdragons (Larsen and Scholes, 1966).  The mechanism of prolonging life by 8-

HQC was due to decreasing vascular blockage in stems and increasing water absorption 

and stomatal closure (Qrunfleh and Read, 2010).  The same 8-HQC was investigated for 

effects on stem cuttings of privet and arrow-wood viburnum (Read and Yang, 1989).  

They concluded that indolebutric acid delivered via forcing solution increased root 

numbers per cutting and promoted root elongation while gibberellic acid inhibited rooting 

of the forced dormant stems.   (Hamooh, 2001) found that adding silver thiosulfate to 

forcing solution hastens bud break and shoot elongation.  Less time to bud break and 

longer shoots were also achieved when GA3 was combined with silver thiosulfate in the 

forcing solution. 
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 The use of forcing solution is important for obtaining fresh plant material for 

micropropagation and could also be a useful tool to enhance bud break as well as a 

method for studying bud dormancy in woody plants (Qrunfleh and Read, 2010).  Forcing 

solution has most recently been used by Qrunfleh and Read (2010), to force single bud 

cuttings of ‘Edelweiss’ grapevines and observe effects of NAA and Amigo Oil on bud 

break.     

Methods to Delay Bud Break 

Buds on woody plants constitute a very small part of the mass of the plant, 

however during the growing season they are organs of high physiological activity  

(Pallardy, 2008). Typical woody plant buds maintain low, stable respiration rates during 

the dormant season.  The same is true for grapevines where respiratory activities steadily 

increase from the ecodormant to bud break stage (Gardea et al., 1994).  The ability of 

chemicals to slow respiratory activity within the bud could in turn delay grapevine 

response to spring environmental factors such as increased temperature and day length.  

Myers et al. (1996) reported that soybean oil on peach flower buds interferes with the 

escape of respiratory CO2, which results in an increase of internal CO2 concentrations.  

This would result in decreased respiratory activity as a result of a feedback inhibition 

(Isenberg, 1979). 

Several methods have been tested for use to delay bud break and include:  the use 

of plant growth regulators (Weaver et al., 1961), delayed pruning, using various types of 

cryoprotective treatments (Dami et al., 1997), and the use of alginate and dormant oils 

(Dami and Beam, 2004; Dami et al., 2000). 
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Growth Regulators 

Plant hormones are a group of naturally occurring, organic substances that 

influence physiological processes at low concentrations (Davies, 2010).  The synthesis of 

plant hormones may be localized (as occurs for animal hormones), but may also occur in 

a wide range of tissues, or cells within tissues (Davies, 2010).  Plant growth regulators 

“include plant hormones- natural and synthetic – but also, other nonnutrient chemicals 

not found naturally in plants, but that, when applied to plants, influence their growth and 

development” (Mcmahon et al., 2007).   

Originally, plant growth regulators were tested for use in breaking the dormancy 

of dormant buds in the fall.  Weaver (1959) applied gibberellin (GA3) at 1, 10, 50, and 

250 ppm on ‘Zinfandel’ vines in September while foliage was still green.  He reported the 

number of shoots decreased with the increase of GA3.  In another experiment, basal 

cuttings of ‘Tokay’ were treated with GA3 a 0, 0.01, 0.1, 1, 10, and 100 ppm.  He 

reported that the higher the concentration of gibberellin, the longer it took for buds to 

develop. 

Levels of abscisic acid (ABA), initially considered to be the ‘dormancy hormone’, 

were found to increase as buds entered dormancy and to decrease during dormancy 

release (Düring and Bachmann, 1975).  Hellman et al. (2006) used an experimental 

formulation of abscisic acid (ABA; Valent biosciences VBC-30025) for the potential to 

delay bud burst of Vitis vinifera L. wine grapes.  Two application methods were tested in 

the greenhouse – spray application to buds or soil application.  They found that spray 

applications of ABA solutions to unopened buds increased the number of days to bud 
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burst by 3.5 days.  Soil applications of ABA to container-grown vines provided the 

greatest delay in bud burst (up to 7 days) and gave the most consistent response.      

For the general relationship between ABA and bud dormancy in grapevines, the 

general statement by Walton (1980) seems to be still valid “…a role for ABA in the 

induction and maintenance of bud and seed dormancy has been neither unequivocally 

demonstrated nor disproven…we do not know the precise biochemical events leading to 

or from dormancy and are thus unable to determine whether ABA can affect these 

events” (Lavee and May, 1997).   

 Nigond (1960) sprayed ‘Aramon’ vines with NAA at 500 to 1000 ppm in 

October, January, February, and March.  He reported that no effect in delaying bud break 

was achieved with the October application.  However, the vines that were sprayed in 

early January, the third week of February, and the second week of March delayed bud 

break by 16-27 days.  Applications caused some reduction of the percentage of buds that 

broke, but there was no effect on the growth or health of the plant.  Qrunfleh and Read 

(2010) did a similar study in southeast Nebraska and found that 1000 ppm delayed bud 

break by three days when compared to the control in 12-year-old ‘Edelweiss’ vines. 

Apical dominance has been extensively studied for a long period of time and 

auxin was thought to control lateral bud growth by a classical hypothesis where the apical 

meristem contained within the shoot apex provides a source of basipetally moving auxin 

that inhibits lateral bud out growth.  However, a new model of apical dominance states 

that auxin synthesized in intact shoot apices controls axillary bud outgrowth through the 

up regulation of root Shoot multiplication signal (SMS) (Malladi and Burns, 2007).  
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NAA has also been used to inhibit sprouting in muscadine grapes when used in 

conjunction with white latex paint (Takeda et al., 1982). 

Effects of GA3, ethephon, B-9 (Alar), CCC (Cycocel) at various concentrations on 

bud burst of ‘Chaush’ grape cuttings in February were investigated by Eris and Celic 

(1981).  They reported that GA3 (50 ppm), ethephon (200, 400, or 800 ppm), and B-9 

(500 and 1000 ppm) markedly delayed bud burst.  Ethephon at 800 ppm was the most 

effective concentration and delayed bud break by 19 days.  Cycocel hastened bud burst 

significantly.  All treatments had no effect on bud break percentage, but cuttings treated 

with GA3 did not show normal bud growth and died after bud break. 

1. Delayed Pruning and/or Double Pruning 

One of the simplest and most practical measures to avoid freeze damage in a 

vineyard is to delay prune and/or double prune the grapevines.  These pruning techniques 

take advantage of apical dominance.  Delayed pruning has been shown to delay bud 

break and bloom date (Loomis, 1939) and can also result in more uniform bud break.  

This was achieved in ‘Perlette’ and ‘Thompson Seedless’ which were pruned in  January 

compared with November and December pruning dates (Hatch and Ruiz, 1987).  Pruning 

dates and bud break may also be influenced by translocation and storage of carbohydrates 

or other endogenous compounds.  Early pruning could stimulate metabolic activity which 

delays the onset of rest (Hatch and Ruiz, 1987).  In the Midwest, grape growers usually 

start the pruning season by pruning cultivars that show late bud break and end the season 

by pruning early bud break cultivars such as ‘Edelweiss’.  For example, in 2013, most 

‘Edelweiss’ in Nebraska grapevines were pruned in the later weeks of March.   
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In many large scale vineyards, late or delayed pruning is not possible.  Vineyard 

managers with limited labor force often need to start pruning early in the winter to ensure 

completion of work before bud break (Weber et al., 2007).  Double pruning is a practice 

that can be used in spur-pruned vineyards to allow for more final pruning to occur later in 

the winter.  It involves two pruning passes through the vineyard.  The first pruning is 

usually made in November or December after leaf fall.  Then a second pruning is made in 

late February or March, at which time, canes are cut to their final length (Weber et al., 

2007).  This pruning technique is not usually employed in Midwestern vineyards, as 

premature bud break is a possibility which could result in freeze damage.     

2. Alginate and Dormant Oils 

Attempts to delay bloom with alginate and dormant oils were first studied and 

reported on in the late sixties and early seventies.  Experiments were first done on peach 

trees and Call and Seeley (1989) delayed bud break five days using dormant oil on 

‘Johnson Elberta’ peaches.  However, phytotoxicity was noticed at concentrations greater 

than 20%.  Deyton et al. (1992) also applied dormant oil to ‘Biscoe’ peaches and 

measured the internal CO2 bud concentration.  They concluded that the internal CO2 

concentration was higher compared to the control.  They also found repeated applications 

of lower concentrations of oil had less phytotoxic effects on the buds when compared to 

single applications of higher concentrations of dormant oil. 

Some of the most recent attempts to delay bud break in grapes with dormant oils 

has been done on ‘Chancellor’, ‘Chambourcin’ and ‘Chardonel’ grapes by Dami and 

Beam (2004).  They treated these grapes with two soybean oil-based adjuvants (Prime 



21 

 

and Amigo Oil); with the goal of delaying bud break without affecting fruit ripening, 

yield, or fruit composition.  Prime and Amigo Oil were applied at 10% (v/v) on three 

different dates.  They found that Prime Oil but not Amigo Oil was phytotoxic to dormant 

buds in all three cultivars.  Both treatments led to significant bud delay, ranging from 1 to 

20 days as compared to the control.  Prime Oil reduced yield, whereas Amigo Oil did not 

affect the yield or berry composition.  They found that Amigo Oil treated nodal sections 

had 41% less CO2 emitted than that of the controls. They concluded from this work that 

oil coating of dormant buds may have hindered CO2 escape from treated samples, which 

resulted in a decrease rather than an increase in respiration.  Bud scales on Norway maple 

have been shown to hinder the entrance of oxygen and the respiration rate (oxygen 

uptake) of buds was only half as high as that of buds from which the scales had been 

removed (Pallardy, 2008).  The second grapevine growth stage in the Modified E-L 

system (Coombe, 1995) shows bud scales beginning to open.  The “cracking” of the bud 

scales allows for increased oxygen uptake and increased respiration.  Dami and Beam 

(2004) also suggested that cultivars that are late in bud break may require a later 

application compared to cultivars with early bud break. 

Dami (2007) reported that a study was conducted in Virginia and continued in 

Illinois and Ohio regarding the use of several oil types (mineral-based oils such as JMS 

stylet oil and soybean-based oils, including crude soybean oil, and oils with adjuvants, 

such as Amigo, Prime and Soydex) on several grape cultivars.  They found that oil rates 

above 10% (v/v) of all oils that were applied were phytotoxic to most cultivars and Stylet 

was even phytotoxic at concentrations of 2.5% (v/v).  Dormant oils applied at non-toxic 

rates delayed bud break of several cultivars from 2 to 19 days.  However, they also noted 
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that bud break delay beyond 10 days has deleterious effects on shoot and fruit growth.  

They demonstrated that bud break delay of ‘Chardonel’ was also associated with a 30% 

reduction in respiratory activities of oil-treated buds as compared to untreated buds. 

Mcfarland and Mcfarland (2008) treated ‘Marachel Foch’, ‘St. Croix’, and 

‘Brianna’ at Mac’s Creek vineyard in central Nebraska with Amigo Oil and Alginate Gel.  

Amigo Oil was applied with a backpack sprayer until runoff and single buds were 

manually coated with the alginate gel using a paint brush.  They concluded that Alginate 

Gel did not result in a significant delay in bud development for all three cultivars.  Amigo 

Oil resulted in a delay in bud break from 7 to 21 days depending upon the cultivar.  
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CHAPTER 3 

Year 1: Pilot Study, 2012

Purpose: The first year’s experiment was set up as a pilot study to obtain a variance of 

bud break that would be used to design the following year’s experiment.  

Materials and Methods:

Site Selection 

 Applications were made during the winter of 2012 at James 

located near Raymond, Nebraska (40° 57' 19.8396'' N, 96° 45' 4.8312'' W).

across the vineyard are Aksarben silty clay loam, Mayberry silty clay loam, and 

Nodaway silt loam.     

Figure 2: Aerial view of 14

(Google-Maps, 2013). 

Year 1: Pilot Study, 2012 

The first year’s experiment was set up as a pilot study to obtain a variance of 

bud break that would be used to design the following year’s experiment.  

Materials and Methods: 

Applications were made during the winter of 2012 at James Arthur Vineyards 

located near Raymond, Nebraska (40° 57' 19.8396'' N, 96° 45' 4.8312'' W).

across the vineyard are Aksarben silty clay loam, Mayberry silty clay loam, and 

: Aerial view of 14-year-old ‘Edelweiss’ plot used for experimentation in 2012 
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The first year’s experiment was set up as a pilot study to obtain a variance of 

bud break that would be used to design the following year’s experiment.   

Arthur Vineyards 

located near Raymond, Nebraska (40° 57' 19.8396'' N, 96° 45' 4.8312'' W).  Soil types 

across the vineyard are Aksarben silty clay loam, Mayberry silty clay loam, and 

 

plot used for experimentation in 2012 
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Grapevines 

  ‘Edelweiss’ grapevines were chosen for this experiment for their early bud break 

potential and wide popularity amongst grape growers and wine makers in Nebraska.  The 

vines were 14 years old and were trained to a Geneva Double Curtain (GDC) trellis 

system.  Plant spacing was 8 feet (2.44 m) and row spacing was 12 feet (3.66 m). Row 

orientation is north to south. 

Experiment 

 The treatments consisted of 1000 ppm NAA (PhytoTechnology Laboratories, 

Shawnee Mission, KS), 10% (v/v) Amigo Oil (Loveland Industries, Greely, CO) which 

consisted of 9.3% soybean oil, 0.7% emulsifier and 90% water and a control which had 

no spray application.  Treatments were applied to two rows consisting of 18 vines each.  

Within each row were three treatments where each treatment was applied to six vines, 

representing one experimental unit.  NAA concentrations were prepared by weighing out 

1000 mg of NAA and dissolving in roughly 10 ml 1M sodium hydroxide (NaOH) and the 

volume was completed to 1000 ml with deionized distilled water.  The pH of the NAA 

solution was measured and adjusted to 7 by adding a few drops of 1M hydrochloric acid 

(HCl).  Two control rows received no spray applications and were compared against the 

treated rows.   

The first spray date occurred on January 26, 2012 where the 18 unpruned vines in 

each row were sprayed with either NAA or oil using a small one gallon hand sprayer.  On 

the second spray date (February 25, 2012) only 12 of the original 18 vines were sprayed 

and on the final spray date (March 27th, 2012) only 6 of the original 18 vines were 
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sprayed.  Within each of the two rows, six-vine experimental units received one, two or 

three applications of NAA or Amigo Oil.  The spray solution was applied to the entire 

cordon and canes until runoff, which resulted in approximately 0.33 L per vine.  Past 

studies have recommended spraying until runoff; however, the volume used per vine was 

0.7 L (Dami and Beam, 2004; Mcfarland and Mcfarland, 2008; Qrunfleh and Read, 

2010). All vines were cane pruned to five buds following the last spray application 

according to James Arthur’s Vineyards normal vineyard management practices.    

Data Collection 

  Bud break was visually evaluated in the spring of 2012.  Grapevine bud break 

was determined at stage four of the modified Eichhorn-Lorenz system (E-L) scale of 

grapevine development (Coombe, 1995).  Stage four indicates the bud scales have 

expanded to where the first leaf tissue is visible.  Total bud counts for each vine were 

taken.  Bud break was evaluated daily during the spring starting on April 1st.  Bud break 

counts were taken until bud break had reached 60% of the total number of buds allocated 

per vine during pruning.  The number of Julian days starting from January 1, 2012 was 

recorded once 60% of the buds had reached stage four.        

Harvest 

 Harvest occurred on August 2, 2012.  Each plant within the six plant experimental 

unit was completely harvested.  The total cluster number and weight were recorded for 

each plant.  The data for the six vines were combined and averaged together to attain a 

single value.  Once the clusters had been weighed, 100 berries were randomly chosen and 
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placed in a plastic freezer bag, and stored in the freezer (0°F) until berry sample analysis 

could be conducted. 

Berry Analysis 

 Berry analysis was conducted on August 10, 2012, where berry size, pH, °Brix, 

and titratable acidity (TA) were measured.  Berries were removed from the freezer the 

day before testing and placed in a cooler (40°F) to thaw.  On the day of testing, berries 

were removed from the cooler and allowed to warm to room temperature.  The 100 berry 

samples were weighed and average berry size was found.  Berry samples were then 

crushed within their plastic bag and the juice was then extracted by cutting a small hole in 

the bag and allowing the clear juice to run out into a 100 ml beaker.  The extracted juice 

was poured into test tubes to conduct the analyses.  Juice pH was measured with a Pope 

pH/ion meter model 1501.  Soluble solids (°Brix) content was measured using an Atago 

PR-101 digital refractometer.  TA was determined by titration with NaOH, using the 

procedure of  Dharmadhikari and Wilker (2001). 

Results and Discussion: 

Variance and Bud Break 

 Data were gathered in the spring of 2012 in order to obtain a reliable variance (σ²) 

estimate of bud break to use in the following year’s experiment.  The variance within this 

field of 14-year-old ‘Edelweiss’ grapevines had a value of nine.   

Small differences were found amongst the treatments.  The control treatments had 

a mean bud break on April 9, 2012.  The three oil treatments were consistent and also had 
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a mean bud break date of April 9, 2012.  Lastly, the three NAA treatments delayed bud 

break up to five days.  One application of NAA had a bud break range from April 10, 

2012 to April 14, 2012.  While not statistically analyzed, it was clear that little or no 

difference was found with any of the treatments when compared to the control.  With this 

being the case, it was even more vital to run a power analysis to obtain the proper number 

of replications to be used in the following year’s experiment.   A 95% power analysis was 

run where 12 replications were found to be the optimal number.  It was also noted that the 

hand sprayer used for applying NAA and oil was not supplying sufficient consistent 

coverage to the vines.      

Table 1: Mean Julian date of ‘Edelweiss’ grapevines treated with one, two and three 

applications of 1000 ppm NAA or 10% (v/v) Amigo Oil. 

Treatment 
Julian Days until 

Bud Break 

NAA 1 104.3 

NAA 2 100.0 

NAA 3 103.0 

Oil 1 99.2 

Oil 2 99.7 

Oil 3 98.5 

Control 99.1 

Control 98.2 

 *1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 

January, January and February, or January, February and March, respectively. 

Harvest Results: 

 Although harvest and yield components (cluster weight, berry size, pH, °Brix, and 

titratable acidity) can vary greatly from year to year depending upon environmental 
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conditions, harvest data were collected in the August, 2012 as a baseline for the following 

year’s experiment and presented in Appendix 3 & 4. 
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CHAPTER 4 

Year 2: Delaying Bud Break with Multiple Applications of NAA and Amigo Oil

Purpose:  The second year’s 

applications of Amigo Oil and NAA on bud break, harvest parameters and fruit 

characteristics. 

Materials and Methods:

Site Selection 

The second year’s experiment 

as the previous year’s experiment at James Arthur Vineyards located just outside 

Raymond, Nebraska (40° 57' 19.8396'' N, 96° 45' 4.8312'' W).

vineyard are Aksarben silty clay loam, Mayberry silty clay loam, and Nodaway silt 

Figure 3:  Aerial view of 15

(Google-Maps, 2013). 

Year 2: Delaying Bud Break with Multiple Applications of NAA and Amigo Oil

The second year’s experiment was done to observe the effects of multiple 

applications of Amigo Oil and NAA on bud break, harvest parameters and fruit 

Materials and Methods: 

The second year’s experiment performed in 2013 was done in the same 

as the previous year’s experiment at James Arthur Vineyards located just outside 

Raymond, Nebraska (40° 57' 19.8396'' N, 96° 45' 4.8312'' W).  Soil types across the 

vineyard are Aksarben silty clay loam, Mayberry silty clay loam, and Nodaway silt 

:  Aerial view of 15-year-old ‘Edelweiss’ plot used for experimentation in 2013 
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Year 2: Delaying Bud Break with Multiple Applications of NAA and Amigo Oil 

experiment was done to observe the effects of multiple 

applications of Amigo Oil and NAA on bud break, harvest parameters and fruit 

was done in the same vineyard 

as the previous year’s experiment at James Arthur Vineyards located just outside 

il types across the 

vineyard are Aksarben silty clay loam, Mayberry silty clay loam, and Nodaway silt loam.  

old ‘Edelweiss’ plot used for experimentation in 2013 
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Grapevines  

 Treatments were again applied to the same vineyard consisting of 15-year-old 

‘Edelweiss’ grapevines.  Vine and row spacing were the same as the previous year with 

vine spacing being 8 feet (2.44 m) and row spacing being 12 feet (3.66 m).  The vines are 

trained and trellised on a Geneva Double Curtain (GDC) design.  The vines were under 

standard vineyard management practices throughout the year.     

Experiment 

 A Youden Square incomplete randomized block design was used and replicated 

three times.  Each Youden Square consisted of a 4 x 7 blocking scheme (row x column) 

and contained a total of 28 experimental units.  There were four experimental units per 

treatment; each unit consisted of four vines, with data being taken from the second and 

third vines (center two).  Blocking was done both on the row and column, accounting for 

the elevation change from the top of the row to the bottom and for the elevation and soil 

differences across the vineyards.   Each row consisted of no less than 24 vines and within 

each row four treatments were randomly assigned.  The first plant of each row acted as a 

buffer and did not receive a treatment.  Vines two through five on each row received the 

first treatment, vines six and seven acted as buffer plants and the next treatment was 

applied to vines eight through eleven (Figure 4).  Between each four vine experimental 

unit a two vine buffer was assigned.  In two instances, in rows 32 and 34, a series of vines 

had been replanted and required the reassignment of two treatments laterally across the 

vineyard to rows 20 and 22.  In two more cases, control treatments were mistakenly 
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sprayed, making it necessary to reassign two new control experimental units in row 20 

and 22 (Figure 4).  

The experiment consisted of seven treatments, including the control and included 

one, two or three applications of either 1000 ppm NAA (PhytoTechnology Laboratories, 

Shawnee Mission, KS) or 10% (v/v) Amigo Oil (Loveland Industries, Greely, CO) 

applied at monthly intervals.  NAA concentrations were prepared by weighing out 49.4g 

NAA powder and dissolving in roughly 100 ml of .5 M sodium hydroxide (NaOH) and 

the volume was then completed to 1000 ml by adding distilled water, which was then 

mixed on site with 13 gallons of water.       

 

Figure 4: Layout of treatments within the vineyard at James Arthur Vineyards near 

Raymond, Nebraska.      

Custom Sprayer 

It was determined during the prior year’s pilot experiment that the sprayer 

previously used provided inadequate coverage for the increased scale of this experiment.  
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Backpack and hand sprayers have been most commonly used in similar experiments 

(Dami and Beam, 2004; Mcfarland and Mcfarland, 2008; Myers et al., 1996; Qrunfleh 

and Read, 2010).  However, with the large size of this experiment hand sprayers would 

be insufficient.  With around 40 gallons of spray solution of both NAA and Amigo Oil 

being applied, a backpack sprayer would have to be refilled a total of 16 times.  With this 

in mind, it was decided that a new sprayer would be developed to meet the needs of this 

large scale experiment.  It was decided the best option would be to modify a conventional 

all-terrain vehicle (ATV) sprayer and build a spray apparatus mountable to the front rack 

of the ATV.  The articulating spray nozzles would increase the coverage and the steady 

pressure of the electric pump would increase consistency.   In addition, time necessary to 

make applications would be dramatically decreased as would human fatigue when 

compared to using a backpack sprayer.  A basic 25 gallon ATV sprayer was used and 

outfitted with a tank agitator.  In the absence of a tank agitator the oil separates from the 

water in mere minutes (Figure 5).  As the oil separates, vines receive inconsistent 

concentrations of oil across the vineyard.  The first vines sprayed receive less than the 

recommended 10% oil while the last vines sprayed receive far more than 10%.   The 

presence of a tank agitator is a factor that should equalize the concentration of oil that 

each plant receives.   
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Figure 5. Example showing the time it takes for Amigo Oil at a 10% concentration (9.3% 

oil and 0.7% emulsifier) to separate from water in the absence of agitation. 

The sprayer apparatus was mounted to steel brackets on the front of an ATV and 

was adjustable horizontally and vertically to accommodate for changes in trellis height.  

The sprayer used three CountyLine® Multi-Range Flat Spray Tips (LU 80-04S), each of 

which was on its own adjustable arm, allowing fine-tuning adjustment for the most 

optimum spray angle.  At the conclusion of multiple applications, it was quickly realized 

that a mechanical, electric pump driven sprayer is much more effective at attaining the 

optimum coverage for applying NAA and Amigo Oil (Figure 6 & 7).  It was also 

observed that when vines were sprayed until runoff, the solution tended to run down the 

cane until it hit a node/bud where it then accumulated (Figure 8).     



41 

 

 

Figure 6. ATV Sprayer modified to spray Amigo Oil and NAA on unpruned vines. 

 

Figure 7.  Flat fan spray nozzle attached to the adjustable arms of the sprayer.  The small 

droplets easily penetrate into the cordon area and cover all buds.   
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Figure 8.  Visual evidence of “spraying until runoff”, where droplets are accumulating at 

the buds and nodal sections of the cane. 

The first NAA and Amigo Oil applications were made on January 4th, 2013 

starting at 10:00 am.  The weather was clear with temperatures in the morning around 

15°F and reaching a high of about 32°F in the afternoon with wind speeds around 10 

mph.  About 8 inches of snow was on the ground.  The first applications were made with 

NAA and an initial volume of 13 gallons was mixed and sprayed.  The sprayer was set up 

to spray the cordon and the canes 12” above or below the cordon.  Canes outside of this 

region would eventually be pruned off.  Also, with the vines being trained to a GDC, it 

was necessary to spray both sides of each row.  After NAA applications, the tank and 

lines were flushed and cleaned to remove any excess NAA.  Amigo Oil was the second 

treatment and was mixed on site by adding 2.5 gallons of oil to 22.5 gallons of water.  

The extremely low temperatures caused the build-up of Amigo Ice in the tank, lines and 
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spray tips when the sprayer was shut down for more than a few minutes.  As long as the 

sprayer was running the system would not freeze, however, when the solution ran out, the 

lines would quickly freeze and the system would have to be thawed out after each refill.  

Conditions such as these are what growers would expect to encounter when making 

applications in winter months.   

A total of 35 gallons of both NAA and Amigo Oil were sprayed on the first spray 

date.  Plants were sprayed until runoff; however, the snow slowed down the ATV and 

plants received 0.9 L, which was slightly more than the expected 0.7 L. 

The second treatment date occurred on February 7th, 2013, starting at 8:00 am.  

Conditions were slightly more optimal than the previous date with temperatures ranging 

from the upper 30s to low 40s °F and winds from the north at 15 mph.  The same 

procedures were used to mix the spray solutions.  The vines identified to receive two and 

three applications were sprayed on this date.  Spray was again applied until runoff with a 

total of 17 gallons sprayed of both the NAA and Amigo Oil, equating to a total of 0.7 L 

per vine.     

The third and final application was made on March 7th, 2013 starting at 8:30 am.  

Conditions were similar to the second application date in February, with temperatures 

ranging from the 30s to 40s °F and the wind from the south at 10-15 mph.  The 

experimental units that received an application on this date were only the treatments 

which were meant to receive an application of NAA or oil in all three months, meaning 

only 1/3 of the original treatments was sprayed.  Fourteen gallons total of NAA and ten 

gallons total of Amigo Oil were sprayed.  It was noticed that at the conclusion of this 
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spray date, a small breeze may be conducive for “swirling” the spray around the cordon 

increasing coverage.    

Once all applications had been completed, the vineyard was pruned by the crew to 

normal standards in the third week of March.   Four canes from the center two vines of 

each replication were randomly selected and marked with ribbon.  All vines were cane 

pruned to five buds following the last spray application according to James Arthur’s 

normal vineyard management practices. 

Data Collection 

 Bud counts were taken every three days and began on May 6, 2013 and concluded 

June 6, 2013 after 80% of buds had opened.  Bud break was determined as stage four of 

the modified Eichhorn-Lorenz (E-L) scale of grapevine development (Coombe, 1995).  

Stage four indicates that the bud scales have expanded to the point where the first leaf 

tissue is visible.  Buds on each of the four preselected canes per experimental unit were 

counted and recorded.  Bud break counts were taken on each preselected cane until bud 

break had reached 80% (four out of five buds open).  Grapevine bud break considered 

complete when 80% of the buds had reached stage four.  The Julian date (beginning 

January 1, 2013) when the cane had reached 80% bud break was determined.  The Julian 

dates of bud break on each of the four canes were averaged together to obtain a mean 

Julian date of bud break for that experimental unit.  

Harvest 

 Harvest occurred on August 21, 2013.  Each experimental unit was harvested by 

removing only the grape clusters only from the four preselected canes.  To keep harvest 
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data consistent with bud break data it was necessary to harvest grape clusters growing 

only from the preselected canes and therefor, only a small percentage of the total fruit per 

plant was harvested.    The total number of clusters and weight was recorded for each two 

plant experimental unit.  The total cluster weight was divided by the total cluster number 

for each experimental unit to obtain the average cluster weight.  Once the clusters had 

been weighed, 100 berries were randomly chosen and placed in a plastic freezer bag, and 

stored in the freezer (-17.8°C) until berry sample analysis could be conducted.   

Berry Analysis 

 Berry analysis was conducted on September 13, 2013, to measure pH, °Brix, and 

titratable acidity (TA).  Berries were removed from the freezer the day before testing and 

placed in a cooler (40°F) to thaw.  On the day of testing, the berries were removed from 

the cooler and warmed to room temperature.  Berry samples were then crushed within the 

plastic freezer bag and the juice was extracted by cutting a small hole in the bag and 

allowing the clear juice to run out into a 100 ml beaker.  The extracted juice was then 

poured into test tubes to conduct the analyses.  Juice pH was measured with a Hanna 

pH/ORP meter model HI 2211.  Soluble solids (°Brix) content was measured using an 

Atago PR-101 digital refractometer.  TA was determined with the use of a Hanna HI 900 

automated titration system. 

NAA and Oil Phytotoxicity to Dormant Buds 

 Bud phytotoxicity resulting from the treatments was also evaluated.  The eight, 

(five bud) preselected canes from each experimental unit were evaluated every two days 

starting May 6, 2013 to June 5, 2013 for bud death (as well as bud break).  The total of 
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unopened buds per experimental unit were recorded and divided by 80% of the potential 

total number of buds (16) to obtain percent of bud mortality.  The three NAA and oil 

treatments were statistically compared to the control to test for effects on bud 

phytotoxicity.  In two experimental units, a single cane was split due to winter injury.  

Buds on these canes were not factored into the total bud death. 

Pruning Weights 

 Pruning weights were collected on March 11, 2014.  Only shoots originating from 

the original four preselected canes were collected and measured.  Pruned shoots from the 

four canes were then combined and weighed yielding a total pruning weight for that 

specific experimental unit. 

Statistical Analysis   

 Data were analyzed using the PROC GLIMMIX procedure to test the effects of 

multiple applications of NAA and oil on bud break, phytotoxicity and yield parameters.  

Three Youden Squares were assigned to the field where blocking occurred in both the 

rows and columns and were random.  P-values were adjusted according to Tukey’s 

method.  PROC GLIMMIX procedure was used to test for effects at different 

measurement dates and the AICC covariance model was used for this procedure.  

(SAS/STAT Version 9.3, SAS Institute, Cary, NC).    
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Results and Discussion: 

Bud Break 

Treatments LS-Means were adjusted for multiple tests and compared at α=0.05.  

Bud break had occurred in all control experimental units by May 6, 2013 (136 Julian 

days).  A significant difference in bud delay was found between oil treatments and both 

control and NAA treatments at (p≤ 0.05) (Appendix 7).    

Bud break was significantly delayed by all three treatments of Amigo Oil when 

compared to the control.  One, two and three applications of oil had a significant effect on 

delaying bud break with a total delay of four days (p=0.0027), six days (p<0.0001), and 

seven days (p<0.0001), respectively.  With one application of oil, bud break was 

observed between May 16th and May 21st yielding a total bud delay between two and 

seven days.  Bud delay ranged four to nine days on May 19th to May 23nd with two 

applications of oil.  Three applications of oil had a bud break range from May 19th to 

May 25th giving a total bud delay between five and eleven days.  

 According to differences in LS-Means, there was no significant difference 

between any of the three Amigo Oil treatments.  However, one application of oil was just 

slightly not significantly different than three applications of oil (p=0.0608) (Appendix 7). 
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Table 2: Julian days until 80% bud break of ‘Edelweiss’ grapevines treated with 1000 

ppm NAA or 10% (v/v) Amigo Oil in each of the three Youden Squares and the mean of 

the three squares.  

Treatment 
Youden 

Square 1 

Youden 

Square 2 

Youden 

Square 3 

Squares 

Combined 

Control 135.06 a 136.50 ace 133.63 a 135.06 a 

NAA 1 135.50 a 135.25 ae 135.13 a 135.29 ac 

NAA 2 135.06 a 137.25 ade 134.56 a 135.63 ac 

NAA 3 136.25 a 134.13 a 137.81 adc 136.06 ad 

Oil 1 135.81 a 141.56 e 138.38 aef 138.58 bcd 

Oil 2 139.06 a 142.81 cdfb 140.13 bdeg 140.67 b 

Oil 3 139.06 a 144.56 b 142.31 cfg 141.98 b 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

* Values in the same column with same letters are not significantly different at p≤ 0.05. 
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Figure 9.  Mean Julian date until 80% bud break of ‘Edelweiss’ grapevines when treated 

with one, two, and three applications of 1000 ppm NAA or 10% (v/v) Amigo Oil.  

Vertical bars represent standard error of means. 

 In some cases, one or more of the five buds on a cane failed to open and were 

included in the bud mortality percentage.  Instances such as this were semi-frequent in all 

treatments, resulting in 80% bud break not being achieved in some of the experimental 

units.  To account for this, the point at which the percent bud break ceased to increase for 

that cane was determined to be the date of bud break.   

A repeated measures ANOVA model was fit to determine the differences of each 

treatment at each of the dates on which bud counts were taken.  Bud counts were taken on 

twelve separate dates beginning on May 4th and ending on June 5th, 2013.  Once the bud 

counts ceased to increase the vine was determined to be budded out.   
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Figure 10.  Plot showing the rate of bud break of one, two or three applications of 1000 

ppm NAA or 10% (v/v) Amigo Oil at each measurement date.    

It is important when analyzing bud break to consider the speed of bud 

development and opening in addition to mean Julian days until bud break.  For instance, 

it would be important to know what percent of the buds are open on a certain date as 

compared to the control.  Figure 10 shows the control having 50% buds open on May 15 

while vines sprayed with three applications of oil have only 9% buds open.  If a freeze 

event occurred on this date only 9% of the vineyard would have primary bud damage had 

it been sprayed three times with oil.  The buds of the control and NAA treatments opened 

sooner than (i.e. 10%) each of the three oil treatments (Figure 10).  Bud break in the 
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control had almost completely occurred (i.e. >70%) by May 17 while three applications 

of oil eventually ceased increasing on May 31.  When bud break was complete (~75%), a 

14 day delay was found between the control and three applications of oil.     

NAA treatments showed a similar response to the control, with no significant 

differences between the control and the three NAA treatments.  Thus, one, two and three 

applications of 1000 ppm NAA had no effect on bud break.  

 The three oil treatments exhibited a greater delay in bud opening than control and 

the NAA treatments.  Buds that received the control and NAA treatments developed 

quickly after the first buds began to open reaching 75% bud break within eleven days.  

The buds receiving oil treatments initially developed much slower.  On May 13, when the 

control was at 50% bud break, treatments of one and three applications of oil were only at 

9% bud break.  However, after 10% of buds had opened the process had begun and all 

treatments then opened at the same rate.  The oil affected the buds by keeping the open 

bud percentage below 10% for a longer period of time.  All three oil treatments were 

significantly different from that of the control (p<0.0001 – p=0.0466) through May 17 

(Figure 10).  The curve began to level off around May 21, indicating the effect of three 

applications of oil was longer lasting on roughly 10% of the buds.  Oil treatments were 

no longer significantly different from the control or the NAA treatments after May 21 and 

remaining buds gradually opened to a final date of May 31. 

The delayed bud opening response occurred successively in conjunction with the 

number of times oil was applied.  Three applications of Amigo Oil showed the greatest 

suppression of bud development and open bud counts stopped increasing on May 31st (14 
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days later than the control).  The control leveled off and reached its highest bud break on 

May 17th with 73% of its buds open.  On the same date, bud break of buds receiving three 

applications of oil was only 40%.  One and two applications of oil were only significantly 

different from one another on May 15 (p=0.0363) where their percentages of bud break 

were 25% for two oil applications and 40% for one oil application.  On remaining dates 

there were no significant differences between one and two applications of oil (Figure 10). 

Delaying bud break up to eleven days and slowing initial bud opening can 

encourage grape growers to use Amigo Oil as a preventative tool for protecting their crop 

from spring freeze injury.  The ability of the oil to delay bud break could be attributed to 

the reduced respiratory activity in the bud. Dami and Beam (2004) concluded nodal 

sections treated with Amigo Oil had 41% less emitted CO2 than that of the controls.  They 

concluded from this work that oil coating of dormant buds may have hindered CO2 

escape from buds, which resulted in decreased respiration.  This also agrees with past 

research where dormant oil was applied to ‘Biscoe’ peaches and internal CO2 

concentrations were measured.  It was concluded that the internal CO2 concentration was 

higher compared to the control (Deyton et al., 1992).  Myers et al. (1996) applied 

soybean oil to ‘Georgia Belle’ peach trees and also reported applications of 10% oil 

increased internal CO2 concentrations and delayed bud break.  Although there were no 

internal CO2 concentration measurements done in our work, conclusions from previous 

studies provide clear reasons as to why soybean oil delays bud break.  Filling air spaces 

between bud scales and reducing internal bud CO2 concentrations is an important 

characteristic contributing to oils ability to delay bud break.   
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NAA and Oil Phytotoxicity to Dormant Buds 

Bud mortality ranged from 3.13% (one application NAA) to 8.72% (control) 

(Table 3).  The control had the highest percentage of bud death of all the treatments.  

There were no significant differences found between any of the treatments at p≤ 0.05.  It 

can be concluded that treatments were not phytotoxic and did not cause increase bud 

mortality.  Dead buds observed may have been the result of winter or mechanical damage 

to the buds.  Dami and Beam (2004) reported vines treated with Amigo Oil sustained 4% 

to 5% injury.  However, in this research injury in Amigo-treated vines was not different 

from that of the control vines, indicating that at a 10% rate Amigo Oil is not phytotoxic.  

Dami and Beam (2004) also mentioned that increased bud death (>12%) in his 

experiment may have been caused by the oils not being thoroughly mixed before 

application.  This corresponds to previous observations where oil can separate from water 

within ten minutes, making it necessary to include a tank agitator in the spray tank.  

Table 3: Bud mortality in 15-year-old ‘Edelweiss’ grapevines in response to multiple 

application of 1000 ppm NAA or 10% (v/v) Amigo Oil.   

Treatment Injury (%) 

Control 8.7 a 

NAA 1 3.1 a 

NAA 2 4.8 a 

NAA 3 5.7 a 

Oil 1 7.3 a 

Oil 2 5.7 a 

Oil 3 6.3 a 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

*Values with same letters are not significantly different at p≤ 0.05. 
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Harvest Results: 

Number of Clusters per Cane 

 Equally important to effectiveness of the NAA or Amigo Oil on bud break is 

treatments not negatively affecting harvest parameters. Table 4 shows there was no 

treatment effect on the number of clusters per cane when ‘Edelweiss’ grapevines were 

treated with multiple applications of NAA and Amigo Oil when compared to the control 

(p≤ 0.05).  Total cluster counts were within the acceptable range when considering the 

implemented grapevine management strategy.   In addition, James Arthur Vineyards had 

one of the largest harvests on record out of the treated ‘Edelweiss’ block.     

Table 4:  Total cluster count per two vine experimental unit treated with one, two and 

three applications of 1000 ppm NAA or 10% (v/v) Amigo Oil to ‘Edelweiss’ grapevines.  

Treatment 
Total Cluster 

Count 

Control 19.6 a 

NAA 1 22.1 a 

NAA 2 23.7 a 

NAA 3 18.8 a 

Oil 1 20.4 a 

Oil 2 18.6 a 

Oil 3 16.2 a 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

* Values with same letters are not significantly different at p≤ 0.05. 
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Table 5: Mean cluster number per cane treated with one, two and three applications of 

1000 ppm NAA or 10% (v/v) Amigo Oil to ‘Edelweiss’ grapevines. 

Treatment 
Mean Cluster 

Number per Cane 

Control 2.2 a 

NAA 1 2.8 a 

NAA 2 3.0 a 

NAA 3 2.3 a 

Oil 1 2.5 a 

Oil 2 2.3 a 

Oil 3 2.0 a 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

*Values with same letters are not significantly different at p≤ 0.05. 

Cluster Weight 

 Table 7 shows there was no treatment effect on the average cluster weight when 

compared to the control (p≤ 0.05).  This supports previous research which has shown 

little or no interaction between NAA or oil treatments and cluster weights (Dami, 2007; 

Dami and Beam, 2004; Qrunfleh and Read, 2010).  There was however a slight 

difference in total cluster weight between two applications of NAA and three applications 

of oil.  In addition, two and three applications of oil had significantly different mean 

cluster weights (p=0.04) (Appendix 11).  These small differences can be attributed to 

inconsistency of berry ripeness at harvest.  The experiment was conducted at a 

commercial winery and the entire ‘Edelweiss’ block was harvested in one day.  It was not 

possible to only pick fruit at the proper ripeness.   
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Table 6: Total cluster count per two vine experimental unit treated with one, two and 

three applications of 1000 ppm NAA or 10% (v/v) Amigo Oil. 

Treatment 
Total Cluster 

Weight (lbs) 

Control 7.2 ab 

NAA 1 8.1 ab 

NAA 2 8.8 a 

NAA 3 7.8 ab 

Oil 1 7.0 ab 

Oil 2 7.0 ab 

Oil 3 4.7 b 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

*Values with same letters are not significantly different at p≤ 0.05. 

 

Table 7: Mean cluster weight after harvest of ‘Edelweiss’ grapevines treated with one, 

two and three applications of 1000 ppm NAA or 10% (v/v) Amigo Oil. 

Treatment 
Mean Cluster 

Weight (lbs) 

Control 0.4 ab 

NAA 1 0.4 ab 

NAA 2 0.4 ab 

NAA 3 0.4 ab 

Oil 1 0.4 ab 

Oil 2 0.4 a 

Oil 3 0.3 b 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

*Values with same letters are not significantly different at p≤ 0.05. 
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Berry Analysis 

 No significant difference between the control and any of the treatments was found 

in °Brix of 100 berry samples of ‘Edelweiss’ berries at p≤ 0.05 °Brix ranged from 12.87 

(control) to 13.51 (NAA 2 & Oil 2) A significant difference was found in pH of the 100 

berry samples between the control and three oil applications (p=0.0438) (Table 8).  

Again, this is the result of inconsistent fruit ripeness across the vineyard.  There were no 

other significant differences found between the control and any of the treatments.  The 

pH of berries ranged from 3.12 to 3.28.  Similarly to °Brix, there were no significant 

differences observed between the control and any of the treatments when measuring TA 

(titratable acidity) of the 100 berry samples (Table 8).  TA ranged from 12.02 g/l to 13.76 

g/l.          

Table 8: Measured values of pH, °Brix, and titratable acidity (TA) from 100 berry 

samples of ‘Edelweiss’ grapevines treated with one, two and three applications of 1000 

ppm NAA or 10% (v/v) Amigo Oil. 

  Treatments 

  Control 1 Oil 2 Oil  3 Oil 1 NAA  2 NAA 3 NAA 

pH 3.28 a 3.14 ab 3.19 ab 3.12 b 3.18 ab 3.19 ab 3.19 ab 

°Brix 12.87 a 13.33 a 13.51 a 13.42 a 12.97 a 13.51 a 13.14 a 

TA 

(g/L) 
12.02 ab 12.76 ab 13.21 ab 13.76 a 12.36 ab 11.58 ab 12.30 b 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 

January, January and February, or January, February and March, respectively. 

*Values in the same row with same letters are not significantly different at p≤ 0.05.   
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Regarding harvest parameters, Dharmadhikari and Wilker (2001) mentioned that 

optimum ranges for white wine would be 21-22 °Brix, 3.2-3.4, and 0.7-0.9% for total 

soluble solids, pH, and the TA, respectively.  ‘Edelweiss’ is harvested at an earlier stage 

regarding °Brix when compared to a cultivar such as ‘Vignoles’.  Swenson et al. (1980), 

mentioned ‘Edelweiss’ juice is relatively low in acidity (0.6-0.8%) and has moderate 

soluble solids (14-16%) and should be picked at an early mature stage (14 °Brix).  There 

has been much controversy amongst winemakers about which harvest parameter is most 

important, pH or soluble solids.  However, harvesting the grapes at optimum pH may be 

the most beneficial because adjusting sugar levels in the juice is far easier than adjusting 

pH. 

 The harvest results of this study were generally in the 21-22% recommended 

range  for total soluble solids (Dharmadhikari and Wilker, 2001).  ‘Edelweiss’ grapes are 

generally harvested with total soluble solids of 12.5-14 °Brix as compared to 

recommended rates of similar cultivars.  

An article entitled “Do Oil Sprays Delay Ripening for Winegrapes?” was 

published in the Wines and Vines Magazine in May 2010.  It was reported that studies in 

eastern states found high oil applications could delay ripening and reduce yields.  This 

corresponds to what was found when applying different concentrations of Prime Oil and 

Amigo Oil to grapevines, which showed high concentrations of either oil caused 

phytotoxicity and bud death resulting in reduced yields (Dami and Beam, 2004).  The 

article reported two studies were conducted in California and showed no effects of JMS 

Stylet-Oil on ripening, number of clusters per vine, cluster weight, berry weight, juice 

pH, juice TA, total sugar per berry or total sugar per vine.  Clearly, bud break delay and 
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yield components are dependent upon the concentration and type of oil used, making it 

necessary to find the proper concentration for the most optimum results.  Multiple 

applications do not appear to have a compounding effect on phytoxicity.  For example, 

three applications of 10% oil do not act similar to a single application of 30% oil        

Pruning Weights 

 Pruning weights were collected on March 11, 2014.  Only the pruning from the 

four preselected canes from each experimental unit were collected and weighed.  The 

pruning weights depicted in Table 9 are just a fraction of the total weight of prunings that 

were removed from the entire experimental unit.  However, there were no significant 

differences in pruning weights between NAA, oil or control treatments.  

Table 9: Mean pruning weights of each of the treatments, taken and weighed on March 

11, 2014. 

Treatment 
Total Pruning 

Weight (lbs) 

Control 1.00 a 

NAA 1 0.92 a 

NAA 2 0.91 a 

NAA 3 1.16 a 

Oil 1 0.87 a 

Oil 2 0.82 a 

Oil 3 0.87 a 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied in 
January, January and February, or January, February and March, respectively. 

*Values with same letters are not significantly different at p≤ 0.05. 
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Climatic Data    

 

Figure 11:  2012 (upper) and 2013 (lower) temperature data from the Oak Creek 

Vineyard, located roughly two miles from research site.  Source: Weather Underground. 

The average temperature for the growing months in 2013 was 68.3°F (20.17°C) 

with a high temperature reaching 100.0°F (37.78°C) as shown in Figure 11.  This 

compared to 2012 which showed an average temperature of 73.7°F (23.17°C) and a high 

temperature of 102.9°F (39.39°C).  More interestingly, comparing March and April of 

2012 and 2013, there were major differences in average and high temperatures between 

these months.  In March 2012, the average temperature was 53.9°F (12.17°C) with a high 

of 91.0°F (32.78°C) and in April 2012 the average temperature was 56.1°F (13.38°C) 

with a high of 91.0°F (32.78°C).  In comparison, March 2013 had an average temperature 

of only 34.4°F (1.33°C) and a high of 70.0°F (21.11°C).  The average temperature in 

April 2013 was 45.3°F (7.39°C) with a high of 82.9°F (28.18°C).  The spring of 2012 

was abnormally warm for this area, while the next year (2013) was the complete opposite 
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and was uncharacteristically cool.  With such a late and cool spring in 2013, we were 

concerned the NAA or oil treatments would not show bud delay effects as the plants were 

already behind schedule.  However, significant differences were found amongst the oil 

treatments and the control, regardless of the abnormally cool spring.  We would expect 

that in a typical temperature based year, bud delay could be extrapolated out even further 

than what was observed.  Vines stayed dormant far into the spring in 2013. However, 

when temperatures suddenly increased, bud break of treatments responded in parallel 

with temperatures (Figure 10 & 11).  Oil appeared to slow the physiological response to 

warmer temperatures and increased day length for a period of time, until it could no 

longer hold back this response. At this point, we then see a dramatic rate increase in bud 

break of oil treatments several days later. 

It was also observed before any bud break counts were taken that oil was clearly 

still on the vines in the spring and summer.  Wood of trunks and canes appeared to have 

been rubbed with furniture oil, giving it a dark chocolate brown color.  Vines sprayed 

with oil were easily distinguished from the control and NAA treated vines.    It is crucial 

that the oil remain on the vines and Dami and Beam (2004) stated that oil effectiveness 

may vary from one season to another according to the degree of oil “weathering”.  

Multiple applications could possibly overcome the “weathering” of the oil throughout the 

winter.   
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CHAPTER 5 

Delaying Bud Break in the Laboratory 2013 

Experiment 1, 2013 

Materials and Methods: 

Plant Material 

Dormant canes of ‘Edelweiss’ grapevines were collected from James Arthur 

Vineyards near Raymond, Nebraska on January 16, 2013.  A total of 150 canes were 

taken from the same ‘Edelweiss’ block in which the field experiment was done, however, 

the canes were taken from rows that had not been sprayed.  The age, vigor, and growing 

conditions of the plants were identical to those of the main experiment.  Canes were 

headed back to the fifth bud and stems with buds six through nine were collected.  It was 

not possible to take the first five buds of the cane as James Arthur is a commercial 

vineyard and we did not want to cause potential fruit losses. 

After collection, canes were brought back to the lab, wrapped in moist newspaper, 

placed in a plastic bag and put into a 1.7°C cooler until experimentation began.  The day 

of experimentation, canes with the seventh position buds were removed from the cooler 

and sorted based upon stem length and diameter.  Only canes with similar sized stems 

were used for experimentation.  The single bud cuttings were soaked in a solution 

containing 10% bleach (Clorox™, 6% Sodium Hypochlorite) for 15 seconds and then 

rinsed with distilled water.   A 4x4 Latin Square design was used and each GA7 vessel 

contained each treatment of either the Amigo Oil or the NAA.  The single bud cuttings 
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were then randomly assigned to a specific treatment by marking with a certain color of 

marking tape.   

Preparing Forcing Solutions 

 A stock of the forcing solution containing 200 mg 8-hydroxyquinoline citrate (8-

HQC)/l and 2% sucrose was prepared by weighing out 0.2 g 8-HQC and 20 g of sucrose 

and adding deionized distilled water to reach 1000 ml (Read et al., 1984).  The forcing 

solution was stored in a dark cooler at 35°F (1.67°C) when not being used.        

Treatments 

The treatments in this experiment were the same as the field experiment. They 

consisted of seven treatments: one, two, and three applications of 10% (v/v) Amigo Oil 

(Loveland Industries, Greely, CO) which consisted of 9.3% oil 0.7% emulsifier and 90% 

water; one, two, and three applications of 1000 ppm NAA (PhytoTechnology 

Laboratories, Shawnee Mission, KS), and the control.  One tray was set up for the three 

treatments of the Amigo Oil and the control, and another tray was set up for the three 

NAA treatments.  NAA concentrations were prepared as described earlier.  Treatments 

were applied according to Qrunfleh and Read (2010) on buds by adding one drop per bud 

using a sterile transfer pipette.  Oil and NAA treatments were applied at weekly intervals, 

up to three weeks.  After treatment, the single-bud canes were placed vertically (proximal 

ends down) in GA7 vessels containing approximately 100 ml of freshly prepared forcing 

solution.  The solutions in the GA7 vessels were replaced with freshly prepared forcing 

solution every two or three days as the volume of the solution decreased.  The GA7 

vessels (PhytoTechnology Laboratories, Shawnee Mission, KS) were placed under 



65 

 

artificial light at 12 hour days and at 25°C.  Days to bud break starting from the date of 

treatment were recorded throughout the study.  Buds that did not show bud break were 

cut into longitudinal sections and examined under a stereomicroscope to examine the 

viability of the bud and any phytotoxic effects of the treatments. 

Experiment 2, 2013 

Materials and Methods: 

 ‘Edelweiss’ canes collected from James Arthur Vineyards from the previous 

experiment were used; however, bud positions six and eight were used for 

experimentation.  Canes were cut into single bud cuttings and separated based upon either 

bud position six or eight.  The single bud cuttings were sorted by stem length and 

diameter to ensure uniformity.  The single bud cuttings were soaked in a solution 

containing 10% bleach for 15 seconds and rinsed with distilled water.  A randomized 

complete block design was used where each GA7 vessel contained each treatment of 

either the Amigo Oil or NAA.  The single bud cuttings were then randomly assigned to a 

specific treatment by wrapping with a certain color of marking tape.   

Preparing Forcing Solutions 

 A stock of forcing solution containing 200 mg 8-hydroxyquinoline citrate (8-

HQC)/l and 2% sucrose was prepared by weighing out 0.2 g 8-HQC and 20 g of sucrose 

and adding deionized distilled water to reach 1000 ml (Read et al., 1984).  The forcing 

solution was stored in a dark cooler at 1.67°C when not being used.        
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Treatments 

 The experiment consisted of the same treatments as the previous forcing solution 

experiment and the field experiment.  The seven treatments were: one, two, and three 

applications of 10% (v/v) Amigo Oil (Loveland Industries, Greely, CO) which consisted 

of 9.3% oil, 0.7% emulsifier and 90% water; one, two, and three applications of 1000 

ppm NAA (PhytoTechnology Laboratories, Shawnee Mission, KS), and the control.  One 

tray was set up for three treatments of the Amigo Oil and the control, and another tray 

was set up for NAA treatments.  NAA concentrations were prepared as described earlier.  

Treatments were applied differently from the previous experiment. It was found that 

placing a single drop of the oil or NAA on the bud did not completely cover the entire 

bud and in some cases the drop fell off the bud.  Insufficient and inconsistent coverage 

was occurring by using the single drop method.  A new simple method of applying the 

treatments involved mixing up the 10% (v/v) oil or 1000 ppm NAA, placing the solution 

into a 100 ml beaker and dipping the single bud cutting into the solutions for five 

seconds.  Oil and NAA treatments were applied at weekly intervals, up to three weeks.  

After treatment, single-bud canes were placed vertically (proximal ends down) in GA7 

vessels containing approximately 100 ml of freshly prepared forcing solution.  Because 

of the previously failed experiment, the forcing solution was replaced with 100 ml of 

freshly prepared forcing solution every four days and the basal 0.2 cm ends of the 

cuttings were cut off each time the solutions were changed.  The GA7 containers were 

placed under 12 hour days of artificial light at room temperature 25°C.  Days to bud 

break starting from the date of treatment application were recorded throughout the study.  

Buds that did not break were examined according to Qrunfleh and Read (2010) by cutting 
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into longitudinal sections and examining under a stereomicroscope to examine the 

viability of the bud and any phytotoxic effects caused by treatments.   

Analysis of Variance was conducted using the PROC GLIMMIX procedure to 

test the effects of multiple applications of NAA and oil on bud break.  All analyses were 

conducted using SAS/STAT Version 9.3, SAS Institute, Cary, NC.   

 

Figure 12: ‘Edelweiss’ single-bud cuttings being forced in forcing solution consisting of 

200 mg 8-hydroxyquinoline citrate and 2% sucrose. 

Results and Discussion: 

 A total of 192 single-bud cuttings were used in this experiment.  With the 

exception of one bud in the NAA experiment, the only buds which showed phytotoxic 

effects came from the oil experiment.  A total of 5 out of 96 buds showed phytotoxic 
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effects and failed to grow.  Dami and Beam (2004)  reported 6-10% bud injury with 

Prime Oil and 4-5% with Amigo Oil.  In this experiment Amigo Oil showed phytotoxic 

effects just over 10%.  These phytotoxic effects may be the result of the oil not being 

physically degraded from the buds by environmental conditions.  It is also possible that 

buds on the preselected canes may have already been injured or dead, as there is no way 

to check for bud health in the field without killing the bud.  During the selection process, 

only canes with plump healthy appearing buds were chosen.  

 Lavee and May (1997) discussed reasons for the lack of growth could be 

explained by: physical or chemical conditions external to the bud or bud scale restriction 

by enclosing bract tissue.  Qrunfleh and Read (2010) experienced similar difficulties and 

had 10% bud mortality in laboratory trials forcing single-bud cuttings.  This was 

explained by single-bud cuttings taken too early where the grapevines were still in the 

endodormant stage.  In addition, cuttings may have not received adequate chilling hours 

because the month of January had abnormally high temperatures.   
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Figure 13: ‘Edelweiss’ single bud cutting treated with oil showing phytotoxicity and 

complete bud death (left). ‘Edelweiss’ single-bud cutting treated with oil showing no 

phytotoxicity effects to the primary and secondary buds (right).   

No significant differences were found between bud position (#6 and #8) in either 

the oil or NAA experiments as seen in Table 10.  As a result the #6 and #8 bud position 

experiments were combined and analyzed together to increase statistical power. 

Table 10: Type III test of fixed effects, testing for differences amongst bud position #6 

and #8 treated with one, two and three applications of 1000 ppm NAA or 10% (v/v) 

Amigo Oil. 

Effect F-value Pr > F 

Bud Position * NAA 
Treatments 

0.6 0.6196 

Bud Position * Oil Treatments 0.63 0.6008 
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Table 11:  Comparison of one, two, and three applications of 1000 ppm NAA or 10% 

(v/v) Amigo Oil to ‘Edelweiss’ single bud cuttings to the control.  Buds were forced 

under laboratory conditions using 200 mg 8-hydroxyquinoline citrate and 2% Sucrose.  

Treatments Estimate Standard Error Adjusted P-value 

Control vs NAA 1 -5.292 1.552 0.0060 

Control vs NAA 2 -7.034 1.570 0.0002 

Control vs NAA 3 -8.500 1.552 <.0001 

Control vs Oil 1 -5.136 3.519 0.4689 

Control vs Oil 2 -14.307 3.570 0.0011 

Control vs Oil 3 -24.266 3.611 <.0001 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied at 

weekly intervals. 

*Values are significantly different at p< 0.05    

 Significantly different delays were observed between all three NAA treatments 

and the control at P≤ 0.05.  There was not a difference in the amount of bud delay 

between one application of oil and the control; however, there was a significant delay 

between the two and three oil applications and the control (Table 11).   
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Figure 14: ‘Edelweiss’ single-bud cutting treated with 1000 ppm NAA showing bud 

expansion.   
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Figure 15:  Number of Julian days until ‘Edelweiss’ single-bud cuttings showed bud 

break at bud position six and eight treated with one, two or three applications of 1000 

ppm NAA  or 10% (v/v) Amigo Oil.  Control 1 is associated with the oil treatments and 

control 2 is associated with the NAA treatments.  Vertical bars represent standard error of 

means. 

 Figure 15 corresponds directly to data gathered in the field where each additional 

application of oil significantly extends the date of bud break.  Each of the three oil 

applications was significantly different from one another at P≤ 0.05 (Table 11).  NAA 

treatments showed similar response oil where each additional application extended the 

date of bud break.  However, there was not a statistically significant difference between 

one, two or three applications of NAA (Table 11). 

 

 

2013065

2013070

2013075

2013080

2013085

2013090

2013095

2013100

2013105

2013110

2013115

2013120

1 2 3

J
u

li
a
n

 D
a
te

 o
f 

B
u

d
 B

re
a
k

Number of Applications

Oil

NAA

Control 1

Control 2



73 

 

Table 12:  Comparison of single bud cuttings treated with one, two and three applications 

of 10% oil and 1000 ppm NAA.  

Treatments Estimate Standard Error Adjusted P-value 

NAA 1 vs NAA 2 -1.742 1.570 0.6848 

NAA 1 vs NAA 3 -3.208 1.552 0.1749 

NAA 2 vs NAA 3 -1.466 1.570 0.7868 

Oil 1 vs Oil 2 -9.170 3.570 0.0612 

Oil 1 vs Oil 3 -19.129 3.611 <.0001 

Oil 2 vs Oil 3 -9.959 3.661 0.0426 

*1, 2, and 3 corresponds to the number of treatments of NAA or Amigo Oil applied at 

weekly intervals. 

*Values are significantly different at p< 0.05    

Results from NAA treatments in the laboratory experiment showed the opposite 

effect of what was found in the field.  This can be explained by the “weathering” of NAA 

after application to the vines in the field.  Within the field, buds undergo harsher 

conditions than buds in a controlled laboratory environment.  This “weathering” effect in 

the field may be the primary reason NAA treatments showed no bud break delay in the 

field but showed significant delays in the laboratory.  The lack of “weathering” in the lab 

allows the NAA to stay on the canes and buds where it slows the escape of respiratory 

CO2 and suppresses buds response to increased light and temperature.   

Solely through visual observations, oil treated buds showed secondary growth bud 

before primary bud growth.  This may be explained by oil and NAA slowing respiration 

in the primary bud to an extent that plants push the secondary bud.  However, once the oil 

is weathered away or the signal is overcome the primary bud begins to grow.  This 
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phenomenon was also observed in the field experiment where both primary and 

secondary buds pushed simultaneously (Figure 16 & 17).   

 

Figure 16:  The primary and secondary buds opening simultaneously on 15-year-old 

‘Edelweiss’ grapevines. 
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Figure 17: Primary bud opening after the secondary bud on 15-year-old ‘Edelweiss’ 

grapevines. 

Laboratory Experiment Comparing January Application and the Control 

 It was unclear if the application in the first week of January would delay bud 

break.  During the time of application weather was not optimal where temperatures were 

between 28°F and 32°F and 8 inches of snow was on the ground.  Below freezing 

temperatures caused the buildup of “Amigo Ice” within the sprayer, requiring thawing 

each time the tank was refilled.  Low temperatures caused spray solution to freeze 

instantly as it coated the vines.  A combination of these problems made it unclear as to 

whether or not the treatments would be effective.  To test for treatment effects, dormant 

single-bud cuttings were collected from the one oil, one NAA and the control treatments 

sprayed in January.  Single-bud cutting were brought back to the lab and forced under a 
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controlled laboratory environment.  Effects of the treatments were analyzed in an 

identical way to the field experiment and related to the field results. 

Materials and Methods: 

Preparing Forcing Solutions 

 A stock of the forcing solution containing 200 mg 8-hydroxyquinoline citrate (8-

HQC)/l and 2% sucrose was prepared by weighing out 0.2 g 8-HQC, 20 g of sucrose and 

adding deionized distilled water to reach 1000 ml (Read et al., 1984).  The forcing 

solution was stored in a dark cooler at 1.7°C when not being used.        

Plant Material 

Single bud cuttings were collected on April 1, 2013 from vines receiving one 

application of NAA, Amigo Oil and the control.  Canes were selected from the two 

outside plants of the four plant experimental unit since the center two plants were used 

for data collection in the field experiment.  A single bud cutting (5th position bud) was 

taken on either side of the row from each plant, with a total of four cuttings taken per 

experimental unit.  A total of twelve replications of the control, NAA, and Amigo Oil 

treatments were collected, yielding a total of 144 cuttings.   

 The single bud cuttings were brought back to the lab, immediately had the basal 

0.2 cm ends cut off and were placed basal-end-first into baby food jars containing 100 ml 

of 8-HQC.  Cuttings were placed on a light rack under 12 hour days at 25°C.  The baby 

food jars were arranged identically to their orientation and blocking in the vineyard.  

Each jar contained four single bud cuttings of the same experimental unit.  The solutions 
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were replaced with 100 ml of freshly prepared 8-HQC every four days and the basal 0.2 

cm ends of the cuttings were cut off each time the solutions were changed.  Julian days to 

bud break beginning from the date of when the cuttings were placed in forcing solution 

were recorded throughout the study.  After all cuttings had broken bud, the four single-

bud cuttings for each experimental unit were averaged together to obtain a final bud 

break date for that treatment experimental unit.  Buds that did not show bud break were, 

cut into longitudinal sections and examined under a stereomicroscope to examine the 

viability of the bud and any phytotoxic effects of the treatments according to Qrunfleh 

and Read (2010).       

Analysis of Variance was conducted using the PROC GLIMMIX procedure to 

test the effects of multiple applications of NAA and oil on bud break.  All analyses were 

conducted using SAS/STAT Version 9.3, SAS Institute, Cary, NC.   

Results and Discussion:  

 A total of 144 single-bud cuttings were used in this experiment.  Bud mortality 

was minimal, where in both the oil and NAA treatments a total of just two buds failed to 

open (≈4% bud mortality).  The single-bud cuttings used for this experiment were 

collected later in the winter than the cuttings used for the forcing experiment, resulting in 

a faster rate of bud break.  This response can be attributed to the buds being in the early 

stages of ecodormancy. 

 The three Youden Squares were analyzed separately and combined after no block 

effect was found.  The control broke bud April 22, 2013 and buds treated with one 
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application of NAA occurred two days later on April 24, 2013.  Finally, buds treated with 

one application of Amigo Oil broke bud ten days later on May 2, 2013. 

Table 13: Number of Julian days until bud break of single bud cuttings treated with one 

application (in January) of 1000 ppm and 10% (v/v) Amigo Oil in each of the three 

blocks and the mean of the blocks. 

Treatment 
Youden 

Square 1 

Youden 

Square 2 

Youden 

Square 3 

Squares 

Combined 

Control 113.13 111.88 112.19 112.40 a 

NAA 1 116.50 116.00 109.69 114.06 a 

Oil 1 113.88 127.96 124.13 121.99 bc 

*1 corresponds to the number of treatments of NAA or Amigo Oil. 

*Values in the same row with same letters are not significantly different at p≤ 0.05.   

 Similar to the field experiment, there was a significant difference between one 

application of oil and the control (p=0.0225) (Table 13).  However, it was interesting that 

the statistical significance was greater in the laboratory than the field experiment 

(p=0.0403) (Table 13).  This reinforces the fact that “weathering” degrades treatments in 

the field, making it necessary to apply multiple applications.  The cuttings that were 

removed from the corrosive environment of the vineyard and brought into a controlled 

laboratory setting showed a more significant delay than the buds that were left out in 

field.  

 One application of NAA also showed similar results to the field experiment and 

was not significantly different from the control (p=0.0833) (Table 13).  However, in the 

laboratory experiment the single application of NAA was much more significant than the 
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single application in the field experiment (p=0.9999).  Again, “weathering” of the NAA 

is a major factor in deteriorating the effectiveness of the NAA. 
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CHAPTER 6  

Conclusions: 

1. Bud break is greatly dependent upon spring temperatures (growing degree days) 

and the effect of applying Amigo Oil will either be magnified or minimized 

depending upon the rate of the accumulation of growing degree days in the spring. 

2. The initial delay of bud opening after treatments is or as more important than the 

actual final date of bud break.  It was observed that none of the treatments 

suppressed 100% of the buds, but the initial rate at which buds opened was 

significantly different between one and two applications of oil when compared to 

the control.    

3. Amigo Oil did not exhibit the 20-day delay reported by Dami and Beam (2004), 

or the 12 days reported by Qrunfleh and Read (2010).  However, with three 

applications of oil a bud delay between 5-11 days was observed.  In years where 

an earlier spring occurs it may be expected that these delays could be extended.   

4. Amigo Oil applications showed better performance compared to the control, with 

one application of  oil delaying bud break four days compared to the control, two 

applications delaying bud break six days, and three applications delaying bud 

break by seven days. 

5. 1000 ppm NAA did not exhibit the 7-day delay reported by Qrunfleh and Read 

(2010) using ‘Edelweiss’ grapevines.  There was absolutely no effect of one, two, 

or three applications of NAA on bud break in the field study. 

6. Delaying bud break with oil and trying to delay bud break with 1000 ppm NAA 

showed no negative impact on berry characteristics.  Differences that occurred in 
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pH of the berries appeared to be the result of differences in vine sampling 

location.  

7. In forcing solution studies, one, two and three applications of NAA significantly 

delayed bud break when compared to the control.  Two and three applications of 

oil significantly delayed bud break when compared to the control.   Forcing buds 

in controlled laboratory environment eliminated the “weathering” of the oil and 

maximized the effects of the treatments.  The favorable conditions (i.e. light 

quality, day length, temperature) of the environment also contributed to the 

increased effectiveness of the auxin NAA.   

8. To achieve optimum vine coverage a hand sprayer will not suffice.  For large 

scale vineyard a mechanical sprayer must be built for consistent spraying.  A tank 

agitator must also be installed within the tank when using Amigo Oil, as 

separation begins within 10 minutes.   

As a result of this research, it can be recommended to apply 10% (v/v) Amigo Oil 

a minimum of two times at monthly intervals to vineyards prone to spring freeze events 

and on cultivars that exhibit early bud break, such as ‘Edelweiss’.  It would be 

recommended to begin oil applications in the first week of February followed by another 

application in March.  If a later than normal spring occurs, there may be enough time to 

make a third application.  Rather than looking at the final date of bud break, growers 

should examine slowed rate of bud break on grapevines treated with oil.  Slowing the rate 

of bud break in the spring will provide a lower percentage of primary buds being injured 

should a spring freeze occur.  
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NAA at 1000 ppm should not be used in vineyards to delay bud break.  These 

treatments showed no delay in bud break on ‘Edelweiss grapevines.  In addition, it is not 

feasible for growers to mix up hundreds of gallons of NAA by dissolving the NAA 

powder in 1M sodium hydroxide.  If a bud delay is shown in the future using NAA, a 

liquid NAA product must be developed with the inclusion of a spreader sticker.   

Cost would be an important deciding factor for the grower to contemplate.   

According to Qrunfleh and Read (2010)  the total price per acre to apply Amigo Oil is 

$106.  Are the costs of applying $106 worth of Amigo Oil (not including labor, 

machinery, fuel) per acre lower than what the grower would see in extra profits at the end 

of the season?  Unfortunately, it is not possible for growers to predict when a spring 

freeze will occur, but the use of Amigo Oil as a precautionary measure can help protect 

the vineyard.  It is important to note that it would not be recommended for growers to 

apply oil to the entire vineyard but rather to freeze prone areas or early bud breaking 

cultivars.  In order to protect vineyards sites in spring freeze prone areas, growers must 

be proactive and implement either cultural practices, chemical practices, or both to avoid 

spring frost damage.     

Future research is necessary to explore the mechanisms of how Amigo Oil delays 

bud break in grapevines.  The timing of application should also be further explored, such 

as applying oil immediately prior to a freeze event.  Making multiple applications at 

weekly intervals, rather than monthly, later in the winter may provide similar or better 

results.  It would also be interesting if a spreader sticker was incorporated into the NAA 

solution.  This change would allow the NAA to stick to the vines and buds more 

effectively and would possibly delay bud break as does the Amigo Oil.    
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Appendices: 

Appendix 1: Modified Eichhorn and Lorenz Bud Growth Stages 

Source: Coombe (1995) 
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Appendix 2: Julian Date Calender 
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Appendix 3: Year 1, Multiple Applications of 1000 ppm NAA 

Number of 

Applications 

Plant 

Number 

Julian 

Days Until 

Bud Break 

Total 

Cluster 

Number 

per 

Vine 

Total 

Fruit 

Harvested 

per Vine 

(lbs) 

Mean 

Cluster 

Weight 

(g) 

pH °Brix 
TA 

(g/100ml) 

3 4 104 48 9.40 0.196 3.92 15.7 0.92 

3 5 101 39 5.90 0.151 3.99 16.2 0.83 

3 6 101 26 5.10 0.196 3.90 16.5 0.80 

3 7 101 43 7.15 0.166 4.01 16.7 0.84 

3 8 101 55 8.10 0.147 3.87 16.6 0.81 

3 9 108 48 6.65 0.139 3.64 15.1 1.07 

2 10 95 49 6.90 0.141 3.59 13.8 1.08 

2 11 101 64 13.10 0.205 3.72 16.1 1.04 

2 12 95 51 7.60 0.149 3.59 14.8 1.16 

2 13 101 27 7.00 0.259 3.91 15.7 0.78 

2 14 104 32 7.95 0.248 3.65 14.8 0.95 

2 15 104 44 8.75 0.199 3.70 14.6 1.11 

1 16 104 44 6.05 0.138 3.89 16.6 0.84 

1 17 104 40 7.65 0.191 3.76 16.4 0.87 

1 18 101 74 11.95 0.161 3.84 16.2 0.93 

1 19 108 42 7.25 0.173 3.76 15.9 0.77 

1 20 101 48 7.75 0.161 3.63 15.2 1.01 

1 21 108 47 8.30 0.177 3.77 15.4 1.08 

Control 4 97 47 9.50 0.202 3.53 16.5 0.69 

Control 5 97 39 5.90 0.151 3.89 17.8 0.59 

Control 7 108 39 8.15 0.209 3.70 16.1 0.80 

Control 10 97 22 4.40 0.2 3.58 16 0.95 

Control 15 97 77 9.60 0.125 3.95 16.6 0.69 

Control 18 97 46 10.45 0.227 3.83 16.6 0.74 
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Appendix 4: Year 1, Multiple Applications of 10% (v/v) Amigo Oil 

Number of 

Applications 
Plant 

Julian 

Days Until 

Bud Break 

Total 

Cluster 

Number 

per 

Vine 

Total 

Fruit 

Harvested 

per Vine 

(lbs) 

Mean 

Cluster 

Weight 

(g) 

pH °Brix 
TA 

(g/100ml) 

3 4 97 79 12.10 0.153 3.97 17.3 0.705 

3 5 104 21 2.90 0.138 3.97 17.1 0.600 

3 6 97 49 16.30 0.333 4.05 17.8 0.600 

3 7 99 89 15.30 0.172 4.01 18.1 0.660 

3 8 99 66 11.15 0.169 3.89 16.5 0.750 

3 9 99 32 5.00 0.147 3.78 16.6 0.750 

2 10 104 41 7.00 0.171 3.88 16.5 0.765 

2 11 108 43 11.75 0.273 3.93 15.5 0.720 

2 12 97 44 7.35 0.167 3.91 16.9 0.765 

2 13 99 39 8.05 0.206 4.03 17.6 0.720 

2 14 95 27 5.55 0.207 3.98 16.7 0.690 

2 15 95 68 7.55 0.111 3.73 16.5 0.870 

1 16 95 59 10.45 0.177 3.99 16.2 0.750 

1 17 104 25 2.60 0.104 3.99 17.4 0.645 

1 18 101 57 8.75 0.148 3.75 16.0 0.855 

1 19 95 68 12.65 0.186 3.85 16.2 0.825 

1 20 99 23 3.65 0.159 3.60 14.7 1.125 

1 21 97 55 8.80 0.160 3.89 16.7 0.780 

Control 4 97 191 32.10 0.168 3.92 15.4 0.705 

Control 8 99 34 5.00 0.147 3.81 16.9 0.765 

Control 11 97 32 5.20 0.164 3.96 17.3 0.735 

Control 13 101 57 7.50 0.132 3.90 16.7 0.690 

Control 16 104 28 5.00 0.179 3.79 16.5 0.840 

Control 19 101 31 2.00 0.065 3.64 15.2 1.065 
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Appendix 5: Date of 80% Bud Break of all Measured Canes 

Treatment 

& Row 

Number 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

  
Treatment 

& Row # 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

1 NAA 20 1 13-May 2013133     1 NAA 28 1 13-May 2013133   

  2 15-May 2013135       2 15-May 2013135   

  3 15-May 2013135       3 19-May 2013139   

  4 13-May 2013133 2013134     4 15-May 2013135 2013136 

Control 22 1 15-May 2013135     1 Oil 28 1 13-May 2013133   

  2 28-May 2013148       2 19-May 2013139   

  3 15-May 2013135       3 15-May 2013135   

  4 13-May 2013133 2013138     4 11-May 2013131 2013135 

3 NAA 22 1 15-May 2013135     Control 28 1 15-May 2013135   

  2 15-May 2013135       2 13-May 2013133   

  3 15-May 2013135       3 15-May 2013135   

  4 13-May 2013133 2013135     4 13-May 2013133 2013134 

3 Oil 24 1 28-May 2013148     3 Oil 28 1 15-May 2013135   

  2 15-May 2013135       2 13-May 2013133   

  3 15-May 2013135       3 19-May 2013139   

  4 17-May 2013137 2013139     4 11-May 2013131 2013135 

1 Oil 24 1 15-May 2013135     2 Oil 30 1 15-May 2013135   

  2 15-May 2013135       2 15-May 2013135   

  3 15-May 2013135       3 15-May 2013135   

  4 15-May 2013135 2013135     4 19-May 2013139 2013136 

2 NAA 24 1 15-May 2013135     3 NAA 30 1 15-May 2013135   

  2 15-May 2013135       2 17-May 2013137   

  3 15-May 2013135       3 15-May 2013135   

  4 15-May 2013135 2013135     4 21-May 2013141 2013137 

1 Oil 26 1 11-May 2013131     2 NAA 30 1 13-May 2013133   

  2 11-May 2013131       2 11-May 2013131   

  3 15-May 2013135       3 15-May 2013135   

  4 13-May 2013133 2013133     4 28-May 2013148 2013137 

2 Oil 26 1 13-May 2013133     1 NAA 30 1 15-May 2013135   

  2 19-May 2013139       2 15-May 2013135   

  3 17-May 2013137       3 17-May 2013137   

  4 19-May 2013139 2013137     4 17-May 2013137 2013136 

3 Oil 26 1 17-May 2013137     3 NAA 32 1 11-May 2013131   

  2 17-May 2013137       2 15-May 2013135   

  3 17-May 2013137       3 15-May 2013135   

  4 28-May 2013148 2013140     4 13-May 2013133 2013134 

3 NAA 26 1 17-May 2013137     3 Oil 32 1 17-May 2013137   

  2 17-May 2013137       2 5-Jun 2013156   

  3 31-May 2013151       3 17-May 2013137   

  4 15-May 2013135 2013140     4 23-May 2013143 2013143 
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Appendix 5 (cont.): Date of 80% Bud Break of all Measured Canes 

Treatment 

& Row 

Number 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

  
Treatment 

& Row # 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

Control 32 1 15-May 2013135     3 NAA 38 1 15-May 2013135   

  2 15-May 2013135       2 15-May 2013135   

  3 15-May 2013135       3 15-May 2013135   

  4 15-May 2013135 2013135     4 13-May 2013133 2013135 

Control 34 1 13-May 2013133     1 NAA 38 1 13-May 2013133   

  2 11-May 2013131       2 15-May 2013135   

  3 13-May 2013133       3 15-May 2013135   

  4 17-May 2013137 2013134     4 19-May 2013139 2013136 

2 NAA 34 1 15-May 2013135     3 NAA 40 1 15-May 2013135   

  2 15-May 2013135       2 15-May 2013135   

  3 15-May 2013135       3 17-May 2013137   

  4 15-May 2013135 2013135     4 15-May 2013135 2013136 

2 Oil 34 1 28-May 2013148     2 Oil 40 1 21-May 2013141   

  2 17-May 2013137       2 19-May 2013139   

  3 19-May 2013139       3 19-May 2013139   

  4 28-May 2013148 2013143     4 5-Jun 2013156 2013144 

2 NAA 36 1 15-May 2013135     3 Oil 40 1 21-May 2013141   

  2 11-May 2013131       2 28-May 2013148   

  3 15-May 2013135       3 21-May 2013141   

  4 13-May 2013133 2013134     4 19-May 2013139 2013142 

1 NAA 36 1 17-May 2013137     1 Oil 40 1 15-May 2013135   

  2 15-May 2013135       2 31-May 2013151   

  3 17-May 2013137       3 19-May 2013139   

  4 17-May 2013137 2013137     4 31-May 2013151 2013144 

2 Oil 36 1 28-May 2013148     2 Oil 42 1 15-May 2013135   

  2 17-May 2013137       2 31-May 2013151   

  3 17-May 2013137       3 28-May 2013148   

  4 19-May 2013139 2013140     4 21-May 2013141 2013144 

1 Oil 36 1 15-May 2013135     Control 42 1 15-May 2013135   

  2 28-May 2013148       2 15-May 2013135   

  3 23-May 2013143       3 15-May 2013135   

  4 19-May 2013139 2013141     4 17-May 2013137 2013136 

End Youden Square 1   1 Oil 42 1 19-May 2013139   

Control 38 1           2 19-May 2013139   

  2 17-May 2013137       3 17-May 2013137   

  3 15-May 2013135       4 19-May 2013139 2013139 

  4 19-May 2013139 2013137   2 NAA 42 1 15-May 2013135   

2 NAA 38 1 21-May 2013141       2 15-May 2013135   

  2 17-May 2013137       3 21-May 2013141   

  3 15-May 2013135       4 17-May 2013137 2013137 

  4 15-May 2013135 2013137             
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Appendix 5 (cont.): Date of 80% Bud Break of all Measured Canes 

Treatment 

& Row 

Number 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

  
Treatment 

& Row # 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

2 NAA 44 1 15-May 2013135     1 NAA 48 1 17-May 2013137   

  2           2 15-May 2013135   

  3 15-May 2013135       3 15-May 2013135   

  4 19-May 2013139 2013135     4 21-May 2013141 2013137 

1 NAA 44 1 15-May 2013135     3 NAA 48 1 11-May 2013131   

  2 17-May 2013137       2 15-May 2013135   

  3 15-May 2013135       3 13-May 2013133   

  4 15-May 2013135 2013136     4 13-May 2013133 2013133 

Control 44 1 19-May 2013139     1 Oil 50 1 15-May 2013135   

  2 17-May 2013137       2 19-May 2013139   

  3 17-May 2013137       3 19-May 2013139   

  4 15-May 2013135 2013137     4 21-May 2013141 2013139 

2 Oil 44 1 19-May 2013139     3 Oil 50 1 19-May 2013139   

  2 17-May 2013137       2 19-May 2013139   

  3 17-May 2013137       3 28-May 2013148   

  4 19-May 2013139 2013138     4 21-May 2013141 2013142 

1 NAA 46 1 15-May 2013135     2 Oil 50 1 31-May 2013151   

  2 9-May 2013129       2 15-May 2013135   

  3 13-May 2013133       3 5-Jun 2013156   

  4 15-May 2013135 2013133     4 21-May 2013141 2013146 

3 NAA 46 1 13-May 2013133     End Youden Square 2 

  2 13-May 2013133     3 Oil 52 1 23-May 2013143   

  3 15-May 2013135       2 17-May 2013137   

  4 13-May 2013133 2013134     3 17-May 2013137   

2 NAA 46 1 31-May 2013151       4 19-May 2013139 2013139 

  2 15-May 2013135     1 Oil 52 1 13-May 2013133   

  3 17-May 2013137       2 17-May 2013137   

  4 17-May 2013137 2013140     3 19-May 2013139   

3 Oil 46 1 19-May 2013139       4 19-May 2013139 2013137 

  2 28-May 2013148     Control 52 1 15-May 2013135   

  3 28-May 2013148       2 15-May 2013135   

  4 31-May 2013151 2013147     3 15-May 2013135   

3 Oil 48 1 31-May 2013151       4 15-May 2013135 2013135 

  2 21-May 2013141     2 Oil 52 1 19-May 2013139   

  3 31-May 2013151       2 31-May 2013151   

  4 28-May 2013148 2013148     3 23-May 2013143   

1 Oil 48 1 28-May 2013148       4 28-May 2013148 2013145 

  2 21-May 2013141     2 NAA 54 1 11-May 2013131   

  3 21-May 2013141       2 15-May 2013135   

  4 31-May 2013151 2013145     3 15-May 2013135   

              4 13-May 2013133 2013134 
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Appendix 5 (cont.): Date of 80% Bud Break of all Measured Canes 

Treatment 

& Row 

Nnumber 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

  
Treatment 

& Row # 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

3 NAA 54 1 15-May 2013135     Control 58 1 15-May 2013135   

  2 28-May 2013148       2 13-May 2013133   

  3 15-May 2013135       3 15-May 2013135   

  4 17-May 2013137 2013139     4 9-May 2013129 2013133 

1 NAA 54 1 15-May 2013135     2 Oil 60 1 19-May 2013139   

  2 19-May 2013139       2 17-May 2013137   

  3 15-May 2013135       3 19-May 2013139   

  4 17-May 2013137 2013137     4 17-May 2013137 2013138 

3 Oil 54 1 28-May 2013148     Control 60 1 13-May 2013133   

  2 28-May 2013148       2 15-May 2013135   

  3 17-May 2013137       3 11-May 2013131   

  4 31-May 2013151 2013146     4 15-May 2013135 2013134 

3 NAA 56 1 19-May 2013139     2 NAA 60 1 28-May 2013148   

  2 9-May 2013129       2 15-May 2013135   

  3 19-May 2013139       3 15-May 2013135   

  4 13-May 2013133 2013135     4 13-May 2013133 2013138 

2 Oil 56 1 17-May 2013137     1 Oil 60 1 19-May 2013139   

  2 15-May 2013135       2 17-May 2013137   

  3 19-May 2013139       3 15-May 2013135   

  4 17-May 2013137 2013137     4 23-May 2013143 2013139 

3 Oil 56 1 19-May 2013139     Control 62 1 15-May 2013135   

  2 21-May 2013141       2 15-May 2013135   

  3 28-May 2013148       3 11-May 2013131   

  4 19-May 2013139 2013142     4 11-May 2013131 2013133 

1 NAA 56 1 17-May 2013137     1 NAA 62 1 13-May 2013133   

  2 17-May 2013137       2 13-May 2013133   

  3 17-May 2013137       3 15-May 2013135   

  4 13-May 2013133 2013136     4 15-May 2013135 2013134 

1 Oil 58 1 17-May 2013137     2 Oil 62 1 17-May 2013137   

  2 15-May 2013135       2 28-May 2013148   

  3 19-May 2013139       3 19-May 2013139   

  4 31-May 2013151 2013141     4 17-May 2013137 2013140 

2 NAA 58 1 13-May 2013133     3 NAA 62 1 28-May 2013148   

  2 11-May 2013131       2 15-May 2013135   

  3 13-May 2013133       3 15-May 2013135   

  4 13-May 2013133 2013133     4 15-May 2013135 2013138 

3 NAA 58 1 19-May 2013139     1 NAA 64 1 15-May 2013135   

  2 15-May 2013135       2 15-May 2013135   

  3 28-May 2013148       3 13-May 2013133   

  4 15-May 2013135 2013139     4 13-May 2013133 2013134 
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Appendix 5 (cont.): Date of 80% Bud Break of all Measured Canes 

Treatment 

& Row 

Number 

Cane 

# 

Date of 

80% 

Bud 

Break 

Julian 

Date 

Mean 

Julian 

Date 

  

3 Oil 64 1 31-May 2013151     

  2 19-May 2013139     

  3 19-May 2013139     

  4 21-May 2013141 2013143   

1 Oil 64 1 19-May 2013139     

  2 15-May 2013135     

  3 19-May 2013139     

  4 17-May 2013137 2013138   

2 NAA 64 1 21-May 2013141     

  2 11-May 2013131     

  3 15-May 2013135     

  4 11-May 2013131 2013135   

End Youden Square 3   
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Appendix 6: Harvest Data of each Experimental Unit 

Treatment 

& Row 

Number 

Total 

Cluster 

Count 

Mean 

Cluster 

Number per 

Cane 

Total 

Cluster 

Weight 

Mean 

Cluster 

Weight (lbs) 

pH °Brix 
TA 

(g/l) 

Control 20 35 4.38 8.10 0.231 3.07 9.6 16.10 
1 NAA 20 27 3.38 10.30 0.381 3.01 9.2 15.35 
Control 22 17 2.13 5.65 0.332 3.19 13.1 11.40 
3 NAA 22 24 3.00 10.10 0.421 3.28 13.8 9.71 
3 Oil 24 24 3.00 6.80 0.283 3.20 14.1 9.72 
1 Oil 24 19 2.38 5.20 0.274 3.17 12.0 10.94 
2 NAA 24 27 3.38 6.20 0.230 3.30 14.6 10.77 
1 Oil 26 30 3.75 9.75 0.325 3.16 14.7 10.64 
2 Oil 26 21 2.63 10.20 0.486 3.16 9.6 11.23 
3 Oil 26 23 2.88 7.45 0.324 3.02 11.7 12.68 
3 NAA 26 12 1.50 3.20 0.267 3.30 14.2 10.97 
1 NAA 28 12 1.50 4.85 0.404 3.16 14.0 12.31 
1 Oil 28 18 2.25 8.50 0.472 3.16 12.9 12.45 
Control 28 15 1.88 5.85 0.390 3.93 14.1 11.01 
3 Oil 28 19 2.38 5.00 0.263 3.22 13.3 11.91 
2 Oil 30 27 3.38 10.90 0.404 3.24 15.0 11.70 
3 NAA 30 19 2.38 8.95 0.471 3.12 12.0 12.70 
2 NAA 30 21 2.63 9.85 0.469 3.14 12.5 12.85 
1 NAA 30 19 2.38 2.95 0.155 3.35 14.4 10.13 
3 NAA 32 10 1.25 4.20 0.420 3.21 14.6 11.07 
3 Oil 32 24 3.00 5.60 0.233 3.25 14.1 11.58 
Control 32 23 2.88 8.15 0.354 3.20 11.8 11.93 
Control 34 20 2.50 7.20 0.360 3.12 12.1 12.31 
2 NAA 34 32 4.00 9.95 0.311 3.20 13.1 11.97 
2 Oil 34 14 1.75 4.20 0.300 3.22 13.7 12.89 
2 NAA 36 14 1.75 2.85 0.204 3.32 14.3 10.75 
1 NAA 36 25 3.13 9.60 0.384 3.15 11.8 11.77 
2 Oil 36 18 2.25 5.95 0.331 3.29 14.3 11.56 
1 Oil 36 25 3.13 6.55 0.262 3.18 13.5 12.83 

End Youden Square 1 

Control 38 9 1.13 2.65 0.294 3.24 13.9 11.70 
2 NAA 38 9 1.13 2.15 0.239 3.21 14.4 11.56 
3 NAA 38 10 1.25 3.95 0.395 3.33 13.8 10.56 
1 NAA 38 24 3.00 6.75 0.281 3.24 12.3 12.09 
3 NAA 40 23 2.88 8.10 0.352 3.29 12.6 11.98 
2 Oil 40 13 1.63 3.90 0.300 3.23 13.9 13.47 
3 Oil 40 11 1.38 1.85 0.168 3.17 13.0 16.75 
1 Oil 40 23 2.88 9.70 0.422 3.19 13.5 13.47 
2 Oil 42 16 2.00 4.20 0.263 3.14 14.0 13.37 
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Appendix 6 (cont.): Harvest Data of each Experimental Unit 

Treatment 

& Row 

Number 

Total 

Cluster 

Count 

Mean 

Cluster 

Number per 

Cane 

Total 

Cluster 

Weight 

Mean 

Cluster 

Weight (lbs) 

pH °Brix 
TA 

(g/l) 

Control 42 13 1.63 3.00 0.231 3.33 12.9 12.01 
1 Oil 42 12 1.50 5.05 0.421 3.31 13.6 10.97 
2 NAA 42 15 1.88 7.20 0.480 3.20 13.7 13.18 
2 NAA 44 18 2.25 7.00 0.389 3.20 12.0 9.17 
1 NAA 44 27 3.38 9.45 0.350 3.56 13.1 11.65 
Control 44 14 1.75 4.40 0.314 3.25 13.5 11.67 
2 Oil 44 22 2.75 8.05 0.366 3.14 13.5 13.74 
1 NAA 46 24 3.00 10.60 0.442 3.16 14.0 11.03 
3 NAA 46 21 2.63 7.50 0.357 3.15 13.0 12.49 
2 NAA 46 21 2.63 4.70 0.224 3.21 13.4 11.73 
3 Oil 46 10 1.25 2.15 0.215 2.96 12.3 18.79 
3 Oil 48 3 0.38 0.75 0.250 3.06 13.7 16.09 
1 Oil 48 15 1.88 4.40 0.293 3.14 13.2 14.19 
1 NAA 48 17 2.13 6.20 0.365 3.10 14.2 12.95 
3 NAA 48 27 3.38 16.45 0.609 3.14 11.9 13.82 
1 Oil 50 11 1.38 3.75 0.341 3.17 12.6 11.83 
3 Oil 50 18 2.25 6.05 0.336 3.09 13.7 14.76 
2 Oil 50 8 1.00 5.05 0.631 3.21 13.4 16.05 

End Youden Square 2 

3 Oil 52 20 2.50 5.75 0.288 3.23 13.8 12.04 
1 Oil 52 22 2.75 7.05 0.320 3.18 14.1 12.50 
Control 52 24 3.00 9.90 0.413 3.32 13.9 11.70 
2 Oil 52 4 0.50 3.55 0.888 3.39 14.4 12.50 
2 NAA 54 29 3.63 17.35 0.598 3.19 13.8 11.98 
3 NAA 54 7 0.88 3.30 0.471 3.20 13.3 13.01 
1 NAA 54 16 2.00 6.15 0.384 3.16 14.2 11.94 
3 Oil 54 14 1.75 4.10 0.293 3.14 14.0 13.76 
3 NAA 56 25 3.13 13.55 0.542 3.15 12.5 11.80 
2 Oil 56 27 3.38 11.35 0.420 3.18 14.8 11.43 
3 Oil 56 13 1.63 4.85 0.373 3.12 13.5 13.41 
1 NAA 56 28 3.50 12.95 0.463 3.11 13.2 12.41 
1 Oil 58 23 2.88 8.35 0.363 2.87 11.8 15.81 
2 NAA 58 46 5.75 17.35 0.377 3.12 13.0 12.42 
3 NAA 58 30 3.75 7.10 0.237 3.07 12.5 14.75 
Control 58 17 2.13 6.85 0.403 3.19 13.6 12.08 
2 Oil 60 27 3.38 10.70 0.396 3.04 12.2 15.69 
Control 60 25 3.13 11.25 0.450 3.22 14.4 11.60 
2 NAA 60 26 3.25 8.75 0.337 3.11 13.1 13.11 
1 Oil 60 26 3.25 7.40 0.285 3.08 14.0 13.67 
Control 62 19 2.38 10.80 0.568 3.16 12.1 11.77 
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Appendix 6 (cont.): Harvest Data of each Experimental Unit 

Treatment 

& Row 

Number 

Total 

Cluster 

Count 

Mean 

Cluster 

Number per 

Cane 

Total 

Cluster 

Weight 

Mean 

Cluster 

Weight (lbs) 

pH °Brix 
TA 

(g/l) 

1 NAA 62 21 2.63 7.40 0.352 3.07 12.7 14.29 

2 Oil 62 24 3.00 6.05 0.252 3.02 13.3 15.12 

3 NAA 62 19 2.38 8.25 0.434 3.05 13.5 14.00 

1 NAA 64 24 3.00 10.75 0.448 3.15 12.5 13.15 

3 Oil 64 15 1.88 6.35 0.423 3.16 14.0 11.89 

1 Oil 64 19 2.38 8.55 0.450 3.13 14.0 13.17 

2 NAA 64 28 3.50 11.85 0.423 3.10 14.2 10.05 

End Youden Square 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

Appendix 7: Treatment Comparison of Julian Date of Bud Break 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -0.398 1.172 51 -0.34 0.736 0.9999 

Control NAA 2 -0.686 1.169 51 -0.59 0.560 0.9969 

Control NAA 3 -1.171 1.173 51 -1.00 0.323 0.9520 

Control Oil 1 -3.692 1.170 51 -3.15 0.003 0.0403 

Control Oil 2 -5.726 1.169 51 -4.90 <.0001 0.0002 

Control Oil 3 -7.107 1.172 51 -6.07 <.0001 <.0001 

NAA 1 NAA 2 -0.288 1.142 51 -0.25 0.802 1.0000 

NAA 1 NAA 3 -0.773 1.144 51 -0.68 0.502 0.9934 

NAA 1 Oil 1 -3.294 1.146 51 -2.87 0.006 0.0802 

NAA 1 Oil 2 -5.329 1.145 51 -4.65 <.0001 0.0004 

NAA 1 Oil 3 -6.710 1.142 51 -5.87 <.0001 <.0001 

NAA 2 NAA 3 -0.485 1.146 51 -0.42 0.674 0.9995 

NAA 2 Oil 1 -3.006 1.144 51 -2.63 0.011 0.1390 

NAA 2 Oil 2 -5.040 1.144 51 -4.41 <.0001 0.0010 

NAA 2 Oil 3 -6.421 1.145 51 -5.61 <.0001 <.0001 

NAA 3 Oil 1 -2.521 1.147 51 -2.20 0.033 0.3151 

NAA 3 Oil 2 -4.555 1.146 51 -3.97 0.000 0.0039 

NAA 3 Oil 3 -5.936 1.144 51 -5.19 <.0001 <.0001 

Oil 1 Oil 2 -2.035 1.142 51 -1.78 0.081 0.5666 

Oil 1 Oil 3 -3.416 1.142 51 -2.99 0.004 0.0608 

Oil 2 Oil 3 -1.381 1.146 51 -1.21 0.234 0.8890 
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Appendix 8: Treatment Comparison of Total Cluster Number per Experimental 

Unit 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -2.542 2.915 51 -0.87 0.387 0.975 

Control NAA 2 -4.126 2.893 51 -1.43 0.160 0.785 

Control NAA 3 0.777 2.903 51 0.27 0.790 1.000 

Control Oil 1 -0.804 2.905 51 -0.28 0.783 1.000 

Control Oil 2 0.962 2.894 51 0.33 0.741 1.000 

Control Oil 3 3.405 2.914 51 1.17 0.248 0.903 

NAA 1 NAA 2 -1.584 2.824 51 -0.56 0.577 0.998 

NAA 1 NAA 3 3.319 2.833 51 1.17 0.247 0.902 

NAA 1 Oil 1 1.738 2.852 51 0.61 0.545 0.996 

NAA 1 Oil 2 3.504 2.843 51 1.23 0.223 0.878 

NAA 1 Oil 3 5.947 2.824 51 2.11 0.040 0.365 

NAA 2 NAA 3 4.903 2.851 51 1.72 0.092 0.607 

NAA 2 Oil 1 3.322 2.832 51 1.17 0.246 0.901 

NAA 2 Oil 2 5.088 2.831 51 1.80 0.078 0.556 

NAA 2 Oil 3 7.531 2.841 51 2.65 0.011 0.132 

NAA 3 Oil 1 -1.581 2.842 51 -0.56 0.581 0.998 

NAA 3 Oil 2 0.185 2.833 51 0.07 0.948 1.000 

NAA 3 Oil 3 2.628 2.823 51 0.93 0.356 0.966 

Oil 1 Oil 2 1.766 2.822 51 0.63 0.534 0.996 

Oil 1 Oil 3 4.209 2.822 51 1.49 0.142 0.749 

Oil 2 Oil 3 2.443 2.851 51 0.86 0.396 0.977 
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Appendix 9: Treatment Comparison of Mean Cluster Number 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -0.584 0.349 51 -1.67 0.100 0.636 

Control NAA 2 -0.766 0.346 51 -2.22 0.031 0.305 

Control NAA 3 -0.134 0.347 51 -0.39 0.700 1.000 

Control Oil 1 -0.336 0.347 51 -0.97 0.338 0.959 

Control Oil 2 -0.114 0.346 51 -0.33 0.743 1.000 

Control Oil 3 0.162 0.349 51 0.46 0.645 0.999 

NAA 1 NAA 2 -0.182 0.337 51 -0.54 0.592 0.998 

NAA 1 NAA 3 0.450 0.339 51 1.33 0.190 0.836 

NAA 1 Oil 1 0.248 0.341 51 0.73 0.471 0.990 

NAA 1 Oil 2 0.470 0.340 51 1.38 0.173 0.808 

NAA 1 Oil 3 0.746 0.337 51 2.21 0.032 0.308 

NAA 2 NAA 3 0.632 0.341 51 1.85 0.070 0.521 

NAA 2 Oil 1 0.430 0.338 51 1.27 0.210 0.862 

NAA 2 Oil 2 0.652 0.338 51 1.93 0.060 0.472 

NAA 2 Oil 3 0.928 0.340 51 2.73 0.009 0.111 

NAA 3 Oil 1 -0.202 0.340 51 -0.59 0.556 0.997 

NAA 3 Oil 2 0.020 0.339 51 0.06 0.952 1.000 

NAA 3 Oil 3 0.296 0.337 51 0.88 0.384 0.974 

Oil 1 Oil 2 0.222 0.337 51 0.66 0.513 0.994 

Oil 1 Oil 3 0.498 0.337 51 1.48 0.146 0.757 

Oil 2 Oil 3 0.276 0.341 51 0.81 0.423 0.983 
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Appendix 10: Treatment Comparison of Total Cluster Weight per Experimental 

Unit 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -0.910 1.348 51 -0.67 0.503 0.993 

Control NAA 2 -1.590 1.341 51 -1.19 0.241 0.897 

Control NAA 3 -0.541 1.344 51 -0.40 0.689 1.000 

Control Oil 1 0.204 1.345 51 0.15 0.880 1.000 

Control Oil 2 0.189 1.341 51 0.14 0.889 1.000 

Control Oil 3 2.566 1.349 51 1.90 0.063 0.488 

NAA 1 NAA 2 -0.680 1.310 51 -0.52 0.606 0.999 

NAA 1 NAA 3 0.368 1.313 51 0.28 0.780 1.000 

NAA 1 Oil 1 1.113 1.319 51 0.84 0.403 0.979 

NAA 1 Oil 2 1.098 1.317 51 0.83 0.408 0.980 

NAA 1 Oil 3 3.475 1.310 51 2.65 0.011 0.132 

NAA 2 NAA 3 1.049 1.319 51 0.79 0.430 0.985 

NAA 2 Oil 1 1.794 1.313 51 1.37 0.178 0.817 

NAA 2 Oil 2 1.779 1.312 51 1.36 0.181 0.822 

NAA 2 Oil 3 4.155 1.316 51 3.16 0.003 0.040 

NAA 3 Oil 1 0.745 1.316 51 0.57 0.574 0.998 

NAA 3 Oil 2 0.730 1.313 51 0.56 0.581 0.998 

NAA 3 Oil 3 3.107 1.310 51 2.37 0.022 0.231 

Oil 1 Oil 2 -0.015 1.310 51 -0.01 0.991 1.000 

Oil 1 Oil 3 2.362 1.310 51 1.80 0.077 0.552 

Oil 2 Oil 3 2.377 1.320 51 1.80 0.078 0.553 
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Appendix 11: Treatment Comparison of Average Cluster Weight 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 0.003 0.045 51 0.07 0.946 1.000 

Control NAA 2 0.004 0.044 51 0.09 0.932 1.000 

Control NAA 3 -0.038 0.045 51 -0.86 0.395 0.977 

Control Oil 1 0.018 0.045 51 0.41 0.686 1.000 

Control Oil 2 -0.052 0.044 51 -1.17 0.247 0.901 

Control Oil 3 0.088 0.045 51 1.97 0.054 0.445 

NAA 1 NAA 2 0.001 0.043 51 0.02 0.986 1.000 

NAA 1 NAA 3 -0.041 0.043 51 -0.95 0.347 0.962 

NAA 1 Oil 1 0.015 0.044 51 0.34 0.732 1.000 

NAA 1 Oil 2 -0.055 0.044 51 -1.26 0.213 0.866 

NAA 1 Oil 3 0.085 0.043 51 1.97 0.055 0.448 

NAA 2 NAA 3 -0.042 0.044 51 -0.96 0.341 0.960 

NAA 2 Oil 1 0.014 0.043 51 0.33 0.743 1.000 

NAA 2 Oil 2 -0.056 0.043 51 -1.29 0.204 0.855 

NAA 2 Oil 3 0.084 0.044 51 1.93 0.059 0.468 

NAA 3 Oil 1 0.056 0.044 51 1.29 0.202 0.852 

NAA 3 Oil 2 -0.014 0.043 51 -0.32 0.753 1.000 

NAA 3 Oil 3 0.126 0.043 51 2.92 0.005 0.072 

Oil 1 Oil 2 -0.070 0.043 51 -1.62 0.111 0.670 

Oil 1 Oil 3 0.070 0.043 51 1.62 0.112 0.671 

Oil 2 Oil 3 0.140 0.044 51 3.20 0.002 0.036 
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Appendix 12: Treatment Comparison of pH 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 0.095 0.050 51 1.92 0.061 0.478 

Control NAA 2 0.083 0.049 51 1.70 0.094 0.617 

Control NAA 3 0.086 0.049 51 1.74 0.087 0.591 

Control Oil 1 0.139 0.049 51 2.82 0.007 0.091 

Control Oil 2 0.085 0.049 51 1.75 0.087 0.588 

Control Oil 3 0.155 0.050 51 3.12 0.003 0.044 

NAA 1 NAA 2 -0.012 0.048 51 -0.25 0.806 1.000 

NAA 1 NAA 3 -0.009 0.048 51 -0.20 0.846 1.000 

NAA 1 Oil 1 0.044 0.048 51 0.91 0.369 0.970 

NAA 1 Oil 2 -0.010 0.048 51 -0.20 0.843 1.000 

NAA 1 Oil 3 0.060 0.048 51 1.25 0.218 0.872 

NAA 2 NAA 3 0.002 0.048 51 0.05 0.962 1.000 

NAA 2 Oil 1 0.056 0.048 51 1.16 0.250 0.905 

NAA 2 Oil 2 0.002 0.048 51 0.05 0.964 1.000 

NAA 2 Oil 3 0.071 0.048 51 1.48 0.145 0.755 

NAA 3 Oil 1 0.053 0.048 51 1.11 0.274 0.923 

NAA 3 Oil 2 0.000 0.048 51 0.00 0.997 1.000 

NAA 3 Oil 3 0.069 0.048 51 1.45 0.154 0.774 

Oil 1 Oil 2 -0.053 0.048 51 -1.12 0.266 0.918 

Oil 1 Oil 3 0.016 0.048 51 0.33 0.745 1.000 

Oil 2 Oil 3 0.069 0.048 51 1.43 0.160 0.785 
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Appendix 13: Treatment Comparison of °Brix 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -0.104 0.467 51 -0.22 0.825 1.000 

Control NAA 2 -0.640 0.467 51 -1.37 0.176 0.814 

Control NAA 3 -0.271 0.467 51 -0.58 0.564 0.997 

Control Oil 1 -0.462 0.467 51 -0.99 0.327 0.954 

Control Oil 2 -0.640 0.467 51 -1.37 0.176 0.814 

Control Oil 3 -0.552 0.467 51 -1.18 0.243 0.898 

NAA 1 NAA 2 -0.536 0.457 51 -1.17 0.246 0.901 

NAA 1 NAA 3 -0.167 0.457 51 -0.37 0.716 1.000 

NAA 1 Oil 1 -0.358 0.457 51 -0.78 0.436 0.985 

NAA 1 Oil 2 -0.536 0.457 51 -1.17 0.246 0.901 

NAA 1 Oil 3 -0.448 0.457 51 -0.98 0.332 0.956 

NAA 2 NAA 3 0.369 0.457 51 0.81 0.422 0.983 

NAA 2 Oil 1 0.178 0.457 51 0.39 0.699 1.000 

NAA 2 Oil 2 0.000 0.457 51 0.00 1.000 1.000 

NAA 2 Oil 3 0.089 0.457 51 0.19 0.847 1.000 

NAA 3 Oil 1 -0.191 0.457 51 -0.42 0.677 1.000 

NAA 3 Oil 2 -0.369 0.457 51 -0.81 0.422 0.983 

NAA 3 Oil 3 -0.281 0.457 51 -0.61 0.541 0.996 

Oil 1 Oil 2 -0.178 0.457 51 -0.39 0.699 1.000 

Oil 1 Oil 3 -0.089 0.457 51 -0.20 0.846 1.000 

Oil 2 Oil 3 0.089 0.457 51 0.19 0.847 1.000 
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Appendix 14: Treatment Comparison of Titratable Acidity (TA)  

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -0.339 0.657 51 -0.52 0.608 0.999 

Control NAA 2 0.437 0.649 51 0.67 0.504 0.994 

Control NAA 3 -0.284 0.652 51 -0.44 0.665 0.999 

Control Oil 1 -0.738 0.653 51 -1.13 0.264 0.916 

Control Oil 2 -1.192 0.649 51 -1.84 0.072 0.531 

Control Oil 3 -1.739 0.657 51 -2.65 0.011 0.133 

NAA 1 NAA 2 0.776 0.633 51 1.23 0.226 0.881 

NAA 1 NAA 3 0.055 0.636 51 0.09 0.932 1.000 

NAA 1 Oil 1 -0.399 0.643 51 -0.62 0.538 0.996 

NAA 1 Oil 2 -0.853 0.640 51 -1.33 0.188 0.833 

NAA 1 Oil 3 -1.400 0.633 51 -2.21 0.032 0.307 

NAA 2 NAA 3 -0.721 0.643 51 -1.12 0.267 0.919 

NAA 2 Oil 1 -1.175 0.635 51 -1.85 0.070 0.522 

NAA 2 Oil 2 -1.629 0.635 51 -2.56 0.013 0.159 

NAA 2 Oil 3 -2.176 0.639 51 -3.41 0.001 0.021 

NAA 3 Oil 1 -0.454 0.639 51 -0.71 0.481 0.991 

NAA 3 Oil 2 -0.908 0.636 51 -1.43 0.160 0.785 

NAA 3 Oil 3 -1.455 0.633 51 -2.30 0.026 0.264 

Oil 1 Oil 2 -0.454 0.632 51 -0.72 0.476 0.991 

Oil 1 Oil 3 -1.001 0.632 51 -1.58 0.119 0.693 

Oil 2 Oil 3 -0.547 0.642 51 -0.85 0.398 0.978 
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Appendix 15: Treatment Comparison of Julian date of Bud Break in Laboratory 

Forcing Experiments 

NAA Treatments 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -5.292 1.552 65 -3.41 0.001 0.006 

Control NAA 2 -7.034 1.570 65 -4.48 <.0001 0.000 

Control NAA 3 -8.500 1.552 65 -5.48 <.0001 <.0001 

NAA 1 NAA 2 -1.742 1.570 65 -1.11 0.271 0.685 

NAA 1 NAA 3 -3.208 1.552 65 -2.07 0.043 0.175 

NAA 2 NAA 3 -1.466 1.570 65 -0.93 0.354 0.787 

      
Oil Treatments 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control Oil 1 -5.136 3.519 52 -1.46 0.150 0.469 

Control Oil 2 -14.307 3.570 52 -4.01 0.000 0.001 

Control Oil 3 -24.266 3.611 52 -6.72 <.0001 <.0001 

Oil 1 Oil 2 -9.170 3.570 52 -2.57 0.013 0.061 

Oil 1 Oil 3 -19.129 3.611 52 -5.30 <.0001 <.0001 

Oil 2 Oil 3 -9.959 3.661 52 -2.72 0.009 0.043 

        
January Single Application 

Treatment Treatment Estimate 
Standard 

Error 
DF t Value Pr  > |t| 

Adjusted 

P-value 

Control NAA 1 -1.720 2.684 7 -0.64 0.542 0.803 

Control Oil 1 -9.451 2.667 7 -3.54 0.009 0.023 

NAA 1 Oil 1 -7.731 2.626 7 -2.94 0.022 0.050 
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