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A theoretical analysis is presented of a nematic liquid crystal confined between substrates patterned with

squares that promote vertical and planar alignment. Two approaches are used to elucidate the behavior across

a wide range of length scales: Monte Carlo simulation of hard particles and Frank-Oseen continuum theory.

Both approaches predict bistable degenerate azimuthal alignment in the bulk along the edges of the squares; the

continuum calculation additionally reveals the possibility of an anchoring transition to diagonal alignment if the

polar anchoring energy associated with the pattern is sufficiently weak. Unlike the striped systems previously

analyzed, the Monte Carlo simulations suggest that there is no “bridging” transition for sufficiently thin cells.

The extent to which these geometrically patterned systems resemble topographically patterned substrates, such

as square wells, is also discussed.

DOI: 10.1103/PhysRevE.86.041707 PACS number(s): 61.30.Hn, 61.30.Dk, 07.05.Tp

I. INTRODUCTION

The imposition of a liquid crystal’s (LC’s) bulk director

orientation through that LC’s interaction with a confining

substrate is termed anchoring [1]. In the absence of defects

and applied fields, substrate anchoring is the main determinant

of the director profile in a sandwich geometry LC cell; the

director profile in such a cell is set through minimization of the

orientational elastic energy, subject to each wall’s polar and

azimuthal anchoring constraints. At a continuum level, this

elastic energy is most commonly expressed through square

director gradient terms corresponding to the independent

splay, twist, and bend modes of orientational deformation,

weighted by the elastic constants K1, K2, and K3, respectively.

When considered at a finer length scale, conversely, both

the anchoring strengths and the bulk elastic constants are

emergent from the microscopic interplay of the orientational

and positional degrees of freedom of the liquid crystalline

molecules and the confining surfaces.

Traditional routes to establishing desired anchoring behav-

iors, and, thus, director profiles of use for display devices,

include substrate rubbing and various photoalignment ap-

proaches (light-induced cis-trans isomerization, photodegra-

dation, etc.). Although significant empirical knowledge has

been developed in relation to each of these approaches, no

coherent picture has been established of the molecular mech-

anisms that underpin continuum concepts such as anchoring

angles and coefficients and surface viscosities. Introducing

inhomogeneity into substrate conditions has, for some time,

been recognized as an alternative route to both controlling

conventional anchoring and, increasingly, introducing new

phenomena. A range of such substrates have been developed
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and examined. These cover patterning length scales ranging

from 10−7 m upward, couple to the LC either sterically,

chemically, or dielectrically (or by a combination of same), and

have been achieved as both one-dimensional (stripes, ridges,

etc.) and two-dimensional (circles, squares, triangles, posts,

etc.) patternings.

One of the important phenomena that can be achieved

through substrate patterning is bistability, which is stabi-

lization of two distinct anchoring arrangements with (in the

absence of an applied field) mutually inaccessible free energy

minima. Pattern-stabilized bistability has now been established

for the blazed grating structure of zenithally bistable devices

[2,3], the two-dimensional array of post-aligned bistable

nematic [4] devices, and, more recently, a steric square-well

arrangement [5,6]. In each of these, the bistability pertains

between one state with a continuous director arrangement and

a second containing orientational defects that are pinned in

some way by the substrate inhomogeneity. This suggests that

the key length scale for achieving bistability here is the size and

periodicity of the patterning, a conjecture which is supported

by the success of mesoscopic modeling approaches in both

accessing the bistable states and relating, semiquantitatively,

switching fields to geometrical parameters [7,8].

In addition to these sterically patterned systems, chemical

patterning has now also been developed as an approach for

imposing substrate inhomogeneity on LC systems. The notion

of imposing combinations of azimuthal and polar anchorings

on LCs via chemically nanopatterned substrates was the

subject of early experimental work [9–11]. Subsequently,

Lee and Clark performed a more systematic study of the

alignment properties of nematic LCs on surfaces comprising

both homeotropic and planar alignment areas [12]. For stripe

patterns, they found that the polar orientation depends on

the relative areas of the homeotropic and planar regions but

that the azimuthal anchoring always runs along the direction

of the stripes. Scharf and co-workers [13,14] undertook

further investigations of systems with competing alignment

regions. Subsequent innovations by the groups of Abbott [15]
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and Evans [16] centered on the development of patterns

of combinations of alkanethiols deposited as self-assembled

monolayers (SAMs) on gold. Using microcontact printing,

these systems proved capable of achieving highly reproducible

surface features with periodicities of tens of micrometers.

Square, circular, and striped patterns written on these length

scales were, thus, observed using optical microscopy in

crossed-polarizer setups. An alternative approach, employ-

ing selective ultraviolet irradiation of SAMs, achieved LC-

aligning stripe patterns on the submicrometer scale [17].

In Ref. [18], two of the current authors contributed the

simulation aspects of a joint experimental and simulation

study of LC alignment at a single patterned substrate. In

this, it was shown that a range of patterned SAMs can

be used to control LC alignment states and domains. For

stripe patterns, the LC was found to align parallel to the

stripe boundaries for both nanoscale simulation features and

micrometer-scale experimental systems. Indeed, despite the

significantly different length scales involved, the qualitative

behavior seen in simulations of generic molecular models

confined using a striped substrate proved entirely consistent

with the experimental observations. Specifically, on undergo-

ing isotropic to nematic ordering, all systems proved to be

dominated by the homeotropic-aligning substrate regions at

the ordering transition, the influence of the planar-aligning

regions only becoming apparent well into the nematic phase.

In Ref. [19], we extended our molecular simulation work

to consider the behavior of a thin nematic film confined

between two identical nanopatterned substrates. Using patterns

involving alternating stripes of homeotropic-favoring and

homogeneous-favoring substrate, we showed that the polar

anchoring angle can be varied continuously from planar to

homeotropic by appropriate tuning of the relative stripe widths

and the film thickness. For thin films with equal stripe widths,

we also observed orientational bridging, with the surface

patterning being written in domains which traversed the

nematic film. This dual-bridging-domain arrangement broke

down with increase in film thickness, however, being replaced

by a single tilted monodomain. Strong azimuthal anchoring in

the plane of the stripe boundaries was observed for all systems.
Stripe-geometry systems have also been analyzed by the

third of the current authors using continuum theory [20–22].
This larger-length-scale work, which built on earlier treatments
by Harnau et al. [23], has shown that the basis for azimuthal
alignment by striped substrates is associated with differences
in the Frank elastic constants. Azimuthal anchoring parallel
to the stripes corresponds to the LC adopting a configuration
comprising twist, splay, and bend deformations; in the other
limiting case, bulk alignment perpendicular to the stripes, only
splay and bend deformations are required. Experimentally,
K2 is significantly lower than K1 and K3 for most nematics,
so that parallel anchoring is stable. Monte Carlo estimates
of the elastic constants for calamitic particle-based LC sim-
ulation models yield similar elastic constant ratios [24], so
this phenomenological agreement between the predictions of
particle-based and continuum approaches is to be expected.

In this paper, we extend our respective works on stripe-

patterned systems by studying the effect of substrates with

square patternings on a confined LC film. Experimental studies

of such systems include the checkerboard patternings achieved

by Bramble [18] and, more recently, Yi [25] and the bistable

square-well systems mentioned above [5,6]. With respect to the

latter, we note that both Q-tensor [26] and Landau–De Gennes

[27] modeling approaches have been used to examine the

stable configurations for such systems. From this, diagonally

anchored and edge-anchored states have been identified, the

former comprising surface region defects.

Here, then, we use both molecular- and continuum-level

modeling approaches to investigate the behavior of LC films

confined between square-patterned substrates. In Sec. II we

present our molecular-level model system and describe the

simulation methodology employed. Section III contains the

corresponding simulation results. Following this, in Sec. IV

we present a continuum-level analysis of anchoring control in

systems with square-patterned substrates. Finally, in Sec. V,

we compare and combine the findings from these investiga-

tions to draw more general conclusions.

II. MOLECULAR MODEL AND SIMULATION DETAILS

We have performed a series of Monte Carlo (MC) sim-

ulations of rod-shaped particles confined in slab geometry

between two planar walls. Interparticle interactions have been

modeled through the hard Gaussian overlap (HGO) potential

[28]. Here, the dependence of the interaction potential νHGO

on ûi and ûj , the orientations of particles i and j , and r̂ij , the

interparticle unit vector is

νHGO =
{

0 if rij � σ (r̂ij ,ûi,ûj ),

∞ if rij < σ (r̂ij ,ûi,ûj ),
(1)

where σ (r̂ij ,ûi,ûj ), the contact distance, is given by

σ (r̂ij ,ûi,ûj ) = σ0

{

1 − χ

2

[

(r̂ij .ûi + r̂ij .ûj )2

1 + χ (ûi .ûj )

+ (r̂ij .ûi − r̂ij .ûj )2

1 − χ (ûi .ûj )

]}−1/2

. (2)

The parameter χ is set by the particle length to breadth ratio

κ = σend/σside via

χ = κ2 − 1

κ2 + 1
. (3)

Particle-substrate interactions have been modeled using the

hard needle–wall potential (HNW) [29]. In this, the particles

do not interact directly with the surfaces. Rather the surface

interaction is achieved by considering a hard axial needle of

length σ0ks placed at the center of each particle (see Fig. 1).

This gives an interaction

νHNW =
{

0 if |zi − z0| � σw(ûi),

∞ if |zi − z0| < σw(ûi),
(4)

where z0 represents the location of a substrate and

σw(ûi) = 1
2
σ0ks sin(θi). (5)

Here, ks is the dimensionless needle length and θi =
arcsin(ui,z) is the angle between the substrate plane and the

particle’s orientation vector. θi = 0 corresponds to planar an-

choring and θi = �/2 corresponds to homeotropic anchoring.

For small ks , the homeotropic arrangement has been shown

to be stable, whereas planar anchoring is favored for long
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FIG. 1. (Color online) Schematic representation of the geometry

used for the HNW particle-substrate interaction [29].

ks [29]. Furthermore, despite its simplicity, the HNW potential

has been found to exhibit qualitatively identical behavior to

that obtained using more complex particle-substrate potentials

[30]. Here, by imposing variation in ks across the two

boundary walls, we investigate the effects of molecular-scale

substrate patterning on LC anchoring. The results presented

in Sec. III were obtained for systems of 864 κ = 3 HGO

particles confined between two square-patterned substrates.

The substrates were separated by a distance Lz = 4κσ0, with

periodic boundary conditions being imposed in the x and y

directions.

On each substrate, ks was set to a homeotropic-aligning

value (ks = 0) for two quadrants of its area and a planar

value (ks = 3) for the remainder. Sharp boundaries have been

imposed between the different alignment regions and the

patterns on the top and bottom surfaces have been kept in

perfect registry with one another, as shown in the schematic in

Fig. 2. The simulated system was initialized at low density

and compressed, in small increments, by decreasing the

box dimensions Lx and Ly while maintaining the condition

Lx /Ly = 1. At each density, a run length of 106 MC sweeps

(where one sweep represents one attempted move per particle)

FIG. 2. (Color online) Schematic representation of rectangle-

patterned systems with alternating homeotropic-inducing [dark (red

online)] and planar-inducing [light (green online)] substrate regions.

The Euler angle φ is 0 from the y axis.

FIG. 3. (Color online) Snapshots of the square-patterned system

with sharp transitions between ks = 0 and ks = 3 regions for a

series of different reduced densities. Particles are color coded for

orientation. (a) ρ∗ = 0.30, (b) ρ∗ = 0.34, (c) ρ∗ = 0.37, (d) ρ∗ =
0.38, and (e) ρ∗ = 0.40.

was performed, with averages and profiles being accumulated

for the final 500 000 sweeps.

Analysis was performed by dividing stored system config-

urations into 100 equidistant constant-z slices and calculating

averages of relevant observables in each slice. This yielded

profiles of quantities such as number density, ρ∗(z), from

which structural changes could be assessed. Orientational

order profiles were also calculated, particularly

Qzz(z) = 1

N (z)

N(z)
∑

i=1

(

3

2
u2

i,z − 1

2

)

, (6)

which measures variation across the confined films of orien-

tational order measured with respect to the substrate normal.

Here N (z) is the instantaneous occupancy of the relevant slice.

We have also further subdivided the system to assess lateral

inhomogeneities induced by the patterning.

III. MONTE CARLO SIMULATION RESULTS

The outcomes of the square-patterned surface system

simulations are summarized by the snapshots shown in Fig. 3.

Several remarks emerge from these. The substrate patterning

is readily apparent from all of these, with ordered layers

of homeotropic-aligned and planar-aligned particles residing

in the appropriate regions. Sharp delineation between these

regions can be seen for all densities. At ρ∗ = 0.30 and 0.34,

the particles at the center of the film appear to be relatively

disordered, whereas aligned monodomains can be seen at the

three higher densities. Animations of these simulations show

that in the planar-aligning substrate regions, the molecules

regularly flipped en masse between the x and y orientations.

This tendency is apparent from comparing Figs. 3(c)–3(e);

the orientations on the planar parts of the substrate vary

from image to image. At ρ∗ = 0.37, the system appears

to exhibit homeotropic anchoring [Fig. 3(c)]. On increasing

the density (ρ∗ = 0.38), however, this initial homeotropic

anchoring adopts a clear tilt [Fig. 3(d)] through which

the planar-alignment regions on the two substrates become
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coupled. On further compression to ρ∗ = 0.40, the bulk

director partially regains its alignment normal to the substrates

[Fig. 3(e)]. At the nematic density ρ∗ = 0.38, the homeotropic

and planar substrate regions are restricted to monolayers,

with orientational discontinuities being seen between these

layers and the tilted bulk anchoring. At high (ρ∗ = 0.40)

and moderate (ρ∗ = 0.37) densities, where the bulk anchor-

ing was more homeotropic, only the planar parts of the

surface monolayers appear orientationally disconnected from

the bulk.

In the light of these observations, we have analyzed the

behavior of this system more quantitatively by calculating

two sets of profiles of key observables; for analysis purposes,

each simulated system has been split in two according to

the imposed substrate pattern. In this, individual particles

have been allocated to homeotropic-confined or homogeneous-

confined regions according to their x and y coordinates.

The density profiles depicted in Fig. 4(a) show the

adsorption characteristics for the portion of the film confined

between the homeotropic surface regions. These indicate that
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FIG. 4. (Color online) Density profiles for the square-patterned

system at different reduced density ρ∗. (a) Density profile:

homeotropic-confined region; (b) density profile: planar-confined

region.

increasing the density leads to formation of surface layers

with a periodicity of ≃2σ0 (i.e., 2/3 of the particle length).

Figure 4(b) shows the corresponding behavior of the regions

of the film confined between the planar-confining surfaces.

Here, a shorter wavelength density modulation is apparent

close to the substrates. Despite these differences close to

the substrates, both profiles adopt very similar behaviors in

the central part of the film: essentially featureless at low

(isotropic) densities and weakly oscillatory at high (nematic)

densities. These oscillations are consistent with the formation

of a homeotropic (or near-homeotropic) bulk monodomain.

Such monodomain formation is only seen for much thicker

films when stripe patterning is imposed [19]. The weakness of

the density modulations, as well as the observation of tilt at

some densities, indicates that these systems are not adopting

homeotropic orientations simply to commensurate an integer

number of layers across the film thickness. Such behavior has

been seen previously but only for much thinner LC films [31].

Also, we have found equivalent behaviors for other choices of

the wall separation, d [32].
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FIG. 5. (Color online) Qzz profiles for the square-patterned

system at different reduced density ρ∗. (a) Qzz profile for the

homeotropic-confined region; (b) Qzz profile for the planar-confined

region.
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FIG. 6. (Color online) Comparison of the Qzz profiles for unpat-

terned (lines) and square-patterned (symbols) systems: homeotropic

regions.

A more complete understanding of the orientational aspects

of the substrate-induced ordering in this system can be

obtained from the Qzz diagonal component of the order tensor.

For perfect homeotropic anchoring, Qzz(z) should tend to

1 and for perfect planar anchoring, Qzz(z) should tend to

−0.5. Figure 5(a) shows the Qzz profiles measured in the

homeotropic-confined regions. As the density is increased,

initially the bulk-region Qzz value increases as well, showing

the development of homeotropic anchoring in the bulk. At

a density of 0.37, the bulk Qzz value reaches 0.60–0.65.

On further increasing the density to 0.38, however, the Qzz

value decreases to just below 0.5. Then, as the density reaches

0.4, the Qzz value increases again to Qzz = 0.60–0.65. This

nonmonotonic behavior confirms, in a statistically significant

fashion, the tilt behavior apparent in the corresponding

snapshots.

It is also informative to compare these observations with

equivalent profiles obtained for HGO films confined between

unpatterned homeotropic- and planar-aligning substrates. To

this end, Fig. 6 shows that, for the equivalent unpatterned

homeotropic-aligning system, increasing the density causes

the central Qzz value to increase monotonically. The fact that

Qzz shows a decrease at ρ∗ ≃ 0.37 in the patterned system is,

then, associated with a tilt of the bulk director caused by the

presence of the planar pattern regions on the surface.

An equivalent comparison performed for the planar-

aligning region (Fig. 7) shows a very marked difference

between the patterned and unpatterned systems. Indeed,

despite its intrinsic anchoring character, the Qzz(z) behavior of

the planar-aligned region of the patterned system is actually far

closer to that of the unpatterned homeotropic-confined system.

Only very close to the substrates is the planar nature of the

imposed substrate pattern apparent.

In order to assess the azimuthal anchoring behavior in this

system, we have constructed a time-averaged histogram of the

molecular azimuthal angles observed during the ρ∗ = 0.37

simulation. Specifically, this histogram (Fig. 8) was generated

from 500 stored configuration files and based on the orienta-

tions of particles within 1σ0 of the planar substrate regions.
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FIG. 7. (Color online) Comparison of the Qzz profiles for un-

patterned (lines) and square-patterned (symbols) systems: planar

regions.

The histogram is strongly peaked at angles corresponding to

the boundaries of the square pattern; i.e., the molecules at the

planar substrates are strongly disposed to adopting azimuthal

angles φ of ≃0◦ � φ � 5◦ and ≃85◦ � φ � 90◦. This is

consistent with our previous observation that the molecules

on this region appeared to regularly flip between the x and y

directions.

Before closing this section, we return to the observation

that, other than in cases where the two were coincident, the

substrate patterning applied here failed to penetrate the LC

film beyond the first adsorbed monolayer. We can report that

this was actually a general characteristic observed for a range

of different two-dimensional patternings; simulations we have

performed with circle, oval, and rectangle patterns and a range

of film thicknesses have all led to the development of central

monodomain configurations [32]. This differs qualitatively

from what has been observed for thin LC films confined

between stripe-patterned substrates [19], where the substrate

patterning is written across the film in bridging domains.

Indeed, both the bulk monodomain formed here by the
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FIG. 9. (Color online) Schematic x-y plane slice through a

hypothetical planar-aligned bridging domain in a square-patterned

system. T configuration: splay and bend distortion. X configuration:

twist.

square-patterned film and its nonmonotonic tilt dependence

on density are equivalent to the behavior seen only for much

thicker stripe-patterned films.

To explain why the orientational bridging observed in thin

stripe-patterned systems is lost on moving to two-dimensional

patterns, we consider the hypothetical square bridging domain

shown schematically in Fig. 9. Here a planar-aligned domain

is bounded at each face by homeotropic material. From the

schematic, though, it is clear that two distinct pairs of domain

boundaries would be required for this situation: one pair

involving T-like orientational changes and another involving

X-like configurations. Such a scenario is clearly unstable

since the symmetry change across the interface is spatially

inhomogeneous. As a consequence, the hypothetical square

bridging domain considered here could never be a stable

arrangement. Indeed, similar stability arguments disallow

all orientational monodomain bridges projected from two-

dimensional patternings.

To conclude, these simulations indicate that LC film

confined between square-patterned substrates have a tendency

to form monodomains. These monodomains are different from

those developed between unpatterned substrates, though, since

(a) they can exhibit a nonmonotonic density-dependent tilt and

(b) the azimuthal anchoring shows a strong coupling parallel

to the square edges but is degenerate between the different

edge orientations.

IV. CONTINUUM MODEL

To further understand the aligning effects observed in the

simulations presented in the previous section, we now consider

the behavior of systems with the same geometry of patterning

but applied at a much larger length scale. Specifically, we

analyze the effect of square-patterned substrates on LC films

in the continuum limit. In this approach, the local orientation

of the nematic is characterized by a unit vector field known as

the director and parametrized here by

n̂(r) = (cos θ sin φ, cos θ cos φ, sin θ ), (7)

where the coordinates are chosen as depicted in Fig. 2. The

actual configuration adopted by the nematic is that which

minimizes the Frank free energy

F = 1

2

∫

d3r K1(∇ · n̂)2 + K2[n̂ · (∇ × n̂)]2 + K3|n̂

× (∇ × n̂)|2 +
∫

s

dS g(�n,�n0). (8)

Here, the first integral is to be performed over the volume of

the nematic layer and the second over the surfaces in contact

with the substrate. The interaction of the nematic with the

surface is characterized by an anchoring potential g(�n,�n0) that

measures the energy cost of moving the director away from an

easy axis �n0; for a patterned surface this varies as a function

of position. The configuration of the LC is found by solving

the Euler-Lagrange equations for θ and φ; these are generally

nonlinear and difficult to solve analytically in more than one

spatial dimension.

A common simplification, known as the one-constant

approximation, is to set K1 = K2 = K3. If this is done, the

Euler-Lagrange equation for θ reduces to Laplace’s equation.

However, such an approximation is unsuitable for analyzing

situations with patterned surfaces because the aligning effect

on the LC is due to differences between the elastic constants

[20]. A “two-constant” approximation, where K1 = K3 �= K2

has been previously used to understand the situation of

a nematic film in contact with a surface patterned with

alternating homeotropic and planar stripes, a two-dimensional

system [20,22], and here we extend the analysis to three

dimensions.

In order to proceed, a further simplifying assumption is

made: that the director is confined everywhere to a single

plane, i.e., that φ is spatially uniform. This simplification is

motivated (and justified) by the observation that the molecular

distribution of azimuthal angles (Fig. 8) in our MC simulations

implies a monodomain arrangement for all nematic films

confined in this way. While φ is taken to be constant, the

polar, or tilt, angle θ remains free to vary in response to the

substrate pattern. Keeping φ fixed is further motivated by the

observation that wherever the director is nearly homeotropic,

variations in φ contribute negligibly to the free energy. The

free energy density in this situation is

f = 1

2

{

(τ cos2 φ + sin2 φ)

(

∂θ

∂x

)2

+ (τ sin2 φ + cos2 φ)

×
(

∂θ

∂y

)2

+ (1 − τ ) sin(2φ)
∂θ

∂x

∂θ

∂y
+

(

∂θ

∂z

)2
}

, (9)

where τ = K2/K1 and the corresponding Euler-Lagrange

equation for θ is linear:

(τ cos2 φ + sin2 φ)
∂2θ

∂x2
+ (τ sin2 φ + cos2 φ)

∂2θ

∂y2

+ (1 − τ ) sin(2φ)
∂2θ

∂x∂y
+ ∂2θ

∂z2
= 0. (10)
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This can be converted to Laplace’s equation in new coordinates

(ξ,η,ζ ) by the following linear transformation:

⎛

⎝

ξ

η

ζ

⎞

⎠ = P T QP

⎛

⎝

x

y

z

⎞

⎠ , (11)

where

P =

⎛

⎝

cos
(

φ + π
4

)

− sin
(

φ + π
4

)

0

sin
(

φ + π
4

)

cos
(

φ + π
4

)

0

0 0 1

⎞

⎠ (12)

and

Q =

⎛

⎜

⎝

1
2

(

1 + 1√
τ

)

1
2

(

1√
τ

− 1
)

0

1
2

(

1√
τ

− 1
)

1
2

(

1 + 1√
τ

)

0

0 0 1

⎞

⎟

⎠
. (13)

The geometric interpretation of the transformation is a combi-

nation of a rotation and shear. To solve the Euler-Lagrange

equation for θ (x,y,z), Eq. (10), we try a solution of the

form

θ (x,y,z) = θ0 +
∞

∑

n=−∞

∞
∑

m=−∞

1

λ
(Anme−νnmz + Bnmeνnmz) exp[i2π (nx + my)/λ], (14)

where λ = 2Lx/d such that λd is the period of the patterning in both x and y directions. The equation is satisfied if the parameters

νnm are chosen as

νnm = π
√

2(τ + 1)(m2 + n2) − 2(τ − 1)[2mn sin(2φ) + cos(2φ)(m2 − n2)]. (15)

The constant θ0 is, from the mean-value theorem,

θ0 = π

4
. (16)

The coefficients Anm and Bnm are determined by the boundary

conditions. For weak anchoring, these are from the torque-

balance equation

ŝ · ∂f (θ,∇θ )

∂∇θ
+ ∂g(θ,θe)

∂θ
= 0 (17)

evaluated at each surface, where ŝ is the outward surface

normal. To facilitate separation of the coefficients in Eq. (16),

the harmonic anchoring potential

gH (θ,θe) = Wθ

2
(θ − θe)2 (18)

is chosen, yielding the Robin boundary condition

± Lθ

∂θ

∂z
+ θ = θe, (19)

where Wθ is the polar anchoring coefficient, θe(x,y) is the spa-

tially varying easy axis promoted by the pattern, the minus sign

corresponds to z = z0 = −d/2, the plus sign corresponds to

z = z0 = +d/2, and the dimensionless parameter associated

with polar anchoring Lθ is

Lθ = K1

Wθd
. (20)

Inserting the solution (14) into the boundary condition (19) at

each surface yields the coupled system of equations
(

1 + Lθνnm 1 − Lθνnm

e−νnm (1 − Lθνnm) eνnm (1 + Lθνnm)

) (

Anm

Bnm

)

=
(

cnm

dnm

)

,

(21)

where cnm and dnm are the Fourier coefficients of the easy

axis profile θ0(x,y) at the z = −d/2 and z = +d/2 surfaces,

respectively. These are simply

cnm = dnm =
{

− λ
πnm

, n,m odd,

0, otherwise,
(22)

and solution of (21) yields

Anm = eνnmcnm

Lθνnm(eνnm − 1) + (eνnm + 1)
,

Bnm = cnm

Lθνnm(eνnm − 1) + (eνnm + 1)
. (23)

The complete director profile for given values of φ, τ , Lθ , and

λ is then fully specified by the series solution (14) and the

parameters (15) and (23) that have now been determined.

The free energy associated with the solution (14) may

be evaluated by substituting it into the free energy (9) and

performing necessary integrations. The bulk energy is

Fb =
∑

nm

π2

λ2νnm

[(

A2
nme−νnm + B2

nme+νnm
)

sinh(νnm)

+ 2AnmBnmνnm

]

{(1 + τ )(m2 + n2)

+ (1 − τ )[cos(2φ)(m2 − n2) + 2mn sin(2φ)]}

+
∑

nm

1

2
νnm

[(

A2
nme−νnm + B2

nme+νnm
)

sinh(νnm)

− 2AnmBnmνnm

]

. (24)

The surface energy (for each surface) is

Fs = π2λ2/16 + 1

Lθ

∑

nm

(Anm + Bnm)(Anm + Bnm − 2cnm).

(25)

These expressions for the free energy have been evaluated

numerically as a function of φ for different values of Lθ . A

value of τ = K2/K1 = 1/2 was used that is approximately
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FIG. 10. Free energy of the nematic as a function of φ, plotted

for λ = 1.0 and various values of Lθ .

valid for many common nematics including 5CB. The period

of the pattern was initially chosen to be the same as the

cell thickness, i.e., λ = 1. The plots displayed in Fig. 10

reveal an anchoring transition: as Lθ → 0, representing rigid

polar anchoring, the squares promote azimuthal alignment

parallel to their sides, and there are two degenerate solutions

at φ = 0 or φ = π/2, i.e., the same behavior as was observed

in our molecular simulations. If Lθ is increased, however,

alignment along the diagonals, i.e., φ = ±π/4, becomes the

energetically preferred solution. The critical Lθ at which the

diagonal and aligned solutions become degenerate is roughly

Lθ ∼ 0.03. Experiments performed using a single square-

patterned substrate have exhibited the φ = ±π/4 behavior

corresponding to weak anchoring [18].

The second parameter of interest is λ, the overall size of

the squares relative to the cell thickness. Shown in Fig. 11 is

the energy difference between the aligned φ = 0 and diagonal

φ = π/4 solutions as a function of λ, plotted for various values

of Lθ . In this plot, therefore, the diagonal solution is stable

FIG. 11. Free energy difference between the aligned φ = 0 and

diagonal φ = π/4 solutions as a function of the period of the

pattern, λ.

FIG. 12. Calculated director angle profiles θ (z) in the center of

the homeotropic and planar regions, for various values of Lθ .

where lines lie below the abscissa, whereas the edge-aligned

solution is stable where the lines take positive values. We see,

therefore, that for Lθ ≃ 0.03 the diagonally aligned solution

is preferred both at small λ and as λ → ∞. Reducing Lθ

has the effect of narrowing the window of λ values for

which the diagonal solution is preferred. Our high-density MC

simulation corresponds to a value of λ = 1.12 (Fig. 11).

Continuum predictions for director tilt profiles as a function

of z for the planar and homeotropic regions are displayed

in Fig. 12 and show that a nearly uniform configuration is

adopted at the cell center. This is in reasonable agreement

with the findings from our particle-based simulations, given the

very different spatial resolutions accessible to the two methods

used. As the inverse anchoring parameter Lθ is increased, the

tilt conditions at the substrates relax and the central uniform

region widens

V. CONCLUSIONS

Alignment of a nematic between two substrates patterned

with alternating homeotropic and planar squares has been

studied using two theoretical approaches: MC simulation of

rigid particles interacting through the hard Gaussian overlap

potential and a calculation performed with nematic continuum

theory. Both techniques show a regime where the nematic

azimuthally aligns in the bulk with the edge of the squares. In

the MC simulations, the average azimuthal orientation of the

molecules is observed to flip between the two sides during the

runs; these states are energetically degenerate in the continuum

approach. Furthermore, the continuum calculation reveals the

existence of an anchoring transition. If the polar anchoring

is sufficiently weak and the period of the pattern is somewhat

greater than the cell thickness, the nematic instead aligns along

the diagonals. Unlike previously considered systems of square

posts and wells [26,27] our calculations raise the possibility of

re-entrant behavior as a function of the period of the pattern: for

appropriate values of the polar anchoring energy, the diagonal

state becomes unstable at both short- and long-wavelength

patterning (Fig. 11). It is likely that the location of the
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critical values of the period are only approximately correct

because azimuthal variations of the director were not included

in our minimization of the free energy. We expect diagonal

arrangements to be accessible to the MC approach for larger

patterning periodicities; we are presently examining such

systems. Equivalently, a transition between the two regimes

ought to be experimentally observable by adjusting the ratio

of the period of the pattern to the cell thickness.

Our continuum analysis also reveals the surprising result

that an exact linear form of the nematic Euler-Lagrange

equations exists even if there is three-dimensional variation

in the director and the nematic has inhomogeneous elastic

constants. The form of the resulting equation lends a geometric

interpretation to elastic anisotropy as a transformation into

skewed coordinates. This result should be of utility for further

study of LC behavior in complicated geometries.

The behavior observed in the present system is quali-

tatively quite different from that seen where a nematic is

aligned between equivalent striped substrates. Previous MC

simulations show that, for a sufficiently thin film with stripe-

patterned boundaries, there exists a regime where the nematic

is divided into domains of vertical and planar alignment

that bridge between the corresponding substrate regions. No

such bridging behavior was observed for the square-patterned

system considered here. Instead, there was a clear tendency

for the orientations imposed by the surface patterning to be

confined to the first monolayer adsorbed at the substrate. The

absence of orientational bridging domains in two-dimensional-

patterned systems can be explained by consideration of the

spatially inhomogeneous domain boundaries they would im-

ply. Whereas arrangements involving some splaylike and some

twistlike domain boundaries in bulk are not stable, these mixed

arrangements are seen in the at-substrate monolayers. The line

tensions associated with these different geometries presumably

have differing energy densities. Despite this, these linear

features persist for the strong-anchoring scenario considered

in our MC simulations, rather than being displaced subsurface.

Since similar behavior appears from both simulation and

continuum theory, despite the fact that the latter entirely

neglects variations in ordering, it appears that the line tension

depends primarily on elastic distortion of the director and does

not significantly depend on the scalar order parameter. This

justifies use of the continuum theory for such systems.

When deeply in one or other of its possible regimes, edge or

diagonal, the alignment in these systems is degenerate due to

the symmetry and hence of interest for electro-optic, display,

and sensing applications. There is, though, also a capacity

for bistabiliity between the edge and diagonal states. In this

respect these systems are quite similar to the post-aligned

bistable display [26] and the arrays of square wells [27]

previously studied. Although these have the same symmetry as

the systems considered here, there is an important difference:

in the present case the bistable states have no disclinations

present in the nematic configuration. Our results indicate,

therefore, that bistability is not contingent on the presence

of defects.

Despite the apparent simplicity of the geometry, our results

illustrate the rich phase diagrams exhibited by complex fluids

in patterned geometries. Further study of related systems

is presently being undertaken, to identify optimal switching

strategies between the bistable states identified here.
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