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Abstract

In this thesis we discuss two extremal problems in graph theory which can be solved

by investigating the structure of extremal constructions and minimal counterexamples.

In the first part we establish a precise characterisation of 4-uniform hypergraphs with

minimum codegree close to n/2 which contain a Hamilton 2-cycle. As a corollary we

determine the exact Dirac threshold for Hamilton 2-cycles in 4-uniform hypergraphs,

and we provide a polynomial-time algorithm which, given a 4-uniform hypergraph H

with minimum codegree close to n/2, either finds a Hamilton 2-cycle in H or provides

a certificate that no such cycle exists. In contrast we also show that the corresponding

decision problem for tight Hamilton cycles in k-graphs with minimum degree close to n/2

is NP -complete.

In the second part we study the following bootstrap percolation process: given a

connected graph G, we infect an initial set A ⊆ V (G), and in each step a vertex v

becomes infected if at least a ρ-proportion of its neighbours are infected. Once infected,

a vertex remains infected forever. A set A which infects the whole graph is called a

contagious set. We denote the minimal size of a contagious set by hρ(G). Our main result

states that for every ρ ∈ (0, 1], every connected graph G on n vertices has hρ(G) < 2ρn or

hρ(G) = 1. This improves previous results of Chang, Chang and Lyuu, and Gentner and

Rautenbach and is best-possible. We also provide a stronger bound in the case of graphs

of girth at least five. Both proofs exploit the structure of a minimal counterexample.
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Chapter 1

Introduction

Since the second half of the 20th century, extremal graph theory has been a thriving field

of combinatorics that has often addressed a variant of the following problem. We would

like to maximise (or minimise) a graph parameter under the condition that some graph

property is fulfilled. For example the historical question, first investigated by Mantel [71],

which gave birth to extremal graph theory is the following. What is the maximum number

of edges in a triangle-free graph?

Usually, the aim of such an investigation is not just to determine the maximum or

minimum value of the graph parameter in question, but to understand the structure of

the extremal graph(s) which do have this property. Therefore Turán’s Theorem [85] does

not just state that a Kr+1-free graph can have at most (r − 1)n2/(2r) edges, but also

classifies the unique extremal construction which achieves this bound, i.e. the complete

r-partite graph with partite classes of size n/r, known since then as the Turán graph.

Keeping such an emphasis in mind, in the first part of this thesis we will be interested

in minimising a certain notion of degree whilst ensuring the existence of a certain spanning

subgraph in a hypergraph. Moreover, we will attempt not just to determine the extremal

constructions, but to classify all graphs with a weaker minimum degree condition which

do admit the spanning subgraph. In the second part of this thesis we will be interested in

1



minimising the size of a certain contagious set which has the property that it can infect

a graph in a certain bootstrap percolation process. In this investigation the main idea of

our approach will be to determine the structure of a minimal counterexample which we

then can exploit to find a small contagious set.

The new results in the first part are due to joint work with Richard Mycroft, and

Section 1.1 and Chapter 2 are based on [40, 41]. The second part, which consists of

Section 1.2 and Chapter 3, is based on [39] which is joint work with Andrew McDowell

and Richard Mycroft.

1.1 Characterising hypergraphs admitting spanning

structures

One of the fundamental motivations in graph theory is the quest for necessary and suffi-

cient conditions which guarantee the existence of certain spanning subgraphs. Traditional

subgraphs of particular interest are perfect matchings and Hamilton cycles. The classic

theorem of Tutte gives a precise characterisation of all graphs which contain a perfect

matching whilst Dirac’s theorem [32] gives probably the best-known sufficient condition

to ensure the existence of a Hamilton cycle, i.e. if a graph has minimum degree at least

n/2. A fundamental difference between both problems is that for the corresponding de-

cision problem – given a graph G, determine whether it contains a Hamilton cycle or a

perfect matching – exists Edmond’s polynomial time algorithm [34] in the case of perfect

matchings, but in the case of Hamilton cycles this decision problem is one of Karp’s famous

21 NP-complete problems [61]. Moreover, even if restricted to graphs of minimum degree

at least n/2− εn, for ε > 0, the Hamilton cycle problem is NP-complete [30]. Therefore,

assuming that P 6= NP , it is not likely that we can find a ‘nice’ characterisation of Hamil-

tonian graphs like Tutte found for perfect matchings, not even in the degree-restricted

setting. Here we would like to discuss the situation in the case of hypergraphs which has
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Figure 1.1: A 2-cycle 4-graph and a 2-cycle 3-graph.

received a great amount of attention in recent years. To discuss this work, we first need

to find suitable generalisations for those concepts in the context of hypergraphs.

A k-uniform hypergraph, or k-graph H consists of a set of vertices V (H) and a set of

edges E(H), where each edge consists of exactly k vertices. This generalises the notion of

an ordinary graph, which coincides with the case k = 2. Given any integer 1 6 ` 6 k− 1,

we say that a k-graph C is an `-cycle if C has at least one edge and the vertices of C

may be cyclically ordered in such a way that every edge of C consists of k consecutive

vertices and each edge intersects the subsequent edge (in the natural ordering of the edges)

in precisely ` vertices (see Figure 1.1). Note that the latter condition implies that the

number of vertices of an `-cycle k-graph C is divisible by k− `, as each edge of C contains

exactly k−` vertices which are not contained in the previous edge. We say that a k-graph

H on n vertices is `-Hamiltonian or contains a Hamilton `-cycle if it contains an n-vertex

`-cycle as a subgraph; as above, a necessary condition for this is that k− ` divides n, and

we assume this implicitly throughout the following discussion. It is common to refer to

(k − 1)-cycles as tight cycles and to speak of tight Hamilton cycles accordingly. This is

the most commonly used definition of a cycle in a uniform hypergraph, but more general

definitions, such as a Berge cycle [17], have also been considered. A perfect matching of

H is a set of n/k vertex disjoint edges. Given a k-graph H and a set S ⊆ V (H), the
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degree of S, denoted dH(S) (or d(S) when H is clear from the context), is the number of

edges of H which contain S as a subset. The minimum codegree of H, denoted δ(H), is

the minimum of d(S) taken over all sets of k−1 vertices of H, and the maximum codegree

of H, denoted ∆(H), is the maximum of d(S) taken over all sets of k − 1 vertices of H.

Note that for graphs the maximum and minimum codegree are simply the maximum and

minimum degree respectively.

A major focus has been to find analogues of Dirac’s theorem for hypergraphs and

different kinds of spanning subgraphs. This is to determine the best-possible minimum

codegree condition which guarantees that a k-graph on n vertices contains the desired

subgraph. We refer to this as the corresponding Dirac threshold. In this chapter we

will investigate the Dirac threshold but we will also go significantly further and ask the

following related extremal question. We say that a decision problem is tractable if there

exists a polynomial time algorithm to decide it.

Question 1.1. Let S be a k-graph. What is the best-possible minimum codegree condition

f : N→ N which makes the decision problem, whether a k-graph H with δ(H) > f(|V (H)|)

contains S as a subgraph, tractable?

We refer to this as the corresponding tractability threshold. For the discussion of this

threshold we assume that P 6= NP and therefore that a decision problem is not tractable,

if it is NP -complete. So if on the one hand we consider a characterisation of a graph

property to be useful, if it gives rise to a polynomial time algorithm for the corresponding

decision problem, and on the other hand assume that NP 6= P and therefore an NP -

complete problem does not allow a polynomial time algorithm, then this question asks

essentially for the best-possible minimum codegree condition which ensures the existence

of a useful characterisation of graphs containing a certain subgraph. In the following

we will discuss the situation for the two prime examples of spanning subgraphs, i.e.

perfect matchings and Hamilton `-cycles. We will usually assume that n is sufficiently
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large. Furthermore, for a given function f : N → R we denote by PM(k, f) the decision

problem of determining whether a k-graph H with δ(H) > f(|V (H)|) contains a perfect

matching and by HC`(k, f) the decision problem of determining whether a k-graph H

with δ(H) > f(|V (H)|) contains a Hamilton `-cycle.

1.1.1 Perfect matchings

Unlike in the graph case, the perfect matching problem in k-uniform hypergraphs, for

k > 3, is known to be NP-complete (see [43]). Furthermore Szymańska [84] showed that

for any ε > 0 the problem remains NP-complete even when restricted to k-graphs H with

δ(H) > n/k − εn.

Theorem 1.2 ([84]). For k > 3 and α < 1/k the problem PM(k, αn) is NP-complete.

On the other hand the Dirac threshold for perfect matchings was determined to be

n/2 − o(1), first asymptotically by Kühn and Osthus [70] and later exactly by Rödl,

Ruciński and Szemerédi [82].

Theorem 1.3 ([82]). Suppose that n is sufficiently large and k | n. If H is a k-graph on

n vertices with

δ(H) > n/2− k + C ,

where C is an explicit constant C ∈ {3/2, 2, 5/2, 3} only dependent on the parity of n and

k, then H contains a perfect matching. This bound is best-possible.

It is not difficult to find an extremal example with minimum codegree at least n/2−k

which does not contain a perfect matching. We construct a k-graph H whose edges are

all k-tuples that have an even size intersection with some set S such that n/2 − 1 6

|S| 6 (n + 1)/2 and |S| is odd. Hence H cannot contain a perfect matching as every

matching of H can only cover an even size subset of S. Note that this construction

satisfies δ(H) > n/2 − k + C − 1 and therefore shows that Theorem 1.3 is best-possible
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in the case of k being odd. A very similar construction gives the lower bound in the case

of k being even.

Theorem 1.2 and Theorem 1.3 imply that it seems to be unlikely to find a useful

characterisation for graphs containing a perfect matching with minimum codegree at least

αn, where α ∈ [0, 1/k), whilst on the other hand every k-graph with minimum codegree

at least n/2 does contain a perfect matching which leads to a trivial characterisation

for those graphs. Hence the natural question is whether we can characterise k-graphs

with minimum codegree at least n/k and can close the ‘hardness gap’ of PM(k, αn) when

α ∈ [1/k, 1/2).

Indeed, based on work of Keevash and Mycroft in [66], Knox, Keevash and Mycroft [64]

and Han [52] could give a precise characterisation of such graphs. The algorithmic con-

sequence thus is that the perfect matching problem can be solved in polynomial time in

k-graphs H with δ(H) > n/k.

Theorem 1.4 ([64, 52]). For k > 3, there exists a polynomial time algorithm to decide

PM(k, n/k).

Note that Knox, Keevash and Mycroft [64] even formulated an algorithm which can

find such a perfect matching if it exists and which can be applied to graphs H with

δ(H) > αn, where α ∈ (1/k, 1]. The underlying characterisation which leads to this

algorithm can be described the following way. H contains a perfect matching if and only

if it is not a subgraph of an element of a certain class of extremal constructions. We give

the precise statement for the 3-uniform case.

Theorem 1.5 ([64]). For any ε > 0 and n large enough with 3 | n the following holds. If

H is a 3-graph on n vertices and δ(H) > (1/3 + ε)n, then H does not contain a perfect

matching if and only if there is a subset A ⊆ V (H) such that |A| is odd but every edge of

H intersects A in an even number of vertices.
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This implies that a hypergraph with minimum codegree at least n/3 + εn does not

contain a perfect matching if and only if it is a subgraph of a construction which is

very similar to the one we used above to show that Theorem 1.3 is best-possible. For

higher uniformity the characterisation becomes more involved, as more so called divisibility

barriers can occur. Since we would like to continue with the case of Hamilton cycles, we

refer the interested reader to [64] for further details. We can conclude that the hardness

of the restricted perfect matching problem PM(k, αn) is known for every k > 3 and

α ∈ [0, 1] and that the tractability threshold for perfect matchings is considerably lower

than the Dirac threshold.

1.1.2 Hamilton cycles

Since the Hamilton cycle problem is already NP -complete for ordinary graphs, an el-

ementary reduction from the graph case can show that it is also NP -complete for k-

graphs with k > 3. Moreover, similarly to the case of perfect matchings Karpiński,

Ruciński and Szymańska [62] showed that also the restricted problem HM`(k, αn), for

α ∈ [0, 1/(dk/(k − `)e(k − `))), is NP -complete. Actually, their statement is formu-

lated only for tight cycles, but the same construction gives the result for `-cycles for any

1 6 ` 6 k − 1.

Theorem 1.6 ([62]). For any 1 6 ` < k and any ε > 0 the following problem is NP-

complete. Given a k-graph H with δ(H) > ( 1
d k
k−` e(k−`)

− ε)|V (H)|, determine whether H

contains a Hamilton `-cycle.

Especially in recent years the research about the Dirac threshold for Hamilton cycles

in hypergraphs has received a great amount of attention. First non-trivial upper and

lower bounds on the Dirac threshold were established by Katona and Kierstead [63] for

tight cycles in k-graphs with k > 3. A considerable breakthrough was achieved by Rödl,

Ruciński and Szemerédi, who determined the asymptotic Dirac threshold for tight cycles in
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3-graphs [80]. In their proof they introduced the since then well known ‘absorbing method’

which had an immense impact on research in extremal graph theory. All subsequent results

about the Dirac threshold of Hamilton cycles in hypergraphs are based on this method.

They later extended their result and showed that n/2 is the asymptotic Dirac threshold

for Hamilton `-cycles, for 1 6 ` 6 k − 1 in the case of k − ` dividing k. The cases in

which k− ` does not divide k were settled in a series of papers by Kühn and Osthus [69],

Keevash, Kühn, Mycroft and Osthus [65], Hàn and Schacht [51] and Kühn, Mycroft and

Osthus [68]. These results can all be collectively described by the following theorem,

whose statement gives the asymptotic Dirac threshold for any k > 3 and 1 6 ` 6 k − 1.

Theorem 1.7 ([51, 65, 68, 69, 80, 81]). For any k > 3, 1 6 ` < k and ε > 0, there

exists n0 such that if n > n0 is divisible by k − ` and H is a k-graph on n vertices with

δ(H) >


(
1
2

+ ε
)
n if k − ` divides k,(

1
d k
k−` e(k−`)

+ ε

)
n otherwise,

then H contains a Hamilton `-cycle.

Similar to the case of perfect matchings it is not difficult to see that this result is

asymptotically best-possible. In the case that k− ` divides k the exact same construction

like in the case of perfect matchings gives rise to an extremal example, as a Hamilton

`-cycle also contains a perfect matching. In the case that k − ` does not divide k let H

be the k-graph whose edges are all k-sets which contain at least one vertex of a set S

of size dn/(dk/(k − `)e(k − `))e − 1. H does not contain a Hamilton `-cycle as such a

cycle would contain n/(k − `) edges, but a vertex lies in at most dk/(k − `)e edges and

n/(k − `) > |S|dk/(k − `)e.

More recently, the exact Dirac threshold has been identified in some cases, namely for

k = 3, ` = 2 by Rödl, Ruciński and Szemerédi [83], for k = 3, ` = 1 by Czygrinow and
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Molla [29], and for any k > 3 and ` < k/2 by Han and Zhao [54]. Moreover, for tight

cycles Karpiński, Ruciński and Szymańska [62] derandomised the proof of Theorem 1.7

to describe a polynomial-time algorithm which actually finds a tight Hamilton cycle in

such a k-graph. This raises the question whether the threshold for tractability could lie

substantially below the Dirac threshold.

Note that in the case of (k − `) not dividing k Theorem 1.6 and Theorem 1.7 imply

that the hardness of HC`(k, αn) is known for every α ∈ [0, 1] \ {1/(dk/(k − `)e(k − `))},

as by Theorem 1.6 HC`(k, αn) is NP -complete for α < 1/(dk/(k − `)e(k − `)) and by

Theorem 1.7 it is trivial for α > 1/(dk/(k − `)e(k − `)). However, in the case of (k − `)

dividing k the tractability of HC`(k, αn) is not known for α ∈ [1/k, 1/2]. For tight cycles

Karpiński, Ruciński and Szymańska [62] noticed this ‘hardness gap’ and stressed the

similarity to the case of perfect matchings. Can we expect a similar behaviour for tight

Hamilton cycles?

Question 1.8. For α ∈ [1/k, 1/2), can HCk−1(k, αn) be decided in polynomial time?

1.1.3 New results

Our first result closes the aforementioned ‘hardness gap’ identified by Karpiński, Ruciński

and Szymańska [62] by answering Question 1.8 negatively.

Theorem 1.9 ([40, 41]). For any k > 3 there exists a constant C ∈ N such that the

problem to determine whether a k-graph H with δ(H) > |V (H)|/2 − C admits a tight

Hamilton cycle is NP-complete.

This result can be seen as a hypergraph analogue of the result of Dahlhaus, Hajnal, and

Karpiński [30] for ordinary graphs. Furthermore, Theorem 1.9 together with Theorem 1.7

shows that, in contrast to the situation for perfect matchings described in Section 1.1.1, the

tractability threshold and the Dirac threshold for tight Hamilton cycles are asymptotically
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equal. Since the Dirac and the tractability threshold are asymptotically determinded in

the case of k− ` not dividing k and with the above result also in the case of tight cycles,

this leaves those values of k and ` such that 1 6 ` 6 k/2 and k − ` divides k. Hence the

next interesting case is ` = k/2. We therefore investigated Hamilton 2-cycles in 4-graphs

(that is the case k = 4 and ` = 2). One result is the previously unknown exact Dirac

threshold Hamilton 2-cycles in 4-graphs, the asymptotic bound of Theorem 1.7 is the best

previously known result.

Theorem 1.10 ([40, 41]). There exists n1 such that if n > n1 is even and H is a 4-graph

on n vertices with

δ(H) >


n
2
− 2 if n is divisible by 8,

n
2
− 1 otherwise,

then H contains a Hamilton 2-cycle. Moreover, this minimum codegree condition is best-

possible in each case.

To see that Theorem 1.10 is best-possible, for an even integer n, let A and B be disjoint

sets with |A ∪ B| = n such that |A| = n/2− 1, if 8 divides n, and |A| = n/2, otherwise.

We define H to be the 4-graph with vertex set A∪B whose edges are all 4-sets e ⊆ A∪B

with odd sized intersection with A. We call this the odd-extremal example. It is easy to

see that δ(H) = n/2 − 3, if 8 divides n, and n/2 − 2 otherwise. Furthermore, assume

that C = (v1, v2, . . . , vn) is a Hamilton 2-cycle in H. Write Pi = {v2i−1, v2i} for each

1 6 i 6 n/2, so the edges of C are ei := Pi ∪ Pi+1 for 1 6 i 6 n/2 (with addition taken

modulo n/2). Note that for exactly n/4 pairs Pi we must have that |Pi ∩ A| ∈ {0, 2}

and for all other Pi we have |Pi ∩ A| = |Pi ∩ B| = 1. Hence we must have 4 | n and

that |A| − |B| ≡ 2 · n/4 mod 4. In the case that 8 | n this leads to the contradiction

that |A| − |B| ≡ 0 mod 4 and if 8 does not divide n, then we get the contradiction that

|A| − |B| ≡ 2 mod 4.
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Figure 1.2: A visualisation of odd- and even-extremality.

It is also worth to mention a second construction, which we call the even-extremal

example and which we have already used to show the lower bound for the Dirac threshold

of perfect matchings. Let n be an even integer and H be a 4-graph of order n with vertex

set V (H) = A ∪ B such that |A| 6= |B| and A is odd. Let the edge set of H consist

of all 4-sets of V (H) with an even sized intersection with A. Then H cannot contain a

Hamilton 2-cycle, as such a Hamilton 2-cycle can only cover an even number of vertices

of A. Note that by choosing |A| to be the largest odd integer such that |A| < n/2 we

cannot quite, but almost, achieve the bound of Theorem 1.10, i.e. δ(H) > n/2− 5.

However, as mentioned before we are not merely interested in determining the Dirac

threshold, but our actual goal is to find a useful characterisation for 2-Hamiltonian 4-

graphs with minimum codegree below the Dirac threshold. Surprisingly, and in contrast

to the case of tight cycles, we can indeed give a precise characterisation of all 4-graphs

with minimum codegree close to the Dirac threshold according to whether or not they

contain a Hamilton 2-cycle. This is expressed in the following theorem. Note for this

that a bipartition of a set V simply means a partition of V into two sets. The precise

definitions of the terms ‘even-good’ and ‘odd-good’ are somewhat technical, so we defer

them to Section 2.2.2. For now, loosely speaking, we can interpret a graph H to be ‘even-

good’, if by deleting only very few edges it cannot become a subgraph of a construction
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which is very similar to the even extremal example. Similarly, a graph H is ‘odd-good’,

if by deleting only very few edges it cannot become a subgraph of a construction which is

very similar to the odd extremal example. This is depicted in Figure 1.2. The depicted

graph only containing edges of the solid type and none of the dotted ones results into an

odd-extremal (respectively even-extremal) example. Adding just two (or three) disjoint

edges of the dotted type results into the graph being odd-good (or even-good). Recall

also that a 4-graph can only contain a Hamilton 2-cycle if it has even order.

Theorem 1.11 ([40, 41]). There exist ε, n0 > 0 such that the following statement holds

for any even n > n0. Let H be a 4-graph on n vertices with δ(H) > n/2 − εn. Then H

admits a Hamilton 2-cycle if and only if every bipartition of V (H) is both even-good and

odd-good.

Theorem 1.10 then actually follows by a straightforward deduction from the stronger

Theorem 1.11 (which is given in Section 2.2.3). Furthermore, note that the spirit of

Theorem 1.11 is very similar to the one of Theorem 1.5, as both state that H either

admits the spanning structure or H is (almost) a subgraph of a graph from a certain class

of extremal constructions. Concerning the tractability threshold it is not immediately

apparent that the criterion of Theorem 1.11 can be tested in polynomial time, but in

Section 2.2.2 we explain why, due to the minimum codegree of H, this is in fact the

case. Consequently, we can determine in polynomial time whether or not a 4-graph H

whose codegree is close to the Dirac threshold admits a Hamilton 2-cycle. Moreover, by

derandomising the proof of Theorem 1.11 we can actually find such a cycle, should one

exist, giving the following theorem.

Theorem 1.12 ([41]). There exist a constant ε > 0 and an algorithm which, given a

4-graph H on n vertices with δ(H) > n/2− εn, runs in time O(n32) and returns either a

Hamilton 2-cycle in H or a certificate that no such cycle exists (that is, a bipartition of

V (H) which is either not even-good or not odd-good).
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Figure 1.3: The complexity of PM(k, αn) and HC`(k, αn) for α ∈ [0, 1]. Red means
that the problem is NP -complete, blue means that it has a non-trivial polynomial time
algorithm and green means that it is above the Dirac threshold.

Therefore Theorem 1.12 and Theorem 1.10 prove the existence of a linear-size gap

between the tractability threshold and the Dirac threshold for 2-Hamiltonicity. This

provides a surprising contrast to the graph setting and to the case of tight cycles in

hypergraphs.

1.1.4 Open questions

Figure 1.3 summarises the known results about the complexity of the decision problems

PM(k, αn) and HC`(k, αn) for α ∈ [0, 1]. We can observe an interesting contrast between

the case of tight cycles and Hamilton 2-cycles in 4-graphs. Whilst HCk−1(k, αn) is NP -

complete for α ∈ [0, 1/2) until it suddenly becomes trivial for α > 1/2 we can observe that

HC2(4, αn) opens up a linear sized gap for a non-trivial polynomial time algorithm for

α ∈ [1/2− ε, 1/2) which is related to a precise characterisation of 2-Hamiltonian 4-graphs

with minimum codegree at least n/2−εn. Compared to the case of perfect matchings this

means that tight cycles behave very differently whilst some looser cycles seem to exhibit a
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similar behaviour. Furthermore, in the case that k− ` does not divide k we have that the

tractability threshold and the Dirac threshold for HC`(k, αn) are asymptotically equal;

similar to tight cycles. It would be interesting to know, for other values of k and ` such

that k − ` does divide k, whether the tractability threshold for a Hamilton `-cycle in a

k-graph is essentially equal to the Dirac threshold (as Theorem 1.9 shows is the case for

tight cycles), or whether it is significantly different (as Theorem 1.12 shows is the case

for 2-cycles in 4-graphs).

Furthermore, we made no attempt to quantify the constant ε in Theorem 1.11 which

arises from our proof. However, the question remains how large ε can be chosen such that

the characterisation of Theorem 1.11 still holds. We conjecture that the characterisation

is still true for ε = 1/6.

Conjecture 1.13 ([41]). There exists n0 such that the following statement holds. Let H

be a 4-graph on n > n0 vertices with δ(H) > n/3. Then H admits a Hamilton 2-cycle if

and only if every bipartition of V (H) is both even-good and odd-good.

If true, the minimum codegree condition of Conjecture 1.13 would be essentially best-

possible. To see this, fix any n which is divisible by 4 and take disjoint sets X, Y and Z

each of size n
3
±1 such that |X| 6= |Y | and |X∪Y ∪Z| = n. Define H to be the 4-graph on

vertex set V := X∪Y ∪Z whose edges are all sets S ∈
(
V
4

)
with |S∩X| ≡ |S∩Y | (mod 3).

It is easily checked that we then have δ(H) > n/3− 4 and that every bipartition of V (H)

is both even-good and odd-good. However, there is no Hamilton 2-cycle in H. Indeed,

since 4 divides n, taking every other edge of such a cycle would give a perfect matching

M in H. Since each edge of M covers equally many vertices of X and Y (modulo 3), the

same is true of M as a whole, contradicting the fact that |X| 6≡ |Y | (mod 3).

If Conjecture 1.13 holds, then by the same argument used to establish Corollary 2.3 we

may determine in polynomial time whether a 4-graph H on n vertices with δ(H) > n/3

admits a Hamilton 2-cycle. Moreover, we speculate that under the weaker assumption
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that δ(H) > n/4 it may be possible to prove a similar statement to Conjecture 1.13

which considers partitions of V (H) into three parts as well as into two parts. If so, this

would allow us to determine in polynomial time whether H contains a Hamilton 2-cycle

under this weaker assumption. Such a result would neatly complement Theorem 1.6,

which shows that for any c < 1/4 it is NP-complete to determine whether a 4-graph

H on n vertices with δ(H) > cn contains a Hamilton 2-cycle. However, our proof of

Theorem 1.11 relies extensively on ε being small; it seems that significant new ideas and

techniques would be needed to prove Conjecture 1.13 or this proposed extension.

1.1.5 Proof overview

The proof of Theorem 1.11 consists of two directions. The easier one is to show that

every 2-Hamiltonian 4-graph is even-good and odd-good. This is shown using elementary

arguments in Section 2.3. The main difficulty is to prove the backwards direction which

requires most of Chapter 2. The core idea is to split the proof into three cases; two

‘extremal’ and one ‘general’ case. The extremal cases are an ‘even extremal’ case in

which the graph is very close to the even-extremal example and an ‘odd extremal’ case

in which the graph is very close to the odd-extremal example which we have already

seen before. In Section 2.3 we will specify this notion of closeness. In such an extremal

case we have, due to the high codegree, a lot of information about the structure of the

graph, for example that we have a bipartition such that almost all edges have an even

sized intersection with a partite set and that almost all edges of this type are present,

and can therefore by some ad hoc methods use the exceptional edges of different type,

which are guaranteed by beeing even-good and odd-good, to find a Hamilton 2-cycle. The

precise definition of odd-good and even-good comes into play here. In the general case

the proof will follow the so called ‘absorbing method’ whose locus classicus is the article

of Rödl, Ruciński and Szemerédi [80] in which they encapsulated the idea of absorbing for
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the first time in a standardised methodological approach. Implicitly the idea was already

used before, so for example by Erdős, Gyárfás, and Pyber in [36]. This method was so

impactful that nowadays a huge number of articles discussing packing problems in graphs

and hypergraphs is based on it. The core observation is that by not being even-extremal

we can connect almost all pairs via short paths which results into a ‘connecting lemma’

which we show in Section 2.4.1. Furthermore, by not being odd-extremal almost all pairs

p of vertices will lie in a short so called ‘absorbing structure’ S, which is a tight path such

that V (S) ∪ p also forms a tight path in H with the same ends as S. We will show this

‘absorbing lemma’ in Section 2.4.3. This means that, if S is a section of a longer path P ,

we can simply replace the section S by a path consisting of V (S) ∪ p to gain a path P ′

with vertex set V (P ) ∪ p. We then say that P absorbs p. The outline of the general case

then is as follows. We first find an ‘absorbing path’ P , this is a path which is not too

long and which contains many pairwise disjoint absorbing structures which can absorb

any not too large set of V (H) \ V (P ). We then construct an ‘almost spanning cycle’ C

which contains P as a segment and covers almost all vertices. Finally, the absorbing path

P can absorb the leftover vertices which results in the desired Hamilton cycle. Obviously,

we will need the absorbing lemma to find the absorbing path and we will make use of

the connecting lemma repeatedly to connect the absorbing structures or while building

the almost spanning cycle. The precise statements of the absorbing lemma and the long

cycle lemma are in Section 2.3.1. The straightforward deduction of the Dirac statement

Theorem 1.10 from the characterisation Theorem 1.11 can be found in Section 2.2.3. The

NP-completeness result of Theorem 1.9 is shown by a series of polynomial time reductions

from the Hamilton cycle problem in subcubic graphs, which is known to be NP -complete

due to Garey, Johnson and Stockmeyer [44]. We give an overview of the reductions in

Section 2.8 while Section 2.10 contains all the details.
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1.1.6 Further related results

We would like to note that the Dirac threshold has also been investigated for other types

of degree conditions for uniform hypergraphs. Specifically, for a k-graph H and 1 6 s < k

we say the minimum s-degree of H is the minimum of d(S) taken over all sets of s vertices

of H. For s < k − 1 much less is known compared to the case of s = k − 1 which we

discussed before. The exact (k− 2)-degree Dirac threshold for a Hamilton `-cycle in a k-

graph for 1 6 ` < k/2 was determined very recently by Bastos, Mota, Schacht, Schnitzer

and Schulenburg [14, 15]. This generalises previous results of Han and Zhao [55] and Buß,

Hàn and Schacht [19] for 3-graphs. One significant unresolved problem is to determine the

asymptotic 1-degree Dirac threshold for a tight Hamilton cycle in a k-graph. For k = 3

this problem was solved recently by Reiher, Rödl, Ruciński, Schacht and Szemerédi [76]

(partial results were previously given by Rödl and Ruciński [78] and Rödl, Ruciński,

Schacht and Szemerédi [79]). For general k > 4 the problem remains open; upper bounds

were established by Glebov, Person and Weps [46]. Also note that Rödl and Ruciński

conjectured in [77] that for every s-degree the Dirac threshold for tight Hamilton cycles

and the Dirac threshold for perfect matchings are asymptotically equal. Although this

conjecture holds in the case of codegree (s = k − 1) it was shown to be false in general

by Han and Zhao [56]. Lastly, we would like to mention that the tractability threshold

was investigated for F -packings in hypergraphs by Han and Treglown [53]. A perfect

F -packing of H is a collection of vertex disjoint copies of F in H which together cover all

vertices of H. They give a general tool for investigating the complexity of such a packing

problem in hypergraphs. In particular, they determine the tractability threshold for the

problem of packing k-partite k-graphs and therefore generalise the result of Keevash, Knox

and Mycroft [64] and Han [52] concerning perfect matchings, which is the special case of

F being a single edge.
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1.2 Bootstrap Percolation

Many phenomena in biology, physics and sociology can be described using a model which

is called a cellular automaton. Those automata are dynamical systems on graphs (often

regular grids) whose vertices have one of a finite number of states at a discrete time t.

The rules according to which the states of the vertices change from one time step to

the next one are local and homogeneous, meaning that the rule only depends on a finite

neighbourhood of the considered vertex and that the same rule applies to all vertices.

Those systems were first considered by Ulam [86] and von Neumann [87]. The simplest

case is the one in which there are only two states for each vertex. A famous example

modelling the behaviour of living cells is Conway’s ‘Game of life’ [42]. The underlying

graph is the infinite 2-dimensional grid and each vertex has two states, alive and dead.

The update rule allows vertices do die or to become alive depending on the number of

living neighbours. Another important inspiration comes from statistical physics. The

idea is to use a cellular automaton to model a simplification of the Glauber dynamics

of the Ising model of ferromagnetism. This was first attempted by Chalupa, Leath, and

Reich [24] who introduced a model called bootstrap percolation. In this model there are

again only two states for each vertex, we call them healthy and infected, but this time

only healthy vertices can change their state and become infected while infected vertices

remain infected forever. We would like to discuss a related model on finite graphs.

Formally, we define the following more general framework, which is not necessarily

homogeneous, for a bootstrap percolation process. Let G be a finite graph and ϕ : V (G)→

R>0 be a function. For a set A ⊆ V (G) we define a set Hϕ,G(A) ⊆ V (G) iteratively in

the following way. We set A0 := A and Ai+1 := Ai ∪ {v ∈ V (G) : |NG(v) ∩ Ai| > ϕ(v)}.

We call (Ai)i∈N the infecting sequence in G induced by A with respect to ϕ. Note that

Ai ⊆ Ai+1 for every i ∈ N. Furthermore, if Ai = Ai+1 for some i ∈ N, then Ai+1 = Ai+2.
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So for a finite graph G there must exist k ∈ N such that Ak = Ak+1 = Ak+2 = · · · ,

and we set Hϕ,G(A) := Ak for this k. For simplicity we will write Hϕ,G(v) in place of

Hϕ,G({v}) for a vertex v ∈ V (G). We say that a vertex v becomes infected at step i, if

v ∈ Ai \ Ai−1, and for a set S ⊆ Hϕ,G(A) we say that A infects S. We now call a set

A ⊆ V (G) a contagious set for G with respect to ϕ if Hϕ,G(A) = V (G). The literature

also calls infected vertices active and it is said that A percolates, if A is a contagious set.

Sometimes a contagious set is also called a perfect target set or an irreversible dynamic

monopoly; the latter in contrast to the different process of dynamic monopolies in which,

similarly to the ‘Game of life’, active vertices may become inactive again as investigated

in [73] and [16].

1.2.1 r-neighbourhood percolation

The simplest and most widely studied variant is based on the already mentioned idea of

Chalupa, Leath, and Reich [24]. For a fixed r ∈ N, they considered the process in which

vertices become infected when at least r of their neighbours are infected, independently

of their degree. Since then this case has often been called r-neighbourhood bootstrap

percolation. Besides its applications in statistical physics, this threshold model was also

used to describe problems in sociology, epidemiology, economics and computer science

such as the diffusion of information and opinion in social networks, the spread of diseases,

and cascading failures in financial or computer networks (see for example [18, 33, 67] and

the references therein). In our framework this model is the special case of the constant

function ϕ ≡ r.

1.2.2 Degree proportional percolation

A related model was inspired by observations in sociology. Granovetter [48] expressed

the opinion that it is a natural assumption that an individual may be more likely to be

influenced, if a significant proportion of their friends hold a particular view, rather than
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Figure 1.4: Majority rule ϕ(v) = d(v)/2 with initial set A0 = {A}.

simply encountering a fixed number of people who have adopted that position. Sociologists

call this process complex propagation in contrast to simple propagation in which one active

neighbour is enough to influence a vertex. For studies investigating this complex model,

see for example [21, 20, 88]. Therefore Granovetter suggested a percolation process in

which a number of vertices are initially infected, and then, for a fixed constant ρ ∈ [0, 1],

after each time step an uninfected vertex will become infected if at least a ρ-proportion

of its neighbours are already infected. Depending on the value of ρ and the choice of

initially infected vertices, this process may result in the infection spreading to the entire

graph. In our framework this corresponds to the function ϕ(v) = ρdG(v). An example of

such a process is shown in Figure 1.4.

1.2.3 Critical probability

A key problem in percolation theory, also inspired by statistical physics, is to analyse the

behaviour of the bootstrap percolation model for various infinite families of graphs with

an initial set A0 chosen randomly according to a product measure with density p. The

aim is to approximate the critical probability of the phase transition which is the infimal

density p at which the initial random selection is likely to be contagious for a sequence
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of graphs with size of the vertex set tending to infinity. In an abundant line of research

this problem was investigated for multidimensional grids [2, 12, 22, 23, 57, 8, 10, 50, 7],

the hypercube [6], the Hamming torus [49], which is the Hamming graph with vertex set

{1, · · · , n}d, and various distributions of random graphs [13, 59, 4, 60]. An example of a

degree-proportional function ϕ which was investigated is the so-called majority bootstrap

percolation, i.e. ϕ(v) = dG(v)/2; for this function the critical probability was studied for

the hypercube in [9].

1.2.4 Contagious sets

Another research focus, which we will discuss in the following, is the extremal problem

of bounding the minimal size of a contagious set in a bootstrap percolation process.

This problem originated from the following exercise in Hungarian folklore, which is taken

from [12]. On an n × n chessboard consisting of white squares there are two states for

each square, namely ‘clean’ and ‘weedy’. A clean square stays clean if and only if the

majority of its neighbours are clean whilst a weedy square stays weedy forever. What is

the minimum number of weedy squares necessary to make the whole chessboard weedy?

It is a nice exercise to show that the answer to this question is n and we notice that this

question is actually asking for the minimal size of a contagious set in our framework, where

G is the 2-dimensional grid and ϕ ≡ 2 is the 2-neighbourhood percolation. In general for

a given function ϕ and a graph G we denote the minimal size of a contagious set by hϕ(G).

In the case of the r-neighbourhood bootstrap percolation this number was investigated

for special families of graphs. Inspired by the above Hungarian folklore exercise Pete [74]

formulated this problem for finite multidimensional grids and gave first bounds on the

size of a minimal contagious set (see Balogh and Pete [12] for a summary of these results).

The case r = 2 was settled by Balogh and Bollobás [6]. Recently, exact asymptotics for

the hypercube were determined by Morrison and Noel [72]. This proved a conjecture of
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Balogh and Bollobás [6] and improved earlier bounds of Balogh, Bollobás and Morris [10].

Additionally, Morrison and Noel also proved bounds for multidimensional rectangular

grids. Furthermore, the minimal size of a contagious set has been investigated for expander

graphs [27], very dense graphs [38], random graphs [59, 3, 37, 5], with additional Ore and

Chvátal-type degree conditions [31], and in the setting of hypergraphs [11].

More generally, Ackermann, Ben-Zwi and Wolfovitz [1] found an elegant random se-

lection argument which leads to an expression which bounds the minimal size of a conta-

gious set for every function ϕ and every graph G. We choose an order σ of the vertices

of V (G) uniformly at random. Let A be the set of vertices v ∈ V (G) for which fewer

than dϕ(v)e neighbours of v precede v in the order σ. We claim that A is a contagious

set for G with respect to ϕ. Suppose for a contradiction that this is not the case, and let

v ∈ V (G) \Hϕ,G(A) be the first vertex according to the order σ which is not infected by

A. Then v /∈ A, so v has at least dϕ(v)e neighbours which precede v. The minimality

of v in σ implies that all of these neighbours are infected by A, but this contradicts the

fact that v is not infected at any time step t. So A is indeed a contagious set for G with

respect to ϕ. Moreover, for any v ∈ V (G) we have v ∈ A if and only if v is one of the first

dϕ(v)e members of {v} ∪N(v) in the order σ. It follows that P[v ∈ A] = dϕ(v)e
1+dG(v)

. Hence

the size of a minimal contagious set is bounded by the expected size of A which is

hϕ(G) 6 E[|A|] =
∑

v∈V (G)

dϕ(v)e
dG(v) + 1

. (1.2.1)

This bound was also independently derived by Reichmann [75] for the special case of

r-neighbourhood bootstrap percolation. Very recently this bound was slightly improved

by Cordasco, Gargano, Mecchia, Rescigno and Vaccaro in [28] to

hϕ(G) 6
∑
v∈V ′

min

{
1,
dϕ(v)e
d′(v) + 1

}
, (1.2.2)
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where V ′ = {v ∈ V (G) | dG(v) > 2 or ϕ(v) 6= 1} and d′(v) = |NG(v) ∩ V ′|.

In this thesis we focus on general upper bounds on the size of a smallest contagious set

in a degree-proportional bootstrap percolation process, i.e. ϕρ(v) = ρdG(v), where ρ ∈

[0, 1] is a fixed constant. Observe that if G is not connected, then a smallest contagious set

of G is simply the union of smallest contagious sets, one from each connected component,

so we need only consider connected graphs. Throughout this thesis we will often shorten

the notation of ϕρ to simply ρ, so for example we will write hρ(G) instead of hϕρ(G).

For majority bootstrap percolation (where ρ = 1/2), expression (1.2.1) shows that

h1/2(G) 6 |V (G)|/2 for any graph G. This bound is best-possible, as shown by taking G

to be a clique of even order. However, for small ρ it is possible to construct graphs with

many vertices of small degree such that expression (1.2.1) and also expression (1.2.2) are

far from the actual minimal size of a contagious set. For example, for 1/n < ρ� 1/3, let

K1,n−1 be the star on n vertices with partite sets {v}∪B. We add a perfect matching to B

and call the resulting graph S. Note that according to the notation of expression (1.2.2)

we have V ′ = V (S) and d′(v) = dS(v). Hence

hρ(S) = 1 < ρn� (n− 1)/3 <
∑
v∈V ′

dρdS(v)e
d′(v) + 1

.

For this reason attention has recently focused on providing different kinds of upper

bounds which might work better for small values of ρ; in particular on upper bounds of

the form hρ(G) < Cρn for some constant C. Observe that, since every contagious set has

size at least one, such bounds must necessarily exempt the case when hρ(G) = 1 (some

previous works have assumed a lower bound on the maximum degree of G or the order of

G, but these assumptions are easily seen to be at least as restrictive as our exemption).

This leads to the following question.

Question 1.14. What is the smallest constant C such that, for every ρ ∈ (0, 1], every
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connected graph G fulfils hρ(G) = 1 or hρ(G) < Cρn?

Chang [25] gave the first bound of the form described above and showed that every

connected graph G on n vertices satisfies hρ(G) = 1 or

hρ(G) 6 (2
√

2 + 3)ρn < 5.83ρn . (1.2.3)

Later, Chang and Lyuu [26] improved this bound by showing that every such G satisfies

hρ(G) = 1 or

hρ(G) 6 4.92ρn . (1.2.4)

This was the best general bound prior to this work. Very recently Gentner and Rauten-

bach [45] provided a stronger upper bound under the additional assumptions that G has

girth at least five and ρ is sufficiently small. More precisely, they showed that for any

ε > 0, if ρ is sufficiently small and G has girth at least five, then hρ(G) = 1 or

hρ(G) 6 (2 + ε)ρn . (1.2.5)

1.2.5 New results

The first main result of this chapter completely answers Question 1.14 and improves on

each of the aforementioned results by giving the optimal bound of the described form.

Theorem 1.15 ([39]). For every ρ ∈ (0, 1], every connected graph G of order n has

hρ(G) = 1 or

hρ(G) < 2ρn .

In particular, for connected graphs of order n > 1/(2ρ) we always have hρ(G) < 2ρn.

Already Chang and Lyuu [26] observed that the complete graph provides a lower bound

of order O(ρn) on hρ(G). Indeed, for n := b1/ρc+ 2, every contagious set for Kn has size
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at least 2 > 2ρn − 4ρ, from which we derive the following observation which shows that

Theorem 1.15 is best-possible.

Observation 1.16 ([39]). For every ε > 0 there exists ρ > 0 and a connected graph G

on n vertices such that hρ(G) 6= 1 and

hρ(G) > (2− ε)ρn .

The second main result of this chapter is a stronger bound for graphs of girth at least

five, obtained by combining our approach for Theorem 1.15 with the method used by

Gentner and Rautenbach [45] to prove (1.2.5).

Theorem 1.17 ([39]). For every ε > 0 there exists ρ0 > 0 such that for every ρ ∈ (0, ρ0)

and every connected graph G of order n and girth at least 5 we have hρ(G) = 1 or

hρ(G) < (1 + ε)ρn .

Theorem 1.17 is asymptotically best-possible, as shown by the following example of

the balanced (b1/ρc+ 1)-regular tree.

Observation 1.18 ([39]). For every ε > 0, every ρ0 > 0 and every N0 ∈ N there exists

ρ ∈ (0, ρ0) and a connected graph G with girth at least 5 on n > N0 vertices such that

hρ(G) > (1− ε)ρn .

Proof. Given ε, ρ0 and N0, choose ρ ∈ (0, ρ0) sufficiently small so that d := b1/ρc + 1

fulfils d > max{2/ε,
√
N0 − 1}. Let G be the balanced d-regular tree with root v of

order n := 1 + d2 > N0, which consists of three ‘tiers’ T1 = {v}, T2 = NG(v) and

T3 = V (G) \ ({v} ∪ NG(v)) such that |T2| = d and |T3| = d(d − 1). We will show that
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hρ(G) = d and therefore that

hρ(G) = d =
d

ρ(1 + d2)
ρn >

(d− 1)d

1 + d2
ρn =

(
1− d+ 1

1 + d2

)
ρn > (1− 2/d)ρn > (1− ε)ρn .

First note that T2 infects the whole graph G, so hρ(G) 6 d. On the other hand, observe

that every vertex in T2 needs at least two infected neighbours in order to become infected

itself. For each u ∈ T2 write Tu := {u} ∪ NG(u) \ {v}. Then, because of our previous

observation, every contagious set A ⊆ V (G) fulfils |A∩Tu| > 1 for each u ∈ T2. Since the

sets Tu are pairwise disjoint it follows that |A| > |T2| = d, so hρ(G) > d.

The proofs of Theorem 1.15 and Theorem 1.17 are presented in Chapter 3. The proofs

of both results rely on the strategy to assume a minimal counterexample and to analyse

its structure. In particular we bound the number of edges between vertices of low degree

and vertices of high degree. We can then utilise this information about the degrees in a

more refined version of the random selection of Ackermann, Ben-Zwi and Wolfovitz [1]

which we discussed above. This way we can guarantee the existence of a small contagious

set which contradicts the assumption that there exists a counterexample to our assertion.

In the case of graphs of girth at least 5 we will instead combine our approach with the

random selection of Gentner and Rautenbach [45]. Since the proofs are quite short, we

refrain from giving a more detailed overview here and refer directly to Chapter 3.

Finally, we would like to remark that the extremal construction for Observation 1.16,

which shows that Theorem 1.15 is best-possible, indeed relies on the fact that n is chosen

close to 1/ρ. It is therefore a natural question whether, for fixed ρ ∈ (0, 1], stronger bounds

could be given for sufficiently large n. Note that in our construction for Observation 1.18

the order n can be chosen to be arbitrarily large and therefore the bound of Theorem 1.17

cannot be replaced by a asymptotically stronger bound in the case of sufficiently large n.

We give a detailed discussion of this aspect in the next Section 1.2.6.
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1.2.6 Open questions

We conclude this chapter with the discussion of some related open problems. As men-

tioned above, although Observation 1.16 shows that Theorem 1.15 cannot be improved,

there remains the question of whether, for fixed ρ, the optimal bound for graphs on at

least n vertices is asymptotically ρn as n tends to infinity.

Question 1.19. For ρ ∈ (0, 1] fixed, is it true that

lim sup
n→∞

max
G connected, order n

hρ(G)

ρn
= 1?

Note that Observation 1.18 and Theorem 1.17 show that the answer to Question 1.19

is positive, if we restrict it to graphs of girth at least 5. However, without this additional

restriction the answer to this question is negative for uncountable many and arbitrarily

small values of ρ ∈ (0, 1], as demonstrated by the following construction.

Proposition 1.20 ([39]). For every ρ ∈ (0, 1/3) such that 1/ρ−b1/ρc > 1/2 there exists

ε(ρ) > 0 such that for every N0 ∈ N there exists a connected graph G of order n > N0

with

hρ(G) > (1 + ε)ρn .

Proof. Roughly speaking, we use the integrality gap to produce a number of graphs Hi

each requiring two vertices to become infected, while containing slightly fewer than 2/ρ

vertices. We connect these graphs together to a graph G in a way that ensures that even

if the whole graph G except one Hi is infected, we then still need at least two additional

infected vertices from Hi to infect the vertices in Hi. This ensures that a contagious set

must contain at least two vertices from every Hi, while the size of these subgraphs bounds

hρ(G) away from ρn.

Formally, set γ = 1/ρ−b1/ρc−1/2 and choose k ∈ N such that k > max{1/(2γ), ρN0/2}
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and ε ∈ R such that 0 < ε < ρ(γ−1/(2k))
1−ρ(γ−1/(2k)) . Let A and B be two disjoint sets of b1/ρc

vertices and u be an additional vertex. We define a graph H with vertex set A∪B ∪ {u}

and edge set {{v, w} | v, w ∈ B or v ∈ A,w ∈ B or v = u,w ∈ A}. In other words, B

is a clique, and we add a complete bipartite graph from A to B and all edges from the

vertices of A to u.

Figure 1.5: H when b1/ρc = 5

Let H1, · · · , Hk be vertex disjoint copies of H and denote by u1, · · · , uk the vertices

corresponding to u. Let s be another additional vertex. We define a graph G to be

the union of the Hi and {s} with the additional edges {{s, ui} | i ∈ [k]}. Note that

n = |V (G)| = k|V (H)|+1 > N0 and that a contagious set for G contains at least 2 vertices

from each Hi. This follows since each vertex in Hi requires two infected neighbours to

become infected. The vertex u may gain one infected neighbour if s is infected but to

become infected, at least one vertex from A must also be infected. For a vertex from A to

become infected, then either two vertices from B must be infected already, or one vertex

from B and u must have been previously infected. Equally, no vertex from B can become

infected without two infected neighbours from within A ∪ B. We therefore see that only

u can become infected without two vertices from Hi being in the contagious set, however

the infection of u requires an infected vertex in A and will only lead to the infection of
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Hi if there was also a vertex infected in B. Thus we have

hρ(G) > 2k =
2k

ρ(k|V (H)|+ 1)
ρn =

2

ρ(2b1
ρ
c+ 1) + ρ/k

ρn =
1

ρb1
ρ
c+ ρ/2 + ρ/2k

ρn

=
1

1− ρ(γ − 1/(2k))
ρn =

(
1 +

ρ(γ − 1/(2k))

1− ρ(γ − 1/(2k))

)
ρn > (1 + ε)ρn .

Although this demonstrates that for a given ρ, in general it is not possible to give a

bound tending to ρn as n tends to infinity, it remains possible that for sufficiently small ρ,

sufficiently large graphs have contagious sets whose size is close to ρn. We formulate this

formally as the following question.

Question 1.21 ([39]). Is it true that

lim sup
ρ→0

lim sup
n→∞

max
G connected, order n

hρ(G)

ρn
= 1?

Lastly, it is also possible that Theorem 1.17 can be improved in several ways. Since

the example of the balanced (b1/ρc+ 1)-regular tree in Observation 1.18 only shows that

Theorem 1.17 is asymptotically best-possible, there remains the obvious question whether

it is possible to drop the ε in the statement of Theorem 1.17. Note that the assumption

about ρ being sufficiently small is necessary for Theorem 1.17. To see this, choose any

ρ ∈ (1/2, 3/5), and observe that the 5-cycle C5 then fulfils hρ(C5) = 3 > ρn(C5). This

illustrates that graphs of girth at least 5 behave different than trees for which Gentner

and Rautenbach [45] showed that for every ρ ∈ (0, 1] and every tree T of order at least

1/ρ we have hρ(T ) 6 ρn(T ) . It would also be interesting to know whether Theorem 1.17

remains valid under the weaker assumption that G has girth at least four (note that

Observation 1.16 and Proposition 1.20 each show that the girth assumption cannot be

dropped altogether).
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Chapter 2

Hamilton Cycles below the Dirac

Threshold

2.1 Organisation of the chapter

This chapter is organised as follows. In Section 2.2 we establish the definitions and nota-

tion we need, including the definition of even-good and odd-good bipartitions needed for

our characterisation (Theorem 1.11), before giving the brief deduction of the exact Dirac

threshold for Hamilton 2-cycles in 4-graphs (Corollary 1.10) and discussing the complex-

ity aspects of Theorem 1.11. Next, in Section 2.3 we give the proof of Theorem 1.11,

postponing a number of key lemmas to future sections. Specifically we distinguish a non-

extremal case, an even-extremal case and an odd-extremal case, the necessary lemmas for

which are postponed to Sections 2.4, 2.5 and 2.6 respectively. In parallel with the proofs

of these lemmas we establish analogous algorithmic results, and in Section 2.7 we combine

these results to formulate a polynomial-time algorithm as claimed in Theorem 1.12. We

then consider tight Hamilton cycles in Section 2.8, proving Theorem 1.9 via a sequence

of polynomial-time reductions.

30



2.2 A characterisation of dense 4-graphs with no Hamil-

ton 2-cycle

2.2.1 Notation

Let H be a k-graph. We write e(H) for the number of edges of H. Also, for any set S ⊆

V (H) we define the neighbourhood of S to be NH(S) := {S ′ ⊆ V (H)\S : S∪S ′ ∈ E(H)}.

That is, NH(S) is the collection of all sets which together with S form an edge of H. So

NH(S) is a collection of (k − |S|)-sets and |NH(S)| = dH(S). In particular, if |S| = k − 1

then NH(S) is a set of singleton sets of vertices, in which case we identify NH(S) with

the corresponding set of vertices for notational simplicity, for example writing v ∈ NH(S)

instead of {v} ∈ NH(S). Furthermore, when H is clear from the context we write simply

N(S) and to avoid clutter we frequently omit braces around sets, for example writing

N(x, y, z) instead of N({x, y, z}). Given a set X ⊆ V (H), we write H[X] to denote the

subgraph of H induced by X, that is, the k-graph with vertex set X and whose edges are

all edges e ∈ E(H) with e ⊆ X.

We define `-paths in k-graphs in a similar way to `-cycles. Indeed, a k-graph P is

an `-path if P has no isolated vertices and, moreover, the vertices of P can be linearly

ordered in such a way that every edge of P consists of k consecutive vertices and each

edge intersects the subsequent edge in precisely ` vertices. So the number of vertices in an

`-path must be congruent to k modulo k−`. As for cycles we refer to (k−1)-paths as tight

paths. The length of an `-path or `-cycle is the number of edges it contains. A segment

of an `-path P or `-cycle C is an `-path P ′ which is a subgraph of P or C respectively.

Now suppose that H is a 4-graph. Given a bipartition {A,B} of V (H), we say that

an edge e ∈ E(H) is odd if |e ∩ A| is odd (or equivalently, if |e ∩ B| is odd) and even

otherwise. We denote the subgraph of H consisting only of the even edges of H by Heven
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and the subgraph of H consisting only of the odd edges of H by Hodd. Also, we say that a

pair p of distinct vertices of H is a split pair if |p∩A| = 1, and a connate pair otherwise.

These terms are all dependent on the bipartition {A,B} and 4-graph H in question, but

these will always be clear from the context.

We use various ways of describing a 2-path or 2-cycle in a 4-graph. One is is to list a

sequence of vertices, that is, (v1, . . . , vm) for some even m > 4; the edges of C are then

{vi, vi+1, vi+2, vi+3} for each even i. Another is to give a sequence of pairs of vertices,

that is, p1p2p3 . . . pm for some integer m > 2; the edges of C are then pi ∪ pi+1 for each i.

The ends of a 2-path in a 4-graph are the initial pair and final pair, that is {v1, v2} and

{vm−1, vm} in the first style of notation, and p1 and pm in the second style of notation.

We concatenate 2-paths in the natural way, for example, if P is a 2-path with ends p and

p′, and Q is a 2-path with ends p′ and q, and P and Q have no vertices in common outside

p′, then PQ is a 2-path with ends p and q. We sometimes say that P is a path from p to

q to mean that P has ends p and q, however, note that a path from p to q has the same

meaning as a path from q to p.

Given a 4-graph H, the total 2-pathlength of H is the maximum sum of lengths of

vertex-disjoint 2-paths in H. For example, H having total 2-pathlength 3 indicates the

presence in H of three disjoint edges (i.e. three 2-paths of length 1), or of a 2-path of

length 3, or of two vertex-disjoint 2-paths, one of length 1 and one of length 2.

For an integer k we write [k] for the set of integers from 1 to k and, given a set

V , we write
(
V
k

)
for the set of subsets of V of size k. Also, we write x � y (“x is

sufficiently smaller than y”) to mean that for any y > 0 there exists x0 > 0 such that for

any x 6 x0 the subsequent statement holds. Similar statements with more variables are

defined accordingly. We omit floors and ceilings throughout this chapter where they do

not affect the argument.
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2.2.2 Odd-good and even-good bipartitions of 4-graphs

Using the definitions introduced in the previous subsection, we can now give the central

definition of our characterisation.

Definition 2.1. Let H be a 4-graph on n vertices, where n is even, and let {A,B} be

a bipartition of V (H). We say that {A,B} is even-good if at least one of the following

statements holds.

(i) |A| is even or |A| = |B|.

(ii) Hodd contains edges e and e′ such that either e ∩ e′ = ∅ or e ∩ e′ is a split pair.

(iii) |A| = |B|+ 2 and Hodd contains edges e and e′ with e ∩ e′ ∈
(
A
2

)
.

(iv) |B| = |A|+ 2 and Hodd contains edges e and e′ with e ∩ e′ ∈
(
B
2

)
.

Now let m ∈ {0, 2, 4, 6} and d ∈ {0, 2} be such that m ≡ n mod 8 and d ≡ |A| − |B|

mod 4. Then we say that {A,B} is odd-good if at least one of the following statements

holds.

(v) (m, d) ∈ {(0, 0), (4, 2)}.

(vi) (m, d) ∈ {(2, 2), (6, 0)} and Heven contains an edge.

(vii) (m, d) ∈ {(4, 0), (0, 2)} and Heven has total 2-pathlength at least two.

(viii) (m, d) ∈ {(6, 2), (2, 0)} and either there is an edge e ∈ E(Heven) with |e ∩ A| =

|e ∩B| = 2 or Heven has total 2-pathlength at least three.

We have now introduced all notation and definitions needed to understand and make

use of Theorem 1.11.

Remark 2.2. Suppose that H has even order. If {A,B} is a bipartition of V (H) which

is not even-good, then, since Hodd must not contain two disjoint edges, there exists a set

X of at most four vertices of H such that each edge of Hodd meets X. Similarly, if {A,B}
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is a bipartition of V (H) which is not odd-good, then there exists a set X of at most eight

vertices of H such that every edge of Heven meets X.

Using Remark 2.2 we can test the criterion of Theorem 1.11 in polynomial time in

graphs of high minimum codegree. A special case of a result of Keevash, Knox and

Mycroft [64, Lemma 2.2] states that, given a k-graph H on n vertices with minimum

codegree δ(H) > n/3, we can list in time O(n5) all bipartitions {A,B} of V (H) with no

odd edge and all bipartitions {A,B} of V (H) with no even edge, and that there are at

most a constant number of such bipartitions. Hence we can first check whether the order

of H is even and, if so, we can establish all candidates for a bipartition {A,B} which is

not even-good or not odd-good in the following way: for each set X of eight vertices of

H, delete the vertices of X from H to form H ′, and list all bipartitions {A′, B′} of V (H ′)

with no even edge or no odd edge, then for each such {A′, B′} list each of the 28 possible

extensions to a bipartition of V (H). Clearly we can check in polynomial time whether

a given bipartition of V (H) is even-good and odd-good, so we can test the criterion of

Theorem 1.11 by checking this for all listed bipartitions. Together with Theorem 1.11

this proves that we can determine in polynomial time whether a 4-graph H satisfying the

minimum degree condition of Theorem 1.11 contains a Hamilton 2-cycle. More precisely,

we have the following corollary (see [40] for a more detailed description of this algorithm

and proof of its correctness under the assumption that Theorem 1.11 holds).

Corollary 2.3. There exist a constant ε > 0 and an algorithm which, given a 4-graph

H on n vertices with δ(H) > n/2 − εn, determines in time O(n25) whether H contains

a Hamilton 2-cycle. Furthermore, if H does not contain a Hamilton 2-cycle, then the

algorithm returns a bipartition {A,B} of V (H) which is not even-good or odd-good.

Theorem 1.12 supersedes Corollary 2.3 by showing that we can actually find a Hamilton

2-cycle in such a 4-graph in polynomial time (if such a cycle exists). This does not follow
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from Theorem 1.11 directly, but instead follows by giving algorithms for each step involved

in the proof of Theorem 1.11. We do this in parallel with the results needed for the proof

of Theorem 1.11 in Sections 2.4, 2.5 and 2.6, before presenting the algorithm claimed in

Theorem 1.12 in Section 2.7.

2.2.3 The exact Dirac threshold for Hamilton 2-cycles in 4-

graphs.

We now make use of our characterisation to deduce Corollary 1.10. First, we give a

construction to show that the degree bound of Corollary 1.10 is best-possible. So fix an

even integer n > 6 and let A and B be disjoint sets with |A∪B| = n such that |A| = n
2
−1

if 8 divides n and |A| = n
2

otherwise. We define H∗ to be the 4-graph with vertex set

A ∪ B whose edges are all 4-sets e ⊆ A ∪ B such that |e ∩ A| is odd. Then it is easy to

see that δ(H∗) = n
2
− 3 if 8 divides n and n

2
− 2 otherwise. Furthermore, the size of A

implies that the bipartition {A,B} of V (H∗) is not odd-good, as H∗ has no even edges.

Hence by Theorem 1.11 there is no Hamilton 2-cycle in H∗.

Proof of Theorem 1.10. Choose ε, n0 as in Theorem 1.11, and set n1 := max{n0,
2
ε
, 100}.

Let n > n1 be even and let H be a 4-graph on n vertices which satisfies the minimum

codegree condition of Corollary 1.10. Also let {A,B} be a bipartition of V (H), and

assume without loss of generality that |A| 6 n
2
. By Theorem 1.11 it suffices to prove

that {A,B} is even-good and odd-good. This follows immediately from Definition 2.1

if |A| < 18, so we may assume that 18 6 |A| 6 |B| (this ensures that we may choose

distinct vertices as required in what follows). Note that if 8 divides n and |A| = n
2
, then

{A,B} is even-good by Definition 2.1(i) and odd-good by Definition 2.1(v). So we may

assume that if 8 divides n, then |A| 6 n
2
− 1 and δ(H) > n

2
− 2, whilst otherwise we have

|A| 6 n
2

and δ(H) > n
2
− 1. Either way, we must have δ(H) > |A| − 1.

To see that {A,B} must be even-good, arbitrarily choose vertices x1, x2, y1, y2, z1, z2 ∈
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A. Then |N(x1, y1, z1)∩B|, |N(x2, y2, z2)∩B| > δ(H)− (|A| − 3) > 2, so we may choose

distinct w1, w2 ∈ B with w1 ∈ N(x1, y1, z1) ∩ B and w2 ∈ N(x2, y2, z2) ∩ B. The sets

{x1, y1, z1, w1} and {x2, y2, z2, w2} are then disjoint odd edges of H, so {A,B} is even-

good by Definition 2.1(ii).

We next show that {A,B} is also odd-good. For this, arbitrarily choose distinct

vertices a1, a2, . . . , a9, a
′
1, . . . , a

′
9 ∈ A and b1, . . . , b9 ∈ B. For any 1 6 i, j 6 9 we have

|N(ai, a
′
i, bj)∩B| > δ(H)− (|A|− 2) > 1, so there must be bij ∈ B such that {ai, a′i, bj, bij}

is an (even) edge of H. If for each 1 6 j 6 9 the vertices bij for 1 6 i 6 9 are all distinct,

then Heven contains a set of nine disjoint edges, so there is no set X ⊆ V (H) with |X| 6 8

which intersects every even edge of H. However, by Remark 2.2 such a set X must exist

if {A,B} is not odd-good. So we may assume that bi
′
j = bij for some 1 6 i, i′, j 6 9 with

i 6= i′. It follows that {ai, a′i, bj, bij} is an even edge of H with exactly two vertices in

A, whilst (ai, a
′
i, bj, b

i
j, ai′ , a

′
i′) is a 2-path of length 2 in Heven. So {A,B} is odd-good by

Definition 2.1(v), (vi), (vii) or (viii), according to the value of n.

2.3 Proof of Theorem 1.11

In this section we prove Theorem 1.11, our characterisation of 4-graphs with minimum

codegree close to the Dirac threshold which contain a Hamilton 2-cycle, although the

proofs of several lemmas are deferred to subsequent sections. We begin with the following

proposition, which establishes the forward implication of Theorem 1.11; note that the

minimum codegree assumption is not needed for this direction.

Proposition 2.4. Let H be a 4-graph. If H contains a Hamilton 2-cycle, then every

bipartition of V (H) is both even-good and odd-good.

Proof. Let n be the order of H, let C = (v1, v2, . . . , vn) be a Hamilton 2-cycle in H and

let {A,B} be a bipartition of V (H). Write Pi = {v2i−1, v2i} for each 1 6 i 6 n
2
, so the

edges of C are ei := Pi ∪ Pi+1 for 1 6 i 6 n
2

(with addition taken modulo n
2
). The key
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observation is that ei is even if Pi and Pi+1 are both split pairs or both connate pairs, and

odd otherwise.

We first show that {A,B} is even-good. This holds by Definition 2.1(ii) if H contains

two disjoint odd edges, so we may assume without loss of generality that all edges of H

other than e1 and en/2 are even. It follows that the pairs P2, P3, . . . , Pn/2 are either all

split pairs or all connate pairs. In the former case, if P1 is a split pair then |A| = |B|,

so Definition 2.1(i) holds, whilst if P1 ⊆ A then Definition 2.1(iii) holds, and if P1 ⊆ B

then Definition 2.1(iv) holds. In the latter case, if P1 is a connate pair then |A| is even,

so Definition 2.1(i) holds, whilst if P1 is a split pair then Definition 2.1(ii) holds. So in

all cases we find that {A,B} is even-good.

To show that {A,B} is odd-good, suppose first that 4 does not divide n, and note that

by our key observation the number of even edges in C must then be odd. If C contains

three or more even edges or an edge with precisely two vertices in A, then {A,B} is

odd-good by Definition 2.1(vi) and (viii), so we may assume without loss of generality

that en/2 is the unique even edge in C and that en/2 ⊆ A or en/2 ⊆ B. It follows that

P1, P3, . . . , Pn/2 are connate pairs (of which there are dn
4
e in total) and the remaining pairs

are split, so |A| − |B| ≡ 2dn
4
e mod 4. We must therefore have (m, d) ∈ {(2, 2), (6, 0)},

and {A,B} is odd-good by Definition 2.1(vi). On the other hand, if 4 divides n, then by

our key observation the number of even edges in C is even. If this number is at least two

then {A,B} is odd-good by Definition 2.1(v) and (vii). If instead every edge of C is odd,

then exactly n
4

of the pairs Pi are connate pairs, so |A| − |B| ≡ 2 · n
4

mod 4, and C is

odd-good by Definition 2.1 (v).

The main difficulty in proving Theorem 1.11 is therefore to establish the backwards

implication. For this note that if H is a 4-graph and {A,B} is a bipartition of V (H)

which is not odd-good, then H has very few even edges, as it does not contain three

disjoint even edges. Similarly, if {A,B} is not even-good, then H has very few odd edges.
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This motivates the following definition.

Definition 2.5. Fix c > 0, a 4-graph H on n vertices, and a bipartition {A,B} of V (H).

(a) We say that {A,B} is c-even-extremal if n
2
− cn 6 |A| 6 n

2
+ cn and H contains at

most c
(
n
4

)
odd edges.

(b) We say that {A,B} is c-odd-extremal if n
2
− cn 6 |A| 6 n

2
+ cn and H contains at

most c
(
n
4

)
even edges.

(c) We say that H is c-even-extremal if V (H) admits a c-even-extremal bipartition, and

likewise that H is c-odd-extremal if V (H) admits a c-odd-extremal bipartition.

In our proof of Theorem 1.11 we distinguish between the non-extremal case, in which

H is neither even-extremal nor odd-extremal, and the two extremal cases.

2.3.1 Non-extremal 4-graphs

Suppose first that H is neither even-extremal nor odd-extremal. In this case we proceed

by the so-called ‘absorbing’ method, introduced by Rödl, Ruciński and Szemerédi [83],

to construct a Hamilton 2-cycle in H. More specifically, we adapt the approach used by

Karpiński, Ruciński and Szymańska [62], proving an ‘absorbing lemma’ and a ‘long cycle

lemma’. Loosely speaking, our ‘absorbing lemma’ allows us to find a short 2-path in H

which can ‘absorb’ most small collections of pairs of H.

Lemma 2.6 (Absorbing lemma). Suppose that 1/n � ε � γ � λ � c, µ. If H is a

4-graph of order n with δ(H) > n/2 − εn which is neither c-even-extremal nor c-odd-

extremal, then there is a 2-path P in H and a 2-graph G on V (H) with the following

properties.

(i) P has at most µn vertices.

(ii) Every vertex of V (H) \ V (P ) is contained in at least (1− λ)n edges of G.
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(iii) For any s 6 γn and any s disjoint edges e1, . . . , es of G which do not intersect P .

there is a 2-path P ∗ in H with the same ends as P such that V (P ∗) = V (P )∪
⋃s
j=1 ej.

Next, our ‘long cycle lemma’ states that, having found an absorbing-path P0 in H, we

can cover almost all vertices of H by a long 2-cycle C of which P0 is a segment such that

the vertices not covered by C form a collection of pairs which can be absorbed by P0.

Lemma 2.7 (Long cycle lemma). Suppose that 1/n � ε � γ � λ 6 µ � c and that

n is even. Let H = (V,E) be a 4-graph of order n with δ(H) > n/2 − εn which is not

c-even-extremal. Also let P0 be a 2-path in H on at most µn vertices, and let G be a

2-graph on V such that each vertex v ∈ V \V (P0) has dG(v) > (1−λ)n. Then H contains

a 2-cycle C on at least (1− γ)n vertices such that P0 is a segment of C and G[V \ V (C)]

contains a perfect matching.

By combining these two lemmas we obtain the following lemma, which shows that if

H is a non-extremal 4-graph whose minimum codegree is close to the Dirac threshold,

then H contains a Hamilton 2-cycle, thereby establishing the backwards implication of

Theorem 1.11 for non-extremal 4-graphs.

Lemma 2.8. Suppose that 1/n � ε � c and that n is even, and let H be a 4-graph of

order n with δ(H) > n/2− εn. If H is neither c-odd-extremal nor c-even-extremal, then

H contains a Hamilton 2-cycle.

Proof. We introduce constants γ, λ, µ > 0 such that

1
n
� ε� γ � λ� µ� c .

By Lemma 2.6 there is a 2-path P0 in H and a graph G on V (H) such that the prop-

erties (i)-(iii) of Lemma 2.6 hold. Then by Lemma 2.7 there is a 2-cycle C on at least

(1 − γ)n vertices which contains P0 as a segment and such that G[V \ V (C)] contains a
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perfect matching e1, · · · , es. Denote the 2-path C[V (C) \ V (P0)] by P ′. Since s 6 γn,

there is a 2-path P ∗ with the same ends as P0 such that V (P ∗) = V (P0) ∪
⋃s
j=1 ej, and

P ∗P ′ is then a Hamilton 2-cycle in H.

2.3.2 Extremal 4-graphs

It remains to prove the backwards implication of Theorem 1.11 in the case where H is

either even-extremal or odd-extremal. In each case we have significant structural informa-

tion about H. Indeed, if V (H) admits an even-extremal bipartition {A,B} (respectively

odd-extremal), then we know that almost all edges of H are even (respectively odd).

However, the assumption that the bipartition of H is even-good (respectively odd-good)

yields certain small structures in Hodd (respectively Heven). By a careful analysis we are

able to use this information to find a Hamilton 2-cycle in H in each case. We consider the

even-extremal case in Section 2.5 and the odd-extremal case in Section 2.6, culminating

in the following two lemmas, which establish the backwards implication of Theorem 1.11

in each extremal case.

Lemma 2.9. Suppose that 1/n� ε, c� 1 and that n is even, and let H be a 4-graph of

order n with δ(H) > n/2 − εn. If H is c-even-extremal and every bipartition {A,B} of

V (H) is even-good, then H contains a Hamilton 2-cycle.

Lemma 2.10. Suppose that 1/n � ε, c � 1 and that n is even, and let H be a 4-graph

of order n with δ(H) > n/2− εn. If H is c-odd-extremal and every bipartition {A,B} of

V (H) is odd-good, then H contains a Hamilton 2-cycle.

Combining Lemmas 2.8, 2.9 and 2.10 completes the proof of Theorem 1.11 by estab-

lishing the backwards implication.

Proof of Theorem 1.11. Fix a constant c small enough for Lemmas 2.9 and 2.10. Having

done so, choose ε sufficiently small for us to apply Lemma 2.8 with this choice of c, and
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n0 sufficiently large that we may apply Lemmas 2.8, 2.9 and 2.10 with these choices of c

and ε and any even n > n0. Let n > n0 be even, and let H be a 4-graph on n vertices

with δ(H) > (1
2
− ε)n, and suppose that every bipartition {A,B} of V (H) is both even-

good and odd-good. If H is either c-even-extremal or c-odd-extremal then H contains a

Hamilton 2-cycle by Lemma 2.9 or 2.10 respectively. On the other hand, if H is neither

c-odd-extremal nor c-even-extremal then H contains a Hamilton 2-cycle by Lemma 2.8.

This completes the proof of the backwards implication of Theorem 1.11; the proof of the

forwards implication was Proposition 2.4.

2.4 Hamilton 2-cycles in 4-graphs: non-extremal case

In this section we give the proofs of Lemma 2.6 (the absorbing lemma) and Lemma 2.7

(the long cycle lemma). Throughout this section we only consider 2-paths and 2-cycles,

so we suppress the 2 and speak simply of paths, cycles and Hamilton cycles.

2.4.1 A connecting lemma

We begin with a ‘connecting lemma’. This states that if H is a 4-graph whose minimum

codegree is close to the Dirac threshold, then either H is even-extremal, or H is well-

connected in the sense that any two disjoint pairs of vertices of H are connected by many

short paths. This property is encapsulated in the following definition.

Definition 2.11. For κ > 0, we say that a 4-graph H of order n is κ-connecting if for

every two disjoint pairs p1, p2 ∈
(
V (H)

2

)
there are either at least κn2 paths of length 2 or

at least κn4 paths of length 3 whose ends are p1 and p2.

In the proof of our connecting lemma we will make use of the following result of

Goodman [47], that any two-colouring of a complete graph has many monochromatic

triangles.
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Theorem 2.12 ([47]). Suppose that 1/n� ε. If G is a graph on n vertices, then

|{S ∈
(
V (G)
3

)
: G[S] ∼= K3 or G[S] ∼= K3 }| > 1−ε

24
n3 .

Lemma 2.13 (Connecting lemma). Suppose that 1/n� ε� κ� c and that H = (V,E)

is a 4-graph on n vertices with δ(H) > n/2 − εn. If H is not κ-connecting, then H is

c-even-extremal. Moreover, there exists an algorithm Procedure EvenPartition(H) which

returns a c-even-extremal bipartition {A,B} of V in time O(n8).

Proof. Introduce further constants β, η, δ > 0 such that

1
n
� ε� κ� β � η � δ � c .

Suppose that H is not κ-connecting. Then we may fix two disjoint pairs {a1, a2} and

{b1, b2} of vertices of H such that there are fewer than κn2 paths of length 2 whose ends

are {a1, a2} and {b1, b2}, and fewer than κn4 paths of length 3 whose ends are {a1, a2}

and {b1, b2}. Observe that there are then at most βn vertices v ∈ V with |N(a1, a2, v) ∩

N(b1, b2, v)| > βn, as otherwise there are at least 1
2
β2n2 > κn2 paths of length 2 connecting

{a1, a2} and {b1, b2}. Now we colour the edges of the complete graph G on V as follows.

For distinct vertices v, w ∈ V we say that

{v, w} is


red, if {a1, a2, v, w} ∈ E and {b1, b2, v, w} /∈ E,

blue, if {a1, a2, v, w} /∈ E and {b1, b2, v, w} ∈ E,

uncoloured, otherwise.

Because of our first observation we have for at least (1 − β)n − 4 > (1 − 2β)n vertices

v ∈ V that

dred(v), dblue(v) > δ(H)− βn > (1
2
− 2β)n . (2.4.1)
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Furthermore, for at least 1
2
(n−2)δ(H) > (1

2
−2ε)

(
n
2

)
pairs {v, w} ⊆ V we have {a1, a2, v, w} ∈

E, and likewise for at least (1
2
− 2ε)

(
n
2

)
pairs {v, w} ⊆ V we have {b1, b2, v, w} ∈ E.

Since by assumption at most κn2 pairs {x, y} ⊆ V fulfil both {a1, a2, x, y} ∈ E and

{b1, b2, x, y} ∈ E, it follows that there are at most

2κn2 + 4ε

(
n

2

)
< 5κ

(
n

2

)
(2.4.2)

uncoloured edges. Therefore the number of red edges and the number of blue edges are

each at least

(1
2
− 2ε)

(
n

2

)
− 5κ

(
n

2

)
> (1

2
− 6κ)

(
n

2

)
. (2.4.3)

Now we show that G either contains at least n3/50 red triangles or at least n3/50 blue

triangles. To do this, suppose that there are fewer than n3/50 red triangles. Then by

Theorem 2.12 there are at least (1− ε)n3

24
− n3

50
> n3

50
+ 3κn3 triangles which consist only of

blue and uncoloured edges. Since by (2.4.2) there are at most 5κ
(
n
2

)
· n 6 3κn3 triangles

in G which contain an uncoloured edge, there are then at least n3/50 blue triangles in

G. So we may assume without loss of generality that G contains at least n3/50 red

triangles. At least n3/50 − 2βn3 > n3/100 of these red triangles contain only vertices

which fulfil (2.4.1); we denote the set of such triangles by T . Furthermore for a triangle

T ∈ T with vertex set {v1, v2, v3} we denote by Nred(T ) (respectively Nblue(T )) the set of

vertices x ∈ V such that each of the edges {v1, x}, {v2, x} and {v3, x} is red (respectively

blue). We call an edge {x, y, z, w} of H colourful if it contains disjoint red and blue edges

of G, say {x, y} and {z, w} respectively. Observe that each colourful edge of H disjoint

from {a1, a2, b1, b2} creates at least one path (a1, a2, x, y, z, w, b1, b2) of length 3 in H with

ends {a1, a2} and {b1, b2}. Since there are at most κn4 such paths, but no two distinct
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colourful edges of H can create the same path, there must be at most

κn4 + 4n3 < 2κn4 (2.4.4)

colourful edges of H. This observation will prove the following claim.

Claim 2.14. There exist vertices v1, v2, v3 ∈ V such that T ∗ = {v1, v2, v3} is a triangle

with T ∗ ∈ T and such that the following properties hold.

(i) |Nred(T ∗)| > (1
2
− η)n,

(ii) there are at most ηn vertices x ∈ Nred(T ∗) with |NH(v1, v2, x) ∩Nblue(T
∗)| > ηn,

(iii) there are at most ηn vertices x ∈ Nblue(T
∗) with |NH(v1, v2, x) ∩Nred(T ∗)| > ηn,

(iv) there are at most ηn vertices x ∈ V with |NH(v1, v2, x) ∩Nblue(x)| > ηn.

Proof of Claim 2.14. Arbitrarily fix, for each T ∈ T , a labelling of the vertices of T as

v1, v2 and v3. For this labelling we refer to the pair {v1, v2} as the specified pair of T . Now

let T1 consist of those triangles T ∈ T which do not satisfy (i). Likewise, let T2, T3 and T4

consist of those triangles T ∈ T which do not satisfy (ii), (iii) and (iv) respectively (for our

choice of specified pair). Let T ∈ T1, so by definition we have |Nred(T )| < (1
2
− η)n. Since

T ∈ T , each vertex of T satisfies (2.4.1) and so is incident to at most 4βn uncoloured

edges of G, so there are at least |NH(V (T ))| − |Nred(T )| − 3 · 4βn > (η− ε− 12β)n > 1
2
ηn

colourful edges of H containing V (T ). So in total H has at least 1
4
· |T1| · 12ηn colourful

edges; by (2.4.4) we find that |T1| < 16κ
η
n3 < βn3. Next observe that at least 1

n
|T2| pairs

{v1, v2} ∈
(
V
2

)
are the specified pair for some triangle T ∈ T2. For each such pair there are

at least 1
2
η2n2 pairs {x, y} ∈

(
V
2

)
with x ∈ Nred(T ) and y ∈ NH(v1, v2, x) ∩Nblue(T ), and

each 4-tuple {v1, v2, x, y} formed in this way is a colourful edge of H. Overall this gives at

least 1
6
· 1
n
|T2| · 12η

2n2 colourful edges in total, so |T2| < βn3. Essentially the same argument
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shows that |T3| < βn3. Finally, at least 1
n
|T4| pairs {v1, v2} ∈

(
V
2

)
are the specified pair for

some triangle T ∈ T4. For each such pair there are at least 1
2
η2n2 pairs {x, y} ∈

(
V
2

)
with

y ∈ NH(v1, v2, x)∩Nblue(x), and each 4-tuple {v1, v2, x, y} formed in this way is a colourful

edge of H. In total this gives at least 1
6
· 1
n
|T4| · 12η

2n2 colourful edges, so |T4| < βn3. So

at least |T | −
∑4

i=1 |Ti| > |T | − 4βn3 > 0 triangles T ∈ T satisfy (i)-(iv). ♦

Fix a triangle T ∗ ∈ T with vertex set {v1, v2, v3} as in Claim 2.14, and define dmin :=

(1
2
− 2β)n, N∗r := Nred(T ∗) and N∗b := Nblue(T

∗). Since T ∗ ∈ T each vi fulfills (2.4.1) and

so is incident to at least dmin blue edges, none of which has an endvertex in N∗r , so we

have

|N∗b | > |V \N∗r | − 3(|V \N∗r | − dmin) = 3dmin − 2|V \N∗r | > (1
2
− 3η)n , (2.4.5)

where the final inequality is by Claim 2.14(i). Also by (2.4.1) we derive the upper bounds

|N∗r | 6 (1
2

+ 2β)n and |N∗b | 6 (1
2

+ 2β)n . (2.4.6)

Together, (2.4.5) and Claim 2.14(i) tell us that at most 4ηn vertices of V are neither in

N∗r or N∗b , so by Claim 2.14(ii), all but at most ηn vertices x ∈ N∗r satisfy

|NH(v1, v2, x) ∩N∗r | > δ(H)− |NH(v1, v2, x) ∩N∗b | − 4ηn > (1
2
− 6η)n . (2.4.7)

By the same argument using Claim 2.14(iii), all but at most ηn vertices x ∈ N∗b have

|NH(v1, v2, x) ∩N∗b | > (1
2
− 6η)n . (2.4.8)

Define A := N∗r and B := V \A; we conclude the proof by showing that {A,B} is a c-even-

extremal bipartition of V . For this, observe that by (2.4.6), (2.4.7) and Claim 2.14(iv) at
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most 2ηn vertices x ∈ N∗r have |Nblue(x) ∩ N∗r | > 8ηn. Similarly, by (2.4.6), (2.4.8) and

Claim 2.14(iv) at most 2ηn vertices x ∈ N∗b have |Nblue(x) ∩ N∗b | > 8ηn. Since at most

5κ
(
n
2

)
edges of G are uncoloured (see (2.4.2)), it follows that at least

1
2
· (|N∗r | − 2ηn) · (|N∗r | − 8ηn) + 1

2
· (|N∗b | − 2ηn) · (|N∗b | − 8ηn)− 5κ

(
n

2

)
> (1

2
− δ)

(
n

2

)

edges of G[A] ∪G[B] are coloured red. Since by Claim 2.14(i) and (2.4.6) we have

(
|A|
2

)
+

(
|B|
2

)
6

(
(1
2

+ η)n

2

)
+

(
(1
2
− η)n

2

)
6 (1

2
+ δ)

(
n

2

)
,

we conclude that at most 2δ
(
n
2

)
edges of G[A] ∪G[B] are not red. Together with (2.4.3)

this shows that at least (1
2
− 6κ − 2δ)

(
n
2

)
> (1

2
− 3δ)

(
n
2

)
of the at most n2

4
6 (1

2
+ δ)

(
n
2

)
edges of G with one vertex in A and the other in B are blue, and so at most 4δ

(
n
2

)
such

edges are not blue. Combining this and (2.4.4), we find that the number of edges of H

with an odd number of vertices in A is at most

2δ

(
n

2

)
· (1

2
+ δ)

(
n

2

)
+ 4δ

(
n

2

)
· (1

2
+ δ)

(
n

2

)
+ 2κn4 < c

(
n

4

)
.

Since (1
2
−c)n < |A| < (1

2
+c)n by Claim 2.14(i) and (2.4.6), it follows that the bipartition

{A,B} is c-even-extremal. To complete the proof we note that each step of the proof

directly translates to an algorithm which returns the desired bipartition in the claimed

running-time.

2.4.2 A reservoir lemma

Another lemma which we use to prove our ‘long cycle lemma’ is a ‘reservoir lemma’.

This states that given a 4-graph H and a graph G on the same vertex set V , we can

choose a ‘reservoir set’, that is, a small subset R ⊆ V such that H[R] and G[R] are
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representative of H and G. A standard and straightforward probabilistic argument shows

that such a subset must exist, but derandomising this argument to give an algorithm

which finds such a subset is somewhat more technical. For this we adapt the approach of

Karpiński, Ruciński and Szymańska [62] to our setting. We first describe an algorithm,

Procedure SelectSet, which is similar to Procedure SelectSubset from [62], but chooses a

subset which is representative of two graphs (instead of just one graph) simultaneously.

We will use this procedure in this subsection to find a ‘reservoir set’, and also in the next

subsection to find an absorbing path. The conditions on the two graphs from which we

want to choose the subset are described by the following setup.

Setup 2.15. Fix constants β, λ, τ > 0 and integers m,M,N and r with 1 6 r 6 N . Let

U and W be disjoint sets of sizes |U | = M and |W | = N . Let G1 be a graph with vertex

set U ∪W such that G1[U ] is empty, G1[W ] has precisely m edges, and |NG1(u)| > βN

for every u ∈ U . Also let G2 be a graph with vertex set W such that |NG2(w)| > (1−λ)N

for every w ∈ W . Finally, define ν := 2mr/N2.

Note that specifying the sextuple (G1, G2, r, β, λ, τ) determines all of the information

given in Setup 2.15. Whilst Procedure SelectSet is entirely deterministic, to analyse it we

consider a set of r vertices chosen uniformly at random and apply the following Chernoff-

type bounds for binomial and hypergeometric distributions.

Theorem 2.16 ([58], Corollary 2.3 and Theorem 2.10). Suppose X has binomial or hyper-

geometric distribution and 0 < a < 3/2. Then P(|X−E(X)| ≥ aE(X)) ≤ 2 exp(−a2

3
E(X)).

Proposition 2.17. Adopt Setup 2.15. Assume additionally that β > τ , that r and N are

sufficiently large, and that M 6 1
8
· exp( τ

2r
3β

) as well as N 6 1
8
· exp(λr

3
). Then in time

O(N4 +MN3) Procedure SelectSet(G1, G2, r, β, λ, τ) returns a set R ⊆ W such that

(a) (1− ν)r 6 |R| 6 r,
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Procedure SelectSet(G1, G2, r, β, λ, τ)

Data: A sextuple (G1, G2, r, β, λ, τ) as in Setup 2.15.
Result: A ‘reservoir set’ R ⊆ W .

Set U := {u1, · · · , uM}, W := {w1, · · · , wN} and R′ := ∅.
for k = 1 to r do

for j = 1 to N do
Set R′j := R′ ∪ {wj}.
Set ej := e(G1[R

′
j]), e

′
j := e(G1[R

′
j,W \R′j]) and e′′j := e(G1[W \R′j]).

for i = 1 to M do
Set di,j := |NG1(ui) ∩R′j| and d′i,j := |NG1(ui) \R′j|.

for i = 1 to N do
Set fi,j := |NG2(wi) ∩R′j| and f ′i,j := |NG2(wi) \R′j|.

Find jk ∈ [N ] \ {j1, . . . , jk−1} such that A+B + C < 1, where

A :=
M∑
i=1

∑
s6(β−τ)r−di,jk

(
d′i,jk
s

)(N−k−d′i,jk
r−k−s

)(
N−k
r−k

) ,

B :=
1

νr

(
ejk + e′jk

r − k
N − k

+ e′′jk
(r − k)(r − k − 1)

(N − k)(N − k − 1)

)
,

C :=
N∑
i=1

∑
s6(1−2λ)r−fi,jk

(
f ′i,jk
s

)(N−k−f ′i,jk
r−k−s

)(
N−k
r−k

) .

Add wjk to R′.
Remove one vertex from each edge of G1[R

′] and call the resulting set R.
return R.
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(b) R is an independent set in G1,

(c) |NG1(u) ∩R| > (β − τ − ν)r for all u ∈ U and

(d) |NG2(w) ∩R| > (1− 2λ− ν)r for all w ∈ W .

Proof. For a set S ∈
(
W
r

)
, let X(S) denote the number of vertices u ∈ U with |NG1(u) ∩

S| 6 (β − τ)r, let Y (S) denote the number of edges in G1[S] and let Z(S) denote the

number of vertices w ∈ W with |NG2(w)∩S| 6 (1−2λ)r. Now choose uniformly at random

a subset S ∈
(
W
r

)
, and let X, Y and Z denote the random variables X(S), Y (S) and Z(S)

respectively. For each u ∈ U the random variable |NG1(u) ∩ S| has a hypergeometric

distribution with expectation at least βr; by Theorem 2.16 and our assumption that

M 6 1
8

exp( τ
2r
3β

) it follows that the probability of the event |NG1(u) ∩ S| 6 (β − τ)r is at

most 2 exp(− (τ/β)2

3
βr) 6 1

4M
. So by linearity of expectation we have E(X) < 1

4
. Likewise,

for each w ∈ W the random variable |S \NG2(w)| has a hypergeometric distribution with

expectation at most λr, so a similar calculation using our assumption that N 6 1
8

exp(λr
3

)

shows that E(Z) < 1
4
. By linearity of expectation we also have E(Y ) = m · r(r−1)

N(N−1) 6

m( r
N

)2, so in particular we have 1
νr
E(Y ) 6 1

2
. Thus we have in total that

E(X) + 1
νr
E(Y ) + E(Z) < 1 . (2.4.9)

Now suppose that for some 1 6 k 6 r we have already chosen vertices wj1 , · · · , wjk−1
∈ W

such that

E(X|j1, · · · , jk−1) + 1
νr
E(Y |j1, · · · , jk−1) + E(Z|j1, · · · , jk−1) < 1 ,

where we identify ji with the event that wji ∈ S. Note that the base case k = 1 is

guaranteed by (2.4.9). Then, by the law of total probability, it is possible to choose
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wjk ∈ W \ {wj1 , . . . , wjk−1
} such that

E(X|j1, · · · , jk) + 1
νr
E(Y |j1, · · · , jk) + E(Z|j1, · · · , jk) < 1 .

Having chosen wj1 , . . . , wjr in this way, define R′ := {wj1 , . . . , wjr}. Then

X(R′) +
1

νr
Y (R′) + Z(R′) = E(X|j1, . . . , jr) +

1

νr
E(Y |j1, . . . , jr) + E(Z|j1, . . . , jr) < 1.

So X(R′) = Z(R′) = 0, as X(R′) and Z(R′) must have non-negative integer values. Also

Y (R′) < νr, meaning that G1[R
′] has at most νr edges. So if we form R from R′ by

removing one vertex from each of these edges, then R has the properties (a)-(d).

It therefore suffices to show that the choices of j1, . . . , jk in Procedure SelectSet are

identical to the choices of j1, . . . , jk in the above argument, so the resulting sets R′ are

identical. That is, we must show that for each 1 6 k 6 r we have A = E(X|j1, · · · , jk),

B = 1
νr
E(Y |j1, · · · , jk) and C = E(Z|j1, · · · , jk), where A, B and C are the quantities

given in Procedure SelectSet. The first two of these equalities were established in [62] (and

are straightforward to verify). For the third define fi,j and f ′i,j as in Procedure SelectSet.

Then we have

E(Z|j1, · · · , jk) =
∑
w∈W

P (|NG2(w) ∩ S| 6 (1− 2λ)r | j1, · · · , jk)

=
N∑
i=1

∑
s6(1−2λ)r−fi,jk

P (|NG2(wi) ∩ (S \ {j1, . . . , jk})| = s | j1, · · · , jk)

=
N∑
i=1

∑
s6(1−2λ)r−fi,jk

(
f ′i,jk
s

)(N−k−f ′i,jk
r−k−s

)(
N−k
r−k

) = C,

as required.

A simple application of Procedure SelectSet gives an algorithm to find a reservoir set.
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Lemma 2.18 (Reservoir lemma). Suppose that 1/n � ρ � λ, κ, that H = (V,E) is a

4-graph of order n which is κ-connecting, and that G is a 2-graph on the same vertex set

V with δ(G) > n− λn. Then there exists a subset R ⊆ V such that

(a) (1− 4ρ)ρn 6 |R| 6 ρn,

(b) for every x ∈ V we have |NG(x) ∩R| > (1− 35λ)|R| and

(c) for every disjoint p1, p2 ∈
(
V
2

)
there are at least κ

5
|R| internally disjoint paths of

length at most three in H[R ∪ p1 ∪ p2] with ends p1 and p2.

Moreover, there exists an algorithm, Procedure SelectReservoir(H,G, ρ), which returns

such a subset R ⊆ V in time O(n16).

Proof. We first define the graphs on which we will use Procedure SelectSet. For this set

U := {{p, p′} : p, p′ ∈
(
V
2

)
and p ∩ p′ = ∅} and W :=

(
V
4

)
. We also set

E1 := {{{p, p′}, S} : {p, p′} ∈ U, S ∈ W and H[S ∪ p ∪ p′] contains a path with ends p, p′},

E ′1 := {{S, S ′} : S, S ′ ∈ W and S ∩ S ′ 6= ∅}, and

E2 := {{S, S ′} : S, S ′ ∈ W and {u, v} ∈ E(G) for all u ∈ S, v ∈ S ′},

and define graphs G1 := (U ∪ W,E1 ∪ E ′1) and G2 := (W,E2). We now define M :=

|U | 6 3
(
n
4

)
and N := |W | =

(
n
4

)
, r := ρ

4
n, β := κ, λ′ := 17λ and τ := ρ. We also define

m := |E ′1| and note that we then have m 6 1
2
·
(
n
4

)
· 4 ·

(
n−1
3

)
, from which it follows that

ν :=
2mr

N2
=

2 · 2
(
n
4

)(
n−1
3

)
· ρ
4
n(

n
4

)2 = 4ρ.

Observe that G1[U ] is empty and G1[W ] has precisely m edges. Furthermore, since

H is κ-connecting we have dG1({p, p′}) > min{κn4, 1
6
· κn2 ·

(
n−2
2

)
} > κ

(
n
4

)
for every

{p, p′} ∈ U , or in other words, |NG1(u)| > βN for all u ∈ U . Also, since δ(G) > (1− λ)n
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we have dG2(S) >
(
n
4

)
−4
(
n−1
3

)
−4 ·λn ·

(
n−5
3

)
> (1−17λ)

(
n
4

)
for every S ∈ W , or in other

words, |NG2(w)| > (1− λ′)N for all w ∈ W . So our chosen graphs and constants satisfy

Setup 2.15 with λ′ in place of λ, and the conditions of Proposition 2.17 are satisfied (in

particular our assumption that 1
n
� λ, κ, ρ gives M 6 1

8
·exp( τ

2r
3β

) and N 6 1
8
·exp(λr

3
). We

may therefore apply Procedure SelectSet to obtain R′ :=SelectSet(G1, G2, r, β, λ
′, τ) ⊆ W

such that

(a) (1− 4ρ)ρ
4
n 6 |R′| 6 ρ

4
n,

(b) R′ is an independent set in G1,

(c) |NG1(u) ∩R′| > (κ− ρ− 4ρ)ρ
4
n > κρ

5
n for all u ∈ U and

(d) |NG2(w) ∩R′| > (1− 34λ− 4ρ)ρ
4
n > (1− 35λ)ρ

4
n for all w ∈ W .

We now define R :=
⋃
S∈R′ S; it remains to show that R has the desired properties.

Indeed, (b) implies that the members of R′ are pairwise-disjoint, so |R| = 4|R′|, and

so (a) immediately implies (i). Now consider some x ∈ V , and arbitrarily choose a set

S ∈ W with x ∈ S. Then by (d) there are at least (1 − 35λ)ρ
4
n sets S ′ ∈ R′ such that

every y ∈ S ′ is a neighbour of x; since the members of R′ are pairwise-disjoint it follows

that |NG(x) ∩ R| > (1 − 35λ)ρn > (1 − 35λ)|R|, establishing (ii). Finally, (c) implies

that for every disjoint p1, p2 ∈
(
V
2

)
there are at least κρ

5
n > κ

5
|R| sets S ∈ R′ such that

H[S ∪ p1 ∪ p2] contains a path of length at most three with ends p1 and p2. Together

with the fact that the members of R′ are pairwise-disjoint this gives (iii). Furthermore,

the dominant term of the running time is that of Procedure SelectSet, which runs in time

O(N4 +MN3) = O(n16).

2.4.3 Proof of the absorbing lemma (Lemma 2.6)

We now turn to the proof of the absorbing lemma (Lemma 2.6), for which we make the

following general definition of an absorbing structure.
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Definition 2.19. Let α, β > 0 and let H = (V,E) be a 4-graph of order n.

(a) We say that an ordered octuple O = (a1, a2, c1, c2, c3, c4, b1, b2) of distinct vertices

of H is an absorbing structure for a pair p ∈
(
V
2

)
if there are paths P and P ′ in H,

both with ends {a1, a2} and {b1, b2}, such that V (P ) = O and V (P ′) = O ∪ p.

(b) We say that a pair p ∈
(
V
2

)
is β-absorbable if there are at least βn8 absorbing

structures for p in H.

(c) We say that H is (α, β)-absorbing if at most αn2 pairs p ∈
(
V
2

)
are not β-absorbable.

More specifically, we will work with the two types of absorbing structures given by the

next definition.

Definition 2.20. Let H = (V,E) be a 4-graph, and let x and y be distinct vertices of H.

We say that an ordered octuple O = (a1, a2, c1, c2, c3, c4, b1, b2) of vertices of H, is an

absorbing structure of type 1 for the pair {x, y} if

{a1, a2, c1, c2}, {c1, c2, c3, c4}, {c3, c4, b1, b2}, {c1, c2, x, y}, {x, y, c3, c4} ∈ E .

Similarly, we say that O is an absorbing structure of type 2 for {x, y} if

{a1, a2, c1, c2}, {c1, c2, c3, c4}, {c3, c4, b1, b2}, {a1, a2, x, y}, {x, y, c1, c4}, {c2, c3, b1, b2} ∈ E .

The absorbing structures are depicted in Figure 2.1. Observe that if O is an absorbing

structure for {x, y} of type 1 or type 2, then the sequence (a1, a2, c1, c2, c3, c4, b1, b2) forms

a path in H with vertex set O and ends {a1, a2} and {b1, b2}. Moreover, if O is an

absorbing structure of type 1 then (a1, a2, c1, c2, x, y, c3, c4, b1, b2) is a path in H with

vertex set O ∪ {x, y} and the same ends, whilst if O is an absorbing structure of type 2

then (a1, a2, x, y, c1, c4, c2, c3, b1, b2) is a path in H with vertex set O∪{x, y} and the same
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x y

a1

a2

b1

b2
c1 c2 c3 c4

b1

x y

a2a1

b1 b2c2 c3

c1 c4

Figure 2.1: Absorbing structures of type 1 (left) and type 2 (right) for the pair p = {x, y}.
In each case the edges of the path not containing p are marked by solid lines, whilst the
paths including p use the edges marked by dashed lines together with some of the edges
marked by solid lines.

ends. Therefore absorbing structures of type 1 and 2 are indeed absorbing structures

according to Definition 2.19. We now show that most pairs in non-odd-extremal 4-graphs

are contained in many absorbing structures.

Lemma 2.21. Suppose that 1/n � ε � β � α � c and that H = (V,E) is a 4-graph

of order n with δ(H) > n/2− εn. If H is not (α, β)-absorbing, then H is c-odd-extremal.

Moreover, there exists an algorithm Procedure OddPartition(H) which returns a c-odd-

extremal bipartition {A,B} of V in time O(n6).

Proof. We introduce constants ω, ω′, ϕ, ε2, ψ, ε1 > 0 such that

1
n
� ε� β � ω � ω′ � ϕ� ε2 � ψ � ε1 � α� c .

Furthermore, for a pair {x, y} ∈
(
V
2

)
we define

Tx,y = {{e1, e2, e3} ⊆ E : e1 ∩ e2 = {x, y} and (e1 ∪ e2) \ {x, y} = e3} .

We then can make the following observation.
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Claim 2.22. If |Tx,y| > βn4, then {x, y} is β-absorbable. Moreover, there exists an edge

{x, y, x′, y′} of H such that |Tx,y| < βn4 and |NH(x, y) ∩NH(x′, y′)| < ω
2

(
n
2

)
.

Proof of Claim 2.22. Suppose that |Tx,y| > βn4 for some {x, y} ∈
(
V
2

)
. Then there are

at least 8βn4 ordered sextuples S = (c1, c2, x, y, c3, c4) such that each of {c1, c2, x, y},

{x, y, c3, c4} and {c1, c2, c3, c4} is an edge of H. By the fact that δ(H) > (1
2
− ε)n, for

each such sextuple S there are at least (n − 6)((1
2
− ε)n − 4) > 3n2

8
ways to choose an

ordered pair (a1, a2) of vertices of V \ S such that {a1, a2, c1, c2} ∈ E(H), and then at

least (n − 8)((1
2
− ε)n − 6) > 3n2

8
ways to choose an ordered pair (b1, b2) of vertices of

V \(S∪{a1, a2}) such that {b1, b2, c3, c4} ∈ E(H). Overall this gives at least 8βn4 ·(3n2

8
)2 >

βn8-many 10-tuples (a1, a2, c1, c2, x, y, c3, c4, b1, b2), each of which is an absorbing structure

of type 1 for {x, y}. Hence {x, y} is β-absorbable, proving the first statement of the claim.

Since by assumption H is not (α, β)-absorbing, we may choose a pair {x, y} ∈
(
V
2

)
which is not β-absorbable, so |Tx,y| < βn4. Since |NH(x, y)| > (1

2
− 2ε)

(
n
2

)
, there must

then exist a pair {x′, y′} ∈ NH(x, y) such that |NH(x, y)∩NH(x′, y′)| < ω
2

(
n
2

)
, as otherwise

we would have |Tx,y| > 1
2
·(1

2
−2ε)

(
n
2

)
· ω
2

(
n
2

)
> βn4. This gives the desired edge {x, y, x′, y′}

of H. ♦

Fix an edge e := {x, y, x′, y′} of H as in Claim 2.22. We now colour the edges of the

complete 2-graph K on V in the following way: for {a, b} ∈
(
V
2

)
we say that

{a, b} is


red if {x, y, a, b} ∈ E(H), {x′, y′, a, b} /∈ E(H) and a, b /∈ e,

blue if {x, y, a, b} /∈ E(H), {x′, y′, a, b} ∈ E(H) and a, b /∈ e,

uncoloured otherwise.

Note that if {a, b} and {a′, b′} are disjoint red edges of K such that {a, b, a′, b′} ∈ E, then

{{x, y, a, b}, {x, y, a′, b′}, {a, b, a′, b′}} is an element of Tx,y. In such a case we call the edge

{a, b, a′, b′} of H a red hyperedge. Also, we say that a vertex of V is normal if we have
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both dred(v) > (1
2
− ω′)n and dblue(v) > (1

2
− ω′)n in K. We observe that our colouring of

K has the following properties.

(A) There are at most |Tx,y| < βn4 red hyperedges of H,

(B) at least (1
2
− ω)

(
n
2

)
edges of K are coloured red,

(C) at least (1
2
− ω)

(
n
2

)
edges of K are coloured blue,

(D) at most 2ω
(
n
2

)
edges of K are uncoloured, and

(E) all but at most ω′n vertices are normal.

Indeed, (A) follows immediately from our definition of a red hyperedge and our choice

of e. For (B) note that there are at least 1
2
(n − 2)δ(H) pairs {a, b} for which {x, y, a, b}

is an edge of H. By choice of e at most ω
2

(
n
2

)
of these pairs have {x′, y′, a, b} ∈ E(H),

whilst at most 4n such pairs have a ∈ e or b ∈ e, so at least 1
2
(n− 2)δ(H)− ω

2

(
n
2

)
− 4n >

(1
2
−ω)

(
n
2

)
edges of K are coloured red. Essentially the same argument proves (C), and (D)

follows immediately from (B) and (C). Finally, observe that for any v ∈ V \ e we have

dH({x, y, v}), dH({x′, y′, v}) > (1
2
− ε)n, so for any v ∈ V we have dred(v), dblue(v) 6

(1
2

+ ε)n. So if there are more than ω′

2
n vertices with dred(v) < (1

2
− ω′)n, then the total

number of red edges is at most 1
2
(ω
′

2
n · (1

2
− ω′)n + (1 − ω′

2
)n · (1

2
+ ε)n) < (1

2
− ω)

(
n
2

)
,

contradicting (B). A similar argument shows that there cannot be more than ω′

2
n vertices

with dblue(v) < (1
2
− ω′)n, establishing (E).

For any triangle T in K with vertex set {u, v, w}, we write Nred(T ) (respectively

Nblue(T )) for the set of vertices x ∈ V for which each of ux, vx and wx is a red (respectively

blue) edge of K. We then have the following claim.

Claim 2.23. If the number of red triangles in K is at least ϕn3, then there exists a red

triangle T in K with vertex set {u, v, w} such that
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(a) |Nblue(T )| > (1
2
− ϕ)n and |Nred(T )| > (1

2
− ϕ)n,

(b) at most ϕn vertices x ∈ Nred(T ) have |NH(v, w, x) ∩Nred(T )| > ϕn, and

(c) there are at most 9ϕ
(
n
2

)
red edges of K between Nred(T ) and V \Nred(T ).

Proof of Claim 2.23. By (E) there are at most ω′n · n2 < ϕ
3
n3 triangles in K which

contain a vertex which is not normal, and by (A) there are at most ϕ
3
n3 triangles in K

which are contained in more than ω′n red hyperedges, as otherwise there would be at

least 1
4
· ϕ

3
n3 · ω′n > βn4 red hyperedges in total. Similarly, by (A) all but at most ω′n2

edges of K are contained in at most ω′n2 red hyperedges, as otherwise there would be

at least 1
6
· ω′n2 · ω′n2 > βn4 red hyperedges in total. We call these edges of K normal;

observe that at most ω′n2 · n < ϕ
3
n3 triangles in K contain an edge which is not normal.

So we can choose a red triangle T in K with vertex set {u, v, w} which contains only

normal vertices and normal edges and which is contained in at most ω′n red hyperedges.

Then |NH(T ) ∩ Nred(x)| 6 ω′n for each x ∈ {u, v, w}, as otherwise {u, v, w} would be

contained in more than ω′n red hyperedges. Also, since u, v and w are normal, for each

x ∈ {u, v, w} at most 2ω′n vertices are in neither Nred(x) nor Nblue(x). It follows that

for each x ∈ {u, v, w} at most 3ω′n of the vertices inside NH(T ) are not in Nblue(x), so

|Nblue(T )| > |NH(T )|−3·3ω′n > δ(H)−9ω′n > (1
2
−ϕ)n. Similarly, for each x ∈ {u, v, w}

we have |(V \ NH(T )) ∩ Nred(x)| > dred(x) − ω′n > (1
2
− 2ω′)n; since |V \ NH(T )| 6

n − δ(H) 6 (1
2

+ ε)n it follows that |Nred(T )| > (1
2

+ ε)n − 3 · (2ω′ + ε)n > (1
2
− ϕ)n,

proving (a).

Now observe that if (b) does not hold, then there are at least 1
2
(ϕn)2 > ω′n2 pairs

{x, y} such that x ∈ Nred(T ) and y ∈ NH(v, w, x) ∩ Nred(T ). Each such pair yields a

red hyperedge {v, w, x, y} containing {v, w}, contradicting the fact that {v, w} is normal.

So (b) holds, and together with (a) and inclusion-exclusion we find that all but at most ϕn

vertices x ∈ Nred(T ) have |Nred(T )∪NH(v, w, x)| > (1
2
−ϕ)n+ δ(H)−ϕn > n− 3ϕn. So
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there are at most 4ϕn2 pairs {x, y} with x ∈ Nred(T ) and y ∈ V \ (Nred(T )∪NH(v, w, x)).

On the other hand, any red edge {x, y} of K with x ∈ Nred(T ) and y ∈ NH(v, w, x)

yields a red hyperedge {v, w, x, y} containing {v, w}, so there are at most ω′n2 such

edges. It follows that K has at most 4ϕn2 +ω′n2 6 9ϕ
(
n
2

)
red edges between Nred(T ) and

V \Nred(T ), proving (c). ♦

Suppose first that there exists a red triangle {u, v, w} in K with the properties given

in Claim 2.23, and define A := Nred(T ) and B := V \ A. Then by Claim 2.23(a) we

have (1
2
− ϕ)n 6 |A|, |B| 6 (1

2
+ ϕ)n, so certainly we have (1

2
− c)n 6 |A|, |B| 6 (1

2
+ c)n.

Furthermore, by (B) and Claim 2.23(c) there are at least (1
2
−ω)

(
n
2

)
−9ϕ

(
n
2

)
> (1

2
−10ϕ)

(
n
2

)
red edges in K[A]∪K[B]. Together with the fact that there are

(|A|
2

)
+
(|B|

2

)
6
(
(1/2+ϕ)n

2

)
+(

(1/2−ϕ)n
2

)
6 (1

2
+ ϕ)

(
n
2

)
edges in K[A] ∪K[B], this implies that there are at most 11ϕ

(
n
2

)
edges in K[A] ∪ K[B] which are not red. So if there are more than c

(
n
4

)
edges e ∈ E

such that |e ∩ A| is even, then there are at least c
(
n
4

)
− 11ϕ

(
n
2

)
· (1

2
+ ϕ)

(
n
2

)
> βn4 red

hyperedges, contradicting (A). We may therefore conclude that there are at most c
(
n
4

)
edges e ∈ E such that |e ∩ A| is even, whereupon {A,B} is the desired c-odd-extremal

bipartition of V .

Now assume that such a red triangle does not exist. We may then by Claim 2.23

assume that there are at most ϕn3 red triangles in K. So we may choose a normal vertex

v ∈ V which is contained in at most 4ϕn2 red triangles, as otherwise K would have at

least 1
3
(1 − ω′)n · 4ϕn2 > ϕn3 red triangles in total. There are then at most 4ϕn2 red

edges inside Nred(v), so by (E) and the fact that v is normal there are at least

∑
u∈Nred(v)

dred(u)− 2 · 4ϕn2 > (1
2
− 2ω′)n · (1

2
− ω′)n− 8ϕn2 > (1

2
− 17ϕ)

(
n

2

)

red edges between Nred(v) and V \Nred(v), so at most n2

4
− (1

2
− 17ϕ)

(
n
2

)
6 18ϕ

(
n
2

)
edges

between Nred(v) and V \Nred(v) are not red. It follows that at most ε2
(
n
4

)
edges f ∈ E(H)
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have |Nred(v)∩ f | = 2, as otherwise there would be at least ε2
(
n
4

)
− 18ϕ

(
n
2

)
· n2

4
> βn4 red

hyperedges in total, contradicting (A). So if H[Nred(v)] and H[V \Nred(v)] each contain at

most ε1
(
n
4

)
edges of H, then the total number of edges f ∈ E(H) for which |f ∩Nred(v)| is

even is at most (2ε1 + ε2)
(
n
4

)
6 c
(
n
4

)
, and then taking A := Nred(v) and B := V \A gives

the desired c-odd-extremal bipartition {A,B} of V , as (1
2
− c)n 6 |Nred(v)| 6 (1

2
+ c)n

since v is normal.

This leaves only the cases in which either H[Nred(v)] or H[V \Nred(v)] contains more

than ε1
(
n
4

)
edges of H. If the former holds then we set A := Nred(v) and B := V \Nred(v),

and otherwise we set A := V \ Nred(v) and B := Nred(v); either way this results in a

bipartition {A,B} of V such that

(F) (1
2
− ω′)n 6 |A|, |B| 6 (1

2
+ ω′)n (since v is normal),

(G) at least ε1
(
n
4

)
edges f ∈ E(H) have |f ∩ A| = 4, and

(H) at most ε2
(
n
4

)
edges f ∈ E(H) have |f ∩ A| = 2.

In the remaining part of the proof we show that these conditions imply that at most

α
(
n
2

)
pairs of vertices are not β-absorbable. This contradicts our assumption that H is

not (α, β)-absorbing, and so completes the proof. Recall that a pair is split if it has one

vertex in A and one in B, and connate otherwise. Additionally, we say that a pair p ∈
(
V
2

)
is good if there are at least (1

2
− ψ)

(
n
2

)
pairs p′ ∈

(
V
2

)
such that p∪ p′ is an odd edge of H

(so a split pair is good if it forms an edge with most connate pairs, and a connate pair is

good if it forms an edge with most split pairs).

Claim 2.24. At most ψ
(
n
2

)
pairs in

(
V
2

)
are not good.

Proof of Claim 2.24. First consider a split pair p ∈
(
V
2

)
which is not good. Then there

are at least 1
2
(n − 2)δ(H) > (1

2
− 2ε)

(
n
2

)
pairs p′ for which p ∪ p′ is an edge of H. Since

p is not good it follows that p is contained in at least (ψ − 2ε)
(
n
2

)
> ψ

2

(
n
2

)
even edges of
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H, each of which must have precisely two vertices in A (because p is a split pair). So at

most ψ
3

(
n
2

)
split pairs in

(
V
2

)
are not good, as otherwise in total there would be at least

1
6
· ψ
3

(
n
2

)
· ψ
2

(
n
2

)
> ε2

(
n
4

)
edges of H with precisely two vertices in A, contradicting (H).

Next observe that for all but at most ψ
3

(
n
2

)
pairs p ∈

(
B
2

)
there are at most ψ

3
n

vertices w ∈ A such that |NH(p ∪ {w}) ∩ A| > ψ
3
n, as otherwise there would be at least

1
12
· ψ
3

(
n
2

)
· ψ
3
n· ψ

3
n > ε2

(
n
4

)
edges of H with precisely two vertices in A, contradicting (H). For

each such p there are at least (|A|−ψ
3
n)(δ(H)−ψ

3
n) > (1

2
−ω′−ψ

3
)(1

2
−ε−ψ

3
)n2 > (1

2
−ψ)

(
n
2

)
split pairs p′ such that p ∪ p′ is an edge of H; in other words, each such p is good. The

same argument with the roles of A and B reversed shows that all but at most ψ
3

(
n
2

)
pairs

p ∈
(
A
2

)
are good. ♦

We now show that any good pair is β-absorbable. First consider any good pair {x, y}

with x ∈ A and y ∈ B. Since {x, y} is good, at most
(|A|

2

)
+
(|B|

2

)
− (1

2
− ψ)

(
n
2

)
6 2ψ

(
n
2

)
pairs p′ ∈

(
A
2

)
are not in NH({x, y}), and so at most 2ψ

(
n
2

)
·
(
n
2

)
sets S ∈

(
A
4

)
contain such

a pair p′. By (G) it follows that at least ε1
(
n
4

)
− ψ

(
n
2

)2
> βn4 edges {a, b, c, d} ∈ H[A]

are such that {x, y, a, b} and {x, y, c, d} are both edges of H. Each such edge yields an

element of Tx,y, so |Tx,y| > βn4, and so by Claim 2.22 {x, y} is β-absorbable.

Now consider any good pair {x, y} with x, y ∈ A or x, y ∈ B. Choose (not necessarily

distinct) vertices a1, c1, c2, c3, b1, b2 ∈ A and a2, c4 ∈ B uniformly at random, and observe

that with probability at least 1− 100
n

these eight vertices are distinct from each other and

from x and y. Furthermore, since {x, y} is good and |A||B| 6 n2

4
we have that

P({x, y, a1, a2} ∈ E(H)) >
1

|A||B|
·
(

1

2
− ψ

)(
n

2

)
> 1− 3ψ,
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and likewise the probability that {x, y, c1, c4} is an edge of H is at least 1− 3ψ. Also,

P({a1, a2, c1, c2} ∈ E(H))

>P({c1, c2} is good) · P({a1, a2, c1, c2} ∈ E(H) | {c1, c2} is good)

>
2

|A|2

((
|A|
2

)
− ψ

(
n

2

))
· 1

|A||B|

(
1

2
− ψ

)(
n

2

)
> 1− 8ψ,

where we use (F) for the final inequality. Exactly the same calculation shows that the

probabilities that {c1, c2, c3, c4} and {c3, c4, b1, b2} are edges of H are each at least 1− 8ψ.

Finally, by (G) the probability that {c2, c3, b1, b2} is an edge of H is at least 4!
|A|4 ·e(H[A]) >

ε1. Taking a union bound we find that with probability at least ε1 − 30ψ − 100
n
> ε1

2
all

of these events occur, in which case (a1, a2, c1, c2, c3, c4, b1, b2) is an absorbing structure of

type 2 for {x, y}. So in total there are at least ε1
2
|A|6|B|2 > βn8 such absorbing structures

for {x, y}, so {x, y} is β-absorbable.

We conclude by Claim 2.24 that at most ψ
(
n
2

)
< αn2 pairs in

(
V
2

)
are not β-absorbable.

This contradicts our assumption thatH is not (α, β)-absorbing and so completes the proof.

Finally, note that each step of the proof directly translates to an algorithm which

returns the desired bipartition in the claimed running-time.

We are now ready to prove our absorbing lemma (Lemma 2.6) which guarantees the

existence of an absorbing path in the non-extremal case. In fact, we actually prove the

following stronger statement, in which the assumption that H is non-extremal is replaced

by the assumption that H is absorbing and connecting, and which concludes that we can

find an absorbing path P in polynomial time (furthermore, the modified condition (iii)

allows the absorption of pairs into P to be done greedily). Since Lemmas 2.13 and 2.21

imply that a non-extremal graph H must be absorbing and connecting, this is indeed a

stronger statement than Lemma 2.6. We could instead prove Lemma 2.6 directly by a

standard random selection argument; we avoid this approach since we will also use the
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polynomial-time algorithm given by Lemma 2.25 in the proof of Theorem 1.12.

Lemma 2.25. Suppose that 1/n� ε� γ � β � α� λ� κ, µ. Let H be a 4-graph on

n vertices with δ(H) > n/2− εn which is κ-connecting and (α, β)-absorbing. Then there

is a path P in H and a graph G on V (H) with the following properties.

(i) P has at most µn vertices.

(ii) Every vertex of V (H) \ V (P ) is contained in at least n− λn edges of G.

(iii) For any edge e of G which does not intersect V (P ) there are at least 2γn vertex-

disjoint segments of P which are absorbing structures for e.

Furthermore, there exists an algorithm, Procedure AbsorbingPath(H), which returns such

a path P and graph G in time O(n32).

Proof. Let W := V (H)8, let U be the set of all β-absorbable pairs of vertices of H, and

define the graph G := (V (H), U). Furthermore set V1 := U ∪W and let E1 be the set of

all pairs {p, T} with p ∈ U , T ∈ W for which T is an absorbing structure for p. We then

set E ′1 := {{T, T ′} : T, T ′ ∈ W and T ∩T ′ 6= ∅} and define the graph G1 := (V1, E1 ∪E ′1).

Set M := |U |, so M >
(
n
2

)
− αn2 > (1 − 3α)

(
n
2

)
since H is (α, β)-absorbing, and set

N := |W | = n8, m := |E ′1| < 64n15, r = β2n and ν = 2mr
N2 < 128β2. Then, taking G2 to

be the empty graph on vertex set W , the conditions of Setup 2.15 and Proposition 2.17 are

satisfied (with β playing the same role here as there, and with 1 and β2 in place of λ and τ

respectively), since each pair p ∈ U is β-absorbable and so has dG1(p) > βn8. The call of

Procedure SelectSet(G1, ∅, β2n, β, 1, β2) then returns a family T ′ ⊆ W of ordered octuples

of vertices of H which is an independent set in G1 such that (1− 128β2)β2n 6 |T ′| 6 β2n

and |T ′∩NG1(p)| > (β−129β2)|T ′| > 1
2
β3n for each p ∈ U . If we now delete from T ′ every

T ∈ T ′ which is not an absorbing structure for some β-absorbable pair {x, y} ∈
(
V (H)

2

)
,

then we obtain a pairwise-disjoint family T satisfying the following properties:
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(A) |T | 6 β2n,

(B) for any β-absorbable pair {x, y} ∈
(
V (H)

2

)
the family T contains at least 1

2
β3n

absorbing structures for {x, y}, and

(C) every T ∈ T is an absorbing structure for some β-absorbable pair {x, y} ∈
(
V (H)

2

)
.

Enumerate the members of T as T1, · · · , Tq, so q 6 β2n by (A), and for each 1 6 i 6 q

let ai1, a
i
2, b

i
1 and bi2 be the first, second, seventh and eighth elements of Ti respectively.

Then by (C) and the definition of an absorbing structure we may choose, for each i, a

path Pi in H with vertex set Ti and with ends {a1, a2} and {b1, b2}. Let Q =
⋃q
i=1 Ti, so

|Q| = 8q 6 8β2n, and let X ⊆ V \Q be the set of vertices not in Q which lie in fewer than

(1− λ)n-many β-absorbable pairs. We must have |X| 6 λn, as otherwise there would be

at least 1
2
· λn · (λn− 1) > α

(
n
2

)
pairs in H which are not β-absorbable, contradicting the

fact that H is (α, β)-absorbing.

We now greedily construct a path P0 containing every vertex of X. For this write X =

{x1, . . . , xt}, so t = |X| 6 λn, and greedily choose distinct vertices y1, . . . , yt ∈ V \(Q∪X)

such that {xi−1, yi−1, xi, yi} is an edge of H for each 2 6 i 6 t. This is possible since

y1 can be any vertex of V \ (Q ∪ X), and when choosing yi for 2 6 i 6 t there are at

least dH(xi−1, yi−1, xi)− |Q| − |X| − (i− 1) > δ(H)− 8β2n− λn− t > 0 suitable choices

available. Having done so, we let P0 be the path (x1, y1, . . . , xt, yt) in H, and set b10 := xt

and b20 := yt. Note that P0 has 2t 6 2λn vertices and that the paths P0, P1, . . . , Pq are

pairwise vertex-disjoint.

To complete the proof we use the fact that H is κ-connecting to greedily choose paths

Qi of length at most three which join the paths Pi together into a single path. Suppose

for this that we have already chosen paths Q1, . . . , Qi−1 for some 1 6 i 6 q, and set

Ai := (Q∪V (P0)∪
⋃i−1
j=1Qj)\{bi−11 , bi−12 , ai1, a

i
2}. Since H is κ-connecting, there are either

at least κn2 paths of length two or at least κn4 paths of length three in H with ends
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{bi−11 , bi−12 } and {ai1, ai2}. In either case, since |Ai| 6 8β2n+2λn+4q < κn, at least one of

these paths does not intersect Ai. Arbitrarily choose such a path and call it Qi. Having

proceeded in this manner to find paths Q1, . . . , Qq we define P := P0Q1P1 · · ·QqPq and

observe that P is a path in H. It remains only to show that P has the desired properties.

Indeed, as just shown P has at most κn 6 µn vertices, so (i) holds. For (ii), recall that any

edge e of G is a β-absorbable pair in H and that by construction of P0 the paths P included

every vertex which was in fewer than (1− λ)n-many β-absorbable pairs. Finally, by (B)

there are at least 1
2
β3n > 2γn paths Pi for which Ti = V (Pi) is an absorbing structure for

e, and these paths Pi are vertex-disjoint segments of P . For the running time note that the

dominant term is the call of the Procedure SelectSet with O(N4 +MN3) = O(n32).

2.4.4 Proof of the long cycle lemma (Lemma 2.7)

Now we can turn to the proof of Lemma 2.7 for which we need the following result of

Erdős [35]. We say that a k-graph H is k-partite if its vertex set may be partitioned into

vertex classes V1, . . . , Vk such that |e ∩ Vi| = 1 for every e ∈ E(H) and every i ∈ [k]. We

say that H is complete k-partite if additionally every set e ⊆ V (H) such that |e∩ Vi| = 1

for every i ∈ [k] is an edge of H.

Theorem 2.26 ([35]). Suppose that 1/n � d, 1/f, 1/k. Let F be a k-partite k-graph on

f vertices. If H is a k-graph on n vertices with e(H) > d
(
n
k

)
, then H contains a copy of

F . Moreover, such a copy can be found in time O(nk).

Actually the original version of this theorem did not consider the running time, but

this can be derived by a straightforward argument. First we restrict to a constant size

subgraph H ′ of H whose density is similar to that of H, and then we find a copy of F in

H ′ by exhaustive search. The existence of such a subgraph can be established by a simple

probabilistic argument, and this argument can be derandomised to give an algorithm

which finds a subgraph H ′ with density at least as large as that of H.
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We will also make use of the following observation of Rödl, Ruciński and Szemerédi [83]

(they did not mention the running time, but this follows immediately from their proof).

Theorem 2.27 ([83]). Given a > 0 and k > 2, every k-graph F on m vertices and with

at least a
(
m
k

)
edges contains a tight path on at least am/k vertices. Moreover, such a path

can be found in time O(nk).

Note that deleting every other edge of a tight path on s vertices in a 4-graph yields a

2-path on at least s− 1 vertices, so for k = 4 we may replace ‘tight path’ by ‘path’ (i.e.

2-path) and am/k by am/k − 1 in the statement of Theorem 2.27.

We are now ready to prove our long cycle lemma, Lemma 2.7. Again we actually prove

a stronger statement, Lemma 2.28, which assumes instead that H is connecting and states

that we can find the cycle C in polynomial time. Since by Lemma 2.13 any 4-graph which

is not even-extremal is connecting, this is indeed a stronger statement. Our proof of

Lemma 2.28 is based on the proof given by Karpiński, Ruciński and Szymańska [62,

Fact 4] for tight cycles, which in turn was based on a similar lemma for tight cycles in 3-

graphs given by Rödl, Ruciński and Szemerédi [83, Lemma 2.2]. The principal differences

are that our minimum codegree assumption is weaker, and that our absorbing lemma also

requires us to consider the auxiliary graph G, in which we must find a perfect matching

among the vertices not used in C.

Lemma 2.28. Suppose that 1/n � ε � γ � λ 6 µ � κ and that n is even. Let

H = (V,E) be a 4-graph of order n with δ(H) > n/2 − εn which is κ-connecting. Also

let P0 be a 2-path in H on at most µn vertices, and let G be a 2-graph on V such that

each vertex v ∈ V \ V (P0) has dG(v) > (1 − λ)n. Then there exists a 2-cycle C in H

on at least (1 − γ)n vertices such that P0 is a segment of C and G[V \ V (C)] contains

a perfect matching. Moreover, there exists an algorithm, Procedure LongCycle(H,G, P0),

which returns such a cycle C in time O(n16).
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Proof. First, we introduce a constant D > 0 such that

1
n
� 1

D
� ε� γ � λ 6 µ� κ .

Set V ′ = V \ V (P0), H
′ = H[V ′], G′ = G[V ′] and n′ = |V ′|, so n′ > (1 − µ)n, δ(G′) >

(1 − λ − µ)n > (1 − 2µ)n′ and δ(H ′) > (1
2
− ε − µ)n > (1

2
− 2µ)n′. Also it follows

from the definition of κ-connecting that H ′ is κ
2
-connecting. So by Lemma 2.18 (with

2γ/3, n′, κ/2 and 2µ in place of ρ, n, κ and λ respectively) we can choose a set R ⊆ V ′ with

3γ
5
n 6 (1− 8

3
γ)2γ

3
n′ 6 |R| 6 2γ

3
n′ 6 2γ

3
n such that for any x ∈ V ′ we have|NG′(x) ∩ R| >

(1 − 70µ)|R| > 4γ
7
n and for every disjoint p1, p2 ∈

(
V ′

2

)
there are at least κ

10
|R| > κγ

20
n

internally disjoint paths in H ′[R ∪ p1 ∪ p2] of length at most three whose ends are p1 and

p2.

We first extend P0 to a path P ′0 in H by adding a single edge at each end. The

purpose of this is that the ends of P ′0 will then be pairs in H ′ to which we can apply the

fact that H ′ is κ-connecting. So let {u1, u2} and {u3, u4} be the ends of P0. Then since

|V ′ \R| > (1− 2µ)n and δ(H) > (1
2
− ε)n we may choose distinct vertices u′1, u

′
2, u
′
3, u
′
4 ∈

V ′ \ R such that u′2 ∈ N(u1, u2, u
′
1) and u′4 ∈ N(u3, u4, u

′
3). This gives the desired path

P ′0 = (u′1, u
′
2)P0(u

′
3, u
′
4). Write q := {u′1, u′2}, so q is an end of P ′0.

We next proceed by an iterative process to extend P ′0 to a path on at least (1 − γ)n

vertices in H. At any point in this process we write P for the path we have built so far

(so initially we take P = P ′0), and write L := V \ (V (P ) ∪ R) and R′ := R \ V (P ) (so

at any point the sets V (P ), R′ and L partition V ). Moreover, throughout the process

P ′0 will be a segment of P which shares an end in common with P , namely q. If at any

point in the process we have |L| 6 γ
3
n then we terminate; observe that we then have

|V (P )| > n − |L| − |R| > (1 − γ)n, so P is the desired path. We may therefore assume

throughout the process that |L| > γ
3
n.
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The first stage of the process is while P contains at most (1
2
− µ)n vertices, in which

case we have |V (P ) ∪ R| 6 (1
2
− µ)n + 2γ

3
n 6 δ(H) − 2. So we may use the minimum

degree condition as before to extend P by one edge. That is, let p be the end of P other

than q, choose any vertex u ∈ L and any vertex v ∈ N(p ∪ {u}) ∩ L, and extend P by

the edge p∪ {u, v}. We continue to extend P in this way until P has more than (1
2
− µ)n

vertices. Note that no vertices of R are added to P during this stage of the process.

Once P contains more than (1
2
−µ)n vertices, we enter the second stage of the process.

In each step of the process during this stage we will add at most 8 additional vertices

from the reservoir set R to the path P , and this stage of the process will continue for at

most 3n
D

steps. In consequence we will always have |R′| > |R| − 8 · 3n
D

. Since 8 · 3n
D
6 κγ

20
n

it follows from our choice of R that at any point in the process (or immediately after the

process terminates), given disjoint pairs p and p′ in V ′, we can find a path of length at

most three in H[p ∪ p′ ∪R′] with ends p and p′.

Suppose first that, at some step of the second stage of the process, we have e(H[L]) >

µ
(|L|

4

)
. Then we can use Theorem 2.27 to find a path P ′ in H[L] on at least µ|L|

4
− 1

vertices. We let p ∈
(
V
2

)
be the end of P other than q and let p′ be an end of P ′, and

choose a path Q of length at most three in H[R′ ∪ p ∪ p′] with ends p and p′. We then

replace P by PQP ′ and proceed to the next iteration. Note that in this step we added

at most 4 vertices from R′ to P , and that the total number of vertices added to P is at

least µ|L|
4
− 1 > µγ

12
n− 1 > D

3
.

Now suppose instead that, at some step of the second stage of the process, we have

e(H[L]) 6 µ
(|L|

4

)
. Then we have the following claim.

Claim 2.29. There exist sets J ⊆ I ⊆ V (P ) \ V (P ′0) and a 3-graph H0 with vertex set

L such that |I| = D, P [I] is a segment of P , |J | = D
3

, e(H0) > 2−D 1
7

(|L|
3

)
and for every

e ∈ E(H0) and every v ∈ J we have e ∪ {v} ∈ E(H).

Proof of Claim 2.29. Let E0 be the set of edges of H[L], E1 be the set of edges of H with
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three vertices in L and one vertex in V (P ) \ V (P ′0) and E ′1 be the set of edges of H with

three vertices in L and one vertex in R′ ∪ V (P ′0). We then have that

(1
2
− ε)n

(
|L|
3

)
6
∑
S∈(L3)

dH(S) = 4|E0|+ |E1|+ |E ′1| .

Since 4|E0| 6 4µ
(|L|

4

)
< µ|L|

(|L|
3

)
6 µn

(|L|
3

)
and |E ′1| 6 (2γ

3
n+ µn+ 4)

(|L|
3

)
, this yields

|E1| > (1
2
− 3µ)n

(
|L|
3

)
.

Let P be the family of segments of P with precisely D vertices which do not intersect P ′0,

and for each Q ∈ P let NQ be the number of edges of E1 which intersect V (Q). Since all

but at most 2D vertices of V (P ) \ V (P ′0) appear in precisely D
2

of the sets V (Q), we have

∑
Q∈P

NQ >

(
|E1| − 2D

(
|L|
3

))
· D

2
> (1

2
− 4µ)

(
|L|
3

)
D · n

2

Since P has at most n vertices we have |P| 6 n
2
, so we may fix a segment Q ∈ P with

NQ > (1
2
− 4µ)

(|L|
3

)
D. Write I := V (Q) and let H1 be the 3-graph on L whose edges are

all sets S ∈
(
L
3

)
with |NH(S) ∩ I| > D

3
. Then we have NQ 6 e(H1)D +

(|L|
3

)
D
3

, and it

follows that e(H1) > (1
2
− 4µ − 1

3
)
(|L|

3

)
> 1

7

(|L|
3

)
. Also, since I has at most 2D subsets,

by averaging we may fix a set J ′ ⊆ I with |J ′| > D
3

such that at least 2−De(H1) edges

S ∈ E(H1) have NHi(S) = J . Let H0 be the 3-graph on L with all such sets S as edges,

and choose any J ⊆ J ′ with |J | = D
3

. ♦

Fix such an I, J and H0. Then H0 contains a complete 3-partite 3-graph K with all

vertex classes of size D
3

by Theorem 2.26. So let K ′ be the complete 4-partite subgraph of

H whose vertex classes are J and the three vertex classes of K, and let Q be a Hamilton

path in K ′ (so in particular Q is a path in H on 4D
3

vertices). Since P [I] is a segment
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of P , removing the vertices in I from P leaves two vertex-disjoint subpaths of P ; of these

let P1 be the path which has q as an end (so in particular P ′0 is a segment of P1) and let

P2 be the other path. Let p1 be the end of P1 other than q, let p2 be an end of P2, and let

q1 and q2 be the ends of Q, and choose vertex-disjoint paths Q1 and Q2 in H[p1 ∪ q1 ∪R′]

and H[p2 ∪ q2 ∪R′] respectively, each of length at most three, so that Q1 has ends p1 and

q1 and Q2 has ends p2 and q2. We now replace P with the path P1Q1QQ2P2 and proceed

to the next iteration. Note that in this step we added at most eight vertices from R′ to P

(at most four in each of Q1 and Q2), and that the total number of vertices in P increased

by at least |V (Q)| − |I| = D
3

.

Since each step in the second stage of the process increases the number of vertices

of P by at least D
3

, this stage of the process continues for at most 3n
D

steps, as claimed.

When the process terminates the final path P has at least (1 − γ)n vertices and has q

as an end, and P ′0 is a segment of P . Let p be the end of P other than q; then we may

choose a path Q in H[R′ ∪ p ∪ q] of length at most three and with ends p and q. This

gives a cycle C = PQ in H on at least (1− γ)n vertices such that P0 is a segment of C.

It remains only to find a perfect matching in G∗ := G[V \ V (C)]. For this note that

|V (G∗)| 6 γn and |R \ V (C)| > |R| − 24n
D
− 4. Therefore our choice of R implies that

δ(G∗) > 4γ
7
n − 24n

D
− 4 > γ

2
n > |V (G∗)|

2
. Since C is a 2-cycle (so has an even number of

vertices) and n is even, we have that |V \V (C)| is even, so G∗ contains a perfect matching.

Following this proof gives a polynomial-time algorithm to find a long cycle as in the

statement in a κ-connecting k-graph of high minimum codegree. Indeed, Lemma 2.18

gives a reservoir set R as required in time O(n16), and by Theorem 2.26 we may find the

complete 3-partite 3-graph K in time O(n3), whilst Theorem 2.27 allows the choice of

the path P ′ in time O(n4), and it is clear that the remaining steps of the proof can be

carried out in polynomial time (e.g. by exhaustive search to find a path of length at most

three).
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2.5 Hamilton 2-cycles in 4-graphs: even-extremal case

In this section we give a detailed proof of Lemma 2.9 which states that Theorem 1.11 holds

for even-extremal 4-graphs. As in the previous section, all paths and cycles we consider in

this section are 2-paths and 2-cycles, therefore we will again omit the 2 and speak simply

of paths and cycles. Also, for most of the section we work within the following setup.

Setup 2.30. Fix constants satisfying 1/n � ε, c � γ � β � β2 � β1 � ρ � µ � 1.

Let H be a 4-graph of order n, and let V = V (H).

Recall that if H is an even-extremal 4-graph on n vertices, with a corresponding even-

extremal bipartition {A,B} of V (H), then H has very few odd edges. If δ(H) is close to

n/2 then it follows from this that H[A] and H[B] are both very dense, and also that H

has very high density of edges with precisely two vertices in A. Furthermore recall that

we call a pair p ∈
(
V
2

)
a split pair if |p ∩ A| = 1 and a connate pair otherwise.

One strategy for finding a Hamilton cycle in such an H is as follows. We first find short

paths P and Q in H each joining a connate pair in A to a connate pair in B. That is, the

ends p and p′ of P and the ends q and q′ of Q have p, q ∈
(
A
2

)
and p′, q′ ∈

(
B
2

)
. Moreover

P and Q are chosen so that A′ := A \ (V (P )∪ V (Q)) and B′ := B \ (V (P )∪ V (Q)) each

have even size. We then use the high density of H[A] and H[B] to find a Hamilton path

PA in H[A′∪p∪ q] with ends p and q and a Hamilton path PB in H[B′∪p′∪ q′] with ends

p′ and q′. Together P, PA, Q and PB then form a Hamilton cycle in H. Another strategy

for finding a Hamilton cycle in such an H is to first find a short path P in H whose ends

p and q are both split pairs such that V ′ := V (H)\V (P ) satisfies |V ′∩A| = |V ′∩B|. We

then use the high density of edges of H with precisely two vertices in A to find a Hamilton

path P ′ in H[V ′ ∪ p ∪ q] with ends p and q which consists of a sequence of split pairs.

Together P ′ and P then form a Hamilton cycle. We give the necessary preliminaries for

implementing this strategy in Subsection 2.5.1, culminating in Lemma 2.34 which gives
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sufficient conditions for us to find P ′ as desired. We will also use Lemma 2.34 to find the

paths PA and PB in the very dense case.

Finally, in Subsection 2.5.2 we complete the proof of Lemma 2.9 by distinguishing

various cases; in each case we apply one of the two strategies described above to find a

Hamilton cycle in H.

2.5.1 Hamilton paths of split pairs

In this subsection we consider 4-graphs H admitting a bipartition {A,B} of V (H) such

that H has a very high density of edges with two vertices in A and two vertices in B,

motivating the following definitions.

Definition 2.31. Under Setup 2.30, for a fixed bipartition {A,B} of V , we say that

(i) a triple S ∈
(
V
3

)
is γ-good if it is contained in at least (1

2
− γ)n even edges,

(ii) a pair p ∈
(
V
2

)
is γ-good if it is contained in at least (1

2
− γ3)

(
n
2

)
even edges,

(iii) a vertex v ∈ V is γ-good if it is contained in at least (1
2
− γ5)

(
n
3

)
even edges,

(iv) a pair p ∈
(
V
2

)
is β2-medium if it is contained in at least β2

(
n
2

)
even edges,

(v) a pair p ∈
(
V
2

)
is β2-bad if it is not β2-medium,

(vi) a vertex v ∈ V is (β1, β2)-medium if it is contained in at least β1n-many β2-medium

pairs, and

(vii) a vertex v ∈ V is (β1, β2)-bad if it is not (β1, β2)-medium.

The following elementary proposition shows that good vertices and pairs lie in many

good pairs and triples.

Proposition 2.32. Assume Setup 2.30, and fix a bipartition {A,B} of V such that n/2−

cn 6 |A| 6 n/2 + cn. Then the following statements hold.
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(i) If v ∈ V is γ-good, then v is contained in at least (1− γ)n-many γ-good pairs.

(ii) If p ∈
(
V
2

)
is a γ-good pair, then p is contained in at least (1 − γ)n-many γ-good

triples.

Proof. First, we make the following observation. Each set S ⊆ V of size i ∈ {1, 2, 3} is

contained in at least (1
2
− 2c)

(
n

4−i

)
and at most (1

2
+ 2c)

(
n

4−i

)
even 4-sets. To prove (i)

note that since v is γ-good, there are at most (1
2

+ 2c)
(
n
3

)
− (1

2
− γ5)

(
n
3

)
6 (γ5 + 2c)

(
n
3

)
even 4-sets which contain v and which do not form an edge in H. Now assume that there

are more than γn vertices w such that {v, w} is not γ-good. Then there are at least

1
3
· γn · ((1

2
− 2c)

(
n
2

)
− (1

2
− γ3)

(
n
2

)
) > (γ5 + 2c)

(
n
3

)
even 4-sets which contain v and do not

form an edge in H, a contradiction. A similar reasoning proves (ii).

Proposition 2.33. Assume Setup 2.30, and fix a bipartition {A,B} of V such that n/2−

cn 6 |A| 6 n/2 + cn. Also let R ⊆ V be such that |A \R| > µn and |B \R| > µn. Then

(i) for any two disjoint γ-good split pairs s1 and s2 there exists a split pair s3 ∈
(
V \R
2

)
such that s1 ∪ s3 ∈ E(H) and s3 ∪ s2 ∈ E(H), and

(ii) for any two disjoint γ-good connate pairs p1 and p2 there exists a connate pair

p3 ∈
(
A\R
2

)
such that p1 ∪ p3 ∈ E(H) and p3 ∪ p2 ∈ E(H).

Now suppose additionally that at most ρn vertices of V are not γ-good. Then

(iii) for any γ-good split pair s1 there exists a γ-good split pair s2 ∈
(
V \R
2

)
such that

s1 ∪ s2 ∈ E(H), and

(iv) for any γ-good connate pair p1 there exists a γ-good connate pair p2 ∈
(
A\R
2

)
such

that p1 ∪ p2 ∈ E(H).

Note that by symmetry (ii) and (iv) remain valid with B in place of A.
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Proof. For (i), since s1 and s2 are γ-good, there are at most 2(n
2

4
− (1

2
− γ3)

(
n
2

)
) < 3γ3

(
n
2

)
split pairs which do not form an edge with both s1 and s2. Since there are at least

µ2n2 > 3γ3
(
n
2

)
split pairs which do not contain a vertex of R, we may choose s3 as required.

Similarly, for (iii), there are at most n2

4
− (1

2
− γ3)

(
n
2

)
< 1

2
µ2n2 split pairs which do not

form an edge with s1, and since at most ρn vertices are not γ-good, by Proposition 2.32(i)

the total number of pairs which are not γ-good is at most ρn · n + n · γn < 1
2
µ2n2, and

so we may choose a split pair s2 ∈
(
V \R
2

)
as required. The arguments for (ii) and (iv) are

very similar, so we omit them.

Note that we can list all γ-good pairs in H in time O(n4), and having done so we can

find pairs as in Proposition 2.33(i)-(iv) in time O(n2) by exhaustive search. We now state

and prove our Hamilton path connecting lemma for this setting.

Lemma 2.34. Assume Setup 2.30, and fix a bipartition {A,B} of V with |A| = |B|.

Suppose also that every vertex of V is γ-good. If s1 and s2 are disjoint γ-good split pairs,

then there exists a Hamilton path in H with ends s1 and s2. Moreover, such a path can

be found in time O(n4).

Proof. Set m := d (1−ρ)n
8
e. Throughout this argument we only use edges e ∈ E such that

|e ∩ A| = |e ∩ B| = 2. Consequently, every path we construct contains the same number

of vertices from A and B. The proof consists of the following three steps.

(I) We define a notion of a palatable vertex, and build a grid L ⊆ V \ (s1 ∪ s2) which

consists of 3m+ 2 vertices from A and 3m+ 2 vertices from B, contains two γ-good

split pairs q1, q2 ∈
(
L
2

)
and which can swallow any set S ⊆ V \ L of 2m palatable

vertices with |S ∩ A| = |S ∩ B| = m, meaning that for any such S there is a path

in H with vertex set L ∪ S and with ends q1 and q2.

(II) Next, we construct disjoint paths Q1 and Q2 in H[(V \ L) ∪ q1 ∪ q2] such that Q1

73



has ends s1 and q1, Q2 has ends q2 and s2, the set R := V \ (L ∪Q1 ∪Q2) satisfies

|R ∩ A| = |R ∩B| = m and every vertex in R is palatable.

(III) Finally, since L can swallow R, there is a path P in H with vertex set R ∪ L and

with ends q1 and q2, and Q1PQ2 is then a Hamilton path in H with ends s1 and s2.

To construct the grid we first greedily choose a set L′1 = {x1, y1, x2, y2, · · · , ym, xm+1} of

distinct vertices of A \ (s1 ∪ s2) such that for each i ∈ [m] both {xi, yi} and {yi, xi+1}

are γ-good. We then greedily select distinct vertices z1, · · · , zm+1 ∈ B \ (s1 ∪ s2) such

that {x1, z1} and {xm+1, zm+1} are γ-good pairs and such that for any i ∈ [m] both

{zi, xi, yi} and {yi, xi+1, zi+1} are γ-good triples. Having done this, we set L1 = L′1 ∪

{z1, · · · , zm+1} and continue to form a ‘mirror image’ L2 as follows. We greedily choose

a set L′2 = {x′1, y′1, x′2, y′2, · · · , y′m, x′m+1} of distinct vertices of B \ (L1 ∪ s1 ∪ s2) such that

{xm+1, zm+1, x
′
1} is γ-good and for each i ∈ [m] both {x′i, y′i} and {y′i, x′i+1} are γ-good.

Finally, we greedily select distinct vertices z′1, · · · , z′m+1 ∈ A \ (L1 ∪ s1 ∪ s2) such that

{xm+1, zm+1, x
′
1, z
′
1} ∈ E(H), the pair {x′m+1, z

′
m+1} is γ-good and for any i ∈ [m] both

{z′i, x′i, y′i} and {y′i, x′i+1, z
′
i+1} are γ-good triples. Let L2 := L′2 ∪ {z′1, · · · , z′m+1}; our grid

is then L := L1 ∪L2, and we take q1 := {x1, z1} and q2 := {x′m+1, z
′
m+1}. To confirm that

it is possible to make these greedy selections, observe that by the definition of a γ-good

triple and Proposition 2.32(i) and (ii) at least |B| − 2γn vertices are suitable for each

choice of a vertex from B and at least |A| − 2γn vertices are suitable for each choice of

a vertex from A. Since in total we choose 3m + 2 vertices from each of A and B, and

|s1 ∪ s2| = 4, there are always at least n/2 − (3m + 2) − 4 − 2γn > 1 suitable vertices

which have not previously been chosen.

We now set A′ = A \ L and B′ = B \ L, and define two bipartite auxiliary graphs

GA and GB. Indeed, we take GA to be the bipartite graph with vertex classes A′

and Y ′ := {y′1, · · · , y′m} whose edges are those pairs {y′i, w} with i ∈ [m] and w ∈ A′

such that {x′i, z′i, y′i, w}, {y′i, w, x′i+1, z
′
i+1} ∈ E(H). By construction both {x′i, z′i, y′i} and
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{y′i, x′i+1, z
′
i+1} are γ-good for each i ∈ [m], and it follows that dGA(y′i) > |A′|−2γn > (1−

16γ)|A′|. In particular the graph GA has at least m(1− 16γ)|A′| edges. Likewise we take

GB to be the bipartite graph with vertex classes B′ and Y := {y1, · · · , ym} whose edges are

those pairs {yi, w} with i ∈ [m] and w ∈ B′ such that {xi, zi, yi, w}, {yi, w, xi+1, zi+1} ∈

E(H); by the same argument we have dGB(y′i) > (1 − 16γ)|B′| for each i ∈ [m], and so

in particular the graph GB has more than m(1− 16γ)|B′| edges. We call a vertex a ∈ A′

palatable if dGA(a) > 0.9m and a vertex b ∈ B′ palatable if dGB(b) > 0.9m. Let MA ⊆ A′

be the set of non-palatable vertices in A′ and let MB ⊆ B′ be the set of non-palatable

vertices in B′. Then |MA| < ρ
100
n, as otherwise the number of edges in GA would be at

most

(|A′| − ρ

100
n)m+

ρ

100
n · 0.9m < m(1− 16γ)|A′| ,

contradicting our previous lower bound. For the same reason we have |MB| < ρ
100
n.

Observe that given a set S ⊆ A′∪B′ of 2m palatable vertices with |S∩A′| = |S∩B′| = m

the subgraphs G′A := GA[(A′ ∩ S) ∪ Y ′] and G′B := GB[(B′ ∩ S) ∪ Y ] contain perfect

matchings {{y′i, ai} | i ∈ [m]} and {{yi, bi} | i ∈ [m]} respectively, as δ(G′A), δ(G′B) >

0.9m. It follows that

(x1, z1, y1, b1, · · · , ym, bm, xm+1, zm+1, x
′
1, z
′
1, y
′
1, a1, · · · , y′m, am, x′m+1, z

′
m+1)

is a path in H with ends q1 and q2. This demonstrates that L can swallow any set S of

2m palatable vertices with |S ∩A| = |S ∩B| = m, and so completes Step (I) of the proof.

We now construct Q1 and Q2. We first use Proposition 2.33(i) to find s′1 ∈
(
V \(L∪s2)

2

)
such that Q1 := s1s

′
1q1 is a path. It then remains to construct a path Q2 with ends q2

and s2, of length ` := n
2
− 4m − 4, with V (Q2) ⊆ V \ (L ∪ Q1), so that Q2 contains all

non-palatable vertices not in Q1 and such that |V (Q2) ∩ A| = |V (Q2) ∩ B|. We do this

in the following way. Let M be the set of all non-palatable vertices not in Q1 or s2, so
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|M | 6 |MA|+|MB| 6 ρ
50
n, and write M = {g1, . . . , gk} and V ′ := V \(L∪V (Q1)∪s2). Now

greedily choose distinct vertices h1, · · · , hk ∈ V ′ \M such that {gi, hi} is a γ-good split

pair for each 1 6 i 6 k. This is possible as each gi is γ-good and k 6 ρ
50
n. Write p0 := s2,

and for each i ∈ [k] let p2i := {gi, hi}. By repeated application of Proposition 2.33(i) we

may then choose split pairs pi ∈
(
V ′

2

)
for each odd i ∈ [2k] such that the pairs pi are all

disjoint and pi−1pi ∈ E(H) for each i ∈ [k]. We then use Proposition 2.33(iii) repeatedly

to obtain γ-good split pairs p2k+1, pk+2, . . . , p`−2 ∈
(
V ′

2

)
which are pairwise-disjoint and

disjoint from p0, . . . , p2k and such that pi−1pi ∈ E(H) for each k + 1 6 i 6 `− 2. Finally,

we set p` := q2 and apply Proposition 2.33(i) to choose a split pair p`−1 ∈
(
V ′

2

)
disjoint

from
⋃`−2
i=0 pi so that p`−2p`−1 ∈ E(H) and p`−1p` ∈ E(H), and Q2 := p0p1 . . . p` is then a

path with the desired properties, completing Step (II). In particular, the set L∪Q1 ∪Q2

contains precisely 1
2
(|L|+ |V (Q1) \L|+ |V (Q2) \L|) = (3m+ 2) + 2 + ` = n

2
−m vertices

from each of A and B, so R := V \ (L ∪ Q1 ∪ Q2) satisfies |R ∩ A| = |R ∩ B| = m, and

therefore can be swallowed by L for Step (III). This calculation also justifies that it was

possible to choose vertices hi and to use Proposition 2.33 as claimed above.

Finally, for the algorithmic statement observe that for Step (I) we can list the γ-

good vertices, pairs and triples, greedily construct the grid L, form the auxiliary bipartite

graphs GA and GB and list all palatable vertices in time O(n4). Then, for Step (II), we

can form the paths Q1 and Q2 in time O(n3) by repeated exhaustive search of which pair

to add next. Finally, for Step (III) we need to find a perfect matching in G′A and G′B, and

we can do so in time O(n4) by using Edmonds’s blossom algorithm [34].

2.5.2 Proof of Lemma 2.9

We now turn to the proof of Lemma 2.9, for which we first give two preliminary results.

The first of these states that if {A,B} is an even-extremal bipartition of V , then almost

all vertices and pairs are good, and that pairs which are not bad must form an even edge
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with a good pair, even if we forbid a small number of vertices from being used for this.

Proposition 2.35. Assume Setup 2.30, and suppose that δ(H) > n/2 − εn and that

{A,B} is a c-even-extremal bipartition of V . Then

(a) there are at most c
γ3−2ε

(
n
2

)
pairs which are not γ-good,

(b) there are at most c
γ5−2εn vertices which are not γ-good,

(c) there are at most c
(1−β1)( 12−β2−2ε)

n vertices which are (β1, β2)-bad, and

(d) if R ⊆ V satisfies |R| 6 1
3
βn, then for every β-medium pair p1 there exists a γ-good

pair p2 ∈
(
V \R
2

)
such that p1 ∪ p2 is an even edge.

Proof. For (a) note that by our minimum degree condition every pair forms an edge with

at least (1
2
− 2ε)

(
n
2

)
other pairs, so if the assertion is not true, then there are more than

1
6
· c
γ3−2ε

(
n
2

)
· (γ3−2ε)

(
n
2

)
> c
(
n
4

)
odd edges. Similarly, for (b) note that every vertex forms

an edge with at least (1
2
− 2ε)

(
n
3

)
triples, so if the assertion is not true, then there are

more than 1
4
· c
γ5−2εn · (γ

5 − 2ε)
(
n
3

)
> c

(
n
4

)
odd edges. For (c), if we assume otherwise,

then there are more than 1
12
· c
(1−β1)( 12−β2−2ε)

n · (1 − β1)n · (12 − β2 − 2ε)
(
n
2

)
> c

(
n
4

)
odd

edges in H. In each case we have a contradiction to the fact that the bipartition {A,B}

is c-even-extremal. Finally, for (d) note that by (a) there are at most c
γ3−2ε

(
n
2

)
< β

4

(
n
2

)
pairs which are not γ-good, and at most β

3
n2 < 3β

4

(
n
2

)
pairs contain a vertex of R, but

since p1 is β-medium there are at least β
(
n
2

)
pairs which form an even edge with p1.

Recall the proof strategies outlined at the start of this section, both of which begin by

choosing short paths whose ends we can connect by the Hamilton path connecting lemma.

We will use the following lemma to obtain suitable short paths.

Lemma 2.36. Assume Setup 2.30, and suppose that δ(H) > n/2− εn and that {A,B} is

a c-even-extremal bipartition {A,B} of V . Suppose also that every vertex of H is (β1, β2)-
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medium. If H contains an odd edge, then H contains a path of length 3 whose ends are a

γ-good split pair and a γ-good connate pair.

Proof. It suffices to show that H contains an odd edge e which is the union of two β2-

medium pairs. Indeed, we can then write e = p ∪ s where p is a β2-medium connate pair

and s is a β2-medium split pair, following which two applications of Proposition 2.35(d)

yield a γ-good connate pair p′ and a γ-good split pair s′ such that p′pss′ is a path.

By assumption we may choose an odd edge e ∈ H. If e is the union of two β2-medium

pairs, then we are done by our first observation. So we may assume that there are vertices

x, y ∈ e such that {x, y} is β2-bad. This means that {x, y} is contained in at most β2
(
n
2

)
even edges, and so (using the minimum degree condition) there are at least (1

2
− 2β2)

(
n
2

)
pairs {z, w} such that {x, y, z, w} is an odd edge of H. By Proposition 2.35(b) at most

c
γ5−2εn ·n < γ

(
n
2

)
pairs {z, w} contain a vertex which is not γ-good. Furthermore, since y

is (β1, β2)-medium, at least β1n pairs containing y are β2-medium. Therefore there are at

least β1n · ((12 − c)n− β1n− 1) > β1
2

(
n
2

)
pairs {z, w} for which {y, z} and {y, w} are not

both β2-bad. Since there are at most (1
2

+ c)
(
n
2

)
pairs {z, w} such that {x, y, z, w} is an

odd 4-tuple, and (1
2

+ c)− (1
2
− 2β2) + γ < β1

2
, it follows that there exist γ-good vertices

z and w such that e := {x, y, z, w} is an odd edge of H and {y, z} is a β2-medium pair.

If {x,w} is β2-medium, then e is the union of two β2-medium pairs and we are done by

our first observation, whilst if {x,w} is β2-bad, then we have a β2-bad pair containing the

γ-good vertex w. We then proceed as follows.

The minimum degree condition of H, combined with the fact that {w, x} is β2-bad,

implies that there are at least (1
2
− 2β2)

(
n
2

)
pairs {z′, w′} such that {w, x, z′, w′} is an odd

edge ofH. Since w is a γ-good vertex, by Proposition 2.32(i) at most γn pairs containing w

are not γ-good. So certainly there are at most γn2 6 3γ
(
n
2

)
pairs {z′, w′} for which {w, z′}

is β2-bad or {w,w′} is β2-bad. Moreover, since x is (β1, β2)-medium (since we assumed all

vertices are), at least β1n pairs containing x are β2-medium. Therefore there are at least
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β1n·((12−c)n−β1n−1) > β1
2

(
n
2

)
pairs {z′, w′} such that {w, x, z′, w′} is an odd 4-tuple and

such that {x, z′} and {x,w′} are not both β2-bad. Since there are at most (1
2

+ c)
(
n
2

)
pairs

{z′, w′} such that {w, x, z′, w′} is an odd 4-tuple, and (1
2
+c)−(1

2
−2β2)+3γ < β1

2
, it follows

that there exist vertices z′ and w′ such that {w, x, z′, w′} is an odd edge of H containing

β2-medium pairs {w, z′} and {x,w′}, and we saw already that this is sufficient.

Now we have all the tools we need to prove Lemma 2.9. In fact, we actually prove

the following stronger statement, which additionally asserts that given an even-extremal

bipartition as input, we can find a Hamilton 2-cycle in polynomial time.

Lemma 2.37. Suppose that 1/n � ε, c′ � 1 and that n is even, and let H be a 4-graph

of order n with δ(H) > n/2 − εn. If H is c′-even-extremal and every bipartition {A,B}

of V (H) is even-good, then H contains a Hamilton 2-cycle. Moreover, there exists an

algorithm Procedure HamCycleEven(H, {A,B}) which, given as input a c′-even-extremal

bipartition {A,B} of V (H), returns a Hamilton 2-cycle in H in time O(n10).

Proof. For this proof we introduce further constants such that

ε, c′ � c� γ � β � β2 � β′2 � β1 � β′1 � 1 .

SinceH is c′-even-extremal we may fix a bipartition {A′, B′} of V := V (H) with (1
2
−c′)n 6

|A′| 6 (1
2

+ c′)n which induces at most c′
(
n
4

)
odd edges. We begin by moving all vertices

which are (β′1, β
′
2)-bad to the other side. More precisely, we define Abad := {a ∈ A′ :

a is (β′1, β
′
2)-bad} and Bbad := {b ∈ B′ : b is (β′1, β

′
2)-bad}, and set A := (A′ \Abad)∪Bbad

and B := (B′ \ Bbad) ∪ Abad; we say that the vertices of Abad ∪ Bbad are moved. By

Proposition 2.35(c) at most 3c′n vertices are moved in total.

Claim 2.38. {A,B} is a c-even-extremal bipartition of V with respect to which every

vertex of H is (β1, β2)-medium. Moreover, every vertex of H is contained in at least βn

connate pairs which are β-medium with respect to {A,B}.
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Proof of Claim 2.38. Since at most 3c′n vertices were moved, we have (1
2
−c)n 6 (1

2
−c′−

3c′)n 6 |A|(1
2

+ c′ + 3c′)n 6 (1
2

+ c)n, and the number of edges of H which are odd with

respect to {A,B} is at most c′
(
n
4

)
+3c′n4 6 c

(
n
4

)
, so {A,B} is c-even-extremal. Now, since

β2 � β′2 � β1 � β′1, every unmoved vertex which was (β′1, β
′
2)-medium under {A′, B′} is

(β1, β2)-medium under {A,B}, whilst every moved vertex was in at least (1− β′1)n pairs

which were not β′2-medium under {A′, B′} and therefore is in at least (1−β′1−3c′)n-many

β2-medium pairs under {A,B}. Thus every vertex is (β1, β2)-medium with respect to

{A,B}.

Now suppose that some vertex x ∈ V is contained in fewer than βn connate pairs

which are β-medium. Since x is (β1, β2)-medium it follows that x is contained in at least

(β1−β)n > β1
2
n split pairs which are β2-medium, so the number N of even edges e ∈ E(H)

with |e ∩ A| = |e ∩ B| = 2 which contain x satisfies N > 1
3
· β1

2
n · β2

(
n
2

)
> 2βn3 even

edges e with |e ∩ A| = |e ∩ B| = 2. But then there must be at least βn connate pairs

containing x which are contained in at least β
(
n
2

)
even edges of H, as otherwise we would

have N < βn ·
(
n
2

)
+ n · β

(
n
2

)
< 2βn3, and each of these pairs is β-medium, giving a

contradiction. ♦

We henceforth exclusively use the terms odd, even, γ-good, (β1, β2)-medium and so

forth with respect to the bipartition {A,B} of V . Observe that H, V , n and the constants

ε, c, γ, β, β1 and β2 are as in Setup 2.30.

We distinguish five cases which are related to the cases in the definition of an even-good

bipartition. Case A assumes only that H contains two disjoint odd edges. All other cases

assume that there are no two disjoint odd edges in H, and in addition Case B assumes

that |A| and |B| are even, Case C assumes that |A| and |B| are odd and that there are

two odd edges whose intersection is a split pair, Case D assumes that |A| = |B| is odd

and that there are no two odd edges whose intersection is a split pair and Case E assumes

that |A| = |B| + 2 and that there are two odd edges whose intersection is a connate
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pair in A. By symmetry Case E also covers the case where |B| = |A| + 2 and there are

two odd edges whose intersection is a connate pair in B. Since {A,B} is even-good by

assumption, at least one of these cases must hold, so to prove the lemma it suffices to

construct a Hamilton cycle in H in each case.

We begin with Cases A–C, for which we construct a Hamilton cycle as follows.

(I) We build a ‘bridge’ Q, which is a path on at most γn vertices whose ends are a γ-

good pair qA ∈
(
A
2

)
and a γ-good pair qB ∈

(
B
2

)
such that |A\V (Q)| and |B \V (Q)|

are both even and so that Q contains all vertices of H which are not γ-good.

(II) Next, we choose γ-good pairs pA ∈
(
A\V (Q)

2

)
and pB ∈

(
B\V (Q)

2

)
such that pA ∪ pB ∈

E(H), and take P to be the path consisting of this single edge.

(III) Finally, we apply Lemma 2.34 twice to form a Hamilton path PA inH[(A\V (Q))∪qA]

with ends pA and qA and a Hamilton path PB in H[(B \ V (Q)) ∪ qB] with ends pB

and qB, and then QPBPPA is a Hamilton cycle in H.

It suffices to prove the existence of the bridge Q in each case. Indeed, having constructed

the bridge Q we may choose pA and pB as in Step (II) by choosing any γ-good pair

pA ∈
(
A\V (Q)

2

)
and then using Proposition 2.33(iv) to obtain a γ-good pair pB ∈

(
B\V (Q)

2

)
with pA∪pB ∈ E(H). We then just need to explain how to apply Lemma 2.34 in Step (III).

For this define A∗ := (A\V (Q))∪ qA, HA := H[A∗] and nA := |A∗|. Then by choice of

Q we have that nA is even and (1
2
− 2γ)n 6 nA 6 (1

2
+ c)n, so we can choose an arbitrary

bipartition A∗ = S1∪S2 of HA such that |S1| = |S2| and such that pA and qA are split pairs

in relation to (S1, S2). Since each vertex v ∈ A∗ is γ-good in H, it follows that there are at

most (1
2

+ 2c)
(
n
3

)
− (1

2
−γ5)

(
n
3

)
even 4-tuples S ∈

(
V
4

)
which contain v and do not form an

edge of H. Then v is contained in at least nA/2 ·(nA/2−1)−(2c+γ5)
(
n
3

)
> (1/2−β3)

(
nA
3

)
edges in HA, and so v is β-good in HA. Similar calculations show that, since each of pA

and qA is a γ-good pair in H, each is a β-good pair in HA. Thus we can apply Lemma 2.34
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to obtain a Hamilton path in HA with ends pA and qA as required. The same argument

shows that we can find a Hamilton path in HB with ends pB and qB also.

We now show how to construct the bridge Q in each of Cases A–C.

Case A: Assume there are two disjoint odd edges e1, e2 ∈ E. To construct Q we first use

Lemma 2.36 to find a path Q′1 of length three in H[V \e2] whose ends are a γ-good connate

pair p′1 and a γ-good split pair s1. Next, we use Lemma 2.36 again to find a path Q2 of

length three in H[V \ V (Q′1)] whose ends are a γ-good split pair s2 and a γ-good connate

pair p2. By Proposition 2.33(iv) we may then choose a γ-good connate pair p1 ∈
(
A
2

)
disjoint from V (Q′1) ∪ V (Q′2) such that p1 ∪ p′1 ∈ E(H), to give a path Q1 := p1p

′
1Q
′
1s1

of length four which is vertex-disjoint from Q2. Write V ′ := V \ (V (Q1) ∪ V (Q2)), and

let X = {x1, · · · , xk} be the set of all vertices not in Q1 or Q2 which are not γ-good,

so k := |X| 6 c
γ5−2εn by Proposition 2.35(b). Since every vertex is in at least βn-many

β-medium connate pairs by Claim 2.38, and βn > 2c
γ5−2εn+ 18 > 2k+ |V (Q1)|+ |V (Q2)|,

we may then greedily choose distinct vertices {y1, · · · , yk} ∈ V ′ \ X such that the pair

ri := {xi, yi} is a β-medium connate pair for each i ∈ [k].

We next choose γ-good connate pairs gi, g
′
i ∈

(
V ′

2

)
with gi ∪ ri ∈ E(H) and g′i ∪ ri ∈

E(H) for each i ∈ [k], and then choose connate pairs hi ∈
(
V ′

2

)
with hi ∪ gi ∈ E(H) and

hi ∪ g′i+1 ∈ E(H) for each i ∈ [k − 1]. We additionally require that the pairs gi, g
′
i and hi

are disjoint from each other and from the pairs ri. By Proposition 2.35(d) it is possible

to choose the pairs gi and g′i greedily with these properties, whilst Proposition 2.33(ii)

ensures that we may choose the pairs hi greedily also. Similarly, we may also apply

Proposition 2.33(iv) to choose a γ-good connate pair hk ∈
(
V ′∩B

2

)
such that hk ∪ gk ∈

E(H) which is disjoint from all previously-chosen pairs. Observe that, having made these

choices,

Q3 := g′1r1g1h1g
′
2r2g2h2g

′
3r3g3h3g

′
4 . . . hk−1g

′
krkgkhk
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is a path in H. By Proposition 2.33(ii) we may then choose a connate pair p∗ such that

p∗ ∪ p2 ∈ E(H) and p∗ ∪ g′1 ∈ E(H), so ‘connecting’ the paths Q2 and Q3.

Write V ′′ := V \ (V (Q1) ∪ V (Q2) ∪ V (Q3) ∪ p∗). If |V ′′ ∩ A| is odd then we use

Proposition 2.33(i) to choose a split pair s∗ ∈
(
V ′′

2

)
such that s1 ∪ s∗ ∈ E(H) and s2 ∪

s∗ ∈ E(H), and define the path Q := p1Q1s1s
∗s2Q2p2p

∗g′1Q3hk. On the other hand,

if |V ′′ ∩ A| is even then we first use Proposition 2.33(iii) to choose a γ-good split pair

s′ ∈
(
V ′′

2

)
such that s1 ∪ s′ ∈ E(H) and then use Proposition 2.33(i) to choose a split

pair s∗ ∈
(
V ′′

2

)
such that s′ ∪ s∗ ∈ E(H) and s2 ∪ s∗ ∈ E(H); we then define the path

Q := p1Q1s1s
′s∗s2Q2p2p

∗g′1Q3hk. Either way Q is a path in H whose ends qA := p1 ∈(
A
2

)
and qB := hk ∈

(
B
2

)
are γ-good pairs such that |A \ V (Q)| is even; since n and

V (Q) are both even it follows that |B \ V (Q)| is even also. Moreover Q contains all

non-γ-good vertices by choice of Q3, and the total number of vertices in Q is at most

|V (Q1)|+ |V (Q2)|+ |V (Q3)|+ 6 6 22 + 8k 6 γn, so Q has the required properties.

Case B: Assume that there are no two disjoint odd edges, but |A| and |B| are even. Then

there must be at most one non-γ-good vertex, as otherwise we would have two disjoint

odd edges. Let x be such a vertex, if it exists; otherwise choose x ∈ V arbitrarily. Then

by Claim 2.38 we may choose a β-medium connate pair p which contains x. We now

apply Proposition 2.35(d) twice to find disjoint γ-good connate pairs p1 and p2 such that

p1 ∪ p ∈ E(H) and p2 ∪ p ∈ E(H). By symmetry we may assume that p2 ∈
(
B
2

)
, and

by Proposition 2.33(iv) we may choose a γ-good connate pair p0 ∈
(
A
2

)
disjoint from p1, p

and p2 such that p0 ∪ p1 ∈ E(H). We may then take Q := p0p1pp2 (in particular Q has

an even number of vertices in each of A and B, so |A \ V (Q)| and |B \ V (Q)| are both

even, as required).

Case C: Assume that |A| and |B| are odd and there are no two disjoint odd edges, but

there are two odd edges e1 and e2 whose intersection is a split pair. That is, we may write

e1 = p1∪s and e2 = s∪p2 where s is a split pair and p1 and p2 are connate pairs. Then p1

83



and p2 must be γ-good pairs, as otherwise we would have two disjoint odd edges. For the

same reason all vertices in V \(s∪p1∪p2) must be γ-good. By Proposition 2.33(iv) we may

choose disjoint γ-good connate pairs q1 ∈
(
A
2

)
and q2 ∈

(
B
2

)
which do not intersect s, p1 or

p2 so that p1 ∪ q1 ∈ E(H) and p2 ∪ q2 ∈ E(H), and we may then take Q := q1p1sp2q2 (in

particular Q has an odd number of vertices in each of A and B, so |A \ Q| and |B \ Q|

are even, as required).

We now turn to cases D and E, for which we use the following, similar strategy to

construct a Hamilton cycle.

(I) We construct a path P0 on at most six vertices whose ends s1 and s2 are both γ-good

split pairs such that P0 contains all non-γ-good vertices of H and |A \ V (P0)| =

|B \ V (P0)|.

(II) Write V ′ := (V \V (P0))∪s1∪s2. Then by our choice of P0 we have |A∩V ′| = |B∩V ′|,

and H[V ′] contains only γ-good vertices. So by Lemma 2.34 there is a Hamilton

path P1 in H[V ′] with ends s1 and s2, and then P0P1 is a Hamilton cycle in H.

Hence it suffices to construct P0 in each case.

Case D: Assume that |A| = |B| is odd, there are no two disjoint odd edges and there

are no two distinct odd edges whose intersection is a split pair. Then there is at most

one non-γ-good vertex, as otherwise we would have two disjoint odd edges. If there is

such a vertex, we denote it by x and assume without loss of generality that x ∈ A; if

not then we choose a vertex x ∈ A arbitrarily. For every b ∈ B the pair {x, b} must

be γ-good, as otherwise there would be two distinct odd edges whose intersection is the

split pair {x, b}. So we may choose b ∈ B such that s1 := {x, b} is γ-good and then use

Proposition 2.33(iii) to obtain a γ-good split pair s2 such that s1 ∪ s2 ∈ E(H). We may

then take P0 to be the single edge s1 ∪ s2.
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Case E: Assume that |A| = |B| + 2 and there are no two disjoint odd edges, but there

are odd edges e1 and e2 whose intersection is a connate pair in A. That is, we may write

e1 = s1 ∪ p and e2 = p ∪ s2 where s1 and s2 are split pairs and p is a connate pair in

A. Then s1 and s2 must both be γ-good pairs, as otherwise we would have two disjoint

odd edges. For the same reason all vertices in V \ (s1 ∪ p ∪ s2) must be γ-good, so we

may take P0 := s1ps2 (in particular, P0 contains two more vertices from A than B, so

|A \ V (P0)| = |B \ V (P0)|, as required).

Finally, for the ‘moreover’ part of the lemma statement, note that if we are given a

4-graph H as in the lemma, it is not clear that we can find an even-extremal partition

{A′, B′} of H in polynomial time. However, if such a partition is also given, then the

remaining steps of the proof can be carried out efficiently. Indeed, we can identify the

sets Abad and Bbad and form the partition {A,B} in time O(n4), and then we can identify

in time O(n8) which of Cases A–E holds for {A,B} (since {A,B} is even-good at least

one of the cases must hold). In Cases B–E the path Q or P0 (according to the case) has at

most 10 vertices, so can be found by exhaustive search in time O(n10), whilst the greedy

argument given in case A constructs Q in time O(n4). This completes Step (I) in each

case. In Cases A–C we can then find an edge f as in Step (II) in time O(n4) by exhaustive

search, and Lemma 2.34 states that we can then complete Step (III) in time O(n4) also.

Similarly, in Cases D and E we can complete Step (II) in time O(n4).

2.6 Hamilton 2-cycles in 4-graphs: odd-extremal case

In this section we give a detailed proof of Lemma 2.10 which states that Theorem 1.11

holds for odd-extremal 4-graphs. As in the previous two sections, all paths and cycles

we consider in this section are 2-paths and 2-cycles, therefore we will again omit the 2

and speak simply of paths and cycles. Throughout this section we will work within the

following setup.
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Setup 2.39. Fix constants satisfying 1/n � ε, c � γ � ψ � β2 � β1. Let H be a

4-graph on n vertices with δ(H) > n/2 − εn, write V := V (H) and let {A,B} be a

c-odd-extremal bipartition of V .

Our strategy is broadly similar to the one outlined in the previous section. Indeed,

the minimum degree condition on H, combined with the fact that H has very few even

edges (since the bipartition {A,B} is odd-extremal), implies that almost all possible odd

edges are present in H. To find a Hamilton cycle in H, we will find a short path P in

H whose ends s1 and s2 are split pairs so that, using the high density of odd edges of

H, we can then find a Hamilton path Q in H[(V \ V (P )) ∪ s1 ∪ s2] with ends s1 and s2.

Together P and Q then form a Hamilton cycle in H. To implement this strategy, we begin

by establishing some necessary preliminaries, then prove the Hamilton path connecting

lemma (Lemma 2.42) which we use to find Q, before proceeding to give the proof of

Lemma 2.10.

Definition 2.40. Under Setup 2.39, we say that

(i) a triple {x, y, z} ∈
(
V
3

)
is γ-good if it is contained in at least (1

2
− γ)n odd edges,

(ii) a pair {x, y} ∈
(
V
2

)
is γ-good if it is contained in at least (1

2
− γ3)

(
n
2

)
odd edges,

(iii) a vertex v ∈ V is γ-good if it is contained in at least (1
2
− γ5)

(
n
3

)
odd edges,

(iv) a pair {x, y} ∈
(
V
2

)
is β2-medium if it is contained in at least β2

(
n
2

)
odd edges,

(v) a pair {x, y} ∈
(
V
2

)
is β2-bad if it is not β2-medium,

(vi) a vertex v ∈ V is (β1, β2)-medium if there are at least β1n vertices in A which form

a β2-medium pair with v and also at least β1n vertices in B which form a β2-medium

pair with v, and

(vii) a vertex v ∈ V is (β1, β2)-bad if it is not (β1, β2)-medium.
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Note that definitions (i)-(v) above are identical to those of the previous section (Defini-

tion 2.31) with ‘odd’ in place of ‘even’, but (vi) and (vii) (the definitions of (β1, β2)-medium

and (β1, β2)-bad vertices) differ significantly.

Proposition 2.41. Adopt Setup 2.39. Then the following statements hold.

(a) If v ∈ V is γ-good, then v is contained in at least (1− γ)n-many γ-good pairs.

(b) If a pair p ∈
(
V
2

)
is γ-good, then p is contained in at least (1 − γ)n-many γ-good

triples.

(c) At most c
γ3−2ε

(
n
2

)
pairs are not γ-good.

(d) At most c
γ5−2εn vertices are not γ-good.

(e) At most 5cn vertices are (β1, β2)-bad.

Now suppose also that R ⊆ V is such that |R∩A|, |R∩B| 6 n/2−ψn. Then the following

statements hold.

(f) For every two disjoint γ-good connate pairs p1 and p2 there exists a split pair s ∈(
V \R
2

)
such that p1sp2 is a path of length 2 in H.

(g) For every two disjoint γ-good split pairs s1 and s2 there exists a connate pair p ∈(
A\R
2

)
such that s1ps2 is a path of length 2 in H.

(h) For every γ-good connate pair p there exists a γ-good split pair s ∈
(
V \R
2

)
such that

p ∪ s ∈ E(H).

(i) For every γ-good split pair s there exists a γ-good connate pair p ∈
(
A\R
2

)
such that

s ∪ p ∈ E(H).

Proof. The proofs of (a) and (b) are identical to those of Proposition 2.32 with the words

‘odd’ and ‘even’ interchanged, the proofs of (c) and (d) are similarly identical to those
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of Proposition 2.35(a) and (b). For (e), observe that any vertex which is (β1, β2)-bad is

contained in at least (1
2
− c−β1)n-many β2-bad pairs, each of which is contained in fewer

than β2
(
n
2

)
odd edges of H. Since any pair is contained in at least (1

2
− 2ε)

(
n
2

)
edges of

H, and H has at most c
(
n
4

)
even edges, as {A,B} is c-odd-extremal, it follows that the

number of (β1, β2)-bad vertices is at most

4 · 3 · c
(
n
4

)
(1
2
− c− β1)n · (12 − 2ε− β2)

(
n
2

) < 5cn .

For (f), note that since pi is γ-good for i ∈ {1, 2}, there are at least (1
2
− γ)

(
n
2

)
split

pairs which form an edge with pi. Since there are at most n2

4
split pairs in total, it follows

that there are at most 3γn2 split pairs s for which p1 ∪ s and p2 ∪ s are not both edges.

Furthermore there are at least (ψ− c)n vertices in each of A\R and B \R, so there are at

least (ψ−c)2n2 split pairs which do not contain a vertex of R. Since 3γn2 < (ψ−c)2n2, it

follows that there exists a split pair s ∈
(
V \R
2

)
such that p1 ∪ s and p2 ∪ s are both edges,

as required. Likewise (h) follows, since by (c) at most c
γ3−2ε

(
n
2

)
< γn2 split pairs are not

γ-good. The proofs of (g) and (i) are very similar, so we omit them.

The following lemma is our Hamilton path connecting lemma which, under the as-

sumption that every vertex of H is good, allows us to choose a Hamilton path in H with

specified ends. From a broad perspective the proof is similar to that of Lemma 2.34, but

the construction of the ‘grid’ is quite different, reflecting the fact that H is odd-extremal

rather than even-extremal. Since many calculations are similar, we will be more concise

and primarily emphasise the differences.

Lemma 2.42. Adopt Setup 2.39, and suppose also that every vertex of H is γ-good, and

that

(i) n ≡ 6 mod 8 and |A| − |B| ≡ 2 mod 4, or
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(ii) n ≡ 2 mod 8 and |A| − |B| ≡ 0 mod 4.

If s1 and s2 are disjoint γ-good split pairs, then there exists a Hamilton path in H whose

ends are s1 and s2. Moreover, such a path can be found in time O(n4).

Proof. Set m := d (1−ψ)n
8
e. We begin by using Proposition 2.41(a) and our assumption that

every vertex is γ-good to greedily choose sets L′1 = {x1, y1, · · · , xm+1, ym+1} ⊆ A\(s1∪s2)

and L′2 = {x′1, y′1, · · · , x′m+1, y
′
m+1} ⊆ B \ (s1 ∪ s2) such that both {xi, yi} and {x′i, y′i} are

γ-good for every i ∈ [m + 1]. Next we use Proposition 2.41(b) to greedily choose sets

Z = {z1, . . . , zm} ⊆ A \ (L′1∪ s1∪ s2) and Z ′ = {z′1, . . . , z′m} ⊆ B \ (L′2∪ s1∪ s2) such that

for each i ∈ [m] the triples {xi, yi, zi}, {zi, xi+1, yi+1}, {x′i, y′i, z′i} and {z′i, x′i+1, y
′
i+1} are

all γ-good. Finally by Proposition 2.41(f) we can then choose v ∈ A \ (L′1 ∪ Z ∪ s1 ∪ s2)

and v′ ∈ B \ (L′2 ∪ Z ′ ∪ s1 ∪ s2) such that {xm+1, ym+1, v, v
′} and {v, v′, x′1, y′1} are both

edges of H. Our ‘grid’ is then L := L′1 ∪ Z ∪ {v, v′} ∪ L′2 ∪ Z ′, and we take p0 := {x1, y1}

and q0 := {x′m+1, y
′
m+1}. Observe in particular that |L ∩ A| = |L ∩B| = 3m+ 3.

Define A′ = A\ (L∪ s1∪ s2) and B′ = B \ (L∪ s1∪ s2). Let GA be the bipartite graph

with vertex classes Z ′ and A′ whose edges are all pairs {z′i, w} with i ∈ [m] and w ∈ A′

for which both {x′i, y′i, z′i, w}, {w, z′i, x′i+1, y
′
i+1} ∈ E(H), and let GB be the bipartite graph

with vertex classes Z and B′ and whose edges are all pairs {zi, w} with i ∈ [m] and w ∈ B′

such that {xi, yi, zi, w}, {w, zi, xi+1, yi+1} ∈ E(H). We call a vertex a ∈ A′ palatable if

dGA(a) > 0.9m and a vertex b ∈ B′ palatable if dGB(b) > 0.9m. Essentially the same

argument as in the proof of Lemma 2.34 then shows that A′ and B′ each contain at most

ψ
100
n non-palatable vertices, and furthermore that L can swallow any set S ⊆ V \ L of

2m palatable vertices with |S ∩ A| = |S ∩ B| = m, meaning that for any such S there is

a path in H with vertex set L ∪ S and ends p0 and q0.

Let ` := |A| − n
2

= n
2
− |B| = 1

2
(|A| − |B|). We then have |`| 6 cn since {A,B} is a

c-odd-extremal bipartition of V , and our divisibility assumptions ensure that both kA :=

1
8
(n−8m−10+4`) and kB := 1

8
(n−8m−10−4`) are integers. Observe also that kA, kB >
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ψ
10
n. Since the number of non-palatable vertices in each of A′ and B′ is at most ψ

100
n, we

may choose sets UA = {a1, . . . , akA−1} ⊆ A′ and UB = {b1, . . . , bkB−1} ⊆ B′ of distinct

vertices so that UA ∪ UB contains all non-palatable vertices. Now recall our assumption

that every vertex of H is γ-good. So by repeated application of Proposition 2.41(a)

and (i) we may greedily choose vertex-disjoint γ-good connate pairs p1, . . . , pkA ∈
(
A′

2

)
and

q1, . . . , qkB ∈
(
B′

2

)
so that ai ∈ pi for each i ∈ [kA−1] and bj ∈ qj for each j ∈ [kB−1], and

also so that each of s1∪pkA and s2∪qkB is an edge of H. Write W :=
⋃
i∈[kA] pi∪

⋃
j∈[kB ] qj.

Then by repeated application of Proposition 2.41(f) we may greedily choose vertex-disjoint

split pairs p′1, . . . , p
′
kA
, q′1, . . . , q

′
kB
∈
(
(A′∪B′)\W

2

)
such that pi−1∪p′i and p′i∪pi are both edges

of H for each i ∈ [kA] and qi−1∪q′i and q′i∪qi are both edges of H for each i ∈ [kB]. We then

define the paths Q1 := p0p
′
1p1p

′
2 . . . pkA−1p

′
kA
pkAs1 and Q2 := q0q

′
1q1q

′
2 . . . qkB−1q

′
kB
qkBs2.

Observe that we then have |(V (Q1) \ L) ∩A| = 3kA + 1 and |(V (Q1) \ L) ∩B| = kA + 1,

and likewise that |(V (Q2) \ L) ∩ A| = kB + 1 and |(V (Q2) \ L) ∩ B| = 3kB + 1. Since

|L ∩ A| = |L ∩B| = 3m+ 3, we conclude that R := V \ (L ∪Q1 ∪Q2) satisfies

|R ∩ A| = |A| − (3m+ 3)− (3kA + 1)− (kB + 1)

=
n

2
+ `− 3m− 5− 3

8
(n− 8m− 10 + 4`)− 1

8
(n− 8m− 10− 4`) = m

and |R ∩ B| = m by a similar calculation. Also every vertex of R is palatable, since by

construction Q1 and Q2 cover all non-palatable vertices. It follows that L can swallow R,

so there is a path P in H with vertex set R ∪ L and with ends p0 and q0. This gives a

Hamilton path Q1PQ2 in H with ends s1 and s2. The argument for the running time is

essentially identical to that in the proof of Lemma 2.34.

Recalling the proof strategy at the start of the section, we will use the following simple

proposition to find the short path P whose ends are to be connected using the Hamilton

path connecting lemma (Lemma 2.42).
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Proposition 2.43. Adopt Setup 2.39, and suppose also that every vertex of V is (β1, β2)-

medium. Also let R ⊆ V have size |R| 6 ψn. Then the following statements hold.

(i) For every β2-medium connate pair p there exists a γ-good split pair s ∈
(
V \R
2

)
such

that p ∪ s ∈ E(H).

(ii) For every β2-medium split pair s there exists a γ-good connate pair p ∈
(
V \R
2

)
such

that s ∪ p ∈ E(H).

(iii) If there exists a β2-bad connate pair p ∈
(
V \R
2

)
, then there exist disjoint β2-medium

connate pairs p1, p2 ∈
(
V \R
2

)
such that p1 ∪ p2 ∈ E(H).

(iv) If there exists a β2-bad split pair s ∈
(
V \R
2

)
, then there exist disjoint β2-medium split

pairs s1, s2 ∈
(
V \R
2

)
such that s1 ∪ s2 ∈ E(H).

Proof. For (i) observe that, since p is β2-medium, there are β2
(
n
2

)
split pairs s ∈

(
V
2

)
such

that p ∪ s is an edge of H. By Proposition 2.41(c) at most c
γ3−2ε

(
n
2

)
such pairs are not

γ-good and at most ψn2 such pairs contain a vertex from R. Since β2
(
n
2

)
> c

γ5−2ε

(
n
2

)
+ψn2,

there exists a γ-good split pair s ∈
(
V \R
2

)
such that p ∪ s ∈ E(H). A similar argument

proves (ii).

For (iii), assume without loss of generality that p ∈
(
A\R
2

)
, and observe that there are

at least (1
2
− 2ε)

(
n
2

)
pairs q for which p ∪ q ∈ E(H), but since p is β2-bad at most β2

(
n
2

)
such pairs q are split pairs. It follows that p∪q ∈ E(H) for all but at most 2β2

(
n
2

)
connate

pairs q ∈
(
A
2

)
. Write p = {x1, x2}. Since both x1 and x2 are (β1, β2)-medium there are

at least β2
1

(
n
2

)
pairs {y1, y2} ∈

(
A
2

)
such that {x1, y1} and {x2, y2} are both β2-medium.

Since at most 2ψ
(
n
2

)
pairs contain a vertex from R, and 2β2 + 2ψ < β2

1 , we can choose

{y1, y2} such that e′ = {x1, x2, y1, y2} is an even edge in H[V \R] containing two disjoint

β2-medium connate pairs. A similar argument proves (iv).

The following definition is helpful in the proof of Lemma 2.10.

91



Definition 2.44. We say that an edge e ∈ E(H) is

(i) an even connate edge, if |e ∩ A| ∈ {0, 4},

(ii) an even split edge, if |e ∩ A| = 2.

Observe that for pairs p and q, if p∪ q is an even connate edge then both p and q must

be connate pairs, but if p ∪ q is an even split edge then either p and q are both connate

pairs or p and q are both split pairs.

We are now ready to prove Lemma 2.10; in fact, we actually prove the following

stronger algorithmic version of the lemma.

Lemma 2.45. Suppose that 1/n � ε, c′ � 1 and that n is even, and let H be a 4-

graph of order n with δ(H) > n/2 − εn. If H is c′-odd-extremal and every bipartition

{A,B} of V (H) is odd-good, then H contains a Hamilton 2-cycle. Moreover, there exists

an algorithm Procedure HamCycleOdd(H, {A,B}) which, given as input a c′-odd-extremal

bipartition {A,B} of V (H), returns a Hamilton 2-cycle in H in time O(n12).

Proof. First we introduce further constants such that

ε, c′ � c� γ � β2 � β′2 � β1 � β′1 � µ� 1 .

Since H is c′-odd-extremal there exists a bipartition {A′, B′} with n/2−c′n 6 |A′| 6 n/2+

c′n for which there are at most c′
(
n
4

)
even edges. We begin by moving all vertices which

are (β′1, β
′
2)-bad to the other side. To be precise define Abad = {a ∈ A′ | a is (β′1, β

′
2)-bad}

and Bbad = {b ∈ B′ | b is (β′1, β
′
2)-bad} and we set A := (A′ \ Abad) ∪ Bbad and B :=

(B′ \Bbad) ∪ Abad; we say that the vertices of Abad ∪Bbad are moved.

Claim 2.46. {A,B} is a c-odd-extremal bipartition of V with respect to which every

vertex of H is (β1, β2)-medium.
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Proof of Claim 2.46. By Proposition 2.41(e) at most 5c′n vertices are moved in total, so

n/2−cn 6 n/2−6c′n 6 |A|, |B| 6 n/2+6c′n 6 n/2+cn, and at most c′
(
n
4

)
+5c′n

(
n
3

)
6 c
(
n
4

)
edges of H are even with respect to {A,B}. This proves that {A,B} is c-odd-extremal.

Also, any vertex which was not moved was (β′1, β
′
2)-medium with respect to {A′, B′},

and so is (β1, β2)-medium with respect to {A,B}. So it remains to show that each moved

vertex v is also (β1, β2)-medium with respect to {A,B}. Without loss of generality assume

that v ∈ Abad. First consider the case that there are fewer than β1n vertices a ∈ A for

which the pair {v, a} was β2-medium with respect to {A′, B′}. Then v was contained in

at least 1/3 · (n/2 − 2β1n) · (1/2 − 2β2)
(
n
2

)
> (1/4 − µ)

(
n
3

)
edges which were even with

respect to {A′, B′}. Since there can be at most (1/8 + µ)
(
n
3

)
even connate edges in total,

this implies that v was contained in at least (1/8− 2µ)
(
n
3

)
even split edges (with respect

to {A′, B′}). Now consider the other case that there are fewer than β1n vertices b ∈ B

for which {v, b} was β2-medium with respect to {A′, B′}. Then v was contained in at

least 1/3 · (1/2− 2β1)n · (1/2− 2β2)
(
n
2

)
> (1/4− µ)

(
n
3

)
even split edges (with respect to

{A′, B′}). In either case we conclude that v, now after the moving, is contained in at least

(1/8− 3µ)
(
n
3

)
edges which have precisely three vertices in B; since v ∈ B it follows that

v is (β1, β2)-medium with respect to {A,B}. ♦

For the rest of the proof we will not use the constants c′, β′1 and β′2, and we use the terms

even, odd, split, connate, γ-good, β2-medium, (β1, β2)-medium and so forth exclusively

with respect to the partition {A,B}. Observe that H, A, B and the remaining constants

satisfy the conditions of Setup 2.39. Fix m ∈ {0, 2, 4, 6} and d ∈ {0, 2} with m ≡ |V |

(mod 8) and d ≡ |A|− |B| (mod 4). We consider separately four cases for the pair (m, d)

as in the definition of an odd-good bipartition (Definition 2.1). In each case we proceed

by the following steps.

(I) We use the fact that {A,B} is odd-good to construct a path P0 with at most

30 vertices whose ends s1 and s2 are γ-good split pairs such that, writing V ∗ =
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(V \ V (P0)) ∪ s1 ∪ s2, A∗ = A ∩ V ∗ and B∗ = B ∩ V ∗, we have either |V ∗| ≡ 6

(mod 8) and |A∗| − |B∗| ≡ 2 (mod 4) or |V ∗| ≡ 2 (mod 8) and |A∗| − |B∗| ≡ 0

(mod 4).

(II) We extend the path P0 to a path P which contains all non-γ-good vertices such

that |V (P )| ≡ |V (P0)| (mod 8) and |V (P ) \ (V (P0) ∩ A)| ≡ |V (P ) \ (V (P0) ∩ B)|

(mod 4) and whose ends are γ-good split pairs s1 and s3.

(III) Finally, we apply Lemma 2.42 to find a Hamilton path Q in H ′ = H[(V \ V (P )) ∪

s1 ∪ s3] with ends s1 and s3. This gives a Hamilton cycle PQ in H.

It suffices to show that we can construct the path P1 in each case. Indeed, having con-

structed the path P0, let X be the set of all non-γ-good vertices in V ∗; by adding a

single further vertex to X if necessary, we may assume that q := |X| is even. Ev-

ery vertex of X is (β1, β2)-medium by Claim 2.46 and by Proposition 2.41(d) we have

q 6 c
γ5−2εn + 1 < γn/25. Write X = {x1, · · · , xq}, and greedily choose distinct vertices

y1, · · · , yq ∈ V ∗ \ (s1 ∪ s2 ∪ X) so that for each i ∈ [q] the pair {xi, yi} is β2-medium.

We now form a path Q by the following iterative process. Write g0 := s2. Then, for

each i ∈ [q] in turn we proceed as follows to choose connate pairs f3i−2, f3i−1, f3i and split

pairs g3i−2, g3i−1, g3i. If {xi, yi} is a connate pair, set f3i−1 := {xi, yi}, and apply Proposi-

tion 2.43(i) twice to obtain γ-good split pairs g3i−2 and g3i−1 such that g3i−2 ∪ f3i−1 and

f3i−1 ∪ g3i−1 are both edges of H. Next choose a γ-good split pair g3i, and apply Proposi-

tion 2.41(g) twice to choose connate pairs f3i−2 and f3i such that each of g3i−3f3i−2g3i−2

and g3i−1f3ig3i is a path of length two in H. On the other hand, if {xi, yi} is a split pair,

set g3i−1 := {xi, yi}, and apply Proposition 2.43(ii) twice to obtain γ-good connate pairs

f3i−1 and f3i such that g3i−1 ∪ f3i−1 and f3i ∪ g3i−1 are both edges of H. Next apply

Proposition 2.41(h) twice to obtain γ-good split pairs g3i and g3i−2 such that g3i−2 ∪ f3i−1

and f3i∪g3i are both edges of H, and finally apply Proposition 2.41(g) to choose a connate
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pair f3i−2 such that g3i−3f3i−2g3i−2 is a path of length two in H. If we choose each pair to

be disjoint from V (P ′0) and from all previously-chosen pairs, having made these choices

for every i ∈ [q] we obtain the desired path P0 = P ′0g0f1g1f2g2 . . . f3qg3q with ends s1 and

s3 := g3q. Observe that we then have |V (P0)\V (P ′0)| = 12q, and that each fi is a connate

pair and each gi is a split pair. Since q is even it follows that |V (P )| ≡ |V (P0)| (mod 8)

and |V (P ) ∩ A| − |V (P ) ∩ B| ≡ |V (P0) ∩ A| − |V (P0) ∩ B| (mod 4), as required. This

completes Step (II). Finally, since |V (P )| 6 |V (P0)| + 12q 6 γn/2, we may then apply

Lemma 2.42 to find a Hamilton path Q as claimed in Step (III).

We now show how to construct the path P0 in each case.

Case A: (m, d) = (0, 0) or (m, d) = (4, 2). Using Proposition 2.41(c) we can choose a γ-

good split pair s1. Then by Proposition 2.41(i) we can find a γ-good connate pair p ∈
(
A
2

)
such that p∪ s1 is an edge of H. Finally, using Proposition 2.41(h) there is a γ-good split

pair s2 ∈
(
V \s1
2

)
such that p∪ s2 is an edge of H, and then P0 = s1ps2 is the desired path.

Observe that we then have either |V ∗| ≡ 0− 2 ≡ 6 (mod 8) and |A∗| − |B∗| ≡ 0− 2 ≡ 2

(mod 4), or |V ∗| ≡ 4− 2 ≡ 2 (mod 8) and |A∗| − |B∗| ≡ 2− 2 ≡ 0 (mod 4).

Case B: (m, d) = (2, 2) or (m, d) = (6, 0). Since the bipartition {A,B} of V (H) is

odd-good, in this case H must contain an even edge e. If e contains a β2-bad connate

pair, then we apply Proposition 2.43(iii) with R = ∅ to obtain two disjoint β2-medium

connate pairs p1 and p2 such that p1 ∪ p2 is an edge of H. On the other hand, if e does

not contain a β2-bad connate pair, then we may write e = p1 ∪ p2 where p1 and p2 are

disjoint connate pairs. In either case we obtain β2-medium connate pairs p1 and p2 such

that p1 ∪ p2 is an edge of H. So by Proposition 2.43(i) there are γ-good split pairs s1, s2

such that s1 ∪ p1 and s2 ∪ p2 are edges in H, and then P0 = s1p1p2s2 is the desired path.

Note that either |V ∗| ≡ 2 − 4 ≡ 6 (mod 8) and |A∗| − |B∗| ≡ 2 − 0 ≡ 2 (mod 4) or

|V ∗| ≡ 6− 4 ≡ 2 (mod 8) and |A∗| − |B∗| ≡ 0− 0 ≡ 0 (mod 4).

Case C: (m, d) = (4, 0) or (m, d) = (0, 2). Since the bipartition {A,B} of V (H) is odd-

95



good, in this case Heven must have total 2-pathlength at least two. That is, H contains

even edges e1 and e2 such that either e1 and e2 are disjoint or |e1 ∩ e2| = 2.

Suppose first that e1 and e2 are disjoint. Similarly as in Case B, if e1 contains a β2-bad

connate pair, then we use Proposition 2.43(iii) with R = e2 to obtain β2-medium connate

pairs p1 and p2 such that e′1 := p1 ∪ p2 is an even edge of H. By replacing e1 with e′1 if

necessary, we may assume that e1 = p1∪p2 where p1 and p2 are β2-medium connate pairs,

and the same argument applied to e2 shows that we may assume that e2 = p3 ∪ p4 where

p3 and p4 are β2-medium connate pairs. Then by Proposition 2.43(i) there are γ-good

split pairs s1, s2, s3 and s4 such that s1p1p2s3 and s4p3p4s2 are vertex-disjoint paths in H.

Then, by applying Proposition 2.41(i) twice, followed by Proposition 2.41(f), we obtain

γ-good connate pairs q1, q2 and a split pair s5 such that P0 = s1p1p2s3q1s5q2s4p3p4s2 is the

desired path. Note that then either |V ∗| ≡ 4−18 ≡ 2 (mod 8) and |A∗|−|B∗| ≡ 0−0 ≡ 0

(mod 4), or |V ∗| ≡ 0− 18 ≡ 6 (mod 8) and |A∗| − |B∗| ≡ 2− 0 ≡ 2 (mod 4).

Now suppose that |e1 ∩ e2| = 2, and write f1 = e1 \ e2, f2 = e1 ∩ e2 and f3 =

e2 \ e1, so f1f2f3 is a path in H. Since e1 and e2 are both even edges, f1, f2 and f3 are

either all connate pairs or all split pairs. If f1 is not β2-medium, then we may apply

Proposition 2.43(iii) or (iv) with R = e2 to obtain an even edge e′1 which is disjoint from

e2; we may then proceed as in the previous case with e′1 and e2 in place of e1 and e2.

So we may assume that f1 is β2-medium, and by the same argument applied to f3 we

may assume that f3 is β2-medium. If each of f1, f2 and f3 is a connate pair, then we

may apply Proposition 2.43(i) to obtain γ-good split pairs s1, s2 such that s1 ∪ f1 and

s2 ∪ f3 are both edges of H. Then we may take P0 = s1f1f2f3s2, since we have either

|V ∗| ≡ 4 − 6 ≡ 6 (mod 8) and |A∗| − |B∗| ≡ 0 − 2 = 2 (mod 4), or |V ∗| ≡ 0 − 6 ≡ 2

(mod 8) and |A∗| − |B∗| ≡ 2− 2 = 0 (mod 4). On the other hand, if each of f1, f2 and f3

is a split pair, then we may apply Proposition 2.43(ii) followed by Proposition 2.43(i) to

first find γ-good connate pairs p1 and p2, and then γ-good split pairs s1 and s2, such that
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P0 = s1p1f1f2f3p2s2 is a path in H; we then have either |V ∗| ≡ 4− 10 ≡ 2 (mod 8) and

|A∗|−|B∗| ≡ 0−0 ≡ 0 (mod 4), or |V ∗| ≡ 0−10 ≡ 6 (mod 8) and |A∗|−|B∗| ≡ 2−0 ≡ 2

(mod 4).

Case D: (m, d) = (6, 2) or (m, d) = (2, 0). Since the bipartition {A,B} of V (H) is odd-

good, in this case either H contains an even split edge or Heven has total 2-pathlength at

least three.

Suppose first that e is an even split edge of H. If e contains a β2-bad split pair then

we may apply Proposition 2.43(iv) to obtain disjoint β2-medium split pairs s′1 and s′2

such that e′ := s′1 ∪ s′2 is an even edge of H. By replacing e with e′ if necessary, we

may assume that e = s′1 ∪ s′2 where s′1 and s′2 are β2-medium split pairs. We next apply

Proposition 2.43(ii) twice to obtain γ-good connate pairs p1 and p2 such that p1s
′
1s
′
2p2 is

a path, and then Proposition 2.41(h) twice to obtain γ-good split pairs s1 and s2 such

that P0 = s1p1s
′
1s
′
2p2s2 is the desired path in H. Note that then either |V ∗| ≡ 6− 8 ≡ 6

(mod 8) and |A∗| − |B∗| ≡ 2 − 0 = 2 (mod 4), or |V ∗| ≡ 2 − 8 ≡ 2 (mod 8) and

|A∗| − |B∗| ≡ 0− 0 = 0 (mod 4).

From now on, for the rest of Case D, we may assume that H does not contain an even

split edge and therefore any even edge is connate. So suppose now that H contains three

disjoint even connate edges e1, e2 and e3. By using Proposition 2.43(iii) as in previous cases

to replace e1, e2 or e3 if necessary, we may assume that we can write e1 = q1∪q′1, e2 = q2∪q′2

and e3 = q3∪q′3 where each of q1, q2, q3, q
′
1, q
′
2 and q′3 is a β2-medium connate pair. Then by

several applications of Proposition 2.43(i) and Proposition 2.41(g) we may choose connate

pairs p1, p2 and γ-good split pairs s1, · · · , s6 such that P0 = s1q1q
′
1s3p1s4q2q

′
2s5p2s6q3q

′
3s2 is

the desired path in H. Note that then either |V ∗| ≡ 6−24 ≡ 6 (mod 8) and |A∗|−|B∗| ≡

2− 0 = 2 (mod 4), or |V ∗| ≡ 2− 24 ≡ 2 (mod 8) and |A∗| − |B∗| ≡ 0− 0 = 0 (mod 4).

Next suppose that H contains even connate edges e1, e2 and e3 such that |e1 ∩ e2| = 2

and e3 is disjoint from e1 ∪ e2. Then exactly as in Case C we may form a path P ′0 =
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s1f1f2f3s
′
1 where s1 and s′1 are γ-good split pairs and f1, f2 and f3 are γ-good connate

pairs, and we may do this so that e3 is disjoint from V (P ′0). Using Proposition 2.43(iii) as

in previous cases to replace e3 if necessary, we may then assume that e3 = q1∪q2 where q1

and q2 are disjoint β2-medium connate pairs. By two applications of Proposition 2.43(i)

we then choose γ-good split pairs s2 and s′2 such that s′2 ∪ q1 and s2 ∪ q2 are both edges

of H; finally, using Proposition 2.41(g) we obtain a connate pair p such that s′1ps
′
2 is a

path of length two in H. This gives the desired path P0 = s1f1f2f3s
′
1ps
′
2q1q2s2. Note

that then either |V ∗| ≡ 6 − 16 ≡ 6 (mod 8) and |A∗| − |B∗| ≡ 2 − 0 = 2 (mod 4), or

|V ∗| ≡ 2− 16 ≡ 2 (mod 8) and |A∗| − |B∗| ≡ 0− 0 = 0 (mod 4).

Finally, suppose that H contains a path of three even connate edges e1, e2 and e3

(appearing in that order). Let f1 := e1 \ e2, f2 := e1 ∩ e2, f3 := e2 ∩ e3, and f4 := e3 \ e2,

so each of f1, f2, f3 and f4 is a connate pair. If the pair f1 is β-bad, then by applying

Proposition 2.43(iii) to f1 with R = e2 ∪ e3 we obtain an even edge e′1 of H disjoint

from the path f2f3f4 of two even connate edges. Since we assumed that H contains

no even split edge this edge e′1 is also an even connate edge, and we may then proceed

as in the previous case. So we may assume that f1 is β-medium, and likewise that f4

is β-medium. Using Proposition 2.43(i) twice we find γ-good split pairs s1, s2 such that

P0 = s1f1f2f3f4s2 is the desired path. Note that then either |V ∗| ≡ 6−8 ≡ 6 (mod 8) and

|A∗|− |B∗| ≡ 2−0 = 2 (mod 4), or |V ∗| ≡ 2−8 ≡ 2 (mod 8) and |A∗|− |B∗| ≡ 0−0 = 0

(mod 4).

For the ‘moreover’ part of the statement, suppose that we are given a 4-graph H as in

the lemma, and also an odd-extremal partition {A′, B′} of V (H). We can then identify

the sets Abad and Bbad and form the partition {A,B} in time O(n4), and in time O(n) we

can identify which of cases A–D holds for {A,B}. Furthermore we can find the at most

three even edges which we use to begin the construction of P0 in time at most O(n12),

and for each application of Proposition 2.41 or Proposition 2.43 to choose a pair we can
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find such a pair by exhaustive search in time O(n2). In this way we can form P0 as in

Step (I) in time O(n12) and then extend P0 to P as in Step (II) in time O(n3). Finally,

the application of Lemma 2.42 for Step (III) gives the desired path Q in time O(n4).

The running-time for Lemmas 2.37 and 2.45 could be improved by more careful argu-

ments, but we abstain from this here, since these procedures do not provide the dominant

term for the running-time of our main algorithm in Section 2.7.

2.7 An algorithm to find a Hamilton 2-cycle in a

dense 4-graph

In this section we complete the proof of Theorem 1.12 by describing an algorithm which

finds a Hamilton 2-cycle in a dense 4-graph in polynomial time, or certifies that no such

cycle exists. First we show that we can find a Hamilton 2-cycle in a dense, connecting

and absorbing 4-graph in polynomial time. For this we use Edmonds’s well known algo-

rithm [34] which finds a maximum matching in a 2-graph G of order n in time O(n4); we

refer to this procedure here as MaximumMatching(G).

Proposition 2.47. Suppose that 1/n � ε � β � α � κ and that n is even. There

exists an algorithm Procedure NonExtremalCase(H) such that the following holds. If H

is a 4-graph of order n with δ(H) > n/2− εn which is κ-connecting and (α, β)-absorbing,

then Procedure NonExtremalCase(H) returns a Hamilton 2-cycle in H in time O(n32).

Proof. Introduce constants satisfying 1/n � ε � γ � β � α � λ � µ � κ. By

combining the Procedures AbsorbingPath and LongCycle from Lemmas 2.25 and 2.28

we can find a long cycle C in H and a graph G on V (H) \ V (C) which contains a

perfect matching M with |M | 6 γn, and for each edge e ∈ M there will be at least

2γn vertex-disjoint segments of C which are absorbing structures for e. We can find this

perfect matching by using MaximumMatching(G). We can now for each e ∈ M find
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(by exhaustive search) a segment Pe which is an absorbing structure for e and which is

disjoint from each segment Pe′ chosen for each previously-considered e′ ∈ M . There will

always be a segment available, as each of the fewer than γn previously-chosen segments

Pe′ intersects at most two of the segments which could be chosen for e. Replacing each

Pe in C by a path with vertex set V (Pe) ∪ e and the same ends as Pe yields a Hamilton

2-cycle in H. For the complexity note that we can find an absorbing structure for each

of the at most n edges in M in time O(n) by exhaustive search. Therefore the dominant

term for the running time is determined by the Procedure AbsorbingPath.

Using the above proposition together with the results of Sections 2.5 and 2.6 we can

now describe a polynomial-time algorithm, Procedure HamCycle(H), which, given a 4-

graph H with δ(H) > n/2− εn (where ε > 0 is a fixed constant), either finds a Hamilton

2-cycle in H or certifies that there is no such cycle. So the existence of this algorithm

proves Theorem 1.12. In the latter case the certificate is a bipartition {A,B} of V (H)

which is not both even-good and odd-good, as by Theorem 1.11 the existence of such a

bipartition demonstrates that H has no Hamilton 2-cycle. Since it is straightforward to

verify in polynomial time whether a given partition is even-good or odd-good, our choice

for the certificate is justified. We now restate and prove Theorem 1.12.

Theorem 1.12 ([41]). There exist a constant ε > 0 and an algorithm which, given a

4-graph H on n vertices with δ(H) > n/2− εn, runs in time O(n32) and returns either a

Hamilton 2-cycle in H or a certificate that no such cycle exists (that is, a bipartition of

V (H) which is either not even-good or not odd-good).

Proof of Theorem 1.12. Introduce constants satisfying 1/n� ε� β � α� κ� c� 1,

and let H be a 4-graph of order n with δ(H) > n/2 − εn. By Corollary 2.3 there is

an algorithm with running time O(n25) which tests whether H contains a Hamilton 2-

cycle and which, if this condition fails, returns a bipartition {A,B} of V (H) which is not
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both even-good and odd-good. We first run this algorithm and, if H does not contain a

Hamilton 2-cycle, then we return a certifying bipartition. We may therefore assume that

H does contain a Hamilton 2-cycle and that every bipartition of V (H) is both even-good

and odd-good, and in particular that H is of even order. Note that we can test in time

O(n8) whether H is κ-connecting by counting, for each of the 3
(
n
4

)
possible disjoint pairs

p1, p2 ∈
(
V
2

)
, the number of paths of length two or three with ends p1 and p2. Similarly,

we can test in time O(n10) whether H is (α, β)-absorbing by counting, for each of the
(
n
2

)
possible pairs p ∈

(
V
2

)
, the number of octuples of vertices from V which form an absorbing

structure for p. Suppose that H is not κ-connecting. Then H must be c-even-extremal

by Lemma 2.13, and Procedure EvenPartition (defined in Lemma 2.13) returns a c-even-

extremal partition of {A,B} in time O(n8). Procedure HamCycleEven (see Lemma 2.37)

then returns a Hamilton 2-cycle in time O(n10). Likewise, if H is not (α, β)-absorbing

then H must be c-odd-extremal by Lemma 2.21, and Procedure OddPartition (defined in

Lemma 2.21) returns a c-odd-extremal partition of {A,B} in time O(n6). We can then

use Procedure HamCycleOdd (see Lemma 2.45) to return a Hamilton 2-cycle in time

O(n12). This leaves only the case when H is both κ-connecting and (α, β)-absorbing;

in this case we can use Procedure NonExtremalCase (see Proposition 2.47) to return a

Hamilton 2-cycle in time O(n32) . So in each case we can find a Hamilton 2-cycle in H in

time at most O(n32), as claimed.

2.8 Tight Hamilton cycles in k-graphs

In this section we describe the proof of Theorem 1.9, for which we use the following

notation. For a function f(n), we write HC(k, f) (respectively HP(k, f)) to denote the k-

graph tight Hamilton cycle (respectively tight Hamilton path) decision problem restricted

to k-graphs H with minimum codegree δ(H) > f(|V (H)|). On the other hand, for

an integer D, we write HC(k,D) (respectively HP(k,D)) to denote the k-graph tight
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Hamilton cycle (respectively tight Hamilton path) decision problem restricted to k-graphs

H with maximum codegree ∆(H) 6 D. Our starting point is the following theorem of

Garey, Johnson and Stockmeyer [44] on subcubic graphs (we say that a graph G is subcubic

if G has maximum degree ∆(G) 6 3).

Theorem 2.48 ([44]). The problem of determining whether a subcubic graph admits a

Hamilton cycle ( i.e. HC(2, 3)) is NP-complete.

Fix any integers k > 2 and D. We first show that there are polynomial-time reductions

from HC(k,D) to HC(2k− 1, 2D) and from HC(k,D) to HC(2k,D). For this, let H be a

k-graph with vertex set V , let A and B be disjoint copies of V , and let ϕA : A→ V and

ϕB : B → V be the corresponding bijections. We define H2k−1 to be the (2k − 1)-graph

with vertex set A∪B whose edges are all sets e ∈
(
A∪B
2k−1

)
such that either ϕA(e∩A) ∈ E(H)

and ϕB(e∩B) ⊆ ϕA(e∩A), or ϕB(e∩B) ∈ E(H) and ϕA(e∩A) ⊆ ϕB(e∩B). Likewise

we define H2k to be the 2k-graph with vertex set A∪B whose edges are all sets e ∈
(
A∪B
2k

)
such that ϕA(e ∩ A) ∈ E(H), ϕB(e ∩B) ∈ E(H). Then it is easy to check that

(a) either H, H2k−1 and H2k all contain tight Hamilton cycles, or none of them does,

and

(b) if ∆(H) 6 D, then ∆(H2k−1) 6 2D and ∆(H2k) 6 D,

so this construction gives the desired reductions.

We next show that there are polynomial-time reductions from HP(k,D) to HC(2k −

1, bn
2
c − k(D + 1)) and from HC(k,D) to HC(2k, n

2
− k(D + 1)). For the first reduction,

let H be a k-graph on n vertices; an elementary reduction shows that we may assume

without loss of generality that k divides n. Set ` := n/k and U := V (H), and let X be a

set of size |X| = (k−1)n
k

= `(k − 1) which is disjoint from U . Next, set A := U ∪X, and

let B be a set of size |B| = |A|+ 1 = `(2k− 1) + 1 which is disjoint from A. Define H2k−1

to be the (2k − 1)-graph with vertex set A ∪ B whose edges are all sets e ∈
(
A∪B
2k−1

)
with

102



|A∩e| /∈ {k, k+1}, or with |A∩e| = k and A∩e ∈ E(H), or with |A∩e| = k+1 and such

that e′ 6⊆ A ∩ e for every e′ ∈ E(H). For the second reduction let H again be a k-graph

on n vertices, let S := V (H) and let T be a set of size n which is disjoint from S, and

define H2k to be the 2k-graph with vertex set S ∪ T whose edges are all sets e ∈
(
S∪T
2k

)
such that |S ∩ e| /∈ {k, k + 1}, or such that |S ∩ e| = k and S ∩ e ∈ E(H), or such that

|S ∩ e| = k + 1 and e′ 6⊆ S ∩ e for every e′ ∈ E(H). Observe that then

(c) H2k−1 contains a tight Hamilton cycle if and only if H contains a tight Hamilton

path,

(d) H2k contains a tight Hamilton cycle if and only if H contains a tight Hamilton cycle,

and

(e) if ∆(H) 6 D, then δ(H2k−1) > |A| − k(D + 1) and δ(H2k) > n− (D + 1)k.

Since H2k−1 has precisely |A|+ |B| = 2|A|+ 1 vertices and H2k has precisely 2n vertices,

this establishes the desired reductions.

Finally, observe that there are elementary polynomial-time reductions from HC(k,D)

to HP(k,D) and from HP(k,D) to HC(k,D); together with the above reductions and

Theorem 2.48 this observation completes the proof of Theorem 1.9.
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2.9 Algorithmic details for Sections 2.4 and 2.7

In this section we give further details of each of the procedures from Sections 2.4 and 2.7,

to enable the reader to more easily verify the correctness and claimed running-time of

each such procedure. In each case we will adopt the notation of the proof of the corre-

sponding lemma, and so the algorithm provided here should be read in conjunction with

the corresponding proof. Furthermore, we adopt the following constant hierarchy for all

procedures in this section.

1/n� 1/D � ε� γ � β � ω � ϕ� α� λ� µ� κ� η � c� 1 .

Lemma 2.13: Let H be a 4-graph on n vertices which satisfies δ(H) > n/2− εn. If H is

not κ-connecting, then Procedure EvenPartition(H) returns a c-even-extremal bipartition

{A,B} of V (H) in time O(n8).

Procedure EvenPartition(H)

Data: A dense 4-graph H which is not κ-connecting.

Result: A c-even-extremal bipartition {A,B} of V (H).

By exhaustive search, find disjoint pairs {a1, a2}, {b1, b2} ∈
(
V (H)

2

)
such that H

contains fewer than κn2 paths of length 2 and fewer than κn4 paths of length 3

whose ends are {a1, a2} and {b1, b2}.

Construct the edge-coloured complete 2-graph G on V (H) as in the proof of

Lemma 2.13.

Find a monochromatic triangle T ∗ fulfilling Claim 2.14 (for the given value of η) by

exhaustive search.

return A := Nred(T ∗) and B := V (H) \ A.
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Lemma 2.18: Suppose that 1/n � ρ � λ, κ. If H = (V,E) is a 4-graph of order n

which is κ-connecting, and G is a 2-graph on the same vertex set V with δ(G) > n− λn,

then Procedure SelectReservoir(H,G, ρ) returns in time O(n16) a subset R ⊆ V such that

(a) (1− 4ρ)ρn 6 |R| 6 ρn,

(b) for every x ∈ V we have |NG(x) ∩R| > (1− 35λ)|R| and

(c) for every disjoint p1, p2 ∈
(
V
2

)
there are at least κ

5
|R| internally disjoint paths of

length at most three in H[R ∪ p1 ∪ p2] with ends p1 and p2.

Procedure SelectReservoir(H,G, ρ)

Data: A 4-graph H with vertex set V , a 2-graph G with vertex set V and a

constant ρ > 0.

Result: A reservoir set R ⊆ V .

U := {{p, p′} ⊆
(
V
2

)
| p ∩ p′ = ∅} and W :=

(
V
4

)
.

E1 := {{{p, p′}, S} | {p, p′} ∈ U, S ∈ W and H[S ∪ p ∪ p′] contains a path with ends

p, p′}.

E ′1 := {{S, S ′} ∈
(
W
2

)
| S ∩ S ′ 6= ∅}.

E2 := {{S, S ′} ∈
(
W
2

)
| {u, v} ∈ E(G) for all u ∈ S, v ∈ S ′}.

Construct graphs G1 := (U ∪W,E1 ∪ E ′1) and G2 := (W,E2).

R′ :=SelectSet(G1, G2,
ρ
4
n, κ, 17λ, ρ).

R :=
⋃
S∈R′ S.

return R.
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Lemma 2.21: Let H be a 4-graph on n vertices which satisfies δ(H) > n/2 − εn. If

H is not (α, β)-absorbing, then Procedure OddPartition(H) returns a c-odd-extremal

bipartition {A,B} of V (H) in time O(n6).

Procedure OddPartition(H)

Data: A dense 4-graph H which is not (α, β)-absorbing.

Result: A c-odd-extremal bipartition {A,B} of V (H).

By exhaustive search, find an edge {x, y, x′, y′} of H as in Claim 2.22.

Form the edge-coloured complete graph K on V (H) as in the proof of Lemma 2.21.

if there is a monochromatic triangle T satisfying the conditions of Claim 2.23 then

return A := Nred(T ) and B := V (H) \ A.

else

By exhaustive search, find a normal vertex v ∈ V (H) which is contained in at

most 4ϕn2 red triangles.

return A := Nred(v) and B := V (H) \ A.

Lemma 2.25: If H is a 4-graph of order n with δ(H) > n/2− εn which is κ-connecting

and (α, β)-absorbing, then Procedure AbsorbingPath(H) returns a path P and a graph

G on V (H) with the following properties in O(n32).

(i) P has at most µn vertices.

(ii) Every vertex of V (H) \ V (P ) is contained in at least n− λn edges of G.

(iii) For any edge e of G which does not intersect V (P ) there are at least 2γn vertex-

disjoint segments of P which are absorbing structures for e.
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Procedure AbsorbingPath(H)

Data: A dense, κ-connecting and (α, β)-absorbing 4-graph H.

Result: An absorbing path P in H and a graph G on V (H).

Set W := V (H)8, set U to be the set of all β-absorbable pairs of vertices of H, and

form the graph G := (V (H), U).

Set V1 := U ∪W ,

E1 := {{p, T} : p ∈ U, T ∈ W and T is an absorbing structure for p},

E ′1 := {{T, T ′} : T, T ′ ∈ W and T ∩ T ′ 6= ∅} and form the graph

G1 := (V1, E1 ∪ E ′1).

Set T :=SelectSet(G1, ∅, β2n, β, 1, β2).

Delete all elements from T which are not an absorbing structure for some

β-absorbable pair.

Enumerate T as {T1, · · · , Tq} and choose corresponding paths Pi for each 1 6 i 6 q.

Set Q :=
⋃q
i=1 Ti and X := {v ∈ V (H) \Q : dG(v) < (1− λ)n}.

Greedily form a path P0 with X ⊆ V (P0) ⊆ V (H) \Q as in the proof of

Lemma 2.25.

Greedily choose paths Q1, . . . , Qq of length at most three connecting the paths

P0, . . . , Pq; each Qi may be chosen by exhaustive search.

return P := P0Q1P1 . . . QqPq and G.
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Theorem 2.26: Here we give a proof of the algorithmic statement. For this we define

a multi-k-graph H to consist of a vertex set V and a multiplicity function mH :
(
V
k

)
→

{0} ∪N. We call mH(e) the multiplicity of e, and always count ‘with multiplicity’, so, for

example, the number of edges of H is e(H) :=
∑

e∈(Vk)
mH(e), and the degree of a vertex

v ∈ V is dH(v) :=
∑

e∈(Vk):v∈e
mH(e). We begin with the following proposition.

Proposition 2.49. Suppose that 1/n � 1/`, 1/r � d, 1/k. Let H be a multi-k-graph

on n vertices with e(H) > d
(
n
k

)
in which all multiplicities are at most r. Then there exists

a set X ⊆ V (H) of size k` such that e(H[X]) > d
(
`
k

)
. Moreover, such a set can be found

in time O(nk).

Proof. We proceed by induction on k; the base case k = 1 is trivial. Suppose therefore

that k > 2 and the proposition holds with k−1 in place of k. In time O(nk) we may choose

vertices v1, . . . , v` of H each with degree at least d
2

(
n
k−1

)
+r`

(
n
k−2

)
in H; such vertices must

exist as otherwise we would have

` · r
(

n

k − 1

)
+ n ·

(
d

2

(
n

k − 1

)
+ r`

(
n

k − 2

))
>
∑
v∈V

dH(v) = ke(H) > dk

(
n

k

)
,

a contradiction. Observe that each vi then lies in at least d
2

(
n
k−1

)
edges which do not

contain any vj with j 6= i. Now form a multi-(k − 1)-graph H ′ with vertex set V ′ :=

V (H) \ {v1, . . . , v`} by taking each (k − 1)-set S ∈
(
V ′

k−1

)
to have multiplicity mH′(S) :=∑`

i=1mH(S ∪ {vi}). Then by choice of the vertices vi we have e(H ′) > ` · d
2

(
n
k−1

)
. So

by our induction hypothesis (with r` in place of r) we can find in time O(nk−1) a set

X ′ ⊆ V ′ of size (k − 1)` such that H ′[X ′] has at least `d
2

(
`

k−1

)
> d

(
`
k

)
edges; taking

X := X ′ ∪ {v1, . . . , v`} gives the desired set.

The following corollary is the algorithmic version of Theorem 2.26.
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Corollary 2.50 ([35]). Suppose that 1/n� d, 1/f, 1/k. Let F be a k-partite k-graph on

f vertices. If H is a k-graph on n vertices with e(H) > d
(
n
k

)
, then we can find a copy of

F in H in time O(nk).

Proof. Introduce a constant ` with 1/n � 1/` � d, 1/f, 1/k. By Proposition 2.49 (with

r = `) we may find in time O(nk) a set X ⊆ V (H) of size k` such that e(H[X]) > d
(
`
k

)
.

The non-algorithmic part of Theorem 2.26 then implies that H[X] contains a copy of F ,

and we can find such a copy in constant time by exhaustive search.

Lemma 2.28: Suppose that n is even. LetH be a 4-graph of order n with δ(H) > n/2−εn

which is κ-connecting. Also let P0 be a 2-path in H on at most µn vertices, and let G be

a 2-graph on V (H) such that each vertex v ∈ V (H) \ V (P0) has dG(v) > (1− λ)n. Then

Procedure LongCycle(H,G, P0) returns in time O(n16) a 2-cycle C on at least (1 − γ)n

vertices such that P0 is a segment of C and G[V (H) \V (C)] contains a perfect matching.
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Procedure LongCycle(H,G, P0)

Data: A dense and κ-connecting 4-graph H, a very dense 2-graph G on V (H), and

a 2-path P0 in H.

Result: A long cycle C which contains P0 as a segment and such that

G[V (H) \ V (C)] contains a perfect matching.

V ′ := V (H) \ V (P0), H
′ := H[V ′], G′ := G[V ′], R :=SelectReservoir(H ′, G′, 2γ/3).

Extend P0 by a single edge at each end to a path P ′0.

Set L := V (H) \ (V (P ′0) ∪R) and R′ := R \ V (P ′0).

Extend P ′0 greedily with vertices only from L to a path P of length > (1/2− µ)n.

Set L := V (H) \ (V (P ) ∪R) and R′ := R \ V (P ).

while |L| > γ
3
n do

if e(H[L]) > µ
(|L|

4

)
then

Use Theorem 2.27 to find a path P ′ in H[L] on at least µ|L|
4
− 1 vertices.

Only using vertices from R′ find a path Q of length at most three (by

exhaustive search) such that P := PQP ′ is a path.

Set L := V (H) \ (V (P ) ∪R) and R′ := R \ V (P ).

else

Find I, J , and H0 as in Claim 2.29 by exhaustive search.

Use Theorem 2.26 to find a complete 3-partite 3-graph K with all vertex

classes of size D/3.

Derive the complete 4-partite 4-graph K ′ from K and J .

Find a Hamilton path Q in K ′.

Delete P [I] from P and call the resulting two segments P1 and P2.

Find by exhaustive search at most 8 vertices in R′ forming two paths Q1

and Q2 such that P := P1Q1QQ2P2 is a path.

Set L := V (H) \ (V (P ) ∪R) and R′ := R \ V (P ).
By exhaustive search find at most 4 vertices in R′ to close P to a cycle C.

return C.
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Lemma 2.47: Suppose that n is even. If H is a 4-graph of order n with δ(H) > n/2−εn

which is κ-connecting and (α, β)-absorbing, then Procedure NonExtremalCase(H) returns

a Hamilton cycle in H in time O(n32).

Procedure NonExtremalCase(H)

Data: A dense, κ-connecting and (α, β)-absorbing 4-graph H.

Result: A Hamilton cycle C in H.

Set (P,G) :=AbsorbingPath(H).

Set C :=LongCycle(H,G, P ).

Set M := MaximumMatching(G[V (H) \ V (C)]).

for e ∈M do

Find a segment Pe in P which is an absorbing structure for e and which is

disjoint from each segment Pe′ chosen for each previously-considered e′ ∈M .

Replace Pe in C by a path with vertex set V (Pe) ∪ e and the same ends as Pe.
return C.

Theorem 1.12: If H is a 4-graph of order n with δ(H) > n/2 − εn, then Proce-

dure HamCycle(H, {A,B}) either returns a Hamilton cycle in H or a non-even-good

or non-odd-good bipartition of V (H) in time O(n32).
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Procedure HamCycle(H)

Data: A dense 4-graph H.

Result: A Hamilton 2-cycle in H or a certificate for non-existence.

if H contains a Hamilton cycle (Corollary 2.3) then

if H is not κ-connecting then

Set {A,B} := EvenPartition(H)).

return HamCycleEven(H, {A,B}).

else if H is not (α, β)-absorbing then

Set {A,B} := OddPartition(H)).

return HamCycleOdd(H, {A,B}).

else

return NonExtremalCase(H).

else

return A bipartition {A,B} of V (H) which is not both even-good and odd-good.
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2.10 Full proofs for the reductions claimed in Sec-

tion 2.8

In this section we give full details of the proofs of the the correctness of the polynomial-

time reductions claimed in the proof of Theorem 1.9 in Section 2.8. We do this through

the following propositions. Throughout this section we write simply ‘path’ and ‘cycle’ to

mean tight path and tight cycle, as these are the only types of paths and cycles considered

here.

Proposition 2.51. For any k > 2 and any D, there is a polynomial-time reduction from

HP(k,D) to HC(k,D) and a polynomial-time reduction from HC(k,D) to HP(k,D).

Proof. First, we show that there is a polynomial-time reduction from HP(k,D) to HC(k,D).

If D < 2, then HP(k,D) is trivial, so assume that D > 2. Let H be a k-graph with

∆(H) 6 D. For each of the at most n2k ordered 2k-tuples (x1, · · · , xk, y1, · · · , yk) such

that x = (x1, · · · , xk) and y = (y1, · · · , yk) are both edges of H we construct an altered

graph H(x,y) by deleting all edges e ∈ E(H) with xk ∈ e or y1 ∈ e and then adding the

edges {xi+1, xi+2, . . . , xk, y1, . . . , yi} for 0 6 i 6 k, so (x1, · · · , xk, y1, · · · , yk) is a path in

H(x,y). We then test each H(x,y) for a Hamilton cycle. The original graph H contains a

Hamilton path starting with y and ending with x if and only if the altered graph H(x,y)

contains a Hamilton cycle, and since D > 2 and ∆(H) 6 D we have ∆(H(x,y)) 6 D.

Now, we show that there is a polynomial-time reduction for the other direction as

well. Given a k-graph H with ∆(H) 6 D, for each of the at most n2k sequences of 2k

vertices S = (x1, · · · , xk, yk, · · · , y1) such that S is a path in H we construct a graph

HS by deleting every edge e of H which intersects S except for those edges e such that

e ∩ S = {x1, · · · , x`} or e ∩ S = {y1, · · · , y`} for some ` 6 k. Afterwards we test each

HS for a Hamilton path. Observe that we have ∆(HS) 6 ∆(H) 6 D, and that there is
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a Hamilton cycle in H if and only if one of the altered graphs HS contains a Hamilton

path.

Proposition 2.52. For any k > 2 and any D, there is a polynomial-time reduction from

HC(k,D) to HC(2k − 1, 2D).

Proof. Given a k-graph H with vertex set V = {v1, · · · , vn}, we construct a (2k−1)-graph

H2k−1 as follows. Fix disjoint copies A = {vA1 , · · · , vAn } and B = {vB1 , · · · , vBn } of V , and

let ϕA : A → V and ϕB : B → V be the natural bijections (so ϕ(vAi ) = vi = ϕ(vBi )).

For convenience we will not always mention the explicit bijections; instead we say that

vertices a ∈ A, b ∈ B and x ∈ V correspond if ϕA(a) = ϕB(b) = x. We take A ∪ B to be

the vertex set of H2k−1, and the edges of H2k−1 are the sets e ∈
(
A∪B
2k−1

)
such that either

ϕA(e∩A) is an edge of H and ϕB(e∩B) ⊆ ϕA(e∩A), or ϕB(e∩B) is an edge of H and

ϕA(e ∩ A) ⊆ ϕB(e ∩B). It is then sufficient to show that

(i) H contains a Hamilton cycle if and only if H2k−1 contains a Hamilton cycle, and

(ii) if ∆(H) 6 D, then ∆(H2k−1) 6 2D.

For (i), first observe that if C = (v1, · · · , vn) is a Hamilton cycle in H, then C :=

(vA1 , v
B
1 , · · · , vAn , vBn ) is a Hamilton cycle in H2k−1. Indeed, every consecutive subsequence

S in C of length 2k − 1 either contains k vertices from A or contains k vertices from B.

These k vertices correspond to k consecutive vertices of C and therefore correspond to

some edge e ∈ E(H), and the remaining k − 1 vertices of S correspond to a subset of e,

so S forms an edge of H2k−1. Now suppose that some cyclic ordering of the vertices of

H2k−1 gives a Hamilton cycle C in H2k−1. It suffices to show that if we delete every vertex

of B from this sequence, then every k consecutive vertices (a1, · · · , ak) in the remaining

subsequence correspond to an edge of H, since this subsequence would then correspond to

a Hamilton cycle in H. For this, let Q be the subsequence of length 2k−1 in C beginning

with a1, and let Q′ be the subsequence of length 2k − 1 in C beginning with the vertex
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subsequent to a1 in C. Suppose first that Q contains all of the vertices a1, · · · , ak. In this

case {a1, · · · , ak} must correspond to an edge of H, since Q ∈ E(H2k−1). Now suppose

instead that Q does not contain ak. The fact that Q ∈ E(H2k−1) then implies that Q

contains k vertices of B which correspond to an edge of H, and that a1, · · · , ak−1 each

correspond to vertices in B ∩Q. Since Q \Q′ = {a1}, and Q′ is also an edge of E(H2k−1),

we must have Q′ \Q = {ak}. It follows that ak corresponds to a vertex of B∩Q′ = B∩Q.

Thus the k vertices a1, · · · , ak correspond to the k vertices of Q ∩ B, and so correspond

to an edge of H.

For (ii), fix a set S ∈
(
A∪B
2k−2

)
. It is only possible that S is included in an edge of H2k−1

if either |A∩S| = k− 2, |B∩S| = k and the vertices of B∩S each correspond to vertices

of A∩S, or the same holds with the roles of A and B reversed, or |A∩S| = |B∩S| = k−1

and at least k − 2 vertices of A ∩ S correspond to vertices of B ∩ S. In the first case

we have dH2k−1
(S) = 2, since there are precisely two vertices which can be added to S

to form an edge of H2k−1, namely the vertices of A \ S which correspond to vertices of

B ∩ S. Likewise we also have dH2k−1
(S) = 2 in the second case. Finally, suppose that

|A∩S| = |B∩S| = k−1. If exactly k−2 vertices of A∩S correspond to vertices of B∩S,

then again there are two edges of H2k−1 containing S, formed by adding the vertex of

A \S which corresponds to a vertex of B ∩S or vice versa. If instead all k− 1 vertices of

A∩S correspond to vertices of B∩S, then we can form an edge of H2k−1 containing S by

adding any vertex of A or B which corresponds to a neighbour in H of the corresponding

k − 1 vertices of H. Since ∆(H) 6 D there are at most 2D such vertices. So in all cases

we have dH2k−1
(S) 6 2D, as required.

Proposition 2.53. For any k > 2 and any D, there is a polynomial-time reduction from

HC(k,D) to HC(2k,D).

Proof. Given a k-graph H with vertex set V = {v1, · · · , vn}, we take disjoint copies

A = {vA1 , · · · , vAn } and B = {vB1 , · · · , vBn } of V and define ϕA and ϕB as in the proof of
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Proposition 2.52. We then construct a 2k-graph H2k as follows: the vertex set of H2k is

A ∪ B, and the edges of H2k are all sets e ∈
(
A∪B
2k

)
such that ϕA(e ∩ A) and ϕB(e ∩ B)

are both edges of H. It is then sufficient to show that

(i) H contains a Hamilton cycle if and only if H2k contains a Hamilton cycle, and

(ii) ∆(H2k) 6 ∆(H).

To show (i), first assume that H contains a Hamilton cycle C = (v1, · · · , vn). Then

C := (vA1 , v
B
1 , · · · , vAn , vBn ) is a Hamilton cycle in H2k, since for every consecutive subse-

quence S of length 2k in C, each of the sets S∩A and S∩B corresponds to a consecutive

subsequence in C of length k, that is, an edge of H, so S is an edge of H2k. For the other

direction, suppose that C = (v1, · · · , v2n) is a Hamilton cycle in H2k. Then for any vi ∈ A

the set Q = {vi, · · · , vi+2k−1} is an edge of H2k, so Q∩A contains exactly k vertices from

A, and moreover these k vertices correspond to an edge of H. So if we delete all vertices of

B from the sequence (v1, · · · , v2n), the resulting subsequence corresponds to a Hamilton

cycle in H.

For (ii), let S be a set of 2k−1 vertices of H2k. It is only possible that S is included in

an edge of H if S ∩A is an edge of H and |S ∩B| = k−1, or the same with the roles of A

and B reversed; without loss of generality we assume the former. A necessary condition

for {x}∪S to be an edge of H2k is then that x ∈ B and that ϕB({x}∪ (S ∩B)) ∈ E(H).

The number of such vertices x is at most dH(ϕB(S∩B)) 6 ∆(H), so dH2k
(S) 6 ∆(H).

It is convenient to note that the problem of deciding whether a k-graph with ∆(H) 6 D

contains a Hamilton path reduces to the problem of whether a k-graph H with ∆(H) 6 D

whose order is divisible by k contains a Hamilton path. We refer to the latter problem as

HP(k,D)⊥.

Proposition 2.54. For any k > 2 and any D, there is a polynomial-time reduction from

HP(k,D) to HP(k,D)⊥.
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Proof. Let H be a k-graph on n vertices; we may assume that ∆(H) > 2, as otherwise

the Hamilton path problem is trivial. Let 0 6 r 6 k − 1 and ` > 0 be such that

n = `k + r. For every ordered (k − 1)-set of vertices T = (v1, · · · , vk−1) in H we form a

k-graph HT on (`+ 1)k vertices by adding k− r new vertices x1, · · · , xk−r and new edges

{xi, . . . , xk−r, v1, . . . , vr+i−1} for i ∈ [k−r], so (x1, · · · , xk−r, v1, · · · , vk−1) is a path in HT .

The resulting graph HT has order divisible by k and maximum codegree ∆(HT ) = ∆(H),

and H contains a Hamilton path if and only if one of the altered graphs HT created in

this way contains a Hamilton path.

Proposition 2.55. For any k > 2 and any D there is a polynomial-time reduction from

HP(k,D) to HC(2k − 1, bn
2
c − (D + 1)k).

Proof. By Proposition 2.54 it suffices to give a polynomial-time reduction from HP(k,D)⊥

to HC(2k − 1, bn
2
c − (D + 1)k). So let H be a k-graph on n vertices, where k divides n,

and set ` := n/k. We define a (2k − 1)-graph H2k−1 as follows. Let U := V (H) and let

X be a set of size |X| = (k−1)n
k

= `(k− 1) which is disjoint from U . Set A := U ∪X, and

let B be a set of size |B| = |A| + 1 = `(2k − 1) + 1 which is disjoint from A. We take

the vertex set of H2k−1 to be A∪B, and the edges of H2k−1 to be all sets e ∈
(
A∪B
2k−1

)
with

|A ∩ e| /∈ {k, k + 1}, or with |A ∩ e| = k and A ∩ e ∈ E(H), or with |A ∩ e| = k + 1 and

such that e′ 6⊆ A ∩ e for every e′ ∈ E(H). Since H2k−1 has |A| + |B| = 2|A| + 1 vertices,

it then suffices to show that

(a) H contains a Hamilton path if and only if H2k−1 contains a Hamilton cycle, and

(b) if ∆(H) 6 D, then δ(H2k−1) > |A| − k(D + 1).

For convenience we define the type of an edge e ∈ E(H2k−1) to be the pair (|e∩A|, |e∩B|).

For (a), first assume that there is a Hamilton path P = (h1, · · · , hn) in H, and write
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X = {x1, · · · , x`(k−1)} and B = {b1, · · · , b`k, b′1, · · · , b′`(k−1)+1}. Then

C =
(
x1, · · · , xk−1, b1, · · · , bk, · · · , x(`−1)(k−1)+1, · · · , x`(k−1), b(`−1)k+1, · · · , b`k,

h1, · · · , hk, b′1, · · · , b′k−1, · · · , hn−k+1, · · · , hn, b′(`−1)(k−1)+1, · · · , b′`(k−1), b′`(k−1)+1

)
.

is a Hamilton cycle C in H. That is, C begins with edges of type (k− 1, k) which include

all the vertices of X, followed by edges of type (k, k − 1) which include all of the vertices

of U . The final vertex from B then returns C to edges of type (k−1, k) to close the cycle.

Note that all vertices of H2k−1 are contained in C and that every consecutive subsequence

of 2k − 1 vertices of C forms an edge of H2k−1.

Now assume instead that H2k−1 contains a Hamilton cycle C. We introduce the

following auxiliary bipartite graph G with vertex classes A and B. For every a ∈ A let

Sa be the consecutive subsequence of C of length 2k− 1 starting with a (so Sa is an edge

of H2k−1). We define the edge set of G to be E(G) := {{a, b} | a ∈ A, b ∈ Sa ∩ B}, and

also define U ′ := {u ∈ U | dG(u) > k} and B′ := {b ∈ B | dG(b) 6 k − 1}.

Claim 2.56. The following properties hold for G.

(i) dG(a) > k − 1 for all a ∈ A,

(ii) dG(x) > k for all x ∈ X,

(iii) dG(b) 6 k for all b ∈ B,

(iv) |B′| > n+ 1.

Proof of Claim 2.56. The main observation is that if e is an edge of C such that |e∩A| > k,

then e ∩ A is an edge of H, so e is of type (k, k − 1) and contains no vertex of X. To

see this, assume otherwise that there exists an edge e for which this observation does not

hold. Then |e ∩ A| > k, and by construction of H2k−1 the edge e′ preceding e in C fulfils

|e′∩A| > k as well. Consequently every edge of C has |e∩A| > |e∩B|, contradicting the

fact that |B| > |A|. This observation immediately implies (i), (ii) and (iii). To show (iv),
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observe that if every edge of C contains a vertex of X, then for the same reason it would

follow that dG(a) > k for every a ∈ A and dG(b) 6 k−1 for every b ∈ B, and so we would

have |A|k 6 |E(G)| 6 |B|(k − 1) = (|A|+ 1)(k − 1), contradicting the fact that |A| > k.

So some edge e of C does not contain a vertex of X, and it follows that we may choose a

set S of disjoint consecutive subsequences of C of length 2k − 1, each beginning with a

vertex of X, such that X ⊆
⋃
S. Then each S ∈ S is an edge of C containing a vertex of

X, so has |S ∩ A| 6 k − 1, and so we have |S| > |X|/(k − 1) = `. Furthermore, we have⋃
S ∩B ⊆ B′, so if |

⋃
S ∩B| > n+ 1 then we are done. We may therefore assume that

|
⋃
S ∩ B| = n = k`, so |S| = `. Since C has more than (4k − 3)` vertices, there must

exist S ∈ S such that the 2k − 2 vertices immediately prior to S in C are not in
⋃
S.

Let x ∈ X be the first vertex of S, let S ′ be the consecutive subsequence of C of length

2k − 1 ending with x, and let b be the last member of B in S ′. Since S ′ is an edge of C

containing a vertex of X, we have |S ′ ∩ B| > k. It follows that b ∈ B′, and consequently

|B′| > n+ 1. ♦

By making use of Claim 2.56 we now can double-count the edges of G to get

|E(G)| > k|X|+ (k − 1)|U |+ |U ′| = (k − 1)n+ (k − 1)n+ |U ′| , and

|E(G)| 6 k|B| − |B′| 6 (2k − 1)n+ k − (n+ 1) .

Hence we have |U ′| 6 k − 1. For every x ∈ X the previous k − 1 vertices of U in C are

vertices of U ′ and therefore |U ′| > k − 1. Hence |U ′| = k − 1 and all inequalities used in

the above calculation are in fact equalities. Therefore the vertices of U have to appear

in a consecutive order in C only interrupted by vertices of B. Since there are exactly

k − 1 vertices in U ′, the minimal segment of C containing all the vertices of U is a path

consisting only of edges of the type (k, k − 1). So deleting all vertices of B from this

segment yields a Hamilton path in H.
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For (b) let S be a set of 2k−2 vertices of H2k−1. If |A∩S| < k−1 or |A∩S| = k+1, then

we can add any vertex of A \S to S to form an edge of H2k−1, so dH2k−1
(S) > |A|− k− 1.

If instead |A∩S| > k+ 1 or |A∩S| = k− 1, then we can add any vertex of B \S to form

an edge of H2k−1, so dH2k−1
(S) > |B| − k = |A| − k + 1. The same is true if |A ∩ S| = k

and A ∩ S is an edge of H. Finally, if |A ∩ S| = k and A ∩ S is not an edge of H, then

S ∪ {a} is an edge of H2k−1 for any a ∈ A \ S such that S ′ ∪ {a} is not an edge of H

for any S ′ ⊆ S of size k − 1. Since there are k such sets S ′, each of which has at most

∆(H) 6 D neighbours in H, it follows that dH2k−1
(S) > |A| − (D + 1)k. So in all cases

we have dH2k−1
(S) > |A| − (D + 1)k as claimed.

Proposition 2.57. For any k > 2 and any D there is a polynomial-time reduction from

HC(k,D) to HC(2k, n
2
− (D + 1)k).

Proof. Let H be a k-graph on n vertices, let A := V (H) and let B be a set of size n which

is disjoint from A. We form a 2k-graph H2k with vertex set V := A ∪B whose edges are

all sets e ∈
(
V
2k

)
such that |A∩ e| /∈ {k, k+ 1}, or such that |A∩ e| = k and A∩ e ∈ E(H),

or such that |A ∩ e| = k + 1 and e′ 6⊆ A ∩ e for every e′ ∈ E(H). Since H2k has precisely

2n vertices, it then suffices to show that

(i) H contains a Hamilton cycle if and only if H2k contains a Hamilton cycle, and

(ii) if ∆(H) 6 D, then δ(H2k) > n− (D + 1)k.

As in Proposition 2.55, we define the type of an edge e ∈ E(H2k) to be the pair (|e ∩

A|, |e ∩B|).

For (i) assume first that H2k has a Hamilton cycle C. Observe that our construction

of H2k ensures that if e is an edge of H2k of type (k, k), and e′ is an edge of H2k of

type (k + 1, k − 1), then |e ∩ e′| < 2k − 1. It follows that C either has no edges with

|e ∩ A| > |e ∩ B| or has no edges with |e ∩ A| 6 |e ∩ B|. Since |A| = |B| we conclude

that every edge in C must have type (k, k). Let C ′ be the subsequence of C obtained by
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deleting all vertices of B from C, and let S be a subsequence of k consecutive vertices of

C ′, so in particular S ⊆ A. Then S is included in an edge of C, which is an edge of type

(k, k) in H2k, and so S is an edge of H by construction of H2k. We conclude that C ′ is a

Hamilton cycle in H. For the other direction assume that H contains a Hamilton cycle

(v1, · · · , vn). Then for any enumeration of B as b1, . . . , bn, the sequence (v1, b1, · · · , vn, bn)

is a Hamilton cycle in H2k, since every consecutive subsequence consisting of 2k vertices

contains exactly k vertices from A, which form an edge of H.

For (ii), fix a set S of 2k− 1 vertices of H2k, and observe that if |S ∩A| 6= k, then S is

included in at least n− (k + 1) edges of H2k. If instead |S ∩A| = k and S ∩A is an edge

of H, then S is included in at least n− (k− 1) edges of H2k, since we may add any vertex

of B \ S to form an edge of H2k. Finally, if |S ∩ A| = k and S ∩ A is not an edge of H,

then S ∪ {a} is an edge of H2k for every vertex a ∈ A \ S except for those vertices a such

that S ′ ∪ {a} is an edge of H for some S ′ ⊆ S ∩ A of size k − 1. Since there are k such

subsets S ′, each of which has dH(S ′) 6 ∆(H) 6 D neighbours in H, it follows that S is

included in at least n−k−kD edges of H2k. So in all cases we have dH2k
(S) > n−k−kD

as claimed.
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Chapter 3

Contagious Sets in Bootstrap

Percolation

This chapter contains the proofs of Theorem 1.15 and Theorem 1.17.

3.1 Proof of Theorem 1.15

The underlying idea we use to prove Theorem 1.15 is the following. First, we suppose

the existence of a minimal counterexample to our assertion and investigate its structure,

categorising the vertices according to their degree in relation to ρ. In this way we can

distinguish between vertices according to the number of infected neighbours necessary

to cause their own infection. Next, using the vertex- and edge-minimality of this coun-

terexample, we derive several degree conditions; in particular we bound the number of

edges between low degree and high degree vertices. Finally, we show that we can infect

the whole graph by a certain random selection of vertices just among the vertices of high

degree. This will contradict the existence of a minimal counterexample. Our random

selection follows the approach of Ackerman, Ben-Zwi and Wolfovitz [1] used to establish

the bound (1.2.1), whilst the idea of distinguishing between low and high degree vertices

was used by Chang [25] to prove the bound (1.2.3). The principal difference in our proof is
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that our analysis of the degree conditions is more detailed, as we distinguish more classes

of degree, and that we take advantage of the structure of a minimal counterexample.

During the proof we will work with the following easy observation.

Proposition 3.1. Suppose that ρ ∈ [0, 1] and G is a graph. Let S ⊆ V (G) and set

G′ = G − S. If A ⊆ V (G′) is a contagious set for G′ with respect to ρ, then A ∪ S is a

contagious set for G with respect to ρ.

Proof. Let (Xi) be the infecting sequence in G induced by A ∪ S with respect to ρ and

let (Yi) be the infecting sequence in G′ induced by A with respect to ρ. We show by

induction on i that Yi ∪ S ⊆ Xi and therefore V (G) = Hρ,G′(A) ∪ S ⊆ Hρ,G(A ∪ S). For

the base case we certainly have Y0 ∪ S = A ∪ S = X0. So assume the statement is true

for i ∈ N. Let v ∈ Yi+1 \ Yi. We then have that |NG′(v) ∩ Yi| > ρdG′(v). We show that

|NG(v) ∩ Xi| > ρdG(v) and therefore v ∈ Xi+1. For this define M(v) := NG(v) ∩ S and

note that NG(v) = NG′(v) ·∪M(v) by the definition of G′. In particular we have that

dG(v) = dG′(v) + |M(v)|. Since S ∪ (NG′(v) ∩ Yi) ⊆ Xi by the induction hypothesis, we

can deduce that

|NG(v)∩Xi| > |M(v)|+ |NG′(v)∩Yi| > |M(v)|+ρdG′(v) > ρ(|M(v)|+dG′(v)) = ρdG(v) .

We can now turn to the proof of Theorem 1.15 which we first restate.

Theorem 1.15 ([39]). For every ρ ∈ (0, 1], every connected graph G of order n has

hρ(G) = 1 or

hρ(G) < 2ρn .

Proof of Theorem 1.15. Observe first that if G is a connected graph of order n 6 1/ρ+ 1

then hρ(G) = 1. Indeed, every vertex v in such a graph has d(v) 6 1/ρ and so would
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require only one infected neighbour for its infection; since G is connected it would then

follow that any vertex of G forms a contagious set of size one, so hρ(G) = 1.

It therefore suffices to prove that every connected graph G of order n > 1/(2ρ) fulfils

hρ(G) < 2ρn, and the rest of the proof is devoted to proving this statement by considering

a minimal counterexample (the apparently weaker-than-necessary bound on n in this

statement will prove convenient in appealing to minimality). We may assume for this

that ρ ∈ (0, 1/2), as otherwise the statement is trivial. So fix ρ ∈ (0, 1/2), and let G be

the set of counterexamples for this value of ρ (in other words, G is the set of all connected

graphs G with n(G) > 1/(2ρ) such that hρ(G) > 2ρn(G)). Suppose for a contradiction

that G is non-empty (i.e. that a counterexample exists). Let n = minG∈G n(G), and choose

G ∈ G with n(G) = n such that e(G) 6 e(H) for every H ∈ G with n(H) = n. Thus G is

a minimal counterexample according to its number of vertices and (among those) to its

number of edges. Moreover, we must have

n > 1/ρ+ 1 , (3.1.1)

as otherwise our initial observation and the fact that n > 1/(2ρ) together imply that

hρ(G) = 1 < 2ρn, so G would not be a counterexample. The vertex-minimality of G will

be used to prove the following claim. For this recall that Hρ,G(v) is the maximal set of

vertices of G which becomes eventually effected after the initial infection of v.

Claim 3.2. For every v ∈ V (G) we have that |Hρ,G(v)| < 1/(2ρ).

Proof of Claim 3.2. For the sake of a contradiction assume that there exists v ∈ V (G)

such that |Hρ,G(v)| > 1/(2ρ). We set G′ := G − Hρ,G(v) and denote by C the set of

connected components of G′. Note first that {v} cannot infect all vertices of G, as

otherwise we would have hρ(G) = 1 = 2ρ · 1/(2ρ) < 2ρn by (3.1.1), contradicting our

assumption that G is a counterexample. So C is non-empty. Now assume that there is a
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component C ∈ C which contains at most 1/(2ρ) vertices. As G is connected, there exists a

vertex u ∈ V (C) with at least one neighbour in Hρ,G(v). Define m(u) := |NG(u)∩Hρ,G(v)|,

so m(u) > 1. By the assumption on the size of C we derive the inequality

1/(2ρ) +m(u) > |NG(u) ∩ C|+m(u) = dG(u) .

The fact that u /∈ Hρ,G(v) together with |NG(u) ∩Hρ,G(v)| > m(u) justifies that

dG(u) > 1/ρ ·m(u) .

As m(u) > 1, both inequalities combined lead to ρ > 1/2, which is a contradiction.

Therefore each connected component of G′ contains more than 1/(2ρ) vertices. Since G

was a minimal counterexample, it follows that for each C ∈ C there exists a subset AC ⊆

V (C) with |AC | < 2ρ|V (C)| which is a contagious set, that is, such thatHρ,C(AC) = V (C).

We then have Hρ,G′(
⋃
C∈C AC) = V (G′). Since v infects Hρ,G(v) and, by Proposition 3.1

we have that
⋃
C∈C AC ∪Hρ,G(v) infects G, it follows that Hρ,G(

⋃
C∈C AC ∪ {v}) = V (G).

Hence

hρ(G) 6 1 +
∑
C∈C

|AC | < 2ρ

(
|Hρ,G(v)|+

∑
C∈C

|V (C)|

)
6 2ρn ,

contradicting our assumption that G is a counterexample. ♦

We now classify the vertices of G according to their degree by defining

V1 := {v ∈ V (G) | dG(v) 6 1/ρ},

V>2 := V (G) \ V1 , and

V2 := {v ∈ V>2 | dG(v) 6 2/ρ} .

Note that V1 is the set of vertices which become infected if just one of their neighbours is
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infected, V>2 is the set of vertices which cannot be infected by just one infected neighbour,

and V2 is the set of vertices which can be infected by two infected neighbours, but not by

just one infected neighbour. Claim 3.2 together with the minimality of G will imply the

following claim about the size of neighbourhoods of vertices in these sets.

Claim 3.3. The following holds.

(i) |NG(v) ∩ V1| < 1/(2ρ) for every v ∈ V .

(ii) The induced subgraph G[N(v) ∩ V2] is a clique for every v ∈ V1.

(iii) |NG(v) ∩ V2| < 1/(2ρ) for every v ∈ V1.

Proof of Claim 3.3. To prove (i) assume for a contradiction that there exists v ∈ V such

that |N(v) ∩ V1| > 1/(2ρ). If v is initially infected, then in the first time step every

vertex of N(v) ∩ V1 will become infected. So |Hρ,G(v)| > |{v} ∪ (N(v) ∩ V1)| > 1/(2ρ)

contradicting Claim 3.2.

For (ii), assume for a contradiction that there are distinct x, y ∈ N(v) ∩ V2 such that

{x, y} /∈ E(G). Let H be the graph formed from G by removing the edges {v, x} and

{v, y} and adding the edge {x, y}, and let C be the connected component of H containing

x and y.

We claim that every contagious set A ⊆ V (C) for C also infects V (C) in G. To see

this, let (Xi) be the infecting sequence in G induced by A with respect to ρ and let (Yi) be

the infecting sequence in C induced by A with respect to ρ. We now prove by induction

on i that Yi ⊆ X2i for each i ∈ N. The base case is given by Y0 = A = X0, so assume that

Yi ⊆ X2i for some i ∈ N and consider the following cases for each w ∈ Yi+1 \ Yi.

(a) If w /∈ {x, y, v}, then by construction of H we have NG(w) = NC(w), and by our

induction hypothesis we can conclude that at least ρdG(w) = ρdC(w) neighbours of

w are in Yi ⊆ X2i. Hence w ∈ X2i+1 ⊆ X2(i+1) as required.
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(b) If w = v, then v ∈ V (C) and by construction of H we have that NC(v) ⊆ NG(v).

Again since v ∈ Yi+1, we have that ρdC(v) 6 |NC(v) ∩ Yi| and therefore by also

making use of the induction hypothesis there exists u ∈ (NC(v)∩Yi) ⊆ (NG(v)∩X2i).

Since dG(v) 6 1/ρ, we have that |NG(v) ∩ X2i| > 1 > ρdG(v) and therefore v ∈

X2i+1 ⊆ X2(i+1).

(c) If w ∈ {x, y}, then we may assume without loss of generality that w = x (since

the following arguments hold equally well with y in place of x). Note that by

construction of H we have that NC(x) = (NG(x) \ {v})∪{y} and in particular that

dG(x) = dC(x). Furthermore, since x ∈ Yi+1\Yi, we have that |NC(x)∩Yi| > ρdC(x).

Setting U := NC(x) \ {y}, we first assume that |U ∩Yi| > ρdG(x). By the induction

hypothesis U ∩ Yi ⊆ X2i and since U ⊆ NG(x) we have that x ∈ X2i+1 ⊆ X2(i+1).

On the other hand, if |U ∩ Yi| < ρdG(x), then y ∈ Yi ⊆ X2i. Since dG(v) 6 1/ρ

and y ∈ NG(v) ∩X2i, we have that v ∈ X2i+1. Furthermore v /∈ U and U ⊆ X2i ⊆

X2i+1. Hence |NG(x) ∩X2i+1| > |(U ∩ Yi) ∪ {v}| > ρdC(x) = ρdG(x) and therefore

x ∈ X2(i+1).

This completes the induction argument, so we have Yi ⊆ X2i for each i ∈ N, and therefore

V (C) = Hρ,C(A) ⊆ Hρ,G(A). This proves our claim that every contagious set A ⊆ V (C)

for C also infects V (C) in G.

Since G is connected, the construction of H ensures that H has at most two connected

components. Suppose first that H is connected and therefore that H = C. Since we

assumed that G has no contagious set of size less than 2ρn, it follows from our above claim

that C has no contagious set of size less than 2ρn. Thus C = H is also a counterexample,

contradicting the edge-minimality of G. We conclude that H must have exactly two

connected components C and C ′. Observe that since dH(x) = dG(x) > 1/ρ we have

that |V (C)| > 1/(2ρ). Suppose now that |V (C ′)| 6 1/(2ρ). Note that then every vertex

w ∈ V (C ′) has dG(w) 6 1/ρ. Indeed, if w = v then this is implied by v ∈ V1 and if

127



w 6= v then w cannot have any neighbour in C, as otherwise H would be connected, and

therefore |NG(w)| 6 |C ′| 6 1/ρ. Now let A ⊆ V (C) be a contagious set for C. Then by

our above claim A infects V (C) in G, so V (G) \Hρ,G(A) ⊆ V (C ′). It follows that every

vertex w ∈ V (G) not infected by A has dG(w) 6 1/ρ, and since G is connected it follows

that Hρ,G(A) = V (G). In other words any contagious set for C is also a contagious set

for G, and therefore hρ(C) > 2ρ|V (C)|. Thus C is also a counterexample, contradicting

the vertex-minimality of G.

We therefore conclude that C and C ′ each have more than 1/(2ρ) vertices. By mini-

mality of G it follows there are contagious sets A ⊆ V (C) and A′ ⊆ V (C ′) for C and C ′

respectively with |A| < 2ρ|V (C)| and |A′| < 2ρ|V (C ′)|. Then A infects V (C) in G by our

above claim. Moreover, A′ infects V (C ′) in G since every vertex w ∈ V (C ′) with w 6= v

has NG(w) = NC′(w), and dG(v) < 1/ρ. We conclude that A∪A′ is a contagious set in G

of size |A∪A′| 6 |A|+ |A′| < 2ρ|V (C)|+ 2ρ|V (C ′)| = 2ρn, contradicting our assumption

that G was a counterexample and so completing the proof of (ii).

Finally, to prove (iii), assume for a contradiction that there exists v ∈ V1 such that

|N(v) ∩ V2| > 1/(2ρ), and choose any w ∈ N(v) ∩ V2. Since G[N(v) ∩ V2] is a clique

by (ii), every other vertex of N(v) ∩ V2 is a neighbour of both v and w. Since each

vertex of V2 will become infected once it has two infected neighbours, it follows that

if w is initially infected, then v will become infected at the first time step, and then

all remaining vertices of N(v) ∩ V2 will become infected at the second time step. So

|Hρ,G(w)| > |{v} ∪ (N(v) ∩ V2)| > 1/(2ρ), contradicting Claim 3.2. ♦

We now introduce some further notation. Let M be the number of edges with one

endvertex in V1 and one endvertex in V2. Also, for each v ∈ V (G), write d′(v) := |N(v)∩V1|

and define xv := ρd(v) and yv := ρd′(v). Note that, by Claim 3.3(i), for every v ∈ V>2 we

have

0 6 yv < 1/2 . (3.1.2)
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Furthermore, double-counting the edges between V1 and V2 together with Claim 3.3(iii)

gives us ∑
v∈V2

yv = ρ
∑
v∈V2

d′(v) = ρM = ρ
∑
v∈V1

|N(v) ∩ V2| < 1
2
|V1| . (3.1.3)

We now choose an order σ of the vertices of V>2 uniformly at random. Let A be the set

of vertices v ∈ V>2 for which fewer than dρd(v)e neighbours of v precede v in the order σ.

We claim that A is a contagious set for G with respect to ρ. Indeed, since G is connected

and each vertex of V1 becomes infected once it has one infected neighbour, it suffices for

this to show that A infects V>2. Suppose for a contradiction that this is not the case, and

let v ∈ V>2 be the first vertex in the order σ which is not infected by A. Then v /∈ A,

so v has at least dρd(v)e neighbours which precede v. Our choice of v implies that all of

these neighbours are infected by A, but this contradicts the fact that v is not infected by

A. So A is indeed a contagious set for G with respect to ρ. Moreover, for any v ∈ V>2 we

have v ∈ A if and only if v is one of the first dρd(v)e members of {v} ∪ (N(v) ∩ V>2) in

the order σ. It follows that P[v ∈ A] = dρd(v)e
1+|N(v)∩V>2|

, so the expected size of A is

E[|A|] =
∑
v∈V>2

dρd(v)e
1 + d(v)− d′(v)

<
∑
v∈V>2

1 + ρd(v)

d(v)− d′(v)
= ρ

∑
v∈V>2

1 + xv
xv − yv

= ρ

∑
v∈V2

1 + xv
xv − yv

+
∑

v∈V>2\V2

1 + xv
xv − yv


(∗)
6 ρ

∑
v∈V2

1 + 1

1− yv
+

∑
v∈V>2\V2

1 + 2

2− 1/2


= 2ρ

(∑
v∈V2

1

1− yv
+ |V>2 \ V2|

)
=: T ,

where the inequality (∗) follows from (3.1.2), the fact that xv > 1 for v ∈ V2 and xv > 2

for x ∈ V>2 \ V2, and the fact that if 0 6 y < a 6 x are real numbers, then 1+x
x−y 6

1+a
a−y .

For the final argument we will use the following claim.
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Claim 3.4. Let n1, n2 ∈ N, K = {y ∈ [0, 1
2
]n2 |

∑n2

i=1 yi 6
n1

2
} and f(y) =

∑n2

i=1
1

1−yi . We

have that

max
y∈K

f(y) 6 n1 + n2 .

Proof of Claim 3.4. Suppose first that n1 > n2, and let u := (1
2
, . . . , 1

2
). Then u ∈ K, and

it is easy to see that f(u) > f(y) for every y ∈ K. Furthermore f(u) = n2 · 1
1−1/2 = 2n2 6

n1 + n2.

Now suppose instead that n1 < n2. Since f is a continuous function it attains its

maximum on the compact space K. Fix u ∈ K such that this maximum is attained,

and (subject to this) so that as many as possible of the ui are equal to 1/2. Clearly

we then have
∑n2

i=1 ui = n1

2
. Suppose first that there exist distinct i, j ∈ [n2] such that

0 < ui 6 uj < 1/2. Then set ε := min{ui, 1/2− uj} and define z ∈ Rn2 by

zk :=


ui − ε, if k = i

uj + ε, if k = j

uk, otherwise

.

Note that z ∈ K. We then get by the convexity of the function g(x) = 1
1−x on [0, 1

2
] that

f(u) = g(ui) + g(uj) +
∑
k 6=i,j

g(uk) < g(ui − ε) + g(uj + ε) +
∑
k 6=i,j

g(uk) = f(z) .

This contradicts the assumption that f(u) was the maximal value. We therefore conclude

that all but at most one of the ui are equal to 0 or 1/2; since n1 is an integer and∑n2

i=1 ui = n1

2
, this implies that in fact every ui is equal to 0 or 1/2 (in other words u

has n1 coordinates equal to 1/2 and the rest equal to 0). Hence maxy∈K f(y) = f(u) =

n1 · 1
1−1/2 + (n2 − n1) · 1

1−0 = n1 + n2. ♦

By setting n1 = |V1| and n2 = |V2| and by using (3.1.2) and (3.1.3) the assumptions
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of Claim 3.4 are fulfilled and we can conclude our calculation with

E[|A|] < T 6 2ρ(|V1|+ |V2|+ |V>2 \ V2|)

= 2ρn .

We may therefore fix an order σ of V>2 such that the contagious set A given by this order

has size less than 2ρn. This contradicts our assumption that G was a counterexample

and so proves the theorem.

3.2 Proof of Theorem 1.17.

To prove our second main theorem we use the following modified version of a theorem

of Gentner and Rautenbach [45]. For a constant ρ > 0 and a graph G we again use the

notation V1 = {v ∈ V (G) | d(v) 6 1/ρ} and V>2 = V \ V1.

Lemma 3.5 ([45]). For every ε > 0 there exists ρ0 > 0 such that for any ρ ∈ (0, ρ0)

the following holds. Let G be a connected graph of order n with girth at least 5 and

∆(G) > 1/ρ. If |N(u) ∩ V1| < 1
1+ε

d(u) for every u ∈ V>2, then

hρ(G) < (1 + ε)ρn .

The lemma given above follows immediately from the proof of the original version [45,

Theorem 1], which omitted the condition on the neighbourhood in V1 of vertices in V>2,

and had the weaker conclusion that hρ(G) 6 (2 + ε)ρn. Loosely speaking, in this proof

Gentner and Rautenbach used a random selection process to select an initial set X and

showed that vertices satisfying certain properties are infected with high probability by

X. They then bounded the number of vertices which do not have these properties, and

simply added all such vertices to X to obtain a contagious set of the claimed size.
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More precisely, they first fixed a sufficiently small constant δ, in particular with δ < ε,

and found a set X0 ⊆ V>2 with two properties:

(a) |X0| 6 (1 + δ)ρn, and

(b) |N(u) ∩ (V1 \Hρ,G(X0))| 6 1
1+δ

d(u) for every u ∈ V>2 \X0.

Then, by a series of random selections which exploit the girth property to ensure inde-

pendence of the random variables considered, they added at most (1 + ε − δ)ρn vertices

to X0 to gain a set X0 ⊆ Y ⊆ V (G) such that |Y | 6 (2 + ε)n and Hρ,G(Y ) = V (G).

To prove Lemma 3.5 we follow exactly the same argument with X0 := ∅; the additional

condition of Lemma 3.5 ensures that X0 satisfies (a) and (b). We then obtain a set

Y ⊆ V (G) such that |Y | 6 (1 + ε− δ)ρn < (1 + ε)ρn and Hρ,G(Y ) = V (G).

We can now prove Theorem 1.17 which we first restate. The main idea is to show that

a minimal counterexample must satisfy the conditions of Lemma 3.5, and therefore is not

in fact a counterexample.

Theorem 1.17 ([39]). For every ε > 0 there exists ρ0 > 0 such that for every ρ ∈ (0, ρ0)

and every connected graph G of order n and girth at least 5 we have hρ(G) = 1 or

hρ(G) < (1 + ε)ρn .

Proof of Theorem 1.17. Given ε > 0, let ρ0 be small enough for Lemma 3.5 and also

such that ρ0 <
ε

1+ε
, and fix ρ ∈ (0, ρ0). We will show that if G is a connected graph of

order n > 1
(1+ε)ρ

with girth at least 5, then hρ(G) < (1 + ε)ρn. This suffices to prove

Theorem 1.17 as, by a similar argument as in the proof of Theorem 1.15, every connected

graph G of order at most 1
(1+ε)ρ

has hρ(G) = 1. So suppose that this assertion is false, let

G be a minimal counterexample according to the number of vertices (for these values of

ρ and ε), and let n be the order of G. Then G is a connected graph on n > 1
(1+ε)ρ

vertices
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with girth at least five and hρ(G) > (1 + ε)ρn. We may assume that ∆(G) > 1/ρ, as

otherwise (since G is connected) we have hρ(G) = 1 < (1 + ε)ρn, a contradiction. We

show the following claim.

Claim 3.6. |N(v) ∩ V1| < 1
(1+ε)ρ

for every v ∈ V>2.

Proof of Claim 3.6. Suppose for a contradiction that there exists v ∈ V>2 such that

|N(v) ∩ V1| > 1
(1+ε)ρ

. Then |Hρ,G(v)| > |{v} ∪ (N(v) ∩ V1)| > 1
(1+ε)ρ

. We set G′ :=

G−Hρ,G(v) and denote by C the set of connected components of G′. Note first that {v}

cannot infect V (G), as otherwise hρ(G) = 1 < (1+ε)ρn, a contradiction. Now assume that

there is a component C ∈ C which contains at most 1
(1+ε)ρ

vertices. As G is connected there

exists a vertex u ∈ V (C) with a neighbour in Hρ,G(v). Let m(u) := |N(u)∩Hρ,G(v)| > 1;

since u /∈ Hρ,G(v), we derive the inequality

1

(1 + ε)ρ
+m(u) > d(u) > m(u) · 1

ρ
.

This leads to

1− ε

1 + ε
=

1

1 + ε
> (1− ρ)m(u) > 1− ρ > 1− ρ0 ,

which contradicts our choice of ρ0. Therefore each connected component of G′ contains

more than 1
(1+ε)ρ

vertices. Since G was a minimal counterexample, it follows that each

component C ∈ C has hρ(C) < (1 + ε)ρ|V (C)|. By Proposition 3.1 we then have

hρ(G) 6 1 +
∑
C∈C

hρ(C) < (1 + ε)ρ

(
|Hρ,G(v)|+

∑
C∈C

|V (C)|

)
= (1 + ε)ρn ,

a contradiction. ♦

So for every vertex u ∈ V>2 we have |N(u) ∩ V1| < 1
(1+ε)ρ

< 1
1+ε

d(u). By Lemma 3.5,

it follows that hρ(G) < (1 + ε)ρn. This contradicts our assumption that G was a coun-
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terexample, and so completes the proof.
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[23] Raphaël Cerf and Francesco Manzo. The threshold regime of finite volume bootstrap
percolation. Stochastic Processes and their Applications, 101(1):69–82, 2002.

[24] John Chalupa, Paul L. Leath, and Gary R. Reich. Bootstrap percolation on a Bethe
lattice. Journal of Physics C: Solid State Physics, 12(1):L31–L35, 1979.

136



[25] Ching-Lueh Chang. Triggering cascades on undirected connected graphs. Information
Processing Letters, 111(19):973–978, 2011.

[26] Ching-Lueh Chang and Yuh-Dauh Lyuu. Triggering cascades on strongly connected
directed graphs. Theoretical Computer Science, 593:62–69, 2015.

[27] Amin Coja-Oghlan, Uriel Feige, Michael Krivelevich, and Daniel Reichman. Con-
tagious sets in expanders. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’15, pages 1953–1987, 2015.

[28] Gennaro Cordasco, Luisa Gargano, Marco Mecchia, Adele A. Rescigno, and Ugo Vac-
caro. Discovering small target sets in social networks: A fast and effective algorithm.
arXiv:1610.03721.

[29] Andrzej Czygrinow and Theodore Molla. Tight codegree condition for the existence of
loose Hamilton cycles in 3-graphs. SIAM Journal on Discrete Mathematics, 28(1):67–
76, 2014.

[30] Elias Dahlhaus, Peter Hajnal, and Marek Karpiński. On the parallel complexity of
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Hamiltonicity of triple systems with high minimum degree. arXiv:1605.00773.

140



[80] Vojtěch Rödl, Andrzej Ruciński, and Endre Szemerédi. A Dirac-type theorem for 3-
uniform hypergraphs. Combinatorics, Probability and Computing, 15(1-2):229–251,
2006.

[81] Vojtěch Rödl, Andrzej Ruciński, and Endre Szemerédi. An approximate Dirac-type
theorem for k-uniform hypergraphs. Combinatorica, 28(2):229–260, 2008.
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