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ABSTRACT

The reliability of standard meteorological drought indices based on measurements of precipitation is

limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect

only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based

moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates

of water consumption across a landscape. This study assesses the value of a new drought index based on

remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the

ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The

study investigates the behavior and response time scales of the ESI through a retrospective comparison with

the standardized precipitation indices and Palmer drought index suite, and with drought classifications

recorded in the U.S. Drought Monitor for the 2000–09 growing seasons. Spatial and temporal correlation

analyses suggest that the ESI performs similarly to short-term (up to 6 months) precipitation-based indices

but can be produced at higher spatial resolution and without requiring any precipitation data. Unique be-

havior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled

from local rainfall: for example, in areas of intense irrigation or shallow water table. Normalization by PET

serves to isolate the ET signal component responding to soil moisture variability from variations due to the

radiation load. This study suggests that the ESI is a useful complement to the current suite of drought in-

dicators, with particular added value in parts of the world where rainfall data are sparse or unreliable.

1. Introduction

The U.S. Drought Monitor (USDM), considered to be

the current state-of-the art drought monitoring tool for

the United States, is developed through expert integra-

tion of a diverse set of quantitative drought indicators

along with local reports from observers in the field

(Svoboda et al. 2002). Multiple indicators are required

to track the various types of drought, which include 1)

meteorological drought, describing short-term precipi-

tation deficits; 2) agricultural drought, reflecting root-

zone soil moisture deficits and impacts on crop yields; 3)

hydrologic drought, which affects streamflow, ground-

water tables, and reservoir levels, and occurs and recovers

over much longer time scales (months to years); and 4)

socioeconomic drought, incorporating the concept of

water supply and demand (Wilhite and Glantz 1985).

Online access to current and historical USDM (http://

www.drought.unl.edu/dm/) and drought impact reports

(http://droughtreporter.unl.edu/) is provided by the Na-

tional Drought Mitigation Center (NDMC).

Standard indicators currently used in the USDM fo-

cus on different components of the hydrologic budget:

precipitation, soil moisture content (and its impact on

vegetation condition), groundwater storage, runoff, and

streamflow. Together, these indicators provide a diversity

of information about current hydrologic conditions.

They use different input datastreams, have different time

scales of response to moisture deficits, and reflect dif-

ferent environmental and social impacts of drought. This

is advantageous because a convergence of evidence from

multiple independent indicators provides better confi-

dence in an emerging drought signal.
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Most of these standard drought indices require spa-

tially distributed observations of precipitation as a pri-

mary input, acquired either through rain gauge networks,

Doppler radar estimates, satellite observations, or some

combination thereof. Precipitation maps may be used as

the sole input for some indices, such as in the standard-

ized precipitation indices (SPIs; McKee et al. 1995), or in

combination with other observable quantities, such as

satellite-based vegetation cover fraction in the vegetation

drought response index (VegDRI; Brown et al. 2008). In

other cases, precipitation data are transformed into an

indicator of soil moisture using water balance models of

varying complexity, ranging from the simple two-layer

bucket model used in the Palmer index suite (Palmer 1965)

to the more detailed multilayer soil moisture schemes

used in land surface models (LSMs) in the North American

Land Data Assimilation System (NLDAS; Mitchell et al.

2004).

Precipitation-based indices necessarily rely on the

availability of high-quality rainfall data, while soil mois-

ture models additionally require accurate information

about moisture depletion rate via transpiration, evapo-

ration, drainage, and horizontal transport. These data

requirements present significant challenges for global

drought monitoring efforts. While real-time precipitation

analyses of reasonable quality are available over most of

the United States (e.g., McEnery et al. 2005), many parts

of world lack sufficiently dense radar and rain gauge

networks. Satellite-derived global precipitation prod-

ucts provide improved spatial coverage (Huffman et al.

2007; Joyce et al. 2004), but they are known to exhibit

seasonally and spatially dependent biases (Villarini et al.

2009; Zeweldi and Gebremichael 2009). Drought clas-

sifications from prognostic water balance models (e.g.,

NLDAS) depend strongly on the assumed model physics,

dynamic forcings, and subsurface properties (Mo 2008),

requiring information about soil-moisture-holding ca-

pacity and retention characteristics that is difficult to

obtain with adequate accuracy over large areas. Biased

specifications of total moisture inputs and soil hydraulic

properties can introduce significant cumulative biases

into prognostic soil moisture estimates (Schaake et al.

2004).

In this paper we evaluate a new remote sensing evap-

orative stress index (ESI), representing temporal anom-

alies in the ratio of actual evapotranspiration (ET) to

potential ET (PET). In contrast with precipitation-based

indices, the ESI algorithm requires no information about

antecedent precipitation or subsurface soil characteris-

tics. In this modeling approach, time-differential land

surface temperature (LST) measurements derived from

satellite imagery collected by the Geostationary Opera-

tional Environmental Satellites (GOES) in the thermal

infrared (TIR) atmospheric window channel (;10.7 mm)

are combined with shortwave information about vegeta-

tion cover fraction to directly diagnose evaporative fluxes

at 5–10-km spatial resolution (Anderson et al. 2007c).

Because the ESI does not use rainfall data, it provides an

independent check on precipitation-based drought in-

dicators and may be more robust in regions with min-

imal ground-based meteorological infrastructure. The

remotely sensed ET fields have the advantage that they

inherently include nonprecipitation-related moisture sig-

nals that need to be modeled a priori in prognostic LSM

schemes.

This paper compares the ESI with standard precipitation-

based drought indices over the continental United States,

and with drought classifications recorded in retrospective

USDM reports from 2000 to 2009. The goals of this study

are to establish the level of similarity between ET- and

precipitation-based indices, and to improve our under-

standing of the characteristic time scales associated with

these indices and their ability to rank historic drought

events in order of severity.

2. Data and methodology

The suite of satellite- and precipitation-based drought

indices considered in the intercomparison are listed in

Table 1 and described briefly below. The precipitation

index datasets were generated by the National Climatic

Data Center (NCDC; http://www1.ncdc.noaa.gov/pub/data/

cirs/) and are included here to study the comparative be-

havior of a range in metrics commonly used in operational

drought monitoring. A more complete review of standard

meteorological drought indices is provided by Heim (2002).

The study was conducted over the continental United

States (CONUS) using data from 2000 to 2009, focusing

on the primary growing season for most of the United

States (April–September). The seasonal extent of the in-

tercomparison is currently constrained by the ESI archive,

which to date has excluded months with significant snow

cover due to poor performance of satellite insolation

products over snow. Ultimately, the ESI archive can be

extended back to 1979 using GOES imagery archived

through the NCDC International Satellite Cloud Cli-

matology Project (ISCCP) B1 Data Rescue project

(Knapp 2008). In comparison, the precipitation-based in-

dex datasets examined here extend back to 1895, being

independent of satellite data.

Figure 1 shows the cumulative percent area in the

United States covered by extremely dry and extremely

wet conditions for 1900–2009, as indicated by the Palmer

drought severity index (PDSI). In contrast with the full

period of record, 2000–09 was relatively dry; but it still

shows significant variability in drought conditions.
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a. Remotely sensed ET indices

1) THE ALEXI MODEL

Two remote sensing drought indicators are examined

in this study—anomalies in ET and fPET, which is the

ratio of actual ET to PET:

f
PET

5
ET

PET
, (1)

as determined under clear-sky conditions. In this analysis,

ET and PET are instantaneous estimates at shortly before

local noon, retrieved using the LST-based Atmosphere–

Land Exchange Inverse (ALEXI) surface energy balance

model (Anderson et al. 1997; Anderson et al. 2007b,c;

Mecikalski et al. 1999). Equation (1) follows from earlier

work on using TIR-band data in agricultural applications,

where fPET has been used as a tool for crop stress de-

tection and irrigation scheduling (Moran 2003). Limiting

the assessment to clear-sky conditions separates signals

of soil moisture variability from that of cloud climatol-

ogy. Furthermore, TIR-band LST retrievals are limited to

cloud-free atmospheric conditions.

Normalization by PET in Eq. (1) serves to remove

some degree of variability in ET due to seasonal varia-

tions in available energy and vegetation cover amount,

further refining the focus on the soil moisture signal. The

analyses below will assess whether fPET anomalies are

more strongly related to precipitation drought indices

than are anomalies in ET itself. Standardized anomalies

in ET and fPET will be referred to as the evapotranspi-

ration index (ETI) and ESI, respectively.

In remote sensing models like ALEXI, surface radio-

metric temperature derived from TIR-band imagery is

a valuable metric for constraining estimates of ET be-

cause varying soil moisture conditions yield a distinctive

thermal signature: soil surface temperature increases with

decreasing water content in the upper few centimeters

of the soil profile, while moisture deficiencies in the root

zone lead to vegetation stress and elevated canopy tem-

perature. The land surface representation in the ALEXI

model is based on the series version of the local-scale

two-source (soil 1 canopy) energy balance (TSEB) model

of Norman et al. (1995), with subsequent modifications

described by Kustas and Norman (1999, 2000). LST is used

to directly constrain the flux of sensible heat (H; W m22)

from the land surface, and latent heat (lE; W m22) is

computed as a residual to the overall energy balance:

lE 5 RN�G�H, (2)

where RN is net radiation and G is the soil heat con-

duction flux (both in W m22), l is the latent heat of va-

porization (J kg21), and E is actual ET (kg s21 m22 or

mm s21). The two-source formulation specific to TSEB

further partitions RN, H and into lE into soil and can-

opy components, facilitating the separation of ET into

estimates of soil evaporation and canopy transpiration.

This approach therefore opens the potential for surface

TABLE 1. Drought indicators included in the intercomparison study.

Index Acronym Type

U.S. Drought Monitor USDM Multi-index synthesis

Evaporative stress index (X-month composite) ESI-X Remote sensing of fPET

Evapotranspiration index (X-month composite) ETI-X Remote sensing of ET

Standardized precipitation index (X month) SPI-X Precipitation

Palmer Z index Z Precipitation 1 storage

Palmer drought severity index PDSI Precipitation 1 storage

Palmer modified drought index PMDI Precipitation 1 storage

Palmer hydrologic drought index PHDI Precipitation 1 storage

FIG. 1. Cumulative percent area of the United States covered by

extremely dry (light gray) and extremely wet (dark gray) condi-

tions for (top) 1900–2009 and (bottom) for the 2000–09 period

covered by this analysis, as represented by the PDSI.
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and root-zone moisture pool assessment, and thus con-

comitant tracking of both meteorological and agricul-

tural droughts.

The ALEXI modeling framework enables regional

implementation of the TSEB by exploiting the spatial

and temporal coverage provided by geostationary satel-

lite platforms, such as GOES in the United States. In the

regional ALEXI model, the TSEB is applied in a time-

differencing mode, using a simple model of atmospheric

boundary layer (ABL) development (McNaughton and

Spriggs 1986) to provide energy closure over the in-

tegration interval. As a result of this configuration,

ALEXI uses only time-differential TIR signals from

GOES, thereby reducing flux errors due to absolute

sensor calibration and atmospheric and emissivity cor-

rections (Kustas et al. 2001). Anderson et al. (2007a)

summarize ALEXI validation experiments, employ-

ing a spatial flux disaggregation technique (DisALEXI;

Norman et al. 2003), which uses higher-resolution TIR

imagery from aircraft or polar-orbiting satellites to down-

scale the GOES-based flux estimates (10-km resolu-

tion) to the flux measurement footprint (on the order of

100 m). Typical root-mean-square deviations in com-

parison with tower flux measurements (30-min averages)

of H and lE are 35–40 W m22 (15% of the mean ob-

served flux) over a range in vegetation cover types and

climatic conditions.

The ALEXI model currently runs daily on a 10-km

resolution grid covering CONUS, and model input–

output from this framework has been archived for the

period 2000–present and for the months of February–

September. Snow-covered regions have been masked

using the 24-km resolution daily Northern Hemisphere

snow and ice analysis product distributed through the

National Snow and Ice Data Center (NSIDC; http://

nsidc.org/data/docs/noaa/g02156_ims_snow_ice_analysis/

index.html). Further details about the ALEXI CONUS

modeling system are provided by Anderson et al. (2007c).

2) TEMPORAL COMPOSITING

Because the ET values used to compute the ESI and

ETI are dependent on clear-sky conditions, only a por-

tion of the ALEXI modeling domain can be filled on any

given day. On average, pixels in 75% of the U.S. domain

are executed at least once every 6 days, while 95% are

updated at least every 20 days. Therefore, temporal com-

positing of clear-sky ET and fPET values is required to fill

in the full model domain. Compositing also serves to re-

duce the effects of noise in the ET retrievals, primarily

arising from incomplete cloud clearing in the LST inputs

to ALEXI.

In this study, composites were generated at 28-day

time steps (roughly monthly) over 4-, 8-, 12-, and 26-week

(1, 2, 3, and roughly 6 months, respectively) moving

windows (time-stamped by the end date), in general

paralleling the shorter-term SPI product time scales.

The 26-week composite is essentially a growing-season

average for April–September, while the 4- to 12-week

composites sample different phenological phases in veg-

etation development. Composites were computed as an

unweighted average of all index values over the interval

in question that passed cloud screening tests:

hv(w, y, i, j)i5 1

nc
�
nc

n51
v(n, y, i, j), (3)

where hv(w, y, i, j)i is the composite for week w, year y,

and i, j grid location; v(n, y, i, j) is the value on day n; and

nc is the number of clear days during the compositing

interval.

3) STANDARDIZED ANOMALIES

To highlight differences in moisture conditions be-

tween years, drought indices are typically presented as

anomalies or percentiles with respect to multiyear-average

fields determined over some period of record. Standard-

ized anomalies in fPET and ET over the period 2000–09

are expressed as a pseudo z score, normalized to a mean

of 0 and a standard deviation of 1. Fields describing

‘‘normal’’ (mean) conditions and temporal standard

deviations at each pixel were generated for each com-

positing interval. Then standardized anomalies were

computed as

Dhv(w, y, i, j)i5
hv(w, y, i, j)i � 1

ny
�
ny

y51
hv(w, y, i, j)i

s(w, i, j)
,

(4)

where the second term in the numerator defines the

normal field, averaged over all years ny, and the de-

nominator is the standard deviation.

In this notation, ETI-X is defined as DhETi and ESI-X

as Dh fPETi, computed for an X-month composite. Like

most other drought indices, this formulation generates

negative values for drier-than-normal conditions and

positive values for wetter-than-normal conditions. Im-

plicit in the application of Eq. (5) to ALEXI ET and

fPET is the assumption that these quantities are normally

distributed in time at every i, j location in the CONUS

grid during 2000–09. In this case, values of ESI and ETI

less than 22 represent dry conditions exceeding 2s, which

should occur 2% of the time. At present, there are not

enough years in the ALEXI archive (10 points) to war-

rant fitting of a nonnormal distribution; however, such

2028 J O U R N A L O F C L I M A T E VOLUME 24



adjustments may be applied as the archive is continually

expanded.

b. Comparison drought metrics

1) PALMER INDICES

(i) PDSI

The Palmer drought severity index (PDSI; Palmer 1965)

was the first drought indicator developed for the United

States. Despite its limitations, it is still one of the most

widely used indicators today. The algorithm computes

a simple two-layer soil water balance equating change

in soil water storage with precipitation less ET and runoff

terms. Monthly precipitation is compared to a value re-

quired to sustain a normal or ‘‘climatically appropriate’’

water balance for that month (as determined from pre-

cipitation and temperature data acquired over a long

period of record), and this departure is weighted to form a

Z index (or moisture anomaly index). The weighting factor

incorporates local climatic norms for the water balance

terms and is intended to improve the comparability of in-

dex values over space and time. The Z indices are then

accumulated over time using a recursive relationship:

PDSI 5 0.897PDSI
i�1

1
1

3

� �
Z

i
, (5)

where i represents the ith month of a dry spell. The

relative contribution from the previous month’s PDSI

in relationship to the current month’s Z index was de-

termined empirically by Palmer using a set of drought

events of specified severity and duration that were re-

corded in central Iowa and western Kansas. Additional

rules modify the accumulation of PDSI in Eq. (5) de-

pending on whether a location is in an incipient or ex-

isting dry or wet spell, with the end point of a drought

not detected until several months or years later. This

necessitates backtracking and recomputation of PDSI

once a spell has been determined to have been termi-

nated, which can result in sudden temporal discontinu-

ities in the PDSI record.

The inputs to the Palmer algorithm are air tem-

perature (used in ET computation, generally using a

Thornthwaite approximation for PET; Thornthwaite

1948), precipitation, and a map of soil available water

capacity (related to soil texture). Because of the high

weighting of PDSIi21 relative to Zi, the index has been

shown to have a relatively long memory of antecedent

moisture conditions, and therefore it is less effective

with short-term droughts.

(ii) PMDI

To facilitate the real time, operational application of

the PDSI, Heddinghaus and Sabol (1991) modified the

rules of accumulation during wet and dry spells to create

the Palmer modified drought index (PMDI). These re-

definitions circumvent the need to backtrack and re-

compute prior PDSI values, as stipulated by the rules of

Palmer (1965).

(iii) Z

The Palmer Z index is the Z component of the PDSI

computation [Eq. (5)], reflecting the monthly departure

in precipitation (supply) with respect to expected de-

mand for that month, as determined by the Palmer soil

water balance model. Because Z is not influenced by the

moisture conditions from the previous month, it is effec-

tively a measure of short-term meteorological drought.

(iv) PHDI

The Palmer hydrological drought index (PHDI) is also

derived as an intermediate index in the PDSI computation,

and it represents accumulations derived during an estab-

lished wet or dry spell. The rules for terminating a dry or wet

spell are more stringent than for the PDSI; therefore, the

time constant for variation is longer. The PHDI is therefore

considered a measure of long-term hydrologic drought.

(v) Summary

The principle advantages of the Palmer indices are

a long period of record and a long history of usage, both

of which have fostered familiarity within the drought

community. Specific limitations of the Palmer indices are

reviewed by Alley (1984) and Karl (1983). Because the

algorithm is highly parameterized, with empirically

based parameter values determined from limited ob-

servational data exclusively from the midwestern

United States, there are issues with spatial and tem-

poral standardization (Wells et al. 2004). The ET and

two-layer soil storage model components are simplistic

and depend on accurate soil texture information. Fi-

nally, given the complex algorithm applied, Palmer in-

dex values have no directly intuitive physical meaning.

Palmer datasets Z, PDSI, PMDI, and PDHI are dis-

tributed by NCDC at the climate division level and on a

monthly time step from 1895 to present (http://www1.ncdc.

noaa.gov/pub/data/cirs/). These products are based on rain

gauge and air temperature data that have been area av-

eraged at the climate division scale (Guttman and Quayle

1996). For this study, the Palmer datasets were regridded

to the 10-km ALEXI grid, maintaining constant values over

climate division polygons.

2) SPI

Issues with PDSI and variants thereof inspired the

formation of a standardized precipitation index (SPI;
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McKee et al. 1993, 1995), which uses observed precipita-

tion as its only input. Precipitation data at a given location

are converted into probabilities based on a local long-term

climatology. The probabilities are then standardized such

that a value of 0 indicates that the median precipitation

amount (in comparison with the climatology) was measured

at that pixel over the time interval in question (Edwards

and McKee 1997). The SPI can be computed for multiple

time scales (typically ranging from 2 to 52 weeks) to mon-

itor the different types of drought.

The advantage of the SPI is that it is model

independent—a straight forward assessment of rainfall

inputs to the system, unlike the Palmer indices, which

make assumptions about water loss and storage as noted

above. Spatial uniformity and time scale of the SPI are

well defined, (Guttman 1997). Because it is based only

on precipitation data, a long period of record spanning

many decades can be constructed. A major disadvantage

of the SPI (and the Palmer indices) for mapping appli-

cations is that high-quality gridded precipitation data

are not available at high spatial resolution for most parts

of the world.

SPI data are distributed by NCDC at the climate di-

vision level and on a monthly time step from 1895 to

present (http://www1.ncdc.noaa.gov/pub/data/cirs/). These

products are based on rain gauge data areal averaged at

the climate division scale. In this study we evaluate the

2-, 3-, and 6-month NCDC SPI products. Longer-term

SPI products (e.g., 9 and 12 months) extend beyond the

annual growing-season extent of the current ESI archive

and will be assessed in a future study when the archive

has been expanded to year-round coverage. The SPI

datasets were regridded to the 10-km ALEXI grid, main-

taining constant values over climate division polygons.

3) USDM

Through expert analysis, authors of the weekly USDM

subjectively integrate information from many existing

drought indicators, including the Palmer indices and the

SPI, along with local reports from state climatologists

and observers across the country. Archived USDM data

are distributed by the NDMC online (http://drought.

unl.edu/dm/) in a variety of GIS formats. In this study,

USDM data were downloaded in table form, which in-

dexes the percent areas of each USDM drought class by

calendar date and county.

County polygons were used to assign a USDM value

for each date to each pixel in the 10-km ALEXI grid. All

pixels contained within a given county polygon were

assigned the same value, corresponding to the most se-

vere drought class observed over at least 33% of the

county. For computational purposes, the drought classes

were mapped to numerical values with ‘‘no drought’’

assigned a value of 21, D0 5 0 (abnormally dry), D1 5 1

(moderate drought), D2 5 2 (severe drought), D3 5 3

(extreme drought), and D4 5 4 (exceptional drought).

For example, if a particular county were classified as

100% D0, 38% D1, and 0% D2–D4, the pixels in that

county would be assigned a value of 1.

4) STANDARDIZED ANOMALIES

The PDSI and SPI data used here were normalized by

the NCDC to the period 1931–90. The period of record

for the ESI and ETI (2000–09) is considerably shorter,

with average climatic conditions that are not neces-

sarily representative of the normalization periods for

the other indices (Fig. 1). Therefore, the terms ‘‘wetter’’

and ‘‘drier’’ may convey different meaning for the ESI

than for the PDSI and SPI. To improve the compara-

bility between the indices evaluated here, anomalies

for each precipitation-based index included in the in-

tercomparison and for the USDM drought classes were

recomputed over the period 2000–09 using Eq. (4),

analogous to the ESI formulation. Recomputation of

anomalies with respect to the same period of record sig-

nificantly improved the spatial agreement between in-

dices. Renormalized values of index X will be referred to

as ‘‘DX’’ to distinguish them from their standard values.

c. Statistical comparisons

Both temporal and spatial correlations between index

anomalies were examined to assess the similarity be-

tween drought indices in their ability to rank drought

severity and to visualize spatial patterns in index con-

gruity. For these statistical analyses, all index anomaly

maps were aggregated to the climate division scale, which

was the scale of the coarsest indices included in the

intercomparison.

First, we examined temporal correlations between

drought indices and the USDM—that is, how similarly

these indicators rank drought conditions through time

at a given point in space. In this case, index time series

were extracted from six monthly maps per year, yielding

a total of 6 3 10 5 60 data pairs in the correlation com-

putation at each point in the modeling domain. The Pear-

son correlation coefficient was then mapped as a function

of location across CONUS. A Spearman rank correlation

test was also applied, but it gave similar results.

We also examined the spatial similarity between in-

dex maps to determine how uniformly and consistently

drought events were classified over CONUS by this suite

of indicators at different points in time. Correlation co-

efficients for each month (April–September) for 2000–09

were computed between pixels from pairs of index
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maps. This analysis demonstrates how spatial correla-

tion strength varies from month to month and year to

year based on climatic patterns.

A few caveats must be considered when interpreting

correlations with the USDM classes. First, the USDM is

not independent of the Palmer and SPI indices, as these

are commonly used in the construction of USDM clas-

sifications. The ESI and ETI were not used in the USDM

classification process over this period of record. Second,

USDM drought classes incorporate information rele-

vant to different kinds of drought over varying time

scales, and we cannot expect a single indicator to agree

perfectly with the USDM. For example, socioeconomic

drought features in the USDM may indicate increased

human demand for water rather than natural hydro-

logical deficits. Finally, unlike the other indices, the

USDM does not contain intrinsic information on wetter-

than-average conditions. While the USDM should not

be considered the absolute metric of ‘‘truth’’ in drought

monitoring, these comparisons give us insight as to how

various indices can be most effectively used to inform

the drought classification process.

3. Drought index intercomparison

a. Climatological characteristics

Maps of monthly and seasonal (26-week composite)

normal conditions and standard deviations computed

for the 2000–09 period are shown in Figs. 2 and 3 for the

USDM drought classifications—ALEXI fPET and ET—

and two standard precipitation-based drought indices

(SPI-3 and PMDI), selected to exemplify a range in

time scales and modeling approaches. These fields are

used to normalize monthly and seasonal anomalies

[Eq. (4)] and to convey information about relative prod-

uct resolution, spatial smoothness–noise, temporal vari-

ability, and the hydrologic-state variables considered in

each index.

FIG. 2. Monthly and seasonally composited (26-week) maps of normal conditions for the USDM (–), fPET (–), ET (W m22), SPI-3 (–), and

PMDI (–) indices. Green indicates wetter conditions and red indicates drier conditions.
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The USDM normal fields (Fig. 2) indicate that the

western United States has been generally classified as

under drought of strength D1 or stronger over this 10-yr

interval. The Midwest and Northeast were typically

drought free or in D0, while the dry patch in the

Southeast results primarily from the drought of 2007.

Patterns in the fPET normal maps are similar but not

identical to those in the USDM. Seasonal discrepancies

between the fPET, USDM, and precipitation indices

highlight areas where fPET provides unique information

about water use, where ET is partially decoupled from

monthly rainfall rates. In July and August, for example,

high average fPET along the Mississippi River basin re-

flects enhanced ET due to shallow water tables and

a high density of irrigated land area (Hain 2010). Simi-

larly, ET in the managed agricultural areas of the Corn

Belt (from Nebraska to Ohio) is typically maintained

near potential during these months. These moisture fea-

tures are less pronounced in the clear-sky ET normals,

which are more strongly correlated with the seasonal

cycle in vegetation cover fraction. Normalization by PET

appears to accentuate the tie between fPET and soil mois-

ture conditions, reducing the response to seasonal varia-

tions in vegetation amount and available energy.

Spatial patterns in the precipitation index normals

(SPI-3 and PMDI) resemble the USDM normals, in part

because these indices were used in producing the USDM

reports. The NCDC datasets show strong spatial variabil-

ity, likely reflecting sparsity and nonrepresentativeness

in the gauge data used to create these indices. Gauge

coverage is particularly problematic within western cli-

mate divisions, where we see the strongest noise in Fig. 2.

In contrast, the ET indices are relatively smooth even

when aggregated to the climate division scale, because of

denser spatial sampling afforded by the remote sensing

inputs. PMDI normal values for 2000–09 are peaked to-

ward dry conditions (red tones) because this period was

drier, on average, than the calibration interval used by

NCDC to normalize the Palmer indices (1931–90; see

Fig. 1). These bias effects are mitigated in the inter-

comparison to a large extent by the recomputation

of standardized anomalies with respect to normal and

FIG. 3. As in Fig. 2, but for the temporal standard deviation. Red indicates lower variability.
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variability fields determined over a common interval

(as described in section 2d).

The standard deviation fields in Fig. 3 convey addi-

tional insights about relative index behavior and in-

formation content, identifying regions where indices are

more or less responsive to climatic drivers. The USDM

drought classifications for 2000–09 were most variable

in areas that experienced extreme drought during this

period, including the western United States (2002–04),

the Southeast (2007), and southern Texas (2009). The

fraction of potential ET varied most strongly along the

north–south midcontinent transition between the dry and

humid temperate domains. Strong east–west gradients

in vegetation cover and precipitation at this transition

increase sensitivity in ET to annual climatic variability.

In contrast, low variability in fPET is observed over the

FIG. 4. Seasonal (26 week) anomalies in USDM, ESI, Z, SPI-3, and PMDI for 2000–09.
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FIG. 5. (a) (second column, left to right) Monthly (Apr–Sep) standardized anomalies in the USDM drought classes (DUSDM), the

ESI-2, the Palmer Z index (DZ), the 3-month SPI (DSPI-3), and the Palmer modified drought index (DPMDI) for 2002. (first column)

The USDM drought classes for the week closest to the end of each month. (b) As in (a), but for 2005. (c) As in (a), but for 2007. (d) As in

(a), but for 2009.
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FIG. 5. (Continued)
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Mississippi River basin, where riparian vegetation has

access to shallow groundwater. Similar low variability

features over Indiana, Ohio, and Florida also correspond

to regions of shallow or inundated water table (Miguez-

Macho et al. 2008). Temporal variance in fPET may

therefore be a useful indicator for mapping groundwater-

dependent ecosystems.

Skewness, the third moment of the temporal distri-

bution, was also assessed for each index. Skewness in

fPET and ET exhibited over this 10-yr period is generally

low, with values between 21 and 1. The USDM shows

stronger skew toward dry conditions, particularly in the

East, where values exceeding 2 are observed. These are

areas that tended to be drought free during this period

and therefore strongly peaked at the ‘‘wet’’ end of the

USDM class distribution (no drought). This skewness

will degrade temporal and spatial correlations with other

indices to some extent in the eastern United States, but

it does not negate the general conclusions drawn from the

intercomparison.

b. Seasonal and monthly drought patterns

Figure 4 compares annual patterns in drought over

CONUS as represented by the USDM, ESI-2, Z, SPI-3,

and PMDI indices for 2000–09. These maps show stan-

dardized anomalies computed for 26-week composites

associated with the nominal growing season in the United

States (April–September). ETI maps (not shown) are

similar to the ESI but with lower interindex agreement

(see section 3c). These figures demonstrate the diversity

of information provided by different drought indicators,

highlighting the complexity of developing a unified

drought representation at the continental scale.

Drought features in the USDM are generally reflected

in one or more of the other indices but to varying de-

grees depending on drought type and time scale. An

exception is the multiyear hydrologic drought in the

western United States in 2004, which is not well de-

lineated by any of the shorter-term indices shown in Fig. 4

and only marginally captured in the longer-term PMDI

and PHDI. In general, the ESI reproduces patterns ev-

ident in the precipitation indices, indicating the value of

the LST signal as a surface moisture proxy. For example,

the thermal band inputs to ALEXI capture the major

drought events occurring in 2002 and 2007, even in the

eastern United States, where there is dense vegetation

cover midseason and little exposure of the dry soil surface.

This is a part of CONUS, where standard soil moisture

retrievals based on passive microwave remote sensing tend

to lose sensitivity because of strong attenuation of the soil

signal by water contained in the dense vegetation canopy.

In the thermal band, however, the moisture deficit signal is

strong—vegetation stress and soil moisture depletion in the

surface skin contribute to elevated canopy and soil com-

ponents of the composite surface radiometric temperature.

Monthly index anomalies are shown in Fig. 5 for a few

years with distinctive drought patterns. Here, an 8-week

(two months) ESI compositing interval is used to max-

imize agreement with other indices while preserving

month-to-month variability. The ESI reasonably tracks

the time evolution of D3 and D4 drought patterns re-

corded in the USDM during 2002 and 2007 without

significant lag (Figs. 5a and 5c). In some cases, USDM

hotspots are better localized in the ESI than in the

NCDC precipitation indices, because of the higher spa-

tial resolution provided by the GOES LST inputs to

ALEXI. Beginning in May 2005, for example, an un-

usual band of severe drought was established, extend-

ing from Illinois southwestward into Texas (Fig. 5b). A

series of tropical storms in June–August (Arlene, Dennis,

and Katrina) tracked east of the Mississippi River, con-

fining the drought to this narrow band. The band was

bifurcated by September, but drought in the northern and

southern segments lingered into 2006. The ESI fields re-

produce the development of this band of drought with

reasonable spatial and temporal response to monthly

precipitation patterns.

Some issues remain in the ESI processing stream,

primarily in the area of incomplete archive and cloud

clearing. In May and June of 2009, for example, the

exceptional drought in Texas is not strongly identified in

ESI-2, and there are extraneous drought signals that are

not present in the other indices (Fig. 5d). These months

had several extended periods with missing input data

required to produce the ESI, and therefore the sampling

in the composites was relatively poor. This exacerbates

the effects of noise due to cloudy pixels undetected by

the cloud screen, which tend to be averaged out when the

daily sampling is more complete. Techniques for improv-

ing sampling in the ALEXI processing system are in de-

velopment (see section 4).

c. Statistical intercomparisons

1) TEMPORAL CORRELATION ANALYSES

With the anomaly datasets we can determine how

similarly the indices rank moisture conditions in time as

a function of location across the CONUS domain. Maps

describing the temporal similarity between the USDM

and each of the drought indices considered in the in-

tercomparison, in terms of linear correlation in monthly

climate-division-based ranking of moisture conditions,

are shown in Fig. 6, with domain-averaged correlation

coefficients (hri) for all the index pairs listed in Table 2.

Excluding autocorrelation effects, correlations of magni-

tude greater than 0.33 are statistically significant at p 5 0.01.
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FIG. 6. Coefficient of temporal correlation between monthly maps of USDM anomalies and other drought indices

included in the intercomparison for 2000–09.
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Of the indices considered here, the PMDI and PHDI

are most similar to the USDM in their temporal ranking

of moisture conditions (hri 5 0.70). This is in part be-

cause these indices are used in the construction of the

USDM and therefore are not independent estimators

of drought conditions. In addition, these indicators are

relatively conservative, with a longer time-scale re-

sponse to precipitation events more similar to that of

the USDM, which typically does not change at the county

level by more than one drought class between weekly

reports.

In comparison with the USDM, the TIR-based ESI-2

yields higher average temporal correlations (hri5 0.53)

than do the precipitation indices of shorter or com-

parable time scale (Z and SPI-1 to SPI-3, with hri 5

0.28–0.51). In fact, in the northwestern United States,

these short-term precipitation indices show a weakly

negative correlation with USDM rankings. Shukla and

Wood (2008) caution against using short-term SPIs in

the U.S. Drought Monitor, noting that hydrologic delays

in snowpack-forming regions can cause these indices to

become desynchronized from land surface moisture con-

ditions. In addition, SPI-1, SPI-2, and SPI-3 show weak

correlations with the USDM in the southwestern United

States. Wu et al. (2007) demonstrate that short-time-scale

SPIs tend to have nonnormal temporal distributions in

arid climates where precipitation distribution functions

are highly skewed, peaking toward the no-rain case. In

these situations, the 3-month SPI will tend to under-

predict the severity and frequency of drought events,

whereas the 6-month SPI shows more reasonable per-

formance. This is consistent with the results in Fig. 6,

which indicate that the SPI-6 is more highly correlated

with the USDM in the western United States than is

the SPI-3.

The ESI-2 does not exhibit the strong east–west dis-

similarity in agreement with the USDM seen in SPI

products of comparable time scale. The strongest cor-

relations between the ESI and the USDM are observed

over the Great Plains and in the southeastern United

States. These are areas identified by Karnieli et al. (2010)

where LST and NDVI tend to be anticorrelated, indi-

cating moisture-limiting (as opposed to energy limiting)

vegetation growth conditions. ET will be most sensitive to

changing subsurface moisture conditions in these areas,

and therefore anomalies should be indicative of drought.

These are also regions where fPET shows the highest

temporal variability (Fig. 3). Reduced correlations be-

tween USDM and ESI are found along the Mississippi

River basin, where shallow water tables and intensive

irrigation tend to decouple ET rates from precipitation

to some extent. The ESI also shows lower correlations

with the USDM over the Everglades in south Florida.

Here, the land surface is largely inundated with water

over much of the year, and ET variations at the sea-

sonal scale may be more related to climatic variability

than to moisture availability. Lower correlations are

also found in the northern states where, particularly

in the early spring, ET is driven more by radiation and

climate and is less tightly coupled with moisture/drought.

In addition, the probability of cloud cover is higher in

the northern United States (Hahn and Warren 2007),

resulting in less frequent sampling of LST and greater

uncertainty in the TIR-based satellite indices. In most

CONUS climate divisions, the ESI is more strongly cor-

related with USDM drought classes than are ET anom-

alies (ETI-2).

Maps of coefficients of temporal correlation with the

ESI-2 are shown in Fig. 7, with domain-averaged values

also given in Table 2. The ESI shows best temporal

agreement with the PMDI, suggesting that the remotely

sensed ET estimates effectively integrate moisture con-

ditions over time scales of several months. Agreement is

strongest in hot spots of drought activity over that de-

cade: in the southeast, the southwest, and in Texas. Good

agreement is also found along the Great Plains, where the

ESI has demonstrated enhanced sensitivity to precipi-

tation amount.

TABLE 2. Average temporal correlation coefficient in pixel-based correlations of indices at monthly time steps. Bold values indicate the

highest correlation for each index in a given column.

ESI-2 ETI-2 DZ DSPI-1 DSPI-2 DSPI-3 DSPI-6 DPDSI DPMDI DPHDI

DUSDM 0.536 0.477 0.416 0.282 0.434 0.508 0.603 0.664 0.705 0.698

ESI-2 0.855 0.425 0.282 0.485 0.544 0.547 0.564 0.591 0.560

ETI-2 0.855 0.332 0.213 0.417 0.491 0.495 0.491 0.517 0.497

DZ 0.894 0.752 0.679 0.562 0.641 0.637 0.534

DSPI-1 0.894 0.706 0.580 0.419 0.447 0.439 0.341

DSPI-2 0.827 0.598 0.585 0.598 0.497

DSPI-3 0.827 0.737 0.663 0.691 0.602

DSPI-6 0.764 0.814 0.776

DPDSI 0.941 0.905

DPMDI 0.961
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2) SPATIAL CORRELATION ANALYSES

With these datasets we can also examine the spatial

similarity between maps of index anomalies and de-

termine how this similarity evolves with time. Figure 8a

shows yearly averaged coefficients of spatial correlation

computed between monthly maps of USDM drought

class anomalies and ESI-2, ETI-2, and the other drought

indices in Table 1. Coherent year-to-year variability in

index agreement is apparent. All indices show the weak-

est correlations in 2004 during the long-term hydrologic

drought event in the western United States, which was

captured only by indices with time constants exceeding

one year. The highest correlations are obtained in 2007,

when there was a strong contrast in moisture conditions

across CONUS. On average over all years, the spatial

correlation of the ESI-2 with the USDM ranks between

that of the SPI-3 and the SPI-6. ETI-2 correlations are

consistently lower than those of ESI-2 by 0.05, on average.

Monthly average spatial correlations with USDM are

plotted versus day of year in Fig. 8b to study the seasonal

evolution in index agreement. At the monthly time scale,

FIG. 7. As in Fig. 6, but between ESI-2 and other drought indices.
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spatial patterns in the USDM anomalies most closely

resemble those in the longer-term indices: the PHDI,

PMDI, PDSI, and SPI-6. The PHDI and PMDI show

similar levels of agreement with the USDM, with cor-

relations that are relatively uniform over the growing

season. The modifications to the Palmer drought index

algorithm implemented in the PMDI improve correla-

tion with the USDM by 0.04, on average, in comparison

with the standard PDSI. SPI-6 and ESI-2 rank next in

terms of spatial similarity with the USDM, yielding a

similar correlation, on average, past midseason. Corre-

lations between ESI-2 and USDM are weakest in April

and May. This may be partly due to poor temporal

sampling in the ESI because of increased snow and cloud

cover in the early spring. However, spatial similarity

with ESI-2 increases steadily throughout the season as

evaporative fluxes become increasingly moisture limited.

In contrast, correlations between the short-term pre-

cipitation indices (Z, SPI-2, SPI-3) and the USDM and

other indices tend to degrade in August and September.

In several years (2002, 2006, 2007, and 2009), late-season

rainfall or deficits in these months had little impact on

drought patterns that had developed during the growing

season (see monthly maps in Fig. 5).

3) IMPACT OF ET COMPOSITING INTERVAL

The impact of compositing interval applied to the

remotely sensed ET indices has been evaluated in terms

of improvements in spatial and temporal correlation with

respect to the suite of precipitation indices considered

here. Figure 9 shows average spatial and temporal cor-

relation coefficients for both the ESI and ETI in com-

parison with the USDM and other indices as a function

of compositing interval, sampled at 2, 4, 8, and 12 weeks.

Both spatially and temporally, agreement in rank-

ing between the ET indices and the USDM, PMDI,

PHDI, PDSI, and SPI-6 improves with increasing ET-

compositing interval, reaching a plateau at approximately

eight weeks. For the shorter-term indices, the SPI-2

(2-month composite) is best correlated with the 4-week

ET composites and SPI-3 with the 8-week ET com-

posites. In other words, each SPI product agreed best

with an ET index composited over an interval 4 weeks

shorter than the SPI integration time scale. This suggests

that evapotranspiration, as a physical process, integrates

over a longer period than the equivalent precipitation

interval—that is, it retains some memory of moisture

conditions prior to the composite interval. The Z index

is best correlated with the 2-week ET composites. The

1-week ET composites typically do not have full do-

main coverage because of cloud cover and show low

correlations with all indices; therefore, they may have

a limited utility for drought monitoring. In contrast, the

4- and 12-week composites may be most useful for USDM

classifications, bracketing a range in drought time scales.

A complete analysis using full-year datasets for each in-

dex is required to refine these recommendations for year-

round monitoring.

The comparison of spatial and temporal correlation

coefficients in Fig. 9 further demonstrates that, accord-

ing to these metrics, anomalies in fPET (ESI) are more

strongly correlated with the other indices than are anom-

alies in ET (ETI) by approximately 0.05–0.10. Again, this

is likely because by normalizing by PET, there is better

isolation of variations in ET due to atmospheric demand

and radiation load—factors not directly related to soil

moisture conditions.

4. Discussion

Based on these results, we can draw some general

conclusions regarding the relative strengths and weak-

nesses in the ESI approach to drought monitoring in

comparison with standard drought metrics currently in

operational use. The ESI provides unique information

FIG. 8. CONUS-average coefficient of spatial correlation between

monthly maps (April–September, 2000–09) of USDM anomalies

and anomalies in other drought indices included in the inter-

comparison averaged by (a) year and (b) day of year.
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not reflected in precipitation-based indices; however,

because of its reliance on thermal remote sensing, it does

suffer from sampling issues that add noise to regional

assessments.

Remotely sensed ET and fPET estimates include ef-

fects of artificial controls on water supply (e.g., irriga-

tion, dams and diversions, interbasin water transfers,

among others) that are decoupled from natural rainfall

and streamflow patterns. Impacts of rainfall deficits on

phreatophytic vegetation may also be locally mitigated

by access to shallow groundwater, which also has a sig-

nature in the remotely sensed ET. Therefore, the ESI

and ETI provide unique diagnostic information about

actual stress that is not easily derived from precipitation

data or hydrologic modeling without detailed information

about management practices or water table distribution.

In comparison to precipitation indices, we can obtain

information on where stress is being relieved by active

water management or other nonprecipitation water inputs.

The focus on consumptive water use rather than

water supply is also unique and builds in response to

meteorological drivers (such as insolation, atmospheric

humidity, and wind speed) as well as biophysical prop-

erties (such as plant water-use efficiency). Soil mois-

ture will be lost from the system at different rates

depending on these factors—for example, the so-called

flash drought events, where prolonged hot, dry, and

windy conditions lead to rapid water loss and the poten-

tial for catastrophic crop yield loss. Such events have

caused great economic damage in the United States but

are difficult to detect and explain using standard meteo-

rological indices.

Some of the small-scale and diffuse structure evident

in the ESI maps in Figs. 4 and 5 is likely noise related,

FIG. 9. CONUS-average coefficient of (top) temporal correlation and (bottom) time-average coefficient of spatial

correlation between (left) ESI and (right) ETI and other drought indices included in the intercomparison as

a function of ET index compositing interval.
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primarily because of incomplete cloud clearing. Im-

provements to the ALEXI preprocessing infrastructure,

including the implementation of redundant input data

streams and improved cloud masks, are underway and

should help to reduce noise in future reprocessing of

the ESI archive. However, dependence on clear-sky

conditions required for thermal band LST retrieval nec-

essarily places a physical limitation (related to cloud cli-

matology) on the frequency of sampling achievable with

the ALEXI ET algorithm. While a cloud gap-filling al-

gorithm has been developed to generate time-continuous

ET fields (Anderson et al. 2007b), gap-filled values are

not independent samples of moisture conditions and do

not add significant value to ESI composites. Therefore,

the optimal remote sensing approach may be a multi-

band solution, integrating thermal data with microwave-

based soil moisture information, which can be obtained

under clear or cloudy skies. Joint assimilation of both

TIR fPET and microwave soil moisture retrievals into

a prognostic LSM would serve to maximize both spa-

tial and temporal sampling of surface moisture conditions

and would provide additional hydrologic information,

such as runoff, streamflow, and groundwater recharge

(Hain 2010).

At present, ALEXI execution is also constrained to

snow-free regions, further limiting sampling during the

winter and early spring in some regions. A TIR-based

snow energy balance modeling component, adapted from

the work of Kongoli and Bland (2000), is in development

to facilitate year-round ALEXI coverage. This model

will estimate both the latent heat flux of evaporation

and melting–freezing and sublimation over snow cover

and will therefore provide additional information re-

garding soil moisture inputs during the snowmelt transi-

tion period.

5. Conclusions

An intercomparison was conducted between drought

indices based on remotely sensed evapotranspiration,

ground observations of rainfall (e.g., the Palmer indices

and the standardized precipitation index), and drought

classifications reported in the USDM from 2000 to 2009.

Spatial distributions in ESI, representing anomalies in

the ratio of actual to potential ET ( fPET), were found to

correlate well with patterns in precipitation-based in-

dices and in the USDM, responding to rainfall events

at monthly time scales. Both spatially and temporally,

agreement between the USDM drought classes and

2-month ESI composites ranked between USDM cor-

relations with 3- and 6-month SPI products, suggesting

that ET as a physical process has significant integrative

memory of prior moisture conditions. Of the drought

indicators examined here, the ESI exhibits spatial and

temporal behavior most similar to that of the PMDI.

In general, fPET anomalies were better correlated with

the other drought classifications than were anomalies in

ET itself, indicating that normalization by PET results in

a better surface moisture proxy.

Because the USDM cannot be considered a metric

of absolute truth in drought mapping, this study is not

intended as an assessment of index performance but

rather a study of what types and time scales of infor-

mation appear to be most correlated with subjective

expert-interpreted drought severity delineations that

have been made in the past. Such analyses may help to

inform the development of objective drought indicator

blends. In some cases, low correlations might in fact

identify regions of unique contribution by a particular

indicator, highlighting information not currently con-

veyed in the USDM. For example, lower ESI correlations

are found in areas where groundwater is contributing

(naturally or through irrigation) to the surface mois-

ture supply, and evaporative fluxes are expected to be

coupled to precipitation rates only over long time scales.

Such impacts on drought resilience are difficult to model

prognostically, but they have significant ramifications

for yield forecasting and decision making. Because pre-

cipitation is not used in the construction of the ESI, this

index provides an independent assessment of drought

conditions and will have particular utility for real-time

monitoring in regions with sparse rainfall data or signifi-

cant delays in meteorological reporting.

Future analyses of the ESI will include comparisons

with drought indices based on ET, soil moisture, and

surface runoff estimates from the NLDAS land surface

modeling system that are currently used in the National

Centers for Environmental Prediction (NCEP) North

American Drought Briefing and with other remote sens-

ing drought indices, such as the vegetation heath index

(VHI; Kogan 1997) and the vegetation drought response

index (VegDRI; Brown et al. 2008). The domain of the

ALEXI application is being expanded to include North

and South America (approximately 260 to 608 latitude)

using GOES data. Other domains are being established

over southern Europe, the Middle East, and the African

continent using land surface products from the European

Meteosat Second Generation (MSG) satellites. A longer-

term goal of global ESI coverage (excluding the poles)

can be obtained with the current international system

of geostationary satellites. Finally, work is underway to

incorporate a snow module in ALEXI so that it can be

applied year-round.
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