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The Wind Tunnel Simulation and Effect of Turbulent Air flow on Automotive Aerodynamics  

Oliver Mankowski 

 

Abstract 

This thesis presents the research completed to design, commission and evaluate a turbulence 

generation system for Durham University’s 2m wind tunnel and the development of a method to 

simulate on-road turbulence and measure its effects on a vehicle. The objective was to develop a test 

approach for simulating and analysing a vehicle’s response to unsteady airflows. This approach focussed 

on simulating the overlap of the range of turbulence frequencies which exist both at significant energy 

in the on-road environment and the frequencies at which a significant vehicle response is seen. The 

frequency range where both conditions exist was seen to be between 1 – 10Hz. Confirmation of this 

transient frequency range was through the use of an admittance technique developed in this thesis 

which compares unsteady effects to quasi-steady effects. The technique was also developed to account 

for the component of unsteady pressure self-excitedness that exists, effectively the noise component in 

an admittance analysis. The approach concluded with the operation of a new turbulence generation 

system (TGS), which simulates the wind characteristics experienced by vehicles as they move through 

the on-road wind environment. The design was informed both by previous works and an on-road 

investigation of environment and vehicle response. 

An on-road study consisting of 8,800-seconds of on-road measurements was completed to record 

incoming flow velocities and passenger sideglass static pressures (a region noted in studies to show a 

notable response to yawed flow). The on-road environment was shown to have significant energy in the 

0.1 - 10Hz range (reduced frequency K = 0.1 - 10 for a vehicle driving at highway speeds). Yaw angles 

ranged between ±20o, but with the vast majority within ±6o. Correspondingly, the turbulence intensity 

range was 0.5 - 15%, but with the majority below 8%. 

The challenges of generating turbulent length scales in the order of size of a vehicle’s length, whilst also 

at reasonable turbulent intensities were assessed to be beyond the capability of a passive device. 

Through a series of iterative CFD tests, an active “lift-based” TGS was designed, based around two 

oscillating yaw aerofoils, which also encompassed additional inlet and outlets controlled by shutter 

panels. These ensured that the jet shear layer did not interact with the test model and helped to achieve 

higher peak yaw angles and good flow uniformity. A full aerodynamic design of the TGS was completed 

from the CFD studies, from which a high-level mechanical design was specified including target aerofoil 

displacement and acceleration rates, control system requirements and the linkage design. The 

construction and installation of the TGS was undertaken by an external contractor. Due to its numerous 
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configurable control parameters, a significant commissioning project was required and completed to 

determine the system’s optimum configuration. The system is capable of operating up to 10Hz at ±10o 

flow yaw angle and in a programmed arbitrary mode. The system also has the capability to generate 

pitch and longitudinal turbulence effects (Cooper et al (1989)). 

A 40% scaled model of the vehicle studied on the road was placed into the wind tunnel and a range of 

cases were generated including wind conditions previously recorded on-road. The results showed that 

the technique of using both a roof-mounted probe and the TGS system are able to take on-road flow 

conditions and accurately recreate their effects on vehicles in a wind tunnel. 

Multiple aspects of the work (on-road, CFD and wind tunnel) showed that below K = 0.3 pressure 

fluctuations behaved in a quasi-steady manner. Admittance greater than unity was observed near the 

A-pillar, but admittance was generally below unity and reduced progressively for K > 1. Self-excitedness 

was seen to decrease in unsteady tests (in comparison to quasi-steady) tests in the A-pillar region, but 

increase between unsteady to quasi-steady tests in the mirror wake region. 
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iv. Nomenclature 

Acronyms and Notations 

a  - Acceleration 

A   - Vehicle frontal area at zero yaw 

Ag  - Gust amplitude 

ABL   - Atmospheric Boundary Layer 

AC  - Auto-correlation (turbulence length scale) 

C  - Aerodynamic coefficient 

CD   - Drag coefficient 

CFD   - Computational Fluid Dynamics 

CN, CYAW  - Yawing moment coefficient 

Cp   - Pressure coefficient 

Cpdyn   - Dynamic pressure coefficient 

Cpo   - Total pressure coefficient 

Cps   - Static pressure coefficient 

Cy, CSIDE  - Sideforce coefficient 

Cz, CL   - Lift coefficient 

d   - Diameter 

f   - Characteristic frequency 

FX   - Force in longitudinal (x) direction 

FY, FS   - Force in lateral (y) direction, sideforce 

h   - Model height 

I  - Turbulence Intensity 

l   - Model \ characteristic length 

L  - Turbulence length scale 

k, km  - Reduced frequency 

n  - Frequency  

P(f), PDF - Probability density function of function ‘f’ 

p1-5   - Individual hole pressures (five hole probe calibration) 

pDYN   - Dynamic Pressure 
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po, pT   - Total pressure 

po_ref   - Reference total pressure 

ps   - Static Pressure 

ps_ref   - Reference static pressure 

r   - Corner radius 

Re  - Reynolds number 

Rt  - Auto-correlation magnitude   

S  - Spectral Density 

Sr  - Strouhal number 

t   - Time 

Tu \ TI  - Turbulence intensity 

tr  - Grid spacing 

TF  - Transfer function 

TGS  - Turbulence Generation System 

TLS  - Turbulence Length Scale 

UAV   - Unmanned aerial vehicle  

UX, UY, UZ - Component Velocities 

u   - Axial, longitudinal (x) direction velocity 

u’, ∂u  - Local / time variant axial velocity 

uref   - Reference axial (x) velocity 

u∞, U   - Freestream velocity 

U   - Average turbulence value  

U(t)  - Fluctuating velocity magnitude (U + u(t)) 

v   - Cross-stream, lateral (y) velocity 

VK  - von Karman (turbulence length scale) 

VR  - Variable resolution Region (Powerflow) 

w   - Model width 

x   - Axial (stream-wise), longitudinal direction 

y   - Cross-stream, lateral direction 

z   - Vertical direction 

Greek Symbols 

α  - Foil angle 
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β   - Yaw angle 

μ   - Air dynamic viscosity 

ξ   - Vorticity 

ϴ  - Foil Angle 

ωR  - Reduced frequency 

π   - Pi 

ρ   - Air density, probability density function 

σ   - Standard deviation 

τ  - Autocorrelation time index  

ψ  - Yaw angle 

ν  - Air kinematic viscosity 

χ  - Admittance / Aerodynamic magnitude Δ                          - Change / delta 

Subscripts and Superscripts 

x′   - Fluctuating component of X 

x   - Mean of X 

xmin   - Minimum of X 
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Frequently in this thesis velocities, forces and moments are expressed in tri-axis component form, 

defined as shown below. These detail how the x, y and z (and u, v, w) axes are composed relative to a 

vehicle’s orientation, as presented in Oettle (2012).  

 

 
 

Additionally, the terms longitudinal, lateral and vertical are used throughout this thesis to express force, 

velocity or turbulence axial components. Longitudinal refers to components aligned with the X-axis, 

lateral refers to components aligned with the Y-axis and vertical refers to components aligned to the 

Z-axis. These co-ordinates are always expressed as aligned to the referred body in question 

(i.e. magnitude or resultant airflow or vehicle vector).   
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1. Introduction 

1.1 Background and Overview 

This thesis aims to create and evaluate a device to simulate real-world wind turbulence in Durham 

University’s 2m2 wind tunnel. As such, the unsteady air flow in the on-road environment was 

researched and generated in order to replicate the unsteadiness of air flow that a vehicle experiences 

as it passes through the on-road environment. Such air flows can be a combination of spatially steady 

and unsteady air flows, but are perceived as temporally variant due to the vehicle’s motion. The 

turbulence generation system’s focus is that of automotive research, but due to the wide variety of 

devices and vehicles (i.e. from wind-turbines to UAV’s) tested in Durham University’s wind tunnel, the 

TGS requires the necessary control and adjustment to generate a relatively wide range of length scales 

and turbulence. The successful creation of this unsteady air flow, in a manner simulating those 

experienced in real-world air flows will allow further aerodynamic optimisation of wind turbines, cars, 

trains, aircraft and the like. 

At present, almost all wind tunnels are designed for low turbulence inlet conditions, which offer an 

appropriate and repeatable datum for test-work. However, as our understanding of the field of vehicle 

aerodynamics progresses, the discrepancies in measurements between on-road and tunnel based tests 

are becoming of greater interest and relevance. Simulation of these on-road conditions, especially in a 

controlled yet repeatable environment, will assist explaining these measurement differences. For road 

vehicles, aerodynamic efficiency, reduction in cabin noise and the optimisation of a vehicle’s stability 

and handling are all important fields of research. Trains and aircraft also experience a temporally 

variant unsteady flow field and the aerodynamic development of both is central to energy saving and 

vehicle stability.   

This thesis focuses on automotive aerodynamics. The unsteadiness experienced by vehicles is 

complicated to replicate due to the variety of terrains and the pronounced effect that wind has on a 

moving vehicle and its aerodynamic efficiency. One of the major factors in considering turbulence 

simulation is the effect that the varying turbulence length scales and intensities have on a vehicle’s 

operation. As further detailed in the literature review, it has been found that turbulence length scales 

in the order of a vehicle’s length generate a notable vehicle response in terms of drag and sideforce 

loads on vehicles when compared to steady-state measurements, and have sufficient spectral energy 

in the on-road environment to be of significance. Recent research has quantified the nature of the 

turbulence scales that vehicles experience whilst in motion, as well as characterising new devices that 
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can generate controlled turbulence spectra not previously achieved, thereby offering the potential for 

real development in this field of research. Unsteady turbulence can be important for a vehicle’s fuel 

economy, handling and aero-acoustics. The development of a wind tunnel simulation device combined 

with a model’s and full-size vehicle’s response to turbulence will offer a valuable insight at the design 

stage of a vehicle.  

1.2 Thesis Outline 

The thesis focuses on reviewing the nature, effects and simulation in a wind tunnel of on-road air flow 

turbulence.  

Chapter 2 starts by presenting our current understanding of the on-road air flow environment.  The 

quantifying of on-road turbulence then allows potential simulation devices to be assessed, with a 

review of both active and passive devices. The effects of turbulent air flow upon a vehicle are then 

discussed with a particular emphasis on forces. The chapter then covers the computational and 

real-world methods of simulation and considers the development of a test method and simulation 

approach for investigating transient air flow.  

Chapter 3 describes a 2D CFD simulation of a simplified vehicle shape which experiences a range of 

harmonic frequencies. This test is then proposed to be scaled-up to a full 3D model. However, as the 

on-road environment offered a readily achievable test case, the 3D simulation was used only to 

validate the on-road probe location and measurement system.  

Chapter 4 presents a comprehensive on-road study using a mid-sized European hatchback vehicle, with 

incoming flow yaw angles correlated with sideglass surface pressures. This furthered the 

understanding of the frequencies and scales of turbulence that affect the air flow around a vehicle and 

the resultant pressure variations that occur. 

In Chapter 5, 2D and 3D CFD simulation studies are presented detailing a wide variety of proposals to 

design a turbulence generation system suitable for Durham University’s 2m wind tunnel. In Chapter 6 

and 7 a final design is developed that uses a combination of oscillating aerofoils and additional inlets 

and outlets to generate controlled length scales and intensities of turbulence. 

The generation system was then installed and Chapter 8 presents a full commissioning process that 

captured the major variables that affect the system’s aerodynamic operation, with note particularly 

given to the hugely multi-variant nature of the system’s potential operation and the need to gain a 
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complete understanding through a broad range of experiments, finishing with a study assessing several 

‘real-world’ simulation test modes. 

Chapter 9 presents a study of a Rover 200 wind tunnel model’s response to ranges of static, harmonic 

and arbitrary turbulence simulation modes, in terms of sideglass pressures and force balance readings, 

correlated with the earlier on-road study. The chapter concludes the thesis suggesting that the method 

proposed of using roof-mounted probes with on-road vehicles can be used to capture the real-world 

air flow environment, and through other methods proposed in this thesis, those air flows can be 

replicated in a wind tunnel and a reasonably accurate model response can be predicted.  
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2. Literature Review 

This chapter covers measurement methods of turbulence, on-road turbulence characteristics, passive 

and active turbulence generation systems and summaries of a vehicle’s response to transient air flow.  

2.1 On-road Turbulence Characteristics 

2.1.1 Overview, Metrics and Methodology 

It is typical for a vehicle to experience varying air flow yaw angles and velocities as it moves (as shown 

in Figure 1). The actually wind velocity may be constant at specific locations, but as the vehicle 

translates through a domain, it experiences varying flow angles and velocities in terms of time 

(i.e. crosswinds). In addition, air flow which may enter the road-side environment in a steady manner 

can have induced unsteadiness due to roadside furniture. Therefore the variation in air flow 

experienced by a vehicle is a combination of the spatially variant flow fields (which a vehicle perceives 

temporally) and also flow unsteadiness.  

 

Figure 1 - Definition of yawed flow for roadside conditions - Sims-Williams (2010) 

The turbulence intensity is defined as the root-mean-square of the turbulent velocity fluctuations (u’) 

over the mean velocity (U ) as: 

U

u
TI

'
=  

Turbulence length scale is the time taken for a yaw to vary between peaks (i.e. oscillating period 

temporal length or flow eddy size). 

The resultant flow velocity is a combination of the vehicle speed and the variation in wind velocity in 

time and space, as defined in the following equation. The variation in vehicle velocity is predominantly 

of interest for racing cars where the vehicle’s velocity is highly significant and varies rapidly. Therefore 

[1] 
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the latter two components of the resultant velocity equation are most of interest, that is the variation 

in wind over time and the spatial variations in wind as the vehicle covers ground (from Sims-Williams 

(2011)). 

  

The incoming flow yaw angle will vary in time (due to a vehicle’s motion through a spatial domain). The 

variation in yaw angle will adopt a probability density function that will be influenced by environmental 

factors, but typically is as shown in Figure 2, where the majority of yaw exists in the ±10o range. 

 

Figure 2 - Typical yaw probability density function - Wordley et al (2009) 

Further, a typical 3D probability distribution of this is shown in Figure 3, from Oettle et al (2012). The 

test vehicle speed was constant at 35.8ms-1 (80mph), showing wind velocity variations experienced up 

to ±5ms-1 (i.e. 10 - 15% of vehicle speed) with yaw ranges of ψ±10o being typical. 

 

Figure 3 - Probability density distribution of velocity by yaw - Oettle et al (2012) 
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Additionally, as vehicle speed varies the effect of head or tailwind also varies. Oettle et al (2010) 

reviewed the aerodynamic response to transient air flows through on-road measurements and 

demonstrated that this is significant and variant with flow yaw angle, as shown in Figure 4. 

 

Figure 4 - Head and tailwinds on vehicle speed - Oettle et al (2010) 

Before reviewing results covering on-road turbulence, it is of value to present the background to 

stationary and the moving reference frame measurements of air flow and to analytically define 

turbulence length scale and intensity. ESDU74030 (1974) noted that in measuring turbulence there is 

usually some interrelation between measurements of a gust component at a point taken at different 

time intervals and also between the gust components measured at two points in space. This 

interrelation, which can be correlated, deceases as the time lag (or separation) increases. 

Real turbulence properties are often defined using a Gaussian probability density function (ESDU74030 

(1974)), which is defined using a third and fourth order metric that are skewness and kurtosis values. 

This function denotes the distribution of velocities for all axes. The turbulence intensity defines the 

amplitude of the flow, with covariance and correlation functions used to quantify the flow. The 

covariance function can be at a single or multiple points in space, with the former defining the gust in 

time and the latter showing the flow characteristic in different regions of a turbulent flow field both 

spatially and in time. 

A function defining the auto-covariance of the flow (τ) measures the correlation between gust 

components (i.e. amplitude variation). It can be stated that when τ is much larger than a typical time 

scale of turbulence, that the correlation between gust components will be insignificant. This is to say 
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that if the time scale momentarily exists which is much greater than the mean air flow speed, the gust 

will not greatly affect the overall effect of the flow unsteadiness. As results were measured at multiple 

points in space, (ESDU 74030 (1974)) demonstrates tri-axis flow variance. It was found that isotropic 

turbulence (i.e. same velocity in 3 axes) rarely exists and that all the correlation functions are different 

and must be computed. 

Flay (ESDU 74030 (1974)) further noted that Taylor’s hypothesis (Wyngaard et al (1977)) suggests that 

if a velocity is much greater than u(t) (i.e. the flow over a period of time) then the unsteadiness can be 

evaluated as to be frozen in space and convected past a point location. This means that the flow’s 

velocity can be resolved from only one measurement location, suggested valid for turbulence length 

scales (TLS’s) less than 300m. As such for the Taylor hypothesis to hold, it is required that the mean 

velocity be much greater than the fluctuating component. 

Further, Flay (ESDU 74030 (1974)) commented that it is important to review the whole frequency 

spectrum due to the highly distributed and variant nature of turbulence. Spectral density functions 

should therefore be used as they can show the dynamic loading of, and response to, a body immersed 

in flow. Figure 5 is included as it shows the relationships of these measurements systems. 
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Figure 5 - Relationship of turbulence measurement methods - ESDU 74030 (1974) 
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Methods for finding TLS are auto-correlation and the von Karman spectral model. The auto-correlation 

method finds correlation between points separated by time, as given in ESDU 74030 (1974) and 85020 

(1985). Watkins et al (1990) discussed the auto-correlation system, which is used extensively in this 

thesis. The form to be used is the simplified equations as they avoid the need to re-evaluate the Bessel 

functions and that the variation of the sub functions can be assumed to be small, such that the 

simplified forms can be produced, as per ESDU 74030 (1974). In order to undertake the calculations 

required, the auto-correlation is to be defined as in ESDU 74030 (1974) (where ρ is the probability 

density function of the flow, L is length scale, and U is velocity): 
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Significantly, therefore, the method shown for evaluating auto-correlation is based upon timescale, not 

explicitly on length scales. This method also uses the mean bulk velocity multiplied by component 

timescales to give lateral velocity and length scales rather than using axial velocity, which can 

understate potential yaw angle measurements. 

A practical application of the method detailed in the ESDU datasheet was given alongside tests 

undertaken by Lindener et al (2007) at Audi and Pininfarina. The tests were to quantify the turbulent 

environment on the road and in a wind tunnel from an aeroacoustic perspective to present definitions 

of length scale and intensity. As the definition of length scale is important to this thesis, and was 

referenced from works of Saunders et al (2006) and Wordley et al (2009), it is reproduced here in 

detail. The longitudinal velocity of the flow is comprised of three velocity components in (u, v and w) of 

which the longitudinal component can be defined as:  

 U(t) =U + u(t)

[3] 

[4] 

[5] 
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Where  is the average turbulence value and u(t) is the longitudinal turbulence component, with 

similar formulas for lateral (v) and vertical (w) flow components. The average velocity is used to 

evaluate the turbulence intensity of the flow, that is the variation in yaw or pitch angle, which is 

defined as the ratio of the standard deviation of each varying velocity component from the mean:  

 

This parameter offers a sufficient description of turbulence such that it can be evaluated in the 

frequency domain by a Fourier Transform to derive the Power Spectral Density Function (SUU(n), SVV(n), 

SWW(n)) for the energy at each frequency f. The turbulence length scale, LU, evaluated using the 

auto-correlation function, denoted by u(t), is defined as:  

 

Where t0 is the first value of t such that R(t0) = 0, which determines the time-scale and is the time 

interval where u is in maximum correlation with itself (i.e. auto-correlated). Further, Taylor’s 

hypothesis is used, which states that a turbulent eddy current which is measured at one spatial 

location in time can be considered to represent an instantaneous snapshot, such that it can be viewed 

as having been measured as one temporal period and therefore can be used to convert between the 

time scale and spatial scale (LU), as shown by the formula:  

 

Data recorded in this form is therefore, over a particular period of time, defined by a critical reduced 

frequency, and is subsequently spectrally viewed for a time period. However, the singular length scale 

and intensity is time-averaged over the same period.  

The ‘Durham University Software for Windtunnels’ program, Sims-Williams (2012), that evaluates 

auto-correlation length scales has a few key parameters which, though in line with the theoretical and 

practical examples presented in this section, should nevertheless be stated. The two major points are 

that when the correlation coefficient passes below zero for the first time the measure is then 

truncated, as it is assumed that the sum of the coefficient variances thereafter will sum to zero. 

Secondly, the bulk velocity is used in the generation of the length scales as opposed to axial velocity, as 

consistency can remain when lateral and vertical length scales and intensities are evaluated. In this 

way the intensities and length scales quoted are all in terms of their own respective axis. Also note that 

U

Ii = σ i /U  and i = u, v, w

R(t) =
u(τ ) ⋅ u(τ + t)dτ

−∞

∞

∫
σ u

2
 and the respective inverse, R ' = R(t)dt

0

t0

∫

LU =U ⋅ R
'

[6] 

[7] 

[8] 
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the length of a recording sample (e.g. 4.0 seconds) acts as a high-pass filter and the logging frequency 

acts as a low pass filter in terms of the range of length scales measureable. It should also be stated that 

when compared to the von Karman method of analysis, with the correct filtering, an auto-correlation 

analysis is comparable to the von Karman method. 

Assessments of the simulation of length scales has greater validity if the proper non-dimensional 

elements are included in the final metric, hence reduced frequency is used to define frequencies 

analysed in tests conducted in this thesis. Of particular interest is the assessment of the critical range 

of turbulence frequencies (length scales) in the onset air flow, namely in terms of the body’s 

aerodynamic response. The focus is on yaw angle variation as these are, arguably, the most important 

in the on-road environment. This compliments work of Theissen et al (2010). A direct outcome will be 

to determine the quasi-steady reduced frequency limit of 0.1 to 1.0 as discussed by Corin et al (2008) 

and to further define the significant inlet flow frequency range as proposed by Wordley et al (2009). 

Reduced frequency (also denoted as K) is defined as:

 

 

 

Where L is a characteristic dimension (vehicle length is used here) and U is driving velocity, which gives 

a quasi-steady frequency threshold around 0.11Hz: 

 

A key focus in vehicle aerodynamic research is determining the frequency range that is most significant 

to the drag force and stability of vehicles. Wordley et al (2009) was successful at defining the range of 

frequencies and intensities that characterise ground-level air flow, with a view to guiding the wind 

tunnel simulation of turbulent conditions for road vehicles.  Wordley et al (2009) recognised that 

generating the full range of conditions experienced by a vehicle on-road is problematic and that it 

would be attractive to only simulate a subset of the full range. Wordley et al (2009) suggested that 

length scales from 0.5 - 15m are key, though recent work by Theissen et al (2010) has suggested that 

the relevant upper limit could be as high as 30 - 90m. Determination of the relevant range would assist 

the development and operation of such turbulence generation systems. The development of systems 

to reproduce the full range of appropriate length scales is as yet unsolved and inevitably intricate. The 

simulation of length scales down to 3m is achievable with lift devices such as in Schröck et al (2009) 

f =
ωRU

2π L
≈ 0.11Hz

[9] 

[10] 
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and scales below 0.5m can be simulated with passive devices, such as in Newnham et al (2006) and in 

Newnham et al (2008), but it is the intermediate scales that provide the greatest challenges (i.e. Knebel 

et al (2010)).  

It is expected, as proposed by Corin et al (2008) and Sims-Williams (2010), that the effect of inlet 

turbulence on vehicle drag and stability will be curtailed by a quasi-steady limit, which this report will 

define. The use of idealised vehicle models, such as by Ryan (2000) and Docton (1996), allows a wide 

range of frequencies to be analysed with regard to the effect of delayed or encouraged separation and 

other consequential flow features that are apparent with simple geometries. Finally, the ability to 

assess a range of factors (i.e. corner radii, width, viscosity) in numerical simulations will focus and 

encourage future simulation analysis.  

2.1.2 On-road Measurements 

Understanding the flow characteristics experienced by a vehicle needs to consider both the natural 

wind environment (i.e. varying in component flow speeds) at differing heights and also the variation of 

wind along a road (i.e. which the vehicle experiences as it drives along a road). This section will initially 

present works covering wind measurements (static mast data) and on-vehicle recordings. Then 

numerous other sources will be added to show a variety of measurements recorded statically and on a 

vehicle at varying heights and build a picture of how height and vehicle motion affect vehicle perceived 

flow characteristics. Plots combining all of the presented results into one view are presented relating 

turbulence length scales and intensities with measurement height location. 

As an aside for the presentation of turbulence results, when on-road results are shown there are 

occasions where the probability density functions are presented with peaks in excess of unity. Unlike 

probabilities, this is due to the nature of a continuous probability density function, where the essential 

criteria are that the area sums to unity and therefore, over short widths, the peak can correctly be 

greater than unity. 

A initial review of the length scales of interest is based upon the works of Knebel et al (2010) and 

Wordley et al (2009) who both undertook wind measurements (Knebel statically, Wordley using a 

vehicle mounted probe) and offer an insight into the frequency and power spectrum of unsteady air 

flow characteristics. These results will then be compared and numerous other sources also presented. 

Graphs at the end of this chapter summarise this catalogue of flow measurement results and combine 

all the results into a graphs of turbulence intensity and length scales against measurement height 

location. 
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Knebel et al (2010), undertook an initial analysis by determining the desirable wind characteristics to 

measure.  Knebel suggested that the Weibull distribution (Boettcher et al (2007)) would be a good fit 

for velocity fluctuations denoted as turbulence intensity. Knebel represented the probability 

distribution of flow velocities by a function based upon the duration of a velocity perturbation (which 

was termed the ‘flatness’ function). A 6-standard deviation (σ) of velocity variation from the mean was 

used as a filter since it captured a significant proportion of a population data sample. 6σ of velocity 

variation corresponds to a variation of 10ms−1 within a measurement window of 2.5s, which is a 

relatively common occurrence (certainly within 24-hours of recording), and therefore such a wide 

probability distribution is necessary.   

Flow was captured over 10-minute samples for an anemometer placed at a height of 20m. Such a 

height for an anemometer is relatively high for the flow to be considered to be the same as that which 

an on-road vehicle would experience, and as such the flow distribution does differ from that of 

Wordley, but offers an insight into the distribution of velocity variations and a measurement approach. 

Knebel’s flow distribution (see Figure 6) shows variation in velocity variation (i.e. turbulence intensity) 

for differing sampling intervals, and the probability drop for a mean wind speed is symmetric about the 

mean. It is important to note the several orders of decreasing magnitude of the wind power as the 

velocity varies from the mean. Note that in the Figure 6, ‘u’ is the wind speed, and ‘τ’ denotes the 

duration window over which a velocity perturbation was measured (e.g. 1.25s).  

As such the Y-axis shows the probability of the magnitude of variation of wind speed over a certain 

time period and the X-axis denotes the number of standard deviations that the velocity perturbation is 

from the mean. This shows that short time period velocity perturbations are far more common than 

long period oscillations but that a wide variation of velocities are recorded (several standard deviations 

from the mean). Corresponding time intervals increase in the traces plotted from top to bottom. 
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Figure 6 - Probability distributions of velocity variation of wind data at z=20m - Knebel et al (2010) 

Recorded at 4Hz. Distributions shifted in the Y-axis for clarity. Corresponding time intervals from top to bottom: 1.25s, 2.5s, 

25s, 2min 5s, 4min 10s, 20min, 40min 

Wordley et al (2009) took on-road flow velocity measurements with an ahead of vehicle, car-mounted 

probe as in Figure 7.  

 

Figure 7 - Wordley probe mounting - Wordley et al (2009) 

Wordley reviewed road turbulence flows, with an overview of the data collection given in Figure 8, and 

found that the von Karman (VK, typically around half in size of those reported by the auto-correlation 

method) longitudinal and lateral length scales measured were bounded from 14m length scale at 2% 

intensity (top left of the greyed box) to 0.2m at 14% intensity (bottom right of the greyed box) for 
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smooth terrain, with the peak length scale decreasing to around 8m where road-side obstacles (RSO) 

were present.  

 

Figure 8 - Measured turbulence length scales - Wordley et al (2009) 

Figure 9 shows a more detailed summary of von Karman (VK) length scales against turbulence intensity 

measured by Wordley et al (2009) for 4 different road environments of varying road-side furniture. The 

regions have been bounded in differing grey boxes, with Freeway traffic experiencing far larger 

turbulence intensities at lower turbulence length scales in comparison to City Canyon traffic, which 

saw low intensities at much larger length scale, mainly due to the more open road environment and 

large fetch areas creating long length scales. The longitudinal (U) and lateral (V) marks are plotted in 

close clusters, suggesting comparable isotropic turbulence in these axes, but the ‘W’ marks (crosses) 

are mainly at notably shorter length scales (mainly as vertical scales are confined due to the ground).  

Figure 10 shows the power spectral curve for lateral velocities measured on the road, in the Monash 

wind tunnel and suggested TGS capabilities. Note the reduction in on-road spectral energy above 

around 10Hz. 
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Figure 9 - Summary of the results from Wordley et al (2009), 

for a variety of road environments 

Figure 10 - Comparison of dimensional, wind component 

power spectra ranges - Wordley et al (2009)  

Range of all on-road spectra (grey), range of Monash wind 

tunnel spectra (black), suggested interim target spectra 

(black lines) 

Flay, ESDU 85020 (1985) complied numerous flow characteristic results in a datasheet including 

surface roughness measurements (i.e. large, open fetch terrain to environments with numerous 

road-side obstacles). Results presented in the datasheet showed that for heights less than 1m, 

turbulence intensities are around 1%, depending on terrain roughness, increasing to 1.1 - 3.6%, for city 

centres and forests. Auto-correlation turbulence length scales were shown to be around 10 - 100m at 

3m heights, again for a smooth terrain, decreasing to a TLS of around 10m at 1m heights. Therefore 

reducing the measured height location from 3 to 1m would cause TLS drop of around 90%. For heights 

below 3.5m, Watkins et al (1995), recorded wind speeds in the range of 1.7ms−1 to 9.4ms−1, resulting in 

the suggestion of an average of a TLS of 3m at a height of 2m, with intensities found to be between 

10 - 34% at a height of 5m from ESDU 85020 (1985). 

In comparing Knebel, Wordley and ESDU 85020 results, Knebel’s flow distribution (Figure 6) is more 

suitable for wind turbines, which operate higher above the ground. Further, work by Newnham et al 

(2006) and ESDU85020 (1985), suggested large length scale and intensity variations occur between 

heights of 3 to 20m (the lower height of presented results, further changes could occur below this 

height), as recorded length scales increase from around 10m to around 100m as the measurement 

height increases over this range and intensities decrease from around a maximum of 12% to a 

maximum of 7% with a similar height increase. Therefore, though the Knebel’s velocity profile is similar 

to that of Wordley, the ESDU85020 (1985) datasheet does suggest that the differences between them 

are likely to be due to the height of the measurement location.  
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Tests undertaken by Lindener et al (2007) at Audi and Pininfarina looked to quantify the turbulent 

environment on the road and in a wind tunnel from an aeroacoustic perspective. Two Cobra probes 

were mounted close to the front bumper and the second at the intersection of the cowl and the right 

side A-pillar. Road tests were conducted on a variety of German A roads at speeds of 140 − 160kmh−1, 

with the wind tunnel testing being conducted in both a smooth and turbulent inlet condition, using 

Pininfarina’s turbulence generation system. Results for a variety of on-road environments are included 

in Figure 11 showing decay in spectral energy with log frequency, with a clear drop off of spectral 

energy around 10Hz and significant reductions above 100Hz.  

 

Figure 11 - Comparison between different road test condition and Pininfarina wind tunnel - Lindener et al (2007) 

Additional results of turbulence intensity and length scale for a variety of environments were derived 

as shown in Figure 12. It can be seen that length scale is generally below 8m and intensity below 8%, 

with the vast majority of data points lying under 6m and 7%, though the turbulence length scales 

generated by the Pininfarina TGS (denoted PFWT) were much shorter but had comparable intensities.  
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Figure 12 - LU (m) vs. IV (%) for road and wind tunnel results for a SUV vehicle in various road conditions - Lindener et al 

(2009) 

A presentation of on-road and wind tunnel TGS measurements by Pininfarina is given in Figure 13 and 

Figure 14, showing that the TGS system generates higher intensity turbulence relative to the on-road 

environment, and at much shorter length scales. Note that the TGS configurations that seem to be 

most similar to the road conditions are the 3BL and 5AL. Length scales are seen to reside in the sub 6m 

region, with the majority under 2m, with turbulence intensities in the 2 - 8% range. 

 
Figure 13 - LV (m) vs. IU (%). Road and Pininfarina wind tunnel results for various TGS set-ups on a SUV vehicle - Lindener et 

al (2009) 
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Figure 14 - LV (m) vs. IU (%). Road and Pininfarina wind tunnel results for various TGS set-ups on the CAR-D model - Lindener 

et al (2009) 

Hopkins et al (2007) performed anemometer velocity measurements in the height range of 

2.1 - 10.3m, which were adjusted by superimposing a longitudinal vehicle velocity of 31.5ms−1 at the 

yaw angle determined from the angle experienced by the anemometer under test. The purpose was to 

adjust statically recorded velocity measurements such that they could be compared to and considered 

as on-road measurements for analysis, as the effect of the vehicle’s speed significantly changes the 

resultant measured yaw angle from the vehicle’s perspective relative to the actual flow angle. It should 

be re-iterated at this stage that a vehicle experiences varying onset flow due to its movement spatially 

through a domain, thus it experiences spatial flow variations temporally, therefore by superimposing a 

vehicle’s speed on to the static measurements, the comparison could be made of whether the on-road 

wind flow characteristics are due to wind unsteadiness (i.e. time-variant at a single location) or also, or 

mainly, due to spatial variation (i.e. steady or unsteady single point air flows that vary from location to 

location).  

From the anemometer readings, a mean lateral component of 0.01ms−1 was recorded, suggesting that 

indeed lateral gusts do, over a few seconds, cancel themselves out. Measured velocities were between 

2.8 and 5.2ms−1 were recorded, with average longitudinal intensities range from 10 - 35% with lateral 

intensities ranging from 13 - 34%, with ratios found to be within a few per cent of being isotropic when 

recorded from a stationary point. Mast data also recorded by Hopkins et al (2007), again with 

superimposed vehicle velocity, returned intensities from 1.0 - 5.5%, with the average length scales 
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around 6 - 8m. TLS’s were recorded between 16 - 28m at higher heights, with variations in height being 

far less significant than variations in time.  

Data from Lawson et al (2007) also recorded mast-based measurements and on-road recordings. The 

on-road recordings were conducted using a 3-hole probe on a car’s roof at a height of 1.42m. The 

on-road measurements showed yaw angles varying around ±14o, with infrequent peaks at ±28o. For a 

vehicle velocity of 28 - 36ms−1, lateral component averages ranged from 1.5 - 3.6ms−1, with the average 

longitudinal velocity being 31.8ms−1, resolving to a 0.3ms−1 average velocity increase above the 

31.5ms−1 vehicle speed (i.e. nominal probe speed). Longitudinal intensities were around 4.2 - 7.0%, and 

lateral intensities at 3.9 - 6.7%, giving a ratio of 1.0 : 0.93 (LU : LV). Length scales were around 3.5 - 5.0m 

longitudinally and laterally at 2.4 - 5.6m, again giving a ratio of 1.0 : 0.87 (LU : LV).  Comparing results 

overall of mast with a superimposed longitudinal ‘vehicle speed’ of 31.5ms−1 and car data, they 

correlated well with longitudinal and lateral wind speeds in or around 34ms−1 and 4ms−1 respectively, 

and intensities around 3% in both axes. TLS’s were recorded between around 4 - 22m (though the 22m 

case is superimposed mast data, so arguably of lower validity).  

Static, mast-based flow measurements showed that turbulence intensity varied between 2 - 6% over a 

height range of 2 - 10m, though cars would generally fall below or at the 2m threshold, thus being at 

the lower of these result ranges. TLS increases from 1 - 4m as height increases from 2 - 9m, with flow 

mainly isotropic in nature (i.e. within a couple of per cent of intensity). Watkins suggested a 

longitudinal TLS of 4m, which is smaller than those recorded by ESDU 85020, though readings reported 

in the datasheet were at higher wind speeds. This suggests a rough rule that TLS ranges from 4 - 20m 

for a windspeed of 3 - 10ms−1. Work by Flay (1985) resulted in a graph of turbulence intensity for given 

road environments and heights, giving intensities at in u, v, w of 9.0%, 14.4% and 7.0% respectively at a 

3.3m height, for a vehicle speed of 27.8ms−1.  

In terms of velocity distribution, the Lawson et al (2007) data, using mast data with a superimposed car 

velocity of 31.5ms−1, recorded a Gaussian curve from ±20o, though the peak probability (of around 

0.10) was at ±4.5o, and at this yaw longitudinal length scales were much larger than lateral scales. The 

Lawson data suggested intensities much lower than those for the mast, in the range of 0.7 - 2.4%, with 

variations between heights more significant than variations in time, with again relatively isotropic 

turbulence, at a ratio of 1.0 : 0.91. 

Summaries of these results from Hopkins et al (2007), would suggest longitudinal scale ranges of 

2 - 5m, and lateral ranges of 2 - 6m, and therefore relatively isotropic turbulence, which correlate well 
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with results of mast data for longitudinal scales around 2.6m and 2.8m for lateral values, and with 

Lawson’s data of 4.3m for longitudinal TLS and 3.0m for lateral TLS. It was found that turbulence 

intensity generally gets higher as the wind speed falls as only small component velocity changes are 

required to greatly change the flow’s yaw angle. It was also found that the lateral component of 

turbulence intensity is increased for a car exposed to the atmospheric wind.  

Saunders et al (2000) performed on-road tests recording TLS’s around 1.4 - 17.0m with an average of 

6.5m. The power spectral density function showed a low frequency peak close to 1Hz and the majority 

of the energy before 10Hz, with the von Karman curve correlating well with the measured results 

between 1 and 20Hz. 

A review by Swalwell (2005) covering Sacre et al (1987) found intensities did not vary that greatly with 

height (<30m) with longitudinal intensities of 0.10 - 0.17% and TLS between 20 - 40m. 

Watkins et al (1990) also reviewed commercial vehicle drag including the analysis of unsteadiness. 

Watkins’ findings showed a wide range of intensities and length scales for all three axes, from 1 - 15%, 

at length scales 2 - 30m, suggesting that due to such a wide range of values that reviewing the power 

spectra is to be more advantageous. Watkins suggested that for approximately 98% of the day time the 

natural wind will be less than 10ms−1 at 2m, this gives turbulence intensities in u, v and w of 0 - 11%, 

0 - 8% and 0 - 4% respectively, for a vehicle speed of 62mph and winds up to 10ms−1 for various 

orientations to the road.  

Watkins noted that American highways have an average windspeed of 3.11ms−1, giving u, v and w 

turbulence intensities of 1.5 - 2.5%, 1.5 - 2.2% and 0.7 - 0.9% respectively. Watkins comments that the 

length scales do vary according to windspeed, with the highest intensities being for sub 1ms−1 winds. 

Stronger winds (those around 8ms−1) gave lower intensities and for smooth upstream fetches, 

longitudinal intensities of 13% and lateral intensities of 11% being typical. Roadside obstacles notably 

increased turbulence intensities for a given windspeed, with lateral intensities shown to be able to 

double in magnitude and longitudinal intensities increasing by 10% (Cogotti et al (2003)). Additionally it 

was shown that the wake of a car produces approximately 8% turbulence intensity. 

Finally a coast-down technique experiment by Bischof et al (2008) was conducted to see varying 

aerodynamic loads in real-world conditions on BMW’s test track. A deceleration plot from 

160 - 120kmh−1 was shown, with a recorded longitudinal intensity of 0.96 - 1.54%. A frequency of 

recorded turbulence showed a peak response at 1.25Hz (as per previous sources, supporting that the 
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range from 1 - 10Hz being critical, but in this experiment the range from 0.2 - 2Hz was of the highest 

importance). The author also highlighted a noticeable response corresponding to a TLS of 30m.  

The key result from the numerous sources shown is that the flow characteristics greatly vary with 

height location, and therefore measured intensities and length scales need to be assessed based upon 

their measurement height, and as such measurements close to vehicle height should be seen as 

dominant. In comparing on-vehicle to statically recorded measurements, length scales and intensity 

differences exist (i.e. Wordley to Lawson). This is mainly because the flow characteristics that a vehicle 

experiences are significantly the net result of a vehicle’s motion through both steady and unsteady 

flows. Therefore on-vehicle data (i.e. Wordley) offers the best insight into true on-road flow conditions 

as it is recorded at vehicle height and is a measurement of flows experienced under vehicle motion. 

All of the on-road environment sources reviewed are summarised in Figure 15 and Figure 16. Figure 15, 

a display of turbulence intensity with measurement height, shows a general trend of a decrease in 

intensity as height increases. At vehicle height, around 1.5m, turbulence intensities are ranging from 

1 - 15%, with measurements taken at higher heights resulting in turbulence intensities from 1 - 23%. 

The results also show that on-vehicle measurements tend to show lower intensities than stationary 

measurements, for comparable measurement heights. The linear lines of best fit are shown to give a 

simple trend of the effect of increasing height on turbulence intensity, though of course they cover a 

variety of measurement methods (i.e. on-road and static) and therefore are only for illustration 

purposes.  

 

Figure 15 - Summary plot of longitudinal and lateral turbulence intensities plotted against height of measurement probe 
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Figure 16 shows a gradual increase in turbulence length scale with measurement height (presented in 

their reported form, evaluated by auto-correlation for all results). The linear lines of best fit are shown 

to give a simple trend of the effect of increasing height on turbulence length scale, though of course 

they cover a variety of measurement methods (i.e. on-road and static) and therefore are only for 

illustration purposes. The result show that a TLS of 2 - 15m is typical in the vehicle height region 

(i.e. Z ≈ 1.5m), with turbulence length scales increasing with height location. The results also show that 

on-vehicle length scale measurements tend to be shorter than those taken at a stationary source, 

primarily due to a vehicle’s velocity causing a turbulence yaw variation to occur over a shorter time 

period. 

 

Figure 16 - Summary plot of longitudinal and lateral turbulence length scale plotted against height of measurement probe 

Finally, Figure 17 is a plot of TLS against intensity for a range of measurements reviewed. It can be seen 

that TLS and Intensity for longitudinal waveforms remain rather proportional regardless of the 

intensity, such that all intensities (up to a limit) can be expected at a respective length scale. With 

lateral turbulence, there is however, a greater correlation showing that a proportional increase with 

length scale will show an increase in intensity, which is slightly contradictory to Wordley et al (2009) 

who showed a linearly decreasing correlation of intensity with length scale.  

Turbulence length scales at the height of a vehicle tend to be relatively shorter in length (i.e. 14m), but 

with a relatively wide range of turbulence intensities (i.e. 0.5 - 9.0%). Stationary measurements tend to 

report greater length scales, though comparable turbulence intensity measurements to those taken on 

a moving vehicle. 
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Figure 17 - Summary plot of longitudinal and lateral turbulence intensities plotted against length scale 

2.2 Physical Simulation of Turbulence - Passive Methods 

This section reviews a variety of approaches made for passive turbulence generation. Such systems 

generate flow unsteadiness by creating drag, such as plates, grids or bars. None of the systems 

discussed in this section vary or move in their operation. The generation of unsteadiness is simply due 

to the creation of wake turbulence by placing an object into the flow that has a downstream diffusion 

angle that is too great for flow to remain attached and therefore trailing vortices are generated. Length 

scales generated are typically in order of the size of the frontal geometry of the object, though plates 

and square bars, due to their sharp edges, can generate much shorter length scales than their widths. 

Due to the nature of the turbulence (i.e. wake generated), the turbulence typically decays rapidly and 

at a rate in proportion to the size of the vortices and therefore the distance between grid and model 

location needs to carefully consider tunnel speed and grid spacing. Furthermore, it takes time for the 

turbulence to become uniform and isotropic, again varying on grid spacing and tunnel speed. 

Many tests have been conducted where mesh grids, of either rods or flat plates have been constructed 

and placed upstream in a wind tunnel and then the length scales and intensities measured at various 

locations downstream. Tunnels reviewed range between 0.5 - 2.0m in cross-sectional area, operating 

between about 10 - 20ms−1. The first set of reviewed tests were conducted by Bearman et al (1994) 

and Aynsley et al (1977), who both took grid meshes varying from 90 - 25mm diameters (with one test 

at 180mm diameter) and assessed the length scales generated. They found that the frequencies 

generated increased with turbulence intensity, for a range of grids placed into the tunnel nozzle, 

ranging from 180 - 25mm rod diameter measured at a location 3.7m downstream from the tunnel’s 

nozzle. Generated ranges of intensity from 1.7 to 12.0% (large intensities only at very large spacing 

where the flow was still non-uniform at the measurement location) and length scales from 0.07 to 
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0.19m were found. These results are compiled in Figure 18, which shows a general increase in flow 

intensity against bar diameter, a variation of bar diameter from a few millimetres to 40mm only varied 

the intensity by a few per cent. The results also suggest that the upper limit of intensity generated is 

constrained by the size of the tunnel. For example, as the generation of 10% intensities is desired, bars 

of 200mm width would be required of which only a few would fit into a nozzle’s width, thus greatly 

limiting the actual achievable length scale. Additionally, it was noted (Bearman et al (1994) and Aynsley 

et al (1977)) that distances in the order of 10 - 20 times the grid spacing are required for the 

turbulence to become uniform, requiring a very long test section (especially as the grids need to be 

placed downstream of any contraction otherwise the length scales and intensities are reduce as the 

flow is funnelled).  

 

Figure 18 - Summary of results; Grid bar diameter against turbulence intensity - Bearman et al (1994) and Aynsley et al 

(1977) 

Swalwell (2005) reviewed grid based turbulence generation, including work by Liu (1992), Bearman et 

al (1983) and Stack (1931) with square grid meshes. These tests generated intensities between 8% and 

20%, with isotropic turbulence found and the unsteady air flow decaying rapidly. Jancauskas (1983), 

Mish (2001) and Devinant et al (2002), repeating Stack’s experiment, generated intensities between 

3.8% and 17.1%. However Huang et al (1999) generated much smaller intensities, as low as 0.45%, and 

length scales from 0.13 to 0.02m, and Neff et al (1985) with similar tests, resolved values in the middle 

of this length scale range. Swalwell performed tests with mesh grids, ranging from 0.04 to 0.30m, 

finding intensities from 2 - 13% and length scales from 0.03 - 0.13m, with the larger scales and 

intensities coming from the larger grid meshes. These were measured using a von Karman analysis (as 
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per Iyengar et al (2001)). The important conclusion from this wide range of tests is that no length 

scales were generated greater than the size of the mesh rod diameter or the mesh spacing. A summary 

of these results can be seen in Figure 19 where it is evident that increasing the grid spacing increases 

both length scale and intensity (but this is limited by tunnel dimensions) and that turbulence length 

scales increase slightly with distance downstream whereas turbulent intensity gradually decays, as 

shown in Figure 20. 

 

Figure 19 - Variation of length scale and intensity with downstream location (0.00 - 0.35m) and plate spacing interval 

 

Figure 20 - Variation of length scale and intensity with downstream location (3 - 10m) and plate spacing interval 

Several simulation techniques were reviewed by Watkins (2007), including Simmons et al (1934), 

Corrsin et al (1966) and Batchelor et al (1948). These experiments commented on how the turbulence 

from passive grids takes 2 - 3 grid spacing in downstream distance to fully generate, and then decays, 
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with an optimum generation location of around 35-mesh grid widths downstream. Isotropic turbulence 

was generally found and the longitudinal length scales being slightly larger than the other component 

length scales. TLS’s being generated were typically smaller than the grid spacing (i.e. very short,) with 

flat plates and square bars proving better than rounded bars as they has little or no Reynolds’s number 

dependence. This suggests that the importance of distance between the TGS location and turntable 

centre (TTC) is significant for correct TLS generation using grids. 

Newnham et al (2006) and Watkins and Saunders (1998) using 50mm spacing static mesh wire grids of 

3mm diameter to generate turbulence of up to 5% intensity and with diameters of 10mm to generate 

intensities around 1.5% and TLS’s around 15mm. The experiment was continued with flat plates, in 

order to increase the plate width of blockage and blockage ratio, with length scales increasing in scale 

with the width increase, at larger intensities, but still less than 5%. Newnham et al (2006), then moved 

to a larger tunnel, with correspondingly wider flat plate grids, and naturally the length scales increased, 

again in proportion to the plate width, with length scales as high as 0.17m, but still with intensities 

under 5%. Hopkins (2007) and  Garry et al (1986) performed similar larger scale tunnel experiments, 

but successfully creating intensities up to 16%. Watkins (1990), undertook analysis of the effects of 

unsteady flow on commercial vehicle drag using grids, similar to Newnham et al (2006), but this time 

with only horizontal bars (to see if single-axis wakes would generate differing length scales and 

intensities). Intensities around 2 - 5% were created, with the test set-up as shown in Figure 21. These 

series of tests all highlight that even with large wind tunnels and wide widths of plate and bar, the TLS 

generated are still far too small for automotive test work and that the intensity cannot be reliably 

controlled. 

   

Figure 21 - Grids used to generate turbulence - Watkins (1990) 

One noteworthy result, as mentioned earlier but detailed by Watkins, was the good flow uniformity 

possible from these grid systems. This is shown in Figure 22, where, for almost all of the range of grids 
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tested, it can be seen that the intensity is uniform over the tunnel height. Table 1 shows the codes, 

G1 - G5, which represent the grid widths (with NG representing a no-grid configuration): 

Table 1 - Grid size and spacing configurations - Watkins (1990) 

Grid Number 
Horizontal 

Width (mm) 

Vertical Width 

(mm) 

Horizontal 

Spacing (mm) 

Vertical 

Spacing (mm) 

G1 N/A 50.8 N/A 152.4 

G2 N/A 50.8 N/A 304.8 

G3 N/A 177.8 N/A 939.8 

G4 177.8 177.8 533.4 939.8 

G5 177.8 177.8 533.4 469.9 
 

 

Figure 22 - Grid test results - Watkins (1990) 

An area of passive turbulence generation that has been gaining recent attention is that of fractal grids. 

A fractal grid is a grid where the width and spacing varies throughout the grid structure, as opposed to 

wire or plate mesh grids where the spacing and width are constant throughout the structure. Typically 

the overall fractal grid is composed of multiple similar grids at different levels of magnification. Fractal 

grids generate small scale, high frequency turbulence with a greatly reduced decay rate of turbulence 

length scale and intensity, thereby making them more favourable for test work in comparison to 

square grids. The reduced decay rate of turbulence with fractal grids is due to their differing spacing 

and widths throughout the structure generating a broader spectrum of length scales and intensities.  

Nagata et al (2008) undertook a series of tests of fractal grids using CFD. Like square-grid generated 
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turbulence, the turbulence was found to be homogenous and intensities around 10% were created 

(depending on tunnel speed, scale of grid and geometric arrangement, see Figure 23 which is an 

example of a fractal grid from Nagata et al (2008)), where ‘d’ represents the spacing between bars 

within the grid and ‘M’ represents the distance between similar structures within the overall structure. 

 

Figure 23 - A typical fractal grid, with dimensions d=0.3 - 3.0mm and M=0.5 − 2.0mm - Nagata et al (2008) 

The test results for the fractal grid in Figure 23 are shown in Figure 24, which compare the TLS2 

(measure of width variance, used to represent TLS) against proportion downstream location over test 

section longitudinal location (X/LX). The results show turbulence length scales around 0.1m were 

generated and good consistency of turbulence length scales and intensity down the length of the 

tunnel, with relatively high intensities created for a passive turbulence generation system. The 

improved turbulence consistency is due to the differing spacing and bar diameters occurring 

throughout the grid mesh causing a broader spectrum of length scales to be generated. This reduces 

the energy dissipation rate of the vortices in the flow, particularly due to the presence of higher length 

scales which typically dissipate over a greater downstream distance, resulting in the overall turbulence 

structure that is sustained for a greater downstream distance. 
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Figure 24 - Flow intensity for test section location - Nagata et al (2008) 

An analysis of the decay rate of fractal grid generated turbulence was undertaken by Hurst et al  

(2007), which found that fractal grids generate turbulence with much higher intensities than square 

grids. The turbulence length scales did not significantly decay throughout the length of the test section. 

A plot of a variety of grids tested is shown in Figure 25, with the key result being the turbulence 

intensity (plotted as variation in local velocity of freestream, u/U) being consistent over the 

downstream tunnel length. As explained earlier, the reduction in turbulence decay rate is due to the 

broader spectrum of length scales in the flow (the βL value represents the size scaling between each of 

the fractals meshes in one grid, so a larger number is a greater spacing). 

 

Figure 25 - Results from the testing of fractal grids - Hurst et al (2007) 

When a comparison of lateral flow homogeneity was reviewed by Hurst et al (2007), as seen in Figure 

26 in terms of local velocity variation (u’) over average flow velocity (U), fractal grids showed no benefit 

over square grids. The lines in Figure 26 plotted from top to bottom are ordered in terms of a decrease 
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in the number of bars in the grid for a fixed overall size of grid, and hence a decrease in net blockage. 

 

Figure 26 - Flow lateral homogeneity - Hurst et al (2007) 

Figure 27 shows the variation of longitudinal to lateral length scales for tunnel downstream distance, 

with the flow structure taking around 0.5m of tunnel downstream distance to settle. The tr value 

represents the range of grid spacing in the fractal grid, with the tr=2.5 being a grid bar diameter range 

of 9.5 - 3.8mm to tr=17.0 being a grid bar diameter range of 25.8 - 1.5mm. 

 

Figure 27 - Flow longitudinal homogeneity - Hurst et al (2007) 

In summary, passive turbulence generation systems, whether wire grids, flat plates or fractal grids, all 

show the ability to generate turbulence, with a range of intensities up to 16% and with some flow 

structure consistency. However, none of the passive methods are able to generate turbulence length 

scales that are found to be dominant in the on-road wind environment. 
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2.3 Physical Simulation of Turbulence - Active Methods 

The variety of methods that can be used to generated turbulence actively was reviewed. This section is 

split between drag and lift devices and also reviews papers that used other powered methods. Active 

devices have their geometry or orientation vary whilst in operation, and generally generate longer 

length scales than passive devices (that are static at all times). Hence, for the length scales desired, 

active devices are more suitable for automotive turbulence generation. Drag devices use vortex 

shedding as their main generation method, whereas lift devices change the angle of the flow rapidly 

and powered devices vary the local or freestream velocity of the flow. With active devices, their rate of 

variation or movement generally controls the length scales generated, whereas their peak amplitude 

determines the turbulence intensity (e.g. Cogotti (2003)). 

2.3.1 Drag Devices 

The Pininfarina wind tunnel uses a dynamic system with vanes oscillating between 0 - 1Hz, with phase 

control. Cogotti (2003) noted that the TGS at Pininfarina aimed to replicate the general wind frequency 

and intensity spectrum, not just individual gusts (i.e. UWIND < 10 ms−1). The TGS was placed upstream of 

the contraction, with measured turbulence intensities of 8% for a TLS of up to 2.0m. The Pininfarina 

system generates 2 - 4o flow yaw at 0.2 - 0.8Hz, and hence operates just below the quasi-steady limit 

(based upon reduced frequency, which is discussed in detail later on p.40, but is considered to be 

around 0.76Hz). The device is also able to simulate the flow of following vehicles (i.e. overtaking 

manoeuvres), with up-wash or downwash configurable and the vortex magnitude and position 

determined by set-up.  

Figure 28 shows the TGS vanes, which are located upstream of the nozzle and can each be controlled 

independently. 
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Figure 28 - Pininfarina TGS vanes - Cogotti et al (2007) 

Holdsworth (2005) designed a TGS which comprised of a removable set of vertically mounted vanes. 

The modes of operation varied frequency, amplitude and phasing of the vanes to control downstream 

flow conditions. A range of tests were undertaken, operating at a variety of modes, which showed 

dynamic peaks shown due to the forced excitation of the air, with intensities around 2% and length 

scales around 10m. It was found that increasing the amplitude only increased the turbulence intensity 

to an extent and clearly this is a limit with drag devices, whereas lift devices should create 

proportionally greater intensity for greater peak amplitude. 

The device generated isotropic turbulence by flapping large vanes creating trailing vortices at the 

edges of the blades, introducing additional low TLS’s. The largest lateral turbulence intensities were 

created using the smallest phase shift between vanes (45o). A recommendation for higher TGS 

oscillating frequencies was made for future designs, which would create more vane movement, 

creating larger lateral intensities and hence better tri-axis ratios. This device was therefore effective at 

turbulence generation, but due to being a drag device created additional high frequency components, 

which are undesirable as their skew the spectral energy distribution relative to the on-road 

environment.  

Cooper (1989) developed an oscillating grid of orthogonal plates that were laid out to create a ‘V’ 

shape, with the apex orientated in to the wind. These could each be operated at different frequencies 

and phases creating a range of length scales and intensities. The TGS created a power spectrum (see 

Figure 29) comparable to the on-road environment with potentially greater length scales possible for 

larger tunnels. The spectrum demonstrates that the system was able to generate meaningful levels of 

intensity for relatively large turbulent length scales (i.e. approximately 4m), and even though drag TGS 
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systems can cause excessive high frequency turbulence, the higher frequency components were not 

overly prominent in this design.  

 

Figure 29 - Power spectra from of an oscillating grid - Cooper (1989) 

Wasco (2003) conducted a swinging pendulum rig test at RMIT, though static grids, which were placed 

upstream, were more significant in generating turbulence. The pendulum swung in the settling 

chamber upstream of a contraction, pivoted from the roof. The rig generated around 0.5% intensity 

and 0.33m TLS, with maximum scales generated being between 0.8 - 0.9m, around 3-times greater 

than the width of the pendulum, peaking at an oscillation rate of 0.46Hz, with intensities peaking at 

3.3%. Though the vortex shedding from the bluff nature of the pendulum was more significant in the 

turbulence generation, as the TLS and intensities were frequency dependent, it is reasonable that the 

oscillation was important in the characteristics of the turbulence created. However the energy 

spectrum created too little energy at low frequencies and too high energy at high frequencies. 

Bienkiewicz et al (1983) demonstrated how grid turbulence could be modified by active control, 

namely using a pulsating grid. He showed that for static grids, once the grid bar diameter or plate 

width has become too large, flow instabilities occur (i.e. large regions of recirculation or inconsistent 

vortex shedding) and hence a TLS limit is reached, typically 10 - 13% of tunnel test section width. Two 

grids were used, oscillating 180o out of phase, with the pulsations increasing the TLS by approximately 

ten-fold, but with still relatively short TLS for automotive test work. By careful modification of the 

geometry of the grid’s input signal, the oscillating grids could produce the same spectrum shape as 

static grids, but with controllable intensity and TLS. The maximum length scale generated exceeded the 

width of the tunnel (i.e. 0.91m). The pulsating bars had intensities at 4 - 17% at 0.8 - 1.2m TLS 

(comparable with 0.1m TLS when static), with good flow uniformity across the tunnel’s cross-section.   
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Kobayashi et al (1992) used an array of 12-plates, arranged horizontally, consisting of some fixed and 

some driving plates. The array also had 16-aerofoils, chord 0.1m, and to reduce the turbulence from 

the plate vortices, a separate array of plates and meshes were installed as in Figure 30. Flow was 

measured with intensities around 5% for up to 20o of incidence (up from 1 - 2% when static). Using a 

means-of-least-squared analysis returned a longitudinal scale of 1.07m and an auto-correlation TLS of 

1.24m, with good flow uniformity found laterally and horizontally, but less so vertically. This TGS, like 

that of Knebel et al (2010) (to be reviewed later in this chapter) showed good intensities for the 

intermediate range length scales that would be difficult to achieve with lift devices. Such oscillating 

plates could be used in conjunction with any lift system to compensate and adjust spectral energy 

components. 

 

Figure 30 - Experimental set-up - Kobayashi et al (1992) 

An experimental study of wind turbine aerofoil aerodynamics in high turbulence by Devinant et al 

(2002) was undertaken and a flow turbulence generator was made, operating between 0.5 - 16.0% 

intensity to create an environment for turbine blade testing in ‘real-world’ conditions.  

Square tubes were placed at the nozzle exit, upstream of the test section, with varying tube width and 

spacing, as in Figure 31. The length scales were found to be very short, with poor flow uniformity, and 

therefore not suitable for automotive turbulence generation. 
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Figure 31 - Square grid set-up - Devinant et al (2002) 

Knebel et al (2010) focussed on generating ‘real-world’ length scales for smaller wind tunnels. Knebel 

noted that the length scales generated by passive devices are limited to the size of the tunnel, which in 

itself limits the separation size between components in a passive generation device of which the small 

scales generated then decay with test section length. Knebel suggested that since an active device can 

dynamically vary the blockage of a tunnel, they are of greater capability for controlling the objective 

length scale. The final design of their TGS is shown in Figure 32.  

 

Figure 32 - Active diamond grid - Knebel et al (2010) 

The active grid used is a 7 x 9 set of 0.1 x 0.1m diamonds, with 0.11m separations between the 

diamonds. Each axis is driven by stepper motors, with the input fluctuation pattern being based on 

10ms stepped movements. Figure 33 is a plot of the power spectrum distribution for varying plate 

angles (α). This spectrum is surprisingly similar to that suggested by Wordley for a static mode, with 

high power spectral density for sub-10Hz frequencies, but with length scales around 0.05m and peak 
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intensities around 13%, with a noteworthy result being that the peak intensity was reached at 80o, 

rather than the expected 90o, plate incidence angle.   

 

Figure 33 - Power spectra for four different stationary angle positions (passive mode) - Knebel et al (2010) 

The power spectra are shifted by one decade against each other for clarity. The power spectra correspond to α=60o, 40o, 

20o and 0o from top to bottom. Dotted Line indicates -5/3-power law. Measurements were taken 12-mesh widths behind 

the grid for a reference velocity of 18.4ms−1 

The movement of the diamonds was controlled using a probabilistic method and several modes of 

operation were designed with each successive movement being an increase in the random allowable 

deviation of angular movement. The operation was then tested in an active mode, with the results in 

Figure 34, showing a similar capability as seen in and describe from Figure 33.  

 

Figure 34 - Power spectral density for the active and passive mode of the grid - Knebel et al (2010) 
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Results shifted by one decade with respect to each other in vertical direction for clarity. From top to bottom: 2nd type, 1st 

type, passive mode (the dotted line marks the -5/3 law) 

The length scales generated were in the region of 0.36 - 1.20m. For an approximately 1m2 tunnel, or 

20% model scale, this gives ‘real-world’ scales in the region of 1.5 - 6.0m. This is a very significant 

breakthrough as length scales below 10m (full-scale) are hard to generate using aerofoils and scales 

greater than 0.6 - 0.7m are hard to generate with passive grids. Though not fully achieving the desired 

power spectrum for automotive test work, the intensities are still very suitable when compared to 

distribution by Wordley and hence could form an integral part of a full-range TGS system. Such a 

device can run more slowly (i.e. quasi-statically) to generate other atmospheric wind conditions.  

Cekli et al (2009) conducted tests to generate homogenous and shear turbulence using a 2D-grid of 

diamonds with the 2D-axes controlled individually using stepper motors, as depicted in Figure 35. The 

aim was to generate a real-world wind velocity profile much earlier in a test section than could be 

generated by either requiring a long test-section or through passive methods (which also demand a 

long test-section). The grid used by Cekli consisted of 7 x 10 diamonds with a mesh size of 0.1m and 

measurements were taken 4.6m down from the grid (with no contraction). Precise control of all of the 

diamonds created an accurate real-world wind velocity profile, with the factors for exact axes 

determined from trial and error. It was found that increasing the tunnel floor roughness made the 

accurate generation of the velocity profile much harder.  

 

Figure 35 - ABL generated from an active grid. VREF=9.8ms−1, frequency 6Hz at 7.2o plate angle - Cekli et al (2009) 

A review of active methods by Watkins (2007) showed that moving grids have successfully created 

turbulent length scales greater than grid bar separation distances. This conclusion was developed from 

reviewing work by Ling et al (1972), Sato et al (1974) and Makita et al (1991). No length scales or 
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intensities were described, but it is reasonable to assume that they would be in the order of the other 

devices described in this section, which are of low intensity with TLS not much greater than the 

separation distance between the bars. Though some devices have been shown to create reasonable 

spectra, especially that of Knebel’s, one major problem of drag devices (active or otherwise) is the high 

frequency vortex shedding that propagates over a model, potentially corrupting pressure and force 

measurements over a test model, which could be avoided with lift devices. 

2.3.2 Lift Devices 

Lift devices aim to generate their turbulence through turning the air flow as opposed to merely 

deflecting or relying on the trailing vortices or a sharp edge. An example of this is the simulation of 

gusts by Bearman et al (1994) where turbulence was generated using flapping vanes, with TLS ranging 

from 1 - 10m operating at angles up to ±8o. A pair of vertical, pivoted, symmetric aerofoils was 

connected to an electric actuator, which oscillated the aerofoils in phase. The aerofoils were part of a 

resonant system in order to minimise power demands, driven at their natural frequency. The aerofoils 

had a chord of 0.2m, separation of 0.4m and placed 0.7m upstream of the model, with a maximum 

operating frequency of 25Hz corresponding to around 20ms−1 freestream, with maximum air flow 

deflection at 15o incidence. The peak flow angle achieved was equal to about 2/3 of the peak aerofoil 

angle - described as the non-dimensional gust amplitude. Good flow uniformity of the transverse gust 

was achieved across the width of the model. To improve flow, a much smaller and in-phase amplitude 

intensity component at double the aerofoil frequency was introduced, which itself had turbulence 

intensities around 3 - 8% with TLS around 20% of model length.  

At the FKFS facility at the University of Stuttgart, as discussed in Schröck et al (2009), a TGS was 

constructed (Figure 36) and tested that uses a series of vertically aligned aerofoils, just downstream of 

the nozzle operating on a 1.65m2 tunnel at 80ms−1. Length scales in the order of several vehicle lengths 

(at 20% scale) were generated, with intensities up to 7%. Though a crosswind test facility, their 

approach is to generate turbulence in the axial freestream direction and independently control vehicle 

yaw, hence using separate TGS and vehicle yaw devices. Crosswinds of significance are generally 

greater than one vehicle length (i.e. Wordley et al (2009), Sims-Williams (2011)), hence the focus of 

FKFS's system. Four aerofoils were used, each around 1.5 times the height of the test model. An 

auto-correlation TLS of 0.8m was determined (at scaled size) representing a 4m length scale at full 

scale, with flow yaw for 90% of the time being within ±5o. The tunnel generated an accurate von 

Karman curve up to 15Hz. 15Hz x TLS / 80 = 0.2 → TLS LV = 1.06m which equates to 5.2m full scale, 
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which was their cut-off of the von Karman spectral curve, though lateral scales down to 4m were 

robustly recreated.  

 

Figure 36 - FKFS TGS facility - Schröck et al (2009) 

In general, the use of lift devices has been under-explored, and the results from the works of Bearman 

and Schröck suggest that this area has great potential assuming suitable frequencies can be generated 

(i.e. mechanically that the aerofoils can oscillate at sufficiently a high frequency).  

Figure 37 shows a yaw angle against time trace generated using the FKFS TGS system, a 5-second 

random flow trace with peak yaw angles within ±10o. Figure 38 is the lateral velocity spectrum of the 

generated flow with the theoretical von Karman curve included for comparison, showing a robust 

correlation up to 15Hz. 

    

Figure 37 - Frequency distribution of lateral velocity 

component - Schröck et al (2009) 

Figure 38 - Dimensionless lateral velocity component 

spectrum - Schröck et al (2009) 

Passmore et al (2001) undertook an investigation using a gust generator, which uses a set of 0.3m 

chord NACA0015 aerofoils of 1m in height (first presented in Mullarkey (1990), as shown in Figure 39, 

using the same technique as Bearman et al (1994)). These were installed in the upstream part of a 

closed section wind tunnel, which has a working section of 1.6m wide by 1.0m high and 4.7m in length. 

The aerofoils can oscillate up to 18Hz, creating a waveform for a 1/6
 scale model of around 2 vehicle 
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lengths at 22ms-1, relating to an upper frequency Strouhal number of 0.23. The gust generator 

calibration trend is shown in Figure 40, with the x-axis given in reduced frequency, defined as:  

U

fl
k Rm

π
ω ==  

where f is frequency (in Hz), l the characteristic length being the vehicle length in metres and U the 

freestream airspeed (in ms-1). The gust amplitude (y-axis) is defined as: 

( ) 0AUu

U
A V

g
+

=  

where UV is the lateral velocity (in ms-1), u is the longitudinal oscillation flow component (in ms-1), U is 

the tunnel freestream speed (in ms-1) and A0 is the maximum aerofoil angle (in radians). The resultant 

plot shows the ability to generate significant crosswind gusts at rates reaching to around 9Hz 

(i.e. 2.0m TLS) at significant amplitudes. 

 

Figure 39 - Gust generator set-up - Passmore et al 

(2001) 

Figure 40 - Gust generator calibration - Passmore et al 

(2001) 

2.3.3 Thrust Devices 

Thrust generated turbulence are those methods that use fans, jets or similar to rapidly vary the 

freestream or local velocities and in this way generate pulsations or energy variations that simulate a 

turbulent wave. Examples of these include jets employed by Gad-el-Hak et al (1974), pulsing banks of 

fans by Ozono et al (2006), and using a set of rotating shaft winglets by Kang et al (1990), all of which 

generated length scales in the order of the height of the tunnel. Wind engineering organisations have 

also evaluated active systems more recently, namely Cooper (1989), Kobayashi et al (1992), 

Bienkiewicz et al (1983) and Cooper (1989), again with similar turbulence length scales limited to the 

heights of the wind tunnel, which are too short for automotive test work. 

[11] 

[12] 
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Carr (1994), using crosswind generators, defined the effects of gusts as the vehicle’s response to the 

applied force and the driver’s correcting actions.  The facility generated a uniform sharp edged gust 

around 15ms−1 over a distance of 4 vehicle lengths, creating a vertical velocity profile.  

Multiple fans were used to create controlled turbulence in an experiment by Nishi et al (1995). A 

2D-tunnel had 11-fans arranged vertically, and a 3D-tunnel had 6-horizontal rows of the 2D tunnel 

configuration, making 66-fans in total. The fan speeds were controllable from 0 - 11ms−1, with 

turbulence created by driving the odd fans around 30% faster (i.e. 3.5ms−1 vs. 5.0ms−1) than the even 

fans. At the exit from each channel a honeycomb core was installed with the boundary layer reduced 

by placing 12mm diameter cylindrical bars just after the honeycomb core. Measurements were made 

3m downstream of the test-section entrance, with results showing that a uniform flow giving around 

0.3m TLS and 8% turbulence intensity being generated, as shown in Figure 41.  A flow boundary layer 

of about 0.25m showed that the flow velocity varied from 5 - 7ms−1, which would be a problem for 

automotive test work unless under floor suction or a rolling-road was used to reduce this boundary 

layer. Further, vibrating blades were also added, but only a nominal change was noticed. The 

complexity of the device to achieve the resultant flow structure does not warrant this design as 

suitable for further TGS research, as the intensities created for the length scales are well within a 

passive device’s generation region. 

 

Figure 41 - Results from the 66-fan set-up, with lines of turbulence intensity (IU), length scale (LU) and flow speed (U) - Nishi 

et al (1995) 

Air injection has also was also tested by Sluman et al (1980) but was not of a homogenous shear nature 

and therefore discounted. 
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Sarkar et al (2002) at Iowa State University presented a design, running at a freestream flow up to 

20ms−1, creating gusts that were up to 5.4ms−1 greater than freestream mean flow speed. The device 

used a system to block the flow from the fans to create large, longitudinal gusts (sending the flow 

through a bypass duct). The nominal velocity variation was 1.5% over the tunnel centreline with an 

intensity of 0.15%. Gusts were measured to reach 97% of maximum velocity within 2.2s, rising from 

20.0 to 25.4ms−1 with an acceleration of 2.45ms−2.  Unfortunately, no turbulence intensity or length 

scales were measured as the gust sections were not intended to control these. A major concern is 

whether such a system would be able to cycle sufficiently quickly for the longitudinal waves to be 

maintained, as a variation over 2.2s would create a period of 4.4s, being far too slow for automotive 

test work. This is because the longitudinal waves need to be in the order of length of the tunnel, which 

is generally around 5.0m, and if operating at 30ms−1 this would require a ramp-up and down time 

under half a second. However, the idea has potential if it can be operated at a higher frequency.  

Docton et al (1996) undertook a review of crosswinds generated in the on-road environment and 

simulated crosswinds in Durham University’s wind tunnel by installing additional fans to blow a lateral 

wind flow over a test vehicle. The ground velocity was set at 15ms−1 and by matching the axial velocity 

component of the crosswind to the main jet, a gust perpendicular to the vehicle was created. By 

translating an aperture in a belt across the crosswind fan exit, also moving at the wind shutter or axial 

wind speed, the gust propagated along the length of the test model (Figure 42). 

 

Figure 42 - Schematic plan view of simulation apparatus - Docton et al (1996) 

The velocity at various heights in the test section created by the side crosswind inlet is shown in Figure 

43, with two clear lateral velocity peaks evident, each with a peak velocity of 8ms−1, and an average 
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velocity in the region of 4ms−1, thus generating a gust in the region of 20 - 30o of yawed flow (where x/h 

represents a model vehicle’s width extremities). 

 

Figure 43 - Cross-stream velocity at differing heights in the working section- Docton et al (1996) 

Ryan et al (2000) investigated the simulation of transient crosswind gusts and their aerodynamic 

influence on passenger cars. Tests used a highly modified version of Docton’s original design to 

generate finite length, crosswind gusts with a relative yaw angle of 20 - 30o that can be developed at 

the rate of 1000 per hour. By phase averaging over a large number of cycles the effects of aerodynamic 

and electronic noise were significantly reduced. Two aerodynamic models were tested in this facility, 

each being subjected to transient crosswind gust in the order of 10 model lengths, with main tunnel 

running at 27ms−1. The facility installed by Ryan, as shown in Figure 44, offered the ability to propagate 

a perpendicular crosswind over the test vehicle giving an effective yaw of 22o. 
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Figure 44 - Installation of an enhanced crosswind facility at Durham University - Ryan et al (2000) 

The plot of the gust profile generated is shown in Figure 45 with a clear peak yaw angle of 34o and then 

a sustained yaw angle of 22o for around 0.5s in duration being created. Shutter control allowed the 

length of the gust to be changed from zero to infinity. There is a sharp initial increase in lateral velocity 

and then a more trailed off ending to the gust, decaying in lateral velocity over around 0.2s. 

 

Figure 45 - Gust profile of the crosswind facility developed - Ryan et al (2000) 

2.4 Vehicle’s Response to the Effects of Turbulence 

The importance of turbulence to the performance of vehicles is reviewed in this section, with a focus 

on drag or sideforce variations caused by the introduction of inlet turbulence.  This section is broken 

down into three categories: larger, similar to or smaller than the vehicle size (around 4 - 5m in length).  

At this time it is also worth presenting definitions of aerodynamic admittance (χ2) quantifying a 

vehicle’s response to the externally imposed unsteadiness due to unsteady surface pressures 
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variations caused by the on-road wind conditions and the transfer function (H(f)) of the yaw to vehicle 

response: 

 and H ( f ) =
C( f )

β( f )
 

where C represents an output variable (e.g.: yaw coefficient), β represents an input variable (i.e. yaw 

angle) and SC(f) and Sβ(f) represent the spectra of C and β respectively at frequency f (Sims-Williams 

(2010) and Bearman et al (1994)). 

Results in this thesis are, following convention such as Passmore et al (2001) and Schröck et al (2011), 

presented in terms of χ, that is the square-root of Equation 13, though are labelled as Admittance (χ) 

for the respective axis titles. 

2.4.1 Length Scales Larger than Vehicle Size 

Carlino et al (2007) at Pininfarina developed measurements techniques for evaluating aerodynamic 

response in conjunction with the operation of the TGS system installed at Pininfarina.  A medium sized 

saloon car experienced a range of frequencies for simple oscillating TGS motion with the resultant 

sideforce and yawing moment coefficient given in Figure 46 and Figure 47, showing a clear periodic 

variation with the TGS operation (though amplitudes were not presented). 

      

Figure 46 - Time history of the oscillating part of the front 

sideforce coefficient CYF, in the case of flow yawed at 

0.2Hz - Carlino et al (2007) 

Figure 47 - Time history of the oscillating part of the yaw 

moment coefficient CN, in the case of flow yawed at 

0.2Hz - Carlino et al (2007) 

Figure 48 details the variation in sideforce and yawing with frequency, defined as force coefficient (C) 

over yaw, β, showing a gradual decline from 1.2 to around 0.7 of magnitude in each as TGS frequency 

increases from stationary to almost 1Hz.  

)(

)(
)(

2

2

fS
d

dC

fS
f c

β
β

χ









= [13] 



 

 

 

47

 

Figure 48 - Test Car 1; sideforce and yawing moment response to flow yawing at various frequencies - Carlino et al (2007)  

The C/β ratio is normalised with respect to the same force or moment ratio as at the quasi-static frequency of 0.01Hz 

The results show a comparison between 3 Box and Station wagon configurations of a SAE model 

(shown in Figure 49), which showed a notable reduction in coefficient gradient as TGS frequency 

increases towards 1Hz.  

 

Figure 49 - Left; SAE model with wheels and notchback rear end (3 Box). Right; SAE model with wheels in Station Wagon 

(SW) configuration - Carlino et al (2007) 

In both images the TGS is shown inside the nozzle 

Finally, the gradient of aerodynamic coefficient (C) over yaw angle ( β ), that is ∂C
∂β( ) , showing the 

vehicle’s sensitivity in yaw and sideforce to TGS excitation, is presented in Figure 50 to Figure 53. 
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Figure 50 - SAE model in 3 Box and Station Wagon (SW) 

configurations showing CYF and CYR (left) and CN (right) over 

flow yaw angle - Carlino et al (2007) 

Figure 51 - SAE model in 3 Box and Station Wagon (SW) 

configurations showing CYF and CYR (left) and CN (right) over 

flow yaw angle - Carlino et al (2007) 

Where the C/β ratio is further normalised by the ratio as was measured at the quasi-static frequency of 0.01Hz 

 
Figure 52 - SAE model’s (with wheels) response to crosswind 

in the case of 3 Box and SW rear ends - Carlino et al (2007) 

Figure 53 - SAE model’s (with wheels) response to crosswind 

in the case of 3 Box and SW rear ends - Carlino et al (2007) 

Where the C/β ratio is further normalised by the ratio as was measured at the quasi-static frequency of 0.01Hz 

Holdsworth (2005) using his TGS developed at Durham University, observed that increasing the 

operating frequency from 0.16Hz to 0.20Hz showed, on the topside of the vehicle, vehicle boundary 

layer CP variances of up to 20% between steady and turbulent tests. This suggests that the effect of 

inlet turbulence can be very substantial from a drag and lift perspective. 

Howell et al (2002) undertook vehicle coast-down and tunnel drag tests to assess the difference 

between tunnel drag and real-world values, using a Land Rover Freelander, with the aim to gain 

improvements in fuel efficiency from aerodynamic adjustments. Tunnel testing was conducted at the 

MIRA test facility, running at 100kph. The typical vehicle drag coefficient was measured to be between 

0.41 and 0.49, with 5o yaw reducing drag by around 0.05. Drag coefficients in the tunnel were always 

above the coast-down, around 0.10 - 0.20 CD difference (for a nominal coefficient of around 0.45), 

suggesting that unsteadiness leads to a significant measurement difference. 
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Lawson et al (2007) compared on-road to wind tunnel analysis of pressure measurements with a focus 

on the A-pillar area (a region known for separation, and hence high drag and wind noise). Comparisons 

were made between on-road and wind tunnel measurements (Figure 54) showing that the variation in 

sideglass pressure coefficient with yaw angle (β) is over-predicted in the wind tunnel (i.e. steady 

environment). Note that due to the lack of significant figures in the paper’s presented scale, 

differences in pressure can be inferred from the contours’ shading.  

 

Figure 54 - dCP/dβ (deg−1) based on Wind Tunnel Pressures at −10o and +10o yaw (left) and dCP/dβ (deg−1) based on on-road 

measurements (right) for a Rover 200 model - Lawson et al (2008) 

Lawson et al (2008) presented a further review of surface static car pressures on the road and under 

tunnel test conditions. Road tests were carried out under light winds (<2.5ms−1) at a vehicle speed of 

26.8 ms−1, measured using a 3-hole probe on the vehicle’s roof. All pressure probes were referenced to 

a fixed pressure reference chamber. Side glass measurements showed the lowest pressure closest to 

the A-pillar, with a fluctuation of up to 15% in pressure between the dynamic pressure and total 

relative velocities. This suggests that the air flow cannot be treated as quasi-steady since the 

instantaneous pressure at a given yaw angle is different to the pressure which would be obtained at 

the same yaw angle for constant conditions. Therefore, though the instantaneous yaw angle appears 

to be the most important factor influencing the pressure coefficient on the model surface, the level of 

surface pressure unsteadiness is larger than would be expected due to yaw angle fluctuations alone. 

The spectral relationship between surface pressure and yaw angle indicates that the impact of yaw 

angle fluctuations is reduced by a factor of 2 for reduced frequencies above unity. Therefore the use of 

steady yaw angle tests to model turbulent flow seemed to be unsuitable, and the higher frequencies of 

flow operating above the quasi-steady limit were of significance. 

Watkins et al (1998) undertook a test with a vehicle that had a rear spoiler which, with remote angle 

control, varied the rear flow from being attached to detached. Disc surface static pressure tappings 
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were used and the cabin pressure was set as the reference pressure. It was found that at the roof 

leading edge the pressure coefficient retained a constant value irrespective of the yaw angle. Road to 

tunnel comparisons were made where the pressure measurements were found to be mainly identical. 

The bonnet flow experienced a higher acceleration than compared to static results (resulting in a 

slightly lower pressure coefficient throughout). This could be due to the higher turbulence in the 

atmospheric environment, causing a reduction in the separation bubble at the bonnet’s sharp leading 

edge, hence increasing local velocity, though this explanation does not explain why the increased 

velocity was sustained over the entire bonnet.  

The more likely route of an explanation is that the imperfect ground simulation in the tunnel resulted 

in a higher physical location of the stagnation point, hence a lower acceleration up to the bonnet hood, 

which would explain the maintained increased acceleration over the length of the bonnet. It was noted 

that a repeat of the on-road measurements, made with and without the spoiler, showed very high 

correlation in front of the spoiler, hence the difference between tunnel and road measurements would 

be likely to again come from an inappropriate tunnel ground simulation. The road data showed a more 

complex flow structure around the A-pillar than the tunnel data, which is consistent with Lawson’s 

results, suggesting further analysis of these effects is important. Backlight data showed little difference 

between road and tunnel results. This does show, however, that the variation in turbulence (i.e. tunnel 

to road test differences) would affect the pressure over a car body, and hence its lift and drag values, 

and accurate simulation would quantify these discrepancies. 

Baker et al (2000) used hot-wire rakes to record the turbulence properties of lorry wakes and to assess 

how the wake region propagates with distance and differing vehicle geometry. The effects of 

crosswinds changed the flow field around the vehicle significantly, with very high flow velocity peaks 

seen around the vehicle’s nose.  

Hopkins (2007) showed that the turbulence intensity depends upon the unsteadiness from the 

naturally occurring wind, that is the wind created from driving at speed and the turbulence caused by 

roadside objects and other vehicles. The creation of on-road turbulence could also explain the 

difference between wind tunnel and on-road car analysis. Hopkins investigated the effect of other 

vehicles on the road showing that the turbulence intensity increases as the proximity decreases 

between vehicles, highlighting that vehicles do create high intensity turbulence.  
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Schröck et al (2009), using the FKFS Turbulence Generation System (presented earlier in Figure 36), 

exposed the SAE vehicle model in both notchback (shown earlier in Figure 49) and hatchback 

configuration to a steady yaw angle sweep by turntable rotation (as opposed to TGS imposed yaw).  

The results, Figure 55, showed a typical variation in sideforce coefficient with yaw angle, but notably 

that the hatchback was more sensitive to yaw than the notchback model. 

 

Figure 55 - Sideforce and yaw moment coefficient of a steady-state yaw sweep - Schröck et al (2009) 

Further analysis of the vehicle response to varying inlet yaw angle showed that the admittance 

approaches a constant value for low frequencies (i.e. near to unity) and reduces to zero as frequency 

increases. As such, at low frequencies the flow structures are sufficiently large to be treated as 

steady-state, but since the admittance functions do not reach unity, the response over the entire 

frequency range is not equivalent to the steady yaw angle approach. 

Further investigations using the FKFS TGS system, the design of which was detailed earlier and in 

Schröck et al (2009), are presented in Schröck et al (2011). Using the SAE notchback model (presented 

in earlier in Figure 49) aerodynamic admittance (as defined in Equation 13) was evaluated for the 

model subjected to a varying inlet yaw trace (similar to that shown in Figure 37), with the principal 

behaviour of an aerodynamic admittance function being at or near to unity at lower frequencies and 

reduce to zero as frequency increases, with a peak above unity as the inlet frequency is at the vehicle 

or measurement system (i.e. force balance) resonant frequency. The aerodynamic admittance of 

sideforce is shown in Figure 56 and of yaw moment is shown in Figure 57. The frequency axis is defined 

by Strouhal number, 

∞

=
u

lf
fSr

.
)(  [14] 



 

 

 

52

where f is the measured frequency, l the wheelbase of the model (1m in this case) and ∞u the 

freestream velocity of 160km.h-1, giving a maximum Strouhal number of 0.15 correspondingly to 2.7Hz. 

The SAE model shows initial unity admittance at very low frequency (as if a steady-state yaw sweep 

was conducted), peaking at mid-frequencies showing a vehicle response with greater yaw dependency, 

and then as expected a significant reduction in vehicle response as frequencies increase further. 

 

Figure 56 - Aerodynamic admittance of sideforce  - Schröck 

et al (2011) 

Figure 57 - Aerodynamic admittance of yaw moment - Schröck 

et al (2011) 

Passmore et al (2001) undertook an investigation translating a generated gust over a model-scale 

vehicle to assess the gusts’ effect on vehicle stability. Passmore noted that drag reduction techniques 

such as the rounding of vehicle front-end profiles and the region around the rear pillar can cause 

greater yaw sensitivity and that curved geometries, combined with air flow unsteadiness, can cause 

variable flow separation leading to unsteady aerodynamic loads. Such varying aerodynamic loads cause 

large differences in front and rear side forces and yaw moments especially in crosswind conditions. The 

Davis fastback model, Figure 58, was exposed to a range of gusts, the set-up of the gust generator 

being as detailed in the review of Passmore et al (2001) earlier in this chapter. A steady-state yaw 

sweep was completed to trend side pressure coefficient with yaw angle. A plot of the difference in 

static pressure coefficient between the both sides of the model during being exposed to a transient 

sine wave yaw sweep is shown in Figure 59, showing a very strong correlation of model side pressure 

with yaw angle. 
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Figure 58 - Davis model dimensions and pressure tapping 

locations - Passmore et al (2001) 

Figure 59 - Single tapping transient ΔΔΔΔCP variation 

and sine fit - Passmore et al (2001) 

Passmore then undertook a quasi-steady prediction process by combining the sinusoidal aerofoil angle 

input with the measured steady-state yaw against pressure coefficient trend. The aerodynamic 

magnification factor ( )aχ  was determined by taking the ratio of the amplitudes of the transient to the 

quasi-steady sine wave outputs (which is correspondingly the square root of aerodynamic admittance). 

As such, the magnification factor is essentially a comparison of the pressure coefficients between the 

transient and the steady-state yaw sweep. The resultant trend, Figure 60, shows greater than unity 

admittances over the frequency range and especially at low frequencies indicating yaw sensitivity (i.e. 

transient flow effects). Lower than unity admittances at the intermediate reduced frequencies 

demonstrate that the quasi-steady prediction overestimated the transient sideforce. Admittances did 

not reduce at higher frequencies, but it should be noted that the peak aerofoil yaw angle was reduced 

with frequency to less than ±2o at the highest frequency, correspondingly increasing the signal-to-noise 

ratio. 

 

Figure 60 - Sideforce and yaw moment aerodynamic magnification against reduced frequency - Passmore et al (2001) 
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2.4.2 Length Scales of Order of Vehicle Size 

This section reviews the differences between on-road and tunnel tests. Previous work undertaken by 

Lawson et al (2007) and by Holdsworth (2005) showed that the introduction of turbulence did not 

varying the pressure distributions significantly over a vehicle, but that the simulation of upstream 

vehicle wakes was significant. Buckley et al (1976) highlighted the effect of upstream vehicles, as did 

Watkins (1990) and Cooper et al (1981). Work by Cooper and Campbell (1981) was undertaken to 

theoretically adjust laminar test work to that of unsteady tests, and this was achieved with some 

success, though mainly for lower-frequency, high energy gusts (i.e. crosswinds).  

Teunissen (1980) found that yaw angles between 0.5o to 2.0o are important for crosswind sensitivity 

from a driver's perspective, with 4o of yaw at 200kph combined with 30kph gust velocities and 

intensities up to 12o being realistic for describing overtaking scenarios. Numerical analysis was 

undertaken with an idealised square, 3D vehicle model with a crosswind flow inlet (sinusoidal inlet 

wave at 1Hz). The results showed that the sideforce on the vehicle moved rearwards during a gust (i.e. 

increasing yaw moment), causing a shear and torque on the vehicle, which would significantly 

influence vehicle stability.  

Garry (1982) reviewed the effects of backlight design and found that changes in flow at high intensities 

(>10%) were significant for lift and drag variation, though the increased TLS associated with these high 

intensity flows was probably as significant. Newnham et al (2006) found that with a two-box car shape, 

turbulence greatly affected the trans-critical Reynolds number and Watkins et al (2001) found that 

increasing turbulence was similar to increasing Reynolds's number, such as the trans-critical flow 

around spheres. Dryden et al (1936) and Bearman et al (1983) suggested that forces which act over the 

rear of a car are sensitive to unsteadiness variations, whereas Mala et al (1999) showed that length 

scale is likely to be the dominant factor when turbulence intensity is high and constant (i.e. >20%). 

These sources all suggest that the variation on vehicle drag and stability is greatly affected by 

turbulence, but the attributed significance of intensity against length scale requires clarification. 

Cogotti (2004) showed drag and lift coefficient and pressure fluctuations all increase with turbulence. 

Rear lift coefficient varied greatly with turbulence due to varying reattachment as well as front lift 

coefficient fluctuations and also (to a lesser extent) drag. Increased vehicle buffeting was also noted, 

thereby affecting vehicle stability and ride comfort. Front bonnet panel lift increased and disc brake 

cooling, recirculation of exhaust gases, backlight soiling and sunroof booming all showed variances 
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with turbulence. Aero-acoustics also showed notable variances, with loudness and roughness 

increasing with turbulence. 

Cogotti (2004) tested a Peugeot 406C behind a mid-sized, hatchback car in the wind tunnel. The 

leading car trailing flow was characterised by two downwash vortices, with peak intensity at 13% at 

0.5m in front of the following car’s bumper. Overall drag coefficient dropped -0.029, with front lift 

decreasing by -0.084 and rear lift up by +0.017. The TGS caused the Peugeot’s drag coefficient to 

drop -0.005 from a ‘no upstream car’ datum. Cogotti suggested that the differences measured in 

vorticity magnitude could be attributed to the cars being too close together in the first test, as opposed 

to errors in the TGS test. These results suggest that the effect of turbulence on vehicle lift can be 

notable, which affects vehicle stability. Table 2 summarises the effect of displacing downwash and 

upwash wake to drag and front lift variation (the vorticity was controlled in order to simulate tunnel 

TGS phase, amplitude and frequency). 

Table 2 - Test results - Cogotti (2005) 

 Displacing downwash wake Displacing upwash wake 

Drag variation Decrease Increase 

Front lift variation Increase Decrease 
 

Table 3 shows that the effect of the TGS turbulence on lift, drag and moment forces was significant and 

that the effect of the turbulence on vehicle performance is notable and should be considered in the 

automotive aerodynamic design.  

Table 3 - Coefficient variation for differing tests - Cogotti (2005) 

 ΔCD ΔCLF ΔCM 

City car - upstream downwash wake -0.021 0.037 0.021 

City car - upstream upwash wake 0.013 -0.077 -0.031 

Soft top city car - upstream downwash wake -0.023 0.060 0.042 

Soft top city car - upstream upwash wake 0.021 -0.079 -0.043 

 

Docton et al (1996), using the crosswind facility shown earlier in Figure 42, tested a ‘Docton’ model 

which was a rounded-corner rectangular cuboid with endplates as is shown in Figure 61 and has 

numerous static pressure tappings along the side perimeter, thus allowing the integration of pressures 

in order to resolve the force profile for the model.   
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Figure 61 - Docton model geometry - Docton et al (1996) 

Figure 62 presents the surface pressure results for the model exposed to the same gust profile shown 

earlier in Figure 43 at differing leeward tapping locations (0 being at the leading edge and 10 being 

1/3 down the respective model side). It can be seen that the side force increases over the first third of 

the vehicle, and further plots (not shown) of more downstream tappings show the same trend in 

smaller magnitudes as downstream distance increases. The windward surface pressure plot showed a 

similar trend but with inverted pressure traces at similar magnitudes. 

 

Figure 62 - Transient model surface pressure at various tapping locations (Leeward side) - Docton et al (1996) 

In Figure 63, showing sideforce, the gust can clearly be seen to impose a sideforce of approximately 4N 

on the model, with the majority of force occurring on the windward side, but that additionally a 

change of pressure on the leeward side adds to the net force.  
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Figure 63 - Transient side pressure force on the model - Docton et al (1996) 

Plots of yawing moment (not shown) demonstrated peaks of 0.4Nm, with both the windward and 

leeward side contributing almost equal quantities to the net moment. In comparison of the yawing 

moments before and after the gust, the actual gust only increases the yawing moment on each of the 

windward and leeward sides by an approximate delta of 0.15Nm, but that the two sides summed, 

causing a large net yawing moment. Therefore the variation in side pressure (i.e. over a sideglass) will 

cause a far greater net yawing moment on the vehicle. 

Drag force on the model was shown to vary before and after the gust, moving through a reduction in 

drag by 70% from the steady flow condition, peaking at 140% of the steady flow condition drag, which 

would cause a notable drag buffet.  

Reviewing the model vehicle’s response to Ryan’s (Ryan et al (2000)) crosswind gust facility (shown 

earlier in in Figure 45), Figure 64 shows the resultant sideforce coefficient trace for the ‘Durham’ 

model as the gust propagated. There is a rapid pressure development on the windward and leeward 

sides and the model’s response closely reflects the onset yaw variation, though a decrease in sideforce 

coefficient at 0.38s is, for a short period of time, in the opposing direction to the onset yaw direction. 

That flow development occurs up to t = 0.6s, with the region of separated flow taking up to 7 model 

lengths to become established. Therefore the increase in sideforce is due to delayed leeward A-pillar 

and under-floor flow vortex development. It should be noted that a difference in the ‘infinitely’ long 

gust of the crosswind facility did not agree with the steady yawed flow case, with a 6% difference in 

crosswind dynamic pressure noted. 
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Figure 64 - Model geometry used with integrated pressure sideforce coefficients - Ryan et al (2000) 

Yawing moment coefficient for the ‘Durham’ model showed an over-, and then under-shoot similar to 

the sideforce coefficient, with the over-shoot caused by the delayed leeward A-pillar and under-floor 

vortex development. Pressures on the model’s upper surface also showed rapid development, but the 

lift coefficient does not reach a maximum until t = 0.55s after which time the gust arrived at the model, 

suggesting that pressure development must continue.  

An increase in upper surface lift between t = 0.36s and t = 0.45s was also seen, partially due to the 

increase in wind tunnel dynamic pressure, but also due to delayed flow development in regions of 

separated flow where the closed separation bubble in the windshield to roof junction, and the vortex 

at the windward side of the side-roof to C-pillar are not seen (which would have an associated pressure 

coefficient decrease).  

At t = 0.30s the effects of the crosswind gust anomalies, (i.e. high total pressure and yaw angle 

overshoot) results in spurious surface static pressure data, with the roof experiencing a brief reduction 

in pressure coefficient and correspondingly the model showing an increase in upper surface lift 

coefficient. The continual variance of the lift coefficient, as opposed to the sideforce and yawing 

moment that settle during the gust, is due to small pressure changes on the windshield surface but not 

due to the unsteady region of separated flow.  

The model showed significant transient force and moment overshoots, which were found to be a 

consequence of delayed pressure development in regions of separated flow and with full speed flow 
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development requiring up to seven model lengths of crosswind gust. Docton and Ryan showed that 

forces under these transient flow conditions are very different from steady-state. 

Pearce et al (1998) measured the effects of unsteady crosswind forces and moments on ground 

vehicles using 1/50
th scale rail vehicle model (which was at full-scale 17m long, 3.2m wide and 5.5m 

high) in a 4m high by 2m wide wind tunnel of 20m test section, with sideforces and moments 

increasing greatly with yaw angle and the variation levelling when yaw angles exceeded 40o. A similar 

effect was seen for both steady or gust like crosswinds.  Sideforce was shown to be the most dominant 

force and effect.  

However, the lift force was seen to greatly increase when yaw was larger than 45o, with differing 

sources of instability being created at high yaw angles, potentially from body induced turbulence. 

Admittances, starting at unity at low frequencies, were seen tail-off at high frequencies with a peak in 

lift force coefficient between 10 - 20Hz, relating to a Strouhal number 0.1 - 0.2, probably caused by 

wake vortex shedding. Aerodynamic weighting functions were presented which predicted that the 

sideforce coefficient will approach its equilibrium value with no overshoot, but that an overshoot of 

around 20% for the lift force coefficient.  

2.4.3 Length Scales Smaller than Vehicle Size 

Shorter length scales affect a vehicle’s performance differently to longer scales. These effects, due to 

higher frequency inlet turbulence, were categorised by Bearman et al (1994) as three main 

mechanisms in turbulence on bluff bodies: i) accelerated transition to turbulent flow within shear 

layers, ii) enhanced mixing and entrainment and iii) distortion of freestream turbulence by the mean 

flow-field, each affected by intensity and length scales. All of these flow effects, due to the higher 

frequencies, ultimately affect the pressure measurements over a car, which mean that the peak loads 

on a vehicle can be greater, yet still inconclusive if the average load values change. 

As an overview, several sources were reviewed which investigated testing vehicles in yawed flow with 

a turbulent inlet generated by a grid. Macklin et al (1997) concluded that simple yawed testing in this 

manner underestimated the true transient loads that the vehicle experienced. It was found that the 

addition of turbulence had offered a smaller variation range than the load variation under the ‘steady’ 

inlet condition and that below 15o yaw the static tests (i.e. no grids) gave a conservative view of the 

loads, whereas above 15o yaw the dynamic results were generally larger than the static tests. This 

suggests that testing with and without turbulence can have a prominent effect on the measured drag 

force. 
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Watkins et al (1990) and Nguyen et al (1997) reviewed tunnel to on-road turbulence and conducted 

tests with static grid generated unsteadiness. It was noted that cars are more aerodynamically 

unstable due to the centre of pressure of the sideforce tending to move forward as cars become more 

streamlined. Previous work on fluctuating sideforce was undertaken by Davenport (1961), Vickery 

(1966), Melbourne (1993),  Bearman et al (1994), Saunders (1974), Basu (1986) and Hunt et al (1992). 

With respect to cars, Saunders et al (1987) measured force and moment spectra for cars and trucks, 

and Gilhaus et al (1986), Coleman et al (1993), Coleman et al (1994) and Bearman et al (1994) all 

conducted other turbulence studies. All of these sources made observations of the variation in drag 

and sideforce measurements with the introduction of high frequency turbulence, namely the increased 

peak loads and varying flow Reynolds’ number in the critical flow region. 

A series of experiments by Newnham et al (2008) were undertaken to see how flow characteristics 

would alter with varying corner radii with turbulence. Turbulence ranges of up to 3.4% intensity at 

15ms−1 were created with mesh grids. Key results showed that the separation bubble instability 

increased with turbulence intensity. In laminar conditions the separation bubbles were found to be 

relatively stable, however at an intensity of 1.4% the bubble was far less stable and increasing to a 

peak intensity of 5.13% caused large ‘flapping’ of the free shear layer and its intermittent collapse. 

Velocity ranges in the separated region showed peaks 30% greater than at low turbulence, with the 

time-averaged separation bubble getting shorter. Increasing turbulence did reduce the Reynolds’s 

number at which transition to fully attached flow occurred, but also the changes in the flow field at 

constant Reynolds’s number with varying turbulence intensity were seen to be driven by the increased 

turbulence in the free shear layer and not only by any earlier transition, differing to results presented 

earlier by Schröck et al (2011). 

Gilhome et al (2002) undertook further tunnel to road comparison tests, again showing disparity 

between laminar and turbulent measurements, with a focus on the pressure distribution over a car’s 

door. The consideration of turbulence was described as falling into two main schools of thought - the 

first that turbulence perturbations largely cancel out and the second that the induced additional 

effects are not captured by steady-state, low turbulence testing techniques. Bearman & Malarkey 

(1994) stated, ‘Aerodynamic forces caused by gusts may be predicted safely by assuming the air flow 

to behave in a quasi-static way.’ As such his experiment set out to see if steady-state wind tunnel 

testing was a valid assessment of on-road front door aerodynamic flows. The results showed that the 

tunnel did not estimate the on-road environment door loads accurately, as the door aerodynamic 
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loads in on-road low turbulence were less than the peak door loads that were experienced in the wind 

tunnel. Door pressure measurements in low turbulence wind tunnels were lower than those for 

on-road conditions.  

At yaw, the wind tunnel average force produced conservative estimates, whereas the wind tunnel 

significantly underestimated the peak force when compared with the on-road turbulent testing 

conditions.  The conclusion reached was that turbulence increases door pressure loads (and an 

increase in turbulence is generally proportionate to any length scale increases). Further, rotating 

wheels (and hence their resultant turbulence) moved the coefficient of pressure rearward over the 

door and reduced aerodynamic forces over the door. Consequentially the low turbulence tunnel 

results are lower than on-road results, unlike work by Bearman et al (1994), Macklin et al (1997) and 

Nguyen et al (1997) who used static meshes with turbulence up to 4% intensity and 0.8m TLS to assess 

the effect of shear and crosswind turbulence for road vehicles.  These tests were useful in testing 

freestream turbulence effects, and it was found that the variation in turbulence level made little 

difference to the effect on the vehicle.  

Tests conducted by Bearman et al (1994) and Nguyen et al (1997) using sideway crosswind flows, with 

induced unsteadiness from mesh grids in the crosswind inlet, showed that, at tests running with the 

car at 0o and 30o yaw (at 4.2% turbulence intensity), the mean sideforce increased with yaw angle and 

side area. The experiments showed that there was a slight increase in mean drag, sideforce and yaw 

moment coefficient with increasing turbulence.  It was found that the increase in fluctuating sideforce 

was directly proportional to the increase in turbulence intensity. The paper also noted that the 

fluctuating sideforce for a streamlined car could be up to 50% lower than that of a sharp-edged car 

(and the streamlined car drag force is around 50% less than that of the sharp-edged car).  

Studies completed by Bearman et al (1994) looking at the effects of steady crosswinds and gusts on the 

SAE simplified geometry vehicle model found variances in drag, sideforce and yawing moment with 

lateral flow increases. Crosswinds were induced using a pair of oscillating aerofoils and turbulence 

inducing grids, though the quality of the on-road simulation was stated to not be precise. The 

aerodynamic forces behaved in a quasi-steady manner (albeit overestimating the measured unsteady 

forces and moments), with a nearly linear relationship between vehicle forces and yaw up to 20o. 

Bearman et al (1994) and Nguyen et al (1997) show that on the whole, the effect of high frequency 

turbulence is to vary drag, side and moment force measurements on a vehicle and therefore are 

important to the design of vehicles and their aerodynamic optimisation. 
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Howell (1995) presented the results of the large Rover crosswind test facility at MIRA for tests on a 

mid-sized SUV vehicle, which showed that the prediction methods available did not evaluate the 

crosswind sensitivity correctly. A two degree-of-freedom model gave a crude assessment of a vehicle’s 

crosswind response, but the model was still using a large scale facility, and refinements were still 

required for suspensions with strong roll-steer characteristics. Ultimately the complex facility did not 

offer a precise crosswind measurement technique. 

2.5 Background Research Overview 

The literature review focussed on four major topics, turbulence measurement approaches, real world 

data of on-road turbulence, dynamic and passive TGS systems and previous studies assessing the effect 

of aerodynamic unsteadiness on a vehicle’s performance. This review also leads into a TGS 

specification in the following chapter, which includes a further review of the more promising TGS 

systems presented. A summary of some of the typical energy spectrum of past and currently available 

turbulence generation systems is presented in Figure 65. An overview of the variety of unsteady air 

flows measured in the on-road environment showed a wide range, from 1 - 50m TLS at intensities from 

0 - 15% or greater. Clearly therefore a TGS needs to be able to create a wide range of length scales, 

with care to ensure that the decay rate of turbulence intensity and the growth of turbulence length 

scale, as the flow propagates downstream through a test section, is small over a model’s plan view. 

This factor reiterates that all measurements must be recorded at model front, middle and rear extents, 

to map the decay and to ensure that a TGS creates comparable on-road turbulence.  

 

Figure 65 - Spectral range of turbulence and corresponding generation systems - Sims-Williams (2010) 

The adjustment from real world to model scale must be allowed for. The Durham 2m wind tunnel 

operates at a 25 - 35% model size, requiring measured TLS’s must be adjusted suitably. Wordley et al 



 

 

 

63

(2009) offered the greatest review of flow conditions for a variety of environments, suggesting that to 

recreate this wide range of flow conditions TLS of 2 - 14m (full scale) should be created longitudinally 

with intensities from 2 - 14% and with intensity decaying with increased TLS, as per his spectra plots. 

Further tri-axis intensity ratios ranging from isotropic (u, v, w) = 1 : 1 : 1) to a ratio of 

(u, v, w) = 1.0 : 0.8 : 0.6 should be aimed for. The issues associated with creating isotropic length scales 

for unsteady flows do not seem to be completely justified due to the wide range of results found and 

therefore simply the length scales suggested by Wordley et al (2009) should be matched.  

A wide variety of dynamic systems were found to have been tested, though some were potentially 

overly complex or expensive. The Pininfarina vane system, Cogotti (2004), and oscillating horizontal 

bars both generated length scales that would be desirable (<14.0m x 30.0% = <4.2m TLS). Varying 

tunnel blockage and bypass flows could generate the larger length scales required longitudinally. 

Static systems were also reviewed and the length scales generated were all relatively short. This is not 

to say that passive systems are of no value in automotive aerodynamic test work, but that their 

generated length scales were generally below 0.5m (<2.0m x 30.0% → <0.6m) so they cannot offer the 

principle length scale range desired. Tests by Iyengar et al (2001) found that a tunnel freestream 

unsteady flow of around 2% intensity was reduced to under 0.5% using grids, and further if the 

tunnels’ freestream flow is of very low background turbulence (<0.5%) that grids might be of use to 

adjust the turbulence level at the upper end of the frequency spectrum. However, until such tunnel 

analysis and preliminary testing have been completed, static systems will be left dormant as they are 

unable to generate the length scales desired. 

Assessing the importance of unsteady air flow in testing, it is fair to conclude that the results are 

varied. Certainly some tests suggest the principle coefficients values (i.e. CD, CY) varied nominally, but 

other work by Newnham et al (2006), made clear that the points of separation and reattachment over 

vehicles and alike are highly affected by unsteady incoming flow. Further, there is a large discrepancy 

between real-world drag tests (i.e. coast-down technique by Bischof (2008)) and tunnel test data, and 

unsteady incoming flow must constitute a major factor of this difference. Cogotti (2003) showed that 

the response of a vehicle to being in the wake of a lead vehicle was significant to efficiency, 

performance and aero-acoustics, and improvements in unsteady flow testing would definitely offer 

value to the research and development of vehicle aerodynamics. It is therefore concluded that current 

sources suggest that resolving unsteady air flow generation will be of real benefit. 
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This chapter therefore summarises the turbulence frequencies and intensities that have been 

experienced in the on-road environment. In chapter 3 a 2D CFD simulation is undertaken to determine, 

from a general perspective using a simplified geometry, the frequency range at which a vehicle 

response occurs to unsteady turbulence. The chapter evaluates at what frequency quasi-steady 

approaches are non-longer valid in order to develop an understanding of how vehicle stability and drag 

varies at differing aerodynamic excitation frequencies. In chapter 4 an on-road study is undertaken to 

firstly confirm the turbulence frequencies and intensities that exist on the road from a vehicle’s 

perspective. Then secondly, through the simultaneous measurement of a roof probe and sideglass 

pressures, an admittance-based technique is developed to determine at what frequencies a vehicle 

response is seen to occur from unsteady turbulence as opposed to effects that can be assessed 

through quasi-steady approaches.  

From the results of chapter 2, 3 and 4 the frequencies at which significant turbulence frequency exists 

in the on-road environment and the frequencies at which a vehicle response is seen are known, leading 

to a specification for a TGS (i.e. required frequency and intensity for simulation). Chapter 5 then 

presents a CFD study to develop a TGS design, with the output being an aerodynamic specification. In 

Chapter 6 and 7 this aerodynamic specification is then developed with the aim being a mechanical 

specification of the TGS covering the control system, linkage and rates of operation. In Chapter 8 the 

objective is to take the new TGS and understand its operation with the output being a set of control 

parameters that will ensure accurate turbulence generation in both harmonic and non-harmonic test 

cycles. Finally in Chapter 9 a model of the vehicle tested on-road (in chapter 4) is tested using the TGS, 

with the objective being to assess the simulation approach of using models to understand the unsteady 

aerodynamic effects on full-scale vehicles. The outcome of the thesis is therefore a test approach using 

an admittance based technique to compare unsteady turbulence effects from quasi-steady effects, a 

TGS that can replicate the on-road environment and a method for taking on-road measurements and 

simulating them in the wind tunnel environment.   
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3. CFD Study of Effects of Inlet Turbulence on an Idealised 2D Model 

A 2D geometry model of car’s plan shape was modelled and simulated with a varying inlet 

(i.e. dynamic) yaw angle flow. The objective was to see how a simplified model would respond to 

varying sinusoidal inlet frequencies, amplitudes and flow conditions as well as the effect of simple 

geometry variations to the model’s response. The caveat of using a simplified vehicle geometry is that 

the conclusions are focused on determining the orders of magnitude of frequency that are relevant 

and therefore from the results only a macroscopic view can be taken of vehicle or geometry specific 

effects, with this being a fundamental study of the frequencies involved. However, the results show 

how the effect of varying inlet lateral frequency can affect geometries in the order of the scale of a 

road vehicle. This approach can be used to investigate the admittance between inlet flows and vehicle 

response forces, developing understanding of the quasi-steady frequency threshold and the effects of 

viscosity on the threshold, as well as allowing numerous geometries to be tested in a relatively rapid 

succession. 

3.1 CFD Case Configuration Background  

CFD software, both Ansys Fluent 12.1 (a RANS based solver) and Exa Powerflow 4.3c (a lattice 

Boltzmann based solver) are used extensively in this thesis for developing and understanding transient 

flow properties. The two arenas of use are in the development of a TGS design and furthering the 

understanding of the effects of transient air flow in 2D and 3D simulations of vehicle models. As both 

of the solvers have a range of settings related to their intrinsic calculation methods, an overview of the 

parameters used and theory supporting the judgements made are discussed in this section.  

Fluent (used mainly for steady-state studies) and Powerflow (which simulates time-variant flows, used 

for steady and transient simulations) both have differing characteristics and turbulence models. It is 

appropriate to consider the merits and limitations of their respective inherit designs and define the 

major elements of a test case that are used throughout. 

A lattice Boltzmann solver is based on a discrete equation derived from the kinetic theory Boltzmann 

equation, with the basic quantity in the method being a single-point distribution function. The 

discretisation in a lattice Boltzmann solver is chosen in such a way that the resulting relevant flow 

dynamics do not suffer from discrete lattice effects and fluid dynamic quantities (such as the fluid 

velocity, density, and pressure) can be obtained through post-processing. Additionally turbulence 

modelling can be solved via a relaxation process and boundary condition modelling. A lattice 
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Boltzmann solver often has the advantages of being stable for highly nonlinear flows. It can be readily 

parallelised, offers a more fundamental treatment of the boundary layer and does not need to 

explicitly solve pressure dynamics. However, the lattice Boltzmann solver is optimised for low Mach 

number applications and by being fully explicit is more suitable for large-scale turbulent flow 

simulations.  

CFD simulations can approach turbulence through either simulating the turbulence or modelling it.  

Simulation of turbulence requires 3D transient solvers with low numerical dissipation to converge. 

They also require a mesh resolution in the order of the Reynolds Number to the power of 3. Therefore 

at automotive Reynolds number orders, some turbulence modelling is required to account for the 

macroscopic effects of the turbulent flow structures that are not resolved directly by the simulation. 

Reynolds Averaged Navier-Stokes (RANS) based methods attempt to model all scales of turbulence. 

However, theoretical models for anisotropic turbulence do not exist and thus RANS methods attempt 

to adapt turbulence models developed from the theory of the turbulence length scales. RANS based 

methods also require a fine mesh resolution and higher order schemes for simulating accurate 

near-wall properties. 

Fluent uses a Reynolds-averaging (or ensemble-averaging) method to avoid direct simulation of the 

small-scale turbulent fluctuations when employing the Navier-Stokes equations. RANS models 

decompose the flow into its time-averaged (i.e. average velocity) and fluctuating quantities (i.e. change 

of velocity with time). Fluent offers numerous models of turbulence, of which the two that are deemed 

most appropriate for automotive simulations are the Spalart-Allmaras (an one-equation model) and 

K-ω (a two equation model) due to their balance of computational efficiency and accuracy. The 

Spalart-Allmaras model (Spalart et al (1992)) is a relatively simple model that solves a modelled 

transport equation for the kinematic eddy (turbulent) viscosity, designed initially for aerospace 

applications involving wall-bounded flows, and has been shown to give good results for boundary 

layers subjected to adverse pressure gradients.   

The Spalart-Allmaras model is effectively a low-Reynolds-number model, requiring the 

viscosity-affected region of the boundary layer to be properly resolved. In Fluent the Spalart-Allmaras 

model has been implemented to use wall functions when the mesh resolution is not sufficiently fine, 

which is suitable where accurate turbulent flow computations are not critical. It is therefore better for 

unstructured meshes, but can struggle with homogeneous, isotropic turbulence and is less able to 

rapidly accommodate large changes in length scale. The standard K-ω model is an empirical model 
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based on model transport equations for the turbulence kinetic energy and the specific dissipation rate. 

As it is composed of two-equations, and more developed, it is suggested to be more accurate for more 

turbulent applications with greater pressure gradients.  

In conclusion, Powerflow is a turbulence modelling application that, in using particle collisions to 

model air flow, is naturally an unsteady solver and inherently more stable. Fluent can offer very 

accurate flow simulation, but is a time-averaged solver and was found to be more time-consuming in 

case set-up and operation than Powerflow for unsteady cases. In this thesis, Fluent is initially used for 

modelling 2D TGS designs, but Powerflow was found to be able to similarly model 2D flows whilst 

having the ability to simulate unsteady and dynamic mesh 3D models more readily. Therefore, for the 

modelling of transient effects on vehicle models, Powerflow is used exclusively. In terms of the specific 

case set-ups for each solver, whether modelling unsteady or time-variant flows in 2D or 3D, the details 

are supplied in the appropriate chapter as they directly connect with the presentation of the 

respective results. 

3.2 Study Approach 

The simulation was conducted using Exa Powerflow, a lattice-Boltzmann based solver CFD package. 

One objective of the study was to simulate the experiment undertaken by Ryan (2000), where a 

sharp-edged gust case propagated over an idealised model (developed by Docton (1996), Figure 66 and 

Figure 67). The Docton model is used throughout this study at the same size and scale as in his work. 

Figure 66 and Figure 67 illustrate the computational flow domain and the 11 nested regions of mesh 

refinement. The cell resolution adjacent to the model in the simulations was 2.0mm (a relatively fine 

mesh), using the same mesh considerations and scaling as is detailed in Gaylard et al (2010). Periodic 

walls were used in ±Y, with the inlet set as a ‘velocity inlet’ and the outlet set as a ‘characteristic static 

pressure outlet’.  

The test domain had 10 vehicle lengths upstream and 15 downstream of the model (i.e. 26 vehicle 

domain length) and 10 either side (so 21 vehicle domain widths), based upon Sims-Williams (2001). 

Powerflow is a time-resolved (unsteady) solver and the time step size used was 1.05 x 10-5s. 



 

 

 

68

 

Figure 66 - Powerflow case domain; note the range of variable resolution regions 

Further mesh refinement around the model can be seen in Figure 67. The size of the Docton model is 

shown in the literature review where his research, Docton et al (1996), is presented. 

 

Figure 67 - Powerflow domain with multiple VR regions and the Docton model 

3.3 Steady Yaw Analysis 

As an initial approach, a case optimisation study was completed to fulfil the following criteria: 

• Axial velocity of 30ms−1, 8-seconds case length  and the number of ‘flush-throughs’ and 

cycles maintained 

• Mesh variation test confirmed voxel and Variable Region set-up 

• Fixed time-step size and long processing times to allow appropriate flow propagation in 

the low frequency cases 
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• High logging frequency maintained and time step kept to less than 1 x 10-5 s 

• Case time-steps advanced until forces were found be consistent for at least 0.5s in the 

steady cases (from which the forces were time-averaged over the 0.5s) and for at least an 

integer set of periods to translate the entire domain in the unsteady inlet cases with 

consistent force oscillations (from which the last set of periods are presented or averaged 

as appropriate). A fixed convergence metric was not set.  

A set of simulations was conducted with the Docton model set at a range of steady yaw angles from 0o 

to 10o in 2o increments. For all simulations presented here the axial component of inlet velocity was 

constant (30ms−1) and an additional crosswind component (UY) was introduced to create yaw. This 

means that the total resultant velocity is larger for higher yaw angles. This is a better replication of the 

on-road experience than the common wind tunnel practise of running at constant velocity and yawing 

the vehicle. Non-dimensional coefficients are based on the axial (i.e.: nominal driving velocity) rather 

than the total resultant velocity.  Figure 68 illustrates the variation of drag coefficient with yaw angle, 

showing an increase in drag coefficient until 2o of yaw (due to increased frontal area), and then a 

decrease as downstream flow separation increases. This profile is due to a combination of an increase 

in flow separation on the leeward side of the vehicle at early increases in yaw and an increase velocity 

magnitude with yaw angle (as axial velocity was kept constant) causing the drag coefficient to drop 

with yaw angle.  

Additionally, in difference to turntable induced yaw without a tangential correction, the drag is kept 

aligned with the vehicle. 

 

Figure 68 - Drag coefficient against yaw angle for the steady-state cases 
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Figure 69 illustrates the corresponding variation of sideforce coefficient, showing a linear variation of 

sideforce with yaw angle which is compared with, and increases at a lower rate than, the idealised lift 

slope (2πα(l/W)) predicted by potential flow theory. The ideal slope demonstrates the effect of yaw on 

a symmetric aerofoil, showing that the variation in sideforce is more complex than simple flow theory 

would predict due to flow separation on the leeward side of the model at low yaw angles.  

The strong linearity of the experimental result is representative of the idealised model design and 2D 

flow structure showing a straightforward increase in sideforce with yaw, whereas in 3D complex flow 

structures would be generated with increases in yaw angle causing a non-linear sideforce variation. 

 

Figure 69 - Coefficient of sideforce with yaw angle for the steady-state cases 

3.4 Harmonic Inlet Tests 

A series of harmonic test cases were modelled using the Docton model. Inlet turbulence was set at 

1% intensity at 1m turbulence length scale, with the axial velocity fixed at 30ms−1 and lateral velocity 

varied as the inlet yaw velocity. The default yaw angle peak was ±6o
, varying as a sinusoidal wave.  

Tests were conducted at frequencies of 0.03, 0.15, 0.33, 1.75, 3.5, 7.0 and 10.0Hz, which were selected 

to ensure the capture of the critical reduced frequency threshold. All results are presented in terms of 

reduced frequency based upon vehicle length. 

In order to determine a reference, steady-state equivalent drag coefficient (i.e. zero frequency point) 

the values from the ‘steady-state’ simulations were summed together in proportion to the area under 

the sine curve that they occupy for a 6o sine wave (i.e. basic numerical integration). This gave a 

steady-state value of CD = 0.62 (the inlet yaw trace is plotted on the secondary axis in grey at 



 

 

 

71

0.01 reduced frequency on graphs shown later in this chapter for simplicity of comparison). Similarly, 

the drag coefficient standard deviation was 0.12 and the standard deviation of sideforce coefficient 

was 1.46 (under quasi-steady conditions). 

The major constraints determining the simulation parameters for each configuration were: a fixed 

mesh resolution for all cases, which fixes the physical time elapsed per time step, the number of 

‘flush-throughs’ (labelled FTS, that is the number of times that flow at the freestream velocity would 

replace all the fluid within the computational domain), the number of periods that will be simulated 

and the physical processing time for each case. This resulted in cases with between 1 and 8 million 

time-steps. In order to maintain a consistent number of measurements per period for the wide range 

of inlet frequencies, parameters were established as in Table 4. For low frequency yaw fluctuations the 

physical time simulated is dictated by a requirement to simulate multiple yaw fluctuation periods, 

while for high frequency yaw fluctuations the physical time simulated is dictated by a requirement for 

multiple flush-throughs. 

Table 4 - Test set-up matrix 

Freq. (Hz) Periods FTS Physical Time (s) Reduced Freq. Logs / Period 

0.03 2.5 50.2 82.7 0.03 634 

0.33 11.5 21.1 34.7 0.29 443 

1.75 60.7 21.1 34.7 1.53 136 

3.50 44.2 7.7 12.6 3.06 136 

7.00 44.2 3.8 6.3 6.12 136 

10.0 63.1 3.8 6.3 8.75 127 

 

The harmonic flow can be visualised as shown in Figure 70 and Figure 71, where the plots of 

approximately 1Hz and 5Hz inlet wave have been plotted in scale with the model to show the 

proportion of the wavelength to vehicle length (the figure is illustrative, the actual frequencies and 

wavelengths differed). The key point is that wave lengths used ranged from shorter than vehicle length 

to lengths much larger than vehicle length and hence scales comparable to vehicle length are in the 

middle. 
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Figure 70 - Yaw scale at, illustratively, ωωωωR = 3.00 (10Hz) 

 

 

Figure 71  - Yaw scale at, illustratively, ωωωωR = 0.30 (1Hz) 

Investigations completed include varying Reynolds number, exploring non-linearity in the vehicle’s 

response to yaw fluctuations of different magnitudes and cases comprising of multiple, superimposed 

frequencies. Further geometry cases were evaluated for varying corner radii and vehicle width. The 

geometries tested covered relatively significant aspect ratio variations of the Docton model. The 

widths ranged from 132.3 to 284.0mm following studies by Sims-Williams (2001). The complete range 

of studies conducted was as follows: 

• Yaw angles of 0, 2, 4, 6, 8 and 10o for a steady 30ms−1 inlet, using the Docton model. 



 

 

 

73

• Frequency analysis at 0.03, 0.15, 0.33, 1.75, 3.5, 7.0 and 10.0Hz for ±6o yaw. 

• A viscosity analysis running the test case at 0.03, 1.75, 3.50 and 10.0Hz for ambient 

Viscosity x4 and ambient Viscosity/10000. 

• 30mm, 55mm and 80mm corner radii at 0.03, 1.75, 3.50 and 10.0Hz. 

• 132.3, 194.0 and 284.0mm widths (i.e. aspect ratio variance) at 0.03, 1.75, 3.50 and 

10.0Hz. 

• 3, 6, 12 and 20o peak yaw angle tests at 0.03, 1.75, 3.50 and 10.0Hz. 

• Superimposed frequencies of 3.50 + 0.33Hz and 3.50 + 10.0Hz. 

3.4.1 Frequency Range 

A range of frequencies were tested from ωR = 0.03 to ωR = 8.80 (i.e. 0.03Hz to 10.0Hz) for 6o peak yaw. 

All the cases display a pressure fluctuation at approximately 3.5Hz (ωR ≈ 3 based on model length, 

Strouhal Number 0.27 based on model width). The physical time bases for the different cases varied by 

more than two orders of magnitude and so in some cases the vortex shedding was at a relatively much 

higher frequency than in others, where it was at a lower frequency than the yaw fluctuations. In Figure 

72 the traces have been reset such that the yaw angle plotted corresponds with the angle at the front 

of the vehicle and as such any phase shift shown between the frequency traces is a true phase 

difference experienced by the model. For the ωR = 0.03 and 0.33 cases, the fluctuations due to vortex 

shedding have been filtered from the output traces for clarity. Note that the drag varies at twice the 

driving frequency of the yaw sine wave since both positive and negative yaw each have the same effect 

on drag.  

 

Figure 72 - Filtered results of drag coefficient with period number 
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Figure 73 presents the corresponding variation in sideforce coefficient, which naturally 

averages to zero over an integral number of cycles. It is apparent that the sideforce varies 

greatly over the gust cycle. Note that, as expected, the sideforce oscillates at the same 

frequency as the driving frequency. 

 

Figure 73 - Filtered coefficient of sideforce with period 

Figure 74 illustrates the change of average drag coefficient variation with reduced frequency across the 

set of simulations (using the ωR = 0.03 case as a baseline). Averages and standard deviations were 

always calculated over an integer number of periods. The point plotted at a reduced frequency of 0.01 

is the true quasi-steady case derived from simulations at steady yaw angles. It is evident that a 

prominent drag increase (ΔCD = 0.10) occurs between reduced frequencies of 0.3 and 1.5. Fundamental 

work in aerodynamics (as discussed by Corin et al (2008) and others) has indicated that reduced 

frequencies below ωR = 0.1 would be expected to be quasi-steady, but for the unsteady effect to 

become significant for reduced frequencies somewhere between 0.1 and 1.0 and the result of Figure 

74 fits appropriately with this theory. The drag coefficient effect between ωR = 0.3 and 1.5 observed 

here would correlate to a full-scale frequency of 0.33 - 1.75Hz, equivalent to length scales of 17 - 90m 

or 4 to 20 vehicle lengths. This result is in keeping with the observations that the flow around a model 

subjected to a step change in yaw angle requires about 7 vehicle lengths to reach a steady-state.  
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This figure also shows that for reduced frequencies above 1.5, further changes in drag coefficient are 

small, indicating that for this geometry at least, shorter length scales do not create significantly 

different effects. 

 

Figure 74 - Variation of normalised average drag coefficient with reduced frequency 

Figure 75 illustrates the magnitude of the time variation of sideforce as well as drag and demonstrates 

an approximately similar critical frequency range. As expected, the magnitude of the force fluctuation 

decreases with increasing frequency. In Figure 75, if the standard deviations were divided between one 

another and combined, the result would be comparable to aerodynamic admittance. 

 

Figure 75 - Drag and sideforce coefficient deviation with reduced frequency 
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3.4.2 Reynolds’s Number Variation 

Reynolds number effects were investigated by changing the fluid viscosity. Increasing the viscosity by a 

factor of 4 created a flow with a low Reynolds number, corresponding to a small-scale model test, 

whilst reducing the viscosity by four orders of magnitude (changing the Reynolds number to the order 

of x1010), resulted in a flow condition that is much more inviscid in nature. Though the flow is still not 

inviscid, the significant change in viscosity makes it possible to identify whether the non-quasi-steady 

effects observed earlier are more likely to be viscous or inviscid effects. Figure 76 shows the change of 

the averaged drag coefficient with reduced frequency at the three different Reynolds numbers.  

While Reynolds number measures the viscous effects that cause a significant variation on the total 

drag, the model sensitivity to yaw fluctuations at different frequencies is broadly consistent in 

magnitude, and in terms of critical reduced frequency, over a Reynolds number variation of several 

orders of magnitude, centred on the frequency region of interest for road vehicles. It can be concluded 

that the non-quasi-steady effects (that is the effect of varying inlet frequency, as found earlier) occurs 

regardless of Reynolds number. Of course reducing the viscosity by several orders of magnitude does 

not create entirely inviscid flow and the CFD turbulence model is not designed to operate at such low 

viscosity orders, but nevertheless the result of a consistent slope between the three cases shows that 

the change in drag and sideforce is not caused just because of viscous effects (i.e. separation bubbles) 

and that time-averaged changes are more significant in effect than dynamic flow changes.   

 

Figure 76 - Normalised drag coefficient (relative to lowest frequency in respective subset) with reduced frequency 
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Figure 77 shows the reduction in sideforce deviation with frequency and again this effect is not 

irrelevant with the altered viscosity.  

 

Figure 77 - Sideforce coefficient deviation with reduced frequency 

3.4.3 Yaw Amplitude Variation 

Figure 78 shows the change in drag coefficient with reduced frequency for a range of yaw amplitudes. 

The result confirms that the variation in peak angle does not significantly affect the critical reduced 

frequency limit. Surprisingly, increasing yaw magnitude does not to produce a corresponding change in 

average drag. This is in part because at all yaw angles the axial velocity component is the same. It is 

evident in Figure 79 that the sideforce deviation at low frequencies is much more prominent than at 

higher frequencies, and further that above the critical reduced frequency limit the sideforce deviation 

becomes consistent over the peak-yaw angle range. It should again be noted that the resultant velocity 

is large at high peak yaw angles, hence the increased sideforce coefficients. This is not simply because 

the yaw angle has been increased, but due to the increased total resultant velocity.  

Nevertheless, Figure 79 illustrates that there is an increase in transient force with an increase in 

frequency, but that the correlation of the effect is not linear with the forcing function. The concept of 

an aerodynamic admittance or transfer function sitting between the forcing function and the vehicle 

response would essentially assume a linear response to the forcing function and therefore the 

response would not be correctly modelled.  



 

 

 

78

 

Figure 78 - Drag coefficient against reduced frequency for a variation in peak yaw angle 

 

Figure 79 - Sideforce coefficient deviation with reduced frequency and varying amplitude 

3.4.4 Superposition of Multiple Frequencies 

A linear aerodynamic admittance means that the incremental impact of a forcing function at a 

particular frequency would be the same as the impact of that forcing function in isolation. 

Superimposing two independent yaw fluctuations at different frequencies tested this hypothesis. The 

superimposed cases were a 3.5Hz (ωR = 3.0) case, seen as a frequency very close to the quasi-steady 

limit, which was added to a 0.03Hz (ωR = 0.03) in the first case and a 10Hz (ωR = 9) frequency in the 

second case. In comparing the effect of adding a lower frequency to the 3.5Hz (ωR = 3) case and 

similarly a higher frequency to the 3.5Hz case, it is possible to test linearity and whether multiple 

frequencies impact the critical frequency limit.  
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It is shown in Figure 80 that the resultant drag coefficient of a case is based upon the frequency which 

creates the greatest drag coefficient. For example, the drag coefficient at 3.5Hz (ωR = 3.0) case is 

around 0.72, whereas the drag coefficient at 0.03Hz yaw frequency (ωR = 0.03) is around 0.62. 

However, superimposing the two in equal ratios (both at full energy, that being 6o for both sine waves) 

has resulted in the actual drag coefficient being that of the 3.5Hz case, not the lower drag coefficient 

from the 0.03Hz case nor the sum of the two separate drag coefficients. This effect is repeated with 

a 10Hz superposition inlet. This leads to the same conclusion as the yaw magnitude test, that the 

model aerodynamic response is non-linear. It is also suggested that the resultant drag coefficient 

experience by an idealised geometry will be that of the greater drag from any significant frequency 

component, which will namely be the frequencies above the quasi-steady limit, as these frequencies 

have been shown to generate the highest drag coefficients. 

 

Figure 80 - Drag coefficient with reduced frequency for varying super-position 

Figure 81 again correlates with earlier graphs showing a 25% reduction in drag coefficient variation for 

increased inlet frequency. Additionally, it is of interest that as the drag force corresponds to the 

highest drag coefficient from the superimposed inlet frequency with the highest individual drag 

coefficient, the sideforce deviation result relates to the lowest individual component. As such though 

the drag will be greater, the required test frequency range is smaller, which reduces the peak intensity 

requirement for a simulation (i.e. therefore to test at frequencies which create the greatest vehicle 

response). 
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Figure 81 - Deviation of sideforce coefficient with reduced frequency for two super-positions 

Figure 82 and Figure 83 further illustrate this point. It can be seen that the effect of having two 

frequencies is non-summative, and that the result is more comparable to running either at double the 

peak yaw angle or the drag of the highest individual frequency drag measurement.  

In these figures the X-axis notation (i.e. 6@3.65) denotes the peak yaw angle (i.e. 6o) at (@) a given 

reduced frequency (i.e. 3.65) and where two are shown, these are added together. This is also shown 

in the sideforce coefficient plot, where the superposition result is similar to running the case at double 

the peak yaw angle. This gives the resultant sideforce from the individual frequency that has the 

lowest sideforce deviation in its own right. 

 

Figure 82 - Comparison of drag coefficients for similar inlet set-ups 
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Figure 83 - Comparison of sideforce coefficients for similar inlet set-ups 

With multiple frequency inlets, the drag force strongly tends to the individual frequency with the 

highest individual drag coefficient, as is shown in Figure 84. 

 

Figure 84 - Resultant drag coefficient will tend to highest drag of individual component frequency if multiple frequencies 

are super-imposed 

3.4.5 Effects of Model Width and Corner Radii 

The normalised plots of drag coefficient in Figure 85 and Figure 86 show that the critical reduced 

frequency limit is maintained, but that the effect of the frequency increase on drag coefficient is 

affected by the model’s geometry. Note that the ‘Wid’ and ‘Rad’ values denote the respective width 

and corner radius of the model in millimetres based upon the Docton model presented earlier. Figure 

85 shows that as a model’s width is reduced (i.e. the model is less bluff) then the effect of an increase 

in frequency becomes more prominent. It is also evident that after the critical reduced frequency is 

exceeded, the drag coefficient plateaus. Figure 86 demonstrates that the reduction in corner radius 

(i.e. sharper corners) causes the effect of a frequency increase to become more significant.  
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Figure 85 - Drag coefficient with reduced frequency for varying widths 

 

Figure 86 - Normalised drag coefficient with reduced frequency for varying corner radii 

Figure 87 and Figure 88 detail the reduction in sideforce deviation with increase an in frequency, as 

seen in earlier results. In conclusion, models that are long in aspect ratio and with sharp corners 

experience a greater drag increase in line with frequency than wider models that have more rounded 

corners. 
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Figure 87 - Deviation of sideforce coefficient with reduced frequency for varying widths 

 

Figure 88 - Deviation of sideforce coefficient with reduced frequency for varying corner radii 

3.4.6 Superposition of Constant Yaw Offset 

The results presents in this chapter so far have all been with a sine inlet function with a zero yaw angle 

mean flow. In practise, the average yaw angle seen on the road is typically a few degrees and 

turbulence fluctuations will be superimposed upon that mean value. All of the CFD tests described 

here were also fully evaluated with a mean yaw angle of 3° and a superimposed sine fluctuation. In 

these cases, the amplitude of the sine wave was 3° rather than 6° (i.e. halved) otherwise the combined 

sum would be double previous cases making a comparison less straightforward.  
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An example of the results for this scenario is given in Figure 89. The study confirmed that the critical 

reduced frequency threshold was similar, albeit slightly more abrupt, than for the zero mean yaw 

cases, returning a result just above ωR = 0.03. This alternative condition also produced similar 

conclusions with respect to the impact of varying viscosity and model geometry.  

 

Figure 89 - Effect on drag coefficient with and without yaw offset 

3.5 Conclusions 

A study was completed to understand the fundamental effect of varying incoming flow yaw to the 

response of a vehicle. Though a simplified model was used, the approach allowed the investigation of 

the admittance between inlet flows and vehicle response forces, and helped to develop an 

understanding of the quasi-steady frequency threshold and the effects of viscosity on the threshold, as 

well as allowing numerous geometries to be tested. It was found that for most measures, and 

especially for time-averaged drag, the flow could be treated as quasi-steady for reduced frequencies 

below 0.3, in line with expectations. The most significant changes were observed in a critical reduced 

frequency range between ωR = 0.3 and ωR = 1.5. This range corresponds to scales of 4 - 20 vehicle 

lengths, or 17 - 90m or periods of 0.6 to 3.0s, or frequencies of 0.33Hz to 1.75Hz (for a full scale vehicle 

at 30ms−1). Frequencies larger than this range will still have significant effects, but in this case the 

effects showed little frequency sensitivity once above the critical range. This result is summarised in 

Figure 90, where the variation of drag force coefficient with inlet yaw frequency trace is shown (as 

presented earlier in Figure 74, therefore the Y-axis scale is removed to de-clutter the plot) overlaying a 

range of turbulence generation systems resultant frequencies, highlighting the frequency range where 

non-quasi-steady effects demonstrate a significant vehicle response. 
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Figure 90 - Summary of critical frequency region 

Of course a real vehicle will have small physical geometry and features (e.g. wing mirrors) creating 

more yaw sensitive flow regions, which will respond to higher frequencies than the general vehicle. 

The critical reduced frequency range for these features will therefore correspond to smaller physical 

scales, and so will bring importance to these scales smaller (but not larger) than the 4 - 20 vehicle 

length scale. The effect of the yaw variation (at constant axial velocity) was to increase the 

time-averaged drag coefficient and the deviation of drag coefficient and sideforce coefficient. These 

effects increased with frequency, through once at the critical frequency threshold, they then 

plateaued, with then higher frequencies producing the same effect as frequencies just above the 

critical frequency threshold. 

The dynamic effects were largely independent of Reynolds number, including for near-inviscid 

conditions. This indicates that the sources of non-quasi-steady response are not viscous in origin. 

Increasing yaw amplitude or combining multiple frequency components did not have a summative 

impact on the time-averaged or time varying drag and sideforce. Care therefore needs to be taken in 

trying to describe vehicle response to transient conditions using linear concepts such as transfer or 

admittance functions. When superimposing different frequencies the resulting average drag was close 

to that of the individual frequency component with the highest individual drag coefficient. The 

sideforce deviation was also consistent with the individual frequency that had the lowest pressure 

deviation in the frequency range. It was found that narrow bodies with sharper corners caused a 

greater time-averaged drag coefficient change with frequency as compared with rounder or wider 

bodies. 



 

 

 

86

4. Mid-Sized European Hatchback On-road Study 

In order to develop the analysis of the effects of on-road turbulence, a study was completed using the 

Durham University’s mid-sized European hatchback vehicle (Rover 200, R3) to record the on-road 

aerodynamic environment and to model the flow characteristics over the sideglass, which is a highly 

yaw-sensitive region. The results from this data collection not only improved the understanding of flow 

in the sideglass region, but the results also allowed the characterisation of on-road turbulence. From 

the study, at the end of this chapter, an example flow trace is presented that was replicated in a wind 

tunnel using a 40% model of the vehicle, which additionally offered results on the effect on vehicle 

drag and lateral stability from on-road turbulence.  

The same vehicle was tested in the MIRA full-sized wind tunnel at three yaw angles by Lawson et al 

(2007), and the data is repeated here as a quasi-steady comparison with the on-road data collection. It 

should be noted that the yaw increments used by Lawson were too coarse to resolve fine detail. 

4.1 MIRA Wind Tunnel Results 

Contour plots of pressure coefficient against yaw angle are given in Figure 91 (−10o), Figure 92 (0o) and 

Figure 93 (+10o of flow yaw), with tapping ID numbers shown, from Lawson et al (2007) and Lawson et 

al (2008). Note the general increase in pressure coefficient at positive yaw.  

 

Figure 91 - Contour plot of static pressure coefficient, Lawson MIRA data, -10o yaw - Lawson et al (2007) 
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Figure 92 - Contour plot of sideglass static pressure coefficient Lawson MIRA data, 0o yaw - Lawson et al (2008) 

 

Figure 93 - Contour plot of static pressure coefficient, Lawson MIRA data, +10o yaw - Lawson et al (2007) 

4.2 On-road Data Collection Method 

4.2.1 Vehicle Sideglass and Roof Probe Set-up 

Following Lawson’s data collection at MIRA, it was desirable to undertake a more complete data 

collection of sideglass tappings recorded simultaneously with a 5-hole roof probe. The 5-hole probe 

was mounted as per Oettle et al (2010) with 9-window tappings recorded simultaneously. The 5-hole 

probe was calibrated in Durham University’s laboratory and the calibration results are included in the 

Appendix. Due to a limit of the number of recording channels available, the tappings were distributed 

over the sideglass with greater resolution around the mirror wake region. The general window air flow 

characteristic was broken down into three main areas, areas largely affected by the mirror wake, the 

A-pillar and then those which are sufficiently far from either of the geometry features to be a 

combination region (i.e. a hybrid), as presented in Table 5, with the colour-coding detailed in Figure 94. 
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Table 5 - Tapping ID and dominant geometry feature of each region's flow environment 

Tapping ID Dominant Region Environment 

01 Mirror Wake 

09 Mirror Wake 

17 A-Pillar 

19 A-Pillar 

35 A-Pillar 

12 Hybrid 

13 Hybrid 

22 Hybrid 

29 Hybrid 

 

Tapping locations were as shown in Figure 94, with a typical tapping shown in Figure 95. 

   

Figure 94 - Sideglass tapping locations for Rover 200 on-road data measurement 

  

Figure 95 - 'Lollipop' surface-mounted, static pressure tapping used for Rover 200 MIRA and on-road pressure data 

measurement 

Coefficients of pressure were taken from the raw probe measurements using the laboratory probe 

calibration and were non-dimensionalised by probe velocity: 

 

[15] 



 

 

 

89

All pneumatic connections were made using 1mm internal diameter, PVC tubing. Care was taken to use 

identical tube lengths for all surface pressures. The sideglass tappings and roof probe in both the MIRA 

and on-road tests were corrected using a transfer function correction technique. For the on-road 

pressure measurements, a tubing transfer function correction was applied for magnitude and phase, as 

described by Sims-Williams et al (1998).  

The tubing system transfer function was determined by simultaneously recording the changing 

pressure in a small, sealed chamber using two independent pressure transducers. One transducer 

measured the pressure directly from the sealed chamber (denoted the reference transducer) whilst 

the other transducer was located at the end of the combined pressure tapping and tubing that was to 

be calibrated. The sealed chamber was also connected to a further chamber that is formed between a 

loudspeaker cone and a rigid plastic plate, with the loudspeaker and plate interface being airtight. A 

swept sine wave was fed to the loudspeaker at 0 - 220Hz over 0.5s, which in turn causes pressure 

fluctuations in the small chamber. The physical mounting of the tapping in the test chamber is shown 

in in Figure 96 and Figure 97. The transfer function is then calculated as: 

 

where A(f) is the Fourier transform of the pressure recorded by the reference transducer at frequency f 

and B(f) is the Fourier transform of the transducer connected to the tapping and tubing arrangement 

under test. 

Figure 96 and Figure 97 illustrate the tubing transfer function calibration set-up of a disc probe and, 

although only a simplified tubing arrangement is shown in the figures, this process needs to include the 

entire tubing system (i.e. from probe or tapping to transducer bank).  

   

Figure 96 - Transfer function (TF) correction apparatus Figure 97 - Lollipop tapping in TF correction test chamber 

Transfer Function = TF(f) =
B( f )

A( f )
=

B( f )A
*
( f )

A( f )
2 [16] 
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A transfer function correction (as per Sims-Williams (1998)) was applied to sideglass, pressure taps and 

5-hole probe measurements in order to accurately determine the time varying flow onto the car and 

the vehicle’s aerodynamic response. For the on-road data collection, the transfer function is as given in 

Figure 98 (roof probe) and Figure 99 (sideglass tapping), with the correction being applied to both the 

5-hole probe and the sideglass tappings up to a frequency limit of 220Hz, which were themselves 

recorded at 800Hz through a 250Hz, -12dB, second-order filter.  

 

Figure 98 - Probe Transfer Function Figure 99 - Tapping Transfer Function 
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Roof probe alignment was as Oettle et al (2011), located as far forward as possible (with the constraint 

of the sun-roof surround) to be similar to Lawson et al (2007), shown in Figure 100.  

   

 

Figure 100 - Roof probe to B-pillar alignment for on-road data measurement, positioned as per Oettle (2011) and similar in 

design to that of Lawson et al (2007) 

In Figure 101 the data and power schematic for the on-road data collection is shown.  

 

Figure 101 - Data and power connection map for on-road data acquisition 

4.2.2 CFD Validation of Roof Probe Mounting Location 

A 3D CFD study was performed to compare probe mounting locations, with the experiment details 

given in Oettle et al (2012) and the results given in Figure 102 and Figure 103 showing a comparison 

between the probe lateral velocities over time.  It can be seen that both a roof probe (shown in Figure 

102) and a probe ahead of the vehicle show elevated velocities (shown in Figure 103), but the 
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advantage of the roof probe is that the measured yaw is closely time-aligned with surface pressure 

recordings on the sideglass. The roof probe exaggerates the longitudinal (UX) and lateral velocities (UY), 

but as these are both increased the effect on resultant measured yaw angle is nominal. However, the 

probe in front of the vehicle exaggerates the lateral (UY) velocity but attenuates the longitudinal 

velocity (UX), which will sum and compound to significantly affect the resultant measured yaw angle 

from the true incoming air flow yaw angle. It is worth reiterating at this stage that where axis 

components are referred to as longitudinal, lateral or vertical, that is the velocity, pressure or force in 

the component direction relative to the body’s resultant vector (e.g. vehicle direction in reference to 

the vehicle or flow direction in reference to onset turbulence). 

     

Figure 102 - Probe lateral velocity against 

time from CFD data 

Figure 103 - Ahead of vehicle wind-velocity probe - Wordley 

et al (2009) 

4.2.3 Data Analysis Approach 

Raw data and the subsequent numerical processing were performed using an analytical software suite 

developed at Durham University, called ‘Durham Software for Wind Tunnels’ (Sims-Williams (2012)). 

Figure 104 details the process that is followed to convert raw transducer voltages into the metrics 

plotted in the results section, with each block representing an individual program and the 

corresponding chapter numbers shown. 



 

 

 

93

 

Figure 104 - Numerical processes that raw data is evaluated through before results are generated 

The wind tunnel provides a steady method of assessing the sideglass pressure profile response at a 

variety of discrete yaw angles. If the vehicle travelling in the unsteady on-road environment behaves in 

a manner as simulated in the wind tunnel, the response can be said to be quasi-steady. Any deviations 

between pressures simulated in the wind tunnel and on-road are deviations in the quasi-steady 

response of the vehicle. To assess the quasi-steady nature of the vehicle’s response, a simulation 

technique was developed to compare the response of the vehicle with how it would be expected to 

behave in the wind tunnel.  

Firstly a method used during the analysis is to ‘bin-average’ data in order to create an approximated 

quasi-steady-state data set using the entire data sample. This term is used to describe splitting the 

range of yaw data (i.e. +10o to -10o) into uniformly distributed increments of 2o each in width. 

Measurements recorded (i.e. vehicle velocity, sideglass pressures, velocity variation, etc.) are then 

compiled (‘binned’) into each of this incremented widths (i.e. measures with the instantaneous yaw 

being, say, ≥8o to <10o), and then the results averaged. This is just a straightforward process to average 

the continuously time-variant on-road measurements and is shown in result graphs as the ‘Bins’ result. 

This gives an output file (i.e. correlating the averaged sideglass pressure with the roof probe recorded 

yaw angle) which details for each yaw bin what the average measured sideglass pressure coefficient 

was. The same process can be used from wind tunnel data generated by a yaw sweep to give a yaw 

angle against sideglass pressure coefficient correlation. 
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Hence, using this averaged pressure against yaw correlation output file, a time history of instantaneous 

yaw angle can be linearly interpolated to predict (i.e. ‘look-up’) the sideglass pressure coefficient. 

Using the data collected on the road, combined with the steady wind tunnel response, for each 

instantaneous measured yaw angle on-road, the CP value as predicted from the wind tunnel and 

on-road was generated. These predicted fluctuations in surface pressures were then assessed against 

those actually measured on-road. This process is referred to as the quasi-steady simulation method in 

this thesis (and as the ‘simulated’ result on graphs). 

Once the data was processed, the results were then analysed via a variety of methods, as listed in 

Figure 105 with the corresponding chapter sections shown. 

 

Figure 105 - Analysis map of processed data, combining MIRA results and on-road flow data measurements 

4.3 On-road Data Collection Results 

The Rover 200 was driven from Durham to Scotch Corner on the A1(M), a dual and triple lane highway, 

at 70mph for all measurements. Measurements were taken over 4 different return trips, each spaced 

several days apart, capturing a range of wind weather from a still day to a day of high winds. 

The 32-second recordings were taken at arbitrary occasions during the drive, with varying traffic 

intensity. A series of plots were made which are shown in this section detailing the results covering the 

range of flow angles and turbulence encountered for all 275, 32-second measurement cases recorded 

at 500Hz (i.e. 16,384 samples per 32-seconds), totalling 147 minutes of flow data. An example yaw 
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trace against time is shown in Figure 106, showing a variation in yaw angle during the time period, 

within a range of +8o to -10o, varying constantly over the sample. 

 

Figure 106 - Example on-road yaw against time trace recorded on a Rover 200 using the 5-hole roof probe 

 

Figure 107 shows the probability density function (PDF) of yaw angles experienced, showing a nominal 

offset of around +0.5o, but that almost the entire flow yaw is within ±5o and more than two thirds is 

within ±3o.  

 

Figure 107 - PDF of flow yaw angle 

4.3.1 Vehicle Velocity Distributions 

In order to quantify the expected roof probe longitudinal velocity speed-up (i.e. as seen in the 3D CFD 

earlier, roof probe velocities are exaggerated due to flow speeding-up as it passes over the roof of a 
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vehicle), probability density plots of roof probe velocity against GPS velocity and yaw angle against roof 

probe velocity were made, as in Figure 108 to Figure 111. This speed up could be due to either GPS 

latency error due to fluctuating vehicle velocity, which would see a Probe/GPS velocity magnitudes 

centred around 1.0, or could be due to the acceleration of flow over the vehicle’s roof. Firstly Figure 

108 shows that the vehicle velocity was at an average of 30.7ms−1 (69mph) and has a standard 

deviation of ±0.6ms−1 (1.5mph).  

The distribution is very close to symmetrical, showing that the velocity was closely maintained with 

deviations in acceleration or retardation being equal in number and of duration. Figure 109 then shows 

the probability density function of probe over GPS velocity. It can be seen that the nominal value is 

1.06, showing a typical speed up of around 6%. The distribution is also mainly symmetrical, though 

plateaus at factors of 1.2 − 1.4, potentially due to certain aerodynamic effects at particular yaw angles, 

but was not of sufficient significance for further analysis. Note that probability distributions, as 

mentioned in the literature review, can exceed unity, as long as the area under the curve sums to 

unity. 

 

Figure 108 - PDF of GPS Velocity Figure 109 - PDF of probe bulk velocity / GPS velocity 

Further analysis of the variation of roof probe divided by GPS velocity magnitudes, with standard 

deviation error bars superimposed, is presented in Figure 110 and shows that the probe velocity speed 

up was greater at negative yaw than positive yaw and again with the 6% speed up at 0o yaw being 

shown. The wide standard deviation bars show that the wind velocity can vary over a significant range 

at each yaw angle, but that the standard deviation is consistent over the entire yaw range. Figure 111 

demonstrates that though the velocity can vary significantly, the number of data samples is sufficient 
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to determine accurate and repeatable measurements with narrow 95% confidence intervals. Note also 

that the confidence interval widens at the yaw range extremes as the number of samples within each 

yaw angle bin decreases at the yaw extremes. 

 

Figure 110 - Probe / GPS velocity standard deviation error bars Figure 111 - Probe / GPS velocity 95% confidence limits 

The asymmetric yaw effects are could be due to differing flow conditions caused by a systematic 

connection between yaw angle and headwind and tailwind, as shown in Figure 112. Additionally, the 

effect could be due to a Reynolds number sensitivity, and a test undertaken where the roof probe 

velocity speed-up against reported yaw, for varying vehicle speeds, would indicate which effect is 

dominant. In order to ensure that the data set is not skewed by having a constant, strong wind 

direction on one day, a large data set was recorded, taken over several days. 

 

Average Yaw Angle (degrees)

P
ro

b
e

X
V

e
lo

c
it
y

/
G

P
S

V
e

lo
c
it

y

-20 -10 0 10 20
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Ux/GPS Velocity



 

 

 

98

Figure 112 - Effect of headwind on flow asymmetry 

4.3.2 Turbulence Analysis 

The range of turbulence length scales and intensities in the air flow were evaluated, as shown in Figure 

113, demonstrating a probability density function plot of turbulence length scale (TLS) generated 

through the auto-correlation method. Length scales are seen to exist in the range of 2 - 11m. Figure 

114 shows turbulence intensity (TI), with a peak at 2.5%, and with the majority of intensities in the 

range of 2 - 10%, which lie in the same turbulence intensity region as presented in Wordley et al 

(2009). The distributions of these two graphs are again typical of those seen in earlier references. It 

should be noted that the window size of the auto-correlation (i.e. a 4-second sample) at 70mph 

(31.3ms-1) limits the potential length scale to approximately 4x vehicle speed (i.e. around 125m).  

However, these lengths were considered to be quasi-steady and that a 4-second window was well 

above the time required to capture all transient flow events (see Chapter 2). 

 

Figure 113 - PDF of turbulence length scale Figure 114 - PDF of turbulence intensity 

Figure 115 to Figure 118 show turbulence intensity against length scale plots for flow velocity 

magnitude and then component velocities, plotted with each point representing 4-seconds of all of the 

flow measurements recorded. Figure 115 shows a clustering of length scales and intensities less than 

8m and 7%, all in the lower left quadrant as plotted. Figure 116 demonstrates that longitudinal 

intensities shorten as turbulence intensity drops below 5%, with the majority of length scales being 

less than 15m, caused by the vehicle’s velocity being in the longitudinal direction. 
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Figure 115 - Bulk TI vs. TLS plot Figure 116 - X-axis TI vs. TLS plot 

Figure 117 presents the lateral turbulence measurements with intensities similar to that of longitudinal 

turbulence, beneath 5% intensity, but with shorter length scales, typically less than 8m as seen in the 

bulk turbulence plot of Figure 115. Figure 118 shows vertical turbulence components, which sources 

presented earlier, typically suggest have intensities and length scales around a third of bulk 

measurements. This reduction in intensity and length scale with vertical turbulence was seen in the 

on-road measurements, with intensities under 4% and length scales less than 4m. The reduction in 

turbulence length scales and intensity is due to the ground limiting the length scales achievable and 

suppressing the flow deviations required for higher intensities.  

 

Figure 117 - Y-axis TI vs. TLS plot Figure 118 - Z-axis TI vs. TLS plot 
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More detailed analysis of the turbulence is given in Figure 119 and Figure 120 with both standard 

deviation and 95% confidence intervals shown. Figure 119 shows an increase in turbulence intensity 

with yaw angle, almost triple that at zero yaw or 4%, up to 11% at ±20o, but with consistent standard 

deviation throughout and symmetric results. The increase in turbulence will be due to the extended 

flow over the vehicle as is typical with flow that has a Reynolds’ number dependency.  

Figure 120 demonstrates that the 95% confidence interval is very tight, offering high confidence on the 

repeatability of the data sampled.  

 

Figure 119 - TI vs. Yaw with standard deviation error bars Figure 120 - TI vs. Yaw with 95% confidence error bars 

Figure 121 and Figure 122 show spectral energy plots (frequency multiplied by auto-spectral density) 

of bulk and lateral flow velocities. It can be seen in both cases that the majority of energy is 

experienced below 10Hz, with the bulk velocity decaying slightly sooner than the lateral velocities.  
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Figure 121 - Spectral energy plot of bulk velocity Figure 122 - Spectral energy plot of lateral velocity 

4.3.3 Time-averaged Pressure Coefficients on the Sideglass 

This section presents sideglass pressure coefficients at the range of yaw angles experienced, with the 

results time-averaged from the entire data set. The presented plots demonstrate the flow interactions 

around the A-pillar, mirror wake and vehicle side over the range of yaw angles. Note that in each graph 

an insert of tapping location on the sideglass window is given.  

Figure 123 shows the results of the bin averaging process of all sideglass pressure coefficient 

measurements against yaw angle, with bins of ±1o in size. At positive yaw angles all pressure tappings 

show a linear increase of pressure coefficient with yaw angle. In negative yaw, where separation 

occurs around the vehicle’s side and downstream of the A-pillar and mirror location, the pressure 

coefficients vary depending on tapping location. Particular tappings of note are 17, 19 and 29 due to 

the large pressure coefficient drop at extreme yaw angles. These tappings are all located in the A-pillar 

wake region and as flow separation occurs over the sideglass region at higher negative yaw, the level 

of turbulence and hence pressure loss due to viscous effects is increased.  

It is noteworthy how tapping 01 and 09 are both physically located beneath tapping 17, yet they avoid 

the more dramatic reduction in pressure loss as they are located in the mirror wake region, where the 

flow is more turbulent as it streams over the mirror. However, due to the flow perturbation that 

occurred, tapping 01 and 09 exhibit lower pressure coefficients than other sideglass tappings due to 

the energy loss experienced. It is also of interest to note tapping 35, in the upper right corner of the 
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window in the A-pillar region, also shows pressure coefficient losses greater than other sideglass 

tappings.  

  

Figure 123 - Sideglass pressure tappings of bin-averaged data shown against yaw angle 

The results are presented in sets covering the dominant region flow characteristic. Tapping 01 and 09 

will be shown covering the mirror wake region and tapping 17 and 19 presented covering the A-pillar 

region. Figure 124 is shown again as a reminder of the flow regions, with the presented tappings 

circled. 

 

Figure 124 - Flow region type with the presented tappings circled 

In order to consider more detailed effects, pressure coefficients for each subsequent tapping pair are 

plotted in Figure 125 to Figure 128, with both standard deviation and 95% confidence intervals 

superimposed. In the legend of the graphs, the ‘Bins’ refers to the data points being ‘bin-averaged’ as 
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described in Chapter 4.2.3. Each graph also has the MIRA wind tunnel results plotted for −10o, 0o and 

+10o (Lawson et al (2007)).  

The flow in the mirror wake region is shown in Figure 125 and Figure 126, showing tappings 01 and 09. 

The increasing standard deviation of the results with yaw angle in both directions from 0o yaw is due to 

increase flow unsteadiness caused by the tappings being in the freestream just under the mirror wake 

region. The 95% confidence intervals in Figure 126 further confirm the repeatability of the data.  

 

Figure 125 - Tapping 01 & 09 with standard deviation error 

bars 

Figure 126 - Tapping 01 & 09 with 95 % confidence interval 

error bars 

Figure 127 and Figure 128 present the A-pillar region results from tappings 17 and 19. Being in the 

A-pillar region, these results both show significant reductions in pressure coefficient at negative yaw 

angles and greater pressure consistency at positive yaw angles. The curves also show the typical 

pressure difference against the MIRA results, though similar gradients are noted with tapping 17, but 

differ with tapping 19, potentially due to minor tapping location accuracy or minor wake region 

location differences between on-road and tunnel tests.  

The difference between the road and tunnel results highlights the need for measurements to cover a 

small yaw angle step variation over the full yaw range to accurately determine the pressure actual 

variation (i.e. high yaw angle measurement resolution), as the lack of MIRA tunnel data prohibits 

drawing more detailed conclusions when compared against the bin-averaged data. Again the 95% 

confidence intervals of Figure 128 offer confidence to the accuracy of the data. 
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Figure 127 - Tapping 17 & 19 with standard deviation error 

bars 

Figure 128 - Tapping 17 & 19 with 95 % confidence interval 

error bars 

4.3.4 On-road to Bin-Average Transfer Functions 

Figure 129 is presented to show a typical recording of sideglass pressure coefficient against time and 

the quasi-steady simulated result. As a reminder, the simulated result was found by looking up the 

averaged sideglass pressure coefficient from a data set using the instantaneous yaw angle in a time 

trace. This data set was generated by averaging all of the sideglass pressure coefficient results that fell 

within 2o wide bins of yaw angle (creating 29-bins covering the range of yaw angles encountered 

of -30o to +30o).  

The graph also presents a representative gust event shown at 7-seconds in Figure 129 and the 

simulation trace is created by reprocessing the recorded data using a linear interpolation algorithm 

with the flow yaw angle as the master variable. The graphs show accurate simulation using this 

quasi-steady result method, especially for the re-creation of the gust shown in Figure 129 at 7-seconds. 

The simulated result also shows a reduction in noise as would be expected by such a technique. 
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Figure 129 - Tapping 12 pressure coefficient, data set 31 

To further evaluate the frequency-based effects of the flow at their respective tappings, transfer 

functions were generated of the measured pressures between on-road and simulated on-road data 

(i.e. bin-averaged pressure coefficient measurements looked up by instantaneous yaw angle), an 

example of which is given in Figure 130. At low frequencies some unsteadiness is shown as there is not 

a unity amplitude (i.e. an amplitude of 1 is defined as a perfect correlation of pressure variation with 

flow yaw) but since the transfer function starts close to unity the method generally works well (i.e. a 

change in the yaw angle is seen by the quasi-steady simulation).  

As the frequency increases to around 10Hz the transfer function plot shows a rapid increase in 

amplitude signifying that an increase in pressure unsteadiness (i.e. unsteady pressure fluctuations in 

this scenario) has become significant (i.e. greater than 2 in transfer function amplitude) in comparison 

to the quasi-steady simulation. These increases are expected to be due to minor vehicle geometry 

features that are relatively of less significance to total vehicle drag or lateral stability. Figure 130 shows 

that at frequencies above 1Hz these factors become noticeable and above 10Hz are significant, and 

therefore at such high frequencies the simulation method cannot accurately determine the sideglass 

pressure coefficient from the flow yaw angle, and hence the results have been truncated. Only one 

trace is presented as all tappings demonstrated a similar characteristic. 
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Figure 130 - Transfer function of pressure coefficient for tapping 01 

4.3.5 Evaluation of Pressure Coefficient Yaw Sensitivity and Self-excitedness 

In order to further understand the turbulence and pressure fluctuations over the sideglass area, a 

frequency band pressure coefficient standard deviation analysis was undertaken. This method filtered 

each 4-second data measurement into 6 respective frequency bands, and then evaluated the standard 

deviation of each 4-seconds data sample between the on-road and simulated test result in order to see 

at what frequency range the simulation becomes less valid due to the self-excitedness of the air flow 

turbulence becoming dominant. Frequency bands were divided up as in Table 6, with the widths of 

each frequency band set to distribute the entire frequency range (0.2 - 178Hz) into equal log based 

bands, expect for the final band which was truncated to ensure that the frequency response was 

within the ideal response region of the lollipop tappings and tubing frequency bandwidth (i.e. <100Hz). 

Table 6 - Pressure coefficient standard deviation frequency bands 

Start Frequency 

(Hz) 

End Frequency 

(Hz) 

log(Start 

Frequency Hz)10 

log(End 

Frequency Hz)10 

log(start Hz)10 –  

log(end Hz)10  

0.2 0.6 -0.70 -0.22 0.48 

0.6 1.8 -0.22 0.26 0.48 

1.8 5.6 0.26 0.75 0.49 

5.6 17.8 0.75 1.25 0.50 

17.8 56.0 1.25 1.75 0.50 

56.0 100.0 1.75 2.00 0.25 
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Scatter plots were generated of measured against simulated sideglass pressure coefficient standard 

deviation, for each frequency band, with an example shown in Figure 131 as an illustration and the 

approach to interpreting these explained first with the actual experimental result discussed later.  

 

Figure 131 - Example of sideglass pressure coefficient standard deviation plot 

The key element to note for the frequency band standard deviation graphs is where a frequency band 

has points clustered on the 45o axis (i.e. the drawn line). This line depicts where the pressure 

fluctuations encountered in these window regions are equally present in both the on-road pressure 

measurements and the quasi-steady simulation pressure results. As such, data points near to the 

45o line represent effects that can be deemed to being ‘quasi-steady’. They are therefore 

representative of effects based upon probe flow yaw angle. When the results lie above the 45o line, 

they are representative of effects less dependent on yaw angle and more dependent on local flow 

effects such as the aerodynamic effects of minor vehicle geometry (i.e. causing self-excited 

turbulence).  

Each point of the plot corresponds to 4-seconds of data (with 4-seconds determined from the reduced 

frequency analysis presented in the literature review). 4-seconds is sufficiently long a duration to 

capture low frequency variations (i.e. the effects of a change in yaw is measured on the sideglass) and 

to apply some noise reduction, but not so long in duration that yaw and pressure variations are 

averaged out. It should be noted that in the FFT algorithm of this process a rectangular window was 
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used as it was found that this minimised the zero-frequency (DC component) blend and associated 

frequency issues that can come with a Hanning window. 

Through the regression of a linear curve to the cluster of points within one frequency band, the 

gradient and intercept of that regression can be obtained. In this scenario, the gradient represents the 

pressure fluctuation aerodynamic admittance between the on-road and bin-average measurements, 

with the intercept defining the magnitude of background self-excitedness (which is unsteadiness not 

correlated with yaw). When the results of the frequency band are highly yaw dependent, a gradient 

around 1.0 would be expected (the 45o line on the cluster plots), and deviations from a gradient of 

1.0 would represent effects that are less dependent upon yaw. This can then be further analysed by 

considering the intercept of the regression, detailing the self-excitedness of the pressure deviation, 

which are deviations that are independent of yaw and more down to local flow viscous effects.  

Finally, in the generation of these plots, admittance data points that had a regression coefficient (R2) 

that was extremely low were filtered out. This is because, by examination of a cluster of points, for 

example the 17.8 - 56.0Hz band in Figure 134, a regressed line could have a similar probability of really 

taking any direction as the cluster is highly spurious and therefore the determined regressed gradient 

is less representative of the actual true admittance. The intercept could also therefore be highly 

affected by a wildly deviant gradient, but as the occurrence of the cluster is intrinsically close to the 

Y-axis the intercept still offers insight into the self-excitedness component (even if minor corruption 

can occur). A more detailed explanation of how the admittance and self-excitedness values are 

evaluated is given in the next section. 

Comparisons of the on-road measured and the quasi-steady simulation results have been shown in 

earlier sections of this chapter. However, these measurements are unable to display the frequency 

components of the turbulence, just the overall average by yaw angle. The highly transient nature of 

turbulence dictates that the correlation between the actual on-road measurements and the 

quasi-steady simulation technique will be most valid at lower frequencies. This is where the change in 

yaw angle is below a certain frequency, (say, arbitrarily, <5Hz) and the on-road flow is represented by 

quasi-steady flow characteristics. At higher frequencies (say, arbitrarily, >5Hz) the variations in 

sideglass pressure become less representative of the incoming flow yaw angle, as they are dominated 

by small geometry flow effects (i.e. vortex shedding off the A-pillar).  

This therefore gives the ‘admittance’, which is the correlation between on-road and simulated 

pressures and should be directly proportional at lower frequencies, and the self-excitedness, which is 
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the level of turbulence generated by flow trailing from small vehicle geometries, which should be 

nominal at lower frequencies. Note that based upon the interpretation of admittance given in the 

literature review and as typically presented (i.e. Passmore et al (2001) and Schröck et al (2011)), the 

admittance plots are technically the square root of admittance (i.e. χ), also termed aerodynamic 

magnification, and are therefore not plots of χ2, and are labelled as Admittance (χ). When the 

numerous 4-seconds data points are plotted on a scatter graph, therefore, the clusters of points are 

generated from different frequency bands and a linear line can be regressed over these, which will 

have a gradient (i.e. admittance) and intercept (i.e. self-excitedness). An example of the output for 

tapping 01 is shown below (the actual assessment of the result will be made later), in Figure 132. Note 

that in all of the admittance and self-excitedness graphs presented in this section, the input 

measurement is sideglass pressure coefficient. A legend is shown adjacent to Figure 132, detailing how 

the systematic connection between yaw angle variation and sideglass pressure variation (i.e. sideglass 

pressure yaw sensitivity) can be interpreted from the scatter plots.  

  

Figure 132 - Interpretations of evaluating the gradient and intercept for clustered data points 

Take, for example, the green line, denoted ‘A’, which represents the gradient of the green cluster of 

data points, whose results are from the 0.2 - 0.6Hz band. It is quite clear from the shape of the clusters 

in this band that the gradient is close to unity (i.e. at 45o), with a near to zero intercept. Additionally, 

reviewing the blue line ‘B’ (0.6 - 1.8Hz) and cyan line ‘C’ (1.8 - 5.6Hz), the gradient is increasing above 

unity, with a non-zero intercept being introduced. Regression of these frequency data clusters is 

D 
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therefore rather robust. However, as the frequency bands increase, for example the purple frequency 

band of 17.8 - 56.0Hz, the clusters become more circular and therefore the result of the regression 

process becomes less trivial, and as such visually a trend line denoted by either the ‘1’, ‘2’ or ‘3’ purple 

lines in Figure 132 could be potentially valid. In this situation, therefore, the regression method for 

analysing the data clusters is of most validity at lower frequency bands, but at higher frequencies the 

gradient of the regressed linear trend line (and therefore by association the Y-axis intercept value) will 

be highly dependent on the narrow deviations in distribution of only a few data points. If a pressure 

tapping had no variation with probe measured yaw angle, presented as line ‘D’, the data set would be 

represented by a horizontal line at a Y-axis height representative of the level of pressure unsteadiness 

that the tapping experienced (e.g. a completely pressure invariant tapping with no yaw sensitivity 

would cause a horizontal line at Y-axis = 0). 

The consequence of this is that evaluations of the admittance and self-excitedness made by the 

regression method will have accurate values at lower frequency, but at higher frequencies the 

reported admittance can tend to positive or negative infinity readily and equally the self-excitedness 

can easily become relatively large in value. These effects are real (i.e. large pressure fluctuations do 

occur), but that if the pressure fluctuations are not yaw dependent, then the reported admittance and 

self-excitedness is unreliable. The physical interpretation is, therefore, that at the higher frequency 

bands values in admittance of self-excitedness that vary wildly from the lower frequency band results 

represent air flows that are highly dominated by pressure fluctuations independent of the incoming 

flow yaw angle and are artefacts of flow from localised vehicle geometries (i.e. door seal radii). 

Therefore where admittances or self-excitedness are reported less than zero this is an artefact of the 

process, as an admittance or self-excitedness of less than zero has no physical representation. 

The results are presented in sets covering the dominant region flow characteristic. Tapping 01 will be 

the primary tapping for the mirror wake region results presentation, shown with tapping 09, tapping 

17 will be shown with tapping 19, 29 and 35 covering the A-pillar region and then tapping 12 will be 

shown with tapping 13 and 22 covering the ‘hybrid’ region. Figure 133 is shown as a reminder of the 

flow regions, with the primary region tappings circled. 
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Figure 133 - Flow region type with the region’s primary tapping for the presentation of results circled 

Taking Figure 134, tapping 01 in the mirror wake region, it can be seen that frequencies less than 5.6Hz 

are closely clustered to the 45o line, showing that the pressure fluctuations are represented similarly in 

both the on-road pressure measurements and the quasi-steady simulation measurements. However, 

as frequencies increase to over 5.6Hz, and especially in the final two frequency bands of 17.8 - 56.0Hz 

and 56Hz - 100Hz, the cluster of points shows little similarity to the quasi-steady simulated results, and 

hence are effectively artefacts of the high frequency, local turbulence as opposed to being related to 

prominent yaw angle changes. One of the major reasons why the higher frequency bands show poorer 

quasi-steady simulation is due to the intrinsic short nature of the turbulence length scales in these 

frequency bands. At 30Hz, which is at 32ms−1, the turbulence length scales are under a metre in length 

and hence though the roof probe may record them, they are varying too rapidly to reach and affect the 

sideglass pressure tappings. 

The slope and intercept from Figure 134, can be plotted as functions of frequency, giving the 

admittance plot (regression gradient) as in Figure 135 and the self-excitedness plot (regression 

intercept) as in  Figure 136.  

Figure 135 demonstrates that the admittance reduces with frequency showing a drop in yaw 

dependence above 1Hz with a notable increase in self-excitedness above 10Hz. In both of these 

graphs, the dependence of yaw with admittance and the increase self-excitedness measurements 

become significant above 10Hz, clearly a limit where quasi-steady effects no longer hold. 
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Figure 134 - Tapping 01 frequency band standard deviations for all measurements 

 

Figure 135 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 01 

Figure 136- Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 01 

For tapping 09 admittance and self-excitedness results are shown in Figure 137 and Figure 138. Again 

the admittance is seen to drop at around 1Hz and self-excitedness to increase above 5Hz and by 10Hz 

self-excitedness becomes significant. It is of value to note that the quasi-steady simulation technique is 

able to capture the pressure fluctuations in a highly turbulent region. As such, in a highly turbulent 

region, the standard deviation of frequencies are less yaw dependent due to the reduced yaw sensitive 

nature of the mirror wake region (yaw sensitivity determine by an admittance greater than unity). 
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Figure 137 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 09 

Figure 138 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 09 

At tapping 17, represented by Figure 139, demonstrates A-pillar flow behaviour, and the data point 

clustering alters greatly than earlier. This is a more steady air flow region with yaw effects well 

represented by the quasi-steady simulated result. Flow in this region has just accelerated around the 

A-pillar and has suffered little local disturbance as it enters the sideglass region (it should also be 

noted, referring back to the set-up image in Figure 94, that the window seal was taped over by 

aluminium tape, making the typical window seal to A-pillar step less of an issue). Deviation from the 

45o line still occurs at 5.6Hz, and is notable by 17.8Hz as previously seen in tapping 01.  

Further, the range of standard deviation has increased again as the nature of the region is more 

sensitive to the incoming flow yaw (clear gradients in each frequency cluster of regressed slopes 

greater than unity). There is also an increase in frequency band cluster height, as seen in previous 

pressure coefficient deviation plots, since the pressure fluctuation standard deviation increases with 

yaw angle as at greater yaw angles the flow contains a higher degree of instability (as shown in Figure 

125). 

The effect of being more yaw dependent is shown in Figure 140, admittance, and Figure 141, 

self-excitedness. The admittance plot shows that there is again a good on-road to quasi-steady 

simulation correlation up to about 5Hz, but then rapidly deviates above 10Hz. This is also shown in the 

self-excitedness plot of Figure 141, where above 10Hz self-excitedness increases. However, it is of 

interest that as this region is more stable than others seen so far, the level of self-excitedness is very 

low up to 5Hz, particularly as there are few flow obstructions in this region. 
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Figure 139 - Tapping 17 frequency band standard deviations for all measurements 

 

Figure 140 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 17 

Figure 141 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 17 

Tapping 19 is also in the A-pillar region, where the wake has widened and again effects are seen that 

are similar to those of tapping 17. The quasi-steady simulation is representative of the on-road 

pressure measurements and the clustering is tight due to the local flow being less significant on the 

pressure standard deviation of the incoming yaw flow, and more due to the variant pressure deviations 

of this turbulent region. Again, the quasi-steady simulation breaks down around 5.6Hz and is clearly 

differing by 17.8Hz, in Figure 142, the admittance plot, and Figure 143, the self-excitedness plot, 
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further highlight these effects. Admittance is consistent up to 5Hz and then dramatically increases and 

self-excitedness is low up to 5Hz as local geometry are less significant and the general flow field more 

affects the flow.  

 

Figure 142 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 19 

Figure 143 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 19 

Tapping 29, located as the most downstream of all the tappings seen so far, is still showing evidence of 

the A-pillar. Figure 144 shows the admittance and Figure 145 shows the self-excitedness of tapping 29. 

Being a more stable flow region, the effect of the standard deviation of upstream pressure fluctuations 

becomes prominent, and this can be seen in the admittance being poor from 1Hz and becoming 

extremely poor above 5Hz with self-excitedness, shown in Figure 145, growing above 10Hz. 
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Figure 144 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 29 

Figure 145 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 29 

Tapping 35 is located in a region far downstream on the window and in an area of good flow stability, 

though interaction from the A-pillar is still seen. Figure 146 and Figure 147 show the admittance and 

self-excitedness of tapping 35’s pressure fluctuations. As the flow in the region is intrinsically more 

stable (the A-pillar influence is reduced as the A-pillar is almost horizontal at this location) the 

admittance function is robust to a higher frequency, up to 5Hz, and only deviates above 10Hz. 

However, as the region is intrinsically of low turbulence, yet the yaw based pressure fluctuations are 

more prominent, this is evidence of an increase in self-excitedness especially when compared to more 

unstable tappings such as tapping 29.  
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Figure 146- Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 35 

Figure 147 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 35 

Tapping 12, given in Figure 148, is in the hybrid region, showing a different response to the A-pillar and 

mirror wake regions. Pressure coefficient standard deviations are predominately yaw dependent, but 

yet again, above 17.8Hz the results gradually move away from the 45o line showing decreasing yaw 

dependence as frequency increases. 

Further detail of the admittance and self-excitedness of these results are shown in Figure 149, 

admittance, and Figure 150, self-excitedness. As this area is in the hybrid region, it is less turbulent and 

therefore more yaw sensitive, with admittances valid up to 10Hz, which then greatly deviate. The 

self-excitedness plot also shows a similar response, that up to 1Hz, even 5Hz, self-excitedness is not 

too significant, but then becomes rapidly notable. The delay of the admittance decrease and 

self-excitedness increase is due to the smoother local geometry that causes the turbulent viscous 

effects. This smoother region combines with flow that is already relatively turbulent in nature due to 

being downstream of the mirror wake region, demonstrating a moderate pressure coefficient 

frequency standard deviation and hence the reduced admittances. 
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Figure 148 - Tapping 12 frequency band standard deviations for all measurements 

 

Figure 149 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 12 

Figure 150 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 12 

Tapping 13, in the hybrid region and slightly further downstream than tapping 12, additionally shows 

similar effects of strong yaw dependence up to higher frequencies due to being in a yaw sensitive 

region, with correspondingly less frequency standard deviation. Figure 151, admittance and Figure 152, 

self-excitedness, again, for this hybrid region, show that the yaw dependent effects are valid far down 

the sideglass, with the admittance values being reasonable even up to 5Hz, and only greatly deviating 

Tap' 12 Cp Freq. Std. Dev. - Bin Avg. Simulated Data

T
a

p
'
1

2
C

p
F

re
q

.
S

td
.

D
e

v
.
-

O
n

-r
o

a
d

D
a

ta

0.00 0.02 0.04 0.06 0.08
0.00

0.02

0.04

0.06

0.08
Cp12 Bin 0.2-0.6Hz

Cp12 Bin 0.6-1.8Hz

Cp12 Bin 1.8-5.6Hz
Cp12 Bin 5.6-17.8Hz

Cp12 Bin 17.8-56Hz

Cp12 Bin 56-100Hz

Frequency (Hz)

A
d

m
it

ta
n

c
e

10
-1

10
0

10
1

10
2

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

Frequency (Hz)

S
e

lf
E

x
c
it
e

d
n

e
s
s

10
-1

10
0

10
1

10
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(χ
) 



 

 

 

119

by 10Hz. This is confirmed by Figure 152, where self-excitedness is not too prominent up to 5Hz, but 

becomes so above 5Hz, and especially so above 10Hz. 

 

Figure 151 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 13 

Figure 152 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 13 

Tapping 22 is also in the hybrid region with the admittance plot, Figure 153, and the self-excitedness 

plot, Figure 154, showing a robust quasi-steady simulation up to 1Hz, then a drop in the region up to 

10Hz, and is spurious above 10Hz. Self-excitedness is also seen to increase at 5Hz, but is otherwise 

relatively low. Again, the admittance and self-excitedness deviations are less due to the region being 

slightly turbulent but more due to the high yaw sensitivity. Therefore the quasi-steady simulation is 

more robust as the standard deviation of pressure fluctuations in this region is less diverse. 

Frequency (Hz)

A
d

m
it

ta
n

c
e

10
-1

10
0

10
1

10
2

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

Frequency (Hz)
S

e
lf

E
x
c
it
e

d
n

e
s
s

10
-1

10
0

10
1

10
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(χ
) 



 

 

 

120

 

Figure 153 - Pressure coefficient frequency standard 

deviation frequency admittance plot of tapping 22 

Figure 154 - Pressure coefficient frequency standard 

deviation frequency self-excitedness plot of tapping 22 

In order to aid reviewing the wide selection of results shown, Table 7 was generated as a partially 

subjective review of the main result parameters: 

Table 7 - Pressure fluctuation standard deviation results review for all tappings 

Region 

Type 
Tapping 

Intrinsic 

Turbulence Level 

Admittance 

at ≈5Hz 

Quasi-steady Simulation 

around 5Hz (i.e. Yaw 

based dependence) 

Self-Excited

ness Level 

5Hz 

Data Points 

Cluster Height 

above 5Hz 

Mirror 

wake 
01 High Low Poor High Tall 

Mirror 

Wake 
09 Medium - Low Low Medium High Medium 

A-pillar 17 High High Good Low Tall 

A-pillar 19 Medium High Good Low Small 

A-pillar 29 Medium High Poor Low Medium 

A-pillar 35 High High Medium High Medium 

Hybrid 12 Low Central Good High Small 

Hybrid 13 Low Low Good High Small 

Hybrid 22 Low Low Good Medium Small 

 

Notes: 

• Intrinsic turbulence level is an assessment of the typical level of turbulence at the tapping 

(i.e. mirror wake = high, in smooth air flow = low) 

• Admittance above 5Hz is an assessment of whether the admittance is greater than ±0.5 from 1.0 

• Quasi-steady simulation above 5Hz is measure of the clustering of points near to, or far from, the 

45o axis 

• Self-excitedness level is an assessment of whether the self-excitedness is ±0.5 from 0.0 

• Data cluster size is a review of the height of the high frequency clusters 
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4.4 Comparison of Frequency Band Deviation Range with Average Yaw 

In order to further explain the height of the cluster of data points within a frequency band 

(i.e. consider Figure 134, the higher frequency bands show a large range in deviation and no 

correlation with the quasi-steady simulation) a comparison between the frequency band standard 

deviation and the average yaw for each frequency band is made in Figure 155 to Figure 160, for 

tapping 01 (in the mirror wake region). This is in order to answer whether the pressure coefficient 

standard deviation is consistent over the entire yaw range, or is the increase in flow instability at 

greater yaw angles causing more of the sideglass tapping pressure variation at the higher frequencies.  

This effect would be noticeable as a gradient of the cluster of data points over the yaw angle range. At 

low frequency bands, as in Figure 155 to Figure 157, it can be seen that there is no clear gradient in the 

data sample and these frequency bands all show good correlation between the road-data and 

quasi-steady simulation results. However, as the bands increase in frequency (notably Figure 158 to 

Figure 160) a slightly negative gradient can be seen as the frequency increases. This shows that some 

of the standard deviation range in a frequency band is due to the incoming flow unsteadiness caused 

by the vehicle’s shape not just local geometry. Tapping 01 was used as a base line as it showed the 

greatest standard deviation range, especially at high frequency bands, of all of the tappings. 

                 

Figure 155 - Plot of tapping 01, frequency band 0.2-0.6Hz, 

CP Standard Deviation against average flow yaw angle 

Figure 156 - Plot of tapping 01, frequency band 0.6−1.8Hz, 

CP standard deviation against average flow yaw angle 
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Figure 157 - Plot of tapping 01, frequency band 1.8-5.6Hz, 

CP standard deviation against average flow yaw angle 

Figure 158 - Plot of tapping 01, frequency band 5.6−17.8Hz, 

CP standard deviation against average flow yaw angle 

                 

Figure 159 - Plot of tapping 01, frequency band 17.8-56.2Hz, 

CP standard deviation against average flow yaw angle 

Figure 160 - Plot of tapping 01, frequency band 56.2−177.8Hz, 

CP standard deviation against average flow yaw angle 

4.5 Example On-road Case for Onward Investigations 

For onward CFD and wind tunnel investigations requiring an unsteady inlet profile, it is favourable to 

have a representative case of on-road flow data that depicts the typical flow of the population data. 

Ideally this case would also contain gusts that oscillate either side of zero degrees, whilst staying within 

±10o (a yaw range seen to encompass the characteristics of the majority of the on-road environment), 

yet with the odd prominent peak yaw angle. Based upon these criteria, 6 measurement cases were 

short listed, with a typical challenge being that often a case would not be representative of the 

population data as it would have excessive large angle variations (i.e. symptomatic of a windier day). A 

good case would be depicted by a wider PDF of yaw angle and higher turbulence intensity than typical, 

whilst not being so unique to be atypical of the population data. Figure 161 represents a case that met 
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these considerations, number 21 of the 275 recorded, of a windy day, yet meeting the desired 

characteristics. As CFD cases have to be of much shorter duration than can be simulated by a TGS, 

a 4-second window of a gust was also extracted from the trace (4-seconds used as determined by 

reduced frequency in the literature review), and this period is bounded by a red box in Figure 161, 

whereas a TGS would simulate the entire 32-second case.  

 

Figure 161 - Yaw plot trace of Case 21, with the 13.5−17.5s window CFD gust highlighted 

In order to analytically verify the suitability of this case alongside those also short-listed, the 

measurement case was assessed on its probability density function of yaw (i.e. P(Yaw)) against that of 

the population result, and the values of its turbulence intensity against turbulence length scale data 

points. Figure 162 shows the PDF of case 21 against that of the population data and out of all the cases 

assessed it showed some important characteristics. Namely, these were its symmetry and its relatively 

steep gradient of P(Yaw) decay with yaw angle, as occurs in the population data set.  
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Figure 162 - PDF of population data yaw angle with selected case 21 yaw plot 

The cases were then evaluated for their results from a turbulence intensity against turbulence length 

scale assessment, in 4-second rolling windows, as in Figure 163. It was important that as many as 

possible of the data points from the 4-second rolling windows of turbulence stayed under an 

8%/8m cut-off in order to still be representative of the population data (i.e. to be a gust, but not to be 

an extreme event). It can be seen in Figure 163 that case 21 had all but one of its data points in this 

bound and the results sat comfortably alongside the population data.  

Additionally the two data points bounded in green boxes depict the turbulence measured for the 

4-second CFD gust segment, and again it can be seen that the sample is a fair representation of the 

population data. 
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Figure 163 - Case 21 with TI and TLS points plotted  

Points in green are from the 4-s gust case, where the two TI vs. TLS highlighted points with the green box are from the 

4-second gust segment of the 32-second sample 

4.6 Conclusions 

In this chapter a large on-road study of transient flow conditions has been completed using a 

roof-mounted 5-hole probe and 9 sideglass static pressure tappings. Rover 200 sideglass pressure 

measurements recorded at MIRA were presented, though the results only offered a small snapshot of 

yaw against pressure variation due to the limited range of yaw angles under which the test was 

completed. A 3D CFD test was completed that showed longitudinal and lateral flow velocities recorded 

by a roof probe are increased relative to the freestream velocities, but that these exaggerations of flow 

velocity did not corrupt yaw measurements. 

275, 32-second on-road measurement runs were recorded and the data was broken into 4-second 

sections. Yaw angles of the air flow were found to be within ±10o, with the vast majority within ±4o. 

The correlation between roof probe velocity magnitude and the GPS data was found to be robust, with 

a typical speed-up on the roof probe of 6%. Turbulence length scales and intensities were found to lie 

mostly below 8.0m and 8.0% respectively and above 0.50m and 0.50% respectively. Turbulence length 

scales were found to peak (by the auto-correlation method) at around 2.0m and intensities at 2.5%. A 

strong negative correlation between length scale and intensity was shown for all 3-axes of flow 

velocity, with a gradient of approximately −1.5m/% for bulk velocities, increasing in negativity as the 

axial components were assessed in the order of X, then Y and then Z axes. Confidence intervals of 95% 
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were narrow and the variation in standard deviation of the data was found to be smaller in order of 

magnitude than the variation in the data sets, showing good validity of data capture.  

A quasi-steady simulation process was completed using the roof probe instantaneous flow yaw angle 

as the dependent variable to bin-average sideglass tapping pressures, creating a yaw against sideglass 

pressure profile map, completed for all 9 tappings. The results showed that using yaw at below 5Hz as 

an input into the quasi-steady simulation process is valid and pressure variations at the sideglass 

tappings can be resolved from the roof probe. However yaw as an input becomes less reliable by 5Hz 

and above 5Hz the admittance greatly deviates and self-excitedness significantly increases showing 

little yaw dependency. This suggests that at these frequencies the probe cannot offer an accurate 

simulation of the sideglass tapping pressure.  

Tappings in the mirror wake region (tappings 01 and 09) were less yaw dependent than other sideglass 

regions (with admittances less than unity) due to its intrinsic high flow unsteadiness and 

correspondingly the region showed significant levels of self-excited turbulence. In this region the 

admittance decays less rapidly than in a more yaw sensitive region as the intrinsic turbulence of such a 

region (i.e. mirror wake) seems to suppress large pressure fluctuations, even though such a region will 

experience a pressure coefficient step change relative to other sideglass regions. The results also show 

that the self-excited component only becomes notable above a certain frequency threshold 

(typically >10Hz) as the local geometry that causes the high frequency viscous effects, and hence the 

high standard deviation of turbulence, will have less effect when the flow has already transited to a 

highly turbulent state. 

Tappings in the A-pillar wake region (17, 19, 29 and 35) showed yaw dependency with admittances 

greater than unity at frequencies under 5Hz. Pressures in the A-pillar region were less valid at lower 

frequency bands due to the aerodynamically unstable nature of this region, and correspondingly the 

pressure tappings in more aerodynamically stable regions (i.e. tapping 35, just fore of the B-pillar) 

showing better correlation up to higher frequency bands. The hybrid region (12, 13 and 22) showed 

yaw dependency and low levels of unsteadiness. In any of the three region types, the simulation 

process showed that above around 10Hz the self-excitedness of the turbulence becomes significant.  

Ultimately, the admittance is generally below unity in mirror wake, and then around unity for the 

remainder of the sideglass except near to the A-pillar, where the admittance is generally greater than 

unity. Self-excitedness is, as expected, highly dependent on geometry and is therefore more commonly 

observed in the mirror-wake region. It is also worth noting that the A-pillar region has a high 
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quasi-steady sensitivity to yaw, but that in the transient, unsteady results the response to yaw is even 

more significant (hence an admittance greater than unity). This therefore shows that high yaw 

sensitivity does not necessarily correlate with an admittance greater than unity. These results are 

summarised in Figure 164.  

 

Figure 164 - Summary of the dominant aerodynamic characteristic for each of the three defined sideglass regions 

More detailed analysis of pressure fluctuations against averaged yaw angle showed that the standard 

deviation clusters widen in regions with lower intrinsic turbulence, as those regions are more yaw 

sensitive. Additionally the pressure coefficient standard deviation was shown to increase with yaw 

angle, evidenced by the frequency band cluster widening at higher frequency bands, due to the more 

highly yawed incoming flow having a greater instability and hence exhibiting intrinsically more pressure 

fluctuation. 

Finally, one particular case of 32-seconds was evaluated, from which a 4-second gust was also 

extracted, which had properties representative of the entire data population for onward CFD and wind 

tunnel investigations requiring a transient inlet trace. 
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5. TGS Design Development through 2D and 3D CFD Studies 

This chapter details studies completed using both 2D and 3D CFD simulations to develop a design for 

an active Turbulence Generation System to be retro-fitted to Durham University’s 2m wind tunnel 

based upon an initial specification compiled from both the literature review and on-road results. The 

objective of the TGS system is to replicate an unsteady aerodynamic environment (i.e. on-road flow 

conditions) and to provide a tool to investigate a vehicle’s response to unsteady flows (i.e. harmonic 

test frequencies). Definitions of the tunnel layout and terminology are shown graphically for the 

2D model in Figure 166 and for the 3D model in Figure 180. 

5.1 TGS Specification from On-road Measurements 

The specification for the TGS is defined from two objectives. The first is the appropriate recreation of 

length scales and intensities with inputs from the air flow characteristics measured on-road 

(i.e. Wordley et al (2009)) and the necessary bounds of an active TGS. The second is the quality of air 

flow, namely that the flow across the cross-sectional width of the tunnel is consistent and sufficiently 

wide to flow around all of a model, even under extreme yaw conditions. An initial review of results 

presented in the literature review suggests that a TGS should generate: 

• A power spectrum as per the length scale and intensity spectrum plots of Wordley et al (2009). 

• Turbulence frequencies in the region of 0.1 - +10Hz. 

• Turbulence length scales corresponding to, at a full-scale in (u, v, w), approximately 

2.0, 1.8, 1.8m. 

• Peak yaw angle amplitudes in the ±6 - 10o range. 

• Air flow reaching intensities in (u, v, w) of approximately 2 - 14, 2 - 8, 2 - 8%. 

• Flow conditions variable such to meet the range for the ‘Road-side obstacles’ to ‘Smooth 

Terrain’ on-road environments proposed by Wordley et al (2009). 

• Flow that does not decay significantly down the test section length 

5.1.1 TGS Frequency Bounds 

This section considers the frequency range in which an active TGS should operate, bounded by the 

quasi-steady limit at a lowest frequency to an upper frequency limit which is combination of the 

frequency at which the spectral energy in the on-road environment and a vehicle sensitivity reduces 

and where passive turbulence generation devices (i.e. static grids) become effective. 
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An appropriate metric for assessing the effect of turbulence frequency (i.e. TLS) on a vehicle can be 

gained by considering the reduced frequency (i.e. Corin et al (2008)). The reduced frequency, as shown 

in the literature review, is defined in this analysis by a threshold proposed by Corin of 0.1 as a 

quasi-steady limit, (i.e. in this case, a number which represents the threshold above which the effect of 

inlet turbulence can be considered to become significant). The function is made non-dimensional 

based upon flow velocity and vehicle size. A reduced frequency approach can therefore yield an 

appropriate TGS driving frequency when a velocity and size is specified. The time period threshold at 

which on-road vehicles experience quasi-steady turbulence can be evaluated by: 
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where ωR < 0.1 (from Corin et al (2008)), U is vehicle driving test speed (25ms−1) and a typical mid-sized 

vehicle frontal area A of 2.5m2. 

This gives a lower frequency limit of 0.3Hz where, at frequencies below this, a quasi-steady approach 

could be adopted. This corresponds to a length scale of around 100m full-scale, or 30m in tunnel scale 

(30%). Clearly this is a large length scale to simulate, but is possible with oscillating aerofoils. The 

opposing upper frequency bound is composed of the frequency where the on-road spectral energy is 

seen to decrease (shown to be around 10Hz full-scale from Wordley et al (2009) - Figure 10), where a 

vehicle’s response is seen to reduce (≈10Hz full-scale) and the length scale that can be generated using 

passive methods. The maximum length scale that can be created by passive methods (i.e. Static grids, 

Newnham et al (2006)) is limited by the distance between the grid bars, which is constrained by the 

test section width and height. Durham University’s 2m wind tunnel jet is 1.8m x 1.1m, which implies by 

this rule of a maximum feasible length scale being 1.1m. However, as usually more than 2 bars would 

be required, a figure nearer half of this is realistic, giving a length scale in the tunnel of 0.55m, or 

1.80m at full-scale. An alternative perspective is the shedding frequency of a cylinder from the Strouhal 

number (using 0.2 for a cylinder). A 0.5m cylinder in the tunnel air flow of 25ms-1 could generate 

frequencies of down to 10Hz: 
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At a tunnel speed of 25ms-1, this means that passive grids can generate length scales at most of 2.5m.  

However it should also be mentioned that grids are drag devices and generate high frequency, 

[17] 
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turbulent wakes. As such a lower bound of 0.5m tunnel scale is appropriate, but the 2.5 - 0.5m could 

be achieved using a grid design if required. However a 0.5m TLS corresponds to a frequency where 

significantly less spectral energy exists on the road. Therefore, from an aerodynamic and mechanical 

perspective, frequency bounds of an active TGS device between 0.5 - 20Hz (30 - 2.0m TLS) are valid. It 

is of value to note that this region also includes typical suspension Eigen frequencies (≈1Hz) and the 

noise modulation frequency to which human hearing is at is greatest sensitivity (≈4Hz) (Sims-Williams 

and Mankowski et al (2013)). 

5.1.2 Generation Approach 

The objectives of the TGS are secondly defined by the flow conditions experienced by road cars. 

Sims-Williams (2010) reviewed the use of a variety of turbulence generation systems operating up 

to 100Hz, based on analysis based upon a similar spectral energy curve of that of Wordley (2009). The 

plot, Figure 165, is given as an overview of the typical turbulence generation frequencies against types 

of generation systems. The coloured regions show approximate areas that are notable for quasi-steady 

effects (green), transitioning from quasi-steady to unsteady (i.e. significant potential vehicle response) 

(amber) and low on-road spectral energy (red). 

 

Figure 165 - Active TGS bounds for full-scale tests - modified from Sims-Williams (2010) 

At FKFS, Schröck et al (2009) were able to generate turbulence of up to ±6o of yaw using a set of 

oscillating aerofoils operating at 10Hz. At 25ms-1 (Durham University 2m Wind Tunnel’s typical 

operating speed) this would relate to around 10% intensity ([25.0] /[25.0tan(6)]) at a length scale of 

2.5m, which would correspond to a full-sized scale of around 8.0m. Therefore an objective would be to 

use oscillating aerofoils to generate turbulence at a tunnel length scale of 10.0 - 2.4m.  
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However, this does leave a gap between 2.4 - 1.0m full-scale which Wordley et al (2009) highlights is a 

key range for turbulence generation and requires intensities of around 12% (figure 2). This gap could 

be filled using a design similar to that at Oldenburg University (Knebel et al (2010)), which has 

generated length scales of around 1.20m in a 0.90m2 tunnel. If the system could be suitably scaled to 

Durham’s 2m wind tunnel, this could suitably generate the 2.4 - 0.5m length scales. Additionally, as 

mentioned earlier, the shedding frequency of 0.5m cylinder in 25.0ms−1 of air flow could achieve a 

10Hz (i.e. 2.40m) wave. However, the onward focus will be in the 10 - 2.4m TLS range. 

Flow measurements by Wordley suggest a range of 4.2m at 2% to 0.5m at 13% intensity (i.e. Figure 9), 

with the spectral energy level being consistent down to from 4.2m to 2.4m tunnel scale. These targets 

are achievable in the 4.2m to 2.4m TLS range using aerofoils, which are also suitable for the consistent 

spectral energy amplitude targeted with intensities requiring >±9o of aerofoil yaw amplitude. 

5.1.3 Quality of Air flow 

1. Ideally the test model will not experience trailing vortices from a lift or drag device. This will 

improve the consistency of the air flow over the model and reduce the likelihood of 

inconsistent ‘patches’ of high flow turbulence on any regions of the model.  

2. The wake from lift devices are less of an issue than wake from a drag device. However if lift 

devices are to be used, they will ideally be positioned at the width of the test section and not 

have aerofoils in the middle section of the nozzle. 

3. The aim is that the flow velocity and yaw angle will be consistent over the model’s extents 

(defined as ±500mm in Y and ±700mm in X from turntable centre). 

4. The useable width of the test section can be reduced due to the jet narrowing in cross-section 

when under yaw. Aligned with the earlier objective of not having inconsistent flow over the 

model, the useable test section width should be greater than the model’s width to ensure that 

the model does not experience the jet’s shear layer which would have large effects on 

measured pressure, lift and drag over the model. 

5.1.4 Mechanical Operation 

1. If aerofoils are used, they should be able to operate to at least 10Hz, with the aerofoil 

amplitude and frequency being electronically controllable (i.e. variable during a test cycle).  

2. If a jet width variation method is used, it should be controllable to allow variable frequency 

and phasing, with a movement time suitable for the tested frequencies. 
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3. If a collector width variation is used, it should be suitably phased to the front aerofoils to 

compensate for the particle travel time down the length of the tunnel. 

5.2 TGS Design Modelling Methodology 

In order to design and develop a potential TGS design, CFD analysis was undertaken to determine the 

potential length scales and frequencies achievable by various TGS configurations. CFD simulation gave 

the opportunity to assess potential designs without the constraint of resolving mechanical issues. CFD 

simulations are able to model device movements and determine the expected flow at frequencies and 

amplitudes well above what is mechanically achievable. The CFD tests progressed through 2D static 

and dynamic mesh tests to 3D RANS and Lattice Boltzmann based tests. The basic configuration for the 

RANS (i.e. Fluent) 2D and 3D cases was a: 

• 2D horizontal section through of Durham University’s 2m wind tunnel. This gave a test section 

length (nozzle to collector) of 5.1m, with an inlet width of 1.75m and a collector width 

of 1.90m. 

• For static test cases, a triangle mesh geometry with mesh size at 0.01m around aerofoils, with 

a maximum cell size of 0.02m throughout the entire mesh. 

• For time-variant test cases, a dynamic re-meshing undertaken at every time-step. Constraints 

of mesh geometry using 0.003 - 0.050m cells with a maximum skewness of 0.65 were followed. 

• Aerofoil oscillation defined using a Fluent UDF (macro code function) with a sinusoidal input. 

• Minimum time step resolution of 100 time-steps for 1 particle track through the test section 

(0.001s time step for a 5.1m/25.0ms−1 = 0.2s per track - also referred to as flush-throughs).  

• Minimum of 30 time-steps per aerofoil oscillation period with 80 iterations per time-step. 

• Minimum unsteady run time of 0.5s offering approximately 2.5 tunnel particle tracks 

(flush-throughs) and a minimum of 10 aerofoil oscillations per simulation run. 

• Tunnel main inlet set as a velocity inlet of 25ms−1. 

• Side inlet velocities set to 25ms−1. 

• K-Omega turbulence model. 

• 1st order implicit unsteady flow solver with fixed time-step size. 

• Results given measured UX and UY at the turntable centre (TTC) (1.8m downstream of nozzle 

inlet). 
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5.3 CFD 2D Test Cases Overview 

The primary output metrics were yaw angle amplitude, longitudinal velocity consistency and lateral 

velocity symmetry, measured over lines of constant X and Y axis through the test section, centred on 

the turntable centre (TTC), with further analysis from these giving turbulence length scales and 

intensity. Assessments of the velocity drop over the test section due to the TGS operation (i.e. due to 

varying inlet and outlet size, etc.) and regions of recirculated flow caused by the TGS operation were 

also made. The evaluated length scale was determined from the time period between subsequent yaw 

angle peaks and was correlated with aerofoil oscillation frequency. The results of average longitudinal 

velocity at TTC and longitudinal velocity range were noted as these are important for the flow quality 

and uniformity. Finally, aerofoil frequencies were derived from a range with the lower limit being at 

the quasi-steady threshold of 0.3Hz and the upper limit being where the on-road spectral energy is 

seen to notably decrease, which is around 30Hz at tunnel scale (i.e. the frequency at which an active 

system becomes unnecessary). Therefore the dynamic CFD cases were run using aerofoil frequencies 

of 0.1, 1, 5, 10, 20 and 30Hz.  

5.4 Initial TGS 2D Model Design 

The first design utilised a pair of front aerofoils placed at the side of the nozzle, with their location 

chosen to prevent their wakes from passing over the test model. Yaw angles were measured at TTC 

where the angles are at a minimum as greatest yaw is experienced in the flow directly trailing that of 

the oscillating aerofoils (i.e. laterally furthest from the aerofoils).  
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The 2D tunnel model design is as in Figure 166.  

 

Figure 166 - Initial model of the TGS with moving inlet side aerofoils and collector walls 

5.5 TGS 2D Results with Oscillating Front Aerofoils only 

Tests were run with both the inlet aerofoils oscillating only to ±9o, the collector oscillating only and 

then the two working in conjunction with one another. Additionally static tests were conducted with 

fixed aerofoil angles. In initial scoping test cases, it was found that movement of the collector created 

large regions of recirculated air flow, with rapid yaw angle decay as the flow propagated downstream, 

though notable yawed flow was created. Due to the large regions of recirculated flow, a moving 

collector design was not investigated any further. 

Tests with the front aerofoils, oscillating on their own and in phase, were completed. An assessment of 

the TGS performance was based upon the generated flow yaw angle around the aerofoils and whether 

the yaw sustained as it propagated downstream. Over the full range of frequencies tested a good flow 

yaw angle consistency was found, but peak yaw angles were low (<±4o).  

It was found from the scoping tests that having 2-aerofoils on the nozzle edge is sufficient to cause the 

desired flow yaw. It was also found that oscillating the collector caused large regions of slow speed 

recirculation and required a large mass to be moved. It was therefore decided to drop the moving 

collector walls but keep the nozzle side aerofoils. Further, the mechanical complexity increases with 

the number of aerofoils used and a 2-aerofoil arrangement removes the need for aerofoils across the 

test section width, which eliminating the resultant wake over the model (except at extreme yaw 
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angles), making a 2-aerofoil set-up desirable. However, the results suggested a method to increase the 

peak yaw angle by allowing more air flow to enter and leave the tests domain at widths beyond the 

typical nozzle and collector widths.  

5.6 TGS Design in 2D using Front Aerofoils only with Multiple Inlets and Outlets 

In order to sustain the yaw angle and increase peak flow yaw angle as it flows downstream, the idea of 

additional inlets either side of the nozzle and outlets either side of the collector was proposed, which 

would also ensure that the nozzle’s jet width could be maintained under yawed flow conditions. For 

example, incidence on the inlet aerofoils would enable inlets to open in the Y+ side of the inlet, and the 

collector exhaust outlets could be opened in the Y- side of the exhaust, (with the appropriate 

consideration to phasing and particle track time) which would encourage the flow yaw to be more 

uniform and sustained. 

In static tests conducted in the scoping tests, it was found that yawed flow was forced to quickly return 

to an axial direction in order to flow into the collector, causing a rapid decay in yaw angle with 

downstream location. In order to create more sustained yaw, additional inlets and collector outlets 

were added to either side of the respective ends, as shown in Figure 167, which open in conjunction 

with the aerofoil oscillation to improve flow yaw consistency. As a development of the model’s 

accuracy a large volume of air was placed upstream of the inlets to include the time required to 

accelerate the air flow when an inlet was opened. In comparison to earlier tests without the additional 

inlets and outlet, where the flow was found to have to turn dramatically to reach the collector, it was 

found that the flow did not have to turn at the downstream location to reach an outlet. 
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Figure 167 - 2nd model design with additional side inlet and outflow vents and front only oscillating aerofoils 

The model has 5-inlets either side of the nozzle defined as a velocity inlet (of 25ms−1) to match the 

nozzle’s velocity. The other boundary conditions were maintained as in the first model configuration. 

To create the shutter action in CFD the 5-inlets are modelled as radiators using a ‘UDF’ (a small macro 

program) with their porosity switching at different aerofoil angles, depending on their lateral location. 

As such, as an initial design, at the instant when the aerofoil angle is at an angle of incidence that a 

particle track under yaw propagates to a lateral location at the collector which is beyond the width of 

the collector, the corresponding inlet and outlet shutter open.  

This design would require very fast moving shutters on the vents, but is otherwise practical. Initial tests 

showed that the air flow had good uniformity (within ±1o of yaw) across the test section. The nozzle 

jet’s width was maintained down the test section and the flow velocity at the turntable centre is at the 

freestream velocity, unlike the front aerofoil only test results where a velocity reduction was seen. 

A series of frequencies were tested at 0.1, 1, 5, 10, 20 and 30Hz for the new multiple inlets and outlets 

model all with an aerofoil angle driving to ±9o. Measurements taken and presented are lines of ±Y at 

±0.5m from TTC (located at X = 1.8m, Y = 0.0m) and lines of ±X at ±0.7m from TTC as well as X and Y 

axis lines centred on the TTC. The region bounded by these lines represents a region slightly greater 

than the plan-view size of a model that would be tested in Durham University’s 2m wind tunnel. Figure 

168 to Figure 171 show the yaw experienced at turntable centre, Y+ and Y- for the range of tested 

frequencies, showing a consistent peak yaw angle of ±6o achieved across the test section width for all 

frequencies tested. Yaw angles of 6o correspond to 10% turbulence intensity.  



 

 

 

137

The only notable discrepancy is that at higher frequencies (i.e. 30Hz) the oscillations are sufficiently 

rapid that a consistent wave is unable to be maintained, however reasonable intensities are still 

created at what is a very high frequency of mechanical operation.  

 

Figure 168 - 0.1Hz TTC, +Y and -Y plots, 0.1Hz at ±9o aerofoil angle yaw 

Figure 169, Figure 170 and Figure 171 are the traces of the final few periods plotted for all cases, again 

with +Y and -Y corresponding plots. It is of interest to note the in-phase and amplitude correlation 

between the +Y and -Y limits, showing consistent flow yaw over the turntable area. At higher 

frequencies (20Hz and 30Hz), Figure 171, it is clear that the uniformity has decreased. This is most 

likely due to intermediate frequency (i.e. 1 - 10Hz) turbulence components occurring naturally in the 

tunnel superimposing with the high frequency air flow. 

 

Figure 169 - Plots of all frequencies at TTC, +Y and -Y locations - 0.1 and 1.0Hz driving frequency at ±9o 
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Figure 170 - Plots of all frequencies at TTC, +Y and -Y locations - 5.0 and 10.0Hz driving frequency at ±9o 

 

Figure 171 - Plots of all frequencies at TTC, +Y and -Y locations - 20.0 and 30.0Hz driving frequency at ±9o 

Further analysis of the results from the flow simulations showed the induced flow yaw angles 

propagating downstream, demonstrating good yaw angle consistency, the jet’s width being maintained 

and the flow not having to turn dramatically at the downstream end in order to flow into an outlet. 

Static and total pressures for the range of frequencies were assessed and good flow consistency over 

the test section and the yaw angles was achieved over a wide test-section width. Yaw decay rates were 

found to be low over the longitudinal axis and the no significant vortex shedding or other undesirable 

wake affects downstream of the aerofoils was found. Additionally, no large regions of flow 

recirculation were found suggesting general tunnel operating stability and a lack of large 

viscous-effects (i.e. pressure loss) in the system due to the TGS’s operation. 
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The results show that the multiple inlet and outlet configuration offers a greater test section width and 

velocity uniformity as well as larger peak yaw angles and more consistent yaw as the flow propagates 

downstream than seen in the aerofoil only configuration, with yaw angles of ±6o were achieved. Figure 

172 is a plot of the yaw amplitude range (maximum peak to minimum peak) and deviation of yaw for 

the spectrum of tests.  

 

Figure 172 - TTC yaw angle variation over the tested frequency range 

Figure 173 shows the range and average longitudinal velocity at the TTC for all of the frequencies 

tested. This result demonstrates that the reduction in flow velocity due to the TGS is not excessive, and 

that on average in the TGS operation, the reduction in tunnel velocity will be only 0.5ms−1 caused by 

the varying inlet and outlet widths. 

 

Figure 173 - All frequencies tested, TTC velocity range and average 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

0.1Hz 1.0Hz 5.0Hz 10Hz 20Hz 30Hz 

T
T

C
    L

o
n

g
it

u
d

in
a

l     
V

e
lo

ci
ty

    (
m

/s
)     

Range Average 



 

 

 

140

Figure 174 shows the calculated turbulence intensities suggesting that, at the quasi-steady threshold 

frequency (5Hz at tunnel scale), the TGS generates high turbulence intensities and that the intensities 

generated are all sufficient to meet the TGS specification (i.e. 10%). 

 

Figure 174 - All frequencies, auto-correlation turbulence intensities  

5.7 Static 3D Model  

The 2D CFD simulations that have been presented were completed to develop the initial design of a 

wind tunnel TGS system. It was found that aerofoils placed either side of the inlet nozzle, with 

additional inlets and outlets, when all operated in a co-ordinated fashion, would achieve the required 

TGS yaw range and flow uniformity. 

In order to more fully understand the flows generated from the proposed multiple inlet\outlet and 

twin aerofoil TGS design, a 3D TGS design study using CFD simulations was then completed, being a 

steady flow simulation case with static aerofoils. Due to the high computational demands for 

3D simulations, initial steady-state simulations were completed with the aerofoils at a peak yaw angle 

of ±9.0o inlet aerofoil incidence, with only the appropriate inlets and outlets open.  

The tunnel set-up was as earlier experiments, with an axial velocity of 25ms−1 of 0.02m TLS, 1% 

intensity turbulence at inlet. The measured aerofoil force data, with moments about the aerofoil’s 

quarter-cord, were assessed and the generated aerodynamic forces were nominal and did not present 

a mechanical design challenge. Tests were also conducted at aerofoil yaw angles of 4.5o. As a reminder, 

measurements were taken at lines of ±Y at ±0.5m from TTC (located at X = 1.8m, Y = 0.0m) and lines of 

±X at ±0.7m from the TTC as well as X and Y axis lines centred on the TTC. 
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Figure 175 shows the normalised velocity magnitude by X-location, between the tunnel nozzle centre 

(distance 0.0m) to tunnel collector centre (distance 4.5m), which could vary due to the changing width 

of the jet. The turntable centre is located at 1.8m in X-location where the flow velocity is within 2% of 

the inlet velocity and good uniformity across the jet’s width even with 9o of flow yaw. 

 

Figure 175 - Velocity magnitude against X-location for 9.0o case (normalised by freestream velocity) 

Figure 176, normalised velocity magnitude by Y-location, shows good flow consistency across the jet’s 

width with a useable (i.e. test vehicle) width of ±0.6m in the Y-axis (shown by the orange dashed lines). 

Due to the flow yaw a region of low speed flow is seen at the Y- extent of the jet (i.e. the beyond the 

shear layer), which is as expected.  

 

Figure 176 - Velocity magnitude against Y-Location for 9.0o case (normalised by freestream velocity) 
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Figure 177 shows a relatively consistent yaw angle of 7 - 9o down the length of the tunnel. Especially of 

interest is how the flow yaw closely matches the aerofoil incidence, which is expected in a static test 

case whereas the time-variant test cases showed achieved peak dynamic yaw angles of only ±6o. The 

variation around 2.0m is where the jet expands out between the nozzle and collector, before turning 

into the collector, and though noted is not a significant issue in the TGS operation mode. 

 

Figure 177 - Yaw angle against X-Location for 9.0o case 

In Figure 178, yaw angle against Y-location, a consistent flow yaw across test section width is shown 

and the flow yaw is at values close to the aerofoil incidence. However, as seen in Figure 176, the region 

of a shear layer is noticeable at the Y- location. This graph also supports a useable test width of ±0.6m 

(shown by the orange dashed lines), though flow yaw would vary by ±1o across this width. 

 

Figure 178 - Yaw angle against Y-Location for 9.0o case 
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Figure 179 shows a pathline plot, with the major features shown being the consistency of yawed flow 

over the test section, the yawed shear layer and the flow consistency in the region that the test model 

would be located. 

 

Figure 179 - Pathline plot, aerofoil at 9.0o, coloured by velocity magnitude (ms-1) - plan view 

5.8 TGS 3D Dynamic, Time-variant Model 

In order to complete a true unsteady simulation, the TGS model was re-created in Exa Powerflow 

(4.3a) using a rotating mesh geometry for the aerofoils. The model was identical to the construction 

used in the 3D Fluent case, except, as the rotating mesh geometry had to be defined by a volume of 

revolution, the aerofoils were moved downstream approximately 0.2m, leaving a 0.1m gap between 

the trailing edge of the nozzle and the leading edge of the aerofoil. The aerofoils were, however, still 

pivoted about ¼ chord. All other parameters were identical, with a resolution of 220 voxels over the 

characteristic length of 5.1m (the nozzle to collector distance), giving a moderate mesh resolution of 

20mm per cell. Simulations were run at 10 and 30Hz aerofoil oscillation rate, with approximately 

300,000 time steps covering 8-seconds of flow. To reduce processing run-times by initialising cases 

with a developed flow structure, cases were seeded with a static case (i.e. no aerofoil oscillation) that 

had run for 10-seconds of flow simulation. Data was recorded in a region around both the aerofoils to 

offer a force-time trace as well as recording flow parameters within the area that would encompass a 

model. Velocities were extracted from this region along the same axes as in the Fluent 3D case, and 

resolved to determine yaw angles in time.  
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Figure 180 shows an image of the case geometry. 

 

Figure 180 - 3D tunnel model for Powerflow simulation 

5.8.1 Phasing Front Aerofoils with Additional Inlets and Outlets 

In order to ensure that the additional outlets actuate in a coordinated fashion with the additional inlets 

to maximise flow uniformity and yaw generation, the phasing of the front aerofoils with the additional 

inlet and outlets requires careful consideration, particularly to factor for the particle track propagation 

time. When the front aerofoils and inlet and collector outlets oscillate, they need to do so out of phase 

to account for the time of flight through the wind tunnel. The condition of in-phase is defined as when 

the front aerofoil and rear collector width extents are angled to create the most direct particle track 

(i.e. the trailing edge of the front aerofoil and the leading edge of the collector extents are co-linear in 

the particle’s track). Therefore the completely out-of-phase condition is when the front aerofoils are 

180o (π) phased (Figure 181), such that the front aerofoil’s trailing edge is at, for example, the most 

negative yaw when the collector is at its greatest, for example, positive yaw (i.e. causing greatest flow 

yaw). The arrangement is identical if additional inlets and exhausts are considered, with the 

symmetrical shutter opening and closing at the same time for the in-phase condition and vice-versa. 
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Figure 181 - Aerofoil to inlet and outlet phasing. 180o out of phase condition (left) and perfectly in phase condition (right) 

However, this definition is simple if there is no time delay between a particle entering and leaving the 

test section. The test section was 5.1m long and the velocity inlet was set at 25ms-1, which causes a 

flow time for a particle to be 0.218s. Therefore the sinusoidal phasing between the front and rear 

oscillations, at each frequency, were evaluated as: 

( )( )f(s) Time Flight Particle2   Difference Phase π=  

where f is the aerofoil oscillation frequency. The necessary timing adjustments are made in the 

subsequent tests.

 

5.8.2 TGS 3D Model with Aerofoil Oscillations at 10Hz 

Figure 182 shows the variation in flow velocity down the test section length. The flow velocity is 

acceptably consistent with velocities within ±1.5% across the height range of 1.0 - 0.5m. A slight 

velocity speed-up is seen at recording locations further above the tunnel floor, which was set as a fixed 

ground. All results are for an instantaneous snapshot as opposed to being averaged over a period. 

Measurements were taken at lines of ±Y at ±0.4m from TTC (located at X = 1.8m, Y = 0.0m) and lines of 

±X at ±0.6m from TTC as well as X and Y axis lines centred on the TTC. Note that the three lines on the 

graphs now presented represent heights as opposed to in the 2D results where they represented 

width-wise locations. Where expressed, low, mid and high measurement locations were at 0.1, 0.3 and 

0.5m in the Z-axis respectively. 

[18] 
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Figure 182 - Normalised instantaneous velocity magnitude against X-location for 10Hz case at a discrete timestep for Y=0m 

Figure 183 shows the velocity variation with tunnel width (Y-axis) taken at turntable centre (TTC). The 

velocity does show a variation but is relatively consistent, and certainly the difference in velocity 

magnitude between the height levels is comparable to the variation over the tunnel width. The 

difference is due to the diagonal yaw of the shear layer in the tunnel, and this effect, if found to be 

important, could be mitigated by running the rolling-road. The asymmetric nature of the plot is 

because this is an instantaneous result from a dynamic system. Therefore, though there is zero yaw on 

the aerofoils, there is hysteresis in terms of yawed flow. If the result was taken at 180o of aerofoil 

phase, the mirror image about the graph’s Y-axis would be seen. 

 

Figure 183 - Normalised instantaneous velocity magnitude against Y-location for 10Hz case at a discrete timestep for 

X=1.8m (TTC) 
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Figure 184 shows a large yaw angle variation with tunnel longitudinal location and of note are the 

lower yaw angles generated than in the steady-state case. The plot shows that at the moment 

captured the TTC experienced zero yaw as the sides of the jet were correspondingly experiencing 

greater magnitudes of yaw. This can therefore be visualised as the yaw propagating down the test 

section, nozzle to collector, as the aerofoils oscillate, and hence the peak values in Figure 185 will be 

the actual yaw and corresponding turbulence intensity generated.  

The variation in yaw at the three heights is acceptable, particularly as a model would exist in the 

sub-0.3m height range where yaw variation is approximately ±0.5o. 

 

Figure 184 - Yaw angle against X-location for 10Hz case - snapshot at peak aerofoil displacement at Y=0m 

An important result from the lateral yaw trace is what peak yaw angle was achieved and its uniformity 

over the jet’s width. In order to determine the true peak angle, the X-location offering the greatest 

peak angle results from Figure 184 was used and re-plotted against Y-location at the three measured 

heights. The peak yaw angles were achieved at X = 2.8m, with the corresponding results shown in 

Figure 185, where 6o of yaw was achieved at TTC. Yaw uniformity is moderate with height, within ±1o 

between Z = 0.1 – 0.5m, and within ±0.5o over a typical over a typical model’s height range of 

Z = 0.1 - 0.3m. The variation in yaw over the width is worth noting and is due to the aerofoils being at 

the nozzle sides, therefore the flow is least yawed furthest from the aerofoils (i.e. at the centre of the 

jet). 
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Figure 185 - Z-axis constant yaw against Y-location (at X=2.78m) for 10Hz case 

Pitch variations were assessed, though not shown. Pitch angles were all acceptable but did suggest that 

the inclusion of a horizontal aerofoil at the top of the nozzle for pitch corrections, as well as adding an 

extra axis of turbulence generation, would be of value. 

Table 8 reports the force loads experience on the aerofoils during the test cycle. The forces are all of an 

acceptable magnitude, (100 − 200N) and should not propose significance mechanical issues during 

operation.  

Table 8 - Aerofoil force results for the 10Hz case 

 

Average Aerofoil Force 

X (N) Y (N) Z (N) 

Average: 91.7 60.6 -0.8 

Std. Dev.: 24.1 55.0 1.7 

Max: 191.2 224.6 3.4 

Min: 6.1 -113.8 -6.5 

 

Tests with the aerofoils oscillating at 30Hz were also undertaken, but it was found that at this higher 

frequency the aerofoils were moving at such a rate that the air flow was unable to be fully turned 

during each cycle, and therefore the quality and uniformity of yawed air flow was notably less than at 

10Hz.  Also, from the on-road conditions reviewed and the specification of the TGS detailed at the 

beginning of this chapter, oscillation rates greater than 10Hz are not necessary to model on-road 

effects (i.e. lower spectral energy in the on-road environment at such a frequency). Consequently the 

results have been omitted. 
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5.9 TGS 2D and 3D Model CFD Simulation Conclusions 

Initial scoping CFD simulations of a static 2D model found that using a moving collector to encourage 

yawed flow caused large regions of recirculation. The tests did show that flow yaw angle was periodic 

with aerofoil oscillation rate and that other frequencies of yaw angle variation did not become 

dominant in the test section. The scoping tests did show, however, that two aerofoils placed at the 

nozzle sides could generate yaw up to ±4o with acceptable lateral uniformity, but an unacceptable yaw 

decay rate with longitudinal location. From this a 2D CFD static model was tested with additional inlets 

and outlets placed adjacent to the nozzle and collector, respectively. The results from these tests 

showed an increased peak yaw angle of ±6 - 8o with notably better yaw angle uniformity both 

longitudinally and laterally.  

Tests were conducted with the multiple inlet and outlet model at frequencies ranging from 0.1 - 30Hz, 

with acceptable yaw angles generated over the entire frequency range. No regions of flow 

recirculation were found and hence the design was further analysed using a 3D simulation model. 

Static 3D simulations in Fluent of the TGS multiple inlet and outlet design showed achievable yaw 

angles up to ±6 - 8o and acceptable flow uniformity both longitudinally and laterally throughout the 

tunnel’s test section. Yaw variation of less than a ±1o was found over a test model’s plan-view area and 

velocity magnitude decay was nominal across a model’s width. The 3D TGS model was then designed in 

Powerflow and a transient simulation was completed, running at 10Hz and ±9o of aerofoil angle. Flow 

yaw angles of up to ±6o were generated, again with acceptable flow uniformity throughout the test 

section. 

The tests showed that the yaw angle will propagate downstream for a large distance if additional inlets 

and outlets exist, but that without these the yaw angle of the flow will simply follow a bowed path 

through the test section. Higher frequency tests (>10Hz) showed poor flow uniformity with the aerofoil 

oscillation rate being beyond the limit of the momentum required to deviate the air flows’ path. At 

higher oscillation rates a decrease in peak yaw angle was shown (but up to 10Hz is still suitable for the 

length scale and intensity targets suggested). This outcome suggests that the TGS design should focus 

on higher peak aerofoil angles (i.e. 15o) at 10Hz as opposed to higher aerofoil oscillation rates. The 

simulations demonstrated that static simulations will show approximately a 1.0 : 0.9 ratio between 

aerofoil angle and flow peak yaw angle, whereas the dynamic simulations typically showed a ratio near 

1.0 : 0.7. This ratio suggests that an aerofoil amplitude of 15o would yield a flow yaw angle in the 
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region of 7 - 9o at the model’s location (i.e. approximately 60 - 70% of aerofoil angle), for frequencies 

up to 10Hz, though the peak yaw angle will vary with aerofoil oscillation rate.  

In review, therefore, the CFD results offer confidence in the proposed TGS design and though the final 

flow yaw angles are not as high as desired, the angles would be suitable for the design of a TGS able to 

recreate real-world on-road flow conditions in a test environment. 
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6. TGS Mechanical Design 

6.1 Overview 

This chapter specifies the operation of the TGS system and the development of its mechanical 

specification. The installation of the TGS system was a large project undertaken over a year of time 

including several months for its installation and commissioning. The aerodynamic development and 

mechanical design of the TGS was undertaken as part of this thesis, with an external contractor, 

Labman, constructing and installing the system at Durham University. The specification for the design 

given to the external contractor is presented Appendix 2. The system can provide consistent test cycle 

conditions in air flow speeds of up to 35ms−1 and with the ability to run (with regular and thorough 

maintenance) for extended durations (i.e. hours). The system’s aerodynamic capabilities are 

investigated during the Commissioning study, Chapter 8.    

The turbulence generation process is performed though the interaction of three 0.6m chord length, 

NACA0012 aerofoils of 1.1m in length, two imposing yaw and one imposing pitch. Each unit was 

bespoke to actuate force in the form of programmable oscillatory motion. Sets of shutter valves 

operate in conjunction with the aerofoils to control the inlet (five shutters) and outlet area (four 

shutters) of the wind tunnel working section. These shutters operate to achieve rapid increase and 

decrease in flow area of the inlet and outlet, each independently controlled for either side of the wind 

tunnel. Two additional sets of shutter valves create a controlled change of area in the rear collector. 

The system was installed as a permanent feature in the 2m wind tunnel at Durham University, of which 

the base design is shown in Figure 186. The 2m wind tunnel at Durham University is a 3/4 open jet 

tunnel with a total length of approximately 20m, with further details of the original tunnel design given 

in Sims-Williams (2002). The inlet nozzle has a contraction ratio of approximately 4:1, excluding the 

bellmouth. The 5.5m long test section jet has a cross sectional area of 2m2 (aspect ratio 1.5 : 1.0) and 

the tunnel operates at speeds up to 30ms−1. At the end of the test section the collector directs the flow 

into the two main diffusers, which feed into a fan chamber consisting of two fans totalling 130kW in 

power. These exhaust vertically via two exhaust diffusers. 
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Figure 186 - Perspective view of TGS ducting in red with the TGS device in blue (plenum chamber omitted for clarity) 

Laterally and horizontally mounted aerofoils of the TGS provide oscillatory forces, which act to modify 

the air flow through the wind tunnel, creating variable angles of yaw and downwash throughout the 

length of the tunnel. The controlled interaction of the TGS components across a range of 

programmable frequencies, phases and amplitudes creates variations in the dynamic flow yaw angle. 

Flow control relies on the conversion of rotary motion to oscillatory motion via two servo motors per 

aerofoil.  The whole TGS is powered by a single 15kW supply. 

Additionally a series of shutter units (Figure 187) mounted at either side of both inlet and outlet 

regulate air flow into and through the wind tunnel. Testing was successfully carried out to validate the 

applicability of rotary solenoid actuation on the shutter valves running up to 10Hz. In the design, 

careful attention was paid to the response times achievable for the high torque, high inertia 

characteristics of the shutter application. The additional inlet shutters are incorporated into the design 

such that the overall jet width, when viewed in plan, is maintained even when the air flow is yawed 

(otherwise the effective jet width would decrease with flow yaw angle).   

The main collector mounted shutters (called the longitudinal shutters) cause the flow through them to 

accelerate and retard as they open and close due the consequential change in the collector flow area. 

As the lateral aerofoils yaw the inlet flow, the two shutter units of five (inlet) and two units of four 

(outlet) shutter valves open and close in a programmable, cascading motion, matching the frequency 

and phasing of the aerofoils, maintaining the ratio of inlet to outlet area.  

Interlocks and over-load monitoring ensure safe operation the system and maintenance was designed 

to be minimal, with only pre-operation checks required. All drive components (i.e. each solenoid and 

motor) can be controlled independently and each has a dedicated channel from the system’s 
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programmable logic control system (PLC). The system is controlled via a desktop PC using bespoke 

software coded in Visual Basic. 

The tunnel-floor standing TGS is fully integrated into the current wind tunnel at Durham University and 

is mounted on a separate frame to minimise vibration transmission from the system to the wind tunnel 

structure to protect the integrated and sensitive measuring equipment. 

6.2 TGS Hardware Overview 

The TGS consists of the following, fully integrated key components: 

• Two laterally mounted NACA0012 profile, 0.6m chord, 1.14m height, aerofoils capable of 

variable amplitude oscillation from 0 to ±15o at a frequency variable up to 10Hz. 

• A single horizontally mounted NACA0012 aerofoil capable of variable amplitude oscillation 

from 0 to +30o (i.e. to generate downwash only) at a frequency variable up to 10Hz, having a 

height of 1.14m and a chord of 0.60m. 

• Two sets of inlet shutters comprising five shutter valves, each capable of achieving a 0 - 90 

(manually variable) - 0 degree rotational actions at frequencies up to 10Hz. Shutters are 0.06m 

wide, 1.14m tall. 

• Two sets of exhaust shutters comprising four shutter valves, each capable of achieving a 0 - 90 

(manually variable using an adjustable stop limit) - 0 degree rotational actions at frequencies 

up to 10Hz (i.e. complete cycle within 0.1s). Shutters are 1.20m tall, width 0.06m. 

• Two sets of collector shutters comprising two shutter valves, each capable of achieving a 0 - 90 

(integrated) - 0 degree rotation at frequencies up to 8Hz. Actuation of these shutter valves 

causes a reduction in collector area of up to 40%. Shutters are 0.12m in width and 1.20m in 

height. 

The aerofoils were manufactured from a moulded carbon-fibre shell to the NACA0012 profile with 

internal carbon-fibre tooling section providing additional strength and rigidity. Carbon-fibre end plates 

provide a suitable mounting structure for the required shafts and drive train interface components and 

an internal and external ‘top hat’ layering of the carbon-fibre over the end plates ensured high inertial 

loading resistance. The aerofoils’ mass and moment of inertia were minimised to ensure that the 

maximum oscillation frequency was achieved. An over-view of the TGS hardware is shown in Figure 

187. 
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Figure 187 - TGS aerofoil and front shutters (left) and rear shutters and longitudinal shutters (right) with respective ducting 

shown in red (plenum not shown for clarity) 

6.3 Oscillation Control 

The motor linkage (Figure 188) achieved some key operating requirements: 

• The variation of the frequency of each motor, when in constant phase, controls the aerofoil 

oscillation frequency. 

• The variation in phasing of each motor controls aerofoil peak angle.  

• The motors can operate in a continuous rotational motion, reducing peak torque and power. 

• The configuration allows arbitrary motion through programming one or both servo motors.  

• The linkage configuration allows sinusoidal aerofoil motion with real-time frequency amplitude 

and phase adjustments at large amplitudes and frequencies (i.e. not restricted by motor inertia 

when motors operate in a continuous, one-direction, motion).  

 

Two, 2kW motors move each aerofoil, each motor powering a separate shaft, turning a set of circular 

discs with eccentrically mounted connecting rods. These are connected by rods to a rectangular bar 

near the middle right of the aerofoil, which is pivoted at its centre, and therefore only has this 

one-degree freedom of movement. The mechanism is shown in Figure 188 and Figure 189, where the 

two motor cranks rotate simultaneously.  
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Figure 188 - Simplistic plan view of an aerofoil with its dual motor linkage to 

control peak angle and oscillation rate via motor frequency and phasing 

Figure 189 - Dual-motor linkage 

system as installed 

Through this mechanism, essentially 4 operating modes exist: 

1. Both motors operate at the same, constant speed but at different phase separations allowing 

variable amplitude sinusoidal motion. This mode achieves the largest aerofoil accelerations 

(amplitude and angular velocities) as motor rotational inertia does not have to be overcome. 

2. The two motors operating at different speeds, allowing two harmonic frequencies to be 

superimposed.  

3. One motor operating at constant speed allowing large amplitude, high frequency oscillation 

while the second motor can simultaneously provide a superimposed programmed motion 

(i.e. second crank not operating in full revolutions). 

4. Both motors operating in an arbitrary motion (i.e. cranking backwards and forwards), driving 

any arbitrary motion of the aerofoil, subject to the acceleration limits that can be achieved by 

the motors.  

All control is through an Ethernet interface to the PLC control unit that operates on a 4ms clock 

(i.e. each command is updated every 4ms). The TGS software is used to control, synchronise and vary 

the phase and speed of the six motors, providing motion of the aerofoils. Within the control 

framework, the motors can be programmed to create a range of constant and arbitrary motion profiles 

and the software provides synchronised actuation commands to the PLC to activate the shutter valves 

correspondingly with the motion of aerofoils. This also ensures that the shutters can operate in a 

cascading and velocity-phased motion, aiding flow uniformity and maintaining yaw between the nozzle 

and the collector. 



 

 

 

156

6.4 Inlet and Exhaust Shutters 

The shutter units, shown in Figure 187 and Figure 191, are individually actuated by a high torque rotary 

solenoid controlled by individual input and output ports of the control system. Shutters are housed as 

a unit within a rigid frame, which is damped from the external structure through vibration mounts, 

fixed to a secondary, rigid frame. The carbon-fibre shutter flaps provide lightweight, rigid bodies with 

low inertia. Actuation of the shutter valves is provided through rotary solenoids with each shutter 

valve actuated by its own solenoid.  

6.5 Shutter Frequency Response 

The closest reproducible response square wave output by the shutter units, under the solenoid 

actuation at the highest frequency of 10Hz, provides a response demonstrated (as a guide) by the 

computer generated trace shown in Figure 190. This response was achieved continuously in testing 

and provides a minimum shutter-open time of 20ms when operating at 10Hz. At this maximum 

operating frequency the mechanical response is, effectively, a saw-tooth wave. Ideally, a square-tooth 

wave would have been achieved and the extent of the effect of instead having a saw-tooth wave at the 

highest operating frequencies is assessed in the commissioning study. Of course, at lower frequencies 

(and notably at frequencies below 5Hz) the wave profile is, from an aerodynamic perspective, square.  

 

Figure 190 - Shutter solenoid example response. Note that the inflexion points are slightly rounded in actual operation due 

to the acceleration period of the shutter 

0.05s 
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6.6 Rear Collector Shutters 

The rear collector shutters (which create longitudinal velocity pulsations) are manufactured to the 

same design as the inlet and exhaust shutters and mounted as two units, with two shutters per unit 

(i.e. 4 shutters in total).  The shutters provide an almost saw-tooth response waveform (ramp open, 

ramp closed) as in Figure 190. When the collector shutters operate, a reduction in collector flow area 

occurs. The change in flow area happens more quickly than the fans can compensate, therefore an 

increase (and then decrease on opening of the shutters) of velocity in the wind tunnel occurs. 

6.7 Software operation 

The TGS control software uses a method of multi-axis control by emulating synchronised speed of each 

motor and shutter axis from a virtual master axis, allowing for a straightforward system control 

process. The operator sets the desired frequency of the master axis and then, through a user defined 

virtual speed ratio and phase, the control of the subsequent motors is determined. This virtual speed 

ratio mechanism allows the running of a multiple axes to create a range of chosen speeds, within the 

performance limitations of the TGS. 

To synchronise the shutter control commands into the process, the software views the shutters as an 

additional set of axes to control, thus speed their operating rotational rates from the master axis. The 

control framework ties the inputs of the exhaust shutters to the corresponding inlet shutters, ensuring 

that the inlet and exhaust shutters on each side of the wind tunnel actuate in unison, with a phasing 

factor for the tunnel flow longitudinal velocity (i.e. time taken for air to travel the test section length). 

The rate of the shutter cascade can be geared to test cycle requirements whilst maintaining frequency 

synchronisation with the aerofoils. 

6.8 Arbitrary Air flow Control 

A key specification desire was to ensure that the TGS could create fully arbitrary motion, within the 

limits of the motors’ power output. The TGS provides motion to produce test conditions in which the 

air flow is representative of dynamically variable length scale and intensity conditions. The arbitrary 

turbulence in the air flow can be created by the TGS through constant, dynamic variation of aerofoil 

oscillation amplitudes. Such motion is achieved, in one method, by the TGS through varying the speed 

ratio and phase between each of the two motors. This represents a programmed range of non-stop, 

dynamically varying amplitudes during the aerofoil oscillation operation. A second method of arbitrary 
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motion can be achieved simply by driving the motor cranks to differing angles at varying time intervals. 

A time against position input file defines the overall TGS motion.  

6.9 TGS Ducting 

Additional ducting was installed at the inlet and exhaust ends of the wind tunnel. Images of the 

installed TGS system are shown in Figure 191 and Figure 192, where the inlet ducts are presented 

sealed for non-TGS operation, which minimises any flow leakage.  

The inlet ducting was kept as short as possible to minimise the inertia of the air in the duct, with as 

large a bellmouth as was feasible to pre-accelerate the air flow as much as possible. The rear auxiliary 

exhaust ducting is a section from the rear shutters to the tunnel diffuser walls (the rear shutter unit is 

located in line, in the X-axis, with the collector inlet).  The flow is therefore maintained in the X-axis 

(i.e. no turn) until it meets the main diffuser, where it joins the flow of the main collector mass flow. 

The angle between the auxiliary ducting flow to diffuser flow is below 10o
 to minimise viscous losses 

(i.e. flow turning angle when the flows meet). An actuated door is installed, which can be remotely 

controlled, to move between a TGS and non-TGS mode by sealing the main diffuser from the auxiliary 

diffuser where the two meet. From the tunnel rear wall to the main diffuser the contraction ratio of 

the auxiliary ducting is matched to that of the main diffuser contraction ratio, encouraging similar flow 

velocities (though this does, naturally, depend on the number of shutters open per side). No splitters 

were placed between shutters as with only a nominal gap between each shutter, flow leakage is 

nominal.  

   

Figure 191 - TGS system installed into Durham University's 

2m Wind Tunnel 

Figure 192 - Auxiliary inlet and exhaust ducting for the TGS 

shutters 

Y+ Rear  

Shutter Unit 



 

 

 

159

As shown in Figure 193, the inlet ducts are sealed during non-TGS operation to minimise any flow 

leakage. 

    

Figure 193 - Additional inlet and exhaust ducting to feed the TGS front and rear shutter units 

6.10 Conclusions 

This chapter details the mechanical considerations made for the TGS mechanical design and 

installation. The TGS system is capable of operating up to 10Hz with a ±15o with twin lateral yaw 

aerofoils and one horizontal aerofoil creating pitch. The system uses additional mounting frames and 

ducting to be fully integrated with the current wind tunnel installations, and allows a timely 

changeover between TGS and non-TGS test operations. A twin motor configuration allows real-time 

motor peak angle and phasing adjustments and solenoid operated shutter units at the test section inlet 

and outlet operate in a coordinated unison with the aerofoils.   
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7. TGS Arbitrary Mode Operation and Control 

7.1 Overview 

The TGS system is controlled through a PC Ethernet connection to a PLC that controls the servo motors 

and the shutter solenoid actuations. The control system use a virtual master axis that is defined by a 

rotational frequency and speed. From this master axis a speed ratio and phasing is defined to control 

each and every motor. As a pair of motors drives each aerofoil and the desired input is aerodynamic 

yaw data, and the desired output metric is simulated yaw angle in the wind tunnel, there was a 

segment of the control process that needed to be evaluated in order to optimise the use of the 

aerofoils. The considerations presented relate to arbitrary control of the TGS system (i.e. rapidly 

varying peak angles) as opposed to harmonic motion that only requires the motors’ rotational speed 

and phase to be set once per test cycle. This chapter covers two main processes, the first to determine 

the best approach for controlling aerofoil angles and the second is the best approach for processing 

on-road data into TGS instructions. The key methods that are assessed are: 

• Methods for controlling the TGS aerofoils in an arbitrary mode 

• Methods for converting on-road yaw data into TGS aerofoil angle data 

And for these methods, the key parameters that need to be established are: 

• Motor rotational frequency, controlling time between yaw peak angles 

• Motor-to-motor phasing on each aerofoil, controlling amplitude of yaw 

In order to constrain the task, a few desirables were determined: 

• The input to the control software would be at the start and end yaw angles, the start and end 

times of the motion and the initial position of the motors. 

• All other factors, such as the physical limits of the system etc., would be constrained within the 

software. 

• The software would need to determine the optimum phasing and speed of the motors to 

achieve the desired motion and that it would derive the motion and also determine shutter 

actuation from this. 

• Ideally the motors would rotate continuously, without reversing, to minimise inertial loads. 

• The software should be able to take high frequency on-road aerodynamic data and scale and 

resample this data such to be suitable for the software to generate TGS instructions. 
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• Output the final motion map to a comma-separated file suitable for reading by the OEM 

control software. 

 

It should be noted that a simple program that can generate basic harmonic motion was supplied by the 

OEM, and was suitable for initial testing, but needs additional input to be able to generate 

representative on-road and multiple environment equivalent outputs (i.e. arbitrary motion). As 

mentioned in the previous chapter, arbitrary motion can be generated through frequency and phase 

adjustments, but also achievable by simply driving the motor cranks rapidly to differing angles. The 

considerations presented in this chapter relate to the challenges with both methods. 

7.2 Direct Arbitrary Control Method 

As a first stage of this process, a direct control model was created using only motor angle and 

frequency to reach target yaw angles. This is where the motors are set in phase and are simply rotated 

between 0o and 180o through the +90o side, but never above 180o or below 0o. In this manner an 

aerofoil yaw angle (which is translated into a motor crank pivot average position) can be readily 

achieved by simply advancing or reversing the two motors to a certain angle position, with the 

time-period between each yaw angle determining the angular rate of rotation of the motors. The 

simplicity, though, is compromised because the motors therefore have to reverse and advance, which 

requires them to overcome the full inertial loads of the aerofoil mass and linkage system, limiting the 

peak oscillating rate and the high acceleration rates cause large structural loads. Additionally this 

method always requires 8 commands (2 phase and 2 speed commands for 2 motors), which could be 

reduced by pre-processing.  

7.3 Phase and Frequency Control Method 

7.3.1 Frequency and Phase Adjustment Constraints 

The use of dual motors to control each aerofoil offers a unique set of challenges, namely that the 

motion is a sinusoidal combination of two motors. When considering moving from one angle to angle, 

the motors initially could be at any angle in their 360o of rotation. Therefore both the phasing and 

speed of both motors must be considered to move an aerofoil between yaw angles within a fixed time 

period.  As an introduction, an example is shown in Figure 194, demonstrating the effect on aerofoil 

angle if the two motors operating on one of the aerofoils in the TGS run at differing speeds and phase. 
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Figure 194 - Aerofoil motion for differing motor speeds and phasing 

The first factor is that the PLC has an actuation time to implement a new control variable update 

(e.g. change gear ratio from 1 to 2, or change phasing from 0o to 90o), such that within one second of 

time around only 20 commands can be sent. Therefore, for example, if 2 aerofoils are being driven, 

and an actual change in yaw angle requires each motor to change both its speed and phase, then to 

change the yaw angle of 2 aerofoils could require 8 commands, hence only 2 - 3 updates may be 

possible within a second. It is therefore imperative to minimise the number of commands required by 

the PLC by determining the minimum number of operation commands required to fulfil an aerofoil 

motion change.  

The key parameter to determine an aerofoil’s start and end location is the average displacement of the 

pivot on the two motor cranks, as this determines the lateral displacement of the pivot on the aerofoil. 

If the motors are perfectly in phase then the maximum aerofoil displacement can be achieved and 

at 180o of motor crank phase, zero aerofoil displacement can be achieved. Hence, the achievable peak 

angle within a rotation of both motor cranks becomes a function of the initial motor-to-motor phasing. 

If the desired aerofoil yaw angle is achievable at the initial phase (e.g. if phased 90o, peak yaw angles 

up to approximately 10o can be achieved) then the motors can simply continue to ‘roll-on’ (i.e. just 

keep rotating) at their current phase to the next desired yaw angle. However, if the desired yaw angle 

is not achievable at the motors’ current phase (i.e. at higher aerofoil yaw angles) then the phase 

between the motors needs to be changed. Once the phase is changed, the two motors can continue 

rotating to the desired angle. Finally, in order to control the time period over which a yaw angle 
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change is complete, a speed adjustment to the two motors may also be required. This process is 

detailed in Figure 195. 

 

Figure 195 - Method of 'rolling-on' motor cranks and adjusting crank-to-crank phasing to control aerofoil peak angle 

Such an approach, however, can cause the aerofoils to exceed the target peak angle in their motion 

between peak angles (i.e. kicking-out), as shown in Figure 196 (where the motor crank pivots are at 

their maximum and minimum displacement at +90o and -90o respectively). For example, if both motors 

are in phase and their current crank angle is 60o, the aerofoil will be at an angle of +8o.  

If the next desired aerofoil angle is +6o, with motor rotation continuing in the same direction (to 

minimise inertial loading), the motor crank angle will increase from +60o, up to +90o, causing an 

aerofoil angle of +15o and then onto approximately +150o, which would achieve a resultant aerofoil 

angle of approximately +6o. 

 

Figure 196 - Motor crank motion that causes a aerofoil to 'kick-out' 

As such the actual aerodynamic yaw generated would not track between angles of, for example, 

+8o, +6o, but actually +8o, +15o, +6o. This ‘kick-out’ of the aerofoil is undesirable and can only be 

avoided by phasing the motors as opposed to just continuing their rotation. Therefore, if such an 

occurrence exists, it is better to achieve the target yaw by phasing the motors. Further, if the motor is 

to be both phased and rolled-on, the ideal option is to phase the two motors first, then roll them on to 

the desired angle.  

It was therefore necessary to model how the phasing and frequency of the motors should be adjusted 

to move between peak yaw angles in order to select an optimum method. Once selected, the actuation 

of the shutters can be determined from the aerofoil’s angle of incidence. In controlling the shutters, 
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the only parameter is at what aerofoil angle they should open and close.  Incidentally, this 

consideration process is also valid for the horizontal aerofoil.  

7.3.2 Aerofoil Motion Modelling 

The process to model the optimum approach to adjust each motor is detailed in this section, using a 

known initial time and yaw angle and a target time and yaw angle, with a general overview of the 

process shown in Figure 197. 

 

Figure 197 - Process map for TGS control using motor frequency and phase adjustments 

Firstly, the start and end yaw angles are set and the motors cranks pivots’ initial position are known 

(and may not be equal, i.e. not in phase). The peak angles achievable without further phasing the 

motors is then assessed by modelling rotating both of the motors through 360o. If the target peak 

angle is possible, then the result is output as a number of degrees to rotate both motors. However, if 

this peak angle cannot be achieved, the approach then considers phasing firstly motor 1, then 

independently motor 2, to see how far either motor needs to be phased before the peak angle is 

achievable through motor rotation. The outputs are the minimum phasing angle adjustment required 

and the angle through which each motor needs to rotate. 

The second option, using phasing of both motors to move between yaw angles is assessed. The 

simplest way of finding the optimum phase options is to initially fix motor 1’s crank phase, and rotate 

motor 2 crank though 360o and find if the required yaw angle is achievable from this motion alone. If 

not, then advance motor 1 by one degree and repeat by phasing motor 2 through 360o again. This thus 

assesses at most the 360 x 360 potential permutations of motor 1 to motor 2 phasing to find the 

minimum phasing rotation required of the two motors. The process then repeats the process using 

motor 2 as the principle motor. The output from this process is therefore 2 pairs of motor 1 and 

motor 2 phase angles. The algorithm picks the pair with the lowest standard deviation (as this is the 

pair that requires the least total movement split between the two motors) and outputs this result. 

The time required between peak yaw angles is then used to determine the required rotational rate 

(i.e. frequency) each motor should complete the phasing and rotation adjustment stages. This 
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approach assumes a high rate of acceleration for each motor (i.e. nominal time to reach new rotational 

frequency). The approaches of changing aerofoil angle by rotation alone, rotation plus phasing or 

phasing alone are then compared and the option that requires the fewest commands (ideally with the 

aerofoil never exceeding the initial or target yaw angle) is selected.  

7.4 Shutter Actuation Control 

With the aerofoil motion determined, the shutter opening and closing against time profile is then 

evaluated. This is an assessment of the correspondingly aerofoil angle at which the shutters open and 

close. The process complexity depends on whether the aerofoils are moving from a positive yaw to a 

negative yaw or vice-versa, as the shutter behaviour varies between left and right shutter units. The 

rear units are simply follow the inlet shutter units, just with a time delay for the air flow to propagate 

through the test section. Therefore, at an instantaneous moment in time, 8 conditions exist depending 

on the direction of the aerofoil motion (i.e. decreasing in yaw or increasing in yaw) and whether the 

aerofoil angle is above or below the angle at which a shutter opens or close, as detailed in Table 9. 

Table 9 - Shutter actuation logic map. The start and end parameters being time, the closing and opening against yaw 

parameters being aerofoil angle. 

 

Through evaluating at which aerofoil angle a shutter should open and close, a time against trigger 

profile can be generated. After this analysis, the results are saved into a comma-separated file for 

upload to the PLC. The parameters set the speed and phasing of each motor at a time in milliseconds, 

the peak acceleration rates of the motors and the angle at which the shutters open and close based 

upon the virtual master axis. 

7.5 Processing On-road Yaw Data for TGS use 

In order to process on-road yaw and pitch data into aerofoil yaw angles, the on-road data needs to be 

simplified such that it is suitable for analysis. A flow diagram of this process is shown in Figure 198. 
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Figure 198 - Process for converting on-road yaw measurements to a TGS yaw against time profile 

Firstly the on-road data file was converted from ‘road time’ to ‘tunnel time’, that is both factoring that 

the tunnel runs in TGS mode at 25.0ms−1 as opposed to the recorded road speed of 30.9ms−1 (69mph 

from the on-road study), which results in turbulence wavelengths lengthening by a factor of 

30.9/25.0 = 1.23, but also that the wind tunnel model is 40% scale, which shortens the equivalent 

wavelength by a factor of 1.0/0.4 = 2.50. Thus the resultant scale factor is 2.50/1.23 = 2.06. As such the 

32-second on-road data sample is rescaled to approximately 16-seconds.  

The second stage of the process is applying a low-pass filter to the road data, as the road data contains 

a wide range of turbulence frequencies, but the TGS can only generate frequencies up to 10Hz. To 

correct for this, a 10Hz low-pass filter is applied (i.e. a square edged filter, with some blending at the 

cut-off frequency to avoid inducing a high frequency from a sharp cut-off). This process assumes that 

sine waves are being generated, yet the TGS could generate a saw-tooth wave at 10Hz which would 

have energy at frequencies greater than 10Hz. However, the aim of the process is to minimise the high 

frequency yaw changes that the TGS cannot replicate, and contain less energy on-road but would 

confuse the process of generating a TGS yaw against time trace. 

The data is then down-sampled from its recorded rate of approximately 1,000Hz (at ‘tunnel time’ 

scale) to 20Hz. Note that this sampling rate is double the TGS maximum oscillation rate (i.e. Nyquist 

sampling) to avoid further sampling issues. A linear interpolation method is used to evaluate yaw (and 

pitch) values where the precise tunnel-time falls between the on-road recorded time intervals. This 

gives a flow yaw against time profile, which has to be scaled upwards by around 1.5 to factor in the 

admittance between aerofoil angle and subsequent flow yaw angle. Finally the aerofoil angles then 

need to be converted into motor crank angles, through straightforward trigonometry, for the input 

data file of the TGS control software. To determine the aerofoil displacement from the motor crank 

angle, the following equation can be used: 
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where l1 and l2 are the displacements of the motor crank pivots, r1 and r2 are motor 1 and 2 crank pivot 

radius (≈ 55mm) and θ1 and θ2 are the motor 1 and 2 crank rotation angles, respectively, and L is the 

aerofoil pivot to motor connecting bar pivot distance (≈ 205mm). 

This process of re-sampling gives a true image of the yaw against time trace that the TGS could 

potentially replicate (ignoring mechanical constraints). A comparison between the raw on-road data 

and the 10Hz low-pass results can be seen in Figure 199.  

Additionally a comparison between the 10Hz low-pass results and the 20Hz down-sampled results is 

given in Figure 200. An analytical assessment is made in the next section assessing the effect on signal 

attenuation between each stage of the process. 

 

Figure 199 - Raw on-road data against 10Hz low-pass 

filtered data 

Figure 200 - Data comparison of before and after 20Hz 

sampling 

Finally a comparison between the on-road raw data and the 20Hz-sampled data can be seen in Figure 

201, showing a good visual correlation between the two traces. Again, an analytical comparison is 

made later in this chapter. 
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Figure 201 - On-road data against 20Hz-sampled data (after 10Hz low-pass filtering) 

7.6 Analysis of Post-Processed On-road Data for TGS Use 

After the signal processing of the on-road yaw and pitch data, the conversion from a yaw against time 

trace needs to focus on generating a signal that, as accurately as possible, replicates the original 

on-road trace. With this focus, two approaches were then assessed by which the data could be 

converted into a TGS time against yaw profile. The first is to simply convert the yaw data into time 

against aerofoil angles. However this approach does not consider the harmonic nature of the aerofoil 

operation, nor the consideration that the TGS operates at frequencies (i.e. up to 10Hz) potentially 

greater than the time period over which the dual motors can be updated for phase and frequency (due 

to communication time overheads). Therefore a second approach is to use a Fourier transform method 

to determine the peak FFT frequency and phase of the input yaw signal, and drive the TGS motors to 

these settings, using a rolling window.  

7.6.1 Method 1: Yaw against Time 

This method simply filters the post-processed time against yaw trace for the peak inflexion points, and 

uses the resultant point-to-point profile as the TGS time against yaw profile. Shown in Figure 202 is the 

post-processed on-road 20Hz sampled yaw trace with the red dots showing the essential inflexion 

points that the aerofoil will reach during its motion. A plot of this inflexion-based method profile 

against the yaw data down-sampled to 20Hz is shown in Figure 203, showing a good visual correlation.  
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Figure 202 - Inflexion based analysis of yaw trace using 

20Hz-sampled data 

Figure 203 - Inflexion and 20Hz based yaw angle traces 

7.6.2 Method 2: Frequency and Phase against Time 

This method uses a Fourier transform analysis of the post-processed yaw against time profile to find 

the peak frequency and phase for incremental sections of the yaw against time profile.  This approach 

aims to utilise the sinusoidal nature of the two rotating motors, and by simply determining the 

necessary frequency and phase at which to rotate the motors, the aerofoils can be programmed to 

create the desired inlet yaw waveforms. Three input files went through the FFT analysis, firstly the 

original on-road measurement, denoted as the ‘raw’ data, the post-processed 20Hz sampled data file 

and the inflexions data file from method 1 (just presented). These three input files were then analysed 

for their dominant phase and frequency. In order for the high frequency turbulence of the on-road 

flow conditions to be resolved, it was necessary to run a rolling window analysing the spectral 

properties, and a range was determined to be a window with a size less than 4-seconds at full vehicle 

scale, (equating to ≈2-seconds at tunnel time scale) but with an update rate greater than 0.25s, as this 

is the time required for a full set of instructions to be actuated by the TGS control system.  

Hence the initial analysis used a 2-second (4,096 data samples) rolling rectangular window outputting 

data samples at 0.5-second intervals from the FFT evaluation. Once the spectral analysis was 

completed, the spectral peak amplitude was found and this would determine the dominant frequency 

and phase to run the TGS aerofoils at, updated every 0.25 seconds. Additionally a search frequency for 

the FFT algorithm was set, which constrains the lowest frequency that the FFT algorithm can resolve 
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(which is within the quasi-steady zone of a vehicle’s aerodynamic response). As the fastest the TGS can 

operate is 10Hz, this gave a potential search frequency range of 0.25 − 10.0Hz (though the bin nature 

of the FFT program meant that frequencies slightly either side of this may be returned).  

With these considerations determined, each of the 3 input files (i.e. raw data, 20Hz sampled data and 

inflexion data) were all scaled via linear interpolation to 16,384 data points over the tunnel time period 

of 16-seconds. The 3 input cases were then analysed through the FFT algorithm using a minimum 

search frequencies of 0.1, 0.5, 1.0, 3.0 and 5.0Hz (as it was believed that the minimum search 

frequency could have a notable effect on the output frequency at each interval). 

Once the frequency, phase and amplitude were determined for the whole time trace, it was necessary 

to compare the result of simulating the TGS yaw against time profile using this sinusoidal approach. 

The simulation method of using the FFT peak results was simply a sinusoidal reproduction of the result 

using the corresponding amplitude, phase and frequency as:  

( )pftCosA −= π2.Angle Yaw Modelled  

where A = yaw angle modelled amplitude, f = FFT peak frequency, t = sub-time and p = FFT peak phase 

and where the yaw angle modelled amplitude FFTA
n

A
2

= and where n = number of data samples 

(16,384). 

An example of such a result is given in Figure 204, where the sinusoidal response with differing 

amplitude and phase changes can be seen along the trace. Visually the comparison shows a poor 

correlation from the original yaw against time trace against that generated by the FFT process. 

 

Figure 204 - FFT modelled yaw angle trace and 20Hz sampled on-road trace, using a 0.1Hz minimum search frequency 

[20] 
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7.6.3 Comparison of methods for generating TGS yaw against time profile 

With two approaches to generate the TGS input control profile considered, it was necessary to 

analytically compare each approach’s ability to replicate the original on-road yaw against time profile. 

To compare the range of options available the standard error was evaluated for both the initial input 

trace and then the modelled trace, as: 

n

Yaw∑
=

2

Yaw road-Onof  Deviation Standard  and 

( )
n

∑ −
=

2
Yaw RawYaw Simulated

Error Standard Modelled  

Finally the RMS standard error is then evaluated simply as given by:

  

Error Standard Modelled

Deviation Standard (Raw) Road-On
Error Standard RMS Total =  

The time against yaw profiles tested were the on-road raw trace, the 20Hz resampled trace (after the 

10Hz low-pass filter) and the peak yaw inflexions for a range of search frequencies. After the full 

analysis was completed, the results were as presented in Table 10. The cases are titled as the input file 

(20Hz sampled, on-road raw results or inflexion results) and the minimum search frequency used. The 

‘RMS initial standard error’ is the input profile standard deviation into the FFT algorithm, and the ‘RMS 

modeller standard error’ is the output profile standard deviation, and the ‘RMS standard error’ is the 

difference between these two (analysed data point-wise).  

The results are then ranked in terms of minimum RMS standard error. The orange highlighted row is 

the inflexions result from the raw result, this being the lowest rank that is practical by using a time 

against position method. The green highlighted results are the best frequency and phase based results 

(using the inflexions case), then the blue is the best method from the raw road results and the yellow 

row is the best using the 20Hz data input file.  

The final three rows of the table compare the accuracy of yaw against time profile after each of the 

initial signal processing stages (i.e. without any FFT algorithm modelling). 

[23] 

 [21] 

[22] 
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Table 10 - FFT modelled yaw angle results 

 

The results therefore show that the best method to reproduce the on-road yaw recording is to use the 

inflexion based input file as a aerofoil angle against time approach, rather than using an FFT frequency 

and phase based method, as this approach generates a lower standard error than all of the FFT derived 

profiles. 

Finally, in order to confirm that the FFT windowing used (2.0-second windows with 0.5-second 

intervals) was optimum, and that the windowing was not limiting the assessment, a comparison was 

made of a variety of window and interval permutations within the constraints detailed earlier. The case 

used was the 20Hz sampled yaw against time profile with a 0.1Hz minimum search frequency, with the 

results shown in Table 11.  

The results show that minor improvements could have been made from the datum result (the green 

row), corresponding to a reduction of -0.03o in RMS standard error. Such an improvement on the best 

frequency and phase-based result would take the inflexions RMS standard error result using a 0.1Hz 

minimum search frequency from 0.75Hz to 0.72Hz, which is still above the yaw against time result, 

which has an RMS standard error of 0.70Hz. Therefore the approach used and the conclusions made 

remained valid.  
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Table 11 - FFT frequency and phase method with varying window and interval sizes 

 

From these multiple stages of analysis, the method that offers the most accurate conversion process 

from an on-road yaw profile to a TGS yaw profile is by undertaking a process of resampling the on-road 

data trace and selecting the main inflexion peaks from the trace. As this profile is a set of yaw against 

time measurements, the direct arbitrary method of driving the aerofoils from peak-to-peak yaw angles 

between points of time (i.e. with the motors kept in phase) is the more suited method of the two 

proposed. Therefore, the final variable to consider in determining the inputs in the TGS yaw against 

time profile is the motor frequency (i.e. crank rotational rate), which defines the time period between 

yaw peaks. 

7.7 Determination of Motor Frequency for Arbitrary Aerofoil Motion 

In order to oscillate the aerofoils between yaw peaks in a relatively linear and smooth motion (as 

would occur in the on-road environment) within a set time period, it is necessary to determine the 

correct rotational rate of the motor cranks. The derivation of the target velocity is split into three 

stages of a motor’s motion, initial acceleration, constant speed and final retardation. The initial 

acceleration occurs between time to to t1, moving the motor crank from angleθ0
toθ1

, then constant 

speed between time t1 to t2 when the motor crank is moving at constant velocity from angleθ1
toθ2

, 

and then finally a retardation period between time t2 to t3 where the aerofoil slows to stationary from 

angleθ2
toθ3

. The equations governing the motion during these periods are those of standard 

displacement through velocity and acceleration, with the maximum velocity of the aerofoils being, v, 

and the acceleration rate being, a: 
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θ2 =θ1 + v t2 − t1( )  and θ3 =θ2 +
a t3 − t2( )

2

2
, where t3 − t2 =

v

a  
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a
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v
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4
30

2

33 θθ −+±
=⇒ quadratic the Solving  

For an arbitrary set of inputs, the results are plotted in Figure 205, showing three clear stages of motor 

crank motion between illustrative times and angles.  

 

Figure 205 - Typical motor motion showing stages of constant acceleration and constant velocity 

Therefore by evaluating the target velocity, the motor driving frequency can be set. Hence the 

arbitrary TGS test case can use the evaluated frequency, the target yaw angle determined from the 

inflexions yaw profile and no phase adjustments between the motors, for its complete set of control 

parameters. 

7.8 Conclusion  

This chapter has covered the theoretical operation of the TGS system and the development of a TGS 

arbitrary case file from raw on-road yaw measurements. An initial overview was made of the concepts 

[24] 

[25] 

[26] 

[27] 

θ1- θ 2  θ 2- θ 3 
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that affect the operation of the dual motor drive, noting the need to ensure that the aerofoils 

accurately follow the correct yaw paths without exceeding the target yaw angle as the aerofoils move 

between set points, all within the constraints of the TGS control software. A direct arbitrary control 

method was proposed where the aerofoils are simply driven within one 180o arc of the motors. This 

method requires the assignment of a very high acceleration rate and a variable frequency to set the 

time period between yaw peaks. Additionally a process was presented where frequency and phase 

adjustments could be used to create an arbitrary TGS case whilst keeping the motors running 

continuously in one direction of rotation. The process by which the shutter actuation triggers could be 

determined was also presented. 

As the flow yaw angle generated is less than that of the aerofoil’s angle, a scalar between the on-road 

yaw and aerofoil angle was demonstrated. Consideration was then made to the appropriate analysis of 

the on-road data measurements to determine whether to use either the spectral properties of the 

on-road flow or simply just the peak flow angles recorded to configure the TGS motion. In order to 

prepare the on-road recorded results for such a comparison, the data was filtered through a 10Hz 

low-pass filter and then down-sampled at 20Hz. The filtered trace was then compared to the on-road 

results from the resultant traces using both spectral (i.e. FFT based on frequency and amplitude) and 

direct (i.e. moving the aerofoils to the major inflexion points of a trace) approaches, using a variety of 

evaluation sampling windows. Finally a derivation of motor crank target velocity was presented, which 

was used to determine the driving frequency of the motor cranks. From these assessments, the 

inflexions yaw angle input approach proved to be the best, which will be used with the direct arbitrary 

control method to generate the input file for the TGS yaw profile. 
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8. Wind Tunnel TGS Commissioning Tests 

This chapter presents a comprehensive study of the TGS’s parameters that were found to significantly 

affect flow uniformity and yaw generation. A series of tests are undertaken to commission the wind 

tunnel and then studies to understand the parameters affecting yaw and pitch generation. The test 

map for the commission study is as shown in Figure 206. 

 

Figure 206 - Wind tunnel and TGS commissioning study test map 

8.1 Tunnel Commissioning Tests 

The installation of the turbulence generation system and the simultaneous power upgrade of the 

2m wind tunnel at Durham University meant that the nominal aerodynamic characteristics of the wind 

tunnel had changed, requiring a series of preliminary tests. These covered: 

• Velocity measurement via a calibration of a Plenum based flow velocity measurement 

system. 

• Static pressure gradient assessment to determine the nominal TGS aerofoil angles for 

operating the tunnel in a static, non-TGS mode. 

• Boundary suction layer fan to tunnel flow rate calibration 

These tests were conducted in unison. A pitot-static tube was located at turntable-centre (the static 

pressure tap located at X = +1800, Y = 0, Z = 250mm from boundary layer suction splitter plate leading 

edge), and 5 static pressure lollipop tappings were located on the tunnel floor in a row along Y = 0mm 

(and hence Z = 0mm). The central tapping was located at X = +1800mm, with the others being located 

at ΔX±500 and ±1000mm. Finally, the plenum method nozzle calibration for wind tunnel velocity 

measurement was set-up with a ring of 4 static pressure taps placed around the tunnel nozzle inlet’s 

walls, before the contraction (and just after the inlet bellmouth), located in the middle of the ±Y and ±Z 



 

 

 

177

walls. Two additional static pressure taps were located at extreme ±Y locations at the highest height 

possible on the front wall panel of the plenum. This location placed the 2 plenum tappings well out of 

the transient flow effects that could be generated by the TGS and, by having two tappings, averaged 

out any potential lateral flow effects during TGS operation. This offered more reliable velocity 

measurement system where the tunnel mass flow could vary with shutter motion. 

The wind tunnel was run at speeds of 5, 10, 15, 20 and 25ms-1, and at each velocity set-point the 

boundary layer suction fans were varied to generate horizontal flow over the boundary layer suction 

plate leading edge as shown in Figure 207 (determined using a wool tuft flown from a location of 

X = +50, Y = 0, Z = 50mm). Once flow was correctly established, pressure readings were taken of the 

pitot-static, floor lollipops, plenum and nozzle tappings. 

 

Figure 207 - Boundary layer fan calibration set-up using wool tufts 

These measurements were recorded in unison with the percentage demand of power of the pair of 

main tunnel fans and the boundary layer fan, recorded at 1,000Hz with a resolution of 4,096 readings 

and repeated for 50 sets. The test was conducted with the trailing edge of the TGS aerofoils being set 

as were the trailing edge of the plenum inlet nozzle before TGS installation, giving a width of 

Y = 1750mm.  

The graph presented in Figure 208 shows the tunnel’s boundary layer profile in both rolling road and 

fixed ground configurations. 
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Figure 208 - Boundary layer velocity profile 

Figure 209 shows the longitudinal static pressure gradient along the working section, found to have a 

difference of less than 2% per metre. 

 

Figure 209 - Tunnel static pressure gradient against X-location 

A new system was calibrated to measure tunnel velocity by recording the pressure difference between 

the static pressure tappings installed in the nozzle and those installed in the plenum. This pressure 

difference was then correlated to a pitot - static tube in the freestream flow through the working 

section of the tunnel. In Figure 210 the pressure difference between the nozzle set of 4 static pressure 

tappings to the plenum set of 2 static pressure tappings is shown against dynamic pressure measured 

from the pitot - static tube. The resultant pressure ratio is also shown, given in Reynolds number per 

metre. The TGS was set in the ‘non-TGS’ configuration, giving the normal nozzle contraction ratio. 
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Figure 210 - Wind tunnel nozzle calibration measurements 

Finally, it was necessary to align the two motors that both act on each aerofoil, by measuring the 

aerofoil trailing edge displacement from rotating only one of each of the pair of motors through 180o. 

This gave motor crank phase corrections to the left aerofoil of -7o, -4o and to the right aerofoil of 

+1o, -4o (motor crank to aerofoil angle calibration is included in the Appendix, p.258). 

8.2 Shutter Open Angles - Static Tests 

8.2.1 General Test Approach 

The TGS contains a wide range of devices, each of which needs to be operated with respect to one 

another, and as such the commissioning test plan needed to assess all potential permutations and 

optimisations of the system. The key metric is to maximise flow uniformity whilst achieving high peak 

yaw angles. The approach was to first determine the optimum angle that the shutters should open to, 

and then assess the aerofoils angles at which each shutter should open using static yaw tests, and then 

to establish these results as a datum configuration for the harmonic, dynamic test work. The 

parameters being assessed were: 

• The angle that the shutters open to 

• The aerofoil angles at which each shutter open and close, based on static aerofoil tests 

• The aerofoil angles at which each shutter open and close based on dynamic aerofoil tests 

(i.e. factoring in a range of aerofoil oscillation frequencies, front-to-rear shutter phases and 

additional inlet flow acceleration times) 
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TGS tests were conducted at 25ms−1 tunnel velocity, with 5-Hole probe measurements taken at 

9-locations for 4.0s at 1,024Hz through 250Hz filters, this timing window being the same from the 

quasi-steady frequency analysis undertaken earlier in this thesis. Measurement locations were the 

extents of a typical 35% scale model, which is TTC ±350mm in the Y-axis and ±650mm in the X-axis, all 

recorded at mid-model height (275mm). Aerofoil increments were 2o with a full measurement sweep 

taken at each location, giving 20 measurement aerofoil incidence angles. When these locations are 

denoted in graphs, they are referred to by figurative names, these being Front Left, Front Middle and 

Front Right, Mid Left, Turntable Centre, Mid Right, Rear Left, Rear Mid and Rear Right. In this vein, 

based upon the coordinate system used throughout this thesis, the front of the wind tunnel is X-, the 

rear is X+, and when facing the nozzle, the right hand side is Y+ and the left hand side is Y-, as 

illustrated in Figure 211.  

 

Figure 211 - Definition of measurement location names in the 2m wind tunnel 

Additionally, throughout this chapter the recorded yaw and standard deviation measurements are 

averaged between locations. Collections of the length-wise sets can be seen in Figure 212, where the 

red labels are a front set of three, the blue labels are the mid set of three and the green labels are the 

rear locations in a set of three. In Figure 213 width-wise sets are shown, with the red labels being the 

three Y+ locations, the blue labels being the three mid locations and the green labels being the three 

Y- locations in a set.  

When shown in results, the side-to-side (width-wise) comparisons are denoted as Y+-Y-, and 

front-to-rear (length-wise) comparisons as FR-RR. 
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Figure 212 - Measurement locations when averaged as 

length-wise sets 

Figure 213 - Measurement locations when averaged as 

width-wise sets 

It should also be reiterated that in many of the graphs presented in the static and dynamic TGS tests, 

lines are drawn between points, but are for clarity purposes only and should only be considered as 

illustrative. Also, when a variation between data points is significant (i.e. more than one standard 

deviation) a regressed curve would imply a linear or otherwise behaviour between points that would 

not be valid, as a physical change to the system (i.e. a shutter opening) may have occurred.  

8.2.2 Repeatability Analysis 

In order to assess the repeatability of flow measurements, a repeatability test was completed. The test 

used a logging window of 4.0s with 10 sets of data recorded at each measurement location in order to 

make set-to-set comparisons. The standard deviation at each of the 9 locations was always less 

than 0.1o, with a 95% confidence interval of ±0.1o, showing a highly level of repeatability in 

measurement. This of course requires correct probe traverse alignment and at the beginning of each 

test run the probe alignment was assessed through taking multiple measurements with the probe in its 

normal orientation and inverted. Where a shift correction was required, this was applied and is shown 

in the corresponding results. 

8.2.3 Probe Design and Configuration 

In the commissioning study, two probes were used, one being made of acrylic and the latter being a 

laser sintered metal model as in Figure 214, an improved design that became available between tests. 

During the static angle tests a single metal probe arm was used, with the acrylic probe. However, 

during the initial dynamic tests it was evident that the probe arm was flexing and therefore a stiff, 

carbon probe stem was used to prevent deflection in yawed flow. For all of the dynamic 

(i.e. time-variant) measurements a Transfer Function correction was applied to all probe 
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measurements (as shown in Figure 96), with the resultant correction spectrum and the probe 

calibration for the laser sintered probe (given as an example) both available in the Appendix (p.263).  

 

Figure 214 - Laser sintered probe with carbon fibre arm 

8.2.4 Shutter Static Open-To Angle Tests 

The shutters can have their open angle controlled by adjusting a setscrew on a milled-slide that 

controls the position of a rubber stop, against which the shutters rest when open. Two choices became 

significant with consideration for optimising the turning of the flow as it enters and exhausts from the 

test section. At the front of the working section, the consideration was that at peak angles the aerofoils 

are attempting to turn the flow 15o, so this is the peak angle that the shutters should be angled to, in 

order to aid this vane turning effect. The other option is that when the shutters first open they open to 

mid-aerofoil incidence of around 8o, which would generally be closer to the average aerofoil incidence 

angle in a test cycle. These therefore became the two potential test options for the front shutters. The 

same assessment was required for the rear shutters. Therefore 2 x 2 = 4 tests were required for the 

front and rear shutter open-to angles of 8o and 15o. 

Measurements taken (yaw average, standard deviation, front-to-rear and side-to-side comparisons of 

flow yaw) were averaged over the entire range of shutter open angles and split into 2 categories for 

this process. The first averaged for every 2o angle increment and the second used the extreme angles 

(±12o and ±15o) to generate 4 ‘extreme angle result’ metrics. At these extreme angles the shutters 

were set to all be open, and therefore results for these aerofoil angles can be considered 

independently of how many shutters should be open. The full results are available in the Appendix, 

p.259. 

Graphical results of the test are shown Figure 215, with the shutters closed condition (i.e. datum) 

additionally plotted. It is observed that the angle of the shutters makes a nominal variation against the 
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other configurations. Error bars of 95% confidence are plotted, but due to their extreme tightness, are 

barely shown. 

 

Figure 215 - Average flow yaw angle for aerofoil incidence 

Figure 216 shows the standard deviations of yaw angle over the 9 measurements taken at each 

location. The error bars plotted are comparable to the measurement variability and there is systematic 

variance evident between all of the cases. Note that for this chapter’s results presentation, the flow 

yaw angle standard deviation is frequently presented. The standard deviation represents the spatial 

yaw variation in the test section and not the unsteady, transient variation of yaw angle in time. 

 

Figure 216 - Standard deviation of yaw angle for each configuration 
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Figure 217 shows the difference in yaw angle between the front and rear measurements. It is noted 

that the variation seems to dip at positive yaw flow angles rather than negative angles. The results 

show that a notable variance exists, but no clear systematic variation with shutter open angle. 

 

Figure 217 - Front-to-rear (FR-RR) flow yaw angle difference 

Figure 218 shows the difference between the Y+ averaged 3 readings and the Y- set of 3 readings 

(i.e. Y+-Y-). There is clearly a systematic variance with aerofoil angle. At the extreme yaw angles the 

side-to-side difference is negative at approximately -1.0o, yet at near zero aerofoil angle the 

side-to-side difference is positive at approximately +1.5o. However, there is no clear variation with 

shutter open angle. 

 

Figure 218 - Side-to-side (Y+-Y-) averaged flow yaw angle 
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In order to compare the findings, the results were then ranked amongst each of the four 

configurations, shown in Table 12. The titles denote the angles at which the front and rear shutters 

opened to. 

Table 12 - Ranks of the results from each shutter open angle configuration test 

 

To further compare the results, the rankings were averaged in terms of whether they assess flow peak 

angle (i.e. yaw average results) or flow uniformity (i.e. standard deviation, FR-RR and Y+-Y- results) to 

fairly weight the results, as shown in Table 13. The results show that front shutters set at 8o and the 

rear shutters set at 15o (result F8R15) offered the best flow compromise. 

Table 13 - Final results from shutter open-to angles test 

 

8.2.5 Shutter Opening-At Angle Tests 

With the shutter open angles determined of 8o front and 15o rear, it was then possible to consider the 

correct shutter actuation options. A nominal condition was found by evaluating the lateral shutter 

RANKS F15R15 F8R8 F15R8 F8R15

Mod.    Avg 3 4 2 1

Avg.    Std    Dev. 3 2 4 1

Avg    FR-RR 4 1 2 3

Avg.    Y+-Y- 3 2 1 4

Ext.    Avg. 2 4 3 1

Ext.    Std.    Dev. 2 4 3 1

Ext.    FR-RR 1 4 2 3

Ext.    Y+-Y- 2 4 1 3

RANKS F8: F15: R8: R15:

Mod.    Avg 3 2 4 1

Avg.    Std    Dev. 1 4 3 2

Avg    FR-RR 2 3 1 4

Avg.    Y+-Y- 3 2 1 4

Ext.    Avg. 3 2 4 1

Ext.    Std.    Dev. 3 2 4 1

Ext.    FR-RR 4 1 3 2

Ext.    Y+-Y- 4 1 3 2

F15R15 F8R8 F15R8 F8R15

Angle    (degrees): 2.5 4 2.5 1

Uniformity: 2.5 2.8 2.2 2.5

Average: 2.5 3.4 2.3 1.8

F8: F15: R8: R15:

Angle    (degrees): 3 2 4 1

Uniformity: 2.8 2.2 2.5 2.5

Average: 2.9 2.1 3.3 1.8
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locations in the Y-axis and the X-axis distance between the front and rear shutters. Straightforward 

trigonometry was then used to evaluate the lateral location that the air flow would propagate to, for 

each aerofoil angle. These gave the results in Table 28, in the Appendix, on p.260. This set-up of 

shutter opening angles was denoted the ‘nominal’ shutter opening angles. 

Using the nominal calculated shutter opening angles, this gave the test plan as given in Table 14, 

showing the nominal shutter opening angles and then the two additional test batches that would test 

opening more or fewer shutters (with the greyed areas being where no other iterations seemed to 

practically be viable). Of course the shutters were only opened on the appropriate side to maximise 

flow yaw, depending upon the aerofoils’ angle, and no shutters are open at 0o of aerofoil incidence. 

Table 14 - Nominal shutter opening angles and additional tests - numbers in shaded cells are the number of shutters open 

 

The tests were then conducted and the results are given in Table 29, in the Appendix, on p.260. The 

results show the achieved flow yaw for the batches of shutter configuration tests, at the range of 

aerofoil incidence angles.  

From these range of tests a best shutter opening configuration was found (denoted the ‘optimum’ 

set-up), which was slightly different to the nominal set-up. Figure 219 to Figure 222 are the average 

yaw results for all of the tests, including what were determined to be the optimum results (which are 

discussed later). All results have 95% confidence error bars plotted (though are barely shown on most 

of the plots).  Figure 219 shows the variation in yaw angle for the variety of configurations tested. It 

can be seen that the average flow yaw variation between shutter tests (at the same aerofoil angle) is 

only nominal, and that the generated yaw is essentially symmetric about 0o of aerofoil angle. The 

nominal (blue) trace and the pink trace (optimised set-up) seem to be almost identical, and though the 
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additional yaw deviation for the −2 shutters (orange) and −1 shutter (green) suggest that the optimised 

set-up should have offered greater yaw at negative incidence angles, the optimised run shows little 

improvement over the nominal configuration. The pink bars in the background of each graph illustrate 

the number of shutters open at each yaw angle. 

 

Figure 219 - Average yaw for all test cases 

Figure 220 shows the variation in flow standard deviation, averaged over the 9 recording locations. It 

can be seen that there is a systematic increase in flow deviation with aerofoil incidence, showing 

increased flow instability at higher yaw angles. Standard deviation is always less than 0.9o, with a 

nominal measure of around 0.4o of standard deviation at zero incidence, suggesting acceptable yaw 

consistency over the aerofoil angle range.  

The optimised trace does show a generally lower standard deviation than the nominal run, though the 

difference is not significant. 
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Figure 220 - Flow averaged yaw standard deviation 

Figure 221 represents the variation between front and rear yaw angle across the yaw range. The most 

notable point is that the optimised and nominal results show very similar trends, with the optimised 

result showing slightly negative yaw (rear greater than front yaw) bias, whereas the nominal run 

presents slightly front yaw bias results. Either way, the variation is not too dissimilar between the 

results and suggests good flow uniformity throughout the test section of less than 0.5o of yaw variation 

over the 1.5m of axial length measurement region. 

 

Figure 221 - Front-to-rear average flow yaw angle 

Figure 222 represents the side-to-side yaw variation, with a clear systematic bias to Y+ at near zero 

aerofoil incidence and Y- bias at more extreme aerofoil incidence angles. 
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Figure 222 - Side-to-side averaged flow yaw angle 

Table 15 therefore displays the best configurations from the original test map, determined by the 

set-up that generated the greatest yaw angle without compromising the front-to-rear or side-to-side 

uniformity and without increasing flow instability. The optimum results, however, required an 

asymmetric configuration that opens the shutters differently at positive and negative aerofoil yaw 

angles.  

This is counter-intuitive and did not offer any significant benefit over the logical, ‘nominal’ 

configuration. Therefore, the nominal results were deemed the best configuration, especially as they 

require symmetrical shutter operation ensuring improved flow uniformity in the dynamic test cases. 
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Table 15 - Optimum results for all tests - numbers show ranking of configuration test result 

 

From the tests results, the final aerofoil angles at which the shutters open, as per the nominal 

configuration, were determined as in Table 16, converted into motor crank angles (required for the 

TGS software). The raw aerofoil angles are shown in Table 28, in the Appendix, on p.260. 

Table 16 - Static test results; Final shutter opening angles based on motor crank position 

 

8.3 Initial Dynamic Aerofoil Oscillation and Shutter Actuation Tests 

8.3.1 Dynamic Test Set-up 

Dynamic TGS commissioning tests were also undertaken using the harmonic mode of the device at a 

range of frequencies, as specified in Table 17. Frequencies were chosen to be equidistant on the log 

scale and yet capture the full frequency range, from the peak frequency of the TGS down to the 

quasi-steady limit at tunnel scale and speed.  

Foil    angle    (degrees) Nominal    Front Nominal    Rear Test1-Front Test1-Rear Test2-Front Test2-Rear

15 5 4 4 3

12 5 4 4 3

10 4 4 5 4 3 3

8 2 3 3 4 1 2

6 1 2 2 3 0 1

4 0 0 1 1 2 2

2 0 0 1 1 2 2

0 0 0

-2 0 0 1 1 2 2

-4 0 0 1 1 2 2

-6 1 2 2 3 0 1

-8 2 3 3 4 1 2

-10 4 4 5 4 3 3

-12 5 4 4 3 4 4

-15 5 4 4 3 4 4

Best Results
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Table 17 - Dynamic test frequencies 

 

Dynamic results were processed in a similar fashion to the static results with average peak yaw, 

standard deviation and side-to-side variation shown. Front-to-rear comparisons are made through 

assessment of the yaw against time period traces shown. Results were generated using ensemble 

averaging, aligned by aerofoil yaw, which returns one aerofoil oscillation trace consisting of numerous 

aerofoil oscillation recordings. The peak-to-peak yaw (or pitch) result was evaluated from the 

maximum and minimum yaw angles reported from the ensemble averaged yaw results. To avoid 

spurious peak angle results, the reported peak angle needed to occur for more than 20 readings at 

1,024Hz. The standard deviation, as earlier, is the standard deviation of the peak yaw angles from all of 

the measurement locations. The side-to-side average yaw is similarly evaluated from the yaw 

maximum to minimum range result for each of the 3 respective measurement locations (e.g. average 

of the left hand side 3 yaw range measurements minus the average of the right hand side 3 yaw range 

measurements). When plotted, these results are shown as the time-averaged result over the test run 

(which, due to time alignment, is always an integer number of periods).  

Of course, as a yaw wave propagates down the test section over a period of time, the yaw at the front 

of the test section would not, for the same instantaneous moment, be expected to be the same as at 

the rear of the test section. However, the peak angle and deviation over an aerofoil oscillation cycle 

would be expected to be equal (i.e. achieve the same peak yaw, just at a different time). Hence, where 

front-to-rear comparisons are noted, they are based upon this concept. 

A set of dynamic tests were conducted to assess the effect of changing a variety of parameters to the 

system’s operation. The main factors considered were: 

1. The aerofoil angle at which the shutters open and the sequence of opening 

2. The aerofoil angle at which the shutters close and the sequence of closing 

3. The air flow time delay between the front and rear shutters 

8.3.2 Preliminary Dynamic Test Results 

The consideration of the sequence of shutter actuation assessed the following options, with earlier and 

later being relative to the phasing of the shutters to the lateral yaw aerofoils: 

1. Open all shutters at the nominal angles found from the static tests. 
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2. Open the shutters earlier (i.e. in advance, pre-fire) than the static angle tests, to make 

potential consideration for the time required to accelerate the air flow in the TGS inlet ducts.  

3. Open the shutters later than the static angle tests to make potential consideration for the time 

required for the aerofoils to turn the air flow (i.e. to open once the main flow has yawed). 

4. To open all of the shutters in the cascading format suggested by the static test results, or all at 

once. 

With the same respective considerations for the closing of the shutters. 

The test format used a datum condition, which was the nominal set-up from the static shutter tests. 

Tests were aligned based upon master axis angle (when the aerofoils passed 0o, using a TTL signal) and 

were ensemble averaged over an 8-second recording window at a 1,024Hz logging frequency.  

The preliminary set of tests were completed with varying shutter opening and closing sequences, with 

the results shown in Table 30, in the Appendix, on p.260. The cases are titled as to how the cascading 

opening or closing of the shutters was set relative to the datum condition (essentially a set of tests to 

vary the shutter opening and closing sequence and timings). The ‘open all the shutters initially’ case 

(i.e. open all the shutters once the foiled was not at 0o) showed the largest yaw angle range, however 

as this case would cause problems in an arbitrary mode, and would create problematic flow 

asymmetry at lower frequencies, it was not an ideal option. Ultimately the preliminary tests showed 

that a more analytical approach would need to be taken to find an improvement in shutter sequencing 

from the nominal set-up, but provided experience in to the analysis of the TGS’s operation. 

8.4 Aerofoils Only Test 

In order to gain a further understanding and datum condition for the dynamic tests, a set of tests were 

conducted using the aerofoils only, with no shutter operation, with the traces presented in Figure 223 

to Figure 228. Very good flow uniformity was found at lower peak angles of yaw. It is also evident that 

at the high frequencies, 4Hz and above, though the traces are clearly correctly time aligned by a TTL 

signal, the yaw is less consistent around the vehicle’s measurement area due to there being multiple 

yaw wavelengths in the test section at any one time (e.g. at 9Hz, covering a time period of 230ms, 

there are 2.1 yaw periods in the 5.5m test section). Figure 228 additionally shows 2 periods at 

frequencies of 0.5, 2.0 and 9.0Hz in order to show the variation of yaw at turntable-centre over the 

frequency range. The consistency of the yaw traces for all of the 9 measurement locations shows good 

yaw consistency both longitudinally and laterally in the test section. 
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Figure 223 - Aerofoils only - 0.5Hz Figure 224 - Aerofoils only - 1.0Hz 

 

Figure 225 - Aerofoils only - 2.0Hz Figure 226 - Aerofoils only - 4.0Hz 

 

Figure 227 - Aerofoils only - 9.0Hz Figure 228 - 2 Periods at 0.5, 2.0 and 9.0Hz 

Cross-correlation was also undertaken between the mid-front, TTC and mid-rear 5-hole probe locations 

to see the time delay between them at 4Hz, given in Figure 229. Note the increasing phase-shift 

between the front, middle and rear measurement locations, as would be expected. The 

cross-correlation (τ) peak occurs at a time interval that correctly correlates with the test-section 

velocity and distance between measurement locations. 
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Figure 229 - Cross-correlation showing the time delay between the front-mid and TTC and rear-mid probe location at 4Hz 

Analysing the aerofoils only tests in greater detail, Figure 230 to Figure 232 show the standard test 

metrics. The average peak yaw is relatively consistent at all frequencies, but drops off at 9Hz, which is 

suggesting that the momentum of the flow, as well the decay rate of the yaw angle with propagation 

distance, becomes significant at higher frequencies. This is also evident by the notable increase in 

average yaw angle deviation with frequency (Figure 232). 

 

Figure 230 - Average peak flow yaw of against oscillation 

frequency 

Figure 231 - Standard deviation of averaged yaw against 

oscillation frequency 

Side-to-side variations, shown in Figure 232, show a degree of frequency sensitivity, but are close to 

typical readings from earlier shutter tests and are small relative to total yaw angle deviations, 

suggesting good lateral yaw consistency. 
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Figure 232 - Side-to-side averaged yaw difference against oscillation frequency 

8.5 Shutter Opening and Time Delay Tests 

8.5.1 Front to Rear Shutter Actuation Phasing by Time Delay and Sequencing 

A study was completed into the effects of varying the sequence at which the shutters open and close 

and the time delay between the front and rear shutters from an experimental (as opposed to 

theoretical) set of tests. Ten tests were undertaken. The first 5 tests used the shutter opening profile 

from the static test results (i.e. the nominal configuration) with the shutters all closing at once as the 

aerofoils passed 0o incidence. The second set of 5 tests had the shutters cascading open and close. The 

cascade was set such that the shutters would open inner to outer, then close outer to inner, so the 

outer shutter was open for the shortest period and the inner shutter the longest. Each of the 5 tests 

were conducted at 2Hz, but with the time delay between the front and rear shutters varying in terms 

of phase, as given in Table 18. The time delay is based upon the test-section freestream longitudinal 

velocity and longitudinal distance between the inlet and outlet TGS shutter units. 

Table 18 - Time delay phasing in terms of motor crank phasing 

 

The datum condition was at 2Hz oscillation rate with a 218ms time delay between the front to rear 

shutters, with data logging at 1,024Hz for 8-seconds and 250Hz low-pass filters in use. Readings were 

all time-aligned by a TTL generated from an optical pick-up on the motor crank, with the results 

ensemble averaged. 

Time delay phases:

90 273 ms

45 245 ms

20 230 ms

0 218 ms

-20 206 ms

-45 191 ms

-90 164 ms
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For the results from the cascade open only tests, shown in Table 30 in the Appendix, p.261, the focus 

was to assess the peak angle of the rear three readings to see whether the yaw peaks are greater than 

the upstream results in the same graph. A difference would suggest poor rear shutter timing as the 

flow has to turn significantly to enter the main collector rather than return via the rear TGS ducts. In 

this manner, the 218ms and 230ms result were of the greatest interest, with the rear-right yaw peak 

being slightly lower at 230ms, but interestingly the rear-left peaking lower in yaw in the 218ms trace. It 

is also of interest to note how similar the yaw traces are at all locations showing consistent yaw 

propagation. From the results of the cascade open only tests, it was evident that closing all of the 

shutters at once caused a sudden and large change in the yaw angle in the flow at the rear of the 

section, which was not ideal. Therefore the tests of the shutters cascading open and close are only 

presented in detail. 

8.5.2 Cascade Open and Close Results 

Moving to a test configuration where the shutters cascade open and close, the same time delay tests 

were undertaken and are shown in Figure 233 to Figure 237. These results show a general shift in time 

relative to the ‘cascade open only’ results as the sudden pulse caused by the shutters all closing at 

once is no longer occurring. The results still show a good yaw consistency, with the 218ms result 

presenting a generally smoother yaw trace than the other time delay tests.  

It is of interest to see a double peak in the rear-left result suggesting that the shutters are opening just 

in time, and that potentially having them open for longer could offer an improved yaw trace at the 

rear, which would be of value if a larger test vehicle model was used. Again, the yaw consistency both 

longitudinally and laterally throughout the test section is evident from the similar yaw traces. 

 

Figure 233 - 2.0Hz - Cascade open and close - 164ms Figure 234 - 2.0Hz - Cascade open and close - 206ms 
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Figure 235 - 2.0Hz - Cascade open and close - 218ms Figure 236 - 2.0Hz - Cascade open and close - 230ms 

 

Figure 237 - 2.0Hz - Cascade open and close - 273ms 

Figure 238 summaries the time delay tests for TTC average yaw measurements. The average peak yaw 

angles are very similar for the range of time delays. However, in the side-to-side variation, shown in 

Figure 239, the 218ms result clearly shows the smallest total variation between side-to-side 

measurements, suggesting the optimum time delay. 

  

Figure 238 - Cascade open and close - peak yaw angle at TTC Figure 239 - Cascade open and close - side-to-side difference 
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8.6 Nominal Aerofoil and Shutter Test Run 

The nominal test configuration was then tested at 0.5, 1.0 and 2.0Hz with the 218ms time delay 

between the front and rear shutters. Since the lower frequencies show the more notable effects of 

shutter timing, not performing higher frequency tests was not a significant limitation. It can be seen in 

Figure 240 to Figure 242 that higher yaw angles result than from the aerofoils only run, though the 

traces are not as clearly sinusoidal as the aerofoils only test runs. 

    

Figure 240 - 0.5Hz nominal aerofoil and shutter test Figure 241 - 1.0Hz nominal aerofoil and shutter test 

 

Figure 242 - 2.0Hz nominal aerofoil and shutter test 

Figure 243 to Figure 245 show the variation in average yaw, standard deviation of average yaw and 

side-to-side variation by frequency. It can be seen, as previously, that peak yaw increases with 

frequency up to 2Hz and equally that standard deviation increases with frequency. However, yaw peak 

angles are greater than the aerofoils only test, showing an improvement in the TGS operation.  
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Figure 243 - Average peak yaw Figure 244 - Standard deviation of averaged yaw 

Side-to-side comparison results, shown in Figure 245, are of a similar order of difference to the 

aerofoils only result. 

   

Figure 245 - Average side-to-side yaw difference 

Tests were additionally run using the experimentally derived shutter configuration results from the 

static tests (denoted the ‘optimum’ results in the static shutter test section) at 0.5, 1.0 and 2.0Hz. 

Again large peak yaw angles were generated, greater than in the aerofoils only scenario. However a 

double yaw peak was evident in the rear-left measurement at 2Hz, suggesting that the rear shutters 

may not be open for a sufficiently long period at intermediate oscillation rates. Average yaw was 

comparable to the aerofoils only test, but with a similar standard deviation and side-to-side variation 

remaining consistent. However, the configuration did not show any notable improvements over the 

nominal set-up and was therefore not investigated further. 

8.7 Shutter Impulse Propagation Assessment 

Earlier tests have shown the challenge involved in comparing TGS set-up tests side-by-side, and as such 

it became relevant to assess the required shutter operation more analytically than simply through 
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numerous comparative tests. Ignoring the shutters initially, flow yaw in the test section propagates at 

axial flow velocity down the test section. Therefore a straightforward cross-correlation between 

aerofoil angle (time aligned from the TGS PLC) to each of the 5-Hole probe measurement locations 

would yield the yaw propagation time down the test section, as given in Table 19 and Figure 246. Tau 

(τ) indicates the time difference between two correlated signals, and the amplitude represents the 

level of correlation. The tau values are nominally greater than predicted (i.e. axial velocity is around 

25.6ms−1, so the entire test section should be traversed in 218ms) but the difference is mainly due to 

the time taken for the PLC command to be implemented, that is to say that the trigger to yaw time is 

being measured as opposed to yaw at nozzle to yaw at 5-hole probe location time.  

Table 19- Trigger of aerofoil oscillation to 5H-Probe measurement time delays, by cross-correlation 

 

 

 

Figure 246 - Aerofoil angle to probe cross-correlation for Front-Right (FR) (Location 2) 

FL FM FR MR TTC ML RL RM RR
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Front Average: 0.111 s Middle Average: 0.159 s Rear Average: 0.222 s
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With this propagation time known, there is the question of the propagation time of the shutter flow. 

When the shutters of a front inlet duct open all at once, the time taken for the flow to accelerate can 

be determined analytically, giving the time required for the added flow to reached freestream velocity: 

  
Where time taken for flow to accelerate to freestream velocity (t) is in seconds,  PDYN≈ 500Pa, inlet area 

(A) = 6 x 0.06 x 1.12m = 0.336m2, freestream velocity (v) = 25.6ms-1 and air density (ρ) = 1.125kgm-3. 

 

This gives 0.20s as the time for the flow to reach freestream velocity, which of course is greater than 

the time taken for the flow already at freestream velocity to propagate. Additional to this (as seen with 

the aerofoil cross-correlation time) is a time delay for the TGS PLC to actuate the shutters. Therefore 

the shutters, in theory, need to be pre-fired by 0.20s to factor in this delay such that the flow from the 

shutters can have the necessary time to be at full velocity.  

These parameters are summarised in Figure 247, where it can be seen that there is a delay in shutter 

movement from the PLC actuation signal, plus an additional delay for flow acceleration after the 

shutters open. The period of time for which a shutter is open should not be varied too greatly, 

otherwise the outer shutters would never be able to open at even moderate harmonic frequencies (as 

the out shutters open last and close first).  

Effects for the rear TGS collectors (i.e. when they open and close) should, however, propagate 

upstream at the speed of sound (i.e. effectively instantly relative to freestream), which was supported 

by earlier tests showing that the exhaust shutters are already correctly timed. 

so  a = 
P D Y N 

ρ A
  a n d  t = 

U 

1 
2

a 
⇒ t = 

U ρ A 

1
2 

P D Y N 

= 0 . 2 0 s [28] 
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Figure 247 - Yaw propagation time against longitudinal location 

There is a velocity rise time (i.e. acceleration overcoming the air momentum) for the inlet TGS ducts, 

and it was necessary to conduct a test to evaluate the correct shutter firing (and closing) time for both 

the front and rear shutter sets to verify the appropriate timings (though the rear shutters were 

expected to be set correctly). In order to do so, a test was undertaken with four actions (front shutters 

close, open, rear shutters close and then open) each spaced by 3.6s (sufficient time to allow for the 

fans to settle after a previous actuation). These actions were logged and time-aligned by a trigger 

signal, with the trigger signal and the time profile both shown in Figure 248.  

 

Figure 248 - Event sequencing - Front open (1.0s), Front close (4.8s), Rear close (8.6s) and Rear open (12.4s) 

Additionally, in order to measure the flow acceleration characteristic, pitot-static tubes were placed at 

the downstream side of the front and rear shutters, as in Figure 249. The probes, being large, do 

exhibit some pressure measurement effects due to the stagnation and static tappings being 
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approximately 50mm apart, but otherwise offer a good insight into flow velocity. They were logged 

simultaneously with the trigger signals and the 5-hole probe. The two tests were conducted, with the 

first opening and closing all shutters and the second with just the middle shutter moving (with the 

other shutters open on the inner side, and closed on the outer, as correct with the nominal shutter 

opening angles). Flow velocity was consistent at 25.6ms−1 and logged at 1,024Hz.  

     

Figure 249 - Pitot-static tube mounting location on the downstream side of the front Y+ inlet duct 

It was found that using axial velocity (UX) for when the shutters open, and yaw for when the shutters 

close, as the metrics for propagation time was appropriate as these yielded the clearest result and are 

directly comparable. From opening and closing the rear shutters, rapid changes could be seen in axial 

velocity and yaw upstream of the rear shutters. However, as the pressure propagation effects are 

almost instant, and there is a relatively long time for the mass of air in the rear shutter ducts to 

accelerate or equally to be absorbed by the fans, the changes are not sufficiently clear to be seen on a 

time against pressure plot. This suggests that the timing of the rear shutters does not requires phasing 

adjustment, especially as the two batches of time delay tests completed earlier showed that the time 

delay of 218ms offered the optimum result in terms of a reduced standard deviation of flow yaw. 

Therefore only the front shutters, and specifically the test of opening and closing all of the shutters at 

once for the front of the test section measurements, are detailed. 
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The results from the ‘opening all shutters’ test can be seen in Figure 250, with the trigger signal at 0.0s 

(i.e. immediate, that is 0.0s after the data logger started recording, which is 1.0s into the TGS case file 

as shown in Figure 248). It can be seen that there is a clear lag between the trigger signal and the 

shutter actuating (around 0.08s) and then additionally a time delay of around 0.12s for the test section 

to show a drop in flow velocity due to the increased flow area, with a full flow acceleration time of 

around 0.20s, as predicted. It is therefore apparent that at frequencies above 2Hz, where the inner 

shutter is open for only around 0.20s, that the flow in the TGS side inlet ducts never reaches full 

velocity (which was around 23 - 24ms−1 over the first few seconds of recording). Though the result 

suggests a notable velocity change in the test section, note that the pitot-static was extremely close to 

the shutter and that in normal operation all of the shutters would not actuate simultaneously. 

Therefore the dramatic velocity change is unique to this experiment and, as seen in earlier results, the 

shutter actuation aids yaw generation without significantly affecting test section velocity. 

 

Figure 250 - Front Right 5-Hole probe measurement location longitudinal velocity and front pitot dynamic pressure for all 

shutters opening, triggered at t=0.0s 

The closing front shutter test showed a response for the pitot-static tube as shown in Figure 251, 

where after approximately 0.08s the probe showed a rapid rise in dynamic pressure, and then after 

around 0.12s from trigger the 5-Hole probe showed a change in yaw angle. Clearly the closing of the 

shutters cause the flow to rapidly retard (under 0.04s). Again, the dramatic pressure changes are due 

to the shutters closing all at once, without the aerofoils oscillating, and therefore in normal operation 

the shutter motion does not cause such velocity perturbations. 

Flow starting to accelerate     

          Flow at full velocity

        



 

 

 

205

 

Figure 251 -Yaw trace with pitot-static dynamic pressure for closing all front-right shutters at once, triggered at t=3.8s  

A cross-correlation of the 5-Hole probe UX with the shutter trigger signal is given in Figure 252, showing 

a peak at 0.15s The peak in τ correlates with the time taken for a shutter open trigger signal to cause a 

notable variation in the axial velocity and for that variation to propagate downstream (i.e. 





∆

XU
X . 

 

Figure 252 - 5-Hole probe to shutter trigger signal cross-correlation for the front-right shutter unit 

Tau values for the three averaged lateral measurement locations are given in Table 20. The results are 

both realistic and increasing with downstream location. Since the actual peak of the cross-correlation 

curve is slightly flat, averaging offers the best interpretation of the actual time value. 

Table 20 - Shutter closing to 5-Hole probe UX variation, averaged over width-wise sets 
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Additionally a cross-correlation was performed between the 5-Hole probe axial velocity and the front 

pitot-static dynamic pressure, shown in Table 21. The results show that the distribution is similar to 

Table 20 by axial position and that the times are notably less than the correlation against the trigger 

signal. The trigger signal to front pitot-static probe time of 0.09s by cross-correlation relates well to the 

early time graphs, showing 0.09s to be the typical PLC actuation time. 

Table 21 - Front Close - Front pitot PDYN to 5H-probe UX 

 

Finally, it is possible to determine the corresponding pre-fire advance required for the shutters, given 

in Table 22. The time of the flow propagation to the front three measurement locations was averaged, 

and was subtracted from the average trigger to probe propagation time, giving a pre-fire advance time 

of 0.048s.  

Table 22 - Determination of shutter opening pre-fire time 

 

For this time to be of value, it has to be converted into a pre-fire advance by motor crank angle for the 

TGS control software, as shown in Table 23. These results are frequency dependent, and are therefore 

of greatest value for harmonic tests. 

Table 23 - Evaluation of shutter opening pre-fire angle 

 

8.8 Horizontal Aerofoil Tests 

8.8.1 Static Horizontal Aerofoil Tests 

Pitch control, that is variation in UZ, was assessed through tests using the installed horizontal aerofoil. 

The horizontal aerofoil tests were undertaken in a very similar manner to lateral yaw flow tests. The 

first test was a static angle test, with pitch results shown in Figure 253 and yaw results in Figure 254 (to 

Front Average: 0.105 s Middle Average: 0.137 s Rear Average: 0.153 s

Trigger to Front Pitot: 0.085 s

Location Trigger to Foil Delay (s) Trigger to Probe Motion (s) Opening Pre-Fire Advance (s)

0 0.109 0.159 0.050

1 0.112 0.159 0.047

2 0.111 0.159 0.048

Average (s): 0.111 0.159 0.048

Frequency (Hz) Period (s) Opening Pre-Fire Advance (degrees)

0.5 2.0 9

1.0 1.0 17

2.0 0.5 35

4.0 0.3 70

9.0 0.1 157
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determine if pitch flow effects the flow yaw). The pitch results, shown in Figure 253, show that pitch 

range is -0.2o to -4.0o, showing a nominal downwash when the aerofoil is level. The tunnel ‘non-TGS’ 

mode has the horizontal aerofoil set with a motor angle of 85o, giving a aerofoil incidence of +9o, which 

is actually when the aerofoil is level, confirming that the non-TGS mode configuration induces no 

additional pitch to the test section flow. Standard deviation of flow is consistent at all angles, with very 

consistent front-to-rear and side-to-side variation in pitch over the aerofoil incidence range, showing 

what would be a consistent pitch over the entire vehicle model.  

 

Figure 253 - Horizontal static tests - pitch results 

Figure 254 presents the yaw results caused by the horizontal aerofoil incidence, which shows 

consistent average yaw variation and front-to-rear yaw. However, it is evident that the side-to-side 

yaw increases above −10o of incidence (which is causing the standard deviation to increase) due to 

recirculating flow regions occurring at the sides of the test section. Therefore if pitch tests are to be 

undertaken, the effect of these recirculation regions should be also considered (i.e. large pitch 

variations will corrupt expected yaw results).  

The asymmetric nature of the plot is due to the aerofoil having only a few degrees of upwash pitch, 

and also that angling the aerofoil upwards creates a diffusion angle, where flow direction changes are 

less prominent. 
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Figure 254 - Horizontal static tests - yaw results 

8.8.2 Dynamic Horizontal Aerofoil Tests 

Figure 255 to Figure 259 present the pitch traces at a range of 5 frequencies, with 6Hz being the 

maximum frequency that was thought to be sustainable for aerofoil operations at ±15o of incidence. 

Note that, as shown in the static test results, the aerofoil’s mid oscillation pitch is at a downwash 

angle, hence the pitch will always tend to a downwash bias in harmonic testing mode (but can be 

controlled as desired in an arbitrary test mode). The results show consistent pitch generation up to 

2Hz, and then a decrease in flow longitudinal pitch consistency at higher frequencies, as more pitch 

oscillation periods are in the test section. Pitch range was demonstrated to be consistent to aerofoil 

angles of −10o incidence, but interestingly the maximum pitch angle increases with frequency, with 

moments of up-wash occurring above 2Hz.  

All traces show a lack of true sinusoidal behaviour as at high incidence angles little pitch is created, 

causing the ‘flat top’ that is shown in many of the traces, particularly evident at 1Hz. 
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Figure 255 - Pitch results - 0.5Hz Figure 256 - Pitch results - 1.0Hz 

 

Figure 257 - Pitch results - 2.0Hz Figure 258 - Pitch results - 4.0Hz 

 

Figure 259 - Pitch results - 6.0Hz 

Figure 260 and Figure 261 show pitch results grouped by both longitudinal and lateral location. The 

sets at the front, mid and rear of the test section show the pitch being relatively consistent, even at the 

vehicle rear, with angles up to -9o being common. Sets grouped by Y location show the expected time 

delay required for flow propagation, but otherwise good pitch consistency is seen down the test 

section.  
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Figure 260 - Pitch Results - 2.0Hz - Mid X-axis Set Figure 261 - Pitch Results - 2.0Hz - Mid Y-axis Set 

Finally, Figure 262 shows the yaw variation at 2Hz for all measurement locations, with only one test 

frequency given to be indicative of all the frequencies, showing an increase in yaw at the side due to 

recirculating flow regions at the higher pitch angles. 

 

Figure 262 - Yaw result from pitch oscillations - 2.0Hz 

Figure 263 to Figure 265 compare the results of average pitch, deviation and side-to-side flow 

consistency. It can be seen that a slight negative average pitch (i.e. downwash) is seen when the 

aerofoil is oscillating in a harmonic mode, showing notable pitched flow at all frequencies. The results 

also confirm that in the non-TGS mode, the aerofoil can be set at an angle to cause no downwash.  

The standard deviation results show, however, a decrease in deviation with frequency, suggesting that 

at low frequencies flow instability increases, most likely occurring at higher pitch angles. 
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Figure 263 - Average pitch flow angle Figure 264 - Standard deviation of pitch 

Figure 265 shows the side-to-side pitch variation, which shows a much tighter spread with the 

+0.5o step-shift likely being due to the variation in reverse pitch flow at the extreme sides of the tunnel 

as the aerofoil passes through its lower incidence peak. 

 

Figure 265 - Difference in side-to-side pitch 

8.9 Arbitrary Flow Measurements 

As a test of the TGS device’s capability, the development of an arbitrary trace representative from the 

on-road measurements was completed. This trace was the on-road data, selected as a 32-second case 

in Chapter 4, which was processed in Chapter 7 to become an ‘inflexions’ trace. This yaw profile was 

then programmed into the TGS’s PLC as motor crank angles, which is directly comparable to the 

measured on-road yaw. The TGS motor acceleration value was set to 14,500deg.s−2. 

The resultant aerofoil motion was recorded by a rotary Hall sensor, with the result of a wind-on and 

wind-off test shown in Figure 266. Firstly, it can be seen that the reproduction of the demand trace is 

very accurate and secondly that the wind has no shown effect on the operation of the aerofoils. 
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Figure 266 - TGS arbitrary trace with wind on and off against input motor crank angle demand trace 

The arbitrary motion trace, given in Figure 267, is a mechanical test comparing the demand trace to 

the motor movement, showing a high accuracy of motion reproduction. 

 

Figure 267 - On-road trace (motor demand) against aerofoil motor crank angle 

Significantly, Figure 268 shows a comparison between the aerofoil movement and the recorded 

aerodynamic yaw at turntable centre. It can be seen that there is a strong correlation between the 

aerofoil angle (given in terms of motor crank angle) and the flow yaw at TTC. 
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Figure 268 - Flow yaw at TTC against motor crank actual angle 

The key result is that shown in Figure 269, where the TGS generated flow yaw angle is compared to the 

recorded on-road trace. A strong correlation is shown, with the TGS able to accurately recreate the 

example on-road flow condition. The generation of this accurate flow yaw is indicative that the 

on-road raw data conversion process, the control methodology and the shutter actuation configuration 

and timing settings are all well optimised. 

 

Figure 269 - TGS generated and on-road yaw comparison 

Finally, it was of interest to see whether there would be peak angle attenuation if the shutters were 

left closed throughout the arbitrary trace. The result of this is given in Figure 270, which shows, as 

expected, that with the shutters always closed the peak yaw angles could not be reproduced as 

compared to having the shutters active. This shows, as seen in the earlier CFD studies and 
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commissioning tests, that the additional inlets and outlets are invaluable in generating higher peak yaw 

angles than with aerofoils only operations. 

 

Figure 270 - Arbitrary trace flow yaw with shutters active against shutters always closed 

8.10 Conclusions 

This chapter has presented a comprehensive process to the commissioning of the TGS system at 

Durham University. Initially the open angles that the shutters open to were investigated to determine 

the effect of varying the shutter open position angle. The angle affects the inlet and outlet flow angles, 

with a set-up of the front shutters at 8o and the rear shutters at 15o found to be optimum.  

A static assessment was completed of the shutter opening sequence at each respective yaw angle, with 

a nominal set-up proposed using the trigonometrically calculated yaw angles against those found 

through experimental derivation. It was shown that though the experimental method suggested a 

potentially optimum solution, such a set-up would have induced some asymmetry to the tunnel’s air 

flow, and that on balance the nominal set-up did prove to be very good. The study then assessed the 

system in a dynamic mode, determining at which angles the shutters should open when the aerofoils 

are oscillating in a sinusoidal manner. The results were compared alongside tests when only the 

aerofoils operated, and using the angles found in the static tests proved to offer a good aerodynamic 

flow uniformity and peak yaw angle over a test vehicle’s footprint.  

In order to further optimise the timings of the front and rear shutters, the commissioning study 

experimentally evaluated the flow propagation times between shutter and aerofoil yaw operations. 

This was in order to produce an experimentally derived time delay between the aerofoil motion and 
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the front shutter and rear shutter actuations. Tests were conducted to evaluate the flow 

characteristics in the TGS inlet and exhaust ducts and it was found that the flow acceleration time was 

around 0.20s for a freestream flow rate of 25.6ms-1. Closing the shutters all at once caused a significant 

pulsation to run through the tunnel and was therefore concluded to be worth avoiding. Test section 

flow yaw amplitude was not significantly affected by use of the rear shutters, notably as pressure 

effects propagated upstream at the speed of sound. The results of these tests was a TGS system that 

could achieve harmonically induced yaw angles up to ±10o with flow uniformity under 1o for the 

side-to-side variation over a vehicle’s footprint in the test section, operating up to 9Hz.  

The horizontal aerofoil was assessed for its pitch generation capability. The initial -5o of aerofoil 

incidence had nominal pitch effects, but thereafter pitch downwash of -4o could be generated, though 

the resultant up-wash in the lateral shear flow regions did cause side-to-side flow variations.  Finally, 

the arbitrary test mode was developed, using the inflexions trace generated earlier in this thesis. A 

highly accurate replication of the on-road trace was generated, which was shown to work with the 

shutters active to achieve the on-road yaw profile. Ultimately, the TGS commissioning was successfully 

completed, offering a system that can achieve harmonic frequencies up to 9Hz, generating up to ±10o 

of peak flow yaw, variable pitch flow conditions as well as being able to replicate real world on-road 

flow environments within the 2m wind tunnel at realistic vehicle speeds. 
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9. Rover 200 Model Wind Tunnel Testing 

As a final stage in the assessment of the effects of transient aerodynamics on passenger cars, the TGS 

was run with a 40% scale model under arbitrary and harmonic wind conditions. Results in earlier 

chapters showed that the quasi-steady simulation technique was accurate at low turbulence 

frequencies, but was unable to accurately predict pressure fluctuations at intermediate turbulence 

frequencies, where there is still significant energy in the on-road environment. Through running the 

TGS at these intermediate frequencies (i.e. 1 - 10Hz), the TGS’s capability to replicate a vehicle’s 

response to the on-road transient flow conditions was evaluated. The results presented show that 

running the TGS in an arbitrary mode is required if true on-road characteristics are to be modelled 

correctly in a wind tunnel. 

9.1 Preparation of the Rover 200 40% scale model  

In order to compare the effect of on-road wind conditions to the TGS simulated wind conditions, an 

existing 40% scale model of the Rover 200 R3 road car (produced by MG-Rover) was modified to add 9 

sideglass pressure tappings, located identically as in the on-road study. Tubing between the tappings 

and the pressure transducer were much shorter than for the on-road test, and hence the frequency 

response of the tappings was notably improved.  

Preparation of the model required the initially solid model to have its passenger sideglass region 

hollowed out and a new Rapid-Prototyped (RP) sideglass shell inserted. The new RP sideglass panel 

included pressure tappings, which were produced from 1.0mm inner-diameter hypodermic tubing. The 

RP sideglass (CAD images given in Figure 271) was designed using geometry data recorded from a 

Baumer laser-distance measuring device with a 0.1mm axial resolution, fitted to a 3-axis traverse. Data 

was recorded at a 1mm resolution along an Y-Z grid that followed the contour of the window seal (and 

10mm Y-Z grid mesh for the remainder of the window area). This grid measurements were meshed in 

Solidworks before being exported as an STL for rapid-prototyping.  
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The laser measuring device and the traverse can be seen in Figure 272, and the final product in Figure 

273. 

   

Figure 271 - CAD images of the RP Rover 200 sideglass shell 

 

Figure 272 - Laser distance measuring device, Baumer, 30−130mm range, on 3-axis traverse 

   

Figure 273 - Rover 200 model with sideglass tappings   
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9.2 Turntable 6-Component Balance Calibration 

The wind tunnel was placed into ‘fixed ground’ configuration for the Rover 200 tests, in which a 

turntable with a 6-component balance becomes the mounting platform for test vehicles. The turntable 

underwent an overhaul before installation and had 6 new load cells installed, and therefore required a 

new calibration. The resultant loading profile is shown in the Appendix, Figure 336 to Figure 341, with 

notice made of the low force hysteresis as the balance was loaded and then unloaded. This calibration 

is used for all force measurements presented in this chapter, with a repeatability found to be better 

than ±0.002 on drag coefficient and ±0.003 on lift coefficient. 

9.3 Rover 200 Wind Tunnel Test Setup 

The Rover 200 model was placed into Durham University’s 2m wind tunnel (Figure 274), mounted on 

to the turntable, with the 5-Hole probe located above the roof, in the same position as with the 

full-scale vehicle used for the on-road tests. Sideglass tapping locations mirrored those used on the 

full-scale car (with details as in Table 24 and numbering as in Figure 275). 

  

Figure 274 - Rover 200 40% model in Durham University's 2m wind tunnel 

Table 24 - Wind tunnel model specification 

Model: Rover 200 (R3) 

Scale: 40% 

Frontal Area: 0.308m2 

Height: 555mm 

Length: 1588mm 

Width: 568mm 

Wheel base length: 1000mm 

Wheel base width: 547mm 

Ride height to sills: 88mm 
Figure 275 - Rover 200 tapping arrangement and model details 
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All pressure and balance data were recorded at 1,024Hz for 16,384 samples, giving 16-seconds of flow 

data. Where periodic TGS driving frequencies were used, force and yaw ensemble averages were 

taken, with each test performed twice, the first to log the sideglass tappings and the second for the 

6-component force balance, with the 5-Hole probe being recorded in both tests. Transient results were 

processed with a transfer function correction for frequency response and forces non-dimensionalised 

by dynamic pressure and frontal area (as given in Table 24). Drag and sideforce corrections were not 

applied to the forces, and as such the coefficients are vehicle (and hence balance) aligned through both 

TGS and turntable induced yaw, as shown in Figure 276. 

  

Figure 276 - Vehicle aligned forces during Turntable and TGS induced yaw (illustrative scale)  

9.4 Test Approach 

The following tests were performed on the Rover 200 model, with the balance, sideglass tappings and 

5-Hole roof probe recorded for all cases: 

• Steady turntable yaw angle. 

• Steady TGS yaw angle. 

• Harmonic excitation at 0.5, 1.0, 2.0, 4.0 and 9.0Hz. 

• Arbitrary trace (taken from the Rover 200 on-road study). 

9.5 Results - Steady-state Measurements 

Steady-state measurements were performed using both the turntable and TGS induced yawed flow 

over the Rover model. When yawed flow propagates over a vehicle, flow is accelerated as it passes 

over the front windscreen (correspondingly increasing dynamic pressure over the roof relative to 

freestream). Yaw angles can, therefore, be corrupted if the lateral flow velocity component accelerates 

differently than the axial flow velocity component, which occurs most at larger yaw angles.  
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Figure 277 shows the increase in probe longitudinal velocity by turntable yaw angle. As this ‘stretch’ in 

yaw causes probe reported yaw angles to be greater than the actual freestream yaw angle, when roof 

probe yaw angles are plotted alongside turntable yaw angles, the roof probe yaw angles need to be 

adjusted by the relevant factor (proportionate to yaw angle). This adjustment has significance when 

the roof probe yaw angle is interpolated from the turntable yaw angle to determine the simulated 

sideglass pressures. Therefore the pressure against yaw calibration file had the turntable yaw adjusted 

by this ‘roof probe yaw stretch factor’ to ensure that the reported simulation results were accurate. 

The Rover 200 model underwent a turntable sweep through ±30o, recording both force balance and 

sideglass tappings, using steps between 1.0o and 2.5o. In Figure 278 the resultant pressure coefficient 

against yaw trace is shown, with a greater pressure sensitivity evident for tappings close to the A-pillar.  

 

Figure 277 - Velocity speed-up and yaw error for roof probe 

on the 40% Rover model 

Figure 278 - Sideglass pressure coefficient against turntable 

yaw for the 40% Rover model 

The measured force readings are given in Figure 279, showing a zero yaw drag coefficient of 0.36 

(reported as 0.4 by MG-Rover (1996)), lift coefficient of 0.18, with side and yawing moment 

coefficients having realistic values and a linear sensitivity to yaw, for relatively small angles of yaw. 
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Figure 279 - Force and moment coefficients from a turntable yaw sweep of the Rover 40% model 

Figure 280 to Figure 282 show pressure coefficient against yaw angle results for both turntable and 

TGS induced steady yaw angles, with the TGS angle being referenced by the achieved flow yaw angle 

from earlier TGS commissioning tests. Two key results are evident, firstly that the correlation between 

TGS and turntable flow yaw is good, showing that TGS yaw provides a flow that is comparable to that 

created by turntable yaw. Secondly, that in the yaw angle range of ±7o of steady flow, in both the 

turntable and TGS yaw pressure profiles, many of the sideglass tappings show a low degree of 

sensitivity (i.e. pressure variation against yaw angle).  

This low sensitivity would impact on the effectiveness of the transient quasi-steady simulation 

technique for yaw permutations within such a yaw range.  
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Figure 280 - Sideglass pressure coefficient results for both 

turntable and TGS induced yaw, tappings 01, 09 and 12 

Figure 281 - Sideglass pressure coefficient results for both 

turntable and TGS induced yaw, tappings 13, 17 and 19 

 

Figure 282 - Sideglass pressure coefficient results for both turntable and TGS induced yaw, tappings 22, 29 and 35 

Figure 283 and Figure 284 also demonstrate a strong correlation between force and moment 

coefficients against both turntable and TGS induced yaw. TGS and turntable yaw are well correlated, 

with the sideforce showing a significant yaw interaction. 
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Figure 283 - Drag and lift force coefficient results for both 

turntable and TGS induced yaw 

Figure 284 - Sideforce and yawing moment coefficient 

results for both turntable and TGS induced yaw 

9.6 Harmonic Excitation Results 

9.6.1 Sideglass Pressures 

The TGS was run in its harmonic mode at 0.5, 1.0, 2.0, 4.0 and 9.0Hz, as in the TGS commissioning 

study, again with sideglass and balance measurements recorded for a 16-second window at 1,024Hz. 

Data recordings were time aligned by a trigger off the aerofoil incidence angle and the yaw and force 

results ensemble averaged where appropriate. It was noted that additional higher frequency artefacts 

were shown in the component forces, which are attributed to the natural frequency of the turntable 

balance. By auto-correlation, it was found that the natural frequency of the drag component was 

4.8Hz, lift was 16.1Hz and sideforce was 6.3Hz. 

Figure 285 to Figure 293 show the measured and simulated (i.e. result using a lookup based upon the 

pressure coefficient against yaw trace from the steady yaw angle test) sideglass pressure coefficient for 

tappings 17 (A-pillar region), 09 (mirror wake region, though mirrors not fitted) and 35 (A-pillar/hybrid 

region) at 0.5, 1.0 and 4.0Hz. All of the tappings show a strong correlation between measured and 

simulated pressures up to intermediate frequencies (i.e. 2Hz).  

Deviation of the simulated result from the recorded trace increases at the higher frequencies, even 

though a high frequency yaw variation, which is most likely the vortex shedding frequency, remains 

consistent between the TGS driving frequencies. The higher frequency variations in sideglass pressure 

that were measured are not evident in the simulated traces, due to the small gradient on the pressure 
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coefficient against yaw calibration seen earlier in Figure 280 to Figure 282. An example of this can be 

seen when a significant, but short, yaw variation is seen, for example around 0.12s in Figure 293, 

evident in the recorded trace but not so in the simulation trace, suggesting that the simulation 

technique supresses reported pressure fluctuations from such yaw perturbations.  

As the frequency increases above 1.0Hz, the accuracy of the simulation can be seen to decrease, with 

the simulated pressure coefficients often being under-predicted against the recorded readings, relative 

to the average result. However the general trends are still followed and the simulation technique 

remains of value at the higher frequencies. 

The results therefore show that the TGS system gives an accurate representation of the vehicle’s 

response over a wider frequency range than the quasi-steady simulation technique, offering insight in 

to vehicle pressure fluctuations at relatively high excitation frequencies. 

 

Figure 285 - Tapping 17, harmonic 

0.5Hz 

Figure 286 - Tapping 17, harmonic 

1.0Hz 

Figure 287 - Tapping 17, harmonic 

4.0Hz 

 

Figure 288 - Tapping 09, harmonic 

0.5Hz 

Figure 289 - Tapping 09, harmonic 

1.0Hz 

Figure 290 - Tapping 09, harmonic 

4.0Hz 
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Figure 291 - Tapping 35, harmonic 

0.5Hz 

Figure 292 - Tapping 35, harmonic 

1.0Hz 

Figure 293 - Tapping 35, harmonic 

4.0Hz 

9.6.2 Forces - Sideforce 

Figure 294 to Figure 296 show the recorded against simulated sideforce for the range of frequencies 

tested. It can be seen that, visually, the quasi-steady simulation technique is a good method of 

prediction. A resonance is shown in the results from the turntable balance’s natural frequency, and is 

shown in the results from all axes. The results demonstrate that the simulation method, being yaw 

derived, does not report the natural frequency of the turntable and its balance. Correlation between 

measured and simulated can be seen to be accurate at high frequencies, even with a highly unsteady 

yaw angle, with a consistent yaw angle and sideforce range being generated at all frequencies. 

 

Figure 294 - Sideforce, harmonic 0.5Hz Figure 295 - Sideforce, harmonic 1.0Hz Figure 296 - Sideforce, harmonic 4.0Hz 

9.6.3 Forces - Yawing Moment 

Figure 297 to Figure 299 present the yawing moment coefficient for both measured and simulated 

results. The yawing moment is accurately simulated through TGS excitation and responds to a similar 

range of force coefficient at all frequencies. The natural frequency of the balance is not shown in the 

simulated result, and the lower frequency variations are accurately simulated. 
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Figure 297 - Yawing moment, 

harmonic 0.5Hz 

Figure 298 - Yawing moment, 

harmonic 1.0Hz 

Figure 299 - Yawing moment, 

harmonic 4.0Hz 

9.7 Arbitrary Excitation Results 

Using the sample yaw trace taken from the on-road study of the Rover 200, which was accurately 

simulated during the TGS commissioning tests, the model’s response was recorded under the same 

yaw flow against time profile, with sideglass pressure measurements shown in Figure 300 to Figure 

303. It can be seen that, though the timescale is large, the simulation technique has captured the 

major pressure fluctuations over the model, with realistic sideforce and yawing moment traces being 

generated. Pressures at tapping 09 (Figure 300) show extremely good simulation correlation, being in a 

region without a mirror, but also have some significant unsteady components. The yaw trace plotted is 

that of the roof probe, with no time alignment required between sideglass and roof results due to their 

close longitudinal location. 

  

Figure 300 - Arbitrary trace, tapping 09 
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Tapping 17, Figure 301, in the A-pillar wake region, shows a general reduction in pressure coefficient, 

due to its highly sensitive pressure coefficient against yaw characteristics. Simulation is qualitatively 

accurate and the resultant pressure profiles, both measured and simulated, are a good presentation of 

the recorded roof probe yaw angle. 

 

Figure 301 - Arbitrary trace, tapping 17 

Tapping 35, Figure 302, at the far downstream location of the sideglass, again shows accurate 

simulation with a less sensitive pressure coefficient against yaw characteristic for the test case time 

period. 

 

Figure 302 - Arbitrary trace, tapping 35 

Sideforce coefficient is presented in Figure 303, with the simulation result showing a smaller deviation 

range than that measured. This has been presented in earlier results, and suggests that dynamic TGS 
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driving frequencies cause greater forces than the steady-state calibration would predict (though this 

was not especially evident for the periodic excitation).  

     

Figure 303 - Arbitrary trace - sideforce coefficient 

Finally yawing moment coefficient is shown in Figure 304, again with a reduction in force range seen 

for the simulated case, suggesting a greater force against yaw sensitivity for dynamic test cases, when 

compared to the steady-state turntable calibration. Again, qualitatively, the measured and simulated 

forces do correlate, with a consistent magnitude and response to the roof probe measured yaw angle. 

 

Figure 304 - Arbitrary trace - yawing moment coefficient 
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9.8 Standard Deviation of Measured and Simulated Pressure Coefficient from 

Arbitrary TGS Excitation 

Standard deviation analysis of the recorded pressure measurements against the deviation of the 

simulated results was performed in order to identify the frequency range over which the simulation 

technique represents the measured pressures. This is because at higher frequencies the on-road flow 

yaw energy reduces and the flow can become dominated by self-excited turbulence. Pressures were 

logged for 16-seconds at 1,024Hz. Due to the scaling in length scale and wind-speed between the 

on-road frequencies, the frequency bands are increased by a factor of 2.06, and therefore ‘tunnel time’ 

is reduced by a factor of 2.06 from ‘full-scale time’, in order for fair comparisons to be made. The 

arbitrary trace was divided into 2-second samples, by dividing by 2.06 from 4-seconds that was used 

on-road. 15 time history samples of the arbitrary trace were evaluated for standard deviation within 

each frequency band, and for all sideglass tappings. These standard deviation clusters of data points 

within each frequency band can be fitted with a linear regressed curve (i.e. Y = aX + b), where the 

slope, a, of the curve represents the admittance between the measured and simulated result, and the 

intercept, b, of the linear regression represents the self-excited component of the air flow pressure 

fluctuations.  

Additionally on each plot there are individual points at the simulated pressure deviation = 0Pa location, 

representing the steady-state self-excitedness. These were evaluated by finding the probability density 

of yaw from the arbitrary case (which sums to unity), which is then rescaled onto the same yaw base as 

the turntable yaw measurements. Then for each yaw angle from the turntable results, each tapping’s 

standard deviation within every frequency band is evaluated. Finally, the frequency band standard 

deviation at each turntable recorded yaw angle is then multiplied by the probability density for the 

respective case (e.g. arbitrary), which is then summated for all of the turntable yaw angles.  

As such, the evaluated steady-state self-excitedness for each tapping, per frequency band, is the 

product sum of the pressure coefficient standard deviation and the probability density of that yaw 

occurring in the case, summated for all yaw angles, as summarised in Figure 305.  
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Figure 305 - Evaluation of steady-state self-excitedness 

As seen for the on-road data analysis, a clustering of data points around the 45o line shows accurate 

simulation of the sideglass pressure coefficient (or forces) using a turntable (i.e. steady) calibration and 

the roof probe recorded flow yaw angle (Figure 132). If a data point is below this line, it suggests 

greater unsteadiness for the simulated results as opposed to the measured, which can be considered 

to be either a pressure variation suppressed by the transient flow environment or as an artefact of the 

flow propagation time between the sideglass and roof probe (especially at higher frequencies, when 

yaw wavelengths are shorter). Data points above the line signify greater unsteadiness for the recorded 

pressure measurements rather than those simulated (i.e. greater than unity yaw sensitivity).  

Increased unsteadiness is common at higher frequency bands and is considered representative of 

‘self-excited’ turbulence. This turbulence is generated by small-scale vehicle geometry, from which the 

pressure fluctuations can average-out for steady-state (i.e. turntable) readings, but do not for the 

transient measurements.  

As a general trend from the on-road study, low frequency bands should have data points clustering 

around the 45o line (i.e. measured = simulated), as the simulation results are a good representation of 

the steady-state results. At intermediate frequency bands the data point clustering moves to the 

bottom left of the plot, as the pressure standard deviation reduces and the self-excited turbulence is 

still small. At the higher frequency bands, the data point cluster remains near to the left-hand side of 

the plot, as the simulation technique cannot resolve high frequency pressure fluctuations. The data 

point cluster then gradually moves in the increasing Y-axis direction with frequency, as the recorded 

pressure measurements start to have significant components of self-excited turbulence. Of course 

values cannot (and were not) less than zero. 

Figure 306 to Figure 314 show the sideglass pressure coefficient standard deviation for 2-second time 

histories, ordered by flow region type (as defined in the on-road study, Figure 94). 
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Tapping 01 and 09 (Figure 306 and Figure 307) represent what would be the mirror-wake region. At 

lower frequencies, the overall pressure standard deviation is relatively small, with clear yaw 

dependency in the pressure measurements up to 11.6Hz. Above 11.6Hz the simulation is less able to 

accurately predict sideglass pressures, which in comparison to the scaled frequencies is at a similar 

range to that for the on-road model, though differences are less apparent due to fewer data points.  

The steady-state result (plotted at simulated pressure deviation = 0Pa) is often the majority 

component of the pressure deviations, and therefore is significant in the variation of measured 

pressure. Note that for tapping 09 the admittance is around unity for the initial three frequency bands, 

whereas the on-road admittance reduces at comparatively lower frequencies. This is most likely due to 

the lack of sideglass mirrors on the Rover model, and as such the flow is much more stable and 

predictable for small downstream distances from the model’s A-pillar. 

Tapping 17, 25 and 35 (Figure 308 to Figure 310) demonstrate pressure variations in the A-pillar region. 

Tapping 17 (Figure 308) the tapping closest to the A-pillar where the A-pillar is most angled 

(i.e. greatest flow wake), shows the greatest pressure variations at low frequencies, representative of 

vortices shedding from the A-pillar. For all three tappings, as the frequency increases, the clustering of 

data points moves towards the bottom left (i.e. reduction in pressure variation) and then move 

upwards showing the inability of the simulation to accurately predict the sideglass pressures at these 

frequencies. It should be noted that the frequency band of 115.8 - 366.2Hz is a very high frequency 

band for turbulence and could be expected to have a greater measured component than it does. 

However, it should also be remembered that the -6dB, 250Hz hardware filters would be suppressing 

spectral energy at this level.  

Tappings 12, 13, 22 and 29, (Figure 311 to Figure 314) are all in the hybrid region. Pressure variations 

are lower than when near the A-pillar, with the tight clustering of data points showing that the flow is 

much more stable than when further upstream. Admittance roll-off is now slightly earlier, around 3Hz, 

showing that both stable and unstable flow regions can also show poor simulation prediction at 

relatively low frequencies (where typically a road vehicle would have wipers and mirrors affecting both 

A-pillar and sideglass flow). Again data point clustering is relatively tight and all clusters show slightly 

greater pressure deviation than the corresponding steady-state result. 

It has been seen in several cases that the clustering of the steady-state points is very close to, if not 

sometimes slightly lower than, the measured pressure coefficient standard deviation. Though it is 

theoretically possible that in the dynamic case the pressure deviations are less variant than in the 
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steady-state turntable yaw, this effect would only really be valid at specific yaw angles where the 

tapping happens to be in a barely separated flow (which would report an instantaneous admittance 

near to zero). Of greatest probability is that when a cluster is just below the steady-state result this is 

an artefact of the distance between the roof probe and sideglass at what are often the intermediate 

frequencies where the length scale is approximately the length of the model. 

 

Figure 306 - Standard deviation of 

pressure, tapping 01 (Mirror) 

Figure 307 - Standard deviation of 

pressure, tapping 09 (Mirror) 

Figure 308 - Standard deviation of 

pressure, tapping 17 (A-Pillar) 

 

Figure 309 - Standard deviation of 

pressure, tapping 19 (A-Pillar) 

Figure 310 - Standard deviation of 

pressure, tapping 35 (A-Pillar) 

Figure 311 - Standard deviation of 

pressure, tapping 12 (Hybrid) 
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Figure 312 - Standard deviation of 

pressure, tapping 13 (Hybrid) 

Figure 313 - Standard deviation of 

pressure, tapping 22 (Hybrid) 

Figure 314 - Standard deviation of 

pressure, tapping 29 (Hybrid) 

Therefore the approach of assessing the vehicle’s response using the TGS arbitrary excitation mode has 

shown greater vehicle response detail than from results of the quasi-steady simulation technique, 

particularly at the higher frequency bands. The pressure fluctuations seen at the higher frequency 

bands are comparable to those found in the on-road environment, showing that the TGS is able to 

replicate a vehicle’s response to equivalent on-road flow conditions. 

Figure 315 and Figure 316 compare the simulation of sideforce and yawing moment with the measured 

results. For the sideforce readings, the results show less frequency dependence with non-unity 

admittance noticeable at even low frequencies. It is not surprising to see the 3.6 − 11.6Hz frequency 

band having such high force deviations, as this is the frequency at which the turntable balance had 

natural frequencies adding additional spectral energy into the force measurements. Yawing moment 

deviations are notably smaller in size, with good simulation up to 11.6Hz, and then a similar trend of 

admittance roll-off at higher frequencies. It should be noted that these results show significant 

frequency dependence and that by 36.0Hz the results demonstrate that the simulation is unable to 

predict the measured readings. This is due to the high frequency pressure variations seen by the probe 

having very little spectral energy and therefore do not have the momentum and force to move the 

vehicle and hence are not detected by the balance. 
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Figure 315 - Standard deviation of sideforce Figure 316 - Standard deviation of yawing moment 

Similar plots were inspected for the harmonic cases but are summarised by the admittance and 

self-excitedness plots in the following section. 

9.9 Correlation of Standard Deviation of Pressure Coefficient Studies 

9.9.1 Admittance Results 

The arbitrary case standard deviation of pressure coefficient results were then regressed for a linear 

curve fit, offering a slope (representing admittance) and an intercept (representing self-excited 

unsteadiness) for each frequency band of each sideglass tapping. The admittance demonstrates the 

turbulence variation of the incoming flow and corresponding pressure changes that are therefore yaw 

dependent. Correspondingly, the self-excited pressure unsteadiness is therefore part of the vehicle 

response. The harmonic driving frequency data points shown on each of the admittance and 

self-excitedness graphs were produced by evaluating the standard deviation of pressure coefficient, at 

each tapping, by each frequency band, for their entire 16-seconds. For each of the harmonic 

frequencies the steady-state point was evaluated as described earlier, but using the probability density 

function of yaw from the respective frequency case. The standard deviation of measured over 

simulated pressure coefficient for the entire harmonic case sample was used, as the dominant 

frequency in the harmonic cases was the TGS aerofoil oscillation frequency, and had the 2-second time 

samples been used, which were used for the arbitrary case, this approach would result in numerous 

points being all aligned vertically on a measured against simulated standard deviation plot.  

Therefore the use of the ratio of the standard deviation for the entire sample to find the harmonic 

admittance allows a similar and fair comparison. Furthermore, the 5 data points from the harmonic 
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cases shown are from the 5 test driving frequencies, as each harmonic frequency band was only 

evaluated for pressure coefficient standard deviation centred on the aerofoil oscillation driving 

frequency, effectively applying a notch filter (i.e. non-overlapping low and high pass filter) to each 

harmonic test case. Frequency bandwidth was set to be consistent, in terms of log frequency, between 

each harmonic case. Finally the data point of each harmonic frequency test case are plotted at the TGS 

driving frequency (which is the mid-point of the respective notch filter frequency range).  

For the arbitrary result, the intercept (representing self-excitedness) is a result different from the 

‘steady-state’ standard deviation value previously shown (which is based upon the probability of yaw 

derived from a tapping’s entire steady-state recorded time history). The self-excitedness (i.e. intercept) 

data point was plotted on the arbitrary standard deviation results (Figure 306 to Figure 316) at the axis 

location corresponding to the simulated pressure standard deviation = 0Pa. The result shown in the 

arbitrary self-excitedness plots is the true regression intercept from the standard deviation frequency 

band data clusters.  

The harmonic driving frequency case slopes were found by a simple two point regression of this 

intercept with the ratio of measured to simulated pressure coefficient standard deviation, and as such 

were evaluated as shown (note the sum of standard deviations by converting them to variances 

initially in the numerator of the equation): 

( ) ( )
Dev Std C Simulated

Dev StdC StateSteady  - Dev StdC Measured
  e)(Admittanc Slope Harmonic

P

2

P

2

P
=  

Finally, as the on-road data samples are also plotted on each chart, frequency was converted into 

reduced frequency using the following equation, effectively 2π of Strouhal number: 

u

fl2
:)(Frequency  Reducedf)Frequency( RR

π
ωω =→  

where u = test velocity (ms−1) and l = test vehicle length (m). 

This gave a frequency to reduced frequency conversion scalar of k = 0.390 for the Rover model and 

k = 0.797 for the full-scale vehicle, in order to compare the results from vehicles of different scales, 

recorded at different test velocities. 

For the admittance (Figure 317 to Figure 327) and self-excitedness (Figure 328 to Figure 329) graphs, it 

was expected that at low frequencies a slope of near to unity would be reported, as the quasi-steady 

simulation accurate predicts the measured sideglass pressures. At intermediate frequencies the slope 

[29] 

[30] 
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would start to deviate from unity, and at higher frequencies the slope becomes unreliable as the 

simulation technique is unable to accurately predict sideglass pressures (though ideally would go to 

zero). On-road measurements (Chapter 4) have simply been aligned by reduced frequency for the 

on-road vehicle scale and test speed.  

Figure 317 and Figure 318 show the admittance results for tapping 01 and 09, in what would be the 

mirror wake region. At lower frequencies, tapping 01 shows larger admittances than the on-road 

results, with tapping 09 showing more correlated admittances. At higher frequencies, where the 

on-road trace shows a rapid increase in admittance, the arbitrary results tend to zero, which when 

reviewed alongside the standard deviation results is a consequence of the curve fit process to such a 

tight cluster of data. Additionally, the lack of mirrors in the tunnel model would cause notable flow 

differences through yaw sweeps. The harmonic results, however, show poor correlation with the 

on-road results, suggesting that driving at one dominant frequency does not produce the full pressure 

variation that would be seen for a more aperiodic and variant flow. This suggests that though the 

induced yaw angle is varying in a smooth manner, the sideglass pressures actually still significantly 

fluctuate due to increased flow unsteadiness at higher yaw angles. 

 

Figure 317 - Admittance for tapping 01 (Mirror) Figure 318 - Admittance for tapping 09 (Mirror) 

Figure 319 to Figure 321 show the admittance results for tapping 17, 19 and 35, all located in the 

A-pillar region. Tapping 17 and 35 show near to unity arbitrary and harmonic admittances at low 

frequencies, whereas tapping 19 shows slightly greater arbitrary admittances at low frequencies. All of 

the 3 tappings show a rapid decrease in arbitrary admittance at higher frequencies, but are, in general, 
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correlated with the on-road results. Harmonic correlation with the on-road and arbitrary trace is poor 

above 2Hz, with points only correlating at low frequencies.  

  

Figure 319 - Admittance for tapping 17 

(A-Pillar) 

Figure 320 - Admittance for tapping 19 

(A-Pillar) 

Figure 321 - Admittance for tapping 

35 (A-Pillar) 

Figure 322 to Figure 325 present tapping 12, 13, 22 and 29, tappings all in the hybrid flow region. 

Generally arbitrary admittances are much higher than unity, even at low frequencies, except for 

tapping 29 which is physically higher and more rearward than the other tappings, therefore potentially 

experiencing more A-pillar flow interaction. Harmonic admittances are near to unity at around 0.5Hz, 

but thereafter rapidly increase showing a poor correlation with the on-road results.  

 

Figure 322 - Admittance for tapping 12 (Hybrid) Figure 323 - Admittance for tapping 13 (Hybrid) 
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Figure 324 - Admittance for tapping 22 (Hybrid) Figure 325 - Admittance for tapping 29 (Hybrid) 

Figure 326 and Figure 327 display the admittance results for only the harmonic and arbitrary case, 

there is not a result for the on-road data set. Sideforce is reasonably accurately simulated by the 

harmonic case at lower frequencies, but not so above 4Hz, with the arbitrary result again tending to 

zero at higher frequencies due to the tight clustering of standard deviation data points. A similar result 

is seen for the yawing moment, with poor harmonic case correlation at even intermediate frequencies, 

and again a trend to zero as frequency increases. It is of interest to note that even though more 

deviation was seen at the 3.6 − 11.6Hz (tunnel scale frequency) in the standard deviation clusters, due 

to natural frequencies of the balance, these additional spectral energy components have not notably 

corrupted the admittances at a similar frequency band as admittances close to unity are still being 

reported. 
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Figure 326 - Admittance for sideforce Figure 327 - Admittance for yawing moment 

The results show that the arbitrary induced yaw study generated results better correlated with the 

on-road results, but with harmonic induced yaw studies showing a poor correlation. It can also be seen 

that for many of the results the TGS generated admittance results do not align with the on-road 

equivalent measurements, even though the pressure standard deviation plots showed a stronger 

correlation. This is due to the arbitrary trace having very few data plots for the curve regression 

process, relative to the on-road results (the arbitrary trace having 8 data points, the harmonic results 

having only two, against ≈2,200 data points for curve fitting for the on-road results). Therefore, though 

the approach has been shown to be valid, the accuracy of the curve fitting for admittance evaluation is 

improved with more data points. More data points could be gained through either running the 

arbitrary case numerous times or through running numerous arbitrary cases recorded from the 

on-road study. 

9.9.2 Self-Excitedness Results 

Finally, it is of interest to consider the self-excitedness results, which for the on-road and arbitrary case 

are the intercept of the linear regression of standard deviation data points, and for the harmonic case 

are the steady-state values (i.e. the product sum of P(Yaw) with frequency band pressure coefficient 

standard deviation). These values report the level of unsteadiness (that is pressure coefficient 

deviation) that would be expected with no additional yaw frequencies, be they the TGS aerofoils or 

on-road wind. Such self-excited unsteadiness are artefacts of the geometry of the vehicle as opposed 

to spectral energy components in the air flow (though in reality any background turbulence in the air 

does have an effect, but which can be considered to be small in the tunnel and yet notable on-road).  
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Figure 328 and Figure 329 show tappings 17 and 12, in the A-pillar and hybrid regions of air flow, 

respectively. Only two tappings are shown as an illustration of the self-excitedness order of 

magnitudes, rather than a detailed report. There is a good correlation between the on-road and 

arbitrary levels of self-excitedness, but it is clear that the harmonic induced yaw tests are unable to 

create representative levels of self-excitedness. However, the self-excitedness values are low at the 

lower frequency levels and are seen to increase as frequency increases. It should also be noted that 

the self-excited turbulence is greater for the model than for the full-scale study. 

   

Figure 328 - Sideglass pressure self-excitedness for 

tapping 17 (A-Pillar) 

Figure 329 - Sideglass pressure self-excitedness for 

tapping 12 (Hybrid) 

9.10 Rover 200 Model Test Conclusions 

A Rover 200 40% scale model was tested in the wind tunnel with the roof probe, 9-sideglass static 

pressure tappings and 6-component force measurements being recorded. A range of static test yaw 

angles using the TGS and turntable were performed, as well as harmonic and arbitrary excitation tests.  

Initial tests showed that the sideglass pressure results between the TGS and turntable induced yaw 

were highly correlated, as well as quantifying yaw dependent flow effects that a roof probe 

experiences. The steady-state results were used to generate a pressure and force against yaw angle 

profile for sideglass pressures and vehicle forces, which was used as the input into the quasi-steady 

simulation process. A method was presented to determine a steady-state, by frequency band, 

deviation of pressure and force from the probability density of yaw and the frequency band standard 

deviation, evaluated for each turntable yaw angle. These processes resulted in a set of standard 

deviation of pressure and force coefficients graphs shown for all relevant pressures and forces. 
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The standard deviation of pressure and force measurement results showed large pressure standard 

deviations at the lower frequency bands, notably sub-4Hz tunnel scale (that is around K = 2 reduced 

frequency). A strong measured to predicted pressure correlation was seen up to the 3.6Hz (K = 2) 

frequency band. Pressure deviations then decreased at the intermediate frequencies between 

K = 2 − 10 reduced frequency, and then increased again at higher frequencies, with poor simulation 

correlation at higher frequencies. Steady-state pressure deviation results were shown to be close to 

the measured results and as such the self-excited, that is the non-frequency driven pressure 

deviations, made a significant component of the reported pressure deviations. Sideforce was 

accurately simulated up to K = 2, and yawing moment up to K = 5, but was poor thereafter.  

Admittance plots, derived from the linear regression of the deviation clusters, were generated for the 

on-road, harmonic and arbitrary cases. Tight data point clusters were seen in the standard deviation 

results and this became evident in the admittance results due to the admittance tending to zero at 

higher frequencies, where the more dispersed on-road results had admittances varying more widely at 

higher frequencies. However, the curve regression process was seen to be sensitive in reporting 

admittances where few data points exist (i.e. for the arbitrary test measurements). 

The harmonic case results often poorly predicted the arbitrary or on-road case tests, suggesting that 

generating single-frequency, periodic waveforms does not generate the same pressure and force 

variations that the full on-road spectrum creates. However, the harmonic results, considering the 

kurtosis in their spectral energy relative to the on-road spectral energy, were able to generate results 

in line with the on-road and arbitrary results, albeit without consistency. Correlations were seen 

between the on-road and model pressure results, offering confidence that the admittance method is 

able to capture the true flow frequency dependent characteristics. Sideforce and yaw arbitrary results 

were valid up to 4Hz tunnel-scale (K = 2) when compared to the harmonic results, but the correlation 

decreased with frequency. Finally, self-excited turbulence results were presented, with the arbitrary 

and on-road results tending to agree, but with the model showing higher levels of self-excited 

unsteadiness.  

Therefore, the use of the harmonic case, considering its spectral limitations, still offered an insight into 

the pressure and force frequency dependent deviations. However, the arbitrary case, considering how 

much shorter the time history was in comparison to the vast on-road data collection (32-seconds 

against 8,800-seconds) gave a notable insight for a greatly reduced test duration. In summary: 

• Large pressure standard deviations are noted at the sub-4Hz tunnel scales (K < 2).  
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• A strong ‘measured to predicted’ pressure correlation was seen to exist up to the 3.6Hz 

frequency band (K = 2).  

• Standard deviation of pressures reduces at the intermediate frequencies between K = 2 − 10 

reduced frequency, and then increases at higher frequencies, with poor simulation correlation 

at the higher frequencies.  

• Sideforce and yaw arbitrary results were valid up to 4Hz tunnel-scale (K = 2) when compared to 

the harmonic results, but the correlation was poor at higher frequencies. 

• In a direct assessment between the harmonic and arbitrary test modes, the arbitrary test 

mode was found to be more representative of the physical, real-world environment than by 

operating the TGS at one discrete frequency. 

Therefore a quasi-steady approach (i.e. turntable) is only able to predict transient flow effects in 

stable flow regions for a road passenger vehicle up to the frequencies where self-excited 

turbulence becomes significant. For unstable flow regions, such as in the mirror wake or A-pillar 

flow, transient flow effects become poorly predicted above around 2Hz (K = 1). For transient flow 

effects in such regions above K = 1, the use of a TGS in an arbitrary mode can more accurately 

simulate a vehicle’s response. At frequencies above 10Hz (K = 5) self-excited turbulence becomes 

significant and needs to be quantified and factored into an analysis approach. 
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10. Conclusions 

The on-road environment was shown to have significant energy in the 0.1 - 10Hz range (reduced 

frequency K = 0.1 - 10 for a vehicle driving at highway speeds). An active, lift-based, TGS was created 

able to generate harmonic and arbitrary yaw variations of up to ±10o across the frequency range of 

greatest importance: K = 0.3 - 5 (0.3 - 5Hz full-scale at 32ms-1, up to 10Hz model-scale). At lower 

frequencies quasi-steady approaches are sufficient and at higher frequencies both on-road energy and 

vehicle response are reduced. 

10.1 On-road Environment 

10.1.1 Velocity Components 

On-road turbulence experienced by a road vehicle is a combination of velocity non-uniformity in space, 

which a vehicle perceives temporally, and also unsteadiness in the atmospheric boundary layer and 

due to other vehicles. The wind velocity may be constant at specific locations, but as the vehicle 

translates through a domain, it experiences varying flow velocities (i.e. varying crosswind) in terms of 

time. In addition, air flow can have induced unsteadiness due to roadside furniture and unsteady 

wakes of other vehicles. 

Sources presented, as well as the on-road study, showed that variations in lateral flow velocities are 

the most significant, causing notable variations in vehicle drag, sideforce and yawing moment. These 

lateral variations are readily characterised by the yaw angle, and sideglass pressure variations were 

shown to correlate strongly with yaw variations. Longitudinal flow velocity variations occur to almost 

the same intensity as lateral velocity variations, but longitudinal velocity variation effects can be 

handled adequately as variations in dynamic pressure. The intensity of vertical velocity variations was 

shown to be approximately 60% of that of longitudinal and lateral velocity variations. 

10.1.2 Yaw Range 

Sources reviewed correlated well with the on-road study. Yaw angles ranged between ±20o, but with 

the vast majority within ±6o. Correspondingly, the turbulence intensity range was 0.5 - 15%, but with 

the majority below 8%. 

10.1.3 Unsteady Time and Length Scales 

From the literature and the on-road study, a broad range of on-road flow conditions has been shown 

to exist, especially in terms of time and length scales. The majority of the energy in the on-road yaw 
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spectrum was found to exist in the 0.1 - 10Hz range. Above 10Hz the spectral energy was seen to 

roll-off significantly, decreasing by more than an order of magnitude by 100Hz. Turbulent length scales 

can be used to summarise the flow spectrum, and turbulent length scales from 1 - 15m were found to 

be typical, but care is needed as the method of calculation can influence the result. A strong negative 

correlation was found between length scale and intensity, with shorter length scales occurring 

simultaneously with high intensities. The length scale of vertical velocity variations was found to be 

typically 30% of that of longitudinal and lateral velocity variations. 

10.2 Vehicle Response  

10.2.1 Assessment of Vehicle Response 

Conventional transfer function or admittance approaches can be corrupted by the presence of 

uncorrelated sources (e.g.: self-excited unsteadiness). In many cases the level of self-excited 

unsteadiness was significant when compared with that correlated with onset flow unsteadiness. 

Therefore an assessment approach needs to make consideration for the self-excited unsteadiness. The 

approach used in this thesis has combined a quasi-steady prediction and a regression of multiple 

short-duration (4-second) measurements to separate self-excited unsteadiness and unsteadiness 

correlated with yaw.  Additionally the influence of steady yaw on self-excited unsteadiness has been 

assessed using the recorded probability of yaw function multiplied by the corresponding flow 

unsteadiness for each yaw angle. 

10.2.2 Quasi-Steady Boundary 

The reduced frequency, K, is a fundamental parameter in considering vehicle aerodynamic response. 

When comparing spectra between the on-road and the wind tunnel domains, reporting of frequencies 

in terms of reduced frequency allows differences in test velocities and scale to be readily assessed. A 

vehicle’s response to external unsteadiness was observed. The use of a roof mounted probe was 

shown to be a good method to record time-aligned yaw. Comparisons were made between measured 

unsteady surface pressures (on-road and wind tunnel) and forces (wind tunnel) and a quasi-steady 

simulation based on either steady-state tunnel or unsteady road measurements. The simulation 

process used the roof-probe recorded yaw to predict sideglass pressures or vehicle forces, and the 

comparison with unsteady measurements demonstrated the frequency range that could be treated as 

quasi-steady. 
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The 2D CFD study, considering forces on a simple body, indicated a quasi-steady reduced frequency 

threshold around K = 0.3 for drag and sideforce. Similarly, the on-road study confirmed that below 

K = 0.3 sideglass pressure fluctuations behaved in a quasi-steady way, while for K > 5 admittance 

always deviated from unity. Additionally, in the 2D CFD study, unsteady effects were found to be 

largely independent of Reynolds number, including for near-inviscid conditions. This indicates that the 

sources of non-quasi-steady response are not viscous in origin. 

10.2.3 Local Admittance Effects 

The on-road study showed that different regions on the vehicle (sideglass) exhibited different 

responses in terms of admittance and quasi-steady boundary. 

Via the on-road study, the A-pillar region showed consistent admittances greater than unity at 

frequencies in the region of K = 3. This region was also shown to have a high steady-state sensitivity to 

yaw, which, with its greater than unity admittance, demonstrates that the region’s unsteady response 

to yaw is even more extreme. The simulated sideglass pressures in this region were less accurate at 

lower frequency bands due to the aerodynamically less stable nature of this region.  

In the mirror wake region the yaw to sideglass pressure admittance was generally below unity, with an 

admittance roll-off beginning by K = 1. Pressure variations were found to be less yaw dependent than 

in other sideglass regions, with significant levels of self-excited unsteadiness at higher frequencies 

(typically K > 5).  

10.2.4 Non-Linear Effects 

The 2D CFD study showed that increasing yaw amplitude or combining multiple frequency components 

did not have a summative impact on the time-averaged drag and sideforce. This effect was also seen in 

the wind tunnel study, with individual harmonic TGS driving frequencies indicating a different vehicle 

response to that found through the TGS arbitrary mode or on-road study. Care therefore needs to be 

taken in trying to describe vehicle response to transient conditions using linear concepts such as 

transfer or admittance function, as non-linearity exists in the underlying physics. Using a multiple 

frequency approach, such as the arbitrary mode, was seen to provide better agreement with the 

on-road measurements. 



 

 

 

246

10.3 Wind tunnel Simulation of On-road Unsteadiness 

10.3.1 Significant Frequency Region 

A key question in the potential simulation of an unsteady incoming flow is the range of frequencies to 

generate. As discussed, most of the energy on-road is in the 0.1 - 10Hz range (K = 0.1 - 10 for a vehicle 

driving at highway speeds). For the lowest frequencies (K < 0.3) a quasi-steady approach 

(e.g.: turntable yaw) will be sufficient. At higher frequencies the energy present on-road reduces and 

the vehicle response to on-set unsteadiness also reduces; these two factors together making higher 

frequencies progressively less important. Hence the target frequency band of greatest importance for 

a simulation device is approximately K = 0.3 - 5 (0.3 - 5Hz full-scale). In this region the on-road energy is 

significant and the vehicle aerodynamic response is notable, but is not fully understood and will 

depend on aerodynamic geometry. Additionally, this frequency range encompasses typical vehicle 

suspension Eigen-frequencies (≈ 1Hz) and the noise modulation, syllable, frequencies at which humans 

are most sensitive (≈ 4Hz). 

10.3.2 Turbulence Generation Devices 

Sources reviewed showed a variety of drag, lift and thrust systems for generating turbulence in wind 

tunnels. Static grids, either square or fractal in configuration or plate or rod in shape all generated 

turbulence length scales which were short in comparison to on-road turbulence length scales of 

greatest interest. Active drag systems, such as the Pininfarina vane system or oscillating horizontal 

bars, can generate some longer length scales but the devices’ wakes also contain higher frequency 

components that cannot be regulated. Therefore a lift based device, using oscillating aerofoils, was 

selected. Sources reviewed also showed the advantage of generating longitudinal turbulence, such as 

through varying tunnel blockage and bypass flows, and that the ability to induce pitch flows would 

allow the generation of comparable on-road tri-axis turbulence.  

A 2D and 3D CFD TGS design study was completed, showing at 10Hz and ±9o of aerofoil angle, flow yaw 

angles of up to ±6o could be generated, with an acceptable flow uniformity throughout the test 

section. The studies showed the advantage of having additional inlet and outlets, controlled by shutter 

panels. The shutters ensured that even under extreme yaw, the jet shear layer did not interact with the 

test model and that higher peak yaw angles and improved flow uniformity could be generated. The 

TGS CFD studies showed that generating higher frequency turbulence (i.e. >10Hz) caused flow 

uniformity issues, and therefore the TGS design focussed on larger peak aerofoil angles (i.e. ±15o) at 

10Hz as opposed to higher aerofoil oscillation rates.  
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Finally, dynamic CFD simulations showed a ratio between aerofoil angle and flow peak yaw angle of 

1.0 : 0.7, and consequently a scalar between the on-road yaw and aerofoil angle was utilised. 

10.3.3 Turbulence Generation Capability 

A TGS system was installed and commissioned at Durham University with twin lateral yaw aerofoils and 

one horizontal aerofoil imposing pitch, operating up to 10Hz at ±15o incidence. Its twin motor 

configuration allows real-time aerofoil amplitude and frequency adjustments. Solenoid operated 

shutter units at the test section inlet and outlet operate in a coordinated unison with the aerofoils, 

with the shutter open-to angles and opening sequence optimised to create good flow uniformity and 

peak yaw angles over a test vehicle’s plan view. For harmonic test studies, an experimentally derived 

time delay between the aerofoil motion and the front shutter actuation was found, with an inlet flow 

acceleration time of 0.20s for a freestream flow rate of 25.6ms-1. 

A commissioning study demonstrated harmonically induced yaw angles up to ±10o yaw with flow 

uniformity better than 1o for the side-to-side variation over a vehicle’s footprint in the test section.  

Pitch downwash of -4o could be generated, though the resultant up-wash in the lateral shear flow 

regions did cause side-to-side flow variations. A highly accurate replication of the on-road trace, 

denoted the arbitrary trace, was generated, demonstrating the ability to replicate real world on-road 

flow environments within the 2m wind tunnel at realistic vehicle speeds. 

10.3.4 Turbulence Generation Approaches  

A scaling of time scale between on-road and the wind tunnel is required to achieve the required 

reduced frequency, accounting for flow velocity and model scale-size differences. On-road yaw 

measurements were shown to be prepared for TGS simulation and it was found that recreating the 

prominent yaw peaks from on-road yaw time histories offered the most accurate flow recreation 

method.  

The wind tunnel test study showed that the harmonic case results often poorly predicted the on-road 

results, suggesting that generating single-frequency, periodic waveforms does not generate the same 

response that the full on-road spectrum creates. However the arbitrary case test, replicating on-road 

conditions, gave a notable insight for a greatly reduced test duration in comparison to the vast on-road 

data collection (32-seconds against 8,800-seconds). 



 

 

 

248

10.4 Further Work 

The results of the research from this thesis indicate a few areas of interest that would be the proposed 

onward direction for further work: 

• The harmonic test modes all generate a probability density function of a sine function. The sine 

function has a PDF where the majority of the foil displacement is at the higher angles of yaw 

displacement, whereas the on-road yaw PDF shows that yaw angles are centred on 0o of yaw. 

One area where the harmonic tests cases could be improved is modifying the harmonic 

periodic tests to run with a yaw PDF matching the on-road yaw PDF (i.e. less time at higher yaw 

angles and more time in a cycle at the lower yaw angles). 

• The on-road study in this thesis indicated non-symmetric roof probe velocity speed-up over 

the measured yaw range. This behaviour was proposed to be due to headwinds and tailwinds, 

though could be due to a Reynolds number effect. Tests conducted reviewing roof probe 

speed-up over a range of yaw angles at differing test speeds would give further insight into this 

systematic variance. 

• The development of a test case with both an on-road representative spectrum and PDF that 

accounts for factors such as headwinds and tailwinds and at differing test speeds. 

• Develop a facility to measure unsteady forces with a higher fidelity and frequency response 

than those shown in this thesis. The issue of the measured forces at a similar frequency as the 

natural frequency of the balance and pressure effects occurring at the upper end of the 

measurement sampling rate limit could be alleviate by such a facility.  

• Undertake further investigations into where on a vehicle and in what environments and flow 

conditions unsteady effects are important. For example the effect on a vehicle response’s 

through varying vehicle geometry, driving speed and aspect ratio. 
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Appendix 1. TGS Commissioning Results and Configuration 

1.1 TGS Aerofoil to Motor Angle Conversions 

 

Figure 330 - Aerofoil to motor angle conversions 

 

  

Lateral Foils Horizontal Foils

Foil Angle Motor Angle Foil Angle Motor Angle

0 0 0 0

1 4 1 4

2 8 2 8

3 12 3 12

4 16 4 16

5 20 5 20

6 24 6 24

7 28 7 28

8 33 8 33

9 37 9 37

10 42 10 42

11 47 11 47

12 53 12 53

13 60 13 60

14 69 14 69

15 90 15 90

-1 356 -1 356

-2 352 -2 352

-3 348 -3 348

-4 344 -4 344

-5 340 -5 340

-6 336 -6 336

-7 332 -7 332

-8 327 -8 327

-9 323 -9 323

-10 318 -10 318

-11 313 -11 313

-12 307 -12 307

-13 300 -13 300

-14 291 -14 291

-15 270 -15 270

With a Phase Shift of 180 degrees
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1.2 TGS Commissioning Test Results 

1.2.1 Shutter Open-to Test Results 
Table 25- Results from the static shutter tests to determine optimum shutter open-to angle (from p.219) 

 

Table 26 - Summary of results by rankings from the static shutter tests to determine optimum shutter open-to angle (from 

p.219) 

 

15 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -15 Mod.    Avg Extremity    Mod    Avg.

Average F15R15 7.536 6.853 5.87 4.34 2.877 1.934 1.500 -0.048 -0.326 -0.440 -1.117 -2.393 -3.397 -4.167 -4.792 3.396 5.837

Std.    Dev F15R15 0.472 0.619 0.41 0.33 0.214 0.292 0.599 0.711 0.522 0.720 0.282 0.458 0.454 0.532 0.422 0.473 0.497

FR-RR F15R15 -0.101 0.019 -0.247 -0.117 -0.279 -0.398 0.429 0.756 0.501 0.817 0.398 0.323 -0.245 -0.161 0.012 0.121 0.013

Y+-Y- F15R15 -1.040 -1.361 -0.917 -0.662 0.153 0.242 1.222 1.268 0.832 1.255 0.119 -0.818 -0.785 -1.067 -0.709 0.111 0.749

15 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -15 Mod.    Avg Extremity    Mod    Avg.

Average F8R8 7.362 5.686 4.878 3.586 2.756 2.589 1.744 0.337 0.590 -0.279 -1.141 -1.637 -2.990 -3.005 -4.402 2.962 5.113

Std.    Dev F8R8 0.647 0.666 0.464 0.445 0.252 0.454 0.562 0.690 0.633 0.325 0.196 0.324 0.250 0.552 0.708 0.461 0.620

FR-RR F8R8 -0.396 -0.600 -0.393 -0.274 -0.149 -0.096 0.403 0.078 0.175 0.602 0.028 0.297 0.054 0.253 -0.027 0.001 0.255

Y+-Y- F8R8 -1.412 -1.382 -0.933 -0.893 -0.354 0.836 1.134 1.554 1.435 0.321 0.060 -0.332 -0.365 -1.173 -1.463 0.107 1.038

15 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -15 Mod.    Avg Extremity    Mod    Avg.

Average F15R8 7.532 6.590 6.005 5.110 4.201 2.080 0.807 0.562 0.331 -0.630 -1.454 -2.152 -3.296 -4.134 -4.134 3.414 5.597

Std.    Dev F15R8 0.762 0.644 0.662 0.499 0.214 0.496 0.541 0.600 0.632 0.431 0.314 0.352 0.384 0.317 0.317 0.489 0.553

FR-RR F15R8 0.250 0.065 -0.150 -0.414 -0.062 0.011 0.321 0.185 0.663 0.758 0.216 -0.079 -0.178 -0.245 -0.245 0.096 0.041

Y+-Y- F15R8 -1.060 -1.292 -1.457 -0.961 0.349 0.953 1.188 1.272 1.138 0.232 -0.066 -0.340 -0.744 -0.622 -0.622 0.101 0.718

15 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -15 Mod.    Avg Extremity    Mod    Avg.

Average F8R15 8.199 7.077 6.118 5.205 4.044 3.558 2.292 1.162 0.662 -0.462 -1.366 -2.012 -3.313 -4.320 -4.051 3.668 5.912

Std.    Dev F8R15 0.656 0.421 0.319 0.496 0.219 0.329 0.469 0.521 0.419 0.236 0.421 0.287 0.296 0.441 0.506 0.395 0.495

FR-RR F8R15 -0.333 0.054 -0.053 -0.244 -0.143 -0.323 -0.109 0.716 0.728 0.081 0.694 0.087 -0.024 0.260 0.363 0.099 0.046

Y+-Y- F8R15 -1.406 -0.923 -0.700 -1.064 -0.338 0.595 0.908 0.771 0.242 -0.044 -0.308 -0.405 -0.574 -0.897 -1.021 0.296 0.764

15 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -15 Mod.    Avg Extremity    Mod    Avg.

Average Closed 6.880 6.150 5.603 5.088 4.241 2.540 1.586 0.503 0.314 -0.453 -0.422 -1.386 -1.971 -2.584 -3.501 3.006 4.779

Std.    Dev Closed 0.246 0.158 0.145 0.249 0.217 0.393 0.543 0.630 0.551 0.428 0.385 0.552 0.316 0.414 0.235 0.373 0.253

FR-RR Closed -0.368 -0.174 -0.136 -0.247 -0.308 -0.201 0.261 0.434 0.517 0.564 0.239 0.502 0.553 0.572 0.187 0.158 0.049

Y+-Y- Closed -0.345 -0.156 -0.170 -0.367 0.251 0.656 1.113 1.216 0.911 0.441 -0.653 -0.855 -0.187 -0.558 -0.189 0.093 0.149

`

Averages F8R15 Std    Devs F8R15 FR-RR F8R15 Y+-Y- F8R15

Set -10 0 10 Set -10 0 10 Set -10 0 10 Set -10 0 10

1 -1.796 1.218 5.574 1 0.629 0.470 0.392 1 0.277 0.352 -0.139 1 -1.249 0.733 -0.829

2 -1.647 1.286 5.509 2 0.491 0.449 0.380 2 -0.055 0.334 0.011 2 -1.027 0.845 -0.747

3 -1.731 1.267 5.530 3 0.656 0.521 0.439 3 0.387 0.355 0.107 3 -1.322 1.021 -0.886

4 -1.683 1.221 5.614 4 0.660 0.344 0.514 4 0.356 0.202 -0.204 4 -1.409 0.618 -1.099

5 -1.742 1.259 5.553 5 0.582 0.414 0.558 5 0.022 0.335 0.170 5 -1.279 0.766 -1.117

6 -1.734 1.215 5.578 6 0.722 0.363 0.525 6 -0.030 0.198 -0.299 6 -1.459 0.778 -1.127

7 -1.732 1.311 5.528 7 0.666 0.359 0.487 7 -0.060 0.304 -0.064 7 -1.116 0.724 -1.067

8 -1.788 1.333 5.486 8 0.619 0.410 0.349 8 0.123 -0.004 -0.069 8 -1.319 0.856 -0.723

9 -1.776 1.357 5.594 9 0.505 0.375 0.466 9 0.231 0.085 -0.188 9 -1.003 0.782 -0.984

10 -1.710 1.278 5.504 10 0.476 0.519 0.367 10 0.231 0.138 -0.197 10 -0.912 1.087 -0.795

Std. Dev: 0.047 0.049 0.042 Std. Dev: 0.084 0.065 0.073 Std. Dev: 0.171 0.126 0.148 Std. Dev: 0.184 0.140 0.160

Avg Std Dev: 0.046 Avg Std Dev: 0.074 Avg Std Dev: 0.149 Avg Std Dev: 0.162

Metrics Mod.    Avg Avg.    Std    Dev. Avg    FR-RR Avg.    Y+-Y- Ext.    Avg. Ext.    Std.    Dev. Ext.    FR-RR Ext.    Y+-Y-

F8: 3.315 0.428 0.050 0.202 5.513 0.558 0.151 0.901

F15: 3.405 0.481 0.108 0.106 5.717 0.525 0.027 0.734

R8: 3.188 0.475 0.049 0.104 5.355 0.587 0.148 0.878

R15: 3.532 0.434 0.110 0.204 5.874 0.496 0.029 0.757

Closed: 3.006 0.373 0.158 0.093 4.779 0.253 0.049 0.149

Ranks

F8: 3 2 2 4 3 4 5 5

F15: 2 5 3 3 2 3 1 2

R8: 4 4 1 2 4 5 4 4

R15: 1 3 4 5 1 2 2 3

Closed: 5 1 5 1 5 1 3 1

0 1 1 1 0 1 1 1

High=Good Low=Good Low=Good Low=Good High=Good Low=Good Low=Good Low=Good
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Table 27 - Compilation of results from the static shutter open-to angle tests (from p.219) 

 

Table 28 - Shutter nominal opening angles 

 

Table 29 - Resultant flow yaw based upon shutter opening configuration detailed in Table 14 

 

1.2.2 Preliminary Dynamic Test Results 
Table 30 - Preliminary test results 

 

F15R15 F8R8 F15R8 F8R15 Closed Assesses

Mod Avg. 3 5 2 1 4 Angle

Avg. Std Dev. 4 3 5 2 1 Uniformity

Avg FR-RR 4 1 2 3 5 Uniformity

Avg. Y+-Y- 4 3 2 5 1 Uniformity

Ext.Mod. Avg. 5.8 5.1 5.6 5.9 4.8 Angle

Ext. Std. Dev. Uniformity

Ext. FR-RR 0 0.3 0 0 0 Uniformity

Ext. Y+-Y- 0.7 1 0.7 0.8 0.1 Uniformity



 

 

 

261

1.2.3 Cascade Open Only Dynamic Test Results 

 

Figure 331 - Average yaw against period - 164ms delay Figure 332 - Average yaw against period - 218ms delay 

 

Figure 333 - Average yaw against period - 273ms delay 
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1.3 TGS Commissioning Probe Transfer Function Correction 

 

Figure 334 - TGS commissioning probe TF correction (applied to all probe set-ups during transient measurements) 

Frequency (Hz)

A
m

p
li
tu

d
e

/
[1

]

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Probe Hole 0

Probe Hole 1
Probe Hole 2

Probe Hole 3
Probe Hole 4



 

 

 

263

1.4 TGS Commissioning Probe Calibration  

 

Figure 335 - Laser sintered probe pitch and yaw calibration results 
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1.5 Wind Tunnel Turntable Balance Calibration Results 

   

Figure 336 - Balance calibration - Drag Figure 337 - Balance calibration - Yaw 

   

Figure 338 - Balance calibration - Sideforce Figure 339 - Balance calibration - Lift 

 

Figure 340 - Balance calibration - Pitch Figure 341 - Balance calibration - Roll 
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Appendix 2. TGS Specification supplied to Labman Automation 

2.1 Background 

Durham University wishes to install a turbulence generation system into its 2m2 wind tunnel in order to 

undertake wind tunnel tests with controlled dynamic yaw-like wind characteristics. This specification is 

for the tender to design, build, install and commission the system in full. It is believed that vehicle 

design with consideration for transient wind conditions will yield greater efficiencies and improved 

vehicle performance, and this system will be state-of-the-art in such research. Durham University’s 

School of Engineering and Computing Sciences has undertaken an aerodynamic design of the 

turbulence generation system which is to be retrofitted to its current wind tunnel, and this 

specification outlines that design. The 2m wind tunnel at Durham University is a 3/4 open jet tunnel 

with a total length of approximately 20m. The inlet nozzle has a contraction ratio of approximately 4:1, 

excluding bellmouth. The 5.5m long test section jet has a cross sectional area of 2m2 (aspect ratio 

1.5:1) and the tunnel operates at up to 30m/s. At the end of the test section the collector directs the 

flow into two main diffusers which feed into a fan chamber with two fans. These exhaust vertically via 

two exhaust diffusers. 

 

Figure 342 - General overview image of the wind tunnel 
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2.2 Tunnel Description 

In Section 4 and Appendix C several images and drawings are included of the layout and shape of the 

tunnel, with the location of the new components. The system is to be retro-fitted to the tunnel and 

hence consideration for packaging and modifications to the tunnel are implicit. Note also that the 

tunnel can alternate between fixed and moving ground, and as such has a rolling road that sits under 

the test chamber floor. CAD (Solidworks / IGES) for the wind tunnel will be provided following tender 

award. 

2.3 Project Outline 

The turbulence generation system will consist of a variety of components. The characteristics of ‘real 

world’ wind are tri-axis, and as such the TGS design is to generate variant wave forms in all three axes, 

though in order of priority, lateral (yaw angle, y-velocity), longitudinal and then vertical scales are, 

respectively, of the greatest importance. This section qualitatively explains the design. The key design 

parameters are specified later in the electro-mechanical section and are the values to be most closely 

followed. All of the aerodynamic design has been completed and the tender is only for the mechanical 

design (and subsequent build, install and commission). It can be assumed that any aerodynamic 

assessments can or would be completed at no cost. 

2.3.1 Component List 

The following components will need to be installed (and includes their respective item labels for where 

they are discussed further in this specification).  

A – 2x Front ducts  B – 2x set of Front Splitters C – 2x set of Front shutters  

D – 2x Main aerofoils  E – 1x Horizontal aerofoil F – 2x set of Rear Shutters  

G – 2x set of Rear Splitters H – 2x set of Blow-in valves I – 2x set of Diffuser shutters  

J – 2x Rear ducts 

2.3.2 Front and Rear Duct, Splitters, Shutters and Front Main Foils (Lateral Flow Control) 

Two NACA 0012, 0.60m chord, 1.14m in height aerofoils (Item D in Figure 343, Figure 344, Figure 345) 

are to be mounted vertically either side of the nozzle, with each oscillating in various modes, including 

sinusoidal and arbitrary programmable motion. In addition to these foils, additional inlet (item A) and 

exhaust vents (item J) are to be installed, mounted to the side of both the nozzle and collector, 

respectively. Each quadrant (i.e. 2-inlet side quadrants, 2-exhaust side quadrants) is to have 6-shutters 
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(items B & C and F & G), 0.10m in width, which will open corresponding to the main foils’ incidence 

angle. These additional inlets are incorporated into the design such that the overall jet width, when 

viewed as a perpendicular y-axis (width) aligned slice, will be maintained even when the air flow is 

yawed (otherwise the effective jet width would decrease with flow yaw angle). 

 

Figure 343 - Front turbulence generation system perspective 

In Figure 343, items A (front ducting) is shown in blue, items B (splitters) are shown in red, items C 

(front shutters) are shown in bright green, items D (main foils) are shown in dark red and item E 

(horizontal foil) is in cyan. 

In Figure 344, the front ducting on the left hand side of the image has been removed for clarity. Items 

B (splitters) are shown in red, items C (front shutters) are shown in bright green, items D (main foils) 

are shown in dark red and item E (horizontal foil) is in cyan. 

Front Duct 

(A) 

Horizontal 

Foil  (E) 

Main Foil 

(D) 

Main Foil 

(D) 

Front Duct (D) 
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Figure 344 - Front perspective with inlet ducting removed for clarity 

     

Figure 345 - Left, one of two main foils (item D and E), which has 2 segments - the main foil, and a second trailing foil, which 

flap quickly. Centre, a set of 6 shutters (item C, F and I), which pivot centrally, to rapidly vary airflow such to pass or to be 

stopped. Right, a set of splitters (item B and G) that simply separate the airflow as it approached the shutters. The splitters 

do not move. 

Front Splitters (B) 

Front Shutters (C) 

Main Foil (D) 
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To accommodate the transient yawed airflow at the downstream end of the test section new rear 

ducting (Items J in Figure 346, shown in blue) and rear shutters (items F, shown in bright green) are 

required. Inside the ducting splitters are required (Items G, partially shown in red behind the shutters 

in Figure 346). 

 

 

Figure 346 - Rear perspective of turbulence generation system in wind tunnel 
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In Figure 347, the rear ducting (items J) has been removed and items F (rear shutters) are shown in 

green and items G (rear splitters) are now more shown in dark red.  

 

Figure 347 - Rear perspective of turbulence generation system in wind tunnel with ducting removed for clarity 
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2.3.3 Main Diffuser Shutters and Blow-in Valves (Longitudinal Flow Control) 

In order to vary the longitudinal velocity, additional blockage shutters (item I) are to be installed in 

both of the main diffuser sections. These shutters, (4-shutters per diffuser side, 0.10m width each, 

1.20m tall, not shown but very similar to the shutters in section 3.2), will each act independently to 

vary the main diffuser flow area by approximately 40%. This controlled blockage variation will 

correspondingly accelerate and retard the airflow as the shutters open and close. In order to avoid 

stalling the downstream fans as the flow is obstructed, downstream of these shutters are to be 

actuated ‘blow-in’ panels (item H), which open in co-ordination with the shutters to minimise the load 

variation from the fan (i.e. the air will blow-in from outside of the tunnel). Images of these items 

corrected located and orientated are included in Figure 348. 

 

Figure 348 - Purple Item I showing the longitudinal shutters (dropped in other images for clarity) 

In Figure 349, in bright pink, under the rear diffuser, item H, the Rear Duct blow-in valves can be seen.  

The main diffuser shutters (items I) and ducting (items J) are not shown; items F (rear shutters) are 

shown in green and items G (rear splitters) are shown in dark red. 
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Figure 349 - Rear, underneath perspective, with rear ducting removed for clarity. The purple items are the blow-in flaps. 

2.3.4 Horizontal Foil (Vertical Flow Control) 

An aerofoil (item E) will be mounted horizontally across the top of the nozzle, NACA 0012 type with a 

chord of 0.40m, 1.40m length, able to oscillate up to around 10Hz to a peak angle range of 0 to -18o. 

Images of these items corrected located and orientated are included in and Figure 344. 

2.3.5 Miscellaneous 

Each movement of the devices will be controlled electronically through an open source C computer 

program (or similar, though c is preferred).  Each movement (i.e. main left foil peak angle and 

oscillation frequency) will be expected to be able to be controlled in real-time. The program will also 

be expected to be fed a file that details all the motion parameters and then be able to execute that 

motion. The control system will be expected to have a feedback system from all device movements to 

validate fidelity of operation. The control system should monitor operation in real time and adequate 

failure protection modes should exist. Access to the test sections and space under the test section 

(where mechanical actuation can be housed) is already fully interlocked and the turbulence generation 

system can make use of the existing interlock arrangements. 

Rear Shutters (F) 

  Rear Splitters (G) 

Blow-in Valves (H) 

Rear Splitters (G) 

Rear Shutters (F) 

Blow-in Valves (H) 
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The whole operation will be expected to be commissioned to this specification and it will be the 

ultimate responsibility of the supplier that the specification is met at commission. At the 

commissioning process the use and operation of the system should be expected to be explained, 

though no formal training is expected. The design and operation will also be expected to be under a 

warranty of 1-year that the specification will be maintained, and parts used should be selected in 

consideration to the ease of replacement and likelihood of failure for a 10-year operation life, 

operating at around 150-hours per annum. The TGS system should be designed for continuous 

operation of over 1-hour per session. Any cooling requirements or lubrication requirements must be 

considered. 

The TGS should be able to be configured such that when not in use it has negligible impact on the 

standard flow operation of the wind tunnel. As such necessary drive-shafts and linkage mechanisms 

should be kept out of the flow as much as possible, or made aerodynamically insignificant (via 

shaping). 

Parts should be chosen that are relatively standard, with the main consideration being ease of 

replacement should the particular part be discontinued. It is expected that all plans, part numbers and 

a general manual of operation will be included. A maintenance schedule should be supplied, but no 

onward maintenance commitments are essential as internal maintenance is expected, other than a 1-

year parts and labour warranty. It would be ideal, though not essential, if a one-off 6-month service 

(i.e. to inspect that the unit is operating and being operated correctly) could be included in the 

quotation. 

The dimensions given are accurate, but should be checked with any design made – different linkage, 

packing or mounting configurations could mean that the dimensions given are out of tolerance for 

correct operation. 

It can be assumed that the specified operation parameters given in this specification will not cause any 

issues to the superstructure or currently installed systems in the wind tunnel (i.e. currently installed 

wind tunnel fans). If additional superstructure or mounting is felt required, this is possible. 

2.3.6 Overview of Motion Generation 

The turbulence generation system will be operated with arbitrary, yet programmable, motion. As such 

the combination of aerofoils, shutters and alike will, via the control system and its program, be 

programmed to undertake a variety of motions. However, it is understood that from a design 

perspective it is essential to have a guideline to the constraints of motion performance that will be 
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required.  This constraint will be the operation of the aerofoils (and respective shutters, etc.) to be able 

to at least oscillate in a harmonic (i.e. sinusoidal) pattern at 10Hz, peak amplitude of +/-9o. Ideally the 

system will be able to operate up to 30Hz and/or +/-15o.   

Under this constraint, it is therefore understood that the system may not (and likely will not) perform a 

continual harmonic output, and that the frequency and amplitude of oscillation will vary during 

operation, potentially quite frequently (i.e. within a second) but that the maximum frequency or 

amplitude will be 10Hz and +/-9o (or whatever greater that may be achieved in the design). It should 

also be understood that the operation may not be harmonic, in that a foil need to be programmed to 

extend to, say, -3o, then halt for 0.5s, then continue to -6o. However, as stipulated, the acceleration 

and peak amplitude demands will be limited to those corresponding to 10Hz and +/-9o (or whatever 

greater that may be achieved in the design). It is assumed that these operational constraints will be 

coded into the control system to ensure correct, safe and appropriate operation regardless of the 

requests made by the user input. 

2.4 Vibration & Mounting 

Tests have been undertaken to determine the vibration level and mechanical realism of the 

specification. A design with an inertia matched aerofoil was built and run up to 10Hz operating at +/- 9o 

in sinusoidal motion. The energy requirements were under 1kW and the vibration found to be safe and 

suitable for continual with the use of small fly-wheels and low weight, high second moment of area 

linkages. The addition of the second trailing foil is not expected to cause greater vibration issues. 

2.5 Budget  

A maximum £100,000 (exc. VAT) has been put aside for this project. This is to cover the design, 

construction, installation, delivery and commissioning of the complete system. 50% of the total figure 

will be paid upon delivery of the system. The next 40% will be paid upon commissioning of the system. 

10% will then be paid 30-calendar days after the commissioning is complete for any snagging issues 

that may occur in the initial operation. 

2.6 Electro-mechanical Specification 

Reminder of component identification labels (labelled upstream to downstream): 

A - Front ducting B - Front Splitters C - Front shutters D - Main Foils  

E - Horizontal Foil F - Rear Shutters G - Rear Splitters H – Blow-in Valves  
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I - Diffuser shutters J - Rear Ducting 

2.6.1 Main Lateral Foils – Item D 

• Two aerofoils should be placed either side of the nozzle, mounted vertically, pivoting in the Z-

axis, and each foil consisting of 2-sections, the main foil and the trailing foil. 

• The main foils should be a NACA 0012 aerofoil, each having a 0.60m chord and 1.14m height 

(that is that the maximum thickness is 12% of chord, i.e. 0.072m). 

• The main foils should oscillate in a sinusoidal manner at least to +/-9o at 10Hz, and ideally up to 

+/-15o at 30Hz. This is only a standard for the rate and range of motion. The foils will actually operate a 

variety of frequencies and ranges within these limits, including programmable arbitrary motion, but 

with the acceleration and range requirements within these constraints. 

• Each main aerofoil should be independently controlled such that the phasing, frequency and 

peak angle of each foil can be set independently and all three of these varied during live operation. 

• The main foils should have a second, trailing foil, in the general design of the CAD image in 

Figure 344 and Appendix A Figure 350 and Figure 351), with a chord of 0.10m, with the main and 

trailing foil together forming a NACA 0012 shape. 

• The trailing foil should be able to oscillate up to +/-9o at 10Hz, and ideally up to +/-15o at 30Hz. 

The frequency of the trailing foil should be controlled and programmable, but the peak angle may 

(though ideally not) be fixed during operation. It must also be possible to operate the trailing foil in a 

programmable arbitrary motion. 

• Each trailing foil should be able to be set and operate independently of the main foil. 

• The foils should be designed to cope with an incoming airflow of 35m/s-1. 

2.6.2 Front Inlet Shutters – Item B and Item C 

• The vertically mounted front shutters are to be 1.14m tall, 0.10m wide, 6 in number per side, 

located either side of the nozzle.  

• They need to be able to be opened to a predetermined angle, and be able to operate at a 

higher frequency than the aerofoils to offer notable flow stop/start action.  

• Ideally the shutter will open and close in a square-tooth pattern, as such achieving  the closed 

or open position as quickly as possible, as such to have the greatest effect on airflow.  

• The peak angle and frequency of operation should be programmable and each controlled 

independently. 
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• The shutters are to normally open in a sequence, starting from the shutter closet to the nozzle 

and then cascading outwards. This logic and the operation of the shutters should be controlled 

electronically and should be programmable. 

• Upstream of each shutter, the sides of each shutter should have splitters to minimise spillage 

between shutters, in a way similar to that of the CAD images included in Figure 344). The splitters 

should have a length of no less than 0.30m in X-axis and be the full height of the shutters. 

• The shutters should be designed to cope with an airflow of 35ms-1 and, when closed, achieve 

complete flow blockage (i.e. resist all airflow). 

2.6.3 Rear Exhaust Shutters – Item F and Item G 

• The operation of the rear shutters are identical to the front shutters, both in open-and-closed 

operation and sizing, except where otherwise stated. 

• The height of the rear shutters is to be 1.20m, width of 0.10m per shutter with 6-number per 

side, either side of the collector. 

• Downstream of each shutter, the sides of each shutter should have splitters to minimise 

spillage between each shutter, in a manner similar to that of the CAD images. The splitters should have 

a length of no less than 0.30m in X-axis and be the full height of the shutters. The rear shutter splitter 

plates may, and probably should, continue all the way aft to the main diffuser. 

2.6.4 Longitudinal Operation – Item H and Item I 

• The longitudinal flow control is maintained by varying the blockage of the airflow through the 

main diffuser. This is achieved using 4-shutters per diffuser side that can open and close to vary 

blockage. 

• These shutters are to be mounted at the upstream end of the main diffuser and will each have 

width 0.10m, height 1.20m. 

• The operation of the longitudinal shutters are identical to the front shutters, both in open-and-

closed operation and sizing, except where otherwise stated.  

• The peak angle, frequency and phasing of the shutters should be able to be controlled 

independently.  

• Blow-in valves (effectively another actuated and programmable shutter) should be installed 

downstream of the blockage vanes in the main diffuser. The operation of the blow-in valves should be 

controlled and determined from the requested operation of the blockage vanes or by manual 

programmed control. The design (i.e. dimensions and location, etc.) of the blow-in values suggested is 
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only a guideline and may be varied, but the location at the bottom or top of the diffuser would be 

convenient. 

2.6.5 Horizontal Foil – Item E 

• Situated between the two lateral foils, a foil of NACA 0012 type, 0.40m chord, around 1.40m in 

width (or what is achievable depending on peak main foil angle), is to be located horizontally at the top 

of the nozzles. 

• The horizontal foil is to be pivoted about roughly quarter chord or upstream of this point, 

pivoting in the Y-axis. 

• The foil should be able to pivot from 0 to +18o incidence (i.e. downwash only) at 10Hz and 

ideally at 0 to +30o at 30Hz. This is only a standard for the rate and range of motion. The foils will 

actually operate a variety of frequencies and ranges within these limits, including arbitrarily 

programmable motion, but with the acceleration and range requirements within these constraints. 

• The horizontal foil is not expected to have a second trailing foil section, though it ideally would. 

If it did, the trailing foil would operate at +/-9o at 10Hz and ideally at +/-15o at 30Hz, relative to the 

main horizontal foil.  

• The aerofoil must operate in airflow up to 35ms-1. 

• The control system must ensure that the operation of the horizontal foil and the vertical foils 

cannot create a clash condition – though ideally this would be determined by the physical sizing of the 

components and range of motion limits. 

• The operation of the horizontal foil should be controlled electronically, with phasing, peak 

angle and frequency variable. 

• If a trailing foil is used, its frequency and phasing should be variable throughout operation. Its 

peak angle may be predetermined during operation, though would ideally be variable throughout. It 

should also be possible to operate the trailing foil in a programmable arbitrary motion. 

2.6.6 Ducting – Item A and Item J 

• The addition of front and rear shutters requires additional ducting. These must be made and 

installed within the physical constraints of the room and building design. 

• The front ducting should use a contraction ratio of at least 1.5:1, with a honeycomb matrix (at 

least 0.10m length) near to the duct inlet. 
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• For the front inlet shutters, there will need to be two channels placed either side of the main 

tunnel inlet. These should follow a path similar to that of the CAD and fit within the building 

constraints, but otherwise their design is open and flexible. 

• The top and bottom of the ducting for the front shutters should converge to meet at the top 

and bottom of the mechanical shutters. There should be no sudden jumps or blockages that would 

cause unnecessary flow disturbances (i.e. turbulence). 

• As mentioned earlier, just upstream of the front shutters splitter plates of at least 0.30m in 

length and full channel/shutter height (at the meeting point, as per the previous point, this will be the 

same height) should be installed to ensure that flow cannot spill between shutters. These are fixed and 

do not move.  

• Downstream of the rear shutters, ducting will need to exhaust the flow from the shutters into 

the main diffuser, and splitter plates of full height should ensure that flow from each shutter is 

constrained until it enters the main diffuser. This duct should diverge slightly to match the main 

diffuser area ratio where it meets the main diffuser. 

• As the longitudinal shutters (controlling blockage) and the blow-in valves are to be installed in 

the main diffuser, the exhausting of the rear shutters should occur downstream of the blow-in valves. 

2.6.7 Control and Monitor System (No label) 

• The control system should preferably by written in C , be open-source, and govern the entire 

operation of all the systems in operation (2-main foils, 2-trailing foils, longitudinal shutters, blow-in 

flaps, horizontal foil (with or without trailing foil) and front and rear shutters). 

• The control system should ensure that at no occasion do the foils clash or operate in a manner 

that is unsafe or could damage the other TGS equipment. 

• The control system should have a safety cut-out if switches or limits are exceeded. Interlocks 

already exist for the tunnel and can be included in the design. 

• The system should monitor the performance (i.e. frequency, angle and phasing) fidelity of the 

foils and all other systems and report these values. The control system should indicate when the TGS is 

operating correctly (i.e. at a high, tolerant, fidelity). 

• The control system would desirably have inbuilt sinusoidal modes of operation and have 

program to control the operation of the foils either through command line or input files. The program 

should be able to control the frequency, phasing and peak angle (where applicable) of each device. 

• The system should be able to read in a data file (of any format desired, but essentially a text 

file) which determines the operation of the entire system and any default (or assumed) parameters. 
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• The control system should undertake a logic check that the requested being made by the user 

are safe and within the design limits of the TGS and ensure no physical clash conditions occur. 

• If the TGS requires cooling or lubrication control, within reason these should be monitored by 

the control system. 

• The control system must ensure correct start-up and shut-down procedures are followed (i.e. 

soft start). 

2.7 Essential and Desirable Requirements 

In projects of this nature it is important to make clear what aspects of the specification are essential 

(i.e. a minimum), and where, if found possible by a design, a higher performance is found to be 

achievable, that that would be desirable and would score more greatly in this tender process. It should 

be assumed that if a design criterion is not discussed in this section, the specification of that aspect 

covered in the preceding chapter is an essential criterion. 

Reminder of component identification labels (labelled upstream to downstream): 

A - Front ducting B - Front Splitters C - Front shutters D - Main Foils  

E - Horizontal Foil F - Rear Shutters G - Rear Splitters H – Blow-in Valves  

I - Diffuser shutters J - Rear Ducting 

2.7.1 Main Lateral Foils – Item D 

As indicated above, the lateral motion is the highest priority and desirable elements in this section are 

more important than those in other sections. 

• Essential 

o For the main foils to be able to move in a sinusoidal oscillating motion with frequency 

and amplitude up to 10Hz and +/-9o respectively. Frequency, amplitude and phasing 

should be able to be variable while in motion. 

o For the main foils to be able to move in a programmed arbitrary motion. 

o For the trailing foils to be able to move in a sinusoidal oscillating motion with 

frequency and amplitude up to 10Hz and +/-9o respectively. Frequency and phasing 

should be able to be variable while in motion. Amplitude may require manual setting. 

o For the trailing foils to be able to move in a programmed arbitrary motion. 

• Desirable 
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o For the main foils operating in sinusoidal oscillating motion to be able to achieve 

frequencies and/or amplitudes exceeding those above (e.g.: 30Hz and/or +/-15o). 

o For the main foils to be able to move in a programmed arbitrary motion with high 

acceleration rates (ideally equivalent to those for sinusoidal oscillation at 10Hz and +/-

9o). 

o For the trailing foil amplitude in sinusoidal motion to be variable while in motion. 

o For the trailing foils operating in sinusoidal oscillating motion to be able to achieve 

frequencies and/or amplitudes exceeding those above (e.g.: 30Hz and/or +/-15o). 

o For the trailing foils to be able to move in a programmed arbitrary motion with high 

acceleration rates (ideally equivalent to those for sinusoidal oscillation at 10Hz and +/-

9o). 

2.7.2 Front Inlet Shutters – Item B and Item C 

• Essential 

o Ideally the shutter will open and close in a rounded square-tooth pattern, that is be at 

its ultimate position for 60% of the cycle when the main foil is operating at 10 Hz. 

o The frequency should be programmable and controlled independently ‘on-the-fly’. The 

peak angle may be set manually. Solenoids may be used to offer better open and 

closing times and hence compromise on the peak angle ‘on-the-fly’ adjustment.  

• Desirable 

o Ideally the shutter will open and close in a square-tooth pattern, that is be at its 

ultimate position for 90% of the cycle. 

o The peak angle and frequency should be programmable and each controlled 

independently ‘on-the-fly’. 

2.7.3 Rear Exhaust Shutters – Item F and Item G 

• As per section 6.2. 

2.7.4 Longitudinal Operation – Item H and Item I 

• As per section 6.2, the same shutter design can be used. 

2.7.5 Horizontal Foil – Item E 

• Essential 
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o For the horizontal foil to be able to move in a sinusoidal oscillating motion with 

frequency and amplitude up to 10Hz and 0 to +18o incidence (i.e. downwash only 

required). Frequency, amplitude and phasing should be able to be variable while in 

motion. 

o For the horizontal foil to be able to move in a programmed arbitrary motion. 

• Desirable 

o For the horizontal foil to include a trailing foil (as main foils). 

o For the horizontal foil operating in sinusoidal oscillating motion to be able to achieve 

frequencies and/or amplitudes exceeding those above (e.g.: 30Hz and/or 0 to +30o). 

o For the horizontal foil to be able to move in a programmed arbitrary motion with high 

acceleration rates (ideally equivalent to those for sinusoidal oscillation at 10Hz and 0 

to +18 o). 

o For the trailing foil (if included) to be able to move in a sinusoidal oscillating motion 

with frequency and amplitude up to 10Hz and +/-9o respectively. Frequency and 

phasing should be able to be variable while in motion. Amplitude may require manual 

setting. 

o For the trailing foil (if included) to be able to move in a programmed arbitrary motion. 

2.7.6 Ducting – Item A and Item J 

• Essential 

o For ducting to be designed. Manufacture may be handed to Durham University to sub-

contract and install. As such the build and installation cost of the ducting would be 

expected to be removed and deducted from the tender limit value of £100,000 (exc. 

VAT). 

• Desirable 

o For ducting to be included within the tender price and built and installed by the tier 

one supplier or their subcontractor. 

2.7.7 Control and Monitor System (No label) 

• Essential 

o All the items specified in section 5.7. 

• Desirable 

o For a more greatly developed graphical user interface that has certain built in modes 

than can be selected without the need to read in positional data. 
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2.8 Mechanical & Electrical Design 

A CAD model of Durham University’s 2m2 wind tunnel will be supplied and may be used for geometry 

measurements. In this model will be the location and the major components, and it should be assumed 

that the size and location of the components cannot be altered without prior approval. Simple, but 

general changes are possible to the tunnel and space around the tunnel within reason. All components 

or designs used should be considerate to the aerodynamic nature of the wind tunnel and as such 

components should not inhibit the flow through the tunnel, or if they must, should be designed to be 

as aerodynamically streamlined as possible. 

Vibration should principally not be transferred into the supporting (yellow) structure within the tunnel 

which is reserved for mounting instrumentation. Components that generate high torque or vibration 

should, mainly, be bolted to the concrete floor but may also be attached to the walls and floor of the 

wind tunnel. 

The design should be completed within the specification as detailed. The choice of motors, electrical 

connections and systems, linkages and alike should be chosen by the supplier. Consideration should be 

carefully made to the frequencies and amplitudes of operation, and the need for low maintenance and 

ease or repair. Any stress, vibration or durability analysis or alike should be made by the supplier. 

2.9 Manufacture 

The components will need to be made accurately to the supplier’s design and within all tolerances. The 

manufacture will be off the Durham University site for pre-fabrication and subsequent retro-fitting to 

the wind tunnel.  

2.10 Installation & Commissioning 

The components will need to be installed as a retro-fit to Durham University’s wind tunnel. Pricing 

should include all installation, delivery, labour and tooling costs as well as finishes and time required to 

commission. Loading bays, floor space and overhead crane are all available for use in the laboratory at 

no cost during the allocated period of installation, within reason and the understanding that the 

laboratory will still be in use by students. 
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2.11 Control 

The control system will need to be operated on a standard PC, and be ready and fully operational as 

and when the installation and commissioning occur. Correct operation of the control system will be 

part of the commissioning process. 

2.12 Specification Appendix A – Potential Aerofoil Linkage Design 

An example linkage system for aerofoil control system is proposed. This linkage system is only an 

example which has a good potential to achieve some key operating requirements: 

• The variation of the frequency of each motor, when in phase, will control the foil oscillation 

frequency. 

• The variation in phasing of each motor can control peak angle.  

• The motors operate in a continuous rotational motion, reducing peak torque and power. 

• Allows sinusoidal motion with controllable frequency amplitude and phase at large amplitudes 

and frequencies (not restricted by motor inertia).  

• Allows arbitrary motion by programming one or both servo/ stepper motors accordingly 

(potentially with reduced amplitude / frequency compared with sinusoidal motion).  

2.12.1 Main Foil 

In Figure 350, the two motors (large white circles with arrows) rotate simultaneously. These are 

connected by rods to the rectangular bar in the middle right of the foil. This bar is pivoted in its centre, 

but only has this one-degree freedom of movement. This allows essentially 4 operating modes: 

1- Operating both motors at the same constant speed but at different phase separations allows 

variable amplitude sinusoidal motion. This allows the largest foil accelerations (amplitude and angular 

velocities) as motor rotor inertia does not have to be accelerated. 

2- Operating the two motors at different speeds allows two harmonics to be superposed.  

3- Operating one motor at constant speed allows a large amplitude, high frequency, oscillation while 

the second motor can simultaneously provide a superposed programmed motion (not operating in full 

revolutions). 

4- Operating both servo / stepper motors in an arbitrary motion allows any arbitrary motion for the 

foil, subject to the acceleration limits that can be achieved by the motors.  
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Figure 350 - Main foil potential linkage design 

2.12.2 Trailing Foil 

In Figure 351 the linkage for the main foil is omitted for clarity. The trailing foil is pivoted about the 

cross, and the linkage bar is simply driven by the rotation of the motor. The intention of the trailing foil 

is to facilitate higher frequency operation superposed on the main foil motion. 

 

Figure 351 - Trailing foil potential linkage design 
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2.13 Specification Appendix B – Draft Model Drawings 
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