
3DR EXPRESS

A Novel Image Compression Algorithm for High Resolution
3D Reconstruction

M. M. Siddeq • M. A. Rodrigues

Received: 12 November 2013 / Revised: 12 January 2014 / Accepted: 25 February 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract This research presents a novel algorithm to

compress high-resolution images for accurate struc-

tured light 3D reconstruction. Structured light images

contain a pattern of light and shadows projected on the

surface of the object, which are captured by the sensor

at very high resolutions. Our algorithm is concerned

with compressing such images to a high degree with

minimum loss without adversely affecting 3D recon-

struction. The Compression Algorithm starts with a

single level discrete wavelet transform (DWT) for

decomposing an image into four sub-bands. The sub-

band LL is transformed by DCT yielding a DC-matrix

and an AC-matrix. The Minimize-Matrix-Size Algo-

rithm is used to compress the AC-matrix while a DWT

is applied again to the DC-matrix resulting in LL2,

HL2, LH2 and HH2 sub-bands. The LL2 sub-band is

transformed by DCT, while the Minimize-Matrix-Size

Algorithm is applied to the other sub-bands. The

proposed algorithm has been tested with images of

different sizes within a 3D reconstruction scenario.

The algorithm is demonstrated to be more effective

than JPEG2000 and JPEG concerning higher com-

pression rates with equivalent perceived quality and

the ability to more accurately reconstruct the 3D

models.

Keywords DWT � DCT � Minimize-Matrix-

Size � LSS-Algorithm � 3D reconstruction

1 Introduction

The researches in compression techniques has

stemmed from the ever-increasing need for efficient

data transmission, storage and utilization of hardware

resources. Uncompressed image data require consid-

erable storage capacity and transmission bandwidth.

Despite rapid progresses in mass storage density,

processor speeds and digital communication system

performance demand for data storage capacity and

data transmission bandwidth continues to outstrip the

capabilities of available technologies [2]. The recent

growth of data intensive multimedia based applica-

tions have not only sustained the need for more

efficient ways to encode signals and images but have

made compression of such signals central to signal

storage and digital communication technology [7].

Compressing an image is significantly different

from compressing raw binary data. It is certainly the

case that general purpose compression programs can

be used to compress images, but the result is less than

optimal. This is because images have certain statistical

properties that can be exploited by encoders specifi-

cally designed for them [7, 10]. Also, some of the finer
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details in the image can be sacrificed for the sake of

saving a little more bandwidth or storage space.

Lossless compression is involved with compressing

data which, when decompressed, will be an exact

replica of the original data. This is the case when

binary data such as executable documents are com-

pressed [13]. They need to be exactly reproduced

when decompressed. On the other hand, images need

not be reproduced ‘exactly’. An approximation of the

original image is enough for most purposes, as long as

the error between the original and the compressed

image is tolerable [9].

The neighbouring pixels in most images are highly

correlated and therefore hold redundant information.

The foremost task then is to find out less correlated

representation of the image. Image compression is

actually the reduction of the amount of this redundant

data (bits) without degrading the quality of the image

to an unacceptable level. There are mainly two basic

components of image compression—redundancy

reduction and irrelevancy reduction [16]. The redun-

dancy reduction aims at removing duplication from

the signal source image while the irrelevancy reduc-

tion omits parts of the signal that is not noticed by the

signal receiver i.e., the Human Visual System (HVS)

which presents some tolerance to distortion, depend-

ing on the image content and viewing conditions.

Consequently, pixels must not always be regenerated

exactly as originated and the HVS will not detect the

difference between original and reproduced images

[3].

The current standards for compression of still

image (e.g., JPEG) use Discrete Cosine Transform

(DCT), which represents an image as a superposition

of cosine functions with different discrete frequencies.

The DCT can be regarded as a discrete time version of

the Fourier Cosine series. It is a close relative of

Discrete Fourier Transform (DFT), a technique for

converting a signal into elementary frequency com-

ponents. Thus, DCT can be computed with a Fast

Fourier Transform (FFT) like algorithm of complexity

O(nlog2 n) [8]. More recently, the wavelet transform

has emerged as a cutting edge technology within the

field of image analysis. The wavelet transformations

have a wide variety of different applications in

computer graphics including radiosity, multi-resolu-

tion painting, curve design, mesh optimization, vol-

ume visualization, image searching and one of the first

applications in computer graphics, image compression

[15]. The Discrete Wavelet Transform (DWT) pro-

vides adaptive spatial frequency resolution (better

spatial resolution at high frequencies and better

frequency resolution at low frequencies) that is well

matched to the properties of a HVS [6, 7].

Here a further requirement is introduced concern-

ing the compression of 3D data. We demonstrated that

while geometry and connectivity of a 3D mesh can be

tackled by a number of techniques such as high degree

polynomial interpolation [11] or partial differential

equations [12], the issue of efficient compression of

2D images both for 3D reconstruction and texture

mapping for structured light 3D applications has not

been addressed. Moreover, in many applications, it is

necessary to transmit 3D models over the Internet to

share CAD/-CAM models with e-commerce custom-

ers, to update content for entertainment applications,

or to support collaborative design, analysis, and

display of engineering, medical, and scientific data-

sets. Bandwidth imposes hard limits on the amount of

data transmission and, together with storage costs,

limit the complexity of the 3D models that can be

transmitted over the Internet and other networked

environments [12].

It is envisaged that surface patches can be com-

pressed as a 2D image together with 3D calibration

parameters, transmitted over a network and remotely

reconstructed (geometry, connectivity and texture

map) at the receiving end with the same resolution

as the original data. The widespread integration of 3D

models in different fields motivates the need to be able

to store, index, classify, and retrieve 3D objects

automatically and efficiently. In the following sections

we describe a novel algorithm that can robustly

achieve the aims of efficient compression and accurate

3D reconstruction.

2 The Proposed Compression Algorithm

The proposed image compression method depends on

the single level DWT, which decomposes an image

into approximation coefficients (LL) and high fre-

quency domains (LH, HL and HH). The LL matrix is

divided into non-overlapping blocks of data of 4 9 4

pixels that are transformed by DCT producing a DC-

matrix and an AC-matrix. The AC-matrix contains the

high frequency sub-bands and is coded by the Mini-

mize-Matrix-Size Algorithm while the DC-matrix is

7 Page 2 of 17 3D Res (2014) 5:7

123



transformed again by DWT. This research also

describes Limited-Sequential Search Algorithm

(LSS-Algorithm) used to decode the DC-matrix and

AC-matrix. Finally these sub-bands are recomposed

by low frequency and high frequency through inverse

DWT. Figure 1 depicts the main steps of the proposed

compression method in a flowchart style.

2.1 The Discrete Wavelet Transform (DWT)

The DWT exploits both the spatial and frequency

correlation of data by dilations (or contractions) and

translations of the mother wavelet on the input data. It

supports multi-resolution analysis of data (i.e. it can be

applied to different scales according to the details

required, which allows progressive transmission and

zooming of the image without the need for extra

storage) [4]. Another useful feature of a wavelet

transform is its symmetric nature meaning that both

the forward and the inverse transforms have the same

complexity, allowing building fast compression and

decompression routines. Its characteristics well suited

for image compression include the ability to take into

account the HVS’s characteristics, very good energy

compaction capabilities, robustness under transmis-

sion and high compression ratios [5].

The implementation of the wavelet compression

scheme is very similar to that of sub-band coding

scheme: the signal is decomposed using filter banks.

The output of the filter banks is down-sampled,

quantized, and encoded. The decoder decodes the

coded representation, up-samples and recomposes the

signal. Wavelet transform divides the information of

an image into an approximation (i.e. LL) and detail

sub-band [1]. The approximation sub-band shows the

general trend of pixel values and other three detail

sub-band shows the vertical, horizontal and diagonal

details in the images. If these details are very small

(threshold) then they can be set to zero without

significantly changing the image, for this reason the

high frequencies sub-bands compressed into fewer

bytes [14]. In this research the DWT is used twice,

this is because the DWT assemble all low frequency

coefficients into one region, which represents a quarter

of the image size. This reduction in size enables high

compression ratios.

2.2 The Discrete Cosine Transform (DCT)

This is the second transformation used by the

algorithm, which is applied on each 4 9 4 block from

LL1 sub-band as show in Fig. 2.

The energy in the transformed coefficients is con-

centrated about the top-left corner of the matrix of

coefficients. The top-left coefficients correspond to low

frequencies: there is a ‘peak’ in energy in this area and

the coefficient values rapidly decrease to the bottom

right of the matrix, which means the high-frequency

coefficients. The DCT coefficients are de-correlated,

which means that many of the coefficients with small

values can be discarded without significantly affecting

image quality. A compact matrix of de-correlated

coefficients can be compressed much more efficiently

than a matrix of highly correlated image pixels. The

following equations illustrated DCT and Inverse DCT

function for two-dimensional matrices [7, 9]:

Cðu; vÞ ¼ aðuÞaðvÞ
Xn�1

x¼0

Xn�1

y¼0

f(x,y) cos
ð2xþ 1Þup

2N

� �

� cos
ð2yþ 1Þvp

2N

� �
ð1Þ

Fig. 1 Proposed image

compression method

flowchart
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where

aðuÞ ¼
ffiffiffi
1
N

q
; for u ¼ 0

aðuÞ ¼
ffiffiffi
2
N

q
; for u 6¼ 0

f(x,y) ¼
XN�1

u¼0

XN�1

v¼0

a(u)a(v)C(u,v) cos
ð2xþ 1Þup

2N

� �

� cos
ð2yþ 1Þvp

2N

� �
ð2Þ

One of the key differences between the applications

of the DWT and Discrete Cosine transformation

(DCT) is that the DWT is typically applied to an

image as a one block or a large rectangular region of

the image, while DCT is used for small block sizes.

The DCT becomes increasingly complicated to cal-

culate for larger blocks, for this reason in this research

a 4 9 4 pixel block is used, whereas a DWT will be

more efficiently applied to the complete images

yielding good compression ratios [16].

Each 4 9 4 coefficients from LL1 are divided by a

quantizing factor Q, using matrix-dot-division. This

process is called quantization, which removes insig-

nificant coefficients and increasing the zeros in LL1.

The factor Q can be computed as follows:

L ¼ Quality�maxðLL1Þ ð3Þ

Qði; jÞ ¼ 10; i; j ¼ 1

Lþ iþ j; i [ 1

�
ð4Þ

Note i, j = 1, 2, 3, 4

The parameter L in Eq. (3) is computed from the

maximum value in the LL1 sub-band, and ‘‘Quality’’

value C0.01. The quality value is represented as a ratio

for maximum value, if this ratio increased this leads to

larger number of coefficients being forced to zero

leading thus, to lower image quality. Each DC value

from 4 9 4 block is stored in a different matrix called

the DC-matrix, and other AC coefficients ([4 9 4]- 1)

are stored in the AC-matrix. The other high frequency

sub-bands (HL1, LH1 and HH1) are quantized by

Eq. (3) and coded by the Minimize-Matrix-Size

Algorithm.

The DC-matrix transformed by single level DWT to

produce further sub-bands LL2, LH2, HL2 and HH2.

The LL2 quantized by divide each value in the matrix

by ‘‘2’’. This is because to reduce bit size. Similarly,

the other high frequency sub-bands values are quan-

tized either by ‘‘2’’, for normalize high-frequencies,

also increasing number of zeros.

The LL2 is transformed by using one-dimensional

DCT for each 4 items of data (i.e. assume u = 0,

v = 0 to converting two dimensional DCT into one

dimensional DCT), and then truncate each value. This

means that one should not use scalar quantization at

this stage.

The next step takes the difference between two

neighbour values for each column in LL2. This process

is called DBV (Difference Between two Values),

which is based on the well-known fact that neigh-

bouring coefficients in the LL2 are correlated. Corre-

lated values are generally similar, so their differences

are small and more data will be repeated, this will be

very easy for compression. Eq. (5) represents DBV for

each column in LL2. Figure 3 illustrates the DBV.

DðiÞ ¼ DðiÞ � Dðiþ 1Þ ð5Þ

where i = 1, 2, 3,…, m - 1 and m is the column size

of LL2.

Fig. 2 LL1 sub-band

transformed by DCT for

each 4 9 4 block set
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2.3 Compress Data by Minimize-Matrix-Size

Algorithm

This algorithm is used to reduce the size of the AC-

matrix and other high frequency sub-bands. It depends

on the Random-Weight-Values and three coefficients

to calculate and store values in a new array. The

following List-1 describes the steps in the Minimize-

Matrix-Size-Algorithm:

In the above List-1 the weight values are generated

randomly (i.e. random numbers in the range =

{0…1}) multiplied with Arr(i) (i.e. represents three

coefficients from a matrix) to produce minimized

array M(p). The algorithm in List-1 is applied to each

sub-band independently; this means each minimized

sub-band is independently compressed. Figure 4 illus-

trates the Minimize-Matrix-Size Algorithm applied to

a matrix.

Before applying the Minimize-Matrix-Size Algo-

rithm, our compression algorithm computes the prob-

ability of the data for each high frequency matrix.

These probabilities are called Limited-Data, which is

used later in the decompression stage. The Limited-

Data is stored as a header in the compressed file and

are not subject to compression. Figure 5 illustrates the

probability of data in a matrix.

The final step in our compression algorithm is

Arithmetic coding, which takes a stream of data and

convert it into a one-dimensional floating-point val-

ues. These output values lie in the range between zero

Fig. 3 a A matrix before DBV, b apply DVB between two neighbors in each column
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and one and, when decoded, should reproduce the

exact original stream of data. The arithmetic coding

needs to compute the probability of all data and assign

a range for each, the ranges are limited between Low

and High values.

3 The Decompression Algorithm

The decompression algorithm is the inverse of com-

pression. The first stage is to decode the minimized

array by arithmetic decoding then the Limited Sequen-

tial Search Algorithm (LSS-Algorithm) is used to

decode each sub-band independently. The LSS-Algo-

rithm depends on the Limited-Data array. If the

limited data are missed or destroyed, the image could

be degraded or damaged. Figure 6 shows the decom-

pression method in a flowchart style.

The LSS-Algorithm is designed to find the original

data inside a limited data set, by using three pointers.

These pointers refer to positions in the Limited-Data

matrix. The initial values of these pointers are 1 (i.e.

first location in the Limited-Data matrix). These three

pointers are called S1, S2 and S3 and are incremented

by one in a cogwheel fashion (e.g. similar to a clock,

where S1, S2 and S3 represent hour, minutes and

seconds respectively). To illustrate the LSS-Algo-

rithm assume that we have the following 2 9 3

matrix:

30 1 0

19 1 1

The above matrix will compress by using Minimize-

Matrix-Size Algorithm to produce a minimized array

M(1) = 3.65 and M(2) = 2.973, Limited-Data =

{30,19,1,0} and Random-Weight-Values = {0.1,

0.65, and 0.423}. Now the LSS-Algorithm will return

the original values for the above 2 9 3 matrix by using

the Limited-Data and the random-weight-values. The

first step in the decompression algorithm assigns

S1 = S2 = S3 = 1, then compute the result of the

following equation:

Est ¼ Wð1Þ � LimitedðS1Þ þWð2Þ � LimitedðS2Þ
þWð3Þ � LimitedðS3Þ ð6Þ

where W is the generated weights and Limited is the

Limited-Data matrix. The LSS-Algorithm computes

Est at each iteration, and compares with M(i). If it is

zero, the estimated values are found at loca-

tions = {S1, S2 and S3} according to Limited-Data.

Fig. 4 An n 9 m matrix is minimized into an array M

Fig. 5 The limited-data for a 5 9 5 matrix is illustrated as a list of probabilities and the minimized array is subject to arithmetic coding
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If not, the algorithm will continue to find the original

values. This process continues until the end of

minimizing array M(I). The algorithm in List-2

illustrates the LSS-Algorithm.

After the high frequency sub-bands are decoded by

the LSS-Algorithm, the next step in the decompression

algorithm is to apply ABV (Addition between two

Values) on the decoded LL2 to return the original

Fig. 6 A two-stage decompression algorithm is depicted in (a) and (b)
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values. ABV represents an inverse equation for DBV

(See Eq. 5). ABV is applied on each column, which

takes the last value at position m, and add it to the

previous value, and then the total adds to the next

previous value and so on. The following equation

defines the ABV decoder.

Dði� 1Þ ¼ Dði� 1Þ þ DðiÞ ð7Þ

where i = m, (m - 1), (m - 2), (m - 3),…,2

Then the inverse one-dimensional DCT is applied

to each 4 items of data from LL2. Recomposing LL2,

HL2, HL2 and HH2 by inverse DWT yields an

approximation of the original DC-matrix. Next, com-

bine each DC value from the DC-matrix with each

([4 9 4] - 1) block from the AC-matrix to generate

Table 1 Compressed image sizes using high frequencies in

first level DWT

Image

name

Original

size (MB)

Compressed

size (KB)

Quantization values

Low-

frequency

High-

frequency

Wall 3.75 74 0.02 0.02

Wall 3.75 47.6 0.04 0.04

Wall 3.75 33.7 0.08 0.08

Girl 4.14 78 0.02 0.02

Girl 4.14 48 0.04 0.04

Girl 4.14 29.1 0.08 0.08

Woman 4.14 62.1 0.02 0.02

Woman 4.14 38.1 0.04 0.04

Woman 4.14 24.5 0.08 0.08

Table 2 Compressed image size without using high-frequen-

cies in first level DWT

Image

name

Original

size (MB)

Compressed

size (KB)

Quantization values

Low-

frequency

High-

frequency

Wall 3.75 62 0.02 Ignored

Wall 3.75 45 0.04 Ignored

Wall 3.75 33.5 0.08 Ignored

Girl 4.14 61.2 0.02 Ignored

Girl 4.14 42.6 0.04 Ignored

Girl 4.14 28.3 0.08 Ignored

Woman 4.14 53.4 0.02 Ignored

Woman 4.14 35.4 0.04 Ignored

Woman 4.14 24.3 0.08 Ignored

Fig. 7 a A matrix before

apply ABV, b apply ABV

between two neighbours in

each column

(a) 2D BMP “Wall”, dimension 
1280x1024 pixels, size=3.75 Mbytes

(b) 2D BMP “Girl”, dimension 1392x1040 
pixels, size=4.14 Mbytes

(c) 2D BMP “Woman”, 1392x1040 pixels,
size=4.14 Mbytes

Fig. 8 a 2D colour BMP image, b–c 2D grey scale images

7 Page 8 of 17 3D Res (2014) 5:7

123



(a) 3D Wall textured, Quality=0.02 3D Wall shaded, Quality = 0.02

(b) 3D Wall textured, Quality = 0.04 3D Wall shaded, Quality = 0.04

(c) 3D Wall shaded (red) compared to original 
(textured), Quality = 0.02

3D Wall shaded (red) compared to original (textured), 
Quality = 0.04

(d) 3D Wall shaded (red) compared to original 
(textured), Quality = 0.08

Fig. 9 a and b 3D decompressed image of wall with different

quality values. c, d and e Differences between original 3D wall

image and decompressed 3D wall image according to quality

parameter. Red regions represent the 3D wall decompressed image

matched with the background original 3D Wall image in three cases,

i.e., high, median and low quality parameters. (Color figure online)
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(b) 3D Girl image shaded and texture, Quality=0.04

(c) Quality=0.02 (d) Quality=0.04

(e) Quality=0.08

(a) 3D Girl image texture and shaded, Quality=0.02

Fig. 10 a and b 3D

decompressed girl image

with different quality

values. c, d and

e Differences between

original 3D girl image and

decompressed 3D girl image

according to quality

parameters. The pink model

represents the original

background 3D image,

whiles other colour

represents the 3D

decompressed image with

various quality parameters.

(Color figure online)

7 Page 10 of 17 3D Res (2014) 5:7

123



(a) 3D Woman image shaded and texture, Quality=0.02

(b) 3D Woman image shaded and texture, Quality=0.04

(c) Quality=0.02 (d) Quality=0.04

(e) Quality=0.08

Fig. 11 a and b 3D

decompressed woman

image with different quality

values. c, d and

e Differences between

original 3D woman image

and decompressed 3D

woman image according to

quality parameters. The pink

model is the original 3D

woman model while blue,

green, and golden models

refer to high, median and

low image quality

respectively. (Color figure

online)
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the matrix LL1, and then apply the inverse quantiza-

tion followed by the inverse two-dimensional DCT on

each 4 9 4 block from the LL1. The result is the

reconstructed LL1 sub-band (Fig. 7).

4 Experimental Results in 2D and 3D

The results described below used Matlab for 2D image

compression in connection with a purpose-built 3D

Table 3 PSNR and MSE

between original and

decompressed 2D images

Image name RMSE 3D RMSE Quantization values

Low-frequency High-frequency

Wall 2.49 2.09 0.02 0.02

Wall 2.82 3.95 0.04 0.04

Wall 3.25 4.72 0.08 0.08

Girl 3.09 3.78 0.02 0.02

Girl 4.08 3.94 0.04 0.04

Girl 5.25 3.66 0.08 0.08

Woman 2.88 3.37 0.02 0.02

Woman 3.53 3.09 0.04 0.04

Woman 4.35 2.61 0.08 0.08

Image name MSE 3D RMSE Quantization values

Low-frequency High-frequency

Wall 2.66 2.09 0.02 Ignored

Wall 2.86 3.95 0.04 Ignored

Wall 3.24 4.72 0.08 Ignored

Girl 4.39 3.41 0.02 Ignored

Girl 4.71 3.83 0.04 Ignored

Girl 5.34 3.74 0.08 Ignored

Woman 3.38 3.12 0.02 Ignored

Woman 3.73 3.07 0.04 Ignored

Woman 4.38 2.71 0.08 Ignored

Table 4 Comparison between the proposed algorithm and JPEG2000 and JPEG techniques

Image name Quality Proposal method JPEG2000 JPEG Compressed

size (Kbytes)
RMSE 3D RMSE RMSE 3D RMSE RMSE 3D RMSE

Wall High 2.49 2.09 1.92 4.28 3.14 2.8 74

Median 2.82 3.95 2.14 5.01 3.87 4.5 47.6

Low 3.25 4.72 2.42 3.52 5.34 6.9 33.7

Girl High 3.09 3.78 2.14 3.94 3.28 3.94 78

Median 4.08 3.94 2.88 4.02 4.72 3.72 48

Low 5.25 3.66 Non Non Non Non 29.1

Woman High 2.88 3.37 2.14 3.14 2.6 2.55 62.1

Median 3.53 3.09 2.7 3.2 4.58 2.75 38.1

Low 4.35 2.61 Non Non Non Non 24.5
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visualization software running on an AMD quad-core

microprocessor. In this research we used three types of

images with different dimensions. Our compression

algorithm is applied to 2D BMP images. Figure 8

shows images tested by our approach, and Table 1

shows the compressed size for each image.

The values ‘‘0.02’’, ‘‘0.04’’ and ‘‘0.08’’ refers to

high, median and low quality respectively. These

values are used by quantization equation (See Eq. 3) to

keep high-frequency coefficients (LH1, HL1 and

HH1) at first level DWT. If Quality = 0.02, this

means most of the data remains, otherwise, partial data

(a) Decompressed by JPEG2000 3D Flat image (b) Decompressed by JPEG2000 3D Flat image, 
Quality=40%, 3D RMSE =4.28 Quality=26%, 3D RMSE=5.01

(c) 3D image decompressed by (d) 3D image decompressed by
JPEG2000 Quality=10% 3D RMSE=3.52 JPEG Quality=56% (degraded 3D)

(e) Decompressed 3D Wall image by JPEG, Quality=26%, 3D RMSE =2.8 [Degraded 3D image]

Fig. 12 a, b and c Decompressed 3D Wall image by

JPEG2000, Decompressed image with quality = 40 % most

of regions are matched with the original image, similarly in

quality = 26 % and quality = 10 % approximately matched

with the original image. d, e Decompressed 3D Flat image by

JPEG (degraded) un-recognized with original image. Median

quality 2D decompressed image by JPEG at quality = 51 %,

quality = 23 % non-capable of generating 3D model
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(a) Decompressed 3D image by JPEG2000, Quality=41%, 3D RMSE=3.94

(b) Decompressed 3D image by JPEG2000, Quality=21%, 3D RMSE=4.02

(c) Decompressed 3D image by JPEG, Quality=45%, 3D RMSE=3.94

(d) Decompressed 3D image by JPEG, Quality=17%, 3D RMSE=3.72

Fig. 13 a and

b Decompressed 3D girl

image by JPEG2000. c,

d Decompressed 3D girl

image by JPEG. For low

quality, JPEG cannot reach

to compress size

29.1 Kbytes
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Decompressed 3D image by JPEG2000, Quality=32%, 3D RMSE=3.14

Decompressed 3D image by JPEG2000, Quality=10%, 3D RMSE=3.2

Decompressed 3D image by JPEG, Quality=56%, 3D RMSE=2.55, 

Decompressed 3D image by JPEG, Quality=13%, 3D RMSE=2.75

(a)

(b)

(c)

(d)

Fig. 14 a and

b Decompressed women

image by JPEG2000. c,

d Decompressed 3D women

image by JPEG. For low

quality JPEG cannot reach

to compress size

24.5 Kbytes
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in high frequency sub-bands are discarded, while the

low-frequency sub-band depends on the DCT coeffi-

cients. Table 2 shows the effects of high frequencies if

ignored from the first level DWT decomposition (i.e.

all high coefficients values are set to zero).

The proposed image compression algorithm is

applied using a range of quality factors (compression

rates) and the recovered images are used for 3D

reconstruction and compared to the original 3D

models. Figures 9, 10 and 11 show the 3D decom-

pressed and 3D reconstructed Wall, Girl and Woman

respectively. Table 3 shows the PSNR and MSE for

each 2D decompressed image. Peak Signal to Noise

Ratio (PSNR) and Mean Square Error (MSE) are used

to refer to image quality mathematically. PSNR based

on MSE is a very popular quality measure, and can be

calculated very easily between the decompressed

image and the original image [10, 15].

5 Comparison with JPEG2000 and JPEG

Compression Techniques

Our approach is compared with JPEG and JPEG2000;

these two techniques are used widely in digital image

compression, especially for image transmission and

video compression. The JPEG technique is based on

the 2D DCT applied on the partitioned image into

8 9 8 blocks, and then each block encoded by RLE

and Huffman encoding [5]. The JPEG2000 is based on

the multi-level DWT applied on the partitioned image

and then each partition quantized and coded by

Arithmetic encoding [1]. Most image compression

applications allow the user to specify a quality

parameter for the compression. If the image quality

is increased the compression ratio is decreased and

vice versa [15]. The comparison is based on the 2D

image and 3D image quality for test the quality by

Root-Mean-Square-Error (RMSE). Table 4 shows the

comparison between the three methods.

In the above Table 4 ‘‘High’’ or ‘‘Median’’ means

parameters used by each method is different. Also the

‘‘NON’’ refers JPEG2000 and JPEG method cannot

reach to the compress size reached by our approach

and still be able to reconstruct the model in 3D.

Figures 12, 13 and 14 show the 3D decompressed

images by JPEG2000 and JPEG.

6 Conclusion

This research has presented and demonstrated a new

method for image compression used in 3D applica-

tions. The method is based on the transformations

(DWT and DCT) and the proposed Minimize-Matrix-

Size Algorithm. The results show that our approach

introduces better image quality at higher compression

ratios than JPEG2000 and JPEG being capable of

accurate 3D reconstructing even with very high

compression ratios. On the other hand, it is more

complex than JPEG2000 and JPEG. The most impor-

tant aspects of the method and their role in providing

high quality compression with high compression ratios

are discussed as follows.

1. Using two transformations, this helped our com-

pression algorithm to increase the number of high-

frequency coefficients leading to increased com-

pression ratios.

2. The Minimized-Matrix-Size Algorithm is used to

collect each three coefficients from the high-

frequency matrices, to be single floating-point

values. This process converts a matrix into an

array, leading to increased compression ratios

while keeping the quality of the high-frequency

coefficients.

3. The properties of the Daubechies DWT (db3) help

the approach for obtaining higher compression

ratios. This is because the Daubechies DWT family

has the ability to zoom-in onto an image, and the

high-frequencies sub-bands of the first level decom-

position can be discarded (See Table 3).

4. The LSS-Algorithm represents the core of our

decompression algorithm, which converts a one-

dimensional array to a matrix, and depends on the

Random-Weight-Values. Also, the LSS-Algo-

rithm represents lossless decompression, due to

the ability of the Limited-Data to find the exact

original data.

5. The Random-Weight-Values and Limited-Data are

the keys for coding and decoding an image, without

these keys images cannot be reconstructed.

6. Our approach gives better visual image quality

compared to JPEG and JPEG2000. This is

because our approach removes most of the block

artifacts caused by the 8 9 8 two-dimensional

DCT of the JPEG technique [15]. Also our
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approach removes some blurring caused by multi-

level DWT in JPEG2000 [15].

7. The one-dimensional DCT with size n = 4, is

more efficient than n = 8 of JPEG; this helped our

decompression approach to obtain better image

quality than JPEG.

Also this research has a number of disadvantages

illustrated as follows:

1. The overall complexity of our approach leads to

increased execution time for compression and

decompression; the LSS-Algorithm iterative

method is particularly complex.

2. The compressed header data contain floating-

point arrays, thereby causing some increase in

compressed data size.
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