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Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a

nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote

vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such

surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior:

for strong anchoring, as exhibited by the simulated system, for rectangle ratios � 2 the nematic aligns in the

direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape.

In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate

between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is

predicted for intermediate combinations of anchoring coefficient and system length scale.

DOI: 10.1103/PhysRevE.88.012501 PACS number(s): 61.30.Hn, 61.30.Dk, 07.05.Tp

I. INTRODUCTION

Conventional uniform surface treatments for confined

nematic liquid crystals (LCs), such as rubbed or photoaligned

polymers, are limited to a narrow specification: they typically

promote vertical or planar alignment where both the preferred

orientation and associated anchoring energy are difficult to

alter. In contrast, topographically or chemically patterned

surfaces permit essentially arbitrary control of the easy axis

and anchoring potential through appropriate adjustment of the

pattern features [1]; suitable patterning techniques include

atomic force microscope scribing of polymer films [2,3],

microcontact printing of self-assembled monolayers (SAMs)

[4–6], and photolithography [7–10]. By imprinting a design of

appropriate symmetry, it is also possible to pattern a surface to

promote more than one stable alignment orientation [2,11–14]

thus enabling the fabrication of bistable devices [2,10,15–18].

Very recently SAM-patterned substrates have been used to

achieve rapid switching [19].

The purpose of the present paper is to investigate the

alignment behavior of a nematic confined by patterned surfaces

decorated with a stretched-chessboard-like array of rectangles

that alternately promote planar and vertical alignment. This

arrangement is of interest since it is intermediate between

arrays of stripes and squares, patterns which have previously

been shown to promote qualitatively different anchoring

behaviors.

For striped systems, it was found experimentally by Lee

and Clark [11] that the polar orientation of the bulk nematic
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depends on the relative widths of the vertical- and planar-

promoting stripes while the azimuthal alignment consistently

lies along the lengths of the stripes. It was proposed that the

latter was due to elastic anisotropy, i.e., the differing energetic

costs of various symmetries of bulk orientational deformation.

Calculations using continuum theory [20,21] and Monte Carlo

(MC) simulation of hard particles [22] affirmed this notion

and showed that it held across the very different length scales

over which these two theoretical techniques apply. Further,

it was shown that by adjusting the relative stripe width and

cell thickness, the polar anchoring angle could be altered

continuously from planar to vertical [21,23]. Despite the

apparent simplicity of the striped pattern, in some scenarios

its phase behavior is further enriched: if two striped substrates

sandwich a cell that is only a few molecular lengths thick,

the nematic may form separate vertical and planar domains

“bridging” the film [23]. Alternatively, if some of the stripes

are sufficiently narrow, the pattern is neglected by the structure

within the nematic [24,25].

As expected from symmetry [2,12], degenerate alignment

is observed for systems comprising chessboard-like arrange-

ments of squares promoting competing alignments. Experi-

mental studies on SAM-based square-patterned systems have

shown that, for feature sizes of ≃ 30 µm, the favored alignment

runs along the diagonals of the planar-promoting squares

[22]. When the patterning length scale is reduced to that

accessible to particle-based simulation, however, the preferred

orientations run along the pairs of opposite edges of the squares

[26]. An anchoring transition between these arrangements is

then predicted for, e.g., a sufficiently weak polar anchoring

condition. Unlike the striped systems, however, no “bridging”

behavior has been observed for square-patterned systems, even

for very thin films.

Here we investigate the way in which the strong azimuthal

coupling and variable polar anchoring associated with nemat-

ics on striped substrates segues into the anchoring transition
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found for square-patterned substrates. We do this by studying

the polar and azimuthal anchoring behaviors accessible to

substrate patternings based on rectangles of adjustable length-

scale and aspect ratio. This is achieved through a combination

of molecular-level MC simulation, experiment, and continuum

theory. The paper is organized as follows: the MC simulation

methodology is described in Sec. II, and associated results are

presented in Sec. III. Some preliminary experimental results

are then given in Sec. IV, and a continuum calculation is

performed and used to reconcile the preceding results in

Sec. V. Conclusions are drawn in Sec. VI.

II. MONTE CARLO MODEL AND SIMULATION DETAILS

To initiate this study, we have performed a series of

MC simulations of rod-shaped particles confined in slab

geometry between two planar walls. The model used is

essentially that described in Ref. [26]. Briefly, interparticle

interactions have been modeled through the hard Gaussian

overlap (HGO) potential [27], which can be seen as equivalent

to the well-known Gay-Berne model [28], stripped of its

attractive interaction. The particle-substrate interactions have

been modeled using the hard needle-wall potential (HNW)

[29] where a hard axial needle of length σ0ks is placed at

the center of each particle (see Fig. 1). The parameter ks

provides a molecular-level control on the surface anchoring

properties. The results presented in Secs. III A and III B have

been obtained for systems of 864 HGO particles of length to

breadth ratio κ = 3, confined between two rectangle-patterned

substrates. The substrates were separated by a distance Lz =
4κσ0, where σ0 is the particle diameter, periodic boundary

conditions being imposed in the x and y directions.

On each substrate, ks was set to a vertical-aligning value

(ks � 1.0) for a portion of its area and a planar value (ks � 2.0)

for the remainder, and sharp boundaries were imposed between

the competing alignment regions. The patterns on the top and

bottom surfaces have been kept in perfect registry with one

another, as shown in the schematic in Fig. 2.

Each system has been initialized at low density and gently

compressed by decreasing the box dimensions Lx and Ly while

keeping the substrate separation Lz and the rectangular ratio

R = Lx/Ly fixed. At each density, run lengths of 1 million

MC sweeps (where one sweep represents one attempted move

FIG. 1. (Color online) Schematic representation of the geometry

used for the hard needle-wall (HNW) particle-substrate interaction

[29].

Planar

Vertical

θ = 0

θ = π/2
d

x
y

z

Lx × d

Ly × d

FIG. 2. (Color online) Schematic representation of rectangle

patterned systems tiled with vertical-inducing (red/dark) and planar-

inducing (green/light) substrate regions. The azimuthal angle φ is

zero along the x axis.

per particle) were performed, averages and profiles being

accumulated for the final 500 000 sweeps.

Analysis has been performed by dividing stored system

configurations into 100 equidistant constant-z slices and

performing averages of relevant observables in each slice. This

yields profiles of quantities such as number density, ρ∗(z), from

which structural changes can be assessed. Orientational order

profiles have also been calculated, particularly

Qzz(z) = 1

N (z)

N(z)
∑

i=1

(

3

2
u2

i,z − 1

2

)

, (1)

which measures variation across the confined films of orien-

tational order measured with respect to the substrate normal.

Here N (z) is the instantaneous occupancy of the relevant slice.

We have also further subdivided the system to assess lateral

inhomogeneities induced by the patterning. Specifically, we

have computed profiles corresponding to particles residing

between the vertical-aligning and planar-aligning substrate

regions.

III. SIMULATION RESULTS

A. Influence of the surface interaction parameter

In this section we assess the influence of microscopic

rectangular patterning on the structure and anchoring of a

confined LC film. To this end, we present results obtained from

full compression sequences of MC simulations performed on

a series of systems with differing pairs of surface interaction

parameters. For reasons of space we show data only for high-

density (ρ = 0.4) systems and concentrate on the influence of

the substrate parameters.

We initially consider systems for which the rectangular ratio

R = 3. We first used a combination of strong planar alignment

of the molecules on the substrate (ks = 3) with a strong

vertical alignment (ks = 0). Then we slightly weakened

the vertical alignment (ks = 0.5) before going on to use a

weak vertical alignment (ks = 1). The high-density snapshots

corresponding to such systems are represented in Fig. 3. These

clearly indicate that, for all combinations of ks values, these

systems exhibited a central ordered monodomain at high den-

sity. From these snapshots it is apparent that the monodomains
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FIG. 3. (Color online) Snapshots of system with Lx = 3Ly and

different combinations of planar and vertical ks values. (a) ks = 0.5,

ks = 3; (b) ks = 0, ks = 3; (c) ks = 1, ks = 3; (d) ks = 0, ks = 2.5;

(e) ks = 0, ks = 2.

were all aligned in the x-z plane. This is consistent with what

was observed for equivalent stripe-patterned systems [23]. It

suggests, then, that for an edge ratio of 3, rectangle patterned

substrates act rather like well defined stripes, i.e., that it is

straightforward to pin the azimuthal angle using the shape

asymmetry of rectangular substrate patterns. The second item

of note from these snapshots is that the surface patterns do

not “bridge” across the film. As with square patterns [26], this

is presumably due to the different interfacial stabilities that

would pertain at the resultant twistlike and bendlike domain

boundaries.

To substantiate this assessment, we plot in Fig. 4 the

corresponding Qzz profiles to quantify the differences between

these three systems with strong planar anchoring (i.e., ks = 3).

From these it is apparent that in the vertical regions, the Qzz

value is slightly greater for strong vertical parametrizations

[see Fig. 4(a)]. This difference is not apparent, though, in the

planar regions [see Fig. 4(b)]. Because of the small differences

in these graphs, we have also calculated the average bulk tilt

angles θz. These are presented in Table I and confirm that

these systems exhibit very similar tilt angles in the differently

anchored regions, typical variations being only 7◦ within

each system. These modest variations correspond to nematic

monodomains with small undulations of the polar anchoring

orientation. As expected, on decreasing the strength of the

vertical anchoring at the surface, the bulk alignment becomes
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FIG. 4. (Color online) Influence of ks on the ρ = 0.4 Qzz profiles

for the differently anchored subsystems with rectangle ratio R = 3

and strong planar anchoring (a) between vertically aligned substrate

regions, (b) between planar-aligned substrate regions.

increasingly planar: the tabulated values for θz decrease with

increase in the vertical-region ks value. While this variation

is very weak, the presence of the vertical-aligning surface

TABLE I. Average tilt angle, by surface region, for different

rectangle ratios Lx/Ly and substrate couplings ks .

Planar Vertical

Lx/Ly ks θz(
◦) ks θz(

◦)

3 3 53 0 59

3 3 50 0.5 57

3 3 50 1 56

3 2.5 60 0 64

3 2 65 0 68

2 3 55 0 61

2 3 54 0.5 59

2 3 45 1 50

2 2.5 61 0 66

2 2 75 0 75
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FIG. 5. (Color online) Influence of ks on the ρ = 0.4 Qzz profiles

for the differently anchored subsystems with rectangle ratio R = 3

and strong vertical anchoring (a) between vertically aligned substrate

regions, (b) between planar-aligned substrate regions.

regions is substantial; the measured tilt angles are far from 0◦,

which would be seen in the absence of these vertical-aligning

substrate regions.

We next consider the influence of the strength of the

planar anchoring regions in the presence of strong vertical

anchoring regions. This is achieved by simulating ks = 0

regions combined with strong planar (ks = 3), moderate planar

(ks = 2.5), and weak planar (ks = 2) regions, respectively.

From the variation of the corresponding Qzz profiles (see

Fig. 5), it is apparent that decreasing the planar anchoring

strength causes the Qzz profiles to become more positive

throughout the confined film. As confirmed by the snapshots

(Fig. 3) and the corresponding tilt angle data in Table I, this

means that the central domains become increasingly aligned

perpendicular to the surfaces. Again, this makes intuitive

sense, since the relative influence of the vertical anchoring

contribution would be expected to grow in such circumstances.

The bulk tilt angle is, though, more sensitive here to change of

the planar-region coupling parameter than it was previously to

change of the vertical-region coupling parameter.

FIG. 6. (Color online) Snapshots of system with Lx = 2Ly and

different combinations of planar and vertical ks values. Strong vertical

anchoring. (a) ks = 0, ks = 3; (b) ks = 0.5, ks = 3; (c) ks = 1, ks = 3;

(d) ks = 0, ks = 2.5; (e) ks = 0, ks = 2.

B. Influence of the rectangle ratio R = Lx/L y

In order to assess the influence of the rectangle ratio on these

small length-scale systems, an equivalent series of simulations

has been performed on systems patterned with R = Lx/Ly=2

substrate rectangles. Corresponding high-density snapshots

are represented in Fig. 6. We note from these that again, in

all cases, the induced anchoring lies in the x-z plane. This

indicates that fixing the azimuthal angle to coincide with the

long edge of the rectangle patterns is achievable even with

R ≃2. The influence of the ratio R on the azimuthal angle will

be investigated in more detail later in the paper.

Figure 7 shows the high-density Qzz profiles of R = 2

systems with strong planar anchoring regions and varying

vertical anchoring strength. These profiles are more sensitive to

the variation of the vertical surface anchoring parameter than

the corresponding R = 3 were. Specifically, while the R =
2Qzz profiles are similar for ks = 0 and ks = 0.5, significantly

lower Qzz values were found in the central region of the ks = 1

film. The corresponding tilt angle shifts are reported in Table I.

Figure 8 shows the influence of the planar ks parameter on

R = 2 systems with strong vertically aligned regions. Here

the Qzz values are strongly influenced by the planar ks values,
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FIG. 7. (Color online) Influence of ks on the ρ = 0.4 Qzz profiles

for the differently anchored subsystems with rectangle ratio R = 2

and strong planar anchoring (a) between vertically aligned substrate

regions, (b) between planar-aligned substrate regions.

both regions showing increase in Qzz as the planar anchoring

component is weakened. This corresponds to the particles

lying increasingly normal to the surfaces, as confirmed by

the data given in Table I.

While the qualitative behaviors of the R = 2 and R = 3

systems simulated here were very similar, some quantitative

differences were determined. From the data reported in Table I,

increase in Lx/Ly was generally associated with a decrease

in the tilt angles adopted in both substrate regions. The one

exception to this was the substrate combination ks = 1, ks = 3

identified above as displaying strong planar character for

R = 2. A further observation is that the sensitivity of tilt

angle to substrate conditions was consistently greater for the

R = 2 systems than the R = 3. It is not appropriate to examine

this tilt variation with shape up to the R = inf limit because

such systems exhibit domain bridging rather than a tilted

monodomain [23].

Finally, we assess the effect of the rectangle ratio on

the preferred azimuthal angle. In Ref. [26], we saw that

the azimuthal angle cannot be effectively controlled using
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FIG. 8. (Color online) Influence of ks on the ρ = 0.4 Qzz profiles

for the differently anchored subsystems with rectangle ratio R = 2

and strong vertical anchoring (a) between vertically aligned substrate

regions, (b) between planar-aligned substrate regions.

square-patterned substrates, degenerate alignment being seen

between the two edge directions. Here, though, for both R

values investigated, clear orientational pinning was apparent.

In order to gauge the strength of this pinning, we plot, in Fig. 9,

azimuthal angle distributions for substrate-region particles on

the different pattern types. This confirms a strong departure

from the degenerate behavior seen for square patterns. For

R = 2, while a small but distinct subset of particles aligned

along the short rectangle edge, long-edge alignment was

dominant. This effect was even more marked for R = 3 and,

indeed, was essentially as strong as that seen for full stripe

patterning.

IV. EXPERIMENT

To determine the effect of rectangular substrate patterning

at larger length scales, a set of experimental cells was

prepared using the microcontact printing technique described

in Ref. [22]. In these, SAMs of -COOH and -CF3 termi-

nated alkanethiols were used to promote planar and vertical
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FIG. 9. (Online color) Influence of the pattern anisotropy on the

azimuthal angle distribution of near-substrate particles for systems

with ks = 0 and ks = 3.

alignment, respectively, in the different pattern regions. Unlike

the simulated systems, however, only one patterned substrate

was used in these cells; the second substrate was always

prepared with a uniform vertical-aligning treatment. We do

not expect the uniform vertical surface to significantly change

the azimuthal alignment since the MC simulations show that

the elastic distortion is strongly confined to the surface in

these systems. Moreover, the uniform vertical treatment for

symmetry reasons cannot itself favor any particular azimuthal

orientation. Consequently, these cells comprised both vertical-

vertical (VV) and planar-vertical (PV) subregions. The cells

were prepared with a nominal thickness 23µm, filled with

the nematic material 9CB in the isotropic phase and cooled

into the nematic phase while being observed with a polarizing

microscope.

Figure 10 shows a polarizing microscopy image of a typical

cell, one surface of which was patterned with squares of

8 µm width (i.e., a 16 µm period). For this system, the

maximum transmission in the planar regions occurred when

the checkerboard was orientated parallel to the polarizers.

FIG. 10. (Color online) (a) Polarizing microscopy image of 9CB

aligned by a COOH/CF3 SAM patterned with a checkerboard with

squares of width 8 µm. The polarizers and analyzers are crossed

and are parallel to the checkerboard. (b) Schematic showing the bulk

director orientation on a square-patterned substrate. A: PV region,

B: VV region with identical neighbors, C: VV region with different

neighboring PV regions. Note the direction of the LC director in a

VV region tries to match that of its neighbors.

From this, we deduce that the director had a component

aligned diagonally across the planar-aligned squares. There

are two different degenerate states for this, corresponding

to the two opposite diagonals, which are optically identical.

Nonetheless, optical consequences of splay and twist in the

VV regions reveal where boundaries between the differently

oriented PV domains lie: at an interface between these two

the azimuthal angle φ rotates gradually by π/2 from one

side to the other, so along the diagonal of the square, φ

averages to be parallel to one of the polarizer directions

and hence appears dark. The VV regions are splayed and

twisted in the bulk of the cell due to their requirement to

accommodate the splayed state in the neighboring PV regions.

When a VV region is surrounded by four PV regions of

the same hybrid aligned nematic (HAN) configuration, its

director points in the same diagonal plane as do those of its

neighbors. However, when it is surrounded by PV regions

with differing HAN configurations, the VV region is not

able to match its boundary requirements with a simple HAN

profile. Instead, a twist component develops, which can been

seen optically as a darker VV square. As these dark VV

squares only arise where there are neighbors with different PV

region alignments, they form a border around domains of the

degenerate HAN states. This figure shows as well a schematic

illustrating these different states and their relationship to the

microscopy image. This diagonal alignment behavior in VV

regions is predicted by continuum model calculations [26] if

the polar anchoring energy promoted by the surface is rather

weak.

A second set of cells was prepared with rectangular patterns

of different aspect ratios; otherwise, parameters and conditions

were equivalent to those used for the square-patterned cell.

Microscopy images are shown in Fig. 11(a) and 11(b) and

the measured azimuthal alignment angles are displayed in

Table II; these were obtained as for the square pattern by

rotating the sample under the microscope so as to maximize

the extinction between crossed polarizers.

When the symmetry of square checkerboards was broken

in this way, a number of alignment changes were observed. We

still have two degenerate azimuthal states seen for the regular

squares, but the azimuthal orientation in the center is no longer

at 45◦. On rotation between crossed polarizers, dark states were

observed for anticlockwise (negative) and clockwise (positive)

rotations. Defining a positive angle φ from the long axis of the

rectangle, dark states occur at rotations of −φ◦, 90−φ◦ for

one state (φ) and −(90−φ)◦, 90 + φ◦ for the other state (−φ).

However optical degeneracy also has to be considered, as the

same configurations could be equally explained by azimuthal

angles of 90−φ◦ and −(90−φ)◦. Here we use the fact that,

when observing with parallel polarizers set horizontally, there

is no contrast between the PV regions and VV regions if the

horizontal components of refractive index in the HAN and

vertical states are equal. This allows us to correctly identify the

azimuthal angles. Optical compensators or direct imaging with

fluorescent confocal polarizing microscopy (FCPM) could

also be used to distinguish between these optically degenerate

states.

For an aspect ratio of 1.2, the director is at 40◦ measured

from the vertical. Dark states can be seen on clockwise

rotation to 40◦ and anticlockwise rotation to 50◦, the latter

012501-6
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FIG. 11. (Color online) Polarizing microscopy images of 9CB on a rectangular patterned surface. (a) PM images of 9CB aligned on a

COOH/CF3 SAM patterned with a checkerboard of rectangles, a = 20 µm, b = 24 µm. (1) A uniform region of interest, (2) 50◦ anticlockwise

sample rotation with crossed polarizers, (3) 50◦ anticlockwise sample rotation with parallel polarizers aligned horizontally. (b) PM images of

9CB aligned on a COOH/CF3 SAM patterned with a checkerboard of rectangles, a = 20 µm and b = 40 µm. (1) A uniform region of interest,

(2) 53◦ clockwise sample rotation with crossed polarizers, (3) 53◦ clockwise rotation with parallel polarizers aligned horizontally.

shown in Fig. 11(a)(2). Parallel polarizer images also show the

difference between the bistable states 11(a)(3). The extinction

angle is intriguingly close to arctan(1/1.2) = 39.8◦, the angle

of the director if pointing from the center of the rectangle

to a corner. Additional states are also observed, as shown in

Fig. 11(a)(3), there are regions where the director is parallel

to the long axis of the rectangle. These regions have a

bright state on rotation to 45◦ between crossed polarizers.

Patterns with an increasing ratio up to 2 were printed, the

final example of which can be seen in Fig. 11(b) with

similar behavior to the aspect ratio 1.2 case. The observed

alignment angles are summarized in Table II. Although the

MC simulation predicts a different alignment direction to

that observed experimentally, there is a qualitative agreement

between the two in that the tendency of the nematic is to align

with the longer side of the rectangle with increasing aspect

ratio.

TABLE II. Observed alignment of 9CB on rectangle patterned

surfaces.

Azimuthal angle from

Width (µm) length (µm) Aspect ratio long axis (◦)

20 20 1 45

20 24 1.2 40

20 28 1.4 36

20 32 1.6 32

20 36 1.8 29

20 40 2 27

V. CONTINUUM MODEL

To reconcile the apparently contradictory observations

from our MC simulations and experiments, we now ex-

amine the rectangle pattern using a continuum theory ap-

proach following the procedure described in our previous

paper [26]. Our objective is to determine the director

field

n̂(�x) = (cos θ sin φ, cos θ cos φ, sin θ ) (2)

that minimizes the free energy consisting of the Frank energy

and the surface energy

F = 1

2

∫

d3x K1 (∇ · n̂)2 + K2[n̂ · (∇ × n̂)]2

+K3 |n̂ × (∇ × n̂)|2 +
∫

s

dS g(�n,�n0) (3)

within two simplifying assumptions: that K1 = K3 �= K2 with

τ = K2/K1 and also that only variations in θ are considered,

i.e., that the director is confined everywhere to a single

plane. The first assumption is approximately justified for

common nematic mesogens; the second is reasonable since,

as evidenced by Figs. 11(a) and 11(b), the patterned surface

promotes variation in the polar coordinate only and places no

restriction on the azimuthal orientation. Here the coordinate

system is scaled by the thickness of the liquid crystal layer Lz,

so that the periods of the pattern in the x and y directions, Lx

and Ly , are dimensionless quantities.
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Here, since Lx �= Ly , we require a solution of the form

θ (x,y,z) = θ0 +
∞

∑

n=−∞

∞
∑

m=−∞

1
√

LxLy

(Anme−νnmz + Bnmeνnmz) exp[i2π (nx/Lx + my/Ly)]. (4)

The Euler-Lagrange equation [26]

(τ cos2 φ + sin2 φ)
∂2θ

∂x2
+ (τ sin2 φ + cos2 φ)

∂2θ

∂y2
+ (1 − τ ) sin(2φ)

∂2θ

∂x∂y
+ ∂2θ

∂z2
= 0 (5)

is satisfied if the νnm are chosen:

νnm = π

LxLy

√

2(τ + 1)
(

L2
xm

2 + L2
yn

2
)

− 2(τ − 1)
[

2LxLymn sin(2φ) + cos(2φ)
(

L2
xm

2 − L2
yn

2
)]

. (6)

The remaining coefficients are obtained from the weak anchor-

ing boundary conditions, which for the harmonic anchoring

potential

gH (θ,θe) = Wθ

2
(θ − θe)2 (7)

are

±Lθ

∂θ

∂z
+ θ = θe, (8)

where θe(x,y) is the spatially varying easy axis promoted by

the pattern, and the sign corresponds to the direction of the

surface normal pointing out of the liquid crystal layer at the

appropriate boundary and where the dimensionless parameter

associated with polar anchoring Lθ is

Lθ = K1

WθLz

. (9)

As a guide to interpreting this number, for a cell thickness Lz =
10 µm and typical unpatterned values of Wθ = 10−5Jm−2 and

K1 ≈ 10pN (5CB) the value of Lθ = 0.01.

By inserting (4) into (8) and performing routine calcula-

tions, the coefficients θ0, Anm, and Bnm are obtained:

θ0 = π/4,
(10)

Anm = eνnmcnm

Lθνnm(eνnm − 1) + (eνnm + 1)
,

Bnm = cnm

Lθνnm(eνnm − 1) + (eνnm + 1)
, (11)

where the cnm are the Fourier coefficients of the easy axis

profile θ0(x,y) at the z = 0 and z = 1 surfaces, respectively:

cnm = dnm =
{

−
√

LxLy

πnm
n,m odd

0 otherwise
. (12)

Having determined the solution as above, the free energy may

be evaluated by inserting (4) into (3) and performing necessary

integrations. The bulk energy is

Fb =
∑

nm

π2

L2
xL

2
yνnm

[(

A2
nme−νnm + B2

nme+νnm
)

sinh(νnm)

+2AnmBnmνnm

]{

(1 + τ )
(

L2
xm

2 + L2
yn

2
)

+ (1 − τ )

×
[

cos(2φ)
(

L2
xm

2 − L2
yn

2
)

+ 2LxLymn sin(2φ)
]}

+
∑

nm

1

2
νnm

[(

A2
nme−νnm + B2

nme+νnm
)

sinh(νnm)

−2AnmBnmνnm

]

. (13)

The surface energy (for each surface) is

Fs = π2LxLy/16 + 1

Lθ

∑

nm

(Anm + Bnm)

× (Anm + Bnm − 2cnm). (14)

The free energy per unit area as a function of φ is plotted

in Fig. 12 for different values of Lθ and Ly/Lx with τ = 1/2

and Lx = 1. For the strongest anchoring depicted, where Lθ =
0.05, it is apparent that a very slight difference in Lx and Ly is

sufficient to break the degeneracy of the configurations aligned

along the x and y axes, respectively; once Ly/Lx � 1.5 there

is no stable state aligned along the x axis.

Rectangle-patterned surfaces are surfaces of adjustable

azimuthal anchoring energy: they may be thought of as

promoting an effective azimuthal anchoring potential [1],

the strength of which is varied by modest changes in the

aspect ratio of the rectangles. From the plot in Fig. 12(a),

it is apparent that over the range of aspect ratios 1–2, the

effective azimuthal anchoring energy varies by a factor of

roughly 5. The controllability is, however, contingent on the

ability of the pattern to deform the nematic as measured

by the anchoring strength Lθ . Free energy profiles as a

function of φ for increasing values of Lθ , corresponding to

weaker anchoring, are displayed in Fig. 12(b)–12(f). As Lθ

increases, the anchoring transition described in our previous

paper [26] occurs [Fig. 12(c)] whereby the preferred azimuthal

orientation, indicated by the position of the minimum, is no

longer along the length or breadth of the square pattern, but

lies roughly along the diagonal. For the largest value of Lθ =
0.2 plotted, the depth of the effective azimuthal anchoring

potential is significantly smaller than for the Lθ = 0.05 case.

The variation of the preferred azimuthal orientation as a

function of aspect ratio also depends strongly on the anchoring

parameter around the anchoring transition as may be seen

in Fig. 12(c)–12(e), while both the edge- [Fig. 12(a), 12(b)]

and diagonally aligned states [Fig. 12(f)] are insensitive to

the aspect ratio of the pattern. The experiment described

in the previous section took place in this diagonal regime,

and so the observed alignment angle as a function of aspect

012501-8



INDEPENDENT CONTROL OF POLAR AND AZIMUTHAL . . . PHYSICAL REVIEW E 88, 012501 (2013)

1

1.2

1.4

1.6

1.8

Lx /Ly =2

0.0 0.5 1.0 1.5

0.00

0.01

0.02

0.03

0.04

0.05

1

1.2

1.4

1.6

1.8

Lx /Ly =2

0.0 0.5 1.0 1.5

-0.01

0.00

0.01

0.02

0.03

1

1.2

1.4

1.6

1.8

Lx /Ly =2

0.0 0.5 1.0 1.5
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Azimuthal Director Angle φ

1Lx /Ly =

2

0.0 0.5 1.0 1.5

-0.015

-0.010

-0.005

0.000

Azimuthal Director Angle φ

1.2
1.4

1.6

1.8

(c) Lθ=0.05 (d) Lθ=0.075

(e) Lθ=0.1 (f) Lθ=0.2

1

1.2

1.4

1.6

1.8

Lx / Ly =2

0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

1

1.2

1.4

1.6

1.8

Lx / Ly =2

0.0 0.5 1.0 1.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12(a) Lθ=0.01 (b) Lθ=0.02

F
re

e
 e

n
e

rg
y
/u

n
it
 a

re
a

 (
a

rb
. 

u
n

it
s
)

F
re

e
 e

n
e

rg
y
/u

n
it
 a

re
a

 (
a

rb
. 

u
n

it
s
)

F
re

e
 e

n
e

rg
y
/u

n
it
 a

re
a

 (
a

rb
. 

u
n

it
s
)

FIG. 12. Free energy per unit area as a function of φ, plotted for various values of Ly/Lx .

ratio can be used to estimate the anchoring parameter; from

Table II we obtain a value of Lθ ∼0.08. Here, the apparent

contradiction between the Monte Carlo and experimental

results is resolved by the continuum prediction that there

exist two different anchoring regimes characterized by the

anchoring parameter Lθ ; the MC simulations and experiment

have illuminated the two regimes. In all models the tendency

is for the director to align with the long axis of the rectangles.

VI. CONCLUSIONS

In this work a surface prepared with a chessboard-like

pattern of alternating vertical and planar rectangles has

been shown to azimuthally align an adjacent nematic liquid

crystal. Moreover, control of the alignment easy axis has

been demonstrated in both azimuthal and zenithal coordinates

achieved by adjusting the design parameters of the pattern, i.e.,

the length scale, aspect ratio, and relative anchoring strength

of the rectangles.

Monte Carlo simulations of hard particles predict that the

preferred alignment direction is along the long edges of the

rectangles and that only modest aspect ratios ∼2 − 3 are

required to break the bistable alignment previously observed

in square-patterned systems [26]. Hence, rectangle patterns

resemble the striped system extensively studied [21,23,24] ex-

cept that the bulk alignment is a monodomain and no bridging

behavior, where the nematic follows the pattern throughout

the film, was observed; there is only weak modulation in the

polar angle at the film center, in agreement with that predicted

by continuum theory. Control of the tilt angle over a range

of ∼ 20◦–40◦ was observed by running a sequence of MC

simulations and adjusting the relative anchoring strength of

the vertical and planar regions. Simulations with increasing

Lx/Ly had a distribution of particles increasingly strongly

peaked around the alignment direction, suggesting that the

azimuthal anchoring strength increases as a function of aspect

ratio.

Experimental observations of a nematic aligned on rectan-

gle surfaces prepared by chemical patterning reveal a different

behavior to that seen in the Monte Carlo simulation: while

for increasing aspect ratio the azimuthal alignment direction

indeed becomes more oriented toward the long edge of the

rectangles, the alignment direction is along the diagonals and

not the edges.
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The disparity is resolved by our continuum model which

predicts an anchoring transition from diagonal to edge align-

ment if the anchoring parameter Lθ � 0.05. The thin film,

only a few particles thick, used in the MC simulation is

inside the edge-aligned strong anchoring regime. By fitting

the observed variation of the azimuthal anchoring direction

as a function of aspect ratio, we infer that the experi-

mental anchoring parameter was Lθ ∼ 0.08. The proximity

of this value to the critical value Lθ ∼ 0.05 suggests that

with a suitable choice of materials, cell thicknesses, and

patterns, the transition ought to be observable in a future

experiment.

The key parameter in these systems Lθ ∼ 0.05, introduced

in Eq. (9), is simply the ratio of the bulk splay elasticity to

the product of the unpatterned polar anchoring strength and

the film thickness. Thus, it is apparent that the edge-aligned

behavior observed in the MC simulation part of our study

was not dictated by their small length scale, in fact, the small

d of the simulated systems acted to promote the diagonal

alignment regime. That the simulations remained firmly in the

small Lθ ∼ 0.05 regime is, then, a consequence of the very

high anchoring coefficients pertaining to all models described

in terms of monodisperse anisotropic particles adsorbed at

planar substrates.

Previous studies [30] have shown that the fine-tuning of

surface anchoring, typically achieved by selection of materials

and preparation conditions, is necessary to optimize the

performance of advanced electro-optic devices. Patterned

substrates of the type considered here, however, have the

potential to offer a more convenient and well-controlled

route to achieving such optimization, since all of the surface

anchoring parameters, i.e., the easy axis, polar, and azimuthal

anchoring energies, can be controlled by adjusting the design

features of the pattern. In such systems, the emergent polar and

azimuthal anchoring parameters can be viewed as resulting

from a convolution of the basic material parameters and the

imposed patterning. The conventional continuum description,

thus, corresponds to an effective integration of a potential

spectrum of various surface-printed features on length scales

ranging from nanometers to microns.
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