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Abstract

This thesis develops practical Bayesian estimators and exploration methods for count

data collected by autonomous robots with unreliable sensors for long periods of time. It

addresses the problems of drawing inferences from temporally incomplete and unreliable

count data.

This thesis contributes statistical models with spectral analysis which are able to capture

the periodic structure of count data on extended temporal scales from temporally sparse

observations. It is shown how to use these patterns to i) predict the human activity level at

particular times and places and ii) categorize locations based on their periodic patterns.

The second main contribution is a set of inference methods for a Poisson process which

takes into account the unreliability of the detection algorithms used to count events. Two

tractable approximations to the posterior of such Poisson processes are presented to cope

with the absence of a conjugate density. Variations of these processes are presented, in which

(i) sensors are uncorrelated, (ii) sensors are correlated, (iii) the unreliability of the observation

model, when built from data, is accounted for. A simulation study shows that these partially

observable Poisson process (POPP) filters correct the over- and under-counts produced by

sensors.

The third main contribution is a set of exploration methods which brings together the

spectral models and the POPP filters to drive exploration by a mobile robot for a series of

nine-week deployments. This leads to (i) a labelled data set and (ii) solving an exploration-

exploitation trade-off: the robot must explore to find out where activities congregate, so as to

then exploit that by observing as many activities.
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CHAPTER 1

INTRODUCTION

Autonomous mobile robots that work in human-centred environments are seen as a pro-

mising future application area for robotics systems. These systems are expected to leave

carefully controlled industrial environments and come to assist us with menial tasks in our

homes and offices. Possible applications include, for example, domestic robot assistants

which help people to live independently for longer Feil-Seifer & Mataric̀ (2011), delivery robots

in hospitals, stock-keeping robots in supermarkets and warehouses, and security robots in

factories.

Having robots operate in human-populated environments requires modelling human

activities. This is because any tasks or plans the robots have must take into account human

activities. Since human activities involve many complex interactions, they can be modelled at

many levels of detail. These can range from recognising simple activities over a few seconds,

a minute, or an hour; predicting what a person is going to do next; to determining whether a

group of people is performing an activity together. In any scenario where a robot learns about

human activities, it must first observe them. Thus, the first thing the robot needs to do is to

plan to go to where people are. This problem of finding and observing people is the basic

motivation for this thesis.
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To be where people are, the robot must first know when and where it is likely to see

people. It becomes, however, a challenging problem if one tries to predict exactly where a

particular individual will be, so as to observe that individual. There are two reasons for this.

First, each individual roaming in a human-populated environment is hard to re-recognise.

Second, individual persons often travel long distances and visit places robots cannot follow.

Hence, instead of predicting where an individual will be, it would be easier to predict where

the robot is likely to see many people, without regard for exactly who it may observe. This

formulation would allow the robot to observe a sufficient amount of human activity, so as to

learn the specific kinds of activity models mentioned previously.

The problem of this thesis can be loosely formulated as how to predict where many

people are most likely to be and to go and observe them. Specifically, it requires the robot to

go to where the aggregate level of human activity is highest. In addition, this thesis chooses to

tackle the problem for the case where the robot runs for an extended period of time such days

or even weeks as it builds its models.

To tackle the formulated problem, a mobile robot must know not only where people are,

but also when they are in those locations. It also needs a model which predicts how many

people the robot will be likely to see in a particular place at a particular time since people

tend to move around from one location to another.

An important restriction on using a mobile robot is that it can only be in one place

at one time, so its observations are spatially restricted. As the robot moves around, it will

only see particular locations infrequently. Thus its data for those locations will be temporally

sparse. This adds yet another requirement to the problem formulation, where the robot

must know how uncertain it is about how many people might be in one place at a particular

time. This requirement is necessary since the robot has a limit to its operational life. We

would, therefore, like it to optimise the time it takes to build its models. This introduces an

exploration-exploitation trade-off problem Wyatt (1998), Alba & Dorronsoro (2005), Audibert

et al. (2009), i.e. should the robot visit a familiar place, where it will probably see two people,

or go to a new place, where it might see many more but might see no-one? Another important
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restriction in mobile robotics is that robot sensors are unreliable. Any solution must take

into account the unreliability of sensors. We may also require that it do so for when multiple

sensors are involved.

To solve the formulated problem, any possible existing structure that governs human

activities must be considered and exploited. One particular structure that aggregate human

activity levels tend to have is periodicity. This periodic structure can be daily, weekly, or even

hourly. For example, during term time, students frequently come to class in the morning,

leave and enter lecture theatres around the hour, populate canteen areas for lunch, and leave

campus before evening.

In summary, this thesis tries to solve a problem that deals with unreliable data coming

from multiple sensors which represent aggregate human activity levels in various places,

• where the data, which is considered temporally incomplete, has some periodic structure,

and

• where the robot must choose how to explore its environment so as to observe the

maximum possible number of activities over time.

This thesis proposes a combination of signal processing and statistical models to tackle the

problem. The proposed method is validated in simulation, and on real robot runs over periods

of several months. Despite the application to mobile robotics, the proposed methods should

be applicable to many other fields.

1.1 Sensors’ Systematic Errors

In this thesis, count data represent the aggregate human activity levels. Where these counts

are made using sensor data, all sensor detectors embedded in our autonomous mobile robot

have some level of unreliability. The unreliability of the detectors introduces systematic errors

in the activity datasets leading to bias in the statistical estimates.

Systematic errors are typically constant and proportional to the true value. As a result,
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Figure 1.1: A graphical view of measurement errors. The dispersion of the distribution
determines the measurement variance (left figure). The offset between the observed value
and the true value is bias of measurement – systematic error (right figure)

the mean of repeating samples will never approach the true mean. Systematic errors are

caused by the imperfection of the detector, or interference of the environment with the

detection process, and always affect the samples in a predictable direction. Consider Figure

1.1. The variance, σ2, describes a typical spread in the samples, and hence it represents how

samples fluctuate around the mean value. Under systematic errors, samples fluctuate at

random around λ′ which has ∆ distance from the true value λ.

In count data representing human activity levels which are made using sensor detectors,

systematic errors are introduced in each bit, i.e. presence or absence of a person, that makes

up the count. Each bit may experience misclassification and the count resulted from that

may end up undercounting or overcounting. The count may also end up having the correct

value but the bits making up the count experience mis-classification which counteracts one

another. For this case, even though the count is correct and it does not show any systematic

bias as a whole, the systematic bias can still be found on each bit that makes up the count.

Figure 1.2 show some examples of systematic errors experienced by the perception algorithms

used in this thesis for detecting humans.

Any naive statistical analysis will treat the error-corrupted variable to be the same as

the true variable of interest and ignore the bias effect of the systematic error in the parameter

estimation. An incorrect estimate might lead to incorrect inferences. An example of such an

occasion in count data is the detection of differentially expressed genes, where even subtle
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Figure 1.2: Systematic errors from different areas for each detector. Top row: change detector.
Middle row: upper body detector. Bottom row: leg detector. Detections are marked with 2D
or 3D bounding boxes.

changes in gene expression levels can be indicators of biologically crucial process Varuzza

et al. (2008).

Despite the harmful effect that miscounted (under-or over- counted) data due to biased

perception has on the estimation process, correct estimates of the parameter can still be

obtained if one has an idea of the magnitude and the direction of the perceptual bias Mwalili

(2006). This knowledge can be obtained from experts and be combined in a Bayesian way

to correct for the bias. The same correction can also be achieved if ground-truth data are

available. By statistically modelling the accuracy of a detector a correction can be made in

either a frequentist or a Bayesian framework. Hence, this will be another topic of this thesis

where the problem will be specifically applied to count data collected by mobile robots.
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1.2 Assumptions of the Thesis

Recall that the motivation for this thesis is to create a long-term understanding of the tem-

poral dynamics of the aggregate level of human activity, along with the ability to exploit the

uncertainty and incompleteness of this to drive exploration by an autonomous mobile robot.

As the motivation is quite broad, some constraints are imposed to fit the motivation into a

practical robot application. Here are the following constraints and assumptions.

1. The environment is manually segmented into regions/areas. Thus there is no attempt

to generalise across continuous space.

2. For each area, the level of aggregate activity is represented as count data drawn from a

single non-homogeneous Poisson process.

3. The activities are observed through sensors/perception algorithms/counting algorithms

embedded in an autonomous mobile robot. These sensors each observe the same

underlying process.

4. Data are temporally sparse across time.

The second constraint is altered specifically for Chapter 6 to Chapter 9. Instead of

assuming the count data are drawn from a single non-homogeneous Poisson process, the

chapters assume that the count data are drawn from a single homogeneous Poisson process.

1.3 Contributions and Related Publications

This thesis is split into two parts. The first part focuses on developing a statistical model for

count data which draws inferences from temporally sparse observations. Given a perception

algorithm (or a sensor) is available and attached to a mobile robot that patrols around peri-

meters of a large area, it adds an assumption that any perception algorithm used to capture

the observations is reliable. As a result, it reasons only about when and where the fluctuations

of human activities are likely to happen. This thesis makes the following contributions.
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1. It presents the development of a statistical model termed the spectral-Poisson model.

This is able to capture the periodic structure of count data over an extended temporal

scale from temporally sparse observations. Based on this model, the robot is able

to predict the level of aggregate activity at some future time and place. The thesis

demonstrates how the proposed model performs relative other temporal modelling

methods. This work has been published in Jovan et al. (2016).

2. It applies the model of human activity levels developed above to unsupervised cat-

egorization of locations. The resulting categories provide a broadly similar semantic

grouping to that given by humans. This work has also been published in Jovan et al.

(2016).

3. It applies the proposed model to drive exploration to search for humans, specifically to

maximise the aggregate levels of human activity observed. Experiments were carried

out on different mobile robots in long-term autonomous deployments. The exploration

model sets a series of target locations for the robot to visit at particular times of the day.

Additionally, the activity-driven exploration software has been made open-source 1

The second part of this thesis focuses on formulating what is termed a partially observ-

able Poisson process (POPP) and developing a set of inference methods for this process. In

particular, a series of approximate Bayesian filters are built to address the problem of how to

efficiently correct miscounts made by either single or multiple unreliable counting devices.

The second part, apart from Chapter 10, limits the case of Poisson processes to homogeneous

Poisson processes. The thesis makes the following contributions.

1. It presents a set of inference methods for a Poisson process, which takes into account the

unreliability of perceptual algorithms that count events. Unlike Bayesian estimation for

a fully observable Poisson process (FOPP), obtaining the posterior is non-trivial, since

there is no conjugate density for a POPP and the posterior has a number of elements

that grow exponentially in the number of observed intervals. Two simple, tractable

1https://github.com/strands-project/strands_exploration
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approximations, have been presented. These two approximations are combined in a

switching filter which enables efficient and accurate estimation of the posterior. This

work has been published in Jovan et al. (2018).

2. It presents formulations of three variations of the basic POPP filter. The POPP-Beta filter

extends the POPP filter to the case in which the unreliability of the observation model is

accounted for during inference. The N-POPP filter extends the POPP filter by modelling

the case when sensors are uncorrelated. The POPP-Dirichlet combines the POPP-Beta

filter and the N-POPP filter to have the benefits of each correction. A simulation and

extended robot-gathered observations have shown that each extension provides a more

accurate estimation than the POPP filter.

3. It presents the results of applying the proposed model in combination with the Spectral-

Poisson to drive activity exploration on a mobile robot for a series of two-week de-

ployments, where the model sets out a series of places to visit during work hours. The

proposed model aims to accurately correct miscounts from non-homogeneous Poisson

processes while the Spectral-Poisson model aims to capture the periodic structure of

temporally sparse count data. The deployments also resulted in a labelled dataset of

human detections in a total of six weeks of data.

One should note that the publications Jovan et al. (2016) and Jovan et al. (2018) were

fully contributed by the work detailed in this thesis. Hence, the author of this thesis fully

contributed to those publications.



CHAPTER 2

REVIEW OF STATISTICAL INFERENCE

The general concern of this thesis is how agents should draw inferences from observations

gathered under conditions of incompleteness and with unreliable sensors. As stated in the

previous chapter, this thesis is specifically concerned with the Bayesian approach to statistical

inference for counting processes. Therefore, this chapter is dedicated to reviewing the general

concepts and theories on which it builds. Even though all of these theories have been reviewed

extensively elsewhere Carlin & Louis (2010), Cameron & Trivedi (2013), Papoulis & Pillai (2002),

Fink (1997), Scott (1998), DeGroot & Schervish (2012), Kingman (2005), Tijms (2003), Karlin

(2014), it will be easier for the reader to understand the rest of this thesis if the ideas and the

notation employed are described and unified.

2.1 Statistical Inference

Almost all of the chapters in this thesis heavily rely on a Bayesian approach to statistical

inference. Before going further into more complex definitions, let’s start with the definition

of statistical inference. Statistical inference is the process of understanding how particular

data are generated. The data themselves can be thought of as being generated by a product of

9
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some data generation processes which are unknown and hidden from an observer perspective.

The hidden processes are represented by a statistical model, assuming parametric inference

where the model takes a form of a probability distribution. Let L(.) be the chosen model

or the chosen probability distribution with parameters
−→
θ = (θ1, . . . ,θn) which govern the

distribution, then the process of how the data are generated can be represented as:

X ∼ L(x | −→θ )

where X is a random variable representing the generated data. Let x1, . . . , xm be samples

which are independent and identically distributed (i.i.d) because they are drawn from the

same processes, the goal of statistical inference is then to use the data x1, . . . , xm to estimate

the parameters
−→
θ governing the assumed model L(.). Let P (.) be the probability that the

parameters
−→
θ govern the assumed distribution, conditional on the observed data/samples

x1, . . . , xm . Using Bayes’ rule, statistical inference can be represented as:

P (
−→
θ | x1, . . . , xm) =

L(x1, . . . , xm | −→θ )P (
−→
θ )

D(x1, . . . , xm)

=
L(x1, . . . , xm | −→θ )P (

−→
θ )∫

Θ
L(x1, . . . , xm | −→θ )P (

−→
θ )d

−→
θ

(2.1)

for
−→
θ ∈Θ where D(.) is simply a function of the observed data −→x , and P (.) is a probability

distribution of the parameters.

There are two general approaches to statistical inference and parameter estimation,

the frequentist and Bayesian approaches. They are different in their source of variability,

the mathematical objects involved, and in the estimation and inference processes. Their

difference lies in the source of randomness, where Bayesian uses random variables while the

frequentist uses a point estimate.

Under the frequentist approach, the parameter
−→
θ is a constant which makes P (.) insig-

nificant. Hence, P (.) can be absorbed, along with the denominator D(.) from the Bayes’ rule
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above, into the proportionality sign Aldrich (1997) as

P (
−→
θ | x1, . . . , xm) ∝ L(x1, . . . , xm | −→θ ).

In the frequentist approach, P (
−→
θ | x1, . . . , xm) is not a probability density, but rather a density

of
−→
θ where it conveys the relative likelihood of drawing the sample observations given some

value of
−→
θ .

Different from the frequentist approach, in the Bayesian setting, the parameters are

latent random variables. This means there is one distribution attached to the parameters.

Typically, there is some initial guess about the distribution of
−→
θ incorporated through the

prior distribution P (
−→
θ ). The focus of the Bayesian approach is rather estimating the posterior

distribution of the parameter, i.e. estimating distribution P (
−→
θ | x1, . . . , xm).

The posterior distribution of
−→
θ , P (

−→
θ | x1, . . . , xm), is the distribution of the parameter

conditional upon the observed data x1, . . . , xm and provides some sense of uncertainty regard-

ing the estimate for
−→
θ . Although the true value of

−→
θ is unknown, one may suggest where

−→
θ

may lie in the parameter space. This information can then be incorporated through the prior

P (
−→
θ ) in the Bayesian inference. At last, given the information on how the data x1, . . . , xm are

generated by L(x1, . . . , xm | −→θ ) and the prior P (
−→
θ ), the posterior distribution of the parameters

can be calculated.

The data generation x1, . . . , xm can be modeled as a joint density function conditional

on the estimated parameters of the assumed model. That is,

L(x1, . . . , xm | −→θ ) =
m∏

i=1
L(xi |

−→
θ )

In the Bayesian framework, L(x1, . . . , xm | −→θ ) is called the likelihood distribution of the data

x1, . . . , xm (as opposed to the likelihood function of
−→
θ on the frequentist framework).

Because of the difference between two approaches in the inference procedure, the

frequentists and Bayesians differ in the estimation procedure as well. Under the frequent-

ist framework, the likelihood theory of inference is used where the maximum likelihood
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estimators (MLE) is the single point summary of the likelihood curve. It is the point which

maximizes the likelihood function. Under the Bayesian framework, the posterior distribution

of
−→
θ is the focus of the approach where estimators such as the posterior expectation (or

the posterior mean) or maximum a posteriori (MAP) estimator are used to summarize the

posterior distribution.

2.1.1 Parameter Estimation

Assume that a sample of n i.i.d observations x1, . . . , xn , each of which come from some proba-

bility distribution governed by an unknown parameter θ (as shown before, θ might be a vector

θ = (θ1, . . . ,θm)): L(x | θ), where θ belongs to a parameter spaceΘ. Parameter estimation aims

to find the best estimator of θ. Specifically here, two parameter estimators are of interest:

the maximum likelihood estimate (MLE) representing the frequentist approach, and the

maximum a posteriori (MAP) representing the Bayesian approach. Both of these estimators

are to determine the value of θ that is most likely to have drawn x1, . . . , xn .

The maximum likelihood estimate (MLE) is one of some systematic ways for parameter

estimation in the frequentist framework. In the frequentist framework, the likelihood function

P (θ | x1, . . . , xn) is not considered as a probability distribution of θ conditional upon the data,

which is obtained via Bayes’ rule, but rather a function of the parameters given the data.

Hence, the likelihood function is proportional to the joint probability of the data conditional

on the parameter:

P (θ | x1, . . . , xn) ∝ L(x1, . . . , xn | θ)

The maximum likelihood estimate of θ is the value of θ in parameter spaceΘ that maximizes

the likelihood function. Mathematically, an MLE is defined as

Definition 2.1.2. Let X1, . . . , Xn be random samples from a distribution with a parameter θ,

and P (.) be a likelihood function of θ. Given that X1 = x1, . . . , Xn = xn have been observed, a
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maximum likelihood estimate of θ, denoted by θMLE , is a value that satisfies

argmax
θ∈Θ

P (θ | x1, . . . , xn)

with P (θ | x1, . . . , xn) ∝ L(x1, . . . , xn | θ) and L(x1, . . . , xn | θ) =
n∏

i=1
L(xi | θ).

For many models, the MLE can be found analytically as an explicit function of the

observed data. This involves taking the first derivative of the likelihood function, setting it

to 0, and solving the parameter θ. For other models, however, no closed-form solution to

the maximization problem is known or available, and an MLE can only be found via numer-

ical optimization. Several optimisation algorithms such as gradient descent, or simulated

annealing can be used to find an MLE.

As opposed to the frequentist framework, in the Bayesian framework, P (θ | x1, . . . , xn)

is considered as a probability distribution of θ conditional upon the data x1, . . . , xn . P (θ |
x1, . . . , xn) is now called the posterior distribution. Given the data, all information about the

parameter θ can be extracted from P (θ | x1, . . . , xn). Therefore, the posterior distribution can

be used to find points or interval estimates of θ. One way to obtain a point estimate is to

choose the value of θ that maximizes the posterior distribution P (θ | x1, . . . , xn). This is called

the maximum a posteriori (MAP) estimation. Although a pure Bayesian approach does not

take single point estimates but rather a full posterior distribution, one could argue that the

MAP estimate works on a posterior distribution, not only the likelihood, which comes up in

Bayesian setting.

The maximum a posteriori of θ is the value of θ in parameter spaceΘ that maximizes

the posterior distribution. Formally,

Definition 2.1.3. Let X1, . . . , Xn be a random sample from a distribution with a parameter θ,

P (θ | X1, . . . , Xn) be a posterior distribution of θ, and P (θ) be a prior distribution of θ. Given

that X1 = x1, . . . , Xn = xn have been observed, a maximum a posteriori of θ, denoted by θM AP ,

is a value that satisfies

argmax
θ∈Θ

P (θ | x1, . . . , xn)
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with P (θ | x1, . . . , xn) ∝ L(x1, . . . , xn | θ) P (θ), and L(x1, . . . , xn | θ) =
n∏

i=1
L(xi | θ).

Similar to the MLE, the MAP estimate can be calculated either analytically or numerically.

An analytic calculation can be done when the mode(s) of the posterior distribution can be

given in a closed form. This is the case when conjugate priors are used. Otherwise, numerical

optimization such as the conjugate gradient method or Newton’s method should be used.

This usually requires first or second derivatives, which have to be evaluated analytically or

numerically. From the point of view of Bayesian inference, the MLE is a special case of the

MAP estimate which assumes a uniform prior distribution of the parameters. Therefore, the

MAP estimate can be seen as a regularization of the MLE.

2.2 Discrete Probability Distribution

This section is dedicated to providing the basic concepts of probability distributions which are

either used in, or closely related to, the thesis. Some distributions such as Poisson distribution

and negative binomial distributions are described in length due to their use in this thesis.

2.2.1 Bernoulli Distribution

One of the simplest probability distributions for a discrete random variable is a Bernoulli

distribution. A random variable which follows a Bernoulli distribution is a random variable

that can only take two possible values, usually 0 and 1. This random variable models random

experiments that have two possible outcomes sometimes referred to as "success" and "failure".

An example would be a coin toss where the outcome is either heads or tails.

Definition 2.2.2. A random variable X is a Bernoulli random variable with parameter p, i.e.

X ∼ Ber (x | p), if its probability mass function is given by

Ber (x | p) =

 p if x = 1

1−p if x = 0
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where 0 ≤ p ≤ 1 and x ∈ {0, . . . ,1}.

2.2.3 Binomial Distribution

A binomial distribution can be thought of as simply the probability of a "success" or "fail-

ure" outcome in an experiment that is repeated multiple times. The binomial distribution

is frequently used to model the number of successes x in a sample of size n drawn with

replacement from a population N .

Definition 2.2.4. A random variable X is a binomial random variable with parameter n and

p, i.e. X ∼ B(x | n, p), if its probability mass function is given by

B(x | n, p) =

n

x

px(1−p)n−x

where 0 ≤ p ≤ 1 and x ∈ {0, . . . ,n}.

For a single trial, i.e., n = 1, the binomial distribution is reduced to a Bernoulli dis-

tribution. Moreover, a binomial distribution B(x | n, p) can be obtained by n independent

Bernoulli distributions Ber (y | p). It is proven that a binomial random variable B(x | n, p) is a

sum of n independent Bernoulli random variables Ber (y | p).

2.2.5 Poisson Distribution

The Poisson distribution is one of the most widely used probability distributions. It is usually

used in scenarios where counting the occurrences of certain events in an interval of time

or space is of interest. The Poisson situation can also be used to model scenarios of rare

events where the distribution typically acts as a replacement of the Binomial distribution.

The probability distribution of a Poisson variable is defined as

Definition 2.2.6. A random variable X is a Poisson random variable with parameter λ, i.e.
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X ∼ Poi (x |λ), if its probability mass function is given by

Poi (x |λ) = e−λλx

x!

with λ> 0 and x ∈ {0, . . . ,n}.

The Poisson distribution holds unique properties where the expected value of the random

variable X is equal to the variance of it which is λ. Given a series of samples x1, . . . , xn

generated by Poi (x |λ), and each sample is i.i.d, the joint probability distribution for x1, . . . , xn

is the product of Poisson pmfs:

Poi (x1, . . . , xn |λ) =
n∏

i=1
Poi (xi |λ)

=
n∏

i=1

e−λλxi

xi !

= λ
∑n

i=1 xi e−nλ∏n
i=1 xi !

Recall that in parameter estimation, the likelihood function is set to be proportional to the

joint probability of the underlying distribution. Therefore, the likelihood function of λ is

defined as

L(λ | x1, . . . , xn) ∝λ
∑n

i=1 xi e−nλ

then the MLE of λ can be found by

argmax
λ∈R+

λ
∑n

i=1 xi e−nλ

which results in

λMLE = 1

n

n∑
i=1

xi

with R+ being the positive real numbers, and λMLE being the MLE of λ.

Within the Bayesian framework, the parameter λ is estimated via Bayes’ rule

posterior ∝ likelihood∗prior
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Also, recall that a conjugate prior distribution gives rise to a posterior distribution of similar

functional form (Interested readers are encouraged to read Fink (1997) for more detailed

explanation about conjugate priors). The conjugate prior of the Poisson distribution is the

gamma distribution which is defined as follows:

Definition 2.2.7. A continuous random variable X is said to have a gamma distribution with

parameters α> 0, and β> 0, i.e. X ∼Gam(λ |α,β), if its probability density function is given

by

Gam(λ |α,β) = βα

Γ(α)
λα−1e−βλ

where Γ(α) is the Gamma function ((α−1)! for integers and
∫ ∞

0 xα−1e−xd x for non-integers),

x > 0.

Parameters α,β set the overall shape of the Gamma distribution. An easy way to loosely

interpret the prior parameters α,β (assuming they are integers) is that prior to seeing the

current samples, we have seen β ‘occurrences’, x ′
1, . . . , x ′

β
, with the total cumulative count

α= x ′
1 + . . .+x ′

β
. Since the gamma distribution is the conjugate prior of Poisson distribution,

the posterior distribution of the Poisson likelihood and a Gamma prior is:

P (λ | x1, . . . , xn) ∝ Poi (x1, . . . , xn |λ) Gam(λ |α,β)

∝
(
e−nλλ

∑n
i=1 xi

)
∗

( βα

Γ(α)
λα−1e−βλ

)
∝ λ

∑n
i=1 xi+α−1e−λ(n+β)

= Gam

(
λ |

n∑
i=1

xi +α,n +β
)

(2.2)

which involves adding the sample counts
∑n

i=1 xi to the (hyper)-parameter α of the gamma

prior and adding the number of observations n to the (hyper)-parameter β of the gamma

prior distribution.

The Poisson distribution can be seen as the limit of the binomial distribution. This

theorem is called Poisson Limit Theorem. Suppose X ∼ B(x | n, p) where n is a very large

number and p is a very small positive value. Specifically, assume that λ= n ∗p is a positive
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constant. It is proven that the probability mass function of X can be approximated by the

probability mass function of a Poi (x |λ). This is a good theorem since Poisson PMF is much

easier to compute than the binomial.

Definition 2.2.8. Let X ∼ B(x | n, p = λ
n ), where λ> 0 is fixed. The Poisson limit theorem states

that for any x ∈ {0,1,2, . . .}, the following

l i m
n→∞ BX (x | n, p) = e−λλx

x!

= PoiX (x |λ)

holds.

2.2.9 Negative Binomial Distribution

The negative binomial distribution relates to the random experiment of repeated independent

binary trials until m successes have been observed. The distribution can be thought of a

joint distribution of binomial distribution and Bernoulli distribution. Formally, a negative

binomial distribution is defined as follows.

Definition 2.2.10. A random variable X is a negative binomial random variable with para-

meter m and p, i.e. X ∼ N B(x | m, p), if its probability mass function is given by

N B(x | m, p) =

 x −1

m −1

pm(1−p)x−m

where 0 ≤ p ≤ 1 and n ≥ m.

Interestingly, the negative binomial distribution can be viewed as a generalization of the

Poisson distribution. It is a mixture of a family of Poisson distributions with gamma mixing

weights. The negative binomial distribution can be viewed as a Poisson distribution where the

Poisson parameter is itself a random variable, distributed according to a gamma distribution.

Thus the negative binomial distribution is also known as a Poisson-Gamma mixture. To prove
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this, let X be a random variable drawn from a Poisson distribution with parameter λ, i.e.

Poi (X = x |λ) = e−λλx

x!
,

and let the arrival rate λ be also modelled as a random variable to represent its uncertainty.

The λ is modelled according to a gamma distribution with shape α, and scale β, i.e.

Gam(λ |α,β) = βα

Γ(α)
λα−1e−βλ

Then, the unconditional distribution of X is obtained by summing out λ in

P (X = x)=
∫ ∞

λ=0
P (x |λ) P (λ) dλ

=
∫ ∞

λ=0
Poi (x |λ) Gam(λ |α,β) dλ

=
∫ ∞

λ=0

e−λλx

x!

βα

Γ(α)
λα−1e−βλ

=
βα

x! Γ(α)

Γ(x +α)

(β+1)x+α

=

(x +α−1

x

)(
β

β+1

)α(
1

β+1

)x

=N B

(
x |α,

β

β+1

)

which follows a negative binomial distribution with parameter m =α, and p = β
β+1 .

The characteristic of a negative binomial distribution is that the variance is greater than

the mean. Whereas, in a Poisson distribution, the variance is set to be equal to the mean of

the distribution. Thus, the unconditional distribution of N (ti , t j ) is more dispersed than its

conditional distributions since the unconditional distribution follows a negative binomial

distribution. The uncertainty in the parameter variable λ has the effect of increasing the

unconditional variance of the mixture distribution of N (ti , t j ).
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2.2.11 Multinomial Distribution

The multinomial distribution is a general version of the binomial distribution. It is used to

model experiments where there are more than two outcomes, i.e. modelling the probability

of counts for rolling an m-sided die in n times. Recall that the binomial random variable has

the following properties:

• Fixed number of n trials.

• Each trial is an independent event.

• Only two outcomes are possible (Success and Failure).

• Probability of success (p) for each trial is constant.

A multinomial experiment is almost identical with one main difference: a binomial experi-

ment can have two outcomes, while a multinomial experiment can have multiple outcomes.

If the binomial distribution models outcome of n experiments, where the outcome of each

trial has a Bernoulli distribution, then multinomial distribution models outcome of n experi-

ments, where the outcome of each trial has a categorical distribution. Formally, a multinomial

distribution is defined as

Definition 2.2.12. Let −→x be a vector of x1, . . . , xm , and −→p be a vector of p1, . . . , pm . A random

variable X is a multinomial random variable with parameter n and −→p , i.e. X ∼ Mul ti (−→x |
n,−→p ), if its probability mass function is given by

Mul ti (−→x | n,−→p ) = n!

x1!, . . . , xm !
px1

1 × . . .×pxm
m , for xi = 0,1, . . . and

m∑
i=1

xi = n

where 0 ≤ pi ≤ 1 for i = 1, . . . ,m and
m∑

i=1
pi = 1.
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2.3 Poisson Processes

The Poisson process is one of the most widely-used counting processes. It is generally used in

situations where counting the number of events that occur at a certain rate, but completely at

random is the main objective. Since all contents in this thesis are closely related to the Poisson

process, a proper definition of counting processes is necessary for readers to understand the

Poisson process better.

Definition 2.3.1. A random process N (ti , t j ), ti , t j ∈ [0,∞) is said to be a counting process if

N (ti , t j ) is the number of events occurred from time ti up to and including time t j . For a

counting process, the following holds:

1. ti ≤ t j , for all ti , t j ∈ [0,∞);

2. N (ti , ti ) = 0;

3. N (ti , t j ) ∈ {0,1,2, . . .};

4. for ti ≤ ts ≤ t j , N (ti , t j )−N (ti , ts) shows the number of events that occur in the interval

(ts , t j ].

For example, you might have a random process N (ti , t j ) that shows the number of

customers who arrive at a supermarket by time t j (i.e., afternoon) starting from time ti (i.e.,

morning).

Definition 2.3.2. Let X (ti , t j ), ti , t j ∈ [0,∞) be a continuous-time random process. X (ti , t j ) has

independent increments if, for all ti ≤ t1 ≤ t2 ≤ . . . ≤ t j , the random variables

X (ti , t2)−X (ti , t1), X (ti , t3)−X (ti , t2), . . . , X (ti , t j )−X (ti , t j−1)

are independent.

Recall that for a counting process, N (ti , t j )−N (ti , t j−1) is the number of events in the

interval (t j−1, t j ]. Therefore, a counting process has independent increments if the number of
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events in non-overlapping intervals

(ti , t1], (t1, t2], . . . , (t j−1, t j ]

are independent. With the definition of independent increments in a counting process, then

calculating a joint distribution of two counting processes becomes a simple multiplication of

distributions from each process.

Definition 2.3.3. Let X (ti , t j ), ti , t j ∈ [0,∞) be a continuous-time random process. X (ti , t j )

has stationary increments if, for all ti ≤ t1 < t2 ≤ t j , and all r > 0, the two random variables

X (ti , t2)−X (ti , t1) and X (ti , t2 + r )−X (ti , t1 + r ) have the same distributions.

The stationary increments can also be stated that the distribution of the difference

depends only on the length of the interval, and not on the exact location of the interval on the

real line. With those three definitions, a Poisson process can now be properly defined.

Definition 2.3.4. Let λ > 0 be fixed. The counting process N (ti , t j ), ti , t j ∈ [0,∞) is called a

Poisson process with arrival rates λ if all the following conditions hold:

1. N (ti , ti ) = 0;

2. N (ti , t j ) has independent and stationary increments;

3. the number of arrivals in any interval of length τ > 0 follows the Poisson distribution

Poi (x |λτ).

A Poisson process can also be defined as a pure birth process where in an infinitesimal

time interval ∆ there may occur only one event. This happens with the probability λ∆

independent of events outside the interval. Let N (ti , t j ) be a Poisson process with rate λ.

Consider a very short interval of length ∆. Then the number of events in interval ∆ has the

same distribution as N (ti , ti+∆). In particular, this can be written

Poi (N (ti , ti+∆) = 0 |λ∆) = e−λ∆

= 1−λ∆+ λ2

2 ∆
2 − . . . (Taylor Series)
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Note that if ∆ is small, the terms that include second or higher powers of ∆ are negligible

compared to ∆. Hence, the above equation can be re-written as:

Poi (N (ti , ti+∆) = 0 |λ∆) = 1−λ∆+o(∆) (2.3)

with o(∆) as a function that is negligible compared to ∆ as ∆→ 0, i.e. lim∆→0
o(∆)
∆ = 0.

Equation 2.3 is defined for N (ti , ti+∆) = 0. In the case of N (ti , ti+∆) = 1, the equation is

redefined into:

Poi (N (ti , ti+∆) = 1 |λ∆) = e−λ∆λ∆

= λ∆
(
1−λ∆+ λ2

2 ∆
2 − . . .

)
(Taylor Series)

= λ∆+
(
−λ2∆2 + λ3

2 ∆
3 . . .

)
= λ∆+o(∆)

(2.4)

Similarly, N (ti , ti+∆) ≥ 2 can be shown as:

Poi (N (ti , ti+∆) ≥ 2 |λ∆) = o(∆) (2.5)

As a matter of fact, all the equations above provide a way to formally redefine a Poisson

process.

Definition 2.3.5. Let λ > 0 be fixed. The counting process N (ti , t j ), ti , t j ∈ [0,∞) is called a

Poisson process with arrival rates λ if all the following conditions hold:

1. N (ti , ti ) = 0;

2. N (ti , t j ) has independent and stationary increments;

3. Equation 2.3, 2.4, and 2.5 are met.

It is often useful to consider a more general type of process in which the arrival rate

varies as a function of time. Let N (ti , t j ) be the number of customers arriving at a fast food
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restaurant between time ti , i.e. morning, and t j , i.e. afternoon. The Poisson process is suitable

for this scenario. However, it is quite unlikely that the process has a constant rate λ over

time. For example, it is typical to have higher arrival rates of costumers during lunch time

compared to, say around 3 p.m. to 4 p.m. In similar scenarios like this, a nonhomogeneous

Poisson process might be suited better than the standard (homogeneous) Poisson process.

Such a process has all the properties of a Poisson process, except for the fact that its rate is a

function of time, i.e., λ=λ(ti , t j ).

Definition 2.3.6. Let λ(ti , t j ) : [0,∞)× [0,∞) → [0,∞) be an integrable function. The counting

process N (ti , t j ), ti , t j ∈ [0,∞) is called a nonhomogeneous Poisson process with arrival rates

λ(ti , t j ) if all the following conditions hold:

1. N (ti , ti ) = 0;

2. N (ti , t j ) has independent increments;

3. for any ti , t j ∈ [0,∞), the following criteria:

Poi (N (ti , t j+∆)−N (ti , t j ) = 0 |λ(ti , t j )∆) = 1−λ(ti , t j )∆+o(∆)

Poi (N (ti , t j+∆)−N (ti , t j ) = 1 |λ(ti , t j )∆) = λ(ti , t j )∆+o(∆)

Poi (N (ti , t j+∆)−N (ti , t j ) ≥ 2 |λ(ti , t j )∆) = o(∆)

are met.

In a nonhomogeneous Poisson process with rate λ(ti , t j ), the number of arrivals in

any interval (ti ′ , t j ′) is a Poisson random variable; however, its parameter can depend on the

location of the interval. Formally, it is written as:

N (ti , t j+s)−N (ti , t j ) ∼ Poi

(
x |

∫ t j+s

t j

λ(t j , t j+t )d t

)
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Figure 2.1: An illustrative example of a Poisson process as a limit of a Bernoulli process.

2.3.7 Poisson Process as the Limit of a Bernoulli Process

Assume that the definition of Poisson process has not been made and one would like to model

the arrival of events at a rate λ per unit time. At time t j = ti = 0, no event has been registered,

so N (ti , t j ) = 0. The interval [0,∞) is now divided into small subintervals of length η such that

each subinterval corresponds to a time slot of length η. Therefore, each subinterval has a time

slot in the form of
(
(k −1)η,kη

]
. Let’s assume that in each time slot, a coin is tossed for which

the probability of the head occurs is P (H) = p =λη. If the head occurs in a toss, it is assumed

that there is an arrival in that subinterval. Otherwise, there is no arrival in that subinterval.

Figure 2.1 illustrates this process. If a head event occurs at k-th coin toss, an arrival is said

happened at time t = kη.

Let N (ti , t j ) be the number of heads that appear from time i to time j . If there are

n ≈ (t j−ti )
η

time slots in the interval (ti , t j ], N (ti , t j ) is the number of heads in n coin tosses. It

can be concluded that N (ti , t j ) follows a binomial distribution with parameters n and p, i.e.

B(N (ti , t j ) | n, p). Recall that p is the probability of head in each coin toss, and the value of p

is equal to λη, so

n ×p = n ×λ×η

= (t j−ti )
η

×λ×η

= λ× (t j − ti )

Using the Poisson limit theorem as η → 0, the density of N (ti , t j ) converges to a Poisson
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distribution with rate λ× (t j − ti ). In other words, the number of head events in any interval

of length τ= (t j − ti ) follows a Poisson distribution Poi (N (ti , t j ) |λτ) as η→ 0.

If several non-overlapping intervals are considered, the number of heads events in each

interval is solely determined by the results of the coin toss for that particular interval. Since

each coin toss is independent from one to another, the aforementioned counting process

has independent increments. Thus, all of these meet the definition of a Poisson process

informally.
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CHAPTER 3

RELATED WORK ON PARAMETER

ESTIMATION IN COUNT DATA

This chapter provides a self-contained review of previous work on estimation techniques

for time series data in general and specifically for count data. The chapter focuses on work

that is related to the first objective of this thesis, which is modelling regular patterns in a

long time series. The chapter starts with general well-known techniques which are typically

used to model time series data. Some specific approaches, that have similar goals to this

thesis, are explained at length. Finally, other techniques are presented which might be useful

for developing a temporal counting model to be used by an agent with limited perceptual

abilities.

3.1 Modulated Poisson Process

The Markov modulated Poisson process (MMPP) is typically used in queuing theory. There

is not much statistical literature referring to this process. The MMPP is termed, by some

literature, a partially observable Poisson process, where observable Poisson arrival rates are

29
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regulated by unobservable states of the Markov processes Ludkovski & Sezer (2012), Meier-

Hellstern (1987), RydÃl’n (1996), Prabhu & Zhu (1989), Davison & Ramesh (1996). Ludkovski

and Sezer Ludkovski & Sezer (2012) employ an MMPP to solve a decision-making problem.

The aim is to maximise the decision maker’s expected reward by finding an optimal regime

policy for unobservable regimes, which are states of an underlying Markov processes. Davison

and Ramesh Davison & Ramesh (1996) apply an MMPP to a binary time series of precipitation

data by numerically optimizing the MMPP likelihood.

The MMPP arises from the fact that sample counts of a Poisson process can be contam-

inated by an outside source. Suppose that true counts x0 in an interval [ti , t j ) for i , j ∈ 0, . . . ,T

follow a Poisson process Poi0(x | λ0). A contamination source present for the whole inter-

val [ti , t j ) produces contaminating counts x1 according to an independent Poisson process

Poi1(x |λ1). All the counts are recorded by τ= (τi , . . . ,τ j−1) in the fixed interval [ti , t j ), such

that an event at time t , t > i is the (t − i )-th event of the count in interval [ti , t j ). The contam-

ination process follows a Markov process with transition matrix

Γ=

c00 c01

c10 c11


Let C (t ) = 1 if a contamination is present, and C (t ) = 0 otherwise with t ∈ [ti , t j ) so that C (.) is a

random step function of continuous time. Notice that C (t ) = 1 is not enough to imply that the

event at time t is contaminated, such that the count for interval [ti , t j ) is also contaminated.

Let y = (yti , . . . , yt j−1 ), where yt = 0 if the event at time t was produced by Poi0(x | λ0), and

y j = 1 otherwise. Taken together, C (.), y,τ convey enough information to recreate counts

produced by Poi0(x |λ0) and Poi1(x |λ1). Figure 3.1, taken from Scott (1998), illustrates how

the MMPP model works where the honest process refers to x0, the contamination process

refers to C (.), and the additional fraud process refers to x1.

The goal of this technique is to simulate draws from the posterior distribution of θ =
(λ0,λ1,c01,c10) given an observed count xi , but not the missing data C (.) and y(.). The missing

data, however, include a process occurring in continuous time. A Markov Chain Monte
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Figure 3.1: Illustration of the MMPP taken from Scott (1998). Notice that the contamination
process does not generate contaminated events. The observed process consists of honest
events coming from Poi0(x |λ0) and fraudulent events coming from Poi1(x |λ1). However, it
is not possible to distinguish honest events from the fraudulent events.

Carlo (MCMC) technique is typically applied to draw the missing data given observed counts

x1, . . . , xn . Turin Turin (1996) proves that maximum likelihood estimates of MMPP parameters

can be obtained by the EM algorithm.

Scott Scott (2001, 1998) modifies an MMPP to a Markov modulated non-homogeneous

Poisson process (MMNHPP), which adds an ability to model posterior probabilities of Pois-

son arrival rates as a function of time. It combines the aspects of the MMPP and the non-

homogeneous Poisson process to model point processes, both regular patterns (governed

by the non homogeneous Poisson processes) and irregular bursts of activity (governed by

the MMPP). This technique is successfully applied in network fraud detection web surfing

behaviour and freeway traffic data Scott (2001), Ihler et al. (2006), Scott & Smyth (2003), Ihler

et al. (2007). Hutchins et al. Hutchins et al. (2007) extends the work of Ihler et al. (2006)

from utilising a single source of information to multiple sources, so as to estimate building

occupancy over period of time. The extension could recover missing or corrupted information



32 Related Work on Part I

X

X0X1

λ0,δ,η

C (t ) C (t +1)C (t −1)

Figure 3.2: Graphical representation of the MMNHPP. The parameters λ0,δ,η are the periodic
components of λ(ti , t j ). The Markov structure of C (t ) represents the bursty effect.

in occupancy estimation. Specifically, λ0 is decomposed into

λ(ti , t j ) =λ0δd(t )ηd(t ),h(t ),

where d(t ) ranges from 1 to 7, indicating the day on which time ti , t j falls, and h(t ) indicates

the interval within that day where ti , t j falls. One should note that further assumptions

are imposed. These are that
∑7

j=1δ j = 7 and
∑D

i=1η j ,i = D, where D is the number of time

intervals of a day. These assumptions provide an easy interpretation to the values λ0,δ,η such

as λ0 is the average rate of the Poisson process over a full week, δ j is the day effect, or relative

change for day j , and η j ,i is the relative change in time period ti , t j where i lies, given day j

(the time-of-day effect).

A similar example to MMPP is a non-homogeneous Poisson process where the λ para-

meter is modulated by Weibull type distribution, which governs how λ should increase (or

decrease) over time by small amount. This is used to predict noise exceedances, ozone ex-

ceedances, and software reliability issues Guarnaccia et al. (2014), Achcar et al. (2012), Achcar

(2001). Specifically, λ(ti , t j ) is transformed into

λ(ti , t j ) =
∫ t j

ti

W ei (t | a,r )d t

where

W ei (t | a,r ) = a

r

t

r

a−1
e− t

r
a

Note that the value of a < 1, a > 1, a = 1 indicates that the rate function λ(ti , t j ) is, respectively,
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decreasing, increasing, or constant over time. The vector of parameters of the model to be

estimated is (a,r ) ∈ R2, which is typically performed via MCMC. By taking advantage of the

natural relationship among posterior and prior distributions of a,r , and the likelihood of the

function of the model, the parameters’ posterior can be expressed as

P (a,r | x1, . . . , xn) ∝ L(x1, . . . , xn | a,r )P (a)P (r )

as shown and applied by Guarnaccia et al. (2014), Carlin & Louis (2010) where the unknown

parameters (a,r ) are sampled using a Gibbs sampling algorithm.

3.2 Spectral Analysis Approach

Spectral analysis is a type of analysis where a stochastic time series can be split into a number

of sine and cosine waves with random amplitudes. Spectral analysis deals with a single time

series focusing on its frequency components. Its application ranges from astronomical data

Templeton (2004), Brault & White (1971), Scargle (1982), to economics Nerlove (1964), signal

processing Papoulis & Chamzas (1979), and robotics KrajnÃŋk et al. (2014), Krajnik, Fentanes,

Cielniak, Dondrup & Duckett (2014), KrajnÃŋk et al. (2015), Coppola, Krajník, Duckett, Bel-

lotto et al. (2016). The core process of spectral analysis lies in the application of Fourier

transformation to extracting frequency components from the time series data. Nerlove suc-

cessfully showed the advantage of using spectral analysis in identifying seasonal fluctuations

in economic time series Nerlove (1964). Among the high frequency components of the time

series which are identified by the spectral analysis are those produced by seasonality. Ner-

love showed that a slowly changing and stochastic seasonal pattern will reveal itself in the

spectrum of an economic time series by a series of peaks at certain frequency Nerlove (1964).

Spectral analysis also shows its benefit in recovering incomplete time series data from its

Fourier and inverse Fourier transformation. The application of recovery from incomplete and

inaccurate measurement due to noise has been shown both in signal and image processing
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CandÃĺs et al. (2006), Stark (1987). Brault and White directly applied spectral analysis, via

the fast Fourier transform, to correct solar time series for observational restoration Brault &

White (1971). It is based on a filter technique which suppresses the noise and corrects the

restoration optimally. Scargle Scargle (1982) modified a classical periodogram technique to

provide reliable periodic signal detections which are hidden in noise, with emphasis on the

analysis of unevenly spaced data. The modification to a classical periodogram is needed to

retain the simple statistical behaviour in the case of unevenly spaced data.

3.2.1 Fourier Analysis

Fourier analysis is the technique of using an infinite number of sine and cosine waves with

different frequencies, amplitudes, and phases to represent a given set of data or a function.

The process of finding a correct combination of multiple different frequencies, amplitudes

and phases is done with a tool called Fourier transform. The Fourier transform is a reversible,

linear transformation that decomposes a function (of time) f (t) into the frequencies F (ω)

that make it up. The Fourier transform of a function f (t ) is defined by:

F ( f (t )) = F (ω) =
∫ ∞

−∞
f (t )e−2πiωt d t (3.1)

where ω is the frequency, i is the imaginary square root of −1 used in complex numbers. The

function F (ω) is commonly referred to as the frequency spectrum of f (t). F (ω) gives how

much power f (t ) contains at the frequency ω. In addition, f can be obtained from F via the

inverse Fourier transform:

F−1(F (ω)) = f (t ) =
∫ ∞

−∞
F (ω)e2πiωt dω (3.2)

Equation 3.1 and 3.2 show that the Fourier transform is invertible, and therefore, one can

recover the function f (t ) from its spectrum F (ω) and vice versa.

F (ω) is formed of complex exponentials. A complex exponential is a complex number in
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the form of

e iθ = cos(θ)+ i sin(θ)

which is a point on the unit circle at an angle of θ. For any given complex exponential

e iθ = cos(x)+ i sin(x), the absolute value is defined as:

| e iθ |=
√

cos2(θ)+ sin2(θ)

such that | e iθ | is the distance from the origin to the position of e iθ in a complex plane, and

the argument is defined as:

arg e iθ = θ.

The absolute values and arguments correspond to the amplitudes and phase shifts of the

frequency components ω. Complex exponentials are periodic functions, and the set of

complex exponentials is complete and orthogonal Bracewell (1965). Moreover, the Fourier

transform can represent any piecewise continuous function and minimizes the least-square

error between the function and its representation Bracewell (1965).

The Fourier transform is a powerful technique, but it is limited by the amount and qual-

ity of data that are transformed. The data limits the benefit of the transformation including

the maximum and minimum periodicity, the accuracy of the periodicity, and the minimum

statistically significant amplitudes that can be found Templeton (2004). The span of the data

also determines the resolution of the Fourier transform, which is the precision to which the

frequency may be determined. This means that the longer the data set is, the more precise

determination of the frequency will be.

There is a bare maximum of a recommended frequency without introducing error,

which is half of the span of the data. This is known as the Nyquist frequency. The Nyquist

frequency is important not only because it defines the highest frequency (and shortest period)

detectable within a given dataset, but also because it defines the maximum sampling rate one

needs in order to fully describe variations up to the maximum frequency Templeton (2004).

By applying a Fourier analysis to a set of data, one assumes that everything contained
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within a given data is a wave. Thus noise will appear in the Fourier spectrum at some level

defined by the strength of the true periodic modulations, relative to the background noise

and measurement of this noise level determines the reliability of the results.

3.2.2 Frequency Map Enhancement (FreMEn)

The Frequency Map Enhancement technique (FreMEn) was proposed by Krajnik et al. Kra-

jnÃŋk et al. (2014) for creating spatio-temporal environment representations of long-term

robotic deployments. The FreMEn technique is based on Fourier analysis in combination

with a Bernoulli distribution to represent the binary state of data. It has been used in many

applications, such as in occupancy grids to compress long-term observations Krajnık, Santos,

Seemann & Duckett (2014), in topological maps to improve robotic search KrajnÃŋk et al.

(2015), Krajnik, Fentanes, Cielniak, Dondrup & Duckett (2014), in path planning Fentanes et al.

(2015), and also in predicting human activities Coppola, Krajník, Duckett, Bellotto et al. (2016).

The technique can be applied to all models that represent the world as a set of independent

components with binary states Krajnik et al. (2015).

FreMEn applies to time series data which represent the data in two distinct states: 0

(absent) or 1 (present). Let s(t ) represent the state value at time t , which is affected by a set of

periodic processes that can be identified by the Fourier transform, i.e.,

F (ω) =F (s(t )).

Therefore, each of the n most prominent (i.e. of highest absolute value) frequency com-

ponents ωk (for k = 1, . . . ,n) of the spectrum F (ω) can be chosen and stored along with its

amplitude abs(ωk ), and its argument ar g (ωk ) in a spectral model P . Then P can be used to

reconstruct the smoothed sequence s̃(t) of s(t) by means of the inverse Fourier transform,

i.e.,

s̃(t ) =F−1(P ).
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Since the original s(t ) only represents binary states (0, 1), the s̃(t ) is transformed further into

a probability function

p(t ) =


1 if s̃(t ) > 1

0 if s̃(t ) < 0

s̃(t ) otherwise

KrajnÃŋk et al. (2014) suggested to threshold the probability p(t ) such that an estimated

state s0(t ) of the original state s(t ) can be obtained. Using the following equation, the estim-

ated state s0(t ) from the spectral model P , can be used to interpolate or predict the model’s

state s(t ):

s0(t ) = p(t ) > 0.5

It is possible that s0(t) 6= s(t). To fill the gap between the original function s(t) and the

estimated function s0(t), the time t , whenever the difference between those two functions

appears, is stored in an outlier set O . Hence, a full state reconstruction s(t ) can be represented

by

s(t ) = s0(t )⊕ (t ∈O ) (3.3)

where ⊕ represents a binary XOR operation.

The FreMEn model consists of a finite set P representing the periodic processes and

an outlier set O . When a new observation of a real state sm(t) is obtained at time t , a state

estimate s̃(t) of sm(t) is calculated using Equation 3.3, and if it differs from sm(t), then the

current time t is added to the set O . As new observations come, the prediction accuracy of

p(t ) is likely to decline gradually and the set O is likely to grow.

3.3 Auto Regressive Integrated Moving Average (ARIMA)

The Auto Regressive Integrated Moving Average (ARIMA) model is another class of statistical

models which provide analysis and forecasting of time series data. These models aim to

describe the autocorrelations in the data. It is a generalization of the simpler Auto Regressive
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Moving Average (ARMA) by adding the notion of integration. ARIMA is descriptive as acronym

capturing the key aspects of the model itself. They are:

• AR: Autoregression. A model that uses the dependent relationship between an observa-

tion and some number of previous observations. Formally, an autoregressive model of

order p (referred as AR(p) model) can be written as

yt = c +φ1 yt−1 +φ2 yt−2 + . . .+φp yt−p +et ,

where c is a constant, et is noise, and φi ,1 ≤ i ≤ p is lagged parameters. Changing

the parameters results in different time series patterns, whereas changing the et (the

variance of et ) will only change the scale of the series, but not the patterns. AR is

typically restricted to model stationary data, i.e., time series data whose properties do

not depend on the time at which the series is observed Hyndman & Athanasopoulos

(2014).

• MA: Moving Average. A model that uses past forecast errors in a regression-like model

Hyndman & Athanasopoulos (2014). Formally, a moving average model of order q

(referred as MA(q) model) can be written as

yt = c +et +θ1et−1 +θ2et−2 + . . .+θq et−q ,

where et is white noise, and θi ,1 ≤ i ≤ q is lagged parameters. Changing the parameters

results in different time series patterns. It is proven that any stationary AR(p) model can

be represented as an MA(inf) model Hyndman & Athanasopoulos (2014).

• I: Integrated (referred to as parameter d in the ARIMA model). The use of differencing

of raw observations (e.g. subtracting an observation from the previous observation) is

to achieve a covariance-stationary series.
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A complete ARIMA(p, d, q) model can be written as

y ′
t = c +φ1 y ′

t−1 + . . .+φp y ′
t−p +θ1et−1 + . . .+θq et−q +et , (3.4)

where y ′
t is the difference series of order d , i.e. y ′

t = (1−B)d yt with B as the backshift notation

B yt = yt−1, and φi ,1 ≤ i ≤ p, θ j ,1 ≤ q are the lagged parameters of AR and MA respectively.

Then equation 3.4 can be written, using the backshift notation, as

(1−φ1B − . . .−φp B p ) (1−B)d yt = c + (1+θ1B + . . .+θq B q )et

↑ ↑ ↑
AR(p) d differences MA(q)

The model order (p, q) of ARIMA models are determined by automatic model selection such

as the Aikaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC) Box

et al. (2015). This is typically done after the difference order d is established, since the

difference order is to make the given time series data stationary. Once the model order

has been identified, the parameters c,φ1, . . . ,φp ,θ1, . . . ,θq can be estimated by maximum

likelihood estimation Hyndman & Athanasopoulos (2014).

ARIMA modellingis one of the most widely-used approaches to time series forecasting.

The technique has been applied to forecast commodity prices Weiss (2000), oil Nochai &

Nochai (2006), natural gas Buchanan et al. (2001), and electric power markets Contreras et al.

(2003). It was empirically pointed out in Schaidnagel & Laux (2013) that the standard ARIMA

could not deal well with systematic periodicity (or seasonality).

3.3.1 Multiseasonal ARIMA

Box et al., introduced a concept of Seasonal ARIMA (SARIMA) to accommodate seasonality

in time series Box et al. (2015). Williams and Hoel showed that the SARIMA with a one-week

seasonal difference successfully modelled univariate traffic condition data streams Williams

& Hoel (2003). It outperformed heuristic forecast benchmarks and showed that the statement
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in Kirby et al. Kirby et al. (1997) that extending a simple ARIMA model would not have a

significant impact on the performance in time series data was incorrect. Tseng, Yu, and Tzeng

combined the SARIMA model with the back propagation model to forecast two seasonal time

series for data-sets which are small in sample size Tseng et al. (2002). The SARIMA model is

used to forecast seasonal time series whose forecasts and residuals are input to the layer of

the BP model to minimize the residuals. Given that d ≥ 0 and D ≥ 0 and the difference series

y ′
t = (1−B)d (1−B s)D yt is a stationary ARMA, a seasonal ARIMA(p,d , q)(P,D,Q)s process

with period S is formally defined as

(1−φ1B − . . .−φp B p ) (1−Φ1B s − . . .−ΦP B sP
)y ′

t = (1+θ1B + . . .+θq B q ) (1+Θ1B s + . . .+ΘQ B sQ
)et

↑ ↑ ↑ ↑
AR(p) SAR(P ) MA(q) SMA(Q)

(3.5)

with SAR as Seasonal AR, SMA as Seasonal MA.

Box et al., also commented that a multiplicative seasonal ARIMA given by Equation 3.5

can be extended for the case of multiple seasonalities Box et al. (2015). The double seasonal

ARIMA was used to model actual measured GSM traces in China with two periodicities of daily

and weekly Shu et al. (2003). This model can be expressed as ARIMA(p,d , q)(P1,D1,Q1)s1 (P2,

D2,Q2)s2 . Laing and Smith set s1 = 48 to model the within-day seasonal cycle of 48 half-hours,

and s2 = 336 to model the within-week cycle of 336 half-hours to forecast electricity demand

Laing & Smith (1987). The model from Laing & Smith (1987) was then tested and compared to

Holt-Winters exponential smoothing formulation by Taylor Taylor (2003). He pointed out that

ARIMA modelling is not well-suited for time-series that are dominated by trend and seasonal

variation.

When the time-series data are dominated by seasonal variation, Hyndman and Ath-

anasopoulos suggested the use of Fourier series Hyndman & Athanasopoulos (2014) to model

multiple seasonality. External regressors, in the form of Fourier terms, are added to an ARIMA
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model to account for the seasonal behaviour. The Fourier-ARIMA model is defined as

yt = c +
M∑

i=1

Ki∑
k=1

(αsin(
2πkt

pi
)+βcos(

2πkt

pi
))+ y ′

t

where c as constant (or the drift parameter), y ′
t as an ARIMA(p,d , q), Ki ,1 ≤ i ≤ M as Fourier

terms, M as the number of periodicities, and pi ,1 ≤ i ≤ M as periodicity. Provided with a

set of models, AIC estimates the quality of the model compared to the other models, and

thus provides a means for model selection. The value of Ki is chosen so as to minimize the

AIC criteria. Tularam and Ilahee applied the spectral-ARIMA to determine whether recent

climate variations in Queensland are in anyway unusual in the context of the 50-60 years of

rainfall and temperature records Tularam & Ilahee (2010). The 3-year cycle in the rainfall and

temperature data set was found easily, suggesting that spectral-ARIMA is an effective method

for this variation. The technique was also applied to forecasting daily maximum ambient

O3 concentrations in six European monitoring stations Kumar & De Ridder (2010). Spectral

analysis was used to extract the most prominent frequencies from the time series, such that

the residuals of this process are stationary and to be modelled using an ARIMA process. An

extension to multiple-day-ahead forecasting was proposed with a similar technique Kumar

(2015). However, this showed that singular spectrum analysis (SSA) in combination with

ARIMA outperformed spectral-ARIMA.

3.4 Gaussian Processes

Gaussian Processes (GPs) are a state-of-the-art non-parametric regression method. GPs

have succeeded in performing inference directly over the space of functions Rasmussen

(2004). This technique is different than any model which has been discussed so far with a

parameterised class of functions and/or a prior over the parameters. In the context of time

series modelling, GPs can be used as priors over the functions representing the behaviour of

the data. Formally, a GP is a continuous stochastic process where every finite set of random
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variables f = { f1, f2, . . .}, is Gaussian distributed Rasmussen (2004). A GP is fully determined

by a mean m, and a kernel/covariance function k. It is denoted as follows

( f (xi ), f (x j ), f (xk ), . . .) ∼N





m(xi )

m(x j )

m(xk )

...


,



k(xi , xi ) k(xi , x j ) k(xi , xk )

k(x j , xi ) k(x j , x j ) k(x j , xk )

k(xk , xi ) k(xk , x j ) k(xk , xk )

. . .




where m(x) and k(x, x ′) are the mean and covariance functions respectively. The role of the

mean function m is straight forward; it specifies the pointwise mean of this distribution

over functions. It is common practice to assume zero mean, since marginalizing over an

unknown mean function can be equivalently expressed as a zero-mean GP with a new kernel

Lloyd et al. (2014). The role of the kernel k(x, x ′) determines how the model generalizes or

extrapolates new data. This represents high level properties of the unknown function, f .

Hence, a characteristic of a GP model is defined by specifying a language of kernels. For

example, one of the kernels represents periodic functions using covariance of the form

k(xi , x j ) = e− 2sin2(π(xi −x j )/p)

l2

where l and p are constants. Whenever | xi −x j | is an integer multiple of p the correlation is

equal to 1, resulting in exact periodicity of the random functions. Ghassemi and Deisenroth

showed the advantage of using GPs and periodic kernel to model data with an underlying

periodic structure in it Ghassemi & Deisenroth (2014). They re-parameterized the periodic

kernel, which, in combination with a double approximation, allows for analytic long-term

forecasting of a periodic state evolution with Gaussian processes. Karunaratne et al., provided

novel kernel-combination methods to explicitly model working-week effects in periodic

data using Gaussian process regression Karunaratne et al. (2017). They showed that the

introduction of hyperpriors in combination with daily and weekly kernels increased the

prediction accuracy significantly which, in the end, outperformed ARIMA model.
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There are other kernels which are not covered in this section. Brahim-Belhouari and

Bermak introduced a nonstationary covariance function for nonstationary time series data

Brahim-Belhouari & Bermak (2004). They have successfully shown the effectiveness of the

proposed approach with excellent prediction of respiration signals. Wilson and Adams in-

troduced simple closed-form kernels, based on the Fourier transform, in combination with

a Gaussian mixture for Gaussian processes to discover patterns and enable extrapolation

Wilson & Adams (2013). The simplicity of the proposed kernels showed that the kernels can be

used to replace popular kernels, such as the squared exponential kernels. For more detailed

information about kernels, Rasmussen and Williams provide constructions of common GP

kernels and analyse their properties Williams & Rasmussen (2006).

Many application of GPs are related to time series and forecasting. Girard and Rasmussen

presented a novel approach which uses knowledge of the variance on inputs to Gaussian

process models to achieve more accurate prediction variance in the case of noisy inputs

Girard et al. (2003). Leith et al., showed the superiority of GPs as a potential unifying frame-

work within which many existing forecasting methodologies may be cast, such as Seasonal

Auto-Regressive Integrated (SARI) and Basic Structural Models (BSM) in the case of Irish

electrical load forecasting Leith et al. (2004).

3.4.1 Automatic Statistician

Automatic Statistician (AS) is a framework used in Lloyd et al. (2014), Duvenaud et al. (2013),

Grosse et al. (2012), Lloyd (2015), which employs Gaussian processes as its core model. The

framework can automatically represent any time series data with a suitable kernel composi-

tion, which may be kernel addition, and/or kernel multiplication.

The essential elements of this framework are a set of base kernels capturing different

function properties, and a set of composition rules which combine kernels to yield other valid

kernels Lloyd et al. (2014). The base kernels are white noise for statistical noise in the form of

a Gaussian distribution where the values at any pair of times are identically distributed and

statistically independent, constant for constant functions, linear for linear functions, squared
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exponential for smooth functions, and periodic for periodic functions. The composition rules

are addition and multiplication:

(k1 +k2)(x, x ′) = k1(x, x ′)+k2(x, x ′)

(k1 ×k2)(x, x ′) = k1(x, x ′)×k2(x, x ′)

since any valid kernel (positive semidefinite kernels) is closed under addition and multiplica-

tion. Richer structures such as periodic with noise, or periodic with trend can be obtained by

combining kernels using the above operations. By summing kernels, data can be modelled as

a superposition of independent functions, possibly representing different structures. A sum of

kernels can be interpreted as an OR-like operation: two points are considered similar if either

kernel has a high value. In time series models, the summation can represent superposition of

multiple processes, possibly operating at different scales Duvenaud et al. (2013). By multi-

plication, interactions between different input dimensions or different notions of similarity

can be accounted for. A multiplying kernel is an AND-like operation since two points are

considered similar if both kernels have high values. Lloyd et al., extended the aforementioned

operations by adding a changepoints operation into the framework to model more realistic

time series Lloyd et al. (2014). Changepoints are defined through addition and multiplication

with sigmoidal functions:

C P (k1,k2) = k1 ×σ+k2 × σ̄

where σ=σ(x)σ(x ′) and σ̄= (1−σ(x))(1− σ̄(x ′)).

Searching over structures given data is done by proposing all base kernel families applied

to all input dimensions. The searching procedures follow the set of expressions:

1. Any subexpression S can be replaced with either S+B, or S×B, where B is any base

kernel family

2. Any base kernel B may be replaced with any other base kernel family B′.

Duvenaud et al., proposed to search over this space using a greedy search by choosing the

highest scoring kernel and expanding it with all possible operators Duvenaud et al. (2013).
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The scoring process involves marginal likelihood since it balances the fit and complexity of a

model and also, conditioned on kernel parameters, the marginal likelihood of a GP can be

computed analytically Rasmussen & Ghahramani (2001).

3.5 Cox Processes and Bayesian Nonparametrics

The frequentist theorist Alen revolutionised counting process model estimation by introdu-

cing a general nonparametric statistical theory for the class of multiplicative counting process

Aalen (1978). The technique was adapted into the Bayesian framework in the work of Lo for

Poisson processes Lo (1982), and Lo and Weng for general multiplicative processes Lo & Weng

(1989). Consider a Poisson process with arrival rate λ. Lo showed that a gamma process prior

is conjugate. To define the gamma process prior, consider a σ-finite measure, and say the

measure µ is selected by a gamma process prior if for disjoint sets A1, . . . , Ak , the collection of

random variables {µ(A1), . . . ,µ(Ak )} are independent gamma random variables of scale 1 and

meansα(Ai ). The measure µ is then said to have shape measureα and scale parameter 1. The

corresponding probability measure having this finite-dimensional distribution is denoted by

Pα,1. The measure can be rescaled by an α-integrable positive random function β by defining

βµ(A) = ∫
Aβ(x)µ(d x) and the corresponding probability measure is denoted Pα,β. Lo showed

that if there are independent realisations N1, . . . , Nn of N, and we assign a prior measure Pα,β

to the intensity measure λ, the posterior measure is P
α+∑n

1 Ni , β
1+nβ

.

Consider the special case where β(x) = 1/θ, and suppose estimating the arrival rate

λt =λ(0, t ) =λ(t ) under the integrated squared error loss is of interest. It is straightforward to

verify that the Bayes estimator is

α(0, t )

θ+n
+ n

n +θ
1

n

n∑
i=1

Ni (0, t ),

which is the weighted average of the prior guess and the sample empirical estimate.

In general, the tools to estimate the parameter λ(t ), assumed integrable over the period
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of observation A, of a non-homogeneous Poisson process in a non-parametric way are similar

to those for density estimation. Conditional upon the total number of points N = N (A) the

points are distributed as order statistics from a distribution with density Cox & Lewis (1966).

Diggle used this fact to develop a kernel estimator for the arrival rate Diggle (1985). A type

of histogram estimator in setting up a Bayesian analysis has also been used and introduced

by Peeling et al. Peeling et al. (2007). However, the work of Diggle opened the creation of a

Bayesian structure to assign a prior related to a Gaussian process, typically of the form e X (t )

where X (t ) is a Gaussian process. By the same misnomer as for the lognormal distribution,

this tends to be called a log Gaussian Cox process. Although it is the log intensity which is

Gaussian, and serves as a prior for the arrival rate of a non-homogeneous Poisson process, the

model mathematically corresponds to a doubly stochastic Poisson process Cox (1955). The

conditional likelihood for this model, given the realisation of λ(s), s ∈ A, is simply the usual

Poisson likelihood

L(x |λ(s)) = e
∫

A(logλ(s)d Ns−λ(s)d s)

For random infinite dimensional λ(s), the integral in the exponential of the equation above

cannot be evaluated explicitly, which makes inference with a prior Y (t ) based on a Gaussian

process intractable. Cressie and Rathbun Rathbun & Cressie (1994) and Møller et al. MÃÿller

et al. (1998) took a discretisation approach to obtain a tractable expression for the likelihood.

The idea is to approximate the continuous process Y (t) by a sequence of step functions in

the linear case, and values on a grid in the spatial case. It has been shown that the resulting

posterior density converges to the true posterior as the discretisation interval shrinks to

zero Waagepetersen (2004). Waagepetersen also pointed out the sensitivity of the resulting

inference to the discretisation scheme Waagepetersen (2004). It has been shown that this

approach can achieve O (N l og N ) performance. However, this approach relies on the choice

of discretisation, which makes it not scalable with the dimension of the domain and it suffers

from poor scaling with sensitivity Lloyd et al. (2015). Lloyd et al. eliminated the requirement

for discretisation, while simultaneously delivering O (N ) performance. The idea is to simply

define the intensity function as λ(s) = f 2(x), s ∈ A, where f is a Gaussian process achieving a
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non-negative prior, and use this in a conditional GP formulation with variational distributions

q(u) =N (u | m,S), such that expectations become tractable w.r.t. q( f ).

Heikkinen and Arjas used piecewise constant functions with a random number of jumps

of random size as a prior on the intensity function Heikkinen & Arjas (2001). However, they

treated this not as an approximation to a smooth prior process. It does not follow, for example,

that the posterior mean is piecewise constant. In fact, it typically comes out smooth.

f (s) = λ(s)∫
A
λ(u)du

. (3.6)

The representation in equation 3.6 was used by Kottas to develop a different estimation

method Kottas (2006). He treated γ= ∫
Aλ(u)du as a separate parameter and used explicit

density estimation tools to estimate f (s). f is estimated as a Dirichlet mixture of scaled beta

densities. The Dirichlet process is determined by a precision parameter α, which is given

a gamma prior, and a base distribution, which is a function of the location and dispersion

of the beta distributions. These are taken to be independent uniform and inverse gamma,

respectively.

3.5.1 Cox Processes

The Cox process or doubly stochastic Poisson process is obtained by letting the rate λ(ti , t j ) of

the Poisson process vary according to a positive stochastic process, sayΛ(ti , t j ). The doubly

stochastic Poisson process was introduced by Cox Cox (1955) and later on was named the

Cox process by Bartlett Bartlett (1963). It is worth noting here that, except when the rate

process is determined by the scientific situation, it is difficult to analyse a doubly stochastic

process without having repeated observations, since the model is indistinguishable from a

non-homogeneous Poisson process based on a single path Waagepetersen (2004).

Wolpert and Ickstadt modelled a spatial Poisson process with random rate, where the

rate measure is a kernel mixture with a gamma measure Wolpert & Ickstadt (1998). The

approach was applied in analysing the density and spatial correlation of hickory trees. The
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same dataset was also analysed by Møller and Waagepetersen in a Bayesian setting using a non-

homogeneous Poisson process with a log-Gaussian prior process Waagepetersen (2004). The

Gaussian process has constant mean β, variance σ2, and an exponential correlation function

with range parameter α. The hyperparameters β,σ2,κ= log (α) need prior distributions as

well. For that, Jeffreys priors for the mean and variance, and a uniform prior between-2 and 4

for κwere used. The analysis was highly sensitive to the choice of prior for κ, and the Bayesian

method shows a significantly large correlation range. As pointed out above, this problem can

also be viewed as a parametric Bayesian analysis of the doubly stochastic Poisson process

obtained using a log Gaussian rate function.

A doubly stochastic Poisson process with a gamma process (introduced by Lo in Lo

(1982)) being its rate function Λ(ti , t j ) was considered in Gutiérrez-Peña & Nieto-Barajas

(2003). This process has parameter function α as the rate function measure and β as the scale

process. In the case of constant scale β= b, the resulting process is what they call a negative

binomial process of type 2. To perform a Bayesian analysis, they assigned a gamma process

prior to the rate function measureα, and computed a closed form expression for the posterior

distribution of α given the data.

Rue et al., in their highly influential paper on integrated nested Laplace approximations

(INLA), illustrated how their numerical alternative to Markov chain Monte Carlo methods

can be applied to a doubly stochastic Poisson process where the intensity process is log

Gaussian Rue et al. (2009). Although the method would work for any positive function

of a Gaussian process such that the resulting doubly stochastic Poisson process is valid.

The calculation of over 20,000 marginal distributions, applied to the rainforest dataset also

analysed by Waagepetersen Waagepetersen (2007), took four hours of computing time. Again,

the Gaussian process was discretised to a fine grid. To get similar precision with MCMC

methods would be prohibitive computationally. It is possible within INLA to calculate Bayes

factors. However, the prior distributions used for the underlying random field are usually

improper which means that the Bayes factor is only determined up to an unknown ratio of

constants.
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3.6 Summary

In this chapter, some selected approaches that have previously been used for modelling

temporal and regular data have been reviewed. Classical techniques such as ARIMA have

been judged as not well-suited for time series data that are dominated by regular patterns.

Widely-used Gaussian processes showed promising results in their application to time series

data including the ones with regular patterns in it, but were also found to have weaknesses

related to scalability, due to non-analytic dependence upon GPs’ parameters. The idea of

applying spectral analysis in time series data such as the one in FFT-ARIMA or FreMEn was

presented. As illustrated by Krajnik et al. Krajnik, Fentanes, Cielniak, Dondrup & Duckett

(2014), spectral analysis with the Fourier transformation is well-suited for time series data

with regular patterns. Furthermore, the technique does not suffer from scalability problems.
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CHAPTER 4

SPECTRAL POISSON PROCESS

This chapter focuses on building a counting model which is able to sensibly retrieve and

represent temporally recurring patterns of count data on extended temporal scales with

limited observations. Limited observations come from the fact that the count data were

collected by a mobile robot which was patrolling within perimeters of a large area. The

robot’s inability to be everywhere at any time makes the count of people passing at particular

locations temporally sparse.

Bayesian estimators based on time-varying Poisson models in combination with spectral

analysis were developed to capture the periodic structures hidden within a long time series

of count data. The model, which is called spectral-Poisson model, is able to accommodate

the inference of count data at locations with sparse information. Moreover, applied to the

scenario of counting the number of people passing, the model is capable to:

1. predict human activity level at particular times, and

2. classify locations based on the periodic patterns of the activity level.

This approach was deliberately chosen as a derivation of the FreMEn approach proposed by

Krajnik et al. which has been used in real-world experiments and which successfully models

51
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recurring patterns of binary data KrajnÃŋk et al. (2014), Krajnik, Fentanes, Cielniak, Dondrup

& Duckett (2014), KrajnÃŋk et al. (2015), Coppola, Krajník, Duckett, Bellotto et al. (2016). In

contrast to this approach, this thesis contributes two extensions:

1. The non-homogeneous Poisson processes are employed as counting states to replace

the binary states of FreMEn.

2. A new way of selecting the most prominent frequency components of the Fourier

spectrum was proposed.

This chapter starts with how the counting data is represented as a periodic Poisson

process. In Section 4.2, the Fourier Transform is briefly re-introduced, and the proposed

method to select the most prominent frequency components is explained. The performance

of the spectral-Poisson is tested on simulated data, and the result is explained in Section 4.3.

Section 4.4 describes the experimental results on real-world data. Section 4.5 studies the best

method to cluster spectral processes according to their spectro-temporal signatures. Finally,

Section 4.6 concludes the contribution and discusses the limitations of this chapter.

4.1 Counting Representation

The probabilistic counting model is addressed with a Poisson distribution whose the probabi-

lity mass function is in the form of:

Poi (N (t1, t2) = x |λ) = e−λλx

x!
(4.1)

where the parameter λ represents the rate, or average number of occurrences in a fixed

time interval, and N (t1, t2) = x is the count over the time interval [ti , t j ) for i , j ∈ {0, . . . ,T }.

By transforming λ to be a function of time, i.e. λ(ti , t j ), equation 4.1 becomes a non-

homogeneous Poisson distribution, in which the degree of heterogeneity depends on the

function λ(ti , t j ).
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When λ(ti , t j ) is imposed to be a periodic function of time, then the distribution be-

comes a periodic Poisson distribution. Formally speaking, a ∆ periodic Poisson process is a

Poisson process in which a single periodicity ∆ is imposed on the function λ such that:

λ(ti , t j ) =λ(ti+∆, t j+∆) (4.2)

where i , j ∈ {0, . . . ,T }. As a fixed time interval δ at any point in time is used, λ(ti , ti+δ) for

i ∈ {0, . . . ,T } and δ ∈N is defined. Counts within ti , t j+s are sampled as

N (ti , t j+s)−N (ti , t j ) ∼ Poi

(
x |

∫ t j+s

t j

λ(t j , t j+t )d t

)

A conjugate prior is chosen to have a fully Bayesian estimation over the parameter λ(ti , t j ) of

the Poisson distribution which follows a Gamma density:

Gam(λ(ti , t j ) |α(i , j ),β(i , j )) =
β
α(i , j )

(i , j )

Γ(α(i , j ))
λ(ti , t j )α(i , j )−1e−β(i , j )λ(ti ,t j )

whereα(i , j ),β(i , j ) are the shape and the rate parameters Fink (1997). The posterior distribution

of λ(ti , t j ) given a set of observed counts x1, . . . , xn within particular time interval ti , t j is

calculated as

P (λ(ti , t j ) | x1, . . . , xn) ∝ Poi (x1, . . . , xn |λ(ti , t j )) Gam(λ(ti , t j ) |α(i , j ),β(i , j )) (4.3)

= Gam

(
λ(ti , t j ) |

n∑
i=1

xi +α(i , j ),n +β(i , j )

)

On each posterior update, the Maximum a Posteriori (MAP) hypothesis λmap (ti , t j ) is

chosen to be the point estimate of λ(ti , t j ) with

λmap (ti , t j ) = α(i , j ) −1

β(i , j )
(4.4)

where i , j ∈ {0, . . . ,∆}. As a single periodicity ∆ is imposed on the parameter λ(ti , t j ) for the

periodic Poisson process, λmap (ti , t j ) becomes a periodic function such that a collection of
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MAP estimates ordered from λmap (t0, t0 +δ) to λmap (tδ−1, tδ−1 +δ) creates a MAP time series.

4.2 Spectral Representation

To capture the periodic structures over the λ function, i.e. λ(ti , t j ) of a periodic Poisson

process, the Fourier transformation is proposed which offers a fast transformation and re-

transformation. This section is started by defining the mathematical form of the Fourier

transformation. The proposed technique to do spectral analysis is then explained in details

including the representation of λ function in its spectral form.

4.2.1 Fourier Transform

The Fourier transform is a reversible, linear transformation that decomposes a function of

time f (t ) into the frequencies F (ω) that make it up. F (ω) is formed of complex exponentials.

A complex exponential is a complex number in the form of

e iθ = cos(θ)+ i sin(θ)

which is a point on the unit circle at an angle of θ. For any given complex exponential

e iθ = cos(x)+ i si n(x), the absolute value is defined as:

| e iθ |=
√

cos2(θ)+ sin2(θ)

such that | e iθ | is the distance from the origin to the position of e iθ in a complex plane, and

the argument is defined as:

arg e iθ = θ.

The absolute values and arguments correspond to the amplitudes and phase shifts of the

frequency components ω.

Any analysis and/or alteration to the frequency properties of function f (t ) can be made



4.2 Spectral Representation 55

Algorithm 1 l addition amplitude model (AAM)
Input: x1, . . . , xn : input signal,

total: maximum total frequency
Output: S : a collection of (|ωk |, ar g (ωk ),ωk )
Procedure:

1. Init. k ← 1
// Get the frequency zero (ω1 = 0)
2. ωk ← DF T (x1, . . . , xn)[0]
3. S [ωk ] ← [|ωk |, ar g (ωk ),ωk ]
4. Repeat until k > total

• k ← k +1
// Get the frequency with the highest amplitude
• ωk ← DF T (x1, . . . , xn)[1]
// Update S with ωk

• if ωk ∈S , |S [ωk ] |←|S [ωk ] | + |ωk |
ar g (S [ωk ]) = av g ([ar g (S [ωk ]), ar g (ωk )])

else S [wk ] ← [|ωk |, ar g (ωk ),ωk ]
// Create a cosine signal from ωk

• x ′
1, . . . , x ′

n ←|ωk | ∗cos(2π∗ωk +ar g (ωk ))
// Subtract current x1, . . . , xn with the cosine signal
• x1, . . . , xn ← x1, . . . , xn −x ′

1, . . . , x ′
n

by altering the frequency spectrum F (ω) in the frequency domain. Once the alteration is

complete, the transformation back to the domain of f (t ) is typically carried out to the altered

frequency spectrum F ′(ω). This kind of process is referred to as spectral analysis.

4.2.2 Spectral Analysis

Recall that we model the counting problem by a periodic Poisson process described in 4.1, the

parameter λ(ti , t j ) is represented by its MAP estimate λmap (ti , t j ). Since λ(ti , t j ) is a function

of time, its representation MAP estimate λmap (ti , t j ) is also a function of time with which

follows ∆ periodicity, i.e. λmap (ti , t j ) = λmap (ti +∆, t j +∆). For simplicity, the periodicity

extraction is applied to the λmap (ti , t j ), i.e. point estimates, rather than to its Gamma dis-

tribution. Periodic patterns of λmap (ti , t j ) can be extracted using the Fourier transform by

calculating the frequency spectrum F (ω) of λmap (ti , t j ), i.e. F (ω) = F (λmap (ti , t j )). Once

λmap (ti , t j ) is in frequency domain, a spectral analysis on F (ω) can be carried out. One simple
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spectral analysis is to select l frequency components ωk (for k = 1, . . . , l ) with the highest

absolute value creating a new frequency spectrum F ′(ω). Then the inverse Fourier trans-

formation is performed on F ′(ω) to reconstruct a smooth periodic function of λmap (ti , t j ), i.e.

λ′
map (ti , t j ) =F−1(F ′(ω)). This spectral analysis, which we call l Best Amplitude Model (BAM),

has been adopted by KrajnÃŋk et al. (2014), Krajnik, Fentanes, Cielniak, Dondrup & Duckett

(2014), KrajnÃŋk et al. (2015), Coppola, Krajník, Duckett, Bellotto et al. (2016).

A gradual frequency component selection during the spectral analysis on F (ω) is pro-

posed. To obtain periodic patterns within λmap (ti , t j ), a component ωk with the highest

absolute value is selected, and a periodic function fω(ti , t j ) from the componentωk is created.

Then a function subtraction of λmap (ti , t j ) from fω(ti , t j ) is performed. The result of this sub-

traction is then transformed back to the frequency domain using the Fourier transformation.

The selected component ωk together with its amplitude |ωk |, and its argument ar g (ωk ) is

then added to a set S . Whenever the same Fourier component ωk is obtained, the absolute

value of the component is summed, and the argument of the component is averaged before

it is stored in S . This process repeats until we obtain l desired Fourier components. The l

components which are stored in S consisting of l triples |ωk |, ar g (ωk ), and ωk describe the

amplitudes, the phase shifts and frequencies of the spectral model of λmap (ti , t j ). The details

can be seen in Algorithm 1.

The l−AAM technique is adopted from Templeton (2004), and has been successfully

applied to obtain multi-periodic pulsation from observed stars which have relatively low

pulsation magnitudes. As a consequence, the l−AAM technique is able to capture the mag-

nitude of each Fourier component from the original signal better than the standard l−BAM

technique.

For a detailed comparison between l−BAM and l−AAM, we created a signal formed

of 30 different periodic signals and stretched over 10000 time-points. We performed both

spectral analysis techniques (l−BAM, and l−AAM). The signal and its reconstructions can be

seen in Figure 4.1. The figure clearly shows how close the l−AAM is to the original signal at

each point. This shows that l−AAM captures the magnitude of the original signal better than
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Figure 4.1: A signal composed of 30 different periodic signals and two of its spectral recon-
structions (using the l best amplitude model, and the l addition amplitude model).

the l−BAM does.

After the spectral analysis has been performed on F (ω), with either the l−BAM or l−AAM

technique creating a new frequency spectrum F ′(ω), a smoother λ′
map (ti , t j ) is constructed via

the inverse Fourier transformation, λ′
map (ti , t j ) =F−1(F ′(ω)). Given λ′

map (ti , t j ) as a function

of the new MAP estimates, the corresponding functionλ′(ti , t j ) of the periodic Poisson process

is then used to replace the original λ(ti , t j ) to achieve a smooth λ function. Replacing the

original λ(ti , t j ) is done by reconstructing new Gamma priors Gam(λ′(ti , t j ) |α′
(ti ,t j ),β

′
(ti ,t j ))

using λ′
map (ti , t j ) is where

α′
(ti ,t j ) =

(
λ′

map (ti , t j )∗β′
(i , j )

)+1 (4.5)

with β′
(i , j ) =β(i , j ). This new reconstructed Gamma priors Gam(λ′(ti , t j ) |α′

(ti ,t j ),β
′
(ti ,t j )) will

be updated once a new sample count x for interval time ti , t j arrives and the spectral analysis

process explained in this section is repeated.
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4.3 Evaluation on Synthetic Data for the Spectral
Representation

To investigate the benefit of having spectral analysis via a Fourier transform on the Poisson

parameter λ(ti , t j ), the ability of the Fourier transform to recover periodic patterns from

synthetic data is evaluated first.

The synthetic dataset is a periodic function s(t ) which was built from 30 different peri-

odic signals ωi with i ∈ {1, . . . ,30}, t ∈ {1, . . . ,4×∆}, and ∆= mi n({ω1, . . . ,ω30}). Gaussian noise

is then added to each point t in the function s(t ). The data is then fed to a periodic Poisson

process with the arrival rate λ(ti , t j ) for i , j ∈ {1, . . . ,∆}. The MAP hypotheses λmap (ti , t j ) are

then extracted from the process as point estimates of the periodic Poisson process. These

MAP hypotheses λmap (ti , t j ) are then encoded and extracted via spectral analysis either

with l -AAM or l -BAM technique to produce a smoother series of point estimates λ′
map (ti , t j )

representing l-AAM or l-BAM respectively.

As a comparison to our Fourier reconstruction methods, we include Gaussian processes

as a reconstruction technique which is typically used in time series analysis and modelling.

Gaussian processes (GP) are a state-of-the-art method for learning models from data. It has

been shown that GP with a periodic kernel is able to find repeating patterns for long-term

forecasting Ghassemi & Deisenroth (2014). We specifically choose the Automatic Statistician

(AS) framework of Duvenaud et al. (2013), which employs Gaussian processes. The framework

is able to automatically find a suitable kernel composition through kernel addition, kernel

subtraction, and/or kernel multiplication. Only five base kernels are chosen to be the kernel

composition because the framework are poorly written creating a time-consuming process

to construct and calculate the coefficient matrix. l−BAM technique is also included in this

experiment as a representation of the FreMEn model KrajnÃŋk et al. (2014).

As the synthetic dataset is a periodic function s(t ), t ∈ {1, . . . ,4×∆} whose values are fed

to the periodic Poisson process, we performed four-fold-cross-validation (CV) on the dataset

where each CV-fold is one complete periodic data which has ∆ data points. We compared

four models including the periodic Poisson processes, l−AAM, l−BAM, and the Automatic
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Table 4.1: Comparison of the predictive accuracy (root mean squared error (RMSE)) of a
periodic Poisson process, two spectral reconstructions, and the Automatic Statistician using
synthetic datasets.

Method
RMSE

no-noise noise
periodic Poisson processes 101.14 167.98
l Addition amplitude model (AAM) 101.13 161.48
l Best amplitude model (BAM) 109.11 165.53
Automatic statistician (AS - 5 kernels) 101.57 170.31

Statistician. We recorded the distance of the count data from the point estimates λmap (ti , t j )

for the periodic Poisson processes, or from the smoothened point estimates λ′
map (ti , t j ) for

the l -AAM, l -BAM, and the Automatic Statistician. The root mean squared error (RMSE) was

chosen to be an evaluation metric of the predictive accuracy of the reconstruction and is

shown in Table 4.1.

With the absence of noise, Table 4.1 shows that many models performed similarly,

with the exception of l−BAM which performed poorly. In the presence of noise, l−AAM

and l−BAM performed slightly better than the AS model. The evaluation process on the

reconstruction model produced by l-AAM, l-BAM, and the AS model can be thought as a

regression test to assure the wanted accuracy of the system after the smoothing procedures.

The AS model might have performed poorly because there is no limitation with what

kernel composition it can build to reconstruct the periodic Poisson model even though

the prior information is available suggesting periodic kernels. However, even if the kernel

composition is restricted to be composed of periodic kernels only, the AS model still requires

30 different periodic kernels representing 30 different periodic signals. Assuming this can be

achieved, which was infeasible with limited computational power the author had at that time,

the AS model may perform as well as the l -AAM model (This argument is based on the result

of the comparison between l−AAM and l−BAM from Figure 4.1).

One should note that strong uniform Gamma priors for the periodic Poisson processes

were used, i.e. λ(ti , t j ) ≈λ(ti+1, t j+1), which are suitable for later use in our real-world datasets.

We did not try to find suitable priors to match our synthetic dataset. As a result, the periodic
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Poisson process, which is the basis of all other tested reconstruction models, did not perform

well on our synthetic dataset with the average error 100 without noise and 167 with noise.

4.4 Evaluation on Real-World Data

As the previous section shows, the periodic Poisson process with Fourier reconstruction gives

a better prediction than a state-of-the-art GP model on a synthetic dataset. The investigation

then moved to evaluate the prediction performance of the periodic Poisson process with its

Fourier reconstruction techniques on a large, real-world dataset. The prediction performance

of the Automatic Statistician is still included as a comparison to the proposed framework.

This section starts with a brief explanation of the dataset.

4.4.1 Data Set

The dataset is a collection of human trajectories resulting from a long-term deployment of

the mobile robot. The data are from a one-month deployment in one of the G4S buildings

in Tewkesbury, using a Metralabs Scitos A5 mobile robot equipped with a laser range finder

and an RGB-D camera. The robot patrolled on weekdays with a pre-specified schedule (9am

- 5pm) and charged at its charging station during weekends and public holidays. A robust

human tracking algorithm was used to detect and track humans passing within range of its

sensors, whose 2D Cartesian poses were stored in a database Dondrup et al. (2015). Most of

these detections, which represent human trajectories, do not represent a complete track of a

person. They only represent a small fraction of a person’s motion. Moreover, as the robot was

patrolling, detections were scattered across places.

Even though approximately 30.000 human trajectories were detected during the deploy-

ment, many of them were false positives, including table legs and chairs. To remove false

positives, a simple filtering method was used. This is based on the displacement pose ratio,

which means the distance between the first pose and the last pose of the trajectory over the

number of poses in the trajectory Duckworth et al. (2016). A low number of displacement
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Figure 4.2: The environment for the dataset with semantic regions annotated. The envir-
onment consists of two open plan areas {1,3}, a corridor {12}, a kitchen {5}, three single
occupancy offices {2, 10, 11}, three regular offices {4, 8, 9}, and two meeting rooms {6, 7}.

pose ratio for a human trajectory shows that the detected person was stationary. Of 30.000

human trajectories, the 20% of the highest displacement pose ratio were taken as the dataset.

With this filtering, false positives still appear, but the number is significantly reduced.

Since the building where our robot was deployed is a large area, we hand-segmented the

office into semantic regions such as offices, open plan areas, a kitchen and corridors. From

this process, we obtained 12 datasets, one dataset for each semantic region, over a four-week

period. The segmented regions can be seen in the global map in Figure 4.2.

Performance on a Real World Dataset

All collected and filtered human trajectories were used as inputs to calculate the posterior

λ(ti , t j ) of the periodic Poisson process for each region in the map. As defined in Equation 4.2,

a fixed cycle ∆ must be chosen to define a periodic Poisson process, hence, ∆ was set to a week

period for the periodic Poisson process. As a result, each region has four sets of a week worth

of trajectories. The MAP point estimates λmap (ti , t j ) are then chosen to represent λ(ti , t j ) for

each periodic Poisson process. The λmap (ti , t j ) for i , j ∈ {1, . . . ,∆} is then spectro-analysed via

Fourier analysis to encode and extract its periodic spectrum F (ω). The periodic spectrum
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Figure 4.3: The λmap (ti , t j ) of the corridor (region 12) updated over 4 week period.

F (ω) can be seen as learnt periodicities for λmap (ti , t j ) that represents the region. The learnt

periodic spectrums are then used to reconstruct a smooth λ′
map (ti , t j ) for better prediction

of the level of human activity in a particular space at a particular time. Figure 4.3 shows

an example of how the λmap (ti , t j ) of a weekly periodic Poisson process looks after being

updated using a four-week long dataset. The red bar at each point in Figure 4.3 shows the

upper and lower bound of the confidence interval of each λ(ti , t j ).

We compared the four models described in the previous section in terms of their pre-

dictive accuracy on our real-world datasets. We performed four-fold-cross-validation (CV) on

the collected dataset where each CV-fold is a different week.

Results are presented in Table 4.2. From the average result, l−AAM, l−BAM, and the

AS model improved the predictive accuracy by 6%, 4.3%, and 3.1% respectively. Once more,

the table confirms that in the presence of noise, models with spectral analysis performed

slightly better than the one with full Bayesian inference. It can also be concluded from both

the synthetic data and real-world data (referring to Tables 4.1 and 4.2) that the introduction of

the l−AAM technique improves the predictive accuracy.

The time needed for the model reconstruction process can be seen in Table 4.3. In terms
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Table 4.2: Comparison of the predictive accuracy of root mean squared error (RMSE) of the
periodic Poisson process, two spectral-Poisson models, and the Automatic Statistician using
real-world dataset.

Method
RMSE for each region

Avg
1 2 3 4 5 6 7 8 9 10 11 12

Poisson 2.6 9.5 7.3 2.6 5.8 2.9 4.4 4.1 1.9 1.5 4.9 5.0 4.4
l−AAM 2.5 9.0 6.6 2.6 5.7 2.4 4.2 4.0 1.9 1.4 4.8 4.7 4.1
l−BAM 2.6 9.0 6.9 2.6 5.7 2.4 4.2 4.0 1.9 1.4 4.8 4.9 4.2
AS 2.5 8.7 6.7 2.7 5.8 3.4 4.3 4.0 2.0 1.5 5.0 4.8 4.3

Table 4.3: Comparison of the computation time of the spectral-Poisson processes and the
Automatic Statistician using the real-world dataset. Note that the Automatic Statistician is
recorded in hours, while the l−AAM and l−BAM techniques are in seconds.

Method
Learning time for each region

Avg
1 2 3 4 5 6 7 8 9 10 11 12

l−AAM 1.1 1.0 1.3 0.8 0.8 0.6 0.8 1.0 0.8 1.0 1.2 1.4 0.9
l−BAM 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.3 0.2 0.1 0.2
AS 3.4 1.8 4.0 1.9 2.5 2.4 1.4 2.0 2.0 1.2 2.9 1.5 2.3

of speed, the l−BAM reconstruction technique outran other models at least by a factor of

5. The l−AAM reconstruction technique is still fast completing in one second on average.

This leaves the AS model by far the slowest one, with at least one hour needed to do the

reconstruction.

One might argue that the computation time comparison is unfair. Recall that the AS

framework has no restriction to what kernel compositions it should build. This created

vast possible kernel compositions for the AS framework to test. This resulted in a long time

computation time choosing the suitable kernel composition to reconstruct the periodic

Poisson process. Restricting the AS framework to look up only on periodic kernels might

reduce the computation time significantly. However, the option to pre-choose possible

suitable kernels in the AS framework was not available at the time the author evaluated this

chapter.
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Figure 4.4: The Similarity of the room 8 and 9 signatures indicates that these rooms have a
similar pattern of associated arrivals.

4.5 Spectro-Temporal Clustering

Figure 4.5: DP-Means clustering.

Figure 4.4 shows that some of the regions have a similar frequency spectrum F (ω). This

means that these regions have similar counting patterns. This section is dedicated to testing

the aforementioned hypothesis. Moreover, this section also shows whether regions having

similar counting patterns are bound to any functionality classification. To do that a clustering

process that makes weak prior assumptions about the number of groups of regions and which

will produce a hierarchical structure capturing the similarities in the periodicity of the counts

across regions is required. For this Dirichlet Process (DP)-means clustering introduced by
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Kulis & Jordan (2012) is employed. Inspired by the asymptotic connection between k-means

and mixtures of Gaussians, Kulis & Jordan (2012) showed that a Gibbs sampling algorithm for

the Dirichlet process mixture approaches a hard clustering algorithm in the limit, and further

that the resulting algorithm monotonically minimizes an elegant underlying k-means-like

clustering objective that includes a penalty for the number of clusters. Rather than explicitly

deciding the number of clusters prior to the learning process, the penalty parameter is varied

in using this clustering algorithm. The clustering was compared to the standard K-Means

algorithm.

The l−AAM reconstruction technique for the periodic Poisson process was used to

obtain the frequency spectrum F (ω) out of the λmap (ti , t j ) for each region. ∆ was set to

a week period for the periodic Poisson process. The F (ω), one for each region, was then

used as features for the clustering algorithms. Specifically, frequencies extracted by l-AAM

construction technique for each region are gathered and they act as features, i.e. columns, for

the clustering algorithms. Each region produces a vector of these features where the value

on each column represents the amplitude of a frequency corresponding to the column. For

example, a region which has frequency 1 (weekly routine) with a value A and frequency 7 (daily

routine) with a value B produces a vector in the form of {1 : A,2 : 0,3 : 0,4 : 0,5 : 0,6 : 0,7 : B}

assuming the common frequencies gathered from all regions are frequency 1,2,3,4,5,6,7.

Each clustering process constructs a tree which expresses the counting pattern similar-

ities between regions in a hierarchical fashion. For the DP-means clustering, the dendrogram

was produced by varying the penalty parameter, whereas, for K-Means, the dendrogram was

produced by varying the number of clusters we would like to have. Figures 4.5, and 4.6 show

the dendrograms produced by DP-Means clustering and K-Means clustering.

From Figures 4.5 and 4.6, it is easy to verify that the clusters produced by two clustering

algorithms are sensible. The clusters formed by the algorithms match roughly with the

semantic room type hierarchy. One should note that the single occupancy office {2} is a

special case. This room belongs to the manager. It thus has quite different periodic arrival

patterns to other offices.
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Figure 4.6: K-Means clustering.

4.6 Discussion

This chapter presented a framework to build a probabilistic model of periodic counting

processes from observations which are sparse and scattered across time. It is motivated by

the fact that the inference made by a counting model built from sparse observations may lead

to incorrect conclusions. The framework is based on an assumption that the count data have

periodicities which can be observed from the fluctuating number of counts. The count data is

modelled by a periodic Poisson process and the periodic patterns are described by means of

frequency, amplitude, and phase, modelled using the Fourier and inverse Fourier transforms.

By taking the most significant spectral components of the Fourier transform, we indirectly

obtain the most significant periodic patterns in the count data.

The application was both on simulated data and real-world data, in counting the level

of human activity observed by an autonomous mobile robot. This showed that this frame-

work is able to find regular patterns from sparsely populated observations of count data. It

consistently outperformed other temporal modelling methods while being computationally

more efficient. The application also shows that each periodic Poisson process has a unique
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frequency spectrum which can be further used as features for spectral clustering.

The spectral Poisson process provides a way to deal with representing recurring tem-

poral patterns of count data from temporally incomplete data observations. However, the

framework explained in this chapter relies on two things. First, the framework here assumes

that the underlying Poisson process has periodicities embedded into it. A Poisson process

which is aimed to model trend either locally or globally might be modelled better with other

approaches such as Gaussian processes or ARIMA models. Second, the framework also as-

sumes that the event counting algorithms where these counts are made are perfectly reliable.
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Part II

Statistical Inference from Unreliable

Multi-sensor Data

69





CHAPTER 5

RELATED WORK ON PARAMETER

ESTIMATION WITH SYSTEMATIC ERROR

This chapter specifically aims to provide reviews of previous work on statistical inference

with unreliable count data which come from systematic errors. In count data, systematic

errors are introduced in each bit, i.e. presence or absence of a person, that makes up the

count. Each bit may experience mis-classification and the count resulted from that may end

up undercounting or overcounting. The count may also end up having the correct value but

the bits making up the count experience mis-classification which counteracts one another. In

the review, the focus is on how approaches identify the background or noise and correct the

estimation of the parameter of interest.

5.1 Parameter Estimation with Misclassified Counts

The early literature on the effects of misclassified counts involved only binomial and mul-

tinomial models Bross (1954), Chen (1979), Hochberg (1977), Tenenbein (1970), Viana et al.

(1993). Misclassification happens when there are false positive counts or false negative counts

71



72 Related Work on Part II

(or possibly both). False positive counts, which can also be called the overcount, are when

the count includes occurrences other than those of interest. Whereas false negative counts,

which can also be called the undercount, are when some of the count of interest are missed

or omitted. The first technique which was recorded to handle misclassification was double

sampling. It was first introduced by Tenenbein to correct for misclassification of binomial

data and obtain a maximum likelihood estimate Tenenbein (1970). The double sampling

approach utilizes two search techniques to retrieve relevant information: an expensive clas-

sification technique to obtain the true count, and a less-expensive classification technique

only for error-prone counts. For the expensive classification method, search techniques

to obtain the true count, along with the false positive count and false negative count, are

used. This part is referred to as a training sample. The training sample typically comes from

a small observation-opportunity interval in time or space. In the second, less-expensive,

classification method one uses a larger sample with only error-prone counts available. The

results of both counts are then combined to obtain estimators for the Poisson rate, and also

for the misclassification parameters. The work of Tenenbein was then extended by Chen

Chen (1979) and Hochberg Hochberg (1977) to correct mis-classified counts in categorical

and multinomial models to obtain maximum likelihood estimates. Viana et al., injected prior

distributions and presented Bayesian estimators for the binomial model using the double

sampling technique Viana et al. (1993). Bekele extended the work of Viana by introducing

a weighted prior scheme and allowing for several sources of information, including expert

opinions Bekele (1998).

Moving on from the case of binomial and multinomial models, there are a limited

number of works concerning the Poisson model with misclassification. Many deal with the

undercount (or under-reporting) problem as this is quite a common problem. Whittemore and

Gong estimated cervical cancer rates by taking into account false negative data Whittemore

& Gong (1991). Winkelmann and Zimmermann introduced a combination of a Poisson

regression model with a logit model for under-reporting, yielding the Poisson-Logistic model.

They applied this to model the number of days emloyees were absent from a workplace. The
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specification of Poisson regression allows Winkelmann and Zimmermann to relate both the

intensity of the Poisson process, as well as the reporting probability, to a set of potential

covariates. However, even in a simple model where both the intensity of the Poisson process

as well as the reporting probability are assumed constant, the resulting model is not identified

based solely on the reported count data Dvorzak & Wagner (2016). Identification requires

additional information, which can be provided either by additional data on the reporting

process, parameter restrictions or prior information on parameters, e.g., provided by experts.

One of the works which illustrated the requirement to have additional information was

done by Moreno and Girò Moreno & Girón (1998). They incorporated prior information

in a Bayesian analysis of two data sets on assaults. Dvorzak and Wagner assumed a small

set of validation data is available, which provides information for the true counts Dvorzak

& Wagner (2016). A Bayesian analysis of the Poisson-Logistic model was performed and

Bayesian variable selection was incorporated to identify regressors with a non-zero effect and

also to restrict parameters of the Poisson-Logistic model.

The effect of misclassification on the Poisson distribution, in the case when the count

data may either be undercounting or overcounting, has not been documented as well as the

binomial case. Kircher et al. showed that, for a sample of deaths in Connecticut, the cause

of death on death certificates often differs from the actual cause, determined by autopsies

Kircher et al. (1985). Sposto et al. estimated both cancer and non-cancer death rates, assuming

false negatives are possible on both sides of these counts Sposto et al. (1992). The approach

used by them followed the frequentist framework. Bratcher and Stamey used a Bayesian

method to estimate Poisson rates in the presence of both undercounts and overcounts. They

used the double sampling technique where the first sample is searched with both a fallible and

an infallible method and the second sample is searched with only a fallible method Bratcher

& Stamey (2002). Binomial random variables are used to model the false negative counts,

whereas Poisson random variables are used to model the false positive counts. Consider a

sample size of Poisson experiments L, and the Poisson rate λ. They assumed the following
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models for the various counts

True Count: T ∼ Poi (t | Lλ)

FN Count: (X | T = t ) ∼ B(x | t ,θ)

FP Count: Y ∼ Poi (y | Lφ)

with θ as the rate of false negatives, andφ as the rate of false positives. The observed count still

follows Poisson as Z = (T −X )+Y ∼ Poi (z | Lµ),µ=λ(1−θ)+φ and the marginal distribution

of Z is in the form

P (z) =
∫ 1

0

∫ ∞

0

∫ ∞

0
f (z |λ,φ,θ)g (λ)g (φ)g (θ) dλ dφ dθ

with g (.) as prior distribution. The posterior distribution of λ is calculated from g (λ | z) =
f (z,λ)/m(z) where f (z,λ) may be derived in a similar manner to P (z). The expressions

include large sums involving hyper-geometric and confluent hyper-geometric functions. The

functions do not have closed form and must be approximated in infinite series form. Because

of that, the posteriors are computationally expensive to evaluate. For moderate to large

sample sizes, the Gibbs sampler was suggested to approximate these posterior distributions

Bratcher & Stamey (2002).

The work of Bratcher and Stamey to estimate the Poisson rate was then extended to a

fully Bayesian method for interval prediction of the unobservable actual count in a future

sample, given a current double sample Stamey et al. (2004). Two additional Bayesian predictive

probability functions for predicting false positives and false negatives were also introduced.

Stamey and Young Stamey & Young (2005) managed to obtained closed-form expressions

for maximum likelihood estimators (MLEs) of the false negative rate, the false positive rate,

and the Poisson rate for the model proposed in Bratcher & Stamey (2002). The estimators are

straightforward to calculate and to interpret in terms of evaluating the effectiveness of using

unreliable counts.



5.2 Parameter Estimation with Signal and Background Model 75

5.2 Parameter Estimation with Signal and Background
Model

Some of the practical problems involving counting processes can be reduced to the case of

counting events coming from two independent Poisson-distributed contributions. These two

contributions are referred to as "signal" and "background". This approach is quite popular in

physics, such as the case of underground detectors which measure the result of high-energy

particle collisions. In many papers the aim is to estimate the parameter of interest, although

some of them are interested in finding a possible excess which can be attributed to a faint

signal. Typically, evidence for the signal is difficult to find and the upper limit of the signal

intensity is provided as a replacement Casadei (2011). Moreover, in many practical problems,

separating the signal from the background is not an easy job because, usually, only fewer

quantities are directly observable, and sometimes only the total number of observed events

can be measured Casadei et al. (2017). An attempt to separate the signal from the background

has been tried several times in the frequentist framework Bityukov & Krasnikov (2000). The

approach using the Bayesian framework was then introduced to tackle similar problems

Demortier et al. (2010), Pierini et al. (2011).

To show how signal and background counts are represented, let us assume x = 0,1,2, . . .

observed counts following a Poisson distribution. The signal and background sources are

independently Poisson distributed with parameters λ and Λ, such that k is sampled from

a Poisson distribution with parameter λ+Λ : x ∼ Poi (x | λ+Λ). As many have done, the

aim is to estimate the signal rate λ≥ 0, as is practically always the case in the search for new

phenomena Casadei (2012), and treatΛ≥ 0 as a noise parameter. The result of the statistical

inference is provided by the joint posterior probability density

P (λ,Λ | x) ∝ Poi (x |λ+Λ)P (λ,Λ)

with P (λ,Λ) as the prior distribution. The reference analysis technique, introduced by Ber-

nado in Bernardo (2005), is the preferred technique since all available information comes
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only from the assumed model and the observed data; no additional prior information is

available. The core of this technique lies in the formulation of the reference prior π(s,b)

Berger et al. (2009), defined so as to maximize the amount of missing information, and the

result of the inference is the reference posterior obtained by using π(λ,Λ) in place of p(λ,Λ)

in the Bayes theorem above. Assuming one is interested in making inferences about the back-

ground rateΛ, an integration of the posterior can be made to obtain the marginal posterior

P (λ | x) = ∫ ∞
0 P (λ,Λ | x)dΛ, as the final solution Berger et al. (2009), Bernardo (2005). From

P (λ | x), summary information such as the posterior expectation or MAP hypothesis enclosed

by intervals representing some given probability can be computed.

Casadei considered a situation where no prior information about the signal rate λ is

available, but the prior estimate of the background expectation E [Λ] and standard deviation
p

V [b] are available Casadei (2012). These two are enough to specify a unique prior density

such as a gamma density

P (Λ) =Gam(Λ |α,β) = βα

Γ(α)
Λα−1e−βΛ

with shape parameter α > 0, and scale parameter β > 0 fixed by requiring E [Λ] = α/β and

V [Λ] = α/β2. With a prior background following a gamma density, the marginal model

becomes

P (x |λ) =
∫ ∞

0
Poi (x |λ+Λ)Gam(Λ)dΛ

=

(
β

1+β

)α
e−λ f (λ | x,α,β)

where the polynomial

f (λ | x,α,β) =
x∑

m=0

α+m −1

m

 λx−m

(x −m)!(1+β)m

acts like (λ+α/β)x when both α,β are very large.

Hence, the reference prior also depends on the background parameters, and it does so
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via Fisher’s information function

| I (λ) |1/2=
[(

β

1+β
)α

e−λ ∞∑
n=0

f (λ | x,α,β)2

f (λ | x +1,α,β)
−1

]1/2

which involves an infinite sum over terms featuring the polynomial. Since the function is not

integrable, Casadei suggested

π(λ) = | I (λ) |1/2

| I (0) |1/2

which makes it trivial to compare it against the uniform prior, so widespread that it can be

considered a conventional prior Casadei (2014). When the reference prior π(λ) been defined,

the marginal reference posterior for the signal rate is defined as

P (λ | x) ∝
(

β

1+β
)α

e−λ f (λ | x,α,β)π(λ)

The equation is a proper density where the normalization constant is just the integral of the

expression above.

5.3 Summary

This chapter reviewed some approaches which address parameter estimation, especially in

the Poisson model, with unreliable count data. The unreliability of the data can be modelled as

misclassification or background noise. Techniques which reduce the case of counting events

to two independent processes have shown an inability to account counts of interest which

are missed or omitted (undercounting). Some other techniques which address the effect of

mis-classified counts have addressed mis-classification counts which include undercounts

as well as overcounts. However, the posterior is computationally expensive to evaluate and

Gibbs sampling was suggested to approximate this posterior distribution.
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CHAPTER 6

PARTIALLY OBSERVABLE POISSON

PROCESS: INDEPENDENT SENSORS

This and subsequent chapters address the problem of how to efficiently correct miscounts

made by multiple unreliable counting processes. Where these counts are made using sensor

data, many currently available event counting algorithms have some level of unreliability. This

has been shown in Chapter 4 where from 30.000 trajectories collected by a human tracking

algorithm, almost 24.000 of them are false positives. This means that large data-sets typically

contain systematic errors that lead to bias in the statistical estimates produced by the counting

processes.

Practical Bayesian estimators are developed for a partially observable Poisson process

(POPP) where miscounts by counters are the only observable information. The work in this

thesis deals with a homogeneous Poisson process first. The concept of POPP is introduced

where the assumption that miscounts by various counters are conditionally independent

from one another given the true count holds.

The term "partially observable Poisson process" sometimes refers to the Markov modu-

lated Poisson process (MMPP) where a Poisson process in which fully observable counts are
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conditioned on a latent state which evolves according to a Markov chain Ludkovski & Sezer

(2012), Scott (2001), Ihler et al. (2006), Scott (1998), Meier-Hellstern (1987), RydÃl’n (1996),

Prabhu & Zhu (1989). The POPP considers the true count as a latent variable. The values of

which are inferred from observations made by unreliable counters. In general, this chapter

makes the following contributions:

• The POPP poses the problem of how to correctly estimate the parameter of a single

homogeneous Poisson process in which true counts are observed through multiple

unreliable counters.

• Because the POPP has no conjugate density and its posterior has a number of elements

that grow exponentially in the number of observations, the posterior may only be

approximated for long sequences of observations. The second contribution of this

chapter is to present three tractable approximations to the posterior.

This chapter starts by revisiting the definition of a Poisson process which was introduced

in Section 2.3. In Section 6.2, the proposed POPP is described in a mathematical form. Section

6.3 describes all three approximations to the posterior distribution of POPP. The performance

of these approximations is evaluated on simulated data, and the results are discussed in

Section 6.4. Section 6.5 describes the experimental results on real-world data. This section

also showcases the experimental results of partially observable non-homogeneous Poisson

processes. Finally, Section 6.6 discusses the limitations of the work presented in this chapter.

6.1 Fully Observable Poisson Process (FOPP)

Let us briefly recall the Poisson process which, from now on, is called the fully observable

Poisson process (FOPP).

A fully observable Poisson process is a counting process N (t1, t2) where a counter

enumerates, without error, the number of events that occurred during a specified interval

(t1, t2). N (t1, t2) = xi states that in the i -th observation of interval (t1, t2), there are xi events.
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The number of events N (t1, t2) between t1 and t2 follows the Poisson distribution,

Poi (N (t1, t2) = x |λ) = e−λλx

x!

where λ represents the arrival rate, mean count, intensity, or expected number of events in a

fixed interval (t1, t2).

Given a series of events x1, . . . , xn and that the arrival rate λ follows a Gamma prior

Gam(λ |α,β) =
βα

Γ(α)
λα−1e−βλ

where α,β are the shape and the rate parameters Fink (1997). Since the gamma distribution is

the conjugate density for the Poisson, the posterior for the arrival rate λ is also Gamma:

P (λ | x1, . . . , xn) ∝ Poi (x1, . . . , xn |λ) Gam(λ |α,β) (6.1)

= Gam

(
λ |

n∑
i=1

xi +α,n +β
)

6.2 Partially Observable Poisson Process (POPP)

Recall that in the FOPP, there is an assumption that the counter is reliable. This assumption is

now removed since many sensor based algorithms have some level of unreliability. Counters

may either under-count or over-count. As discussed in Chapter 3, a noise model Dondrup

et al. (2015), Schmid et al. (2006) or a filtering algorithm Duckworth et al. (2016), Jovan et al.

(2016) might cope well with over-counting. However, under-counting is still an issue. Here

the FOPP is altered to incorporate a model of the sensor’s reliability to cope both overcount

and undercount.

The true count (or simply count) and the sensed count are distinguished. The true count

xi is the number of events that actually occurred in the i -th sample from the interval (t1, t2).

Suppose that several sensors are available, and thus the sensed count s j i is the count given by
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Figure 6.1: Graphical representation of the POPP.

sensor j in the i -th sample from the interval (t1, t2). This means that a fully reliable sensor j

has s j i = xi for each sample 1 ≤ i ≤ n.

A graphical model with the structure shown in Figure 6.1 is obtained. As shown in the

Figure, the true count xi has become a latent variable which can only be inferred from the

sensed count s j i of each sensor j , and the posterior of the Poisson parameter λ is inferred

from the posterior of the xi updated by a vector of m sensed counts −→si = (s1i , . . . , smi ).

The parameter λ can be estimated by Bayesian averaging the posterior P (λ | xi ) over all

possible count values xi with mixing proportions equal to the posterior over xi given −→si . The

posterior of λ, given n samples −→s = (−→s1 . . .−→sn), each consisting of m sensors, is:

PG (λ | −→s ) =
∞∑

x1=0
. . .

∞∑
xn=0

P (λ | −→x ) P (−→x | −→s )

=
∞∑

x1=0
. . .

∞∑
xn=0

Gam

(
λ |

n∑
i=1

xi +α,n +β
)

P (−→x | −→s )

(6.2)

with −→x = (x1, . . . , xn) for 1 ≤ i ≤ n.

P (−→x | −→s ) is a joint posterior over a series of (true) count xi given the series of sensed

count si . Factoring P (−→x | −→s ) is started by making the assumption that the vector of sensed

counts for sample i −→si is conditionally independent of all other vectors of sensed counts for

sample j −→s j . Then we assume that each sensor is conditionally independent of the other sensors

given xi . Consequently, the probability that the vector of true counts is −→x , given n samples of

the vector of m sensed counts −→s1 , . . . ,−→sn , is
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P (−→x | −→s1 , . . . ,−→sn) ∝ P (−→s1 , . . . ,−→sn | −→x ) P (−→x )

∝
n∏

i=1
P (−→si | xi ) P (xi )

∝
n∏

i=1

m∏
j=1

P (s j i | xi ) P (xi | −−→x−1)

(6.3)

where −−→x−1 = xi−1, . . . , x1. The independent sensor assumption not only provides convinient

calculation for a joint probability distribution of P (−→x | −→s ), but also reduces the training data

size needed to construct a sensor model for each sensor j (this will be discussed further in

Chapter 9, Section 9.2). However, this assumption comes with a drawback which is discussed

and solved in Chapter 8.

To complete Equation 6.3, P (s j i | xi ) and P (xi | −−→x−1) must be defined. The P (xi | −−→x−1)

can be considered as the conditional distribution of xi informed by the previous counts

xi−1, . . . , x1. It is obtained by imposing a Gamma prior Gam(λ |α,β) on the parameter λ of

the Poisson distribution Poi (xi | λ) and integrating out λ. It is a Poisson-Gamma mixture

which takes the form of a negative binomial distribution.

P (xi | −−→x−1)=
∫ ∞

λ=0
P (xi |λ) P (λ | −−→x−1) dλ

=
∫ ∞

λ=0
Poi (xi |λ) Gam(λ |α,β) dλ

=
∫ ∞

λ=0

e−λλxi

xi !

βα

Γ(α)
λα−1e−βλ

=
βα

xi ! Γ(α)

Γ(xi +α)

(β+1)xi+α

=

(xi +α−1

xi

)(
β

β+1

)α(
1

β+1

)xi

=N B

(
xi |α,

β

β+1

)

(6.4)

P (s j i | xi ) can be thought of as a representation of a noise model for each sensor j .

P (s j i | xi ) integrates the sensor model of sensor j in calculating how likely sensor j produces

a sensed count s j i given the true count xi . To integrate the sensor model of each sensor j
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into the calculation of P (s j i | xi ), the Poisson limit theorem, which states that the Poisson

distribution may be used as an approximation to the binomial distribution Papoulis & Pillai

(2002), is taken advantage of. An arbitrarily close approximation to the probability P (s j i | xi )

is defined by assuming there exists a small enough finite subinterval of length δ for which

the probability of more than one event occurring is less than some small value ε. With this

assumption, interval (t1, t2) is split into l smaller subintervals I1, . . . , Il of equal size, with the

condition that l > λ (the condition is crucial since we focus on very small portions of the

interval). Consequently, the whole interval (t1, t2) = I1, . . . , Il becomes a series of Bernoulli

trials, where the k th trial corresponds to whether (1) an event ek happens with probability

λ/l and (2) a sensor j captures the event ek as the detection dk at the subinterval Ik .

Given the argument above, the probability of s j i detections given xi events happened

is the aggregate of true positives tp j i in xi sub-intervals, and false positives fp j i in l − xi

sub-intervals. The probability of a true positive detection (TP) for sensor j in a sub-interval is

tpr j = P j (d = 1 | e = 1), and the probability of a false positive detection (FP) is fpr j = P j (d = 1 |
e = 0). Both tpr j and fpr j are the sensor model of sensor j and represent how reliable sensor

j is. Thus P (s j i | xi ) is defined as a sum of two binomial distributions B(r | n,π), where the

aggregate is constrained to be s j i :

P (s j i | xi )=
xi∑

tp j i=0
B

(
tp j i | xi , tpr j

)
B

(
fp j i |∆xi , fpr j

)
(6.5)

where s j i = tp j i + fp j i , tpr j = P j (d = 1 | e = 1), fpr j = P j (d = 1 | e = 0), and ∆xi = (l −xi ).

Equation 6.2 now makes the posterior ofλ depend not only on the nature of the problem,

and the settings of hyper-parameters α and β but also on the reliability of each individual

sensor. It also shows the difficulty of belief state estimation in a POPP since there is no

conjugate density. Each sensed count −→si sample used to update the posterior of λ adds a

factor of countably infinite number of elements. The resulting posterior is a sum of countably

infinite sums. One can place an upper bound l on the maximum value of each xi , but it still

makes the number of elements in the posterior grow by a factor l with every sensed count −→si .
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P(λ |∞,∞) . . .

P(λ |∞,0) P (∞|−→s1) P (0 | −→s2) . . .

P(λ | 0,0) P (0 | −→s1) P (0 | −→s2) . . . P(λ | 0,∞) P (0 | −→s1) P (∞|−→s2)

. . . Σ∞
x2

P (λ |∞, x2)P (∞|−→s1)P (x2 | −→s2)

Σ∞
x2

P (λ | 0, x2) P (0 | −→s1) P (x2 | −→s2) . . .

Σ∞
x2
Σ∞

x1
P (λ | x1, x2) P (x1 | −→s1) P (x2 | −→s2)

P (λ | −→s1 ,−→s2)

Figure 6.2: Belief state estimation of PG (λ | −→s1 ,−→s2).

For example, assume the upper bound of the true count is l , and two sensed counts −→s 1,−→s 2

are available. Calculating the posterior of λ given the first sensed count −→s 1, i.e. PG (λ | −→s1),

produces a sum of l gamma distributions. Calculating the posterior of λ given the second

count −→s 2, i.e. PG (λ | −→s1 ,−→s 2), produces a sum of l of a sum of l gamma distributions. This

process is depicted by Figure 6.2. As it can be seen from the figure, a parent node is the sum

of its children and the number of direct children of a parent is the upper bound l on the

maximum value of each xi .

With this difficulty noted, three different approximations to the posterior are proposed

under some reasonable independence assumptions.

6.3 Approximation Filters

To provide an efficient estimator of Equation 6.2, three filters, each of which offers an approx-

imation to the posterior are proposed. First, the posterior Equation 6.2 can be approximated

by a single gamma distribution. This approximation gets worse as sensor reliability degrades.

A histogram filter is also introduced which is significantly slower in approximating the pos-
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terior than the single gamma approximation, but it hovers around it consistently as sensor

reliability degrades. Finally, these two approximations can be combined into a switching filter

which balances the accuracy against computational cost.

6.3.1 Gamma filter

Algorithm 2 Gamma filter
Input: (xi , yi ): yi = P (λ= xi | −→s )

β : Gam(λ |α,β)
Output: α,β
Procedure:

// Initialise epoch, error, and maximum step
1. Init. η← 0, ηmax ← p, er r ← q , step ← r
// Acquire the mode of P (λ | −→s )
2. x ← mode((x1, y1) . . . , (xm , ym))
3. Repeat until η> ηmax

// Acquire new β′ within step boundaries
• β′ = r andom(β− step,β+ step)
// Acquire α′ of Gamma density
• α′ ← x ∗β′+1
// calc DK L(P (λ | −→s ) ∥Gam(λ |α,β))
• er rn = DK L(P (λ | −→s ) ∥Gam(λ |α′,β′))
// minimise KL-divergence
• if er rn < er r

er r ← er rn

η← 0, β←β′, α←α′

• else
η← η+1

Equation 6.2 is an infinite mixture of gamma distributions. If the sensors were reliable,

the mixtures would be reduced to a single gamma distribution, and the equation would

simplify, by definition, to a single gamma posterior for a FOPP. Thus, it could be assumed

that the sensors have minor unreliability and use a single gamma as an approximation to

the posterior. It is expected that this approximation deteriorates if the sensors become more

unreliable. Thus, in this approximate filter, as observations arrive, the true posterior as a

sum of gamma distributions is calculated using Equation 6.2 and then fit a single gamma to

it by hill climbing algorithm on the KL-divergence. Assuming a single Gamma distribution
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Gam(λ |α,β) is sufficiently representative of PG (λ | −→s ), one would expect that the Gamma

distribution and PG (λ | −→s ) behave similarly in terms of KL-divergence over λ.

To approximate PG (λ | −→s ), an optimisation algorithm which minimises KL-divergence

between a single Gamma distribution Gam(λ |α,β) and PG (λ | −→s ) is proposed and is shown

in Algorithm 2. The KL-divergence DK L(P (λ | −→s ) ∥Gam(λ |α,β)) is chosen in this direction

to specifically measure the information lost when Gam(λ |α,β) is used as an approximate of

P (λ | −→s ). Since P (λ | −→s ) represents a precisely calculated distribution ofλ, while Gam(λ |α,β)

represents an approximation of P (λ | −→s ), in order to find a distribution Gam(λ |α,β) that is

closest to P (λ | −→s ), KL-divergence must be minimised.

The algorithm operates as follows. The input of the algorithm is the posterior distri-

bution PG (λ | −→s ) obtained by calculating Equation 6.2, and the β parameter of the prior

distribution PG (λ) which is assumed to follow a gamma distribution. In each step, a new β

which is close to the current β is chosen, and the new parameter α of the gamma distribution

is derived from the new β and the peak (the mode) of the posterior distribution PG (λ | −→s ). The

approximated gamma is then built, and the KL-divergence between the approximated gamma

and PG (λ | −→s ) is calculated. If the current divergence is smaller than the previous stored

divergence, then the current α, and β of the gamma distribution are recorded. This process

continues until there is no α, and β which can provide smaller divergence to PG (λ | −→s ). Each

step where the current α and β give the smallest divergence to PG (λ | −→s ), an epoch value η

increases. Whenever η goes above ηmax , the whole process stops and the current parameters

α, and β are used as the gamma approximation to PG (λ | −→s ).

Algorithm 2 is a simple derivation of the hill climbing algorithm. The hill climbing

algorithm is chosen not only due to its simplicity in the implementation but also because of

its ability to find optimal solution for convex problems where this approximation belongs to.

One should note that any optimisation algorithm where the objective function is to minimise

KL-divergence between a single Gamma distribution Gam(λ |α,β) and PG (λ | −→s ) can replace

Algorithm 2.

This problem of approximating a mixture of gammas is entirely different from the well-
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known problem of estimating the sum of a several i.i.d. variables, each of which follows a

gamma distribution. The latter estimate can be approximated by the Welch-Satterthwaite

approximation to a single Gamma distribution Satterthwaite (1946), Welch (1947), whereas,

the former estimate has no well-known closed analytical form.

6.3.2 Histogram filter

Algorithm 3 Histogram filter
Input: α,β: Gam(λ |α,β)
Output: (λi , pi ): pi =Gam(λ=λi |α,β)
Procedure:

// Initialise 0.001 (low) and 0.999 (high) percentile
// Inverse of Cummulative Distribution Function of gamma
1. Init. low ←C DF−1(% = 0.001 |α,β), hi g h ←C DF−1(% = 0.999 |α,β)
// Initialise bin, and step

2. Init. i ← 0, η← n, step ← (hi g h − l ow)

η
3. Repeat until low > hi g h

• λi ← low
• pi ←Gam(λ= l ow |α,β)
• low ← low + step, i ← i +1

The Gamma filter is expected to worsen as an approximation to the posterior belief for

λ when sensors become more unreliable. A histogram filter for P (λ | −→x ) may be used instead,

by quantising λ. For that, the use of Gamma-Poisson conjugacy in all Equation 6.2 needs to

be replaced with:

PHF (λ | −→x )=
P (x j |λ) P (λ | −−→x−1)∫

λi

P (x j |λi ) P (λi | −−→x−1) dλ
(6.6)

and redefine as Equation 6.4 as:

PHF (x j | −−→x−1)=
∫
λi

P (x j |λ) P (λ | −−→x−1) dλ (6.7)

with −−→x−1 = x j−1, . . . , x1.

Unlike the gamma filter, there is no approximation step to P (λ | −→x ) in the histogram
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filter. Quantising the prior distribution in the form of gamma, which is of a continuous

variable, to a series of non-overlapping bins η (or bar graph) is the approximation process

itself. As the Algorithm 3 describes, the approximation process happens only if the prior

distribution is in the form of gamma. As bins are used to represent the prior distribution, two

equations above accommodate the loss of Gamma-Poisson conjugacy which is had in original

Equation 6.2. It is expected that the higher the η value (η represents the number of bins

used), the more precise the histogram filter tracks the posterior with the cost of increasing

computational time.

6.3.3 Switching filter

The gamma filter is fast and can approximate the posterior well when sensors are relatively

reliable. The histogram filter is slower, but can track the posterior well regardless of sensor

reliability with enough computation. This leads to the possibility of a switching filter. This

runs either one of the filters, using a switching mechanism in each posterior update to

determine which one is used. Given the latest sampled sensor vector −→si , the posterior P (λ | −→si )

is calculated by Equation 6.2. The gamma filter then returns an approximation to this. If the

KL-divergence DK L exceeds a threshold θ then the histogram filter takes over. The process

repeats whenever a new sampled sensor vector −→si is given. As observations accumulate and

the posterior tightens, typically, the gamma filter starts to take over and the histogram filter is

switched off. This ensures that the gamma filter only replaces P (λ | −→si ) with a single gamma

density whenever P (λ | −→si ) resembles a gamma distribution. Hence, the general dissimilarity

between the estimated and the true posterior P (λ | −→si ) is minimised, while unnecessary

computation is minimised.

6.4 Evaluation on Synthetic Data

To show the benefit of PoPP over FOPP in correctly estimating Poisson arrival rate λ, An

evaluation to both filter and sensor model behaviour is first conducted on synthetic data.
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Figure 6.3: Average KL-divergence (in bits) from the gamma and histogram filters to the true
posterior P (λ | −→s1, . . . ,−→sn) with variations on the sensor model. Standard error is shown

With synthetic data, sensor reliability can be controlled, and the true λ and the true counts xi

are known in advance for each sample. Filter performance is measured in five different ways

as discussed in the following subsections.

6.4.1 Comparing filters to the true posterior

First, how different the approximations from two filters (gamma filter and histogram filter)

to the true posterior in terms of KL-divergence are measured given a sequence of samples

from a Poisson distribution. Since the true posterior takes an exponential amount of time

to compute, this can only be achieved for very short sequences of samples from the Poisson.

Seven samples were set in this evaluation due to time limitation.

The gamma filter and histogram filter are tested on three different levels of sensor

unreliability:

• True positive rate: 0.1, true negative rate: 1.0;

• True positive rate: 1.0, true negative rate: 0.1;
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Figure 6.4: Average KL-divergence (after 144 sample counts taken from 60 trial runs) from
the gamma and switching filters to the histogram filter which acts as the proxy ground truth
posterior of P (λ | −→s1, . . . ,−→sn). The horizontal axis shows the variation in the true positive rate of
the simulated sensor. Standard error is shown.

• True positive rate: 0.5, true negative rate: 0.5

to represent all extreme cases of sensor unreliability. A uniform-like prior distribution with

Gam(λ |α= 1.01,β= 0.01) was used for an uninformative prior to avoid bias coming from

the prior.

Figure 6.3 shows the divergence in bits. The histogram filter perfectly tracks the true

posterior (zero error). The gamma filter tracks the true posterior well as long as the TNR is not

extremely low. It shows that the gamma filter is a poor fit to the posterior when the sensor

produces many false positives, but copes well otherwise.

6.4.2 Comparing filters on long sequences

As the previous subsection shows, the histogram filter perfectly tracks the true posterior. Thus,

it can be assumed that the histogram filter will continue tracking the true posterior with

very low margin of error. With that assumption, the histogram filter can be used as a proxy

ground truth posterior or in short proxy posterior. This allows a comparison performance of
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Figure 6.5: Average KL-divergence (after 144 sample counts taken from 60 trial runs) from
the gamma and switching filters to the proxy ground truth posterior P (λ | −→s1, . . . ,−→sn). The
horizontal axis shows the variation in the true negative rate of the simulated sensor. Standard
error is shown.

the gamma and switching filters on much longer sample sequences.

For each trial, simulated counts x1, . . . , x144 were sampled from a homogeneous Poisson

process with λ= 3. These counts were then fed to a simulated sensor that counted unreliably.

PG (λ | −→si ) is then recursively updated using the gamma and switching filters. Repeating the

process to 60 trials, the average KL-divergence from the gamma and switching filters to the

proxy posterior were measured. The average for each level of sensor unreliability are shown

in Figures 6.4 and 6.5.

As shown in figures above, the switching filter has a lower divergence, and the advantage

over the gamma filter improves as the sensor becomes more unreliable. Please note that the

gamma filter is adversely affected by a low TNR.

6.4.3 Computational efficiency

As shown in the previous subsection, the gamma filter does not always approximate the

posterior as well as the histogram filter. However, it performs much faster than the histogram
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Table 6.1: Comparison of the update time for three filters at each observation. η is the number
of bins (histogram filter) or epoch (gamma filter) used on each observation.

Method
Average update time (std. deviation)

η= 100 η= 1000 η= 10000

Gamma filter 0.209s (0.031) 1.086s (0.329) 9.308s (3.624)
Switching filter 0.423 (0.455) 4.655 (3.237) 85.932s (71.387)
Histogram filter 1.982s (0.220) 16.395s (2.494) 338.374 (1.957)

filter. While the histogram filter requires a probability density function quantised as a set of

points, the gamma filter has it in a closed analytical form. The computation time per sample

is then examined for each of the three filters. Table 6.1 displays how the run-time for the three

filters grows, as a function of the control parameters of each filter. The measurements were

tested on a laptop with an i7-4702MQ Intel Core processor at 2.2 Ghz and 16 gigabytes of

RAM.

In general, the gamma filter is faster than the switching filter and much faster than the

histogram filter. The switching filter shows that it has high deviation on its computation time

due to the switching mechanism on each update. Whenever the gamma filter fails to meet the

threshold θ for the switching filter, an extra time is needed to do the histogram filter. For the

remaining of this chapter, to balance accuracy against computational cost, η= 100 was set for

the gamma filter, and η= 1000 was set for the histogram filter.

6.4.4 θ selection of switching filter

θ is the acceptable KL-divergence in a single filtering step in switching filter from the true pos-

terior (or the histogram filter as a proxy) to the approximation. The selected θ influences how

low the KL-divergence is and how fast the computation time per sample is. Previous sections,

θ was chosen to be 0.05 for the switching filter. In this subsection, a systematic evaluation of

the effect of θ on computation time and KL-divergence over long runs is performed, and the

decision to choose 0.05 to be the θ is explained. As shown in Figures 6.4 and 6.5, it is low TNR

values that affect the gamma approximation most. Hence, the TNR of a single sensor is varied

for this experiment.
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Figure 6.6: Average KL-divergence from the switching filter to the proxy ground truth posterior
P (λ | −→s1, . . . ,−→sn). The horizontal axis shows the variation in the true negative rate of the
simulated sensor.

Figure 6.7: The updating time per sample for the switching filter (with η= 100 both for the
histogram filter and the gamma filter).

Each trial, simulated counts x1, . . . , x144 by random sampling (Poisson with λ= 3) were

generated and fed to the simulated sensor. P (λ | −→si ) was updated using only the switching
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Figure 6.8: The evolution of λ posterior for each filter with sensor tpr = 1.0, and tnr = 0.1.
The posterior is presented as MAP estimates. Top figure includes the FOPP filter, whereas
the bottom figure excludes it. Each data point is an average of 30 trials. Standard errors are
shown.

filter with variation on θ. 30 trials were run, and these show the average divergence and

calculation time for each level of TNR reliability in Figures 6.6 and 6.7 respectively.

Figures 6.6 and 6.7 show how five different values for θ (0.01, 0.05, 0.1, 0.5 and 1.0)

change the divergence and computation as the TNR changes. For, θ = 0.05 the total bit

divergence after a simulated run of 144 steps with a (True Negative Rate) TNR of 0.1 and a

single sensor is around 0.04 bits. This can be further reduced by setting θ = 0.01 to 0 bits, but

in that case the switching filter only ever runs the histogram filter.

6.4.5 Accuracy of posterior estimates of λ

As the quality of the posterior for each filter has been described and evaluated, it is now

the time to examine the performance accuracy of estimating λ value relative to an incorrect

assumption of sensor reliability. In other words, a comparison of each filter of POPP in

estimating λ relative to filtering according to a FOPP model was performed. This experiment

is conducted for both single and multiple sensors at each sample.
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Figure 6.9: The RMSE of posterior estimates of λ for different filters. In each graph the
unreliability of a single sensor is varied. Each trial consisted of a stream of −→s1 . . .−−→s144 samples.
Estimation accuracy for λ while varying the TPR. Accuracies include the FOPP filter in the top
panel for a comparison, and exclude the FOPP filter in the bottom panel. Each data point is
an average of 30 trials. Standard errors are shown.

To make this comparison, the corrected estimate of the arrival rate λ of a Poisson

process is evaluated by applying Equation 6.2, using all three filters for the POPP model.

This is compared against the uncorrected estimate using standard inference according to

the FOPP model. In each experiment, 144 simulated counts x1, . . . , xn were sampled from a

Poisson process P (x |λ′) together with their corresponding sensor readings. P (λ | −→si ) is then

recursively updated using three filters for the POPP model, and Equation 6.1 for the FOPP

model. Figure 6.8 shows an example of the evolution of the posterior of λ for each filter on

each sample update.

Sensor specificity (true negative rate) is varied while fixing sensor sensitivity (true

positive rate) and vice versa. The performance of both POPP filters and a standard FOPP filter

were assessed by comparing the RMSE of MAP hypothesis (mode) of each posterior over λ to

the true λ′. The results for a filter with a single sensor input are shown in Figures 6.9 and 6.10.

This shows that all POPP filters generate much better estimates of λ than the FOPP filter. The

FOPP filter’s performance decreases linearly as sensor reliability declines.
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Figure 6.10: The RMSE of posterior estimates of λ for different filters. In each graph the
unreliability of a single sensor is varied. Each trial consisted of a stream of −→s1 . . .−−→s144 samples.
Estimation accuracy for λ while varying the TNR. Accuracies include the FOPP filter in the
top panel for a comparison, and exclude the FOPP filter in the bottom panel. Each data point
is an average of 30 trials. Standard errors are shown.

Figure 6.11: The Jensen-Shannon distance of λ for the FOPP, gamma, and switching filters
with variation on the number of sensors. In each graph the unreliability of a single sensor is
varied. Estimation accuracy for λ while varying the TPR on the top and estimation accuracy
for λ while varying the TNR on the bottom. Each data point is an average of 30 trials. Standard
errors are shown.
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Figure 6.12: The Jensen-Shannon distance of λ for gamma, and switching filters with vari-
ation on the number of sensors. In each graph the unreliability of a single sensor is varied.
Estimation accuracy for λ while varying the TPR on the top and estimation accuracy for λ
while varying the TNR on the bottom. Each data point is an average of 30 trials. Standard
errors are shown.

The performance of both POPP filters and the FOPP filter were also assessed by compar-

ing the Jensen-Shannon distance. Jensen-Shannon distance is a unit of measurement used

in Jensen-Shannon divergence. The Jensen-Shannon divergence is a method of measuring

the similarity between two probability distributions. Unlike KL-divergence, Jensen-Shannon

divergence is a symmetrized divergence where D JS(P ∥Q) is equal to D JS(Q ∥ P ). The results

for the POPP filters and the FOPP filter on a single sensor are shown in Figures 6.11 and

6.12. These results support the result shown in Figures 6.9 and 6.10 that POPP filters indeed

generate much better estimates of λ than the FOPP filter.

The performance of POPP filters and a FOPP filter by the number of unreliable sensors

was also evaluated. The sensor models were varied in such a way that each pair of sensors have

their sum of TPR and TNR equal to one (e.g. sensor A TPR=0.1, TNR=0.2, sensor B TPR=0.9,

TNR=0.8). As it involves more than one sensor, the standard Poisson model displayed in the

figure is the result of averaging the mode of all estimated λ from each sensor. The result is

shown by Figures 6.13 and 6.14. The figure shows that (given this balancing) the number of
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Figure 6.13: The RMSE of posterior MAP estimates of λ for the FOPP, gamma, histogram and
switching filters with variation on the number of sensors. Each trial consisted of a stream of−→s1 . . .−−→s144 samples. Each data point is an average of 30 trials. Standard errors are shown.

Figure 6.14: The RMSE of MAP estimates of λ for gamma, histogram and switching filters
with variation on the number of sensors. Each trial consisted of a stream of −→s1 . . .−−→s144 samples.
Each data point is an average of 30 trials. Standard errors are shown.

sensors has no effect on the accuracy of the estimates of λ for POPP model filters. Whereas the

FOPP model filter is far from the true λ′. This conclusion is supported by the Jensen-Shannon
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Figure 6.15: The Jensen-Shannon distance of λ for the FOPP, gamma, and switching filters
with variation on the number of sensors. The top figure shows a comparison including the
FOPP filter, whereas the bottom figure does not. Each data point is an average of 30 trials.
Standard errors are shown.

distance of the FOPP filter which is, in fact, further to the proxy posterior of PG (λ | (−→s1, . . . ,−−→s144)

than both the gamma filter and the switching filter. This is shown in Figure 6.15.

6.5 Evaluation on A Real World Dataset

Having thoroughly evaluated the performance of POPP filters on simulated data, the investig-

ation now moves to evaluate the performance of the POPP model and its associated filters on

a large, real-world data set. Performance comparison against the FOPP model is still included

in this evaluation.

This dataset is a collection of counts over time from three different automated person

detectors. These use laser (leg detector - LD), depth camera (upper body detector - UBD), and

RGB information (change detector - CD). The dataset was gathered from an office building

where a mobile robot counts and observes the number of people passing by as it patrols

around the area (see Figure 6.16). Each detector/sensor returns a sensed count of the number
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Figure 6.16: The office building in which the robot gathered data. Areas are bounded by
imaginary lines.

of people it detected in each 10 minute interval during the day. As expected, these detectors

are unreliable. Some examples of (true and false) positive and (true and false) negative

detections made by the detectors can be seen in Figure 1.2.

The data set was gathered during a deployment of the mobile robot at the lower ground

of the computer science building in University of Birmingham. As a mobile robot can not

fully sense its environment, it can only perceive partial data at a particular time and place.

Moreover, the robot’s patrol policy also affects where and when detections are perceived.

Consequently, the detections are temporally and spatially scattered and they are not uniformly

distributed across space. The detections are then organised according to time/date and the

spatial region where each detection was made.

During the deployment of the mobile robot, ground truth data were also gathered to

create sensor unreliability models, one for each detector in each area. An example of such a

sensor model can be seen in Table 6.2. The sensor models were built from the data collected

from 10am-8pm each week day to obtain similar sensor model behaviour as some of the

detectors suffer from the lightning condition during night patrol. The data used for this

experiment was limited to weekdays to have similar temporal detection rates.

On this evaluation, periodic Poisson processes are included as a showcase comparison

whether the non-homogeneous Poisson processes, in which the periodic Poisson processes

are categorised into, are benefited by the POPP filters. This section starts with a comparison

on homogeneous Poisson processes on a 21-day deployment dataset. The dataset was then
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Table 6.2: Averaged sensor model across all areas trained from 15 days of data.

Sensor True Positive True Negative

Leg Detector 0.315 0.894
Upper Body Detector 0.266 0.853
Change Detector 0.611 0.820

extended to a 69-day deployment dataset to accomodate the comparison of periodic Poisson

processes.

6.5.1 The POPP models on Homogeneous Poisson Processes

The dataset was gathered during a 21-day deployment of the mobile robot. As described

previously, the robot was limited to observe during weekdays, 15 days of observations were

obtained. The interval time for the Poisson was specified to 10 minutes, and the true counts

and the detections made by each detector were recorded. The parameter λ of the Poisson

distribution was estimated for each region by running a FOPP filter on the true counts. The

uncorrected estimate λ according to the FOPP model was estimated only from the change

detector count data since the change detector is the most reliable detector among three

detectors available in the robot as shown in Table 6.2.

All POPP filters rely on sensor models which must be calculated from sensor counts and

true counts. To separate the training and testing data five fold cross-validation was performed

with the unit being whole days, i.e., 3-days of data was used as a training set for a sensor

model and then the remaining 12-days of data was used as a test set on which to test the

inferences made by each filter from the sensor counts.

Using the 12 days of test data, the filter from each model (the switching filter for the

POPP model and the standard Bayes’ filter for the FOPP model) built a prediction of λ based

on the MAP estimate of each model. The resulting prediction from each estimator was

then compared to the λ using the root mean squared error (RMSE). Moreover, the resulted

distribution of each model was also compared to the distribution of the true λ using the

Jensen-Shannon divergence. Using these metrics, the performance of the POPP model was
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Figure 6.17: The RMSE of the FOPP and POPP estimators of λ as it varies across areas (regions)
of the environment. Standard error is shown.

Figure 6.18: The Jensen-Shannon distance of the FOPP and POPP model distributions of λ as
it varies across areas (regions) of the environment. Standard error is shown.

compared to the standard FOPP model. The comparison was done for all areas within the

patrol space.

The results are shown in Figure 6.17 and 6.18. As can be seen, the standard POPP model
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Figure 6.19: The RMSE evolution from day 1 to day 12, averaged across all regions. Standard
error is shown.

Figure 6.20: The Jensen-Shannon distance evolution of the FOPP and POPP model distribu-
tions of λ from day 1 to day 12, averaged across all regions. Standard error is shown.

with the switching filter consistently produces better MAP estimates than FOPP. Moreover,

the POPP model also produces more similar distribution to the true λ than the FOPP. As

mentioned earlier that the distribution of detections is not uniform across areas, some areas
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Table 6.3: Averaged sensor model across all areas trained from 48 days of data.

Sensor True Positive True Negative

Leg Detector 0.387 0.951
Upper Body Detector 0.356 0.882
Change Detector 0.731 0.900

(such as area 4) have limited data such that the underlying sensor model for the POPP

is relatively unreliable. This results in a smaller gain in both RMSE and Jensen-Shannon

divergence over the FOPP estimator for those areas. The opposite was true for some areas

such as 1, 2, and 3, where there are plenty of data to construct the sensor models, resulting a

much better gain in both RMSE and Jensen-Shannon divergence over the FOPP estimator.

With the correction that the POPP model has, the POPP model is expected to gradually

draw closer to the true λ. Here, how the POPP and FOPP estimators evolved with time is

shown, again in terms of both RMSE and Jensen-Shannon distance. Figures 6.19 and 6.20

show that as time passes the performance of the POPP estimator steadily becomes better.

This is shown by the growing gap between the two estimators.

6.5.2 The POPP models on Periodic Poisson Processes

For this evaluation, the dataset was extended from a 21-day deployment to a 69-day deploy-

ment of the mobile robot. Moreover, the underlying process on each region was then assumed

to be a periodic Poisson process in which the imposed single periodicity is a one-day cycle, i.e.

λ(ti , t j ) =λ(ti+∆, t j+∆) with ∆= 24∗60(minutes). As the robot was limited to observe during

weekdays, 48 days of observations were obtained and the sensor models were built from these

observations. An example of a fixed sensor model for the POPP filter trained from 48 days of

data can be seen in Table 6.3.

The true λ(ti , t j ) of the periodic Poisson processes for each region is estimated by

running a FOPP filter on the true counts. The uncorrected estimate λ(ti , t j ) according to

the FOPP model was estimated only from the change detector count data since the change

detector is the most reliable detector among three detectors available in the robot as shown
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Figure 6.21: The RMSE of the FOPP and POPP estimators of λ(ti , t j ) as it varies across areas
(regions) of the environment. Standard error is shown.

in Table 6.3.

Four fold cross-validation to separate the training and testing data were performed, i.e.,

12-days of data were used as a training set for a sensor model, and the remaining 36-days of

data were used as a test set to build a prediction of the λ(ti , t j ). The POPP model used the

switching filter as its filter to do the inferences from the sensor counts.

Both point estimate predictions based on the MAP estimate and the estimated distribu-

tions of both the POPP model and the FOPP model were then compared to the true λ(ti , t j )

and its distribution using RMSE (see Figure 6.21) and Jensen-Shannon distance (see Figure

6.22). The comparison was done for all areas within the patrol space.

Figure 6.21 and 6.22 show that the POPP filter succeeded in gaining better predictions of

λ(ti , t j ) over the FOPP filter both in distance metric (RMSE) and in Jensen-Shannon distance

in many regions. Some areas such as regions 4, 5 and 7 have limited data such that the

underlying sensor models for the POPP is relatively unreliable. This results in a smaller gain

in both RMSE and Jensen-Shannon distance over the FOPP filter. On the other side, region 1

and 2 have plenty of data to construct the sensor model resulting a much better gain in both

RMSE and Jensen-Shannon distance over the FOPP filter.
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Figure 6.22: The Jensen-Shannon distance of the FOPP and POPP model distributions of
λ(ti , t j ) as it varies across areas (regions) of the environment. Standard error is shown.

Figure 6.23: The RMSE evolution of periodic Poisson processes with POPP and FOPP filters
from day 3 to day 36, averaged across all regions. Standard error is shown.

Figures 6.23 and 6.24 show the evolution of each filter overtime in terms of RMSE and

Jensen-Shannon distance across regions. The POPP filter gradually increased its accuracy in

estimating λ(ti , t j ). Although the FOPP filter also showed a gradual increase in its accuracy,

the POPP filter was always more accurate than the FOPP filter.
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Figure 6.24: The Jensen-Shannon distance evolution of periodic Poisson processes with POPP
and FOPP filters from day 3 to day 36, averaged across all regions. Standard error is shown.

6.6 Discussion

In this chapter, a model, the partially observable Poisson process (POPP), was formulated

which takes into account sensor unreliability to correctly estimate the parameter of a Poisson

distribution. The primary motivation is driven by the fact that there are situations where

counters are extremely unreliable and the inference made from them is significantly incor-

rect. The problem of how to efficiently correct miscounts made by either single or multiple

unreliable counting devices observing a single Poisson process is addressed.

Due to no conjugate density and the exponential growth of the number of elements in

the posterior with every sample, three tractable approximations are proposed under reason-

able independence assumptions. One (the Gamma filter) is fast but very dependent on the

reliability of the counters. The second (the histogram filter) is slower, but it perfectly tracks

the true posterior. And the third is a combination of a gamma filter and a histogram filter

which avoids drift while remaining faster on average.

Experiments both on simulated data and real-world dataset (on the homogeneous

Poisson process) showed that the POPP model and its associated filters outperformed a
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standard Bayes’ filter for the fully observable Poisson process (FOPP) model in estimating λ of

a Poisson process. This chapter shows the posterior of the POPP model densely envelops the

true λ, whereas the FOPP model can not achieve this without a perfect sensor model. These

results, however, become less apparent on the case of periodic (non-homogeneous) Poisson

processes on real-world dataset where the POPP model, in some cases/regions, perform

worse than the standard FOPP model.

The POPP provides a way to deal with counts coming from unreliable counting devices.

However, the POPP explained in this chapter relies on two things. First, the model here

assumes that the degree of the unreliability of a sensor, regarding its TPR and TNR, is perfectly

known. Second, it assumes that counter failures are conditionally independent of one to

another given the true count.
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CHAPTER 7

POPP: INDEPENDENT SENSORS WITH

UNRELIABLE SENSOR MODELS

The previous chapter introduced the POPP model which efficiently corrects miscounts made

by multiple unreliable counting devices observing a single Poisson process. The model relies

on two assumptions:

• the degree of the unreliability of a sensor is precisely known, and

• counter failures are conditionally independent from one to another given the true

count.

This chapter focuses on addressing the first assumption by introducing sensor unreliability

as latent variables and updating Equation 6.5. Hence, the contribution here is introducing

Bayesian estimators for sensor unreliability which are fully integrated into the POPP model.

This chapter starts with a detailed explanation of the POPP extension to model the

degree of confidence of sensor reliability and incorporate prior knowledge over the sensor’s

confidence. The performance of this extension is tested on simulated data, and the result is

explained in Section 7.2. Section 7.3 extends the experiment on real world data from previous

111
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Figure 7.1: Graphical representation of the POPP-Beta.

chapter, and shows the results of the POPP extension on the real world data. Finally, Section

7.4 concludes the contribution, and discusses the limitations of this chapter.

7.1 POPP with Unreliable Sensor Model (POPP-Beta)

The previous chapter has shown how the unreliability of a sensor is incorporated in correctly

calculating the posterior over Poisson parameter λ. The sensor model is represented as a

confusion matrix which specifies the true positive rate (sensitivity) tpr j = P j (d = 1 | e = 1)–

along with its false negative rate–and the true negative rate (specificity) fpr j = P j (d = 1 | e = 0)–

along with its false positive rate of sensor j . To construct a confusion matrix, one needs

to have both detections/predictions and their corresponding actual values. Typically, the

collected detections and their corresponding actual counts need expert labelling to pre-

process them before they can be used. As one should expect, the POPP model requires the

sensor model to be accurate. Otherwise, the posterior over λ will draw incorrect inferences.

However, attaining an accurate sensor model requires a lot of training data and this puts a lot

of burden on the experts who need to label the data.

Here, the sensor model is transformed into a Bayesian estimation problem where each
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element in the confusion matrix, (true positive rate (tpr) and false positive rate (fpr)), follows

a beta distribution. Tpr is chosen to represent sensitivity, and fpr is chosen to represent

specificity. Beta distributions are chosen for tpr and fpr because Beta distributions act as a

conjugate to Binomial distributions and provide a family of prior probability distributions for

the parameter of a binomial distribution. The beta-binomial conjugacy leads to an analytically

tractable compound distribution called the beta-binomial distribution, where the p parameter

in the binomial distribution B(d | x, p) is randomly drawn from a beta distribution Be(p | ζ,η).

P (d | x,ζ,η) =
∫ 1

p=0
P (d | x, p) P (p | ζ,η) d p

=
∫ 1

p=0
B(d | x, p) Be(p | ζ,η) d p

=
∫ 1

p=0

(
x

d

)
pd (1−p)(x−d) p(ζ−1)(1−p)(η−1)

π(ζ,η)

=

(
x

d

)
1

π(ζ,η)

∫ 1

p=0
p(d+ζ−1)(1−p)(x−d+η−1) d p

=

(
x

d

)
π(d +ζ, x −d +η)

π(ζ,η)

= BB(d | x,ζ,η)

(7.1)

As the confusion matrix is now in the form of two beta distributions Be(tpr | ζtpr,ηtpr)

and Be(fpr | ζfpr,ηfpr), ζtpr can be thought as the number of true positive detections #(d =
1,e = 1), ηtpr as the number of false negative detections #(d = 0,e = 1), ζfpr as the number

of false positive detection #(d = 1,e = 0), and ηfpr as the number of true negative detections

#(d = 0,e = 0) that the sensor has made. Given a confusion matrix where the elements

of it follow beta density, and beta-binomial distributions which provide an unconditional

distribution of d , Equation 6.5 is replaced with:

P (s j i | xi )=
xi∑

tp j i=0
BB

(
tp j i | xi , tpr j , fnr j

)
BB

(
fp j i |∆xi , fpr j , tnr j

)
(7.2)

where s j i = tp j i + fp j i , tpr j = # j (d = 1,e = 1), fnr j = # j (d = 0,e = 1), fpr j = # j (d = 1,e = 0), tnr j

= # j (d = 0,e = 0), and ∆xi = (l −xi ).
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Figure 7.2: The posterior over λ for each filter after the x144 sample update with true tpr = 1.0,
and true tnr = 0.1. Two shapes of beta prior resulted from the training are presented: loose
beta prior (low number of training samples) and tight beta prior (high number of training
samples).

With a sensor model which follows beta densities and is fully integrated, as a distribution,

in the sensed count likelihood P (s j i | xi ) as shown in Equation 7.2, we obtain a graphical

model with the structure shown in Figure 7.1. One should note that the difference between

the POPP model and this extension, which we call the POPP-Beta model, lies only on altering

Equation 6.5 explained in the previous chapter to produce Equation 7.2. However, given little

training data for the sensor model, the POPP-Beta model is expected to be more conservative

in estimating the posterior PG (λ | −→s ) over λ than the POPP model.

7.2 Evaluation on Synthetic Data

In the previous chapter, using simulated data, the POPP model establishes that with its

associated filters it can outperform the FOPP filter in estimating λ. Here, the same simulated

dataset used to evaluate the POPP model in the previous chapter is borrowed. The POPP-

Beta model is then examined in estimating λ, and compared its performance against the

established POPP model. For this evaluation, the switching filter is chosen as a filter for both
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Figure 7.3: The RMSE of posterior estimates of λ for the POPP and the POPP-Beta model with
variations on the training data used to build the sensor model. Each trial consisted of a stream
of −→s1 . . .−−→s144 samples. Accuracies of MAP estimates in the top panel, accuracies of expectation
of the posterior in the bottom panel. Each data point is an average of 30 trials. Standard errors
are shown.

the POPP and the POPP-Beta model. The uncorrected estimate according to the FOPP model

was also included in this evaluation.

In each experiment, first, the sensor model was built by sampling simulated counts

x1, . . . , xn from a Poisson process P (x |λ′ = 3) together with their corresponding sensor read-

ings. Another set of counts x1, . . . , xn were sampled from the same process to update PG (λ | −→si )

using the switching filter. Figure 7.2 shows an example of the posterior of λ for each filter after

the x144 sample update.

Two different sample sizes used to build the sensor model are evaluated. A small number

of samples builds an erroneous sensor model (for the POPP model) or a loose beta density (for

the POPP-Beta model). In contrast, a large number of samples builds a solid sensor model (for

the POPP model) or a tight beta density (for the POPP-Beta model). 30 samples were set for

the small sample size and 300 samples were set for the large sample size. For a comparison, a

POPP model with a perfect sensor model is also included; the correct sensor model is given



116 POPP-Beta

Figure 7.4: The Jensen-Shannon distance of posterior estimates of λ for the POPP and the
POPP-Beta model with variations on the training data used to build the sensor model. Each
trial consisted of a stream of −→s1 . . .−−→s144 samples. Each data point is an average of 30 trials.
Standard errors are shown.

without prior training.

The POPP model and the POPP-Beta model are evaluated on four different levels of

sensor unreliability:

• True positive rate: 0.1, true negative rate: 1.0;

• True positive rate: 0.9, true negative rate: 1.0;

• True positive rate: 1.0, true negative rate: 0.1;

• True positive rate: 1.0, true negative rate: 0.9

with the reasoning that any other level of sensor unreliability lies between these four.

The performance of the POPP-Beta model was assessed similarly as in the previous

chapter by comparing the RMSE (the MAP hypothesis (mode) and the expectation (mean))

and the Jensen-Shannon distance of the two estimators over λ to the true λ′. The result of

the assessment is shown in Figures 7.3 and 7.4. Figure 7.3 shows that the POPP-Beta model

performed better than the standard POPP model for both a low number of training samples
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and a high number of training samples for building the sensor model. Figure 7.4 displays a

different perspective. It shows that the performance of the POPP-Beta filter was comparable

to that of the POPP filter. However, the special case of when the true positive rate is low, the

POPP-Beta filter outperformed the POPP filter.

7.3 Evaluation on A Real World Dataset

Having shown the performance of POPP-Beta against the POPP model on simulated data, the

evaluation of the performance of POPP-Beta model moves on a real world data set. Similar to

the evaluation on simulated data, the performance of the POPP-Beta model was compared

againsts the standard POPP model and the FOPP model.

The dataset, which has been explained in the previous chapter, is a collection of counts

over time from leg detector (LD), upper body detector (UBD), and change detector (CD)

gathered by a mobile robot which observes and counts the number of people passing by from

10am-8pm on each day. For this evaluation, the 69-day deployment dataset was used. One

should remember that the detections are still temporally and spatially scattered and they are

not uniformly distributed across space. The detections are organised according to time/date

and the spatial region where each detection was made.

Both the POPP-Beta model and the standard POPP model rely on sensor models which

must be calculated from sensor counts and true counts. Four fold cross-validation to separate

the training and testing data were performed, i.e., 12-days of data were used as a training set

for a sensor model, and the remaining 36-days of data were used as a test set. Both the POPP-

Beta and the standard POPP model used the switching filter as its filter to do the inferences

from the sensor counts.

Similar to the previous chapter, periodic Poisson processes are included as a showcase

comparison whether the non-homogeneous Poisson processes, in which the periodic Poisson

processes are categorised into, are benefited by the POPP filters.



118 POPP-Beta

Figure 7.5: The RMSE of the FOPP, POPP, and POPP-Beta estimators of λ as it varies across
areas (regions) of the environment. Standard error is shown.

7.3.1 The POPP-Beta models on Homogeneous Poisson Processes

This section starts with a case on homogeneous Poisson processes. The interval time for the

Poisson is set to 10 minutes, and the true counts and the detections made by each detector

were recorded. The true λ of the Poisson distribution for each region is estimated by running

a FOPP filter on the true counts. The uncorrected estimate λ according to the FOPP model

was estimated only from the change detector count data.

Both point estimate predictions based on the MAP estimate and their approximation

distributions of each model were then compared to the true λ and its distribution using RMSE

and Jensen-Shannon distance on region by region basis.

The results are shown in Figure 7.5 and 7.6. In terms of the metric distance, the POPP-

Beta filter, in general, produced better estimates than the POPP filter. It is, by extension, more

accurate than the FOPP filter. Recall that the distribution of detections is not uniform across

areas, some areas (like area 4, 5, 7, and 9) have fewer data compared to other areas such that

the underlying sensor models for both the POPP-Beta and the POPP are relatively unreliable.
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Figure 7.6: The Jensen-Shannon distance of the FOPP, the POPP, and the POPP-Beta model
distributions of λ as it varies across areas (regions) of the environment. Standard error is
shown.

In area 4 and 5, the point estimates of the POPP-Beta filter is a little bit more accurate than the

ones of the POPP filter. In areas 7 and 9, however, the standard POPP filter managed to slightly

outperform the POPP-Beta filter. This is attributed to the sensor model which follows beta

densities has a wide distribution (loose beta prior) due to limited learning data. The opposite

was true for some areas such as area 1, 2, and 3, where there are plenty of data to construct

the sensor models resulting a constant better gain in RMSE over the POPP estimator.

On the other hand, the Jensen-Shannon distance shows that the POPP-Beta seemed

to produce slightly different distributions than the POPP, i.e. having higher Jensen-Shannon

distance than the POPP model. This can be explained by Figure 7.2. The POPP-Beta drives

the estimate λ in a more conservative way resulting an estimate distribution that is typically

wider than the one produced by the POPP.

As a side evaluation, how the POPP-Beta evolved with time was also recorded, again in

terms of both RMSE and Jensen-Shannon distance, since it is expected to gradually get closer

to the true λ. Figures 7.7 and 7.8 show that as time passes the performance of the POPP-Beta

estimator steadily becomes better and outperforms the standard POPP model.
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Figure 7.7: The RMSE evolution from day 3 to day 36 with 3 day interval, averaged across all
regions. Standard error is shown.

Figure 7.8: The Jensen-Shannon distance evolution of the FOPP, the POPP, and the POPP-Beta
model distributions of λ from day 3 to day 36 with 3 day interval, averaged across all regions.
Standard error is shown.
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Figure 7.9: The RMSE of the FOPP, POPP, and POPP-Beta estimators of λ(ti , t j ) as it varies
across areas (regions) of the environment. Standard error is shown.

7.3.2 The POPP-Beta models on Periodic Poisson Processes

For this evaluation, the underlying process on each region was then assumed to be a periodic

Poisson process in which the imposed single periodicity is a one-day cycle, i.e. λ(ti , t j ) =
λ(ti+∆, t j+∆) with ∆= 24∗60(minutes). The true λ(ti , t j ) of the periodic Poisson processes

for each region is estimated by running a FOPP filter on the true counts. The uncorrected

estimate λ(ti , t j ) according to the FOPP model was estimated only from the change detector

count data.

The MAP estimate of each model was then compared to the true λ(ti , t j ) using RMSE,

whereas the approximated distributions of each model was compared to the true continuous

distribution of λ(ti , t j ) using Jensen-Shannon distance. The comparison was done for all

areas within the patrol space.

Figures 7.9 and 7.10 show that the POPP-Beta filter gave comparable performance to

the standard POPP filter which came better compared to the FOPP filter. Same arguments

concluding the performance of the POPP filter can be applied to the POPP-Beta model since

the POPP-Beta model drives the λ′(ti , t j ) to the true λ(ti , t j ) in a more conservative way than
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Figure 7.10: The Jensen-Shannon distance of the FOPP, POPP, and POPP-Beta model distri-
butions of λ(ti , t j ) as it varies across areas (regions) of the environment. Standard error is
shown.

Figure 7.11: The RMSE evolution of periodic Poisson processes with POPP, POPP-Beta, and
FOPP filters from day 3 to day 36, averaged across all regions. Standard error is shown.

the standard POPP filter.

How the POPP-Beta evolved with time was also recorded as a side evaluation. Fig-

ures 7.11 and 7.12 show the evolution of each filter overtime in terms of RMSE and Jensen-
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Figure 7.12: The Jensen-Shannon distance evolution of the FOPP, the POPP, and the POPP-
Beta filters in periodic Poisson processes from day 3 to day 36 in a 3-day interval, averaged
across all regions. Standard error is shown.

Shannon distance across regions. As time passed by, the POPP-Beta filter increased its accur-

acy in estimating λ(ti , t j ). Similar to what had shown in 7.7 and 7.8, the POPP-Beta filter has

similar accuracy to the one shown by the POPP filter. This translates to the POPP-Beta filter

together with the POPP filter being more accurate than the FOPP filter.

7.4 Discussion

This chapter focused on the extension of the partially observable Poisson process (POPP) to

remove the POPP’s requirement to have a precise sensor model to be known in advanced. It is

motivated by the fact that attaining a precise sensor model requires a lot of training data and

expert interventions.

To achieve this, a fixed point sensor model is transformed into a Bayesian estimation

where the TPR and TNR of the sensor model follow beta distributions. Due to the nature

of conjugacy between beta distribution and the binomial distribution in Equation 6.5, an

analytical closed form beta-binomial distribution was proposed to replace the binomial
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distribution in Equation 6.5.

The experiments on simulated data showed that the extension–the POPP-Beta–outperformed

a standard POPP. It did, by extension, outperform a standard Bayes’ filter for the FOPP model

in estimating the parameter λ of a Poisson process. On real world data, similar results are

achieved in the case of homogeneous Poisson processes that show how the POPP-Beta model

outperformed the standard POPP model. Similar to the POPP model, the posterior of the

POPP-Beta model is able to envelop the true λ. However, the POPP-Beta model was not

able to tackle the problem that the POPP model faced when it comes to the case of having

limited sample data both to build the sensor model and to estimate the true λ. In the periodic

Poisson process cases where sample data were limited, the POPP-Beta model gave a similar

performance to the POPP model which, in some cases, is outperformed by the FOPP model.

The POPP, which provides a way to deal with counts coming from unreliable counting

devices, is extended with the POPP-Beta to deal with unreliable sensor models. This nicely

tackles one of the two assumptions that the POPP has. This leaves us with another assumption

which is the assumption that counter failures are conditionally independent from one to

another given the true count.



CHAPTER 8

PARTIALLY OBSERVABLE POISSON

PROCESS: NON-INDEPENDENT SENSOR

FAILURES

As detailed in Chapter 6, the POPP model relies on two different assumptions to be able to

correctly estimate counts made by multiple unreliable counting devices. The previous chapter

studied a way to remove one of the POPP assumptions, which is the assumption of knowing

precisely the unreliability of a sensor. In other words, the sensor model must be known in

advanced. There is one assumption unaddressed of which is:

• POPP assumes an independent sensor assumption where a failure in correctly detecting

an event of a sensor is uncorrelated to one another.

This chapter focuses on addressing this remaining assumption. A joint sensor model is

introduced and, with this notion, Equation 6.3 is updated. The concept is fully integrated into

the original POPP model.
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First, an extension to the POPP model to model the joint sensor is introduced. The

performance of this extension is tested on simulated data, and the result is explained in

Section 8.2. Section 8.3 extends the experiment on real world data from the previous chapter

and shows the results of the POPP extension on this. Finally, Section 8.4 concludes the chapter,

and discusses the remaining limitations.

8.1 Non-Independent Partially Observable Poisson Process
(N-POPP)

Recall that Equation 6.3 is defined under the assumption that each sensor’s count is condi-

tionally independent from all the others given the true count. This assumption ignores the

correlations between sensors. Consequently, P (−→si | xi ) is defined as a simple product across

the sensors.

P (−→si | xi )=
m∏

j=1
P (s j i | xi ) (8.1)

with 1 ≤ i ≤ n, −→si = (s1i , . . . , smi ) and P (s j i | xi ) defined in Equation 6.5.

By removing the assumption, the model gives the possibility that there are correlations

among sensors. A modification of the model is necessary to accommodate this relaxation

because:

1. Equation 8.1 holds only for the independent sensor assumption, and

2. Equation 6.5 becomes inappropriate because it only involves an independent sensor

model, represented by true positive detection (tpr j ) P j (dk = 1 | ek = 1) and the false

positive detection (fpr j ) P j (dk = 1 | ek = 0), for each individual sensor j .

Similar to the derivation of Equation 6.5, an arbitrarily close approximation to the

probability P (−→si | xi ) is defined by assuming there exists a small enough finite subinterval of

length δ for which the probability of more than one event occurring is less than some small

value ε. Once again, the interval (t1, t2), where the true count xi occurred, is split into l smaller
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subintervals I1, . . . , Il of equal size with the condition that l >λ. Consequently, for the event

ek , the whole interval (t1, t2) = I1, . . . , Il follows the Bernoulli distribution, where the k th trial

corresponds to whether an event ek happens with probability λ/l at the subinterval Ik . For

the detections, however, the whole interval (t1, t2) = I1, . . . , Il does not follow the Bernoulli

distribution anymore, but rather follows the categorical distribution, where the k th trial

corresponds to whether a particular combination of binary detections d1k , . . . ,dmk happens

in subinterval Ik . Hence, instead of having an independent sensor model for each sensor j :

tpr j = P j (dk = 1 | ek = 1), fpr j = P j (dk = 1 | ek = 0)

with i ≤ j ≤ m, a joint sensor model is needed:

P j nt (d1k , . . . ,dmk | ek ) (8.2)

with d j k being a detection by sensor j at subinterval Ik and d j k ,ek ∈ [0,1]. The variation of

P j nt (d1k , . . . ,dmk | ek ) grows by a factor of 2 with the number of sensors involved. Regardless

the number of sensors, P j nt (d1k , . . . ,dmk | ek ) can be split into two:

1. P j nt (d1k , . . . ,dmk | ek = 1) for the probability of a combination of binary detections

d1k , . . . ,dmk given that the event ek happened at subinterval k. Let E+ be a set of

probabilities P j nt (d1k , . . . ,dmk | ek = 1), then E+ includes all possible combinations of

binary detections d1k , . . . ,dmk given ek = 1. Let E+
0 = P j nt (d1k = 0, . . . ,dmk = 0 | ek =

1), . . . ,E+
(m2)−1

= P j nt (d1k = 1, . . . ,dmk = 1 | ek = 1), then E+ = {
E+

0 , . . . ,E+
(m2)−1

}
is called

the true joint positive rate.

2. P j nt (d1k , . . . ,dmk | ek = 0) for the probability of a combination of binary detections

d1k , . . . ,dmk given that the event ek did not happened at subinterval k. Let E− be a set

of probabilities P j nt (d1k , . . . ,dmk | ek = 0), then E− includes all possible combinations

of binary detections d1k , . . . ,dmk given ek = 0. Let E−
0 = P j nt (d1k = 0, . . . ,dmk = 0 | ek =
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1), . . . ,E−
(m2)−1

= P j nt (d1k = 1, . . . ,dmk = 1 | ek = 1), then E− = {
E−

0 , . . . ,E−
(m2)−1

}
is called

the true joint negative rate.

Recall that the set of detections −→si was defined as:

−→si = (s1i , . . . , smi )

with s j i ∈ N. s j i is the sensed count of sensor j from the i -th observation. Since the joint

sensor model is defined under a combination of binary detections of sensors, each s j i is split

into l subintervals such that in each sub interval Ik there is only one detection d j k . If the

binary detections from all sensors at subinterval Ik are grouped together, then for the interval

i , −→si can be seen as a collection of l groups of binary detections

−→si = ((d11, . . . ,dm1), . . . , (d1l , . . . ,dml )) (8.3)

with d j k being a detection by sensor j at subinterval Ik and d j k ∈ [0,1].

−→si may contain groups with similar binary detections d j k ,1 ≤ j ≤ m,1 ≤ k ≤ l . Let

D0 = (d1k , . . . ,dmk ) = (0, . . . ,0) (all d j k = 0), D1 = (d1k , . . . ,dmk ) = (0, . . . ,1) (all d j k = 0 except

dmk ), . . ., D(m2)−1 = (d1k , . . . ,dmk ) = (1, . . . ,1). It is straight forward to say that for each −→si , each

group (d1k , . . . ,dmk ) ∈ {
D0, . . . ,D(m2)−1

}
for 1 ≤ k ≤ l . With this, −→si definition from 8.3 can be

redefined as

−→si = (D0 = g0, . . . ,D(m2)−1 = g(m2)−1) (8.4)

with g0, . . . , g(m2)−1 ∈N. With the definition in 8.4, −→si groups a detection of each sensor from

the same subinterval as a joint detection, represented by Dq ,0 ≤ q ≤ (m2)−1, and displays the

number of the appearance of the joint detection, represented by gq ,0 ≤ q ≤ (m2)−1, within

the interval (t1, t2). We further define:

∥ −→si ∥ = ∥ (D0 = g0, . . . ,D(m2)−1 = g(m2)−1) ∥

=
(m2)−1∑

h=0
gh

(8.5)
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with −→si as in definition 8.4, and g0, . . . , g(m2)−1 ∈N. One should see clearly that ∥ −→si ∥= l given

that the interval is split into l subintervals.

The probability of −→si given xi events happened is now the aggregate of joint detections

given the positive event P j nt (d1k , . . . ,dmk | ek = 1) in xi sub-intervals, and joint detections

given the negative event P j nt (d1k , . . . ,dmk | ek = 0) in l−xi sub-intervals. Given the probability

of P j nt (d1k , . . . ,dmk | ek ) for all possible combinations of d j k and ek , equation 8.1 is redefined

as:

P (−→si | xi )=
∑

−→
s+⊆−→si

Mul ti (
−→
s+ | xi ,E+) Mul ti (

−→
s− | (l −xi ),E−) (8.6)

with ∥ −→s+ ∥= xi , ∥ −→si ∥=∥
−→
s+ ∥ + ∥−→s− ∥.

One should note that Equation 8.6 mainly aims for estimating the sensed count likeli-

hood on multiple sensors to utilise the correlation among sensors in detections. If there is only

one sensor counting events, then the POPP model with the independent sensor assumption

(utilising equation 8.1) is more computationally efficient due to Equation 6.5.

8.2 Evaluation on Synthetic Data

Chapter 6 has shown how the POPP model and its associated filters outperform the FOPP filter

in accurately estimating λ. Here, an evaluation and a comparison of the N-POPP model to the

POPP model are conducted with two imaginary unreliable sensors and simulated datasets.

The switching filter is chosen as a filter for both the POPP and the N-POPP model for this

evaluation. As the basis, a comparison against the uncorrected estimate according to the

FOPP model is also included.

In each experiment, the simulated sensors have a predefined joint sensor model which

is used to produce the sensor readings −→s1 . . .−→sn given the true counts x1, . . . , xn sampled from

a Poisson process P (x |λ′ = 3). The estimated joint sensor model is then built based on the

sampled counts x1, . . . , xn and the corresponding sensor readings −→s1 . . .−→sn . Then another set of
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Figure 8.1: The RMSE of posterior estimates of λ for the N-POPP and the POPP model with
variation on E+ with positive correlation between two sensors. Accuracies of MAP estimates
in the top panel, accuracies of expectation of the posterior in the bottom panel. Each data
point is an average of 30 trials. Standard errors are shown.

counts x1, . . . , x144 is sampled from the same process. These counts were then fed once again

to a simulated sensor producing sensor readings −→s1 . . .−−→s144. A recursive update, then, takes

place on PG (λ | −→si ) using the estimated joint sensor model and the switching filter.

The performance of the N-POPP filter, the standard POPP filter, and the standard FOPP

filter were assessed by comparing the RMSE of two estimators: the MAP hypothesis (mode)

and the expectation (mean) of each posterior over λ to the true λ′. The referenced joint sensor

model P j nt (d1k , . . . ,dmk | ek ) is varied and the evaluation of the performance is split into

two parts. First evaluation is the evaluation of the performance of the N-POPP filter and its

corresponding POPP filter by varying the true joint positive rate E+ (similar to varying sensor

sensitivity in the POPP model) while fixing the true joint negative rate E−. The variation falls

into three categories:

1. The variation on the true joint positive rate E+ where two sensors are positively cor-

related in positive detections. This is shown by P j nt (d1 = 1,d2 = 1 | e = 1) > 0.0, and
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Figure 8.2: The RMSE of posterior estimates of λ for the N-POPP and the POPP model with
variation on E+ with negative correlation between two sensors. Accuracies of MAP estimates
in the top panel, accuracies of expectation of the posterior in the bottom panel. Each data
point is an average of 30 trials. Standard errors are shown.

Figure 8.3: The RMSE of posterior estimates of λ for the N-POPP and the POPP model with
variation on E+ with no correlation between two sensors. Accuracies of MAP estimates in the
top panel, accuracies of expectation of the posterior in the bottom panel. Each data point is
an average of 30 trials. Standard errors are shown.
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Figure 8.4: The RMSE of posterior estimates of λ for the N-POPP and the POPP model with
variation on E− with positive correlation between two sensors. Accuracies of MAP estimates
in the top panel, accuracies of expectation of the posterior in the bottom panel. Each data
point is an average of 30 trials. Standard errors are shown.

P j nt (d1 = 0,d2 = 1 | e = 1) = P j nt (d1 = 1,d2 = 0 | e = 1) = 0.0. The performance of this

variation is shown in Figure 8.1.

2. The variation on the true joint positive rate E+ where two sensors are negatively

correlated in positive detections. This is shown by P j nt (d1 = 0,d2 = 1 | e = 1) > 0.0,

P j nt (d1 = 1,d2 = 0 | e = 1) > 0.0, and P j nt (d1 = 1,d2 = 1 | e = 1) = 0.0. The performance

of this variation is shown in Figure 8.2.

3. The variation on the true joint positive rate E+ where two sensors are uncorrelated

in positive detections (similar to the POPP model with an independent assumption).

This is shown by P j nt (d1 = 0,d2 = 1 | e = 1) > 0.0, P j nt (d1 = 1,d2 = 0 | e = 1) > 0.0, and

P j nt (d1 = 1,d2 = 1 | e = 1) > 0.0. The performance of this variation is shown in Figure

8.3.

The second evaluation is the evaluation of the performance of the N-POPP filter and its

corresponding POPP filter by varying the true joint negative rate E− (similar to varying sensor
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Figure 8.5: The RMSE of posterior estimates of λ for the N-POPP and the POPP model with
variation on E− with negative correlation between two sensors. Accuracies of MAP estimates
in the top panel, accuracies of expectation of the posterior in the bottom panel. Each data
point is an average of 30 trials. Standard errors are shown.

specificity in the POPP model) while fixing the true joint positive rate E+. Once again, the

variation falls into three categories:

1. The variation on the true joint negative rate E− where two sensors are positively cor-

related in negative detections. This is shown by P j nt (d1 = 0,d2 = 0 | e = 0) > 0.0, and

P j nt (d1 = 0,d2 = 1 | e = 0) = P j nt (d1 = 1,d2 = 0 | e = 0) = 0.0. The performance of this

variation is shown in Figure 8.4.

2. The variation on the true joint negative rate E− where two sensors are negatively cor-

related in false negative detections. This is shown by P j nt (d1 = 0,d2 = 1 | e = 0) > 0.0,

P j nt (d1 = 1,d2 = 0 | e = 0) > 0.0, and P j nt (d1 = 0,d2 = 0 | e = 0) = 0.0. The performance

of this variation is shown in Figure 8.5.

3. The variation on the true joint negative rate E− where two sensors are uncorrelated

in negative detections (similar to the POPP model with an independent assumption).

This is shown by P j nt (d1 = 0,d2 = 1 | e = 0) > 0.0, P j nt (d1 = 1,d2 = 0 | e = 0) > 0.0, and
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Figure 8.6: The RMSE of posterior estimates of λ for the N-POPP and the POPP model with
variation on E− with no correlation between two sensors. Each trial consisted of Accuracies
of MAP estimates in the top panel, accuracies of expectation of the posterior in the bottom
panel. Each data point is an average of 30 trials. Standard errors are shown.

P j nt (d1 = 0,d2 = 0 | e = 0) > 0.0. The performance of this variation is shown in Figure

8.6.

One should note that as it involves more than one sensor, the FOPP filter displayed in all

figures above is the result of averaging the MAP hypothesis or the expectation of the posterior

over λ from each sensor.

The performance of the N-POPP, the POPP and the FOPP filters were also assessed by

comparing the Jensen-Shannon distance of each approximated posterior distribution over λ

to the true λ′. Different correlations between two sensors were tested: positive correlation,

negative correlation, and no correlation. For each correlation type, a further variation to

different level of sensor unreliability was considered. First, two variations were made to the

true joint positive rate E+ (TJPR), while fixing the true joint negative rate E− (TJNR) on each

type of correlation. This includes:

• P j nt (d1k = 1,d2k = 1 | ek = 1) = 0.1,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.9 (E+ with low

positive correlation);
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Figure 8.7: The Jensen-Shannon distance of posterior estimates of λ for the N-POPP, the POPP
and the FOPP models with variations on the true joint positive rate. Each trial consisted of a
stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ). Standard errors are shown.

• P j nt (d1k = 1,d2k = 1 | ek = 1) = 0.9,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.1 (E+ with high

positive correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.05,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.05,P j nt (d1k =
0,d2k = 0 | ek = 1) = 0.9 (E+ with low negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.45,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.45,P j nt (d1k =
0,d2k = 0 | ek = 1) = 0.1 (E+ with high negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.033,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.033,P j nt (d1k =
1,d2k = 1 | ek = 1) = 0.033,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.901 (E+ with no correlation –

Similar to a sensor model with low TPR);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.3,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.3,P j nt (d1k =
1,d2k = 1 | ek = 1) = 0.3,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.1 (E+ with no correlation

– Similar to a sensor model with moderate TPR).

The assessment of the filters in terms of the Jensen-Shannon distance with the above testings



136 N-POPP

can be seen in Figure 8.7.

Second, two variations to the true joint negative rate E− (TJNR), while fixing the true

joint positive rate E+ (TJPR) on each type of correlation. This includes:

• P j nt (d1k = 1,d2k = 1 | ek = 0) = 0.1,P j nt (d1k = 0,d2k = 0 | ek = 0) = 0.9 (E− with low

positive correlation);

• P j nt (d1k = 1,d2k = 1 | ek = 0) = 0.9,P j nt (d1k = 0,d2k = 0 | ek = 0) = 0.1 (E− with high

positive correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.05,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.05,P j nt (d1k =
0,d2k = 0 | ek = 0) = 0.9 (E− with low negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.45,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.45,P j nt (d1k =
0,d2k = 0 | ek = 0) = 0.1 (E− with high negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.033,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.033,P j nt (d1k =
1,d2k = 1 | ek = 0) = 0.033,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.901 (E− with no correlation –

Similar to a sensor model with low TNR);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.3,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.3,P j nt (d1k =
1,d2k = 1 | ek = 0) = 0.3,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.1 (E− with no correlation

– Similar to a sensor model with moderate TNR).

The assessment of the filters in terms of the Jensen-Shannon distance with the above testings

can be seen in Figure 8.8.

Having done a thorough evaluation on the performance of the N-POPP filter against the

standard POPP filter, it is safe to conclude that the N-POPP filter clearly outperforms the POPP

filter in all given scenarios in estimating λ parameter of a Poisson process. It outperforms the

FOPP estimator by a big margin. Since these scenarios are similar to the scenarios applied in

the standard POPP model, it is safely to assume that adding more sensors to the experiment

does not change the performance ratio between the N-POPP model and the POPP model.
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Figure 8.8: The Jensen-Shannon distance of posterior estimates of λ for the N-POPP, the POPP
and the FOPP models with variations on the true joint negative rate. Each trial consisted of a
stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ). Standard errors are shown.

8.3 Evaluation on A Real World Dataset

In this evaluation, the N-POPP filter is compared to the POPP-Beta filter, the standard POPP

filter, and the FOPP filter in estimating the λ parameter of both a homogeneous Poisson

process and a periodic Poisson process on a real world dataset. Similar to the evaluation on

the simulated data set, the switching filter is used for all the models except the standard FOPP

model.

The extended dataset is used which was explained and used in the previous chapter.

Three perception algorithms for a mobile robot counting the number of people passing by in

an office building are the leg detector (LD), upper body detector (UBD), and change detector

(CD). Each minute, each detector returns a binary value whether there was a person or not.

All binary detections coming from the same minute are grouped together, and these groups

are further combined into a 10-minute joint detection to form a joint sensed count of the

number of people all sensors detect in each 10 minute interval during the day. The detections

are organised according to time/date and the spatial region where each detection was made.
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Table 8.1: Averaged joint sensor model across all areas trained from 48 days of data.

P (dl d ,dubd ,dcd | e = 1) P (dl d ,dubd ,dcd | e = 0)

dld = 0,dubd = 0,dcd = 0 0.029 0.823
dld = 0,dubd = 0,dcd = 1 0.373 0.064
dld = 0,dubd = 1,dcd = 0 0.016 0.055
dld = 0,dubd = 1,dcd = 1 0.092 0.008
dld = 1,dubd = 0,dcd = 0 0.140 0.013
dld = 1,dubd = 0,dcd = 1 0.081 0.001
dld = 1,dubd = 1,dcd = 0 0.104 0.033
dld = 1,dubd = 1,dcd = 1 0.165 0.003

The sensor models for both the POPP filter and the POPP-Beta filter, and the joint sensor

model for the N-POPP filter were built from sensor counts and true counts. To build the

sensor models and measure the performance of each filter including the FOPP filter, four fold

cross-validation was performed on the 48-day dataset with the unit being the whole days, i.e.,

12 days of data was used to build the sensor models and the remaining 36 days of data was

used as a test set. Similarly to the previous chapter, this process is done for all areas within

the patrol space. An example of a joint sensor model for the N-POPP filter trained from 48

days of data can be seen in Table 8.1.

An estimated true λ for the Poisson process and λ(ti , t j ) for the periodic Poisson process

on each region is approximated by running a FOPP filter on the true counts, whereas the

uncorrected estimate λ and λ(ti , t j ) according to the FOPP model was estimated only from

the change detector count data. Using RMSE and the Jensen-Shannon distance as distance

metrics, the estimated true λ is then used as a comparison to the resulting estimated λ

produced by each filter. One should note that the FOPP filter estimated the λ based only on

the change detector count data since it has been shown in Table 6.3 that the change detector

has better accuracy. The comparison was done for all areas within the patrol space.

8.3.1 The N-POPP models on Homogeneous Poisson Processes

This section starts with a case on homogeneous Poisson processes with an interval of 10

minute. The results are shown in Figure 8.9 for the RMSE and 8.10 for the Jensen-Shannon
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Figure 8.9: The RMSE of the FOPP, POPP, POPP-Beta, N-POPP estimators of λ as it varies
across areas (regions) of the environment. Standard error is shown.

Figure 8.10: The Jensen-Shannon distance of the FOPP, the POPP, the POPP-Beta, and the N-
POPP model distributions of λ as it varies across areas (regions) of the environment. Standard
error is shown.

distance. These figures are an extension to Figure 7.5 and 7.6 by adding an evaluation of the

N-POPP filter. As can be seen from both figures, the N-POPP model produces both better
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Figure 8.11: The RMSE evolution from day 3 to day 36 with 3 day interval, averaged across all
regions. Standard error is shown.

Figure 8.12: The Jensen-Shannon distance evolution of the FOPP, the POPP, the POPP-Beta,
and the N-POPP model distributions of λ from day 3 to day 36 with 3 day interval, averaged
across all regions. Standard error is shown.

estimates and more similar distributions than both the POPP-Beta model, and the POPP

model. Recall that the distribution of detections is not uniform across areas, some areas
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Figure 8.13: The RMSE of the FOPP, POPP, POPP-Beta, and N-POPP estimators of λ(ti , t j ) as it
varies across areas (regions) of the environment. Standard error is shown.

Figure 8.14: The Jensen-Shannon distance of the FOPP, POPP, POPP-Beta, and N-POPP model
distributions of λ(ti , t j ) as it varies across areas (regions) of the environment. Standard error
is shown.

(like area 7 and 9) have limited data. This, however, does not affect the N-POPP filter from

producing a better estimate than the other filters.

An evaluation on how the N-POPP evolved with time was also conducted, again in terms
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Figure 8.15: The RMSE evolution of periodic Poisson processes with POPP, POPP-Beta, N-
POPP and FOPP filters from day 3 to day 36, averaged across all regions. Standard error is
shown.

of both RMSE and Jensen-Shannon distance, since it is expected to gradually get closer to

the true λ. Figures 8.11 and 8.12 show that as time passes the performance of the N-POPP

estimator steadily becomes better. Once again, the figures are extensions of Figures 7.7 and

7.8.

8.3.2 The N-POPP models on Periodic Poisson Processes

This evaluation, a periodic Poisson process in which the imposed single periodicity is a

one-day cycle, i.e. λ(ti , t j ) = λ(ti+∆, t j+∆) with ∆ = 24∗60(minutes), is assumed to be the

underlying process.

Figures 8.13 and 8.14 showcase that the N-POPP model is able to cope and overcome the

problems with limited sample data both for building the (joint) sensor model and estimating

the λ(ti , t j ). This is showcased in regions 4, 7, and 9 where the N-POPP filter were more

accurate than the POPP and the POPP-Beta filter. In many other regions, the N-POPP models

still managed to display better estimates than the POPP and the POPP-Beta filters. This infers
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Figure 8.16: The Jensen-Shannon distance evolution of the FOPP, the POPP, the POPP-Beta,
and the N-POPP filters in periodic Poisson processes from day 3 to day 36 in a 3-day interval,
averaged across all regions. Standard error is shown.

that the N-POPP performed much better than the standard Bayesian inference according to

the FOPP model.

Once again, a side evaluation on how the N-POPP evolved with time was done. Fig-

ures 8.15 and 8.16 show the evolution of each filter overtime in terms of RMSE and Jensen-

Shannon distance across regions. The N-POPP filter gradually increased its accuracy in

estimating λ(ti , t j ). The filter constantly outperformed the POPP and the POPP-Beta filters in

terms of accuracy. This transitively implies that the N-POPP filter is a better estimator than

the rest of the filters.

8.4 Discussion

In summary, this chapter introduced the second extension of the partially observable Poisson

process, which removes the assumption that the sensors are uncorrelated to one another.

In the first part of this chapter, a mathematical model of the non-independent POPP (N-

POPP) was defined. The proposed model extends the sensor model used by the POPP and the
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POPP-Beta models into a joint sensor model where the outcomes are the combined detection

patterns across the sensors.

In the second part of the chapter, an evaluation to the N-POPP model was carried

out. The experiments on simulated data showed that the extension of the POPP model–the

N-POPP–was more accurate in estimating the parameter λ of a Poisson process than the

POPP model. A further evaluation on real-world data was done. This evaluation included the

extension detailed in the previous chapter, the POPP-Beta model. The result showed that the

N-POPP model outperformed the other models including both the POPP and the POPP-Beta

model. Not only that, the N-POPP model managed to outperform the FOPP model, where

the POPP and the POPP-Beta have failed, in the periodic Poisson process cases where sample

data were limited.

The POPP model has been extended to relax the assumptions of the POPP model. Up to

this chapter, both two underlying assumptions are tackled separately where one assumption

is tackled by the POPP-Beta model, and the other is tackled by the N-POPP model. This leaves

us with how to combine the benefits of each correction.



CHAPTER 9

POPP: NON-INDEPENDENT SENSOR

FAILURES WITH UNRELIABLE SENSOR

MODELS

In the last two chapters, two limitations of the standard POPP model were studied. The

problem of requiring a precise sensor model was studied and evaluated in Chapter 7. The

problem of having an assumption that counter failures are conditionally independent from

one to another given the true count was studied and evaluated in the last chapter. Each of

these problems has been studied and evaluated separately.

This chapter focuses on merging the solutions provided by the last two chapters into

one. The result of this merging is a new model which is an extension of the POPP model

without either limitation that the POPP model has. The new model is based on the N-POPP

model introduced in Chapter 8 where the joint sensor model is modelled as latent variables,

hence, updating Equation 8.6.

The N-POPP definition in Section 9.1 is revisited. Section 9.2 introduces an extension

to the N-POPP model where the degree of confidence of a joint sensor model is modelled

145
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and a prior knowledge over the sensor’s confidence is incorporated. The performance of this

extension is tested on simulated data, and the result is explained in Section 9.3. Section 9.4

uses the real world data from the previous chapter and extends the evaluation of the proposed

model on the real world data, and shows the results of the POPP extension on the real world

data. Section 9.5 closes this chapter by concluding the contribution.

9.1 Non-Independent Partially Observable Poisson Process
(N-POPP)

The N-POPP model is a POPP model where counts from multiple sensors are jointly corrected.

Similar to the POPP model, there is still a separation between the true count xi and sensed

count −→si in every time interval i . However, the sensed count −→si has been redefined to:

−→si = (D0 = g0, . . . ,D(m2)−1 = g(m2)−1) (9.1)

with m as the number of sensors, D0 as a representation of (d1k = 0, . . . ,dmk = 0), D1 as a

representation of (d1k = 0, . . . ,dmk = 1), . . ., D(m2)−1 as a representation of (d1k = 1, . . . ,dmk = 1),

g0, . . . , g(m2)−1 ∈N, d j k ∈ [0,1], and 1 ≤ j ≤ m.

The main difference between the POPP model and the N-POPP model relies on the

definition of the sensed count likelihood P (−→si | xi ). The probability of −→si set of detections

given xi events happened has become the aggregate of joint detections given the positive

event P j nt (d1k , . . . ,dmk | ek = 1) in xi sub-intervals, and joint detections given the negative

event P j nt (d1k , . . . ,dmk | ek = 0) in l −xi sub-intervals. Formally, it is defined as:

P (−→si | xi )=
∑

−→
s+⊆−→si

Mul ti (
−→
s+ | xi ,E+) Mul ti (

−→
s− | (l −xi ),E−) (9.2)

with l as the number of subintervals between (t1, t2), ∥ −→s+ ∥= xi , ∥ −→si ∥=∥
−→
s+ ∥ + ∥ −→s− ∥, E+ =

(E+
0 , . . . ,E+

(m2)−1
), E− = (E−

0 , . . . ,E−
(m2)−1

), E+
0 = P (d1k = 0, . . . ,dmk = 0 | ek = 1), . . . ,E+

(m2)−1
=

P (d1k = 1, . . . ,dmk = 1 | ek = 1), and E−
0 = P (d1k = 0, . . . ,dmk = 0 | ek = 0), . . . ,E−

(m2)−1
= P (d1k =
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1, . . . ,dmk = 1 | ek = 0).

Apart from this equation, the N-POPP model follows the standard POPP model. Con-

sequently, the posterior of λ, given n samples −→s = (−→s1 . . .−→sn) still follows the definition in

Equation 6.2. A graphical model of the N-POPP also follows the POPP model and is shown in

Figure 6.1.

9.2 N-POPP with Unreliable Joint Sensor Model
(POPP-Dirichlet)

As explained in the previous section, the N-POPP model uses a joint sensor model in es-

timating the parameter λ of a Poisson process. A joint sensor model is an extension of a

sensor model where the model provides a probability for a particular combination of binary

detections coming from each sensor given the true event. Unlike a standard sensor model for

sensor j which is represented by its true positive rate tpr j = P j (dk = 1 | ek = 1) and its false

positive rate fpr j = P j (dk = 1 | ek = 0), a joint sensor model is represented as a joint detection

among sensors given the true event as:

P j nt (d1k , . . . ,dmk | ek ) (9.3)

with d j k being the detection of sensor j at subinterval Ik , ek being the true event, and

d j k ,ek ∈ [0,1].

To construct a joint sensor model, one needs to have both detections and the corres-

ponding actual (non)-event as ground truth. Pre-processing involving expert interventions is

typically required before the detections and their corresponding ground truth can be further

used. Similar to the POPP model, the N-POPP model requires the joint sensor model to be

accurate to avoid the posterior over λ to drift away from the true posterior. If attaining an ac-

curate sensor model for the POPP model is a problem, then this becomes more prominent in

the case of a joint sensor model. This is because the training data needed to construct a joint
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sensor model grows by a factor of two for each sensor involved. Similar to the transformation

from the POPP model to the POPP-Beta model, the joint sensor model is transformed into a

Bayesian estimation problem, where P j nt (d1k , . . . ,dmk | ek = 1) and P j nt (d1k , . . . ,dmk | ek = 0)

of a joint sensor model follow Dirichlet distributions. The Dirichlet distribution is chosen

due to its computational convinience as Dirichlet distributions provide a family of prior pro-

bability distributions for the multinomial distributions where P j nt (d1k , . . . ,dmk | ek = 1) and

P j nt (d1k , . . . ,dmk | ek = 0) set the probabilities of multinomial distributions in Equation 9.2.

The dirichlet-multinomial conjugacy leads to an analytically tractable compound distribution

which is called the Dirichlet-multinomial distribution, where the −→p = (p1, . . . , pr ) parameter

in the multinomial distribution Mul ti ((d1, . . . ,dr ) | x,−→p ) is randomly drawn from a Dirichlet

distribution Di r (−→p | (ζ1, . . . ,ζr )).

P ((d1, . . . ,dr ) | x, (ζ1, . . . ,ζr )) =
∫

P ((d1, . . . ,dr ) | x,−→p ) P (−→p | (ζ1, . . . ,ζr )) dSr

=
∫

Mul ti ((d1, . . . ,dr ) | x,−→p ) Di r (−→p | (ζ1, . . . ,ζr )) dSr

=
∫

Γ(x +1)∏r
j=1Γ(d j +1)

r∏
j=1

p
d j

j

Γ(
∑r

j=1 ζ j )∏r
j=1Γ(ζ j )

r∏
j=1

p
ζ j−1
j dSr

=
∫

Γ(x +1)∏r
j=1Γ(d j +1)

Γ(
∑r

j=1(ζ j ))∏r
j=1Γ(ζ j )

∫ r∏
j=1

p
(ζ j+d j )−1
j dSr

= Γ(x+1)∏r
j=1Γ(d j+1)

Γ(
∑r

j=1(ζ j ))∏r
j=1Γ(ζ j )

∏r
j=1Γ(d j+ζ j )

Γ(x+∑r
j=1 ζ j )

= DM((d1, . . . ,dr ) | x, (ζ1, . . . ,ζr ))

(9.4)

with dSr denotes integrating −→p with respect to the (r −1) simplex1. One should note that

the Dirichlet distribution can be replaced with any other distribution. However, a different

approach which involves complicated integral on P (x, (ζ1, . . . ,ζr )) and a numerical approxim-

ation to P (x, (ζ1, . . . ,ζr )) must be taken into consideration. Avoiding extra computation, either

to calculate P (x, (ζ1, . . . ,ζr )) or to approximate it, and an extra approximation to the posterior

1The support of the Dirichlet distribution is the (r −1)-dimensional simplex Sr ; that is, all r dimensional
vectors which form a valid probability distribution
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Figure 9.1: Graphical representation of the POPP-Dirichlet.

distribution PG (λ | −→s ) makes the Dirichlet distribution with its conjugacy a sensible choice.

Given m sensors, a joint sensor model is now represented as two Dirichlet distributions:

Di r (E+ | −→ζ+), and Di r (E− | −→ζ−) with
−→
ζ+ = (ζ+0 , . . . ,ζ+

(m2)−1
) and

−→
ζ− = (ζ−0 , . . . ,ζ−

(m2)−1
).

−→
ζ+ and

−→
ζ−set the overall shape of the Dirichlet priors.

−→
ζ+ can loosely be interpreted as the number

of times combination ζ+q of m-sensor detection, 1 ≤ q ≤ (m2 −1), has been made given the

positive detection e (e = 1).
−→
ζ− can loosely be interpreted as the number of times combination

ζ−q of m-sensor detection, 1 ≤ q ≤ (m2 −1), has been made given the negative detection e

(e = 0).

Given a joint sensor model where the elements of it follow a Dirichlet density and

several Dirichlet-multinomial distributions, which provide an unconditional distribution of

(d1, . . . ,dr ), we replace Equation 9.2 with:

P (−→si | xi )=
∑

−→
s+⊆−→si

DM(
−→
s+ | xi ,

−→
ζ+) DM(

−→
s− | (l −xi ),

−→
ζ−) (9.5)

with ∥ −→s+ ∥= xi , ∥ −→si ∥=∥
−→
s+ ∥ + ∥ −→s− ∥,

−→
ζ+ = (ζ+0 , . . . ,ζ+

(m2)−1
),
−→
ζ− = (ζ−0 , . . . ,ζ−

(m2)−1
), ζ+0 = #(d1k =
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Figure 9.2: The RMSE of posterior estimates of λ for the POPP-Dirichlet and other POPP
models with 120 sample data used to build the (joint) sensor model with variation on E+.
Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ). Accuracies of MAP
estimates are shown in the top panel, accuracies of expectation of the posterior in the bottom
panel. Each data point is an average of 30 trials. Standard errors are shown.

0, . . . ,dmk = 0,ek = 1), . . . ,ζ+
(m2)−1

= #(d1k = 1, . . . ,dmk = 1,ek = 1), and ζ−0 = #(d1k = 0, . . . ,dmk =
0,ek = 0), . . . ,ζ−

(m2)−1
= #(d1k = 1, . . . ,dmk = 1,ek = 0).

With a joint sensor model following the Dirichlet density, which is conjugated with

multinomial distributions into a posterior predictive distribution shown in Equation 9.5, a

graphical model is shown in Figure 9.1. The difference between the N-POPP model and the

POPP-Dirichlet lies only in Equations 9.2 and 9.5. However, given a certain Dirichlet prior,

and a little training data for the sensor model, the POPP-Dirichlet is expected to be more

conservative in estimating the posterior PG (λ | −→s ) over λ than the N-POPP model.

9.3 Evaluation on Synthetic Data

The previous chapter has shown that the N-POPP model can outperform both the POPP

model and the POPP-Beta model in estimating the λ parameter of a Poisson process. As the
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Figure 9.3: The Jensen-Shannon distance of posterior estimates of λ for the POPP-Dirichlet
and other POPP models with 120 sample data used to build the (joint) sensor model with
variation on E+. Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ).
Each data point is an average of 30 trials. Standard errors are shown.

POPP-Dirichlet is a direct extension of the N-POPP model, the simulated dataset used to

evaluate the N-POPP model was borrowed. A comparison of the POPP-Dirichlet, the POPP

model and its extensions was conducted. For this evaluation, the switching filter technique

was chosen as the filter for all POPP models and its extensions, including the POPP-Dirichlet

model. The uncorrected estimate, according to the FOPP model, was not included in this

evaluation since its performance against N-POPP was shown in the previous chapter.

The joint sensor model was first built based on the sampled counts x1, . . . , xn from a

Poisson process P (x |λ′ = 3) together with their corresponding sensor readings. Another set

of counts x1, . . . , xn were sampled from the same process. These counts were then fed to a

simulated sensor that counted unreliably, producing sensor readings −→s1 . . .−−→s144. A recursive

update, then, takes place on PG (λ | −→si ) using the switching filter.

Two different sample sizes used to build the joint sensor model were chosen: a small

number of samples, and a large number of samples. A small number of samples build an

erroneous joint sensor model. In the POPP-Dirichlet model, a small number of samples
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Figure 9.4: The RMSE of posterior estimates of λ for the POPP-Dirichlet and other POPP
models with 2880 sample data used to build the (joint) sensor model with variation on E+.
Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ). Accuracies of MAP
estimates are in the top panel, accuracies of expectation of the posterior in the bottom panel.
Each data point is an average of 30 trials. Standard errors are shown.

creates a loose Dirichlet density. Conversely, a large number of samples creates a low variance,

and thus reliable, joint sensor model by tightening the Dirichlet prior of the POPP-Dirichlet

model. 120 samples were set for the small sample size, and 2880 samples were set for the large

sample size.

Different correlations between two sensors were tested: positive correlation, negative

correlation, and no correlation. For each correlation type, a further variation to different

levels of sensor unreliability was considered. First, two variations were made to the true joint

positive rate E+ (TJPR), while fixing the true joint negative rate E− (TJNR) on each type of

correlation. This includes:

• P j nt (d1k = 1,d2k = 1 | ek = 1) = 0.1,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.9 (E+ with low

positive correlation);

• P j nt (d1k = 1,d2k = 1 | ek = 1) = 0.9,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.1 (E+ with high
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Figure 9.5: The Jensen-Shannon distance of posterior estimates of λ for the POPP-Dirichlet
and other POPP models with 2880 sample data used to build the (joint) sensor model with
variation on E+. Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ).
Each data point is an average of 30 trials. Standard errors are shown.

positive correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.05,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.05,P j nt (d1k =
0,d2k = 0 | ek = 1) = 0.9 (E+ with low negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.45,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.45,P j nt (d1k =
0,d2k = 0 | ek = 1) = 0.1 (E+ with high negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.033,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.033,P j nt (d1k =
1,d2k = 1 | ek = 1) = 0.033,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.901 (E+ with no correlation –

Similar to a sensor model with low TPR);

• P j nt (d1k = 1,d2k = 0 | ek = 1) = 0.3,P j nt (d1k = 0,d2k = 1 | ek = 1) = 0.3,P j nt (d1k =
1,d2k = 1 | ek = 1) = 0.3,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.1 (E+ with no correlation

– Similar to a sensor model with moderate TPR).

Second, two variations to the true joint negative rate E− (TJNR), while fixing the true

joint positive rate E+ (TJPR) on each type of correlation. This includes:
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Figure 9.6: The RMSE of posterior estimates of λ for the POPP-Dirichlet and other POPP
models with 120 sample data used to build the (joint) sensor model with variation in E−.
Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ). Accuracies of MAP
estimates are in the top panel, accuracies of the expectation of the posterior in the bottom
panel. Each data point is an average of 30 trials. Standard errors are shown.

Figure 9.7: The Jensen-Shannon distance of posterior estimates of λ for the POPP-Dirichlet
and other POPP models with 120 sample data used to build the (joint) sensor model with
variation on E−. Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ).
Each data point is an average of 30 trials. Standard errors are shown.
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Figure 9.8: The RMSE of posterior estimates of λ for the POPP-Dirichlet and other POPP
models with 2880 sample data used to build the (joint) sensor model with variation in E−.
Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ). Accuracies of MAP
estimates are in the top panel, accuracies of the expectation of the posterior in the bottom
panel. Each data point is an average of 30 trials. Standard errors are shown.

Figure 9.9: The Jensen-Shannon distance of posterior estimates of λ for the POPP-Dirichlet
and other POPP models with 2880 sample data used to build the (joint) sensor model with
variation on E−. Each trial consisted of a stream of −→s1 . . .−−→s144 samples to update PG (λ | −→si ).
Each data point is an average of 30 trials. Standard errors are shown.
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• P j nt (d1k = 1,d2k = 1 | ek = 0) = 0.1,P j nt (d1k = 0,d2k = 0 | ek = 0) = 0.9 (E− with low

positive correlation);

• P j nt (d1k = 1,d2k = 1 | ek = 0) = 0.9,P j nt (d1k = 0,d2k = 0 | ek = 0) = 0.1 (E− with high

positive correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.05,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.05,P j nt (d1k =
0,d2k = 0 | ek = 0) = 0.9 (E− with low negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.45,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.45,P j nt (d1k =
0,d2k = 0 | ek = 0) = 0.1 (E− with high negative correlation);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.033,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.033,P j nt (d1k =
1,d2k = 1 | ek = 0) = 0.033,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.901 (E− with no correlation –

Similar to a sensor model with low TNR);

• P j nt (d1k = 1,d2k = 0 | ek = 0) = 0.3,P j nt (d1k = 0,d2k = 1 | ek = 0) = 0.3,P j nt (d1k =
1,d2k = 1 | ek = 0) = 0.3,P j nt (d1k = 0,d2k = 0 | ek = 1) = 0.1 (E− with no correlation

– Similar to a sensor model with moderate TNR).

The performance of the POPP-Dirichlet model was assessed in a similar manner to

previous chapters by comparing the RMSE of the two estimators and the Jensen-Shannon

distance of each posterior over λ to the true λ′. The result of the assessment when TJPR E+

was varied is shown by Figure 9.2 and 9.3 for a low number of samples and Figures 9.4 and

9.5 for a large number of samples. The result of the assessment when TJNR E− was varied is

shown by Figure 9.6 for a low number of samples and Figure 9.8 and 9.9 for a large number of

samples. In the RMSE assessment, all the figures clearly show that the POPP-Dirichlet model

outperformed any of the POPP model variations from previous chapters. This becomes more

apparent when there is only a small number of samples available. Figures 9.2 and 9.6 clearly

show that, with a low number of samples, any POPP model which models the unreliability

of a sensor model, such as the POPP-Beta and the POPP-Dirichlet models, provides a better

estimate than their counterpart which does not model the unreliability of the sensor model.
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In the Jensen-Shannon distance assessment, Figures 9.5 and 9.9 show that the POPP-Dirichlet

model has comparable performance to the N-POPP model especially when there is a large

number of samples to train the joint sensor models. However, the same statement cannot be

made when there is only a small number of samples available to train the joint sensor models

of the POPP-Dirichlet and the N-POPP models, although in general, the performance of those

models are still better than the POPP and the POPP-Beta models.

9.4 Evaluation on A Real World Dataset

Once again, in a similar fashion to the last three chapters, the POPP-Dirichlet filter is compared

with the POPP filter and two of its extensions (the POPP-Beta filter and the N-POPP filter) in

estimating the λ parameter of both a homogeneous Poisson process and a periodic Poisson

process on a real world dataset. The POPP-Dirichlet filter is also compared with the FOPP

filter. Similar to the evaluation on the simulated data set, the switching filter is used for all the

models except the standard FOPP model.

The same dataset used in the last three chapters is used. Available perception algorithms

attached to a mobile robot are leg detector (LD), upper body detector (UBD), and change

detector (CD). Each minute, each detector returns a binary value whether there was a person

or not. All binary detections coming from the same minute are grouped together, and these

groups are further clustered into a 10-minute cluster to form a joint sensed count of the

number of people all sensors detect in each 10 minute interval during the day. The detections

are still organised according to time/date and the spatial region where each detection was

made.

Both the joint sensor model and the standard sensor model must be trained from sensor

counts and true counts. The sensor models were built from the data collected from 10am-8pm

each for 48 days. A four fold cross-validation on the 48-day dataset with the unit being a whole

day was carried out, where 12 days of data were used to train the sensor model. This process

is done for all areas within the patrol space. As a reminder, an example of a joint sensor model
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Figure 9.10: The RMSE of the FOPP, POPP, POPP-Beta, and POPP-Dirichlet estimators of λ as
it varies across areas (regions) of the environment. Standard error is shown.

for the N-POPP filter trained from 48 days of data can be seen in Table 8.1 (in the previous

chapter).

The true λ for the Poisson process and λ(ti , t j ) for the periodic Poisson process on each

region was estimated by running a FOPP filter on the true counts. The uncorrected estimate

λ according to the FOPP model was estimated only from the change detector count data

since the change detector is the most reliable detector among three detectors available. Using

RMSE and the Jensen-Shannon distance, the estimated true λ and its distribution are then

used as a comparison to the resulting estimated λ (and λ(ti , t j ) respectively) produced by

each filter.

9.4.1 The POPP-Dirichlet models on Homogeneous Poisson Processes

This section starts with a case on homogeneous Poisson processes with an interval of 10

minute. The results are shown in Figure 9.10 for the RMSE and 9.11 for the Jensen-Shannon

distance. These figures are an extension of Figure 8.9 and 8.10 by adding an evaluation of
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Figure 9.11: The Jensen-Shannon distance of the FOPP, the POPP, the POPP-Beta, the N-POPP,
and the POPP-Dirichlet model distributions of λ as it varies across areas (regions) of the
environment. Standard error is shown.

Figure 9.12: The RMSE evolution from day 3 to day 36 with 3 day interval, averaged across all
regions. Standard error is shown.

the POPP-Dirichlet filter. In terms of RMSE, the λ estimate produced by the POPP-Dirichlet

filter is more accurate than the ones produced by the standard POPP filter and the POPP-Beta
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Figure 9.13: The Jensen-Shannon distance evolution of the FOPP, the POPP, the POPP-Beta,
the N-POPP, and the POPP-Dirichlet model distributions of λ from day 3 to day 36 with 3 day
interval, averaged across all regions. Standard error is shown.

filter. However, the estimate is not always more accurate compared to the one produced by

the N-POPP filter. As the POPP-Dirichlet is more conservative in estimating the parameter

λ, the estimate moves rather slowly towards the true λ and the distribution produced by the

POPP-Dirichlet tends to be wider than the N-POPP model. This argument is showcased in

Figures 9.11 where the Jensen-Shannon distance shows that the N-POPP model produced

more similar distributions to the true λ than the POPP-Dirichlet.

Similar to the last three chapters, an evaluation on how the POPP-Dirichlet evolved

with time was conducted in terms of both RMSE and Jensen-Shannon distance, since it is

expected to gradually get closer to the true λ. Figures 9.12 and 9.13 show that as time passes

the performance of the POPP-Dirichlet estimator becomes better and slowly outperforms

other estimators including the N-POPP estimator.
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Figure 9.14: The RMSE of the FOPP, POPP, POPP-Beta, N-POPP, and POPP-Dirichlet estimators
of λ(ti , t j ) as it varies across areas (regions) of the environment. Standard error is shown.

9.4.2 The POPP-Dirichlet models on Periodic Poisson Processes

This evaluation, a periodic Poisson process in which the imposed single periodicity is a

one-day cycle, i.e. λ(ti , t j ) = λ(ti+∆, t j+∆) with ∆ = 24∗60(minutes), is assumed to be the

underlying process. The results are shown in Figure 9.14 for the RMSE and 9.15 for the

Jensen-Shannon distance.

Similar to the N-POPP filter, the POPP-Dirichlet filter is able to cope and overcome the

problems with limited sample data both for building the joint sensor model and estimating

the λ(ti , t j ). In many regions, the POPP-Dirichlet managed to show better estimates as well

as more similar distributions than the POPP, the POPP-Beta, and the FOPP filters. However,

the POPP-Dirichlet filter falls behind both in accuracy (RMSE) and distribution similarity

compared to the N-POPP filter. This is attributed to the POPP-Dirichlet conservative way in

estimating the parameter λ(ti , t j ) compared to the N-POPP filter.

Once again, a side evaluation on how the POPP-Dirichlet evolved with time was evalu-

ated. Figures 9.16 and 8.16 show the evolution of each filter overtime in terms of RMSE and

Jensen-Shannon distance across regions. The POPP-Dirichlet filter gradually increased its ac-
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Figure 9.15: The Jensen-Shannon distance of the FOPP, POPP, POPP-Beta, N-POPP, and POPP-
Dirichlet model distributions of λ(ti , t j ) as it varies across areas (regions) of the environment.
Standard error is shown.

Figure 9.16: The RMSE evolution of periodic Poisson processes with POPP, POPP-Beta, N-
POPP, POPP-Dirichlet and FOPP filters from day 3 to day 36, averaged across all regions.
Standard error is shown.

curacy in estimating λ(ti , t j ) overtime. The filter outperformed the POPP and the POPP-Beta

filters in terms of accuracy. Unlike what is shown in Figure 9.12, the POPP-Dirichlet filter here

was a bit outperformed by the N-POPP filter in terms of RMSE accuracy.
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Figure 9.17: The Jensen-Shannon distance evolution of the FOPP, the POPP, the POPP-Beta,
the N-POPP, and the POPP-Dirichlet filters in periodic Poisson processes from day 3 to day 36
in a 3-day interval, averaged across all regions. Standard error is shown.

9.5 Discussion

In this chapter, another extension–POPP-Dirichlet–to the POPP model was explained and

tested. POPP-Dirichlet is, loosely, a combination of two previous extensions of the POPP

model: the POPP-Beta and the N-POPP. By merging the idea of two previous extensions, the

POPP-Dirichlet does not have either limitation that the POPP model has. The POPP-Dirichlet

is based on the N-POPP model where the joint sensor model is modeled as latent variables

which follow Dirichlet densities. An analytic closed form Dirichlet-multinomial distribution

provides a replacement of the multinomial distribution in Equation 9.2.

The experiments on simulated data showed that the POPP-Dirichlet estimator outper-

formed any other estimator in estimating the parameter λ of a Poisson process. Because the

POPP-Dirichlet is more conservative than its counterpart, the N-POPP model, its estimator

moves rather slowly in estimating the parameter λ. This is clearly shown by the evolution of

the accuracy of the estimator on the real world data. This becomes more apparent whenever

only limited sample data are available.



164 POPP-Dirichlet



CHAPTER 10

EXPLORE-EXPLOIT WHEN OBSERVING

HUMAN ACTIVITIES

In the first part of this thesis, the focus was about a robot that learns the level of aggregate

human activities over an extended period. It was argued that in order to achieve this, regard-

less of specific learning models, the robot must go to places where humans are bound to be

found. Up to this point, the thesis has been concerned with Bayesian methods for correctly

estimating how many humans might be encountered in a certain place at a particular time

given that available sensors in the robot are unreliable. In this chapter, the work from the first

part of this thesis (spectral-Poisson models for extracting periodic structures on temporally

sparse count data) is brought together with the second part of this thesis (Bayesian inference

for partially observable Poisson processes). This chapter shows how to use the resulting

predictions to drive exploration for human activities. In particular, the aim is to drive the

robot to go where there are the most people performing activities, i.e. where the aggregate

level of human activity is highest. This leads to solving an exploration-exploitation trade-off:

the robot must explore to find out where humans congregate, so as to then exploit that by

observing as many human activities as possible in a limited time.

165
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This chapter starts with an introduction to why exploring to maximise observations

of human activities can be thought of as an exploration-exploitation problem which is well

known in the reinforcement learning community. As a proof of concept, an evaluation of

the spectral-Poisson model, introduced in Chapter 4, in driving a mobile robot to explore

and observe the Aruba dataset is introduced. This dataset provides ground truth data for

measuring the performance of the spectral-Poisson model in simulating a robot exploration.

As a comparison to the spectral-Poisson, the periodic Poisson model, described in 4.1, and

a random exploration model are included. At the final section, the spectral-POPP models

and the POPP filters, which have been the focus of Chapter 6 to 9, are brought together to

drive exploration by a mobile robot for a series of nine-week deployments. Altogether, these

two different statistical methods give the ability to leverage the periodic structure of human

behaviour to perform better exploration.

10.1 Formulating Exploration-Exploitation Problems

In Chapter 4, the spectral-Poisson model has shown its ability to retrieve long-term, re-

occurring patterns from a time series of count data. Given that the underlying process of

interest has periodic structures, the spectral-Poisson predicts the fluctuation in the count

data at particular times and places. This approach was integrated as part of an overall mobile

robot system. This robot was employed in a "security scenario" in several office buildings.

In this scenario, the robot actively planned to observe places with a predicted high-level of

aggregate activity, so as to gather as much data on human activities as possible.

The problem to plan places to observe which will give the highest number of human

activities can be seen as an exploration-exploitation problem. Exploration-exploitation prob-

lems arise when an agent, in this scenario the mobile robot acts as the agent, does not fully

understand the process it is trying to control. In any time, the robot is given two options.

It can either spend its time and resources to better understand the process (explore) for a

better action later on, but sacrificing its short-term reward, or spend its time and resources to
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exploit what the robot already understands to gain reward and risk permanently following

its policy that might be suboptimal. In each time the robot has a choice between many

actions, each of which both explores and exploits a certain place, but to varying degrees. As

its goal is to maximise the reward gathered–as in getting as much data on human activities

as possible–given its limited operational life, it is preferable to have a policy that is as near

optimal as possible.

For example, let’s assume that this is 12 o’clock on a workday in an office with a lunch

room. The robot can choose between the corridor, where it has seen an average of three

people at this time , and the lunch room, which it has never visited. Given the prior over the

average of human activities in both places, one option to choose is to visit the lunch room

which might turn up having a lot of people at that time.

This problem is well known in the reinforcement learning community, and it is known

as the problem of optimising the exploration-exploitation trade-off. By mapping the number

of human activities the robot can find in a place to a certain reward, the robot exploration is

indeed a reinforcement learning problem in which the robot has an exploration-exploitation

problem.

While exploration-exploitation problems in reinforcement learning are typically intract-

able, there are well known approximate answers that are very quick to compute Wyatt (1998),

Alba & Dorronsoro (2005), Audibert et al. (2009). One such answer is to the use the upper

bound of the probability interval over the reward. Here that means the upper bound of the

probability interval of the aggregate number of activities. The other option, which is easier

to compute, is to use the upper bound of the probability interval of the arrival rate (λ) of a

Poisson process.

In this robot exploration, the latter option to use the upper bound of the probability

interval of λ is chosen because it tackles both aleatoric uncertainty and epistemic uncertainty.

While there is (aleatoric) uncertainty in the aggregate number of activities the robot will see

in an area in a particular period, there is part of the (epistemic) uncertainty which is due

to robot’s lack of exploration in observing the area at that time. This kind of uncertainty is
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Algorithm 4 Spectral Upper Bound
Input: (α1,β1), . . . , (αn ,βn): Poisson process
Output: λub

1 , . . . ,λub
n : spectral upper bound

Procedure:
1. Init. k ← 1, m ← η

2. Repeat until k > n
• k ← k +1
// Get the upper bound of the confidence interval
• λk ←C DF (0.95,αk ,βk )

// Transform λ1, . . . ,λn to spectrums with l-AAM technique
3. S ← Algorithm1(λ1, . . . ,λn , l)
5. Init. k ← 1, λub

1 , . . . ,λub
n ← (0, . . . ,0)

4. Repeat until k > m
// Create a cosine signal from S [k]
[|ωk |, ar g (ωk ),ωk ] ←S [ωk ]
• x1, . . . , xn ←|ωk | ∗cos(2π∗ωk +ar g (ωk ))
// Add current λub

1 , . . . ,λub
n with the cosine signal

• λub
1 , . . . ,λub

n ←λub
1 , . . . ,λub

n +x1, . . . , xn

not directly in the aggregate number of activities, but it is in λ, the parameter of the Poisson

process.

This means that the Poisson and spectral-Poisson model, introduced in Chapter 4,

use the upper bound of the confidence interval of the arrival rate (λU B ) to provide places

for the robot to visit. The upper bound of the confidence interval of the arrival rate of the

non-homogeneous Poisson process is calculated as follows

λU B (ti , t j ) =
∫ t j

ti

C DF−1(% = 0.95 |αt ,βt ) d t (10.1)

with λU B (ti , t j ) is the upper bound of λ within time ti and t j , i , j ∈ {1, . . . ,∆}, and C DF−1 is

the inverse of the cummulative density function of a gamma distribution. In the case of a

spectral-Poisson model, a series of upper bounds chosen for each λ(ti , t j ) were then encoded

and extracted via spectral analysis with l-AAM technique to produce a smoother series of

upper bound estimates λ′
U B (ti , t j ). Algorithm 4 depicts the process of choosing the upper

bound of λ(ti , t j ) of a Poisson process and applying spectral analysis to it. Given a series of

upper bounds λr
U B (ti , t j ) for each place, places which will be visited between time ti and t j is
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chosen by

argmax
r∈R

λr
U B (ti , t j ) (10.2)

with R as a set of specified regions.

10.2 Evaluation on the Aruba Dataset

Before the robot was deployed as a security guard, an evaluation was conducted to assess how

much improvement, concerning data gathering, the robot could obtain by replacing a random

exploration policy with an upper bound exploration using the spectral-Poisson model. To

test the (activity) exploration, the Aruba dataset was used. This dataset was first introduced

by Cook in Cook (2010), and then modified by Coppola et al., in Coppola, Krajník, Duckett &

Bellotto (2016). The ’Aruba’ dataset contains ground-truth activities of a home-bound person

in a small apartment for 16 weeks Cook (2010). These activities include: Bed to Toilet, Eating,

Enter Home, Housekeeping, Leave Home, Meal Preparation, Relax, Resperate, Sleeping, Wash

Dishes, Work. Coppola et al. modified the dataset by partitioning the small apartment into

nine regions consisting second bathroom, junction, office, living room, master bedroom,

master bathroom, corridor, second bedroom, kitchen Coppola, Krajník, Duckett & Bellotto

(2016). Furthermore, it provides an estimated minute-by-minute person location based on

the apartment’s motion detectors. Thus, the ’Aruba’ dataset contains a minute-by-minute

timeline of 12 different activities performed at 9 different locations over the course of 16

weeks1.

We simulated the exploration behaviour by creating an imaginary autonomous mobile

robot equipped with an unreliable perception algorithm. The imaginary perception/sensor

has a true positive rate of 0.8, and a true negative rate of 0.8. As a correction to the systematic

error, such as applying the POPP filter or any of its extension, was not implemented in this

simulation, it is not of interest to know whether there is an error (miscount) or not. Each day,

1https://github.com/gestom/fremen_activity_benchmark
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Table 10.1: A Comparison of the average percentage of the total duration of positive observa-
tions over the total duration of activities taking place in that location. The exploration policies
are: random exploration, the periodic Poisson process and the spectral-Poisson process.

Room Random periodic PP spectral-Poisson

Second Bathroom 11.66% 9.09% 4.55%
Junction 11.20% 8.37% 4.35%
Office 11.11% 8.65% 4.86%
Living Room 10.66% 35.70% 63.66%
Master Bedroom 10.13% 56.04% 79.21%
Master Bathroom 10.10% 8.25% 3.55%
Corridor 11.38% 6.89% 2.01%
Second Bedroom 10.21% 7.32% 5.74%
Kitchen 10.68% 9.61% 4.01%

the imaginary robot planned a series of places to visit, which included the duration of the visit

to each place, to look for possible human activities. The recommended places, and when the

robot should visit those places, were given by an exploration model. With this plan, the robot

then moved to the location, detected and recorded activities for the given time period. This

process ran throughout the day and looped throughout the whole 16 weeks.

Three approaches were applied for the exploration model: the Poisson model, the

spectral-Poisson model, and the Random exploration model. All these models were based on

periodic Poisson processes with∆ set to a week period. The random model provided a random

place for the robot to visit throughout the entire day. The Poisson and the spectral-Poisson

models follow the exploration policy using the upper bound of the confidence interval of the

arrival rate described in the previous section.

Recall that the focus of this evaluation on the simulated environment is to gather count

data as much as possible while learning and predicting the regular patterns of the home-

bound person. A comparison among different exploration strategies was made, based on how

many observations the robot makes using a particular exploration model. One comparison is

of the total duration of positive observations over the total duration of activities taking place

in that location. This is shown by Table 10.1. The other comparison is of the total duration of

positive observations over the total duration of the robots’ visits. This is shown by Table 10.2.

Table 10.1 shows that for places with strong periodic patterns of activities such as living
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Table 10.2: A Comparison of the average percentage of the total duration of positive observa-
tions over the total duration of the robots’ visits to that location. The exploration policies are:
random exploration, the periodic Poisson process and the spectral-Poisson process.

Room Random periodic PP spectral-Poisson

Second Bathroom 14.94% 19.18% 42.07%
Junction 0.99% 1.25% 1.40%
Office 0.16% 0.16% 0.19%
Living Room 36.23% 54.35% 57.86%
Master Bedroom 33.45% 67.66% 70.06%
Master Bathroom 2.98% 4.37% 4.62%
Corridor 3.77% 4.09% 4.07%
Second Bedroom 2.11% 2.68% 2.29%
Kitchen 5.10% 7.26% 6.22%

room and master bedroom, the periodic Poisson model and the spectral-Poisson model were

able to significantly improve the robot’s presence during activity in the locations. However,

both models performed worse than the random exploration if places do not have strong

periodicity in the activities. In contrast to Table10.1, Table 10.2 shows that the spectral-

Poisson is the most efficient model in finding activities. This is shown by its hit and miss ratio

of observations. This supports the idea that the spectral-Poisson model is more accurate in

predicting activities compared to the periodic Poisson process or random exploration.

10.3 Evaluation on Real Robot Exploration Tasks

As shown in the previous section, the Poisson-based exploration model with spectral methods

for extracting periodic structure displays better performance than other types of explora-

tion models in maximising observations of human activities. Let’s also recall that, in the

previous chapters, Bayesian inference for partially observable Poisson processes shows its

benefit in improving the number of observations of human activities by correcting bias in

the statistical estimates of the posterior distribution over human activities. Also, recall that

the original intention of the thesis is to predict where many people are most likely to be and

let an autonomous robot to go and observe them. Here, we put together those two different

statistical models to predict where people are and drive exploration for human activities. This
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Figure 10.1: A spectral-Poisson process of region 9 represented by its MAP hypothesis
(λM AP (ti , t j )) and its upper bound of the confidence interval λU B (ti , t j ).

section aims explicitly to show how the Bayesian inference for POPP together with spectral

methods, as an exploration model, performs compared to the spectral-Poisson exploration

model in regards to maximising observations of human activities.

Lets recall the dataset which had been used from Chapter 6 to Chapter 9 to assess the

accuracy and performance of the POPP filters. This dataset1 was, in fact, collected by the

exploration models, as mentioned earlier, throughout 69-days of the robot deployment. Due

to hardware failures, sensor malfunctions and other external issues related to the mobile

robot, only 48 days from the dataset were deemed worth analysis.

The exploration models which were used during the deployment are the spectral-

Poisson (or spectral-FOPP), the spectral-POPP, and the spectral-POPP-Beta. The spectral-

FOPP follows the same procedure described in the previous section with one difference.

Instead of having ∆ set to a week period for the periodic Poisson process, the deployment set

∆ to a day period.

The spectral-POPP and spectral-POPP-Beta are exploration models which follow a

1The dataset can be downloaded from https://github.com/ferdianjovan/spectral_popp
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periodic Poisson model with Fourier transformation applied to the series of point estimates

of the periodic model for getting a smoother model and POPP (or POPP-Beta) filter applied

during the learning / updating process of the model for correcting any systematic error

produced by detectors. In other words, these two models combine spectral-Poisson described

in Chapter 4 with POPP models described in Chapter 6 (or 7 respectively). During robot’s

observation on some particular time interval ti , t j , the sensed counts were captured by the

robots’ detectors. These sensed counts were then used to do Bayesian update on λ(ti , t j ),

i.e. PG (λ(ti , t j ) | α(i , j ),β(i , j )), using Equation 6.2. The switching-filter described in Chapter

6 was chosen to approximate PG
(
λ(ti , t j ) |α(i , j ),β(i , j )

)
on each Bayesian update. The upper

bound of the confidence interval (λU B (ti , t j )) of the updated arrival rate λ(ti , t j ) was selected

for each i , j ∈ {1, . . . ,∆} using Equation 10.1with ∆ set to a day period for the periodic Poisson

process. A series of upper bounds chosen for each λ(ti , t j ) were then encoded and extracted

via spectral analysis with l-AAM technique to produce a smoother series of upper bound

estimates λ′
U B (ti , t j )–following Algorithm 4. Figure 10.1 depicts a comparison between the

MAP hypothesis estimate and the upper bound estimate of a spectral-Poisson process. Finally,

places to visit throughout a day were chosen by Equation 10.2.

These three different exploration models were applied separately during the 69-day of

the deployment. All of these models used the upper bound of the confidence interval of the

arrival rate for their exploration policies. For the first 27 days of the deployment, the robot

followed an exploration policy according to the spectral-FOPP model. This resulted in 18

days worth of data collected. From this 18 days data collected by following the spectral-FOPP

exploration model, the last 3 days were used to train the sensor model needed for both the

spectral-POPP and the spectral-POPP-Beta models. From day 28 to day 47, the robot followed

an exploration policy according to the spectral-POPP model. This resulted in 15 days worth

of data collected. Finally, from day 48 onwards, the robot followed an exploration policy

according to the spectral-POPP-Beta model. This resulted to 15 days worth of data collected.

Similar to the evaluation on the Aruba dataset in the previous section, a comparison

among different exploration strategies is made, based on how many observations the robot
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Figure 10.2: The activity exploration percentage across areas (regions) of the environment
using three different exploration models (spectral-FOPP, spectral-POPP, spectral-POPP-Beta).
The percentage shows the portion of time that the robot was observing activities.

Figure 10.3: The exploration evolution from day 1 to day 15, averaged across all regions,
for three exploration models. The top panel shows the portion of time that the robot was
observing activities, whereas the bottom panel shows the number of activities.

makes using a particular exploration model. For this comparison, the last 3 days which are

part of the 18 days worth of data collected by following the spectral-FOPP exploration model
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are included in the spectral-POPP and the spectral-POPP-Beta exploration models. This is

necessary to avoid the spectral-POPP and the spectral-POPP-Beta exploration models having

an advantage over the spectral-FOPP exploration model since the spectral-POPP and the

spectral-POPP-Beta need a training period to construct their sensor model. Moreover, due

to the absence of information regarding activities happening in other places that the robot

did not visit, only a comparison of the total duration of positive observations over the total

duration of its visit can be compared and evaluated. As a reminder, a positive observation is a

time when the robot observes any activity during its visit to a particular location.

Figure 10.2 shows how many positive observations the robot made in each region of

the environment. As can be seen, the exploration policy produced by spectral-POPP-Beta

has the highest positive observations in many of the regions followed by the exploration

policy according to the spectral-POPP model. Recall that some regions, such as 4, 5, 6, and

7, are not densely populated with human activities across time compared to other regions

(such as 1, 2, 3, and 10). The spectral-POPP and spectral-POPP-Beta models, however, still

managed to improve the percentage of positive observations. This showed that the models

correctly predicted that activities would take place in particular locations. One should note

that region 6 is the place where there are vending machines. These are often detected as a

person by one (upper body detector) of the detectors attached to the robot. This might lead

the spectral-FOPP model to plan a visit to this particular location when no activity is taking

place. As can be seen, the spectral-POPP and the spectral-POPP-Beta models were able to

correct the miscounts occurring in region 6, and also giving a better estimate to the posterior

over the arrival rate λ and thus making the exploration-exploitation trade-off using better

beliefs.

A comparison of how the positive observations evolved with time for each exploration

policies was recorded. This is depicted by Figure 10.3. It cannot necessarily be expected that

the positive observations will increase monotonically as days pass. This is because different

days will have a different structure of activities, and thus a higher or lower aggregate level of

activity to detect. As shown in Figure 10.3, all exploration models showed similar performance
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Figure 10.4: The significance relationship among the spectral-POPP, the spectral-POPP-Beta
and the spectral-FOPP exploration models.

on the first three days because these are the last three days from the spectral-FOPP exploration

model whose the data were used to train the sensor models of the spectral-POPP and spectral-

POPP-Beta exploration models. The bottom panel of Figure 10.3 shows that the spectral-

POPP-Beta exploration models did not observe many activities during the deployment, this is

because the number of students that were around during the spectral-POPP-Beta exploration

period were lower compared to other times when other exploration models (such as the

spectral-POPP and the spectral-FOPP exploration model) were executed.

A test of significance was also performed to prove that results from the spectral-POPP,

the spectral-POPP-Beta and the spectral-FOPP exploration models are caused by something

other than randomness. The p-value = 0.05 was used as the cutoff for significance. If the

p-value is less than 0.05, the null hypothesis that there is no difference between the means

of the results is rejected, and a significant difference exists among the results of the spectral-

POPP, the spectral-POPP-Beta, and the spectral-FOPP. The test of significance is shown in

Figure 10.4. As shown in the figure, the results of the spectral-POPP and the spectral-POPP-

Beta exploration models are significantly different than the one from the spectral-FOPP

exploration model. However, the same conclusion can not be made between the result of the

spectral-POPP and the result of the spectral-POPP-Beta as the p-value between those two

results is above 0.05.
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10.4 Discussion

This chapter discusses the application of the spectral-Poisson process with the POPP filter to

control activity exploration performed by a mobile robot. Activity exploration was performed

because the robot was only able to observe a limited portion of the lower-ground floor at any

one time, and so it had to actively plan to go to other places to observe more activities. As

has been shown, the exploration plan cannot be a random one. Any exploration model must

optimise the exploration-exploitation trade-off to ensure good observation time of the robot.

The initial experiment on the Aruba dataset indicated that the exploration policy given

by the spectral-Poisson model improved the optimisation of the exploration-exploitation

trade-off over that of the periodic Poisson process. The policy, by extension, is better than the

random exploration policy in efficiently finding activities.

The real experiment on a real robot exploring the lower-ground floor for a total of 69

days with the aim to observe more activities was extending the result shown on the Aruba

dataset. By this experiment, the spectral-Poisson model for leveraging the periodic structures

of human behaviour and the POPP model for correcting bias in statistical estimates were put

together into one model, producing the spectral-POPP and the spectral-POPP-Beta models.

This experiment not only created the UoB dataset but also provided support that the spectral

POPP-Beta variant is the most effective method for optimising the exploration-exploitation

trade-off.

Due to time limitations, the author could not evaluate the exploration policy according

to both the N-POPP and POPP-Dirichlet model. One might expect that the N-POPP and the

POPP-Dirichlet will improve the efficiency of the exploration policy further. However, to

successfully implement the N-POPP and the POPP-Dirichlet model, one will need to have a

larger initial dataset to train the joint sensor model.
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CHAPTER 11

GENERAL DISCUSSION AND

CONCLUSION

The problems addressed in thesis are motivated by an autonomous mobile robot which must

adapt and learn dynamic behaviours from its unreliable perception to be able to work along-

side humans in human-centered environments. The dynamic changes come from human

activities which typically follow predictable, repeating patterns that generate corresponding

changes in space. However, the robot’s inability to see everywhere at once makes the learn-

ing process difficult due to incomplete information about its surroundings. Its perception

algorithms, which are prone to systematic errors, introduce bias to its statistical inferences,

aggravating the problem even further.

This thesis has been concerned with developing practical estimators for count data with

regularities, collected by an autonomous mobile robot, with unreliable perception algorithms,

on extended temporal scales. These count data represent the level of human activity in

particular locations. It studies two problems: drawing inferences from 1) incomplete time

series of count data and 2) unreliable count data. Several contributions have been made.

• A framework which allows us to sensibly retrieve and represent temporally recurring
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patterns of count data on extended temporal scales from temporally sparse observations

has been developed. The approach (Spectral-FOPP), based on a time-varying Poisson

process in combination with spectral analysis, efficiently retrieves recurring patterns of

count data. It is shown how to use these patterns to predict the aggregate human activity

level at particular times and places. The framework has been extensively tested, both on

simulated periodic count data and robot-gathered observations. The experiment also

showed that the periodic patterns can be used to categorize locations. These categories

are similar to the semantic categories given by humans.

• A set of inference methods for the partially observable Poisson process (POPP) has been

formulated. The POPP is a Poisson process which takes into account the unreliability of

the sensors that count events. Unlike Bayesian estimation for a fully observable Poisson

process (FOPP), obtaining the posterior is non-trivial, since there is no conjugate density

for a POPP and the posterior has a number of elements that grow exponentially in

the number of observed intervals. Two simple, tractable, approximations have been

presented. These two approximations are combined in a switching filter, which enables

efficient and accurate estimation of the posterior. A simulation study shows that these

POPP filters correct the over- and under-counts produced by sensors.

• Variations of the POPP filter are presented. The POPP-Beta filter extends the POPP filter

in which the unreliability of the observation model is accounted for when estimations

are built. The N-POPP filter extends the POPP filter by modelling the case when sensors

are uncorrelated. The POPP-Dirichlet combines the POPP-Beta filter and the N-POPP

filter to have the benefits of each correction. A simulation and observations taken by a

robot, on a series of long deployments, show that each extension provides progressively

more accurate estimates than the POPP filter.

• Both posteriors from the Spectral-FOPP and two Spectral-POPP processes are used to

drive exploration by a mobile robot for a series of two week deployments. An upper

bound interval exploration method was used to solve the exploration-exploitation
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problem. After labelling by humans, this resulted in a labelled data set of six weeks of

human activity levels. A simulated study has shown that the Spectral-FOPP and the

Spectral-POPP filter improve on-point observation time significantly if strong periodic

patterns underlying the human activities are present.

11.1 Limitations and Further Work

Two basic statistical models: Spectral-FOPP and POPP have been proposed and evaluated.

The combination of these two is able to extract temporal dynamics in the aggregate level of

human activities from unreliable sensors, along with the ability to exploit this understanding

for better exploration by an autonomous mobile robot. However, the spectral-POPP model

could still be improved in the following two ways:

1. In Chapter 6, The Gamma filter approximates a sum of Gamma distributions with

a single Gamma distribution assuming that the sensor performs somewhat reliable.

Instead of using a single Gamma distribution to approximate a sum of m Gamma

distributions, n gamma distributions, where n is much smaller than m, could be used

to improve the accuracy of the approximation to the posterior. This would promise to

be more accurate than a single gamma, but more efficient than a histogram filter. Thus,

it might be faster than the switching filter.

2. The spectral-Poisson model (Spectral-FOPP) in Chapter 4 is a statistical model which is

able, and only able, to capture the periodic structure of count data. It indirectly assumes

that there is an underlying pattern governing the evolution of the parameter λ of a

Poisson process. The spectral-Poisson might not be able to capture other non-periodic

structures governing the parameter λ, such as trends.

A Gaussian process modulated Poisson process might provide a better model for differ-

ent structures which govern λ over time. Work from Lloyd et al. (2015) presents a fully

variational Bayesian inference scheme for continuous Gaussian-process modulated
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Poisson process. It provides a good estimator and is fast in estimating λ of a Poisson

process. An extension to this statistical model which embeds both trends and periodi-

city in the model might provide a solution to the limitations of Spectral-Poisson while

being fully Bayesian.
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