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Abstract

In this thesis we classify saturated fusion systems on p-groups S containing an
extraspecial subgroup of index p for an arbitrary odd prime p. We prove that if
F is a saturated fusion system on S with O,(F) = 1 then either |S| < p° or S is
isomorphic to a unique group of order pP~t. We either classify the fusion systems
or cite references to show that F is known in all cases except when S is a Sylow
p-subgroup of SL,(p), which remains as future work. When |S| = pP~! with p > 11
we describe new infinite exotic families related to those constructed by Parker and

Stroth.
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LIST OF NOTATION

Throughout this thesis p denotes a prime, all groups are finite, and we write maps

on the right hand side. Our notation is conventional except where stated otherwise.
e Co(H)={9€G|gh=hgforalheH}.
e No(H)={ge G| HY=H}.
o [x,y| = 2 'y lzy is the commutator of x and y.
o [H K|={(hk]|he HkeK).
e »(G) =G =[G, G|, the derived subgroup of G, and v;41(G) = [v(G), G].
e 71(G) = Z(G) and Z;(G) is the i-th term of the upper central series of G.
e O(G) is the Frattini subgroup of G.
e Syl,(G) is the set of Sylow p-subgroups of G.
e O0,(G)=0N Sesyl (G) S is the largest normal p-subgroup of G.
e O,(G) is the largest normal subgroup of G of order coprime to p.

e OP(@) is the smallest normal subgroup of G of order p-power index.



O (G) = (S| S € Syl,(G)), the normal closure in G of S is the smallest

normal subgroup of G of index coprime to p.
V(@) =(geC|g" =1).
U(G) =G = (¢" | g € G).

my(G) is the p-rank of G, that is, p"#(@) is order of the largest elementary

abelian subgroup of G. Not to confuse with the rank of a p-group |P/®(P)|,.
F*(G) is the generalised Fitting subgroup of G.

Hom(G, H) is the set of group homomorphisms ¢ : G — H.

Aut(Q) is the group of automorphisms ¢ : G — G.

Inn(G) is the group of inner automorphisms of G.

For g € G the map ¢, € Inn(G) is defined by h — hc, = h? = g 'hg.
Out(G) = Aut(G)/ Inn(G) is the outer automorphism group of G.

A x B is the direct product of A and B.

A" = A x --- x A is the direct product of n copies of A.

Aoc B is a central product of A and B with C = AN B < Z(Ao¢ B).

A.B denotes a group extension of A by B where A < A.B and A.B/A ¥ B.

A Xy B or A: B denote a semidirect product or split extension of A by B
with nontrivial action (if specified) ¢ : B — Aut(A), except in Appendix A,

where we write B x, A.



e A’ B denotes an extension of A by B which does not split.
The following will denote specific groups:

e (), is a cyclic group of order n.

1+2n

e If pis odd, p}r”” is the extraspecial group of order p and exponent p.

1+2n and exponent p?.

e If pis odd, p ™" is the extraspecial group of order p
e D, is the dihedral group of order n.
e S, is the symmetric group of degree n.

e A, is the alternating group of degree n.

e We denote the versions of the classical groups as in [KL90], and those of the
finite groups of Lie type as in [GLS98]. Where there are various notations in

the literature we specify our choice. GF(p*) is the finite field of order p*.
e GU,(p") is the general unitary group over GF(p*).

e In the Suzuki and Ree groups the exponents will be odd rather than fractional,
for example Sz(22"t1) = 2By(22"*!) the Suzuki group over GF(2*"*1).

e J, denotes a Jordan block of size n with all eigenvalues 1.

o H,=Cp1Cy1---2C, is the wreath product with k& wreathed factors.

e A(P)={A < P| Ais elementary abelian of maximal order in P}.

e <n,a> denotes the a-th group of order n in the Magma [BCP97] SmallGroups

library.



INTRODUCTION

In this thesis we initiate the classification of all saturated fusion systems F on
p-groups S with an extraspecial subgroup of index p which contain no normal
p-subgroups. We mostly assume that p is an odd prime, although results could
be generalised to include p = 2. In group theory, the theory of fusion studies how
the conjugation action of a group G on a subgroup S merges conjugacy classes of
elements of S. As a consequence of Sylow’s Theorems, the case when S is a Sylow
p-subgroup of G is particularly important, and gives rise to the fusion category of
a group usually denoted by Fs(G). Results about the fusion category date back to
Burnside, who showed that if S is abelian then all G-fusion in S happens in Ng(S).

The notion of fusion was first generalised beyond finite groups by Puig in
the nineties with his Frobenius categories, but not published until [Pui06], as a
tool in modular representation theory. The Frobenius categories he introduced
were later rediscovered and rephrased by Broto, Levi and Oliver in [BLOO03], who
introduced them into topology to study p-completed classifying spaces and called
them saturated fusion systems. This terminology has become standard in most of
the literature. Fusion systems are used in finite group theory since some results
seem to be easier to prove in the category of saturated fusion systems instead of in

the finite groups themselves, for example see the proposed programme to improve



and simplify portions of the classification of the finite simple groups by Aschbacher
in [Ascl1, Introduction] with p = 2. There is also a programme of Meierfrankenfeld,
Stellmacher and Stroth to simplify parts of the classification by understanding the
p-local structure of finite simple groups of local characteristic p in [MSS03].

An active area of research is the search for exotic fusion systems, which are
saturated fusion systems that are not fusion categories of a finite group on its
Sylow p-subgroups. When p = 2, the Benson-Solomon systems, encountered by
Solomon and constructed by Levi and Oliver in [LO02], form the only known family
of simple exotic fusion systems, but for odd primes they are more common, which

suggested the following open problem from [AKO11, I11.7.4].

Try to better understand how exotic fusion systems arise at odd primes; or (more

realistically) look for patterns which explain how certain large families arise.

In this direction, exotic fusion systems have been found while classifying sat-
urated fusion systems on extraspecial groups of order p® and exponent p when
p =7 by Ruiz and Viruel in [RV04], and many families of simple fusion systems on
p-groups with an abelian subgroup of index p for all odd p have been described by
Oliver [Olil4], Craven, Oliver and Semeraro [COS17], and Oliver and Ruiz [OR17].

The abelian subgroup of index p in these examples plays a role in controlling the
fusion, which suggested attempting to use certain nonabelian p-groups to play an
analogous role, such as extraspecial p-groups ), which satisfy Z(Q) = ®(Q) = Q'
of order p, hence are nonabelian but Q)/Z(Q) has the structure of a symplectic
vector space. In this direction some exotic fusion systems on p-groups with an
extraspecial subgroup of index p have been constructed by Parker and Stroth in

[PS15], which suggested the research problem in this thesis. The case of a Sylow
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p-subgroup of Gy(p), which if p > 5 contains an extraspecial subgroup of index
p, has been classified in [PS18]. Many exotic fusion systems arose when p = 7.
These systems are related to the Monster sporadic group and the Parker-Stroth
constructions.

In saturated fusion systems we have many analogous concepts as in finite group
theory, for example normal p-subgroups (see Definition 2.23). We denote by O, (F)
the largest normal p-subgroup of F (see Lemma 2.24).

For each prime p there are many p-groups with an extraspecial subgroup of
index p, and it is remarkable that the first main result that we prove greatly

reduces the cases to be studied to at most four p-groups under the assumption that

S| > p°.

Main Theorem (Theorem 4.27). Let p be an odd prime, let S be a p-group with
an extraspecial subgroup QQ of index p, and let F be a saturated fusion system on S
satisfying O,(F) = 1. Suppose that |S| > p®. Then S is isomorphic to one of the

following:
1. a Sylow p-subgroup of SL4(p);
2. a Sylow p-subgroup of SU4(p);
3. a Sylow p-subgroup of Go(p) with p > 5;

4. the unique p-group of order pP~*, maximal nilpotency class and exponent p

whenever p > 11.

We note that in cases (1), (2) and (3) we have |S| = p°, and if |S| < p® then

|S| = p* which we consider separately. When p = 2 we plan on adapting this



reduction to prove that |S| < 2%, at which point [Olil6, Theorem A] will conclude
this case. Hence we assume that p is odd.

Most of the remainder of the thesis is then dedicated to studying the cases of
the Main Theorem, and some have been already classified.

In Case (1), that is when S is a Sylow p-subgroup of SL4(p), we have not
obtained a complete answer, and it remains as future work. Some results in
this direction are Lemma 5.4 (2) and Proposition 5.5, which determine all the
F-essential candidates. The case p = 3 is being studied by Parker and Semeraro.

Case (2) is the object of Chapter 5, where we prove the following result.

Theorem 1 (Theorem 5.1). Suppose p > 5 and S is a Sylow p-subgroup of SU4(p).
Then there is a one-to-one correspondence between saturated fusion systems F on
S with O,(F) = 1 and groups G with SU4(p) < G < Aut(SU,(p)) which realise

them. In particular, there are no such exotic fusion systems on S.

This case is completed by [BFM], where the case p = 3 is considered and they
show that there are no exotic fusion systems either. In this case however more
finite almost simple groups appear, with socles PSU,(3), McL, Cos, and PSLg(q)
and PSUg(q) for suitable ¢ coprime to 3.

In case (3), that of a Sylow p-subgroup of Gs(p), the saturated fusion systems
F with O,(F) = 1 have been classified in [PS18, Theorem 1.1], and they are either
realisable by finite almost simple groups, or p = 7 where there arises a subsystem
of the 7-fusion system of the Monster sporadic simple group and many examples
related to case (4), as |S| = 77"!. The case p = 3 is also considered in [PS18], but
does not arise in our situation as it does not contain extraspecial subgroups of

index 3.



We study case (4) in Chapter 6, where we prove the following theorem.

Theorem 2 (Theorems 6.7 and 6.8). Suppose p > 11, S is as in Case (4) of the
Main Theorem, and F is a saturated fusion system on S with O,(F) = 1. Let Q) be
the unique extraspecial subgroup of index p in S, and let X = {M;,..., M, 1} be
the set of maximal subgroups of S of maximal class. Then F is one of the following,

all of which are exotic:

1. A unique fusion system F¢q where Outz(Q) = GLo(p) and
Autz(E) = SLy(p) for all self-centralising subgroups E of order p* in S,

described in [PS15, Proposition 3.5]; or

2. A subsystem F satisfying Fy = O (F) C F C Fq which is an extension
of p'-index of Fy which is determined by the set of Fg -essential subgroups
consisting of those self-centralising subgroups of order p* contained in Mj,
whenever ) # J = {M,,,...M;} C X. Each F-essential subgroup E satisfies
Autz(E) = SLy(p), and F = FE if and only if K = {Mj 4, ..., M.} for

or—1_1
p—1

some x € {1,...,p— 1}. For each p there are at least 1somorphism

classes of Fy.

Putting together the Main Theorem and Theorem 2 we obtain the following.

Corollary 1. Assume p is odd, S is a p-group with an extraspecial subgroup of
index p and F is a saturated fusion system on S with O,(F) = 1. If |S| > p°® then

F is known.

We can summarise the situation of the research problem thus far as follows,

using the results of [PS18] and [BFM].



Corollary 2. Assume p is odd, S is a p-group with an extraspecial subgroup of
index p and F is a saturated fusion system on S with O,(F) = 1. If |S| > p°® then

either F is known or S is a Sylow p-subgroup of SL4(p).

Since the Main Theorem assumes that |S| > p° it remains to consider the
case with |S| = p?, which behaves differently to the rest, and has been studied in
[COS17], [Olil4], and [OR17] but due to the generality of their results the fusion
systems were not written explicitly. We do this in Chapter 7, the main result
of which is the following, where we note that there is no need to assume that S

contains an extraspecial subgroup @ of index p.

Theorem 3 (Theorem 7.1). Suppose p is odd, |S| = p* and F is a simple fusion
system on S. Then S has extraspecial subgroups of index p and F is one of the

fusion systems described in Tables 7.1 and 7.2.

Hence in all cases except when S € Syl (SL4(p)) we obtain a complete list of
the isomorphism types of saturated fusion systems considered. The remaining case
S € Syl,(SL4(p)) will be the object of future work. We now describe the structure
of the thesis.

In Chapter 1 we introduce the group theoretic notation and background results
that we will use. We begin by defining some basic concepts and important subgroups,
before introducing regular p-groups and extraspecial p-groups. Afterwards, we
present the well-known isomorphisms between small classical groups and alternating
groups. We then prove some results about p-groups containing an extraspecial
subgroup of index p and its relation with p-groups with abelian subgroup of index
p, and consider certain iterated wreath products of cyclic groups. We then use

standard results about group extensions found in Appendix A to obtain results
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about isomorphism classes of p-groups with extraspecial subgroups of index p and
prove some results about the ones we will encounter.

We then move onto actions of groups on p-groups. Of particular importance
for us are the cases of coprime and quadratic action, and the specialisation to
transvections. We then introduce strongly p-embedded subgroups and prove some
of their properties, including a list of those almost simple groups with p-rank at
least 2 containing one, and the structure of groups generated by transvections
and containing a strongly p-embedded subgroup. We finally consider subgroups of
GL,(p) with r < 4 containing strongly p-embedded subgroups. Our main sources
for group theoretic background are [Gor80, Hup67, DH92, GLS96].

In Chapter 2 we give an introduction to the theory of saturated fusion systems,
mainly following [AKO11, Part I] and using standard notation. We introduce the
fusion category Fs(G) of a group G on a Sylow p-subgroup S and the more general
fusion systems, immediately specialising to saturated fusion systems, as well as
discussing extension of morphisms. Afterwards we introduce isomorphisms of fusion
systems. We then present Alperin’s Fusion Theorem, which is the starting point of
the attempts to classify saturated fusion systems, by showing that any saturated
fusion system F can be generated by compositions of restrictions of automorphisms
in F of a class of subgroups, denoted F-essential, which are introduced in Definition
2.13.

We then prove basic properties of these F-essential subgroups, before proceeding
to the local theory of fusion systems. Analogous concepts to those in group theory
of normal p-subgroups and subsystems, as well as simple fusion systems are defined.
The Model Theorem, which guarantees realisability of constrained fusion systems,

is stated, and we present some properties about the smallest normal subsystem of



F on S, denoted by O (F).

We finally explore the relationship between simple fusion systems, reduced
fusion systems, and those F containing no normal p-subgroups, that is, having
O,(F) = 1, which are all assumptions in various classification results.

In Chapter 3 we study small p-groups and determine which isomorphism types
can appear as J-essential subgroups. We determine the isomorphism types of
abelian p-groups of rank at most 2 which can be F-essential in Proposition 3.4 and
that of p-groups of order p* in Proposition 3.10.

It is in Chapter 4 that we begin the study of fusion systems on p-groups with
an extraspecial subgroup of index p and prove the Main Theorem. The final step
in each of the cases will be via results from Appendix A about group extensions.

We begin with the following setup.

Hypothesis A. S is a p-group with an extraspecial subgroup Q) of index p, F is a

saturated fusion system on S with Oy(F) = 1.

We use Hypothesis A to prove some general statements about S, such as

Theorem 4.2.
Theorem 4 (Theorem 4.2). Assume Hypothesis A. Then Z(S) = Z(Q).

In its proof we already see that the cases |S| = p* and |S| > p® behave
differently, so we restrict our attention to |S| > p®, hence we may refine our setup

using Theorem 4.
Hypothesis B. Assume Hypothesis A, |S| > p°, and set Z := Z(S) = Z(Q).

Then we prove that () indeed mimics the role of an abelian subgroup as desired.



Theorem 5 (Theorem 4.4). Assume Hypothesis B. If E < Q) is F-essential then
E=0Q.

We define

M :={E < S| E is F-essential and Z is not normalised by Autz(F)},

which is nonempty since there must be some F-essential subgroup that moves Z.

We split the cases according to the structure of Z := (Z(S)Aut#(E)),
Hypothesis C. Assume Hypothesis B and that there is E € M such that Zg < Q).
Hypothesis D. Assume Hypothesis B and that for all E € M we have Zg £ Q.

In Section 4.2 we consider the situation when Hypothesis C holds, and we prove

that one of case (1) or (3) of the Main Theorem holds.

Proposition 1 (Proposition 4.9). Assume Hypothesis C and let E € M with
Zp < Q. Then |S| = p° FE is mazimal in S, and either |®(E)| = p? and S
is isomorphic to a Sylow p-subgroup of SLy(p) or p > 5, |P(E)| = p* and S is

isomorphic to a Sylow p-subgroup of Ga(p).

To prove this proposition we first show that |Zg| = p? and Cs(Zg) is maximal
in S using McLaughlin’s results on groups generated by transvections, and we have
O" (Outr(Cy(Zg))) = SLy(p), which yields an abelian subgroup Fg of index p?
in Q forcing |Q| < p'**, and then we prove that E = Cs(Zg). Then we consider
the possibilities for ®(F), which yields the upper and lower central series of S. If
|®(E)| = p* we prove that S has maximal class, @ has exponent p and there is

a complement to ) in S, whence we conclude using Proposition 1.32 that S is
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isomorphic to a Sylow p-subgroup of Gy(p). If |®(F)| = p? we deal with the case
p = 3 separately via a Magma computation, whereas if p > 5 we find Cg 2V 4S8
and a complement to V in S, and conclude again by Proposition 1.32.

In Section 4.3 we consider the remaining case, concluding the Main Theorem.

Proposition 2 (Proposition 4.21). Assume Hypothesis D and let E € M. Then
either S is isomorphic to a Sylow p-subgroup of SU,(p) and |E| = p* with
O (Autz(E)) = PSLy(p?), orp > 7, |E| = p* and |S| = p*~' where S has

maximal class and is unique up to isomorphism.

A first step in proving this proposition is showing that E and Ng(E)/E are
elementary abelian, after which we use Thompson’s Replacement Theorem to
obtain that either £ < S is the unique elementary abelian subgroup of maximal
order in S or E admits a quadratic action. We consider first the case where F has
maximal possible order, that is £ N () is maximal abelian in ), which determines
O (Autx(E)) & PSLy(p?). A study of the module structure of F under the action
of O (Autx(E)) and a comparison with a parabolic subgroup of SUy4(p) then show
S to be isomorphic to a Sylow p-subgroup of SU,(p) via the Model Theorem.
Afterwards we assume F N (@ is not maximal abelian in () and, by considering
the action of £ on QQ/Z, we show that |[Ng(E)/E| = p. Then we prove that this
action on ()/Z has a single non-trivial Jordan block and, since it can be seen as a
subgroup of Out(Q) = C'Spa,(p), it forces E to be an F-pearl. A result of Grazian
(|Gral8, Theorem 3.14]) then implies that |S| = pP~! and has exponent p, whence
we conclude by Proposition 1.31.

In Theorem 4.27 we gather the previous results of this chapter and conclude

the Main Theorem, which contains extra information about the elements of M
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and their F-automorphism groups which will be used in the cases to be considered.

We note that the reduction as presented depends on the Classification of Finite
Simple Groups, which is assumed in Theorem 1.59 to obtain the list of groups with
a strongly p-embedded subgroup with noncyclic Sylow p-subgroups, as well as to
obtain Sambale’s bound [Sam14, Proposition 6.10] for |Ng(E)/E| in terms of the
rank of F, which is used in Lemma 4.6 and Proposition 4.23 (Hypothesis D) to
show that |S| = p° and that OP (Autz(E)) = PSLy(p?), while showing that S is
isomorphic to a Sylow p-subgroup of SU4(p).

Once the reduction is complete, we proceed to study the cases that arise.

Chapter 5 is devoted to the study of Case (2) of the Main Theorem and the
proof of Theorem 1, that is when S isomorphic to a Sylow p-subgroup of SU,(p).
Since the Sylow p-subgroups of SU,(p) are very similar to those of SL4(p), we begin
by describing both isomorphism types of S and their automorphism groups together.
We show that if the subgroups studied in the Main Theorem are F-essential, they
are always in M, and then prove that () is the only subgroup which can F-essential
but not in M.

Then we specialise to the case p > 5, as we apply a generalisation of the result
of Meierfrankenfeld ([Che04, Lemma 2.8]) to determine O (Out#(Q)) = SLo(p),
whereas when p = 3 there are more groups acting appropriately. We then study
the natural Q, (p)-module. It is at this point that we specialise to a Sylow
p-subgroup of SUs(p). We show that both @ and V := Cg(S’) must be F-
essential, and translate the earlier module description to results about the action
of OP (Autz(V)) = PSLy(p?) on V. We then study the interaction between iso-
morphisms in O (Autz(Q)) and O (Autz(V)) to determine the smallest possible

Aut%(S) and determine its uniqueness, which involves some delicate calculations.
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We then put together the results to determine a subsystem JFj, then show that
PSU,(p) realises Fy, which shows that F is saturated and therefore Fy = O (F),
before finally obtaining the one-to-one correspondence in Theorem 1.

The case where p = 3 is studied in [BFM], since a Sylow 3-subgroup of the
sporadic finite simple group McL is isomorphic to a Sylow 3-subgroup of SU,(3).

In Chapter 6 we study case (4) of the Main Theorem and prove Theorem 2.
This chapter begins with a construction of S and a finite group B as in [PS15],
which enables us to calculate explicitly in the candidates for Autz(S). Then we
study the action of Aut(S) on the sets X and P of maximal subgroups of S of
maximal nilpotency class and corresponding self-centralising subgroups of order p?,
before determining that every F-essential subgroup is either ) or an element F
of P, that is an F-pearl, and describe Autz(E) and Outz(Q). If @ is F-essential
then we determine uniquely Nz(Q) and find a model for it before determining F
in Theorem 6.7. If () is not F-essential, the situation is much more complicated
and described before Theorem 6.8, where we prove saturation and exoticity of the
fusion systems constructed. We note that in this case we obtain a lower bound
of 2:_—711_1 on the number of reduced fusion systems, since we have 2°~! nonempty

subsets J C {1,...,p— 1} to choose from, and each orbit has length at most p — 1,

-1

hence there are at least -

such orbits, hence the same number of reduced
fusion systems Fy .

The snippet of Magma code in Appendix C.1 calculates the number of orbits
for a given prime, but due to the large number of calculations necessary, it is only
practical up to p = 19. The total number of fusion systems with O,(F) = 1 is
slightly larger due to the p’-extensions that also arise.

Since throughout the reduction we assume that |S| > p% we consider the case
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when |S| = p* separately in Chapter 7, where we prove Theorem 3. As groups of
order p* always contain an abelian subgroup of index p, we use the results from
[Oli1l4, COS17, OR17], where a recipe for obtaining the fusion systems is described.
We use their results to give explicit descriptions of the fusion systems in Tables 7.1
and 7.2, and note that only the simple fusion systems are described in this case.
We also encounter a family of fusion systems described in [CP10]. Our strategy
in this chapter follows that of [Olil4, COS17], by considering first the case where
A is not F-essential, and considering the various cases that arise, before moving
to the case where A is F-essential, in which case it is elementary abelian and we
follow the results from [COS17]. Throughout this chapter the cases p = 3 and
p = b5 require different arguments, whereas whenever p > 7 a uniform description is
possible.

In Chapter 8 we conclude with the state of the research question, which is almost
complete. We also consider the strongly closed subgroups of F and determine that
F = OP(F) in most cases. There is a case left to consider, which is that of S a
Sylow p-subgroup of SL4(p).

Appendix A presents background material used in the problem of determining
group extensions of N by H, which is used in some propositions that appear
in Chapter 1, and are used in the proof of the Main Theorem to determine the
uniqueness up to isomorphism of the p-groups in question.

When the group extensions split or when N is abelian, this is well-known and
depends on the conjugacy class of Aut(N), but in our case N = Q = pl™" is
nonabelian, and it is easier to study conjugacy in Out(N) = Spa,(p) x Cp—1. For
this reason we have to deal with group extensions in a more complicated setting.

We follow mainly the treatment in [ML63, Chapter IV].

13



We begin by describing the notation of diagrams and exact sequences, and prove
a version of the short five lemma, before moving onto semidirect products and their
characterisations. While in the rest of the thesis we use the standard notation
of having the normal subgroup on the left, in this chapter we write the normal
subgroup on the right due to our maps acting on the right. Then we consider
the problem of group extensions in more general terms, which induces only a
homomorphism 1 : H — Out(N). We introduce congruence of extensions, which is
an equivalence relation preserving ¥ which used to classify group extensions, slightly
weaker than isomorphism of the resulting groups. Then we state some results
relating low dimensional group cohomology to group extensions, and calculate an
explicit example for C, by C), in Lemma A.15. We finally consider the general theory
with abstract kernels, and sketch a proof of MacLane’s classification (Theorem
A.18).

With this result we show that Aut(/N) being a split extension of Inn(N) by a
subgroup isomorphic to Out(/N) guarantees the existence of extensions of abstract
kernels, and that Out(/V)-conjugate homomorphisms give rise to isomorphic groups.
These results are applied in Section 1.6 to study the extensions of () = p}r”” by
C, in the relevant cases.

In Appendix B we study which Sylow p-subgroups of finite simple groups contain
an extraspecial subgroup of index p and prove Proposition B.1, which also considers
the isomorphism types of their fusion categories. We then present some corollaries
exploring the possibilities for each of the Sylow p-subgroups.

We begin by presenting some consequences of the Main Theorem which reduce
the cases to be considered. We first consider the groups of Lie type in defining

characteristic, where we obtain the four infinite families of groups, PSL4(p),
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PSU4(p), Go(p) and Sps(p), except Go(3). We then consider the symmetric and
alternating groups, which yield only small examples. Then we study the groups of
Lie type in cross characteristic, except when p = 2. We then consider the finite
sporadic simple groups.

If p > 7, the four groups of Lie type in characteristic p are the only finite simple
groups whose Sylow p-subgroups have the required property. Our main sources for
results about the finite simple groups used are [Wei55], [GLS98], [CCN*85] and
[Car72]. The only p-groups other than the Sylow p-subgroups of the four infinite
families above have order 3*.

In Section B.5, we consider the fusion categories of the finite simple groups up
to isomorphism, and complete the proof of Proposition B.1. Finally, in Section B.6,
we show that no more examples can arise from almost simple groups when p > 5.

In Appendix C certain Magma programs used in the thesis can be found. These

give a program to calculate the orbits of the multiplicative action of GF(p)*

on
GF(p)*, a reduction to a Sylow 3-subgroup of SL,(3), and a program to obtain

Fs(G)-essential candidates given a finite group G, a Sylow p-subgroup and p.
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CHAPTER 1

GROUP THEORY BACKGROUND

In this chapter we introduce definitions, notation and results about finite groups,
as well as some methods which will be important when working with fusion
systems. The notation that we use is mostly standard, and our main sources are
[Gor80, Hup67, DH92|. Our groups are always finite, p is a prime number, and we

write maps on the right.

1.1 Conjugation and commutators

Let G be a finite group. Given g € G, the conjugation map by g is ¢, : G — G
defined by h — hc, = h9 = g~'hg. For g,h € G we denote the commutator of g
and h by [g,h] = g7"h~ gh = g~ (gcn).

When H, K < G we denote [H, K| = ([h,k] | h € H, k € K), the commutator
of H and K. We write G’ = [G, G] for the derived subgroup of G.

We denote by O,(G) the largest normal p-subgroup of G, by O, (G) the largest
normal subgroup of GG of order not divisible by p.

We also denote by OP(G) the intersection of all K < G of index a power of p,
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and by Op/(G) the smallest normal subgroup of index coprime to p, which is the
subgroup generated by all Sylow p-subgroups of G.

If G, H are groups then we denote by Hom(G, H) the set of group homomor-
phisms with domain G and codomain H. We write Aut(G) for the group of
automorphisms of G, Inn(G) for the subgroup of inner automorphisms of G, and
Out(G) = Aut(G)/ Inn(G) is the outer automorphism group of G.

If g € G and a € Aut(G) then we denote by [h, ] = h™!(ha). Note that if « is
a conjugation map ¢, then this becomes h™'(hc,) = h™'g~thg = [h,g]. It H < G
and A < Aut(G) then we write [H, A] := ([h,a] | h € H,a € A). Similarly when
a € Aut(G) we write [H,a] := (h™'(ha) | h € H).

The derived series of G, denoted by G, is defined by G(®) = G and iteratively
G =[GV GO = GU'. If G™ =1 for some n € N, G is solvable and the
derived length of G is the smallest k such that G*) = 1.

The upper central series of G is the sequence of subgroups

1=2y(G) 4 Z(G) -~ 2 Z(G) D -+

defined by Zy(G) =1 and Z;(G) is the preimage in G of Z(G/Z;_1(G)). That is,
Zi(@) ) Z; 1 (G) = Z(G/Z;_1(G)). In particular, Z;(G) = Z(G). We call Z5(G) the
second centre of G.

Analogously, the lower central series of G is the sequence of subgroups
GEp(G) B 2y(G) -

where v;(G) = [vi-1(G), G]. A group is nilpotent if the lower central series (equiva-
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lently, the upper central series) terminates, that is 7, (G) = 1 for some n € Z. The
least n such that v,,1(G) =1 (equivalently Z,(G) = G) is the nilpotency class of
G.

The Frattini subgroup of G, denoted ®(G) is the intersection of all maximal
subgroups of G.

The socle of G, denoted by soc(G), is the subgroup generated by all minimal
normal subgroups of G.

We will denote by |G|, = v the p-part of |G|, that is, the the highest exponent
v such that p” divides |G|, that is, p” is the order of a Sylow p-subgroup of G.

The generalised Fitting subgroup F*(G) is the subgroup generated by the
components of GG, which are the quasisimple subnormal subgroups of GG, and the
Fitting subgroup, which is the largest normal nilpotent subgroup of G. More details

about this subgroup can be found in [GLS96, §3].

From now on, we assume that P is a p-group.

Then P is called elementary abelian if it is abelian of exponent p, in other words
P = CF for some n € Z>y.

For each i € Zsq we define the subgroups Q;(P) = (g € P | ¢* = 1) and
U'(P)=G" = (¢" | g€ P).

We then have ®(P) = P'U!(P), and ®(P) is the smallest subgroup of G such
that P/®(P) is elementary abelian.

The rank of P is |P/®(P)|,.

The p-rank of P, denoted by m,(P), is the largest rank of an elementary abelian
p-subgroup.

Every p-group P of order p" is nilpotent and has nilpotency class at most n — 1.
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We say P has mazimal class if it has nilpotency class n — 1.

We will repeatedly use the Frattini Argument.

Theorem 1.1 ([Gor80, Theorem 1.3.7]). If H < G and P € Syl,(H) then
G = Ng(P)H.

The following is a useful number-theoretic result to prove that certain groups

do not embed into other groups.

Theorem 1.2 (Zsigmondy, [Zsi92]). Let g and n be integers with ¢ > 2 and n > 3.
Provided (q,n) # (2,6), there is a prime s such that s | ¢" — 1 but s does not divide
g —1 fori<n.

The following is a well-known way to prove a p-group has maximal nilpotency

class.

Proposition 1.3 ([Ber08, Proposition 1.8]). Let S be a nonabelian p-group. If

A < S of order p* is such that Cs(A) = A then S is of mazimal nilpotency class.

1.2 Regular p-groups

We now present some results about regular p-groups, which were introduced by
Hall in [Hal34] and generalise some properties of abelian groups. They will allow
us to complete the determination of the structure of certain p-groups when p is

large enough, leaving some small primes to be checked separately.

Definition 1.4. A p-group S is called regular if for every x,y € S we have

xPyP = (:cy)pw for some w € Ul((% y>’)-
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Proposition 1.5 ([Hup67, I11.10.2 Satz]). Let S be a p-group.
1. If the nilpotency class of S is less than p then S is regular.
2. If |S| < pP then S is regular.
3. If S" is cyclic and p > 2 then S is reqular.
4. If S has exponent p then S is reqular.

The lemma above shows that there are fewer regular p-groups when p is small.
Next we note some properties of p-groups for p = 2,3, as well as present a family

of smallest irregular groups.
Proposition 1.6 ([Hup67, I11.10.3 Satz]).
1. Fvery reqular 2-group is abelian.
2. If S is a regqular 3-group with two generators then S’ is cyclic.
3. The Sylow p-subgroups of the symmetric group Sy2 are irregular of order pP**.

The Sylow p-subgroups of S, will be studied later in Lemma 1.28, have
nilpotency class p, order pP*! and exponent p?, which shows that the bounds in
Proposition 1.5 (1,2,4) are best possible. The main reason we use regular p-groups

is because their structure with respect to p-powers is well-behaved.

Theorem 1.7 ([Hup67, 111.10.5 Hauptsatz, 111.10.7 Satz]). Let S be a regular

p-group and k € Z>o. Then

1 If o =y =1 then (zy)" = 1. In particular Qu(S) = {z | 27" = 1}.
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2. For every x,y € S there exists = € S such that #®"y*" = 2#". That is,

OF(S) = {a*" |z € S}

3. 19/Qu(8)] = [B*(S)].

1.3 Extraspecial p-groups

Definition 1.8. A p-group @Q is called extraspecial if Z(Q) = Q' = ®(Q) and
1Z(Q)| =p.
Note that by definition )/Z(Q) is elementary abelian, and @ has nilpotency

class 2, so if p is odd @ is regular. The case p = 2 is slightly different to the case

when p is odd. We begin by describing the normal subgroups of Q.

Lemma 1.9. Let QQ be an extraspecial group. A nontrivial subgroup H < Q) 1is

normal in Q if and only if Z(Q) < H.

Proof. 1f 1 # H < @ with Z(Q) < H then [H,Q] < Q' = Z(Q) < H so H 9 Q.
Conversely if 1 # H < @ then as |Z(Q)| = p either [H,Q] =1 and H < Z(Q), or
Z(Q)=Q =[H,Q < H. O
Lemma 1.10 ([KS98, (5.1.8)]). Let A and B be subgroups of a p-group P satisfying

[A,B] < AN B and |[A, B]| < p. Then |A: Ca(B)| =|B: Cx(A)|.

An exposition of results about extraspecial p-groups can be found in [DH92,
A.20]. The smallest examples of nonabelian p-groups are extraspecial. In fact,

every p-group of order p? is either abelian or extraspecial.

Lemma 1.11 ([DH92, A.20.7]). The following groups are extraspecial of order p?,

and every extraspecial group of order p* is isomorphic to one of the following:
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P = (z,y | a? = yP = 1,[[z,9],2] = [[x,y],y] = 1) for p odd,

p1_+2 = <.I',y | CEPQ = Z/p = 17 [xuy] = xp> fOT’p Odd’
Ds=(z,y|at=y*=1Ly ay=a""), or
Qs = (i,j, k | i* = j> = k* = ijk).

These groups are the building blocks of extraspecial groups.

Lemma 1.12 ([DH92, Lemma A.20.4]). If Q is an extraspecial group satisfying
Z(Q) = (z) then Q/Z(Q) is a vector space over GF(p) endowed with a symplectic
form defined by (xZ(Q),yZ(Q)) = k whenever [x,y] = 2* for some 1 <k <p. If
p=2the map q: Q/Z(Q) — GF(2) given by xZ(Q)q = b whenever z* = 2° is
a non-degenerate quadratic form on Q/Z(Q) associated with the symplectic form
above. Every extraspecial group has order p'™" for some n € Zo and is a central

product of n extraspecial groups of order p3.

Theorem 1.13 ([DH92, Theorem A.20.5]). An extraspecial group Q of order p'™"
satisfies exactly one of the following:
pF£2 Q= p}rH” has exponent p and is a central product of n copies ofp}fz;
p# 2, Q= pt has exponent p* and is a central product of n — 1 copies of

pit? and a copy of ptt3;

p=2, Q%= 2#*2” s a central product of n copies of Dg; or

p=2, Q=2 is a central product of n — 1 copies of Dy and a copy of Qs.
Their automorphism groups are also well-known.

Theorem 1.14 ([Win72, Theorem 1],[DH92, Theorem A.20.8-9]). Let @) be an
extraspecial group of order p'™2". Denote by A = Aut(Q), B = Ca(Z(Q)), and

C=0Cp(Q/Z(Q)). Then we have:
1. C=Inn(Q) 2 Q/Z(Q) is elementary abelian of order p**;
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2. A = BT is the semidirect product of B with a cyclic group T of order p —1;
3. B/C' is isomorphic to the following subgroup of Spa,(p).

(a) If p is odd and Q = p™" then B/C = Spy,(p);

(b) If p is odd and Q = p"**" then B/C is isomorphic to a semidirect
product of a normal extraspecial group of order p**~1 with Spa,_»(p). If
n =1 then |B/C| = p,

(c) If p =2 then B/C = O(q), the orthogonal group for the quadratic form

q associated with Q) in Lemma 1.12.

Corollary 1.15. Let p be odd and Q = p*™". Then Q contains characteristic

subgroups 1(Q) of index p and Z((Q)) of order p*.

Proof. As Q) is a central product of extraspecial groups of order p® where all but one
can be taken to have exponent p by Theorem 1.13, it contains a maximal subgroup
of exponent p. But as ) has nilpotency class 2 and p is odd, it is a regular p-group
by Proposition 1.5 (1), therefore by Theorem 1.7 it is not generated by elements of
order p and Q1(Q) < Q. Hence ;(Q) contains all elements of order p and thus is
a characteristic subgroup of ) of index p, and it is the unique maximal subgroup of
Q of exponent p. Then Z(Q(Q)) has order p* by Lemma 1.10. Further, Z(Q:(Q))
is characteristic in 21(Q), which is normal in @, hence Z(£(Q)) is characteristic

in Q. ]

When p is odd, Aut(Q) is a semidirect product of Inn(Q) by a group isomorphic
to Out(@), and we now explain this when @ has exponent p. We recall that a
group G is a semidirect product if there exist H, N < G with N I G, HNN =1,

and G = NH. They will be considered in more detail in Appendix A.
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We denote by C'Sps,(p) the group of similarities of a symplectic vector space
V over GF(p), that is those elements preserving a symplectic form up to scalars.
We have C'Spa,(p) = Span(p) x Cp_1, and Out(pit?) =2 C'Spy,(p) when p is odd by

Theorem 1.14.

Lemma 1.16. If p is odd and Q = p}™" then Aut(Q) = Inn(Q) x C'Span(p), that
is Aut(Q) is a semidirect product of Inn(Q) by Out(Q).

Proof. Note that Inn(Q) < Aut(Q), and by Theorem 1.14 we have Out(Q) =
CSpan(p). Consider a group Inn(Q) < B < Aut(Q) such that B = B/Inn(Q) <
Z(0Out(Q)) has order 2, that is, the nontrivial element of B is the central invo-
lution of CSpy,(p). Let T' € Syly(B), then |T| = 2. Note that B < Aut(Q)
as B < Z(Out(Q)). Then by the Frattini argument (Theorem 1.1) we have
Aut(Q) = Naur(q)(T)B, and since T' < Naw()(T) N B, it follows that Aut(Q) =
Naw(o)(T)Inn(Q). But the nontrivial element of T' inverts Inn(@), so that
1 = Cran@)(T) = Naur@)(T) N'Inn(Q), which means that Nay)(7) is a comple-
ment to Inn(Q) in Aut(Q). Therefore Aut(Q) is a semidirect product of Inn(Q)
by Naut(q)(T') as claimed. O

We now consider the maximal abelian subgroups of () and its p-rank.

Lemma 1.17 ([Hup67, I11.13.7, 111.13.8]). Let Q be an extraspecial group of order

1+2n

P . Then its mazimal abelian subgroups all have order p*™™. Furthermore, @

has p-rank 1+ n, unless p = 2 and Q = 272" =2 D1 o Qg, which has 2-rank n.

We remark that abelian subgroups of an extraspecial group () correspond to
singular (isotropic) subspaces in the symplectic (orthogonal) space Q/Z(Q) via the

symplectic (quadratic) form given in Lemma 1.12.
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Finally, we consider the representation theory of extraspecial groups.

Lemma 1.18. Let Q be an extraspecial group of order p**". Let K be an alge-
braically closed field of characteristic v # p. Then @ has p*™ linear irreducible
representations over K and every nonlinear irreducible representation has degree

p" over K. There are p — 1 such representations.

Proof. |Z(Q)| = p so there are p central conjugacy classes of size 1, and Q/Z(Q) is
elementary abelian, so every other conjugacy class corresponds to a coset of Z(Q)
and has size p. There are (p'*2" —p)/p = (p** — 1) such. Thus there are p*" +p—1
conjugacy classes and irreducible representations of Q. Now |Q/Z(Q)| = p** and
is abelian, so we have p?" linear characters by [Hup67, V.6.5]. Therefore there are
p — 1 nonlinear characters, and their degrees are p* for some k € N since Q is a
p-group.

Now p'*?" = |Q| = erm«(Q) x(1)? = p™ + ernr(@),xg)x x(1)%. Thus as

'

> verrr@ms1 X(1)? = p?"(p — 1) has p — 1 terms the average value is x(1) = p".
However if there is some x such that x(1) > p™ then x(1) > p'™ and thus

x(1)? > p*™" > |Q|. Hence all nonlinear representations must have degree p". [J

1.4 Isomorphisms between small classical groups
We will often encounter classical groups, and we have the following well-known
isomorphisms between them.

Proposition 1.19 ([KL90, Proposition 2.9.1]). The following groups are isomor-
phic:
1. SLs(q) = Spa(q) = SUs(q).
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10.

11.

12.

15.

14.

15.

16.

For q odd, PSLy(q) = Q3(q).

O3 (q) = Daggr1y, SO5(q) =2 Cyz1 % Clag) and Qy =2 Clgzryj2q-1)

. Qi (q) = SLa(q) 0 SLa(q) = Craq—1)-(PSLa(q) x PSLy(q)).

Qq(q) = PSLy(¢?).

For q odd, PSpa(q) = Qs(q).

PQ(q) = PSLy(q) and PS5 (q) = PSU4(q).
PSLy(2) 2 S5 (also SLy(2) and GLs(2)).
PSLy(3) = A,.

PSLy(4) & PSLy(5) = As.

PSLy(7) & PSLy(2).

PSLy(9) 2 Ag.

PSLy(2) = As.

PSU3(2) = C2 x Qs.

PSUL(2) = PSpy(3).

Spa(2) = Se.
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1.5 p-groups with an extraspecial subgroup of in-
dex p

In this section we assume that S is a p-group containing an extraspecial subgroup
Q@ with |S : Q| = p. We begin with some results about abelian subgroups of index
p, which we can find in S/Z(Q). We use the easy fact that if X/Z(X) is cyclic
then X is abelian ([Gor80, Lemma 1.3.4]), and note that since extraspecial groups

have order at least p?, the smallest examples satisfy |S| = p*.

Lemma 1.20. Suppose S is a p-group of order p*. Then S contains an abelian

subgroup of index p.

Proof. As S is a p-group, it contains H < S of order p?, hence H is abelian. Now
S/Cs(H) = Ng(H)/Cgs(H) embeds into Aut(H) which in turn embeds into G Ly(p),
so S/Cgs(H) has order at most p. Therefore either H < Z(S), in which case every

maximal subgroup containing H is abelian, or Cs(H) is abelian of index p in S. [

Lemma 1.21 ([Olil4, Lemma 1.9]). Suppose S is a nonabelian p-group with an
abelian subgroup A of index p. Then |S/Z(S)| = p|S’| and either

1. |8 =p, S/Z(S) = C’z and S contains exactly p + 1 abelian subgroups of

mdex p; or
2. |8 > p* and A is the unique abelian subgroup of index p in S.
We now move onto p-groups with an extraspecial subgroup of index p.

Lemma 1.22. Suppose S is a finite p-group with an extraspecial subgroup () of
index p. Then either Z(S) = Z(Q) or S = QZ(S) and |Z(S)| = p*.
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Proof. As |Z(Q)| = p and Z(Q) < S, we have Z(Q) < Z(S). Thus either
Z(S) = Z(Q) or Z(S) £ Q, so S = QZ(S) and since |S : Q| = p we have
12(5)] = . .

Lemma 1.23. Suppose S is a p-group with an extraspecial subgroup () of index
p. Then |S| = p*™" for some n € Zq, S has derived length at most 3, and S has

exponent at most p>.

Proof. By Lemma 1.12 |Q] = p'™" for some n € Z+. As |S : Q| = p, we have
S| = p**?". We have S’ < Q, so S@ = [5".9] < Q' < Z(S) is abelian and
SG) = [8@) 5] = 1.

If ¢ € Q then by Theorem 1.13 ¢ has order at most p?>. As |S : Q| = p if

g € S\ Q then ¢g? € Q so g has order at most p>. O

Lemma 1.24. Suppose S is a p-group with an extraspecial subgroup @) of index p.

Then S has an abelian subgroup A of index p if and only if |S| = p*.

Proof. Suppose S has an abelian subgroup A and an extraspecial () both of index
p. Then QN A is abelian of index p in @, so by Lemma 1.17 |Q| = p® and |S| = p*.

The converse follows by Lemma 1.20. ]

The outer automorphism group of an extraspecial group is closely related to
the symplectic groups by Theorem 1.14. Hence, we now present a result on the
conjugacy classes of p-elements in symplectic groups, which will help determine
the upper and lower central series of p-groups as well as help classify extensions of

extraspecial groups by a cyclic group of order p.
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Theorem 1.25 ([LS12, Theorems 3.1 and 7.1]). Let G = Spy,(K) where K is
algebraically closed field of characteristic p. Let G, = Spa,(p). Let u= @;J;" be a

unipotent element in G. Then

1. Two unipotent elements of G are G-conjugate if and only if they are G Lo, (K)-

conjugate (i.e. they have the same Jordan form).
2. r; is even for each odd i.
3. u% NG, splits into 28 G,-conjugacy classes where k = |{i : i even,r; > 0}|.
b Co, (W) = VR where Ry =T, g Spn(p) Ty s O (p) where & — 1.

An application of this result is to obtain information about the upper and lower

central series of S, as follows.

Lemma 1.26. Suppose S is a p-group of order p*t?™ > p® with Q an extraspecial

subgroup of index p and |Z(S)| = p. Then the following hold.
1. 1S/S"| = p? if and only if S has mazimal nilpotency class.
2. If |S| = p°® and |S'| = p? then S’ = Z5(S) and S has nilpotency class 3.

In both cases Q) is the unique extraspecial subgroup of index p and is characteristic

m S.

Proof. Assume |S/S’| = p? and consider S := S/Z(S). Then S has an abelian
subgroup @ of index p so Lemma 1.21 implies that @ is the unique abelian
subgroup of index p in S and |Z(S)| = |S/S'|/p = p, hence | Z5(S)| = p?. The same
argument applied to S/Z;(S) yields | Z;.1(S)| = p"™ for i € {2,...,2n — 1}, hence

| Z2n(S)| = p* and S has nilpotency class at least 2n + 1. But since S has order
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p?T27 this is maximal nilpotency class. Conversely, if S has maximal nilpotency
class then |S/S'| = p?.

Now assume |S| = p® and |S’| = p®. We can again apply Lemma 1.21 as S
contains an abelian subgroup of index p, so p|S'| = [S/Z5(S)| and |Z5(S)| = p®.
Thus an element ¢, of S/Q = Outg(Q) < Outz(Q), which embeds into C'Spy(p)
by Theorem 1.14, acts on Q with order p and kernel m, hence its Jordan form
has 2 nontrivial blocks and is either J; @& J; or J; & Jo. However J3 @ J; is not a
symplectic element as it contains an odd number of blocks of a given odd size by
Theorem 1.25 (2). Thus ¢, has Jordan form J, @ J,, acts quadratically on @Q, and
S" = Z5(S). Therefore Z3(S) = S, hence S has nilpotency class 3.

Now if R was a second extraspecial subgroup of index p then S/Z(S) would
contain two abelian subgroups of index p, whence Lemma 1.21 (1) implies that

|(S/Z(8S))'] = p and |S’| = p?, which does not hold in either case above. O

We remark that the Sylow p-subgroups of SL4(p) and SU4(p) have the property
described in Lemma 1.26 (2), and those of G(p) have that of part (1) when |S| = p°

unless p = 3.

Lemma 1.27. Suppose S is a p-group with an extraspecial subgroup ) of index p.
Let H QS and assume S 2 Q) x H. Then either H < Q) and S/H has elementary

abelian subgroups of index p or H £ Q and S/H is elementary abelian.

Proof. If S 22 @ x H then 1 # HNQ < @ so, by Lemma 1.9, Z(Q) < H.
If HL Q then S/H = QH/H = Q/(H N Q) which is elementary abelian as
O(Q) = Z(Q) < HN Q. On the other hand if H < @ then S/H contains Q/H

which is elementary abelian of index p. O]
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The following p-groups will arise as Sylow p-subgroups of classical groups.

Lemma 1.28. Let H,j, = Cps1Cp. . 10, with k wreathed factors. Then S contains

an extraspecial subgroup of index p if and only if p =3 and Hy ), = Hy 2 = C30C5.

Proof. By [Hup67, Satz I11.15.3] H;x is a Sylow p-subgroup of the symmetric group
Sye and has derived length & and exponent p*. Note also that Hy, < Hyp if k < k.
Therefore if Hj has an extraspecial subgroup of index p then £ < 3 and s < 3 by
Lemma 1.23.

If £ =1 then Hy, is abelian. If £ = 2 then H,, has an abelian subgroup of
index p so by Lemma 1.24 we need p* = |H | = p'***, and s = 1, p = 3 is the
only option. This is Hy o = C5 Cs.

If k = 3 then |H, 3| = p'*7***" whereas by Lemma 1.23 |H, 3| = p**?*, so p is
odd, s =2, and n = *1+++2p2. But Hy3 = Cp2 21 C, 0 C), has a homocyclic abelian
subgroup of exponent p? and rank p2, thus order p?*°, so we need 2p? < 2 +n by
Lemma 1.17. Thus 4p? < 4 — 1 + p + 2p?. Therefore 2p* < 3 + p < 2p, which is
impossible.

(C31C5 contains subgroups of index 3 and order 3% that are not abelian, and every
group of order p? is either abelian or extraspecial, hence it contains extraspecial

subgroups of index 3. O

Lemma 1.29. Suppose S = AX B is a p-group with A, B nontrivial and S contains

an extraspecial subgroup @) of index p. Then S = Q x C,.

Proof. As S = A x B, there is C}, x C, < Z(S). Hence, since |Z(Q)| = p, there
exists z € Z(S)\Q of order p and, as |S/Q| = p, wehave S = Qx (z) = QxC,. O
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1.6 Isomorphism classes of p-groups with an ex-
traspecial subgroup of index p

In this section we use concepts and results from the theory of group extensions to
study p-groups S containing an extraspecial subgroup () of index p and exponent

p. We follow [ML63] and refer to Appendix A for the definitions and results used.

Proposition 1.30. Let p be odd. Suppose Q) is an extraspecial group of exponent
p, K =C, and ¢ : K — Out(Q) is a homomorphism. Then the abstract kernel
(K,Q,) has p congruence classes of extensions. There are at most p isomorphism
classes of groups realising these extensions, one of which is split. The isomorphism

type of the groups of this split extension is unique up to conjugacy of K1 in Out(Q).

Proof. Let |Q| = p'™". By assumption we have an abstract kernel (K, Q,). By
Lemma 1.16, Aut(Q) = Inn(Q) x CSps,(p) via a splitting map p, so that the
abstract kernel (K, Q,) has a split extension @ x,, K by Lemma A.19.

Thus by Theorem A.18 the set of congruence classes of extensions of () by K
via 7 is in one-to-one correspondence with H?(K, Z(Q)), which has order p by
Lemma A.15. Since a congruence of extensions gives an isomorphism of the groups
in the extensions by the Short Five Lemma A.3, there are at most p isomorphism
classes of such groups S. By the remark after the statement of Theorem A.18
these extensions differ by the choice of f, which can be chosen to be trivial in a
split extension. Hence there is a unique congruence class, thus there is a unique
isomorphism type of split group extensions of the given abstract kernel.

We have proven that given K, () and 1 there is a unique split extension of the
abstract kernel (K, @Q,1), and Lemma A.20 shows that this is independent of the

conjugacy class representative of K1 in Out(Q). O
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Note that given a conjugacy class of K¢ < Out(Q) there are, for each element,
| Inn(Q)| choices of coset representatives. These differ by some inner automorphism
of @ and are not always in the same Aut(Q)-conjugacy class. It is for this reason
that we are considering homomorphisms into Out(Q) = C'Spa,(p). To obtain the
conjugacy classes, we use Theorem 1.25 to obtain the corresponding ones in Spa,(p),
and then follow discussion in the proof of [GLO17, Proposition 2.3] for details of
the relationship between conjugacy classes of Spy,(p) and C'Spa,(p).

As in Lemma 1.26, the Jordan form of u = @J]" given by K¢ < Out(Q) =
CSpan(p) also determines the upper and lower central series of S = @ Xy, K as

follows. Let m; := > .. 7, the number of blocks in u of size at least j. Then

2]

17i(S) = Yi1(S)] = | Zia(S) : Zi(S)| = p™

for 1 <i < c¢— 1 where ¢ is the nilpotency class of S.
We now consider to p-groups of maximal class.

Proposition 1.31. There exists a unique isomorphism class of p-groups S of

maximal class containing an extraspecial subgroup ) = p}r“”cmd a complement

K =C, toQ S if and only if 1 + 2n < p.

Proof. S is an extension of the abstract kernel (K, @, ) where the image of K
in C'Spa,(p) has a single Jordan block of size Js,, which has order p if and only
if 2n < p. Thus S exists by Proposition 1.30 and the number of isomorphism
classes of S with these properties coincides with the number of conjugacy classes
of matrices with Jordan form Js, in C'Spy,(p).

By Theorem 1.25, if 1 < [ < n and we have an element u with a single

Jordan block of even size Jy, then k& = 1, and u® splits into two conjugacy classes
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in Spak(G), and the centraliser of the two conjugacy classes have isomorphic
centralisers. Further, by [GLO17, Proposition 2.3|, they are fused in C'Spa,(p), and
conjugacy class representatives can be chosen to be v and u® for o a nonsquare
modulo p.

Therefore there is a unique conjugacy class of elements with Jordan form Js,
in C'Spa,(p). Thus S is unique up to isomorphism whenever it exists, which is if

and only if 1+ 2n < p. H
We now consider p-groups of order p°.

Proposition 1.32. If p > 5 there are five isomorphism types of p-groups S of
order p® containing an extraspecial subgroup @ = pf‘l and a complement K to Q)
m S. If p = 3 there are four such groups. Information about the structure for
all odd primes is as follows, where | is the number of C'Spy(p)-conjugacy classes

corresponding to the given Jordan form and c is the nilpotency class of S. They

have exponent p as long as p > c.

Jo ® J} 11
Ji =1 01

15" = p?, | Z2(9)] = p*
S=Q. Z(5)=2@Q) xK | Qx K

Jordan form | k | [ | Sylow of | ¢ Central series Notes
Jy 1]1] Ga(p) |5 Maximal class p>5
SLy(p)
J?2 112 3 Zy(S) =9, |5 =p?
2 SU4(p) 2( ) | | p
3
2

Table 1.1: Split extensions of Q = p'** by K = C,,.
Proof. By Proposition 1.30, such groups are in one-to-one correspondence with

conjugacy classes of p-elements of order p in Out(Q) = CSpy(p). By Theorem

1.25, these conjugacy classes have Jordan form Jy, J2, Jo & JZ or J} = I, where
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all except Ji have k = 1. Thus there are two conjugacy classes of each nontrivial
Jordan form in Sp,(p).

As in Proposition 1.31, the Jordan forms Jy and J, & J? contain a single Jordan
block of even size, and we can again follow the argument in [GLO17, Proposition
2.3] to obtain that the two Spy(p)-conjugacy classes with each of the Jordan forms
Jy and J, @ J} are conjugate in C'Spy(p).

On the other hand, if 1 <1 < n/2, the two Spa,(p) conjugacy classes of matrices
with Jordan form J2 have centralisers of distinct orders as, by Proposition 1.19 (3),
05 (p)| = 2(p — 1) # 2(p+ 1) = |O5 (p)|, hence they cannot fuse in CSpa,(p).
Thus, the two conjugacy classes with form JZ are not fused in C'Spy(p). In the
remaining case J{ = I, centralises @, hence it gives rise to Q x K.

Note that if p = 3 then, as 4 > 3, the Jordan block J; has order 9 and the
corresponding v is not a homomorphism, and so there is no split group in this case.

By [GLS98, Theorem 2.2.9], the Sylow p-subgroups of Ga(p) (p > 5), SL4(p)
and SUy(p) have order pb. If p > 5, the Sylow p-subgroups of G(p) contain an
extraspecial subgroup of index p by [PS18, Lemma 3.1]. For any prime, the Sylow
p-subgroups of SL,(p) and SU,(p) also contain an extraspecial subgroup of index
p which we can observe in the parabolic subgroups p'™* : (GLy(p) x (p — 1)) and
pt: SUs(p) : (p* — 1) described in [BHRD13, Tables 8.8 and 8.10] respectively.

Let ¢ = 5 for Go(p) and ¢ = 3 for SLy(p) and SUs(p). Then c is the nilpotency
class of the Sylow p-subgroups by [GLS98, Proposition 3.3.1] and their upper and
lower central series coincide. If p > ¢ then the Sylow p-subgroups have exponent
p as Ga(p) embeds into SO(p) by [Wil09, p121], and SLs(p) < GL,(p) and
SU4(p) < GL,(p?), thus @ has exponent p and a complement K = C,. In the

remaining cases Ga(5), SL4(3) and SU,(3) [GLS98, Proposition 3.3.1] (or a short
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Magma check) their Sylow p-subgroups have exponent p? but have () maximal of
exponent p and a subgroup R = Cg(Z5(S5)) in Go(5) or V = J(S) in SL4(3) and
SU,4(3) of exponent p, that is an element of order p outside (). Thus in all cases
they satisfy the conditions of S above with Jordan form Jy, J7 and JZ respectively.

The p-group corresponding to the Jordan form J, & J? is isomorphic to a central
product of a Sylow p-subgroup of Sp,(p), which is isomorphic to pfr” x K where K
acts as Jp, and a Sylow p-subgroup of SL3z(p), which is isomorphic to p}r”. Hence

in the central product K acts on pi™ = pit? o pit? as J, @ J2. O

Hence, in the situation of Proposition 1.32, the upper or lower central series of
S determines S up to isomorphism, except in the case where S has nilpotency class
3 and K acts on Q/Z with Jordan form JZ, which gives rise to both the Sylow
p-subgroups of SL4(p) and those of SU,(p), which are not isomorphic to each other.
These two p-groups are very similar, as their exponent, nilpotency class and many
more invariants coincide. A way to distinguish between them is by considering the
maximal subgroups of S containing the unique abelian subgroup V' of largest order.

We first consider a module structure which will be relevant.

Lemma 1.33. Let X = SLy(p®), choose T € Syl (X) and assume E = C, is a
GF(p)X-module with |Cg(T)| = p. Then E is irreducible and a natural 2y (p)-

module for X. In particular every p-element of X acts on E with Jordan form

Proof. As |E| = p* < pb [PR02, Lemma 3.12] implies that the irreducible compo-

nents of E are one of the following modules:
1. A natural SLy(p?)-module, where |Cg(T)| = p*.
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2. A natural Q3(p?)-module with p odd, but this is 3-dimensional over GF(p?*)

and thus has order p® and |Cg(T)| = p*.
3. A natural 0 (p)-module with |Cg(T')| = p.

4. A triality module V ® V7 ® Vo where o is a field automorphism of order 3,
which is impossible as we have X = SLy(p?), and GF(p?) does not have field

automorphisms of order 3.

Thus the only irreducible submodule of E is a natural €, (p)-module for X,
which coincides with E as |E| = p*, hence E is irreducible and a natural € (p)-
module for X.

Let = be a p-element of Q, (p). It acts on E with Jordan form is J3 @ J; by
[LS12, Theorem 3.1 (ii)], since it must have an even number of blocks of each even

size and at least one block of odd size. O
We can now prove the following result.

Lemma 1.34. Suppose p is odd and S is a Sylow p-subgroup of SL4(p) or of SU4(p).
Then S contains a unique abelian subgroup V of order p*, and any mazimal subgroup
M of S containing V has |Z(M)| = |M'| = p*.

If S is a Sylow p-subgroup of SL4(p) then two such mazimals satisfy Z(M) = M’
and the remaining p — 1 are all isomorphic and have Z(M) # M'.

If S is a Sylow p-subgroup of SU4(p) then all p + 1 maximal subgroups M of S
containing V' are isomorphic and have Z(M) # M’ with |Z(M)| = |M’|.

Proof. The structure of the maximal parabolic subgroups of SL4(p) and SUy(p) is
given by [BHRD13, Tables 8.8 and 8.10]. In SL,(p) we have a maximal parabolic
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subgroup with shape C; : (SLy(p) x SLa(p)) : Cp_1, whereas in SUs(p) the
corresponding maximal parabolic has shape C’;f : SLy(p?) : Cp_1, both of which
contain the corresponding Sylow p-subgroups. Thus S as in the statement contains
an elementary abelian subgroup of order p*, which we denote by V.

Note that V is the unique abelian subgroup of order p* in S as if W was a second
one then VNW < Z(VW). Hence, as |Z(S)| = p, VW < S and (VW) = Z which
implies Z(S/Z) > Q/Z NVW/Z, a contradiction since |Z5(S)| = p?.

A Sylow p-subgroup S of SL4(p) is given by the subgroup of lower triangular
matrices with 1 on the diagonal, and S/V = C, x C, by Lemma 1.27, hence there

are p + 1 maximal subgroups of S containing V', which are given by

1 0 0 O 1 0 0 O 1 0 0O

0100 *x 1 0 0 al 0 0
M, = , M, = and M(a) =

* x 1 0 * % 1 0 * % 1 0

x % % 1 * % 0 1 * % 1 1

where a € {1,...,p — 1}. Then Z(M,) = M, Z(Ms) = M; but Z(M,)) # M(’a).
Further, there is an automorphism of S given by conjugation by a diagonal matrix
with eigenvalues (—1, A, —1,1) of order p — 1 which normalises M; and Ms, but
permutes the M, hence all M, are isomorphic.

On the other hand, in SUy4(p), since the maximal parabolic considered above
has shape C : SLy(p®) : Cp_1, there exists an element 6 of order p* — 1 in SLy(p?)
normalising a Sylow p-subgroup T of SLy(p*) which is a complement to V in S,
hence § normalises V' and a complement to V in S, and #P~! acts transitively on
the p 4+ 1 maximal subgroups of S containing V. Further, as p is odd, Lemma 1.33
implies that every element of 7" acts on V with Jordan form J3 & J; hence the

corresponding maximal subgroups M of S containing V' have Z(M) # M’ with
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1Z(M)| = [M'] = p*. O

1.7 Actions of groups on p-groups

In the next sections we gather various results about groups acting on groups.
Whenever we are talking about groups acting on groups we use multiplicative
notation, but when we are considering actions on modules we use additive notation.

We begin with an easy observation.

Lemma 1.35. Let K < H be groups, A < Aut(H) with K normalised by A. If
[H,A] < K then A acts as the identity on H/K.

Proof. Let h € H, ¢ € A. Then, as [H,A] < K we have [h™!,¢] = h(h™'¢) € K
and (Kh)p = (K¢)(h¢) = K(h¢) = K[h™", ¢|(h¢) = Kh(h™'¢)(h¢) = Kh. [

We now consider coprime action, that is having automorphisms of order not
divisible by p acting on p-groups. The following result of Burnside is a starting

point.

Theorem 1.36 ([Gor80, 5.1.4 (Burnside)|). Let ¢ be a p'-automorphism of the
p-group P which induces the identity on P/®(P). Then 1 is the identity automor-
phism of P.

Lemma 1.37 ([Gor80, 5.3.3]). Fix a prime p, a finite p-group S, and a group
G < Aut(S) of automorphisms of S. Let So 457 < --- <5, =S be a sequence
of subgroups, all normal in S and normalised by G, such that Sy < ®(S). Let
H < G be the subgroup of those g € G which act via the identity on S;/S;_1 for

each 1 < i <m. Then H is a normal p-subgroup of G.

39



Proof. By definition H is a normal subgroup of G. With the assumptions in the
statement H stabilises the series Sy < ... < S, in the sense of [Gor80, (5.3)], so by

[Gor80, Corollary 5.3.3] H is a p-group. O
We now see that coprime automorphisms also allow us to decompose p-groups.

Theorem 1.38 ([Gor80, Theorems 5.2.3, 5.3.5]). Let A be a p'-group of auto-
morphisms of the p-group P. Then P = Cp(A)[P, A], and if P is abelian then
P=Cp(A) x [P, A].

We will need to consider submodules of cyclic modules, which satisfy the
following lemma. We use additive notation as we are working with modules, and
the result could also be phrased in multiplicative notation with respect of an

element acting with a single Jordan block.

Lemma 1.39. Let Z = (z) = C, and K be a field of characteristic p. Suppose M
is a cyclic KZ-module. Then |[M| < p? and M has a unique mazimal submodule

M (z — 1) which is cyclic.

Proof. Assume N is a maximal K Z-submodule of M, and note that we have
M(x —1)? = M(2P — 1) = M - 0 = 0. Choose | minimal such that M(x —1)! < N.
Then M = N + M(x — 1)1 as N is maximal. Hence

M(z—1)=N(z—1)+ Mz —1)" <N.

As M is cyclic, let m generate M. Then m(x—1) generates M(z—1) so M (z—1)
is also cyclic. Consider M /M (x—1) = (m+ M(z—1)). Thus codim(M(z—1)) =1
and M(z —1) = N. O

40



The next corollary follows from the proof above by induction.

Corollary 1.40. In the situation of Lemma 1.39 if N s a submodule of M with
M cyclic then N = M(x — 1)® for some s € Z>y.

1.8 Transvections

Definition 1.41. Let V' be a vector space of dimension n > 2 over a field K. An
element h € SL(V') is a transvection if [V, h] < Cy(h) with dim([V,h]) = 1 and

We will use the characterisation of groups generated by transvections by

McLaughlin. The theorems depend on whether or not p is even.

Theorem 1.42 ([McL67, Theorem]). Suppose K = GF(p) # GF(2), dim(V) > 2,
and that G is a subgroup of SL(V') which is generated by transvections. Suppose
also that O,(G) = 1. Then for somes > 1,V =Vi@dVi®..aV,, G =G x...x Gy,

and
1. The V; are stable for the G;.
2. Gily, = 1ifi# j. In particular [V, G] = 1.

3. G,

v. = SL(V;) or Sp(V;).

Theorem 1.43 ([McL69, Theorem]). Let V' be a vector space of dimension n > 2
over GF(2), and let G be an irreducible subgroup of SL(V') which is generated by
transvections. If G # SL(V') then n > 4 and G is one of the following subgroups

of Sp,(V): Sp,(V'), O, (V), OF (V) (except at n =4), Sy12, or Spi1.

41



The exception arises because Of (V') = (S3 x S3) : Cy via Proposition 1.19 (4,8),
where transvections generate the subgroup € (V') which is not irreducible.
In particular we will be interested in the cases where the Sylow p-subgroups of

G are elementary abelian, so we look more closely at this case.

Lemma 1.44. Suppose V' is a vector space over GF(p), dim(V') > 2. Let G be an
irreducible subgroup of SL(V') generated by transvections with elementary abelian

Sylow p-subgroups. Then V =V} has dimension 2 and G = SLs(p).

Proof. In the situation of the Lemma, O,(G) = 1 so if p is odd we can apply
Theorem 1.42 to obtain V=V, ®V; & ... ® V,. As G acts irreducibly on V, s = 1,
Vp is trivial and, as the Sylow p-subgroups of SL3(p) and Sps(p) are nonabelian,
V1 is 2-dimensional.

If p = 2 we consider the minimal examples that arise. Since SL3(2) has
nonabelian Sylow 2-subgroups, neither do any groups containing it, such as Og (2),
since Qf (2) & PSL4(2) = GL4(2) by Proposition 1.19 (7). Note that Sp,(2) = Sg
by Proposition 1.19 (16), and the smallest symmetric group that arises is S5, with
Sylow 2-subgroups isomorphic to Cy ! Cy = Dg. Now 2, (2) = PSLy(4) = As
by Proposition 1.19 (5,10), which have index 2 in O, (2) = S5. Thus the only

remaining case is SL,(2F), which has elementary abelian Sylow 2-subgroups. [

1.9 Quadratic action and Thompson Replacement
Theorem

Transvections are a particular case of quadratic action, which we now introduce.

Definition 1.45 ([GLS96, 25.1]). Let p be a prime, X be a group, and A < X a
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p-subgroup. If P is an A-invariant p-subgroup of X with [P, A, Al =1, we say that
A acts quadratically on P. If V is a faithful GF(p)X-module, A < GL(V) and
[V,A, Al =0 and A # 1 then we say that V is a quadratic X-module.

If G is a group with O,(G) =1 (p odd), a faithful representation ¢ of G on
a vector space V. over GF(p") is called p-stable provided no p-element of G¢
has a quadratic minimal polynomial. The group G is p-stable if all such faithful

representations are p-stable.

We note that if p = 2 then every element of order 2 acting faithfully on a vector
space V over GF(2) has minimal polynomial 2% +1 = 224 22+ 1 = (x +1)?, hence

quadratic action becomes interesting when p is odd.

Lemma 1.46. Suppose A < X is a group which acts quadratically on a faithful
GF(p)X-module V. Then A is elementary abelian.

Proof. Since [V, A, A] = 0, we have [A,V,A] = 0 and by the Three Subgroup
Lemma [A, A, V] = 0, so as A acts faithfully it follows that [A, A] = 1, that is
A is abelian. Now let a € A and v € V, then [v,a,a] = 0 so [v,a] € Cy(a) and
hence [v,a?] = [v,a]® + [v,a] = 2[v, a], thus for m > 2 we have [v,a™] = m[v,a]. In
particular p[v,a] = 0 and as V is a faithful GF(p)-module this means that a? = 1,

so A is elementary abelian. O]

The concepts above are closely linked to SLy(p), as the following result demon-

strates.

Theorem 1.47 ([Gor80, Theorem 3.8.3]). Let p be odd and G be a group with
0,(G) = 1. If G is not p-stable then there are subgroups K < H < G such that
H/K = SLy(p).
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Lemma 1.50 will be useful when studying Autz(@). It uses standard techniques
and is similar to [Che04, Lemma 2.8 (U. Meierfrankenfeld)]. Note that it does
not work for p < 3. We will need it when discussing the automisers of essential

subgroups when S is a Sylow p-subgroup of SL4(p) or SU,(p).

Lemma 1.48. Let G be a group, K be a field, S € Syl (G), and Vi, Va be KG-
modules. Let 0 : Vi — V5 be a KG-module isomorphism. Then the eigenvalues of

r € Ng(S) on Cy,(S) and on Cy,(S) are the same.

Proof. Let v € Cy,(S), then (vf)s = (vs)d = vl for all s € S, so Cy,(5)8 = Cy, ().
Further, let v be a A-eigenvector for r, then (v0)r = (vr)f = (Av)d = \(vh), so vl
is a A\-eigenvector for r. The same argument with 0! gives this property for 671,

hence the lemma is proved. O

Lemma 1.49. Let H = SLy(p) and S € Syl,(H), let V' be the natural module for
H and let r € Ny(S)\ S. Then there exists h € H\Ng(S) such that r normalizes
Sh. Moreover, if o(r) # 2, the subspaces Cy(S) and Cy(S") are eigenspaces of r

for distinct eigenvalues X\ and \71.

Proof. By Sylow’s Theorems, we may assume that S consists of unipotent lower

triangular matrices. Then, as Ny (S) = C, x C,_; contains a unique conjugacy

A0

class of complements to S and r € Ny(S)\ S, we may assume r = (%

) for some
A € GF(p), hence r normalises the subgroup of unipotent upper triangular matrices,
which is another Sylow p-subgroup of H and hence is S" for some h € H \ Ny(S).

Further, r has eigenspaces Cy(S) and Cy (S") with respective eigenvalues A and

A~1) which are distinct unless \> = 1, that is o(r) = 2. O
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Lemma 1.50. Letp > 3, G be a group with S € Syl (G) of order p, O,(G) =1, and
let V' be a 4-dimensional faithful GF (p)G-module with Cy(S) = [V, S] of dimension

2. Then O (G) =2 SLy(p) and V is a direct sum of two natural SLy(p)-modules.

Proof. Since G acts faithfully on V| G embeds into Aut(V') = G Ly(p). Assume G is
a minimal counterexample to the lemma, that is, S < G < GLy(p) with |G| minimal
such that O,(G) =1 and if S < L < G with O,(L) = 1 then O” (L) = SL,(p) and
V is a direct sum of two natural SLs(p)-modules for L.

Let S = (s). Since Cy(S) = [V, 5], we have [V,s,s] =0, and, as O,(G) = 1,
s € G\ O,(G). Because V is a faithful G-module, [Che04, Lemma 2.4] yields G has
a subgroup H such that H = (sf) = SLy(p), and V = [V, H] & Cy(OP(H)) where
[V, H] is a direct sum of natural SLs(p)-modules for H. Since p > 3, OP(H) = H,
so Cy(OP(H)) = 0, as otherwise dim([V, s]) = 1. Hence V' = [V, H] has dimension
4. Furthermore, as an H-module, V' = [V, H] is a direct sum of two natural
SLy(p)-modules. In particular, the central involution ¢ € Z(H) negates V' and so
t=—1y € Z(GL4(p)) and t € Z(G). Therefore

Ov(G) < Oy (H) < Cy(t) = 0.

Let T € Syl,(H) \ {S}. Then H = (S,T). Since G is a counterexample to the
lemma, H # O (G) and so H is not normal in G.

Let U € Syl,(G) \ {S} and set L = (S,U). Since S # U, Oy(L) = 1. Assume
that Cy(S) N Cy(U) # 0. Then

Cv(L) = Cv(S)NCy(U) > 0= Cy(G)

45



and so L < (G. Since L satisfies the hypothesis of the lemma, induction implies
L = O¥(L) = SLy(p), V| is a direct sum of two natural SLs(p)-modules for L.
But this means Cy (L) = 0, a contradiction.

Therefore, if R,U € Syl,(G) with R # U, then
Cy(R)NCv(U) = 0. (t)
In particular,

U av®=1syL,@)" - 1) +1<p"
ReSyl,(G)
Hence [SyL,(G)| < p* + 1.

We investigate Ng(S). Since Aut(S) is abelian, we have Ng(S) < Cg(S). Fur-
thermore, Ng(5) acts on Cy () and so Ng(S)/Chng(s)(Cv(S)) is isomorphic to a
subgroup of Aut(Cy (S)) = GLa(p). Observe that Ny (S)Cny(s)(Cv (S))/Cnas)(Cv(S))
acts on Cy (S) as scalars by Lemma 1.48 (the eigenvalues of elements of Ng(.S) on

Cy(S) are equal). Tt follows that
[Nu(5), Na(9)] < Cng(s)(Cv(9)) N Na(S) < Crgis)(Cv(S)) N Ca(S).

Assume that z € [Ny(S5), Ng(S)] has p-order. Then [V, S, z| = [[V,S],2] =0
and so the Three Subgroups Lemma implies [V, x, S| = 0. Hence [V, z, 2] = 0 and so

x centralizes V' by coprime action. It follows by [Gor80, Theorem 5.3.6] that x = 1.
Hence [Ny (S), Na(S5)] is a p-group. As [Ng(S), Ng(S)] = S and S € Syl,(G), we
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conclude that

[Nu(S), Na(S)] = S < Nu(S)

and so Ng(S) is normal in Ng(S).

Assume that no two distinct conjugates of H contain S. Then, by Sylow’s
Theorem, for k,¢ € G with H* # H*, |H* N H'| is coprime to p. Suppose K is
a conjugate of H with H # K. Then, as S < H and S € Syl,(G), S does not
normalise K, as otherwise p? | [SK|. Hence [{K* | s € S}| = p and, for all s € S,
p does not divide |K* N K|. Thus

SYL(G)| > [SyL(H)|+ > [SyL(K*)[ =p+1+p(p+1)

seS
= P 2 +1>p"+12>[SyL(G)],

a contradiction.

Let K be a conjugate of H with K # H and S < HN K. Then K = HY for
some g € GG and so 5,59 < K. By Sylow’s Theorem, there exists k& € K such
that S9* = S. Now H% = K* = K. Hence we may assume that g € Ng(S). In
particular, as Ng(.S) is normal in Ng(S), Ng(S) = Ng(S)? < H9 = K. Hence
Ny (S) = Nk(S). Let X be a complement to S in Ng(S) which normalizes 7. Then
X is cyclic of order p — 1, X < Ng(S) and X normalizes some U € Syl (K) \ {S}.
Let x be a generator of X and note that by the assumption p > 3, x is not
an involution. Therefore Lemma 1.49 yields = has exactly two eigenvalues A
and A™' on V and the corresponding eigenspaces are Cy(S) and Cy (7). Since
Cy(S)NCy(U) =0 and X acts on Cy(U), there is an eigenvector for = in Cy (U)
which is not in Cy/(S). It follows that Cy(U)NCy(T) # 0. By (t), we conclude that
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T =U. But then K = (S,U) = (S,T) = H, a contradiction. This contradiction

proves (G is not a counterexample and proves the lemma. O

A way to find quadratic actions is given by Thompson’s Replacement Theorem,

which does not require that p be odd.

Definition 1.51. We define

A(P) :={A < P| A is elementary abelian of maximal order in P}.

Theorem 1.52 (Thompson’s Replacement Theorem [GLS96, Theorem 25.2]). Let
P be a p-group and V' a normal elementary abelian subgroup of P. Suppose that
A € A(P) but V does not normalise A. Then there exists A* € A(P) such that
ANV < A*NV and [A, A*] < A. Moreover, there exists some Ay € A(P) with
[V, A1, A1l =1 and [V, Aq] # 1.

We will use it as follows.

Lemma 1.53. Assume S is a p-group and F < S is elementary abelian such that
Cs(F) = F. Then either F < S is the unique elementary abelian subgroup of

mazimal order in S or F admits quadratic action.

Proof. If A(Ng(F)) = {F} then F is characteristic in Ng(F') and normal in
Ns(Ng(F)). Thus Ng(Ns(F)) = Ng(F) = S and F < S. Then A(S) =
A(Ng(F)) = {F'} and F is the unique elementary abelian subgroup of maximal
order in S.

Otherwise, there is A € A(Ng(F)) \ {F'}. If F does not normalise A, then by

Theorem 1.52 there exists some A; € A(Ng(F)) \ {F} acting quadratically on F'.
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If F normalises A, then 1 # [F, A] < A since Cs(F) < F, and [F,A, Al =1,s0 F

admits a quadratic action in both cases. O]

1.10 Strongly p-embedded subgroups

Strongly p-embedded subgroups play an important role in saturated fusion systems,
hence we study some of their properties, which can be found in [GLS96, Section

17).

Definition 1.54. Suppose G is a finite group and let p be a prime. A proper
subgroup H of G is strongly p-embedded in G if p divides |H| and for all x € G\H,

p does not divide |H N H"|.

Lemma 1.55 ([GLS96, Proposition 17.11]). G has a strongly p-embedded subgroup
H if and only if Co(x) < H for all elements of order p in H and Ng(P) < H for
P € Syl,(H).

The following corollary is also well-known and can be found in [GLS96, Propo-

sition 17.11].

Corollary 1.56. 1. H is strongly p-embedded in G if and only if No(P) < H

for all nontrivial p-subgroups P < H;
2. A strongly p-embedded subgroup of G contains a Sylow p-subgroup of G;
3. If G has a strongly p-embedded subgroup then O,(G) = 1;

4. If G has a cyclic Sylow p-subgroup P and O,(G) = 1, then Ng(24(P)) is

strongly p-embedded in G.
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In particular, if P = C, then either Ng(P) = G or Ng(P) < G is strongly
p-embedded in G.

Proof. 1. Suppose H is strongly p-embedded in G. If there is a p-group P < H,
such that Ng(P) £ H, then there is a ¢ € G with g € Ng(P) \ H. Then
P =PINP < HYNH and, therefore, p divides |H9 N H|, a contradiction.

Thus Ng(P) < H for all p-subgroups P < H.

Conversely, note that if Ng(P) < H for all p-subgroups P < H then for any
element x of order p in H we have Cg(r) < Ng((z)) < H, and if S € Syl (H)

then Ng(S) < H by assumption, so by Lemma 1.55 H is strongly p-embedded
in G.

2. Follows by (1) as if R € Syl (H) and R ¢ Syl,(G) then H > Np(R) > R
where R < P € Syl (G).

3. Suppose H < G is strongly p-embedded. We know that O,(G) is contained
in every Sylow p-subgroup of G and thus by (2) O,(G) < H. If O,(G) # 1,
by (1) G = Ng(O,(G)) < H < G, a contradiction. Hence O,(G) = 1.

4. Assume P € Syl (G) is cyclic and set H = Ng(£1(P)) < G as Oy(G) = 1.
Then P < H. Let 1 # @ < H be a p-group. Then @ < P9 for some
g € H. As P9 is cyclic, 1(Q) = Q1 (P9) = Q(P)? = Q1(P) so we have
Ne(Q) < Ng(1(Q)) = No(1(P)) = H and H is strongly p-embedded in G
by (1).

In particular, if P = C,, then €;(P) = P and the last part follows.
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By Corollary 1.56 (4), there is no hope of classifying all groups with strongly
p-embedded subgroups when the group has Sylow p-subgroups which are cyclic.
However, if they have p-rank at least 2 then the structure of G is close to being
simple. We will use the following lemma. We recall that a group G is almost simple

if there exists a nonabelian finite simple group 7" such that 7' < G < Aut(T).

Lemma 1.57. Suppose G is a finite group with T' < G a nonabelian simple group

that is the unique minimal normal subgroup of G. Then G is almost simple.

Proof. As T'< G we have a map ¢ : G — Aut(7) such that g¢ = ¢,|r. Then
kerp = Cq(T) Q Ng(T) = G, but Ce(T)NT = Z(T') = 1 as T is nonabelian simple.
Thus since T is the unique minimal normal subgroup of G, we have Cg(T') = 1 and
¢ is injective, so G is isomorphic to a subgroup of Aut(7). We have T'¢ = Inn(T),

so T < G < Aut(T) and G is almost simple. O

Theorem 1.58. Assume that G is a finite group, H < G is strongly p-embedded
and H contains an elementary abelian subgroup of order p*. Then Oy (G) < H,
H/O,(G) is strongly p-embedded in GO, (G), and O¥ (G/O,(G)) is a nonabelian

almost simple group.

Proof. Assume that H is strongly p-embedded in G. Let G = G/Oy(G). Assume
T is a normal p’-subgroup of G. Let A < H be elementary abelian of order p?.
Then by [Gor80, Theorem 6.2.4] we have T'= (Cr(a) | a € A\ 1).

As H is strongly p-embedded in GG, we have by Lemma 1.55 T < H. In
particular, O, (G) < H. Then for any p-group P < H = H/O,(G), we have
P = R/Oy(G) for some R < H with O,(G) < R. Let P € Syl,(R). Then by
the Frattini Argument (Theorem 1.1) Ng(R) = Ng(P)R < H as H is strongly
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p-embedded in G. Therefore Ng(P) = Ng(R) < H and, by Corollary 1.56 (1), H
is strongly p-embedded in G.

So now assume Oy (G) = 1, fix S € Syl,(G), and let T' be a minimal normal
subgroup of G. As G has a strongly p-embedded subgroup H, O,(G) = 1 by
Corollary 1.56 (3). Then T is not a p-group and not a p’-group either as O, (G) = 1.
As T is minimal normal, it is characteristically simple. Thus, as T" is nonabelian,
T is a direct product of isomorphic nonabelian simple groups 7' = L; X ... X L by
[Asc86, Lemma 8.2].

If k>1let Sy =SNL €8yl (L) and S = SN (Ly x ... x L) which is in
Syl,(La x ... X Ly). As Op(G) =1, 51 and S, are nontrivial. Hence L; < Ng(S>)
and Ly X ... x L, < Ng(S1). Since H is strongly p-embedded in G then Ng(S;) < H,
s0 T = Ly X Ly x ... x Ly < H. Then if Sy = SNT € Syl (T) we have, by the
Frattini Argument Ng(So)T = G, but Ng(So)T < H # G, a contradiction. Thus
k =1 and T is nonabelian simple.

Further, assume there are two minimal normal subgroups 77, 75. Denote by
S1 = 8NTy € Syl(T1) and Sy = SNT, € Syl (Ts) . Then [T1, T3] < T1NT, = 1 and
Ty X Ty < soc(G) < G. So Ty < Ng(S2), Ty < Ng(S1), and thus 71Ty < H. Then
by the Frattini Argument N¢(S1)T1 = G, but Ng(S1)T) < H # G, a contradiction.

Thus 7' is the unique minimal normal subgroup of (G, and is a nonabelian simple

group. Then G is almost simple by Lemma 1.57. O]

As a consequence of the Classification of Finite Simple Groups we have a list of
the almost simple groups below, which is stated in [GLS98] in the setting of the

known finite simple groups.

Theorem 1.59 ([GLS98, Theorem 7.6.1]). Assume that G is a finite group, H < G
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is strongly p-embedded and H contains an elementary abelian subgroup of order p?.

Then OF (G /O, (Q)) is one of the following nonabelian almost simple groups:
1. PSLy(p™) for any p and n > 2.
2. PSU;3(p") for any p and p™ > 3.
3. Sz(221) =2By(22" ) forp=2 and n > 1.
4. 2Go(3*"71) forp =3 and n > 1.
5. Ay, forp > 5.
6. PSL3(4), My1, PSLy(8) : C3 for p=3.
7. 52(32) : Cs, 2Fy(2)', McL, Fiy for p=>5.
8. Jy forp=11.

Proof. By Theorem 1.58 O (G/O,(G)) is a nonabelian almost simple group. If
p is odd, by [GL83, (24-1)] we get all cases above except PSLy(8) : C3 for p = 3,
Sz(32) : C5 for p = 5, which are found in [GL83, (24-4)] or [GLS15]. Case (i) of
(24-1) is ruled out by [GLS98, Theorem 7.5.5].

When p = 2 the result follows from the Bender-Suzuki Theorem [Ben71, Satz
1], which says that if a group G has a strongly 2-embedded subgroup then either its
Sylow 2-subgroups are cyclic or quaternionic, hence of 2-rank 1, or O (G /O, (Q))
is one of PSLs(q), Sz(q), PSUs3(q) for ¢ = 2" > 4. O

Corollary 1.60. The structure of the Sylow p-subgroups S of the groups in Theorem

1.59 is as follows.
1. If O"(G/Oy(G)) = PSLsy(p") then S = C for any p and n > 2;
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2. If OY(G/O,(G)) is one of Ay, for p > 5, PSL3(4) and My, for p = 3,
*Fy(2)' and Fiy for p =75 then S = C7;

3. If OY(G/O,(G)) = PSUs(p") then S has order p*™ and nilpotency class 2;

4. If OY(G/O,(G)) = Sz(22"*+1) then S has order (22"*1)2 and nilpotency class
2.

5 If O (G/Oy(G)) = 2Go(32"+Y) then S has order (3*"+1)3 and nilpotency

class 2;
6. S = pit? when OP (G /Oy (Q)) is either McL for p=>5 or Jy for p=11;

7.8 = pt? when OY (G/Oy(Q)) is either PSLy(8) : Cs for p =3, Sz(32) : Cs
forp=>5.

Proof. The groups in question are finite simple groups (or almost simple in case
(7)), so all facts can be deduced from [GLS98] or [CCN*85].

For the groups of Lie type and Lie rank r the orders are given by [GLS98,
Theorem 2.2.9], and the nilpotency class equals r by [GLS98, Theorem 3.3.1] when
it is nonsingular, which in the cases above is always true. Hence we see that
PSLy(p™) =2 Ay (p™) has abelian (hence elementary abelian) Sylow p-subgroups and
part (1) holds. The result applied to PSUs(p") = 2 Ay(p™), Sz(22"1) =2 2B, (220 +1)
and 2G4 (3?"~1) proves parts (3), (4) and (5).

Case (2) holds as we assume C? < S in Theorem 1.59 and the corresponding
Sylow p-subgroups have order p?.

Case (6) holds as both McL and J; have |S| = p?, they contain maximal
subgroups of shape 572 : C5 : Cg and 112 : (C5 x 2S,) respectively, and no

elements of order p? by [WWTT05].
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Finally, by [GLS98, Theorem 3.3.2(d)], ?G2(3) = Ly(8) with p = 3 and Sz(32)
with p = 5 have Sylow p-subgroups cyclic of order p? and which become nonabelian
of order p* in the automorphism groups L(8) : C5 and Sz(32) : C5 as can be seen
in the maximal subgroups Cy : Cg and Ch; : Cyy (which are Cp2 : Aut(Cp2)) in
[WWT*05]. Hence case (7) holds and the corollary is proved. O

We now prove that normal subgroups whose order is divisible by p also contain

a strongly p-embedded subgroup.

Lemma 1.61. Assume that G is a finite group, H is strongly p-embedded in G,
and K < G with p | |K|. Then either K < HY for some g € G or HNK is strongly
p-embedded in K. In particular, if p | |K| and K < G then H N K is strongly
p-embedded in K.

Proof. Let T' € Syl,(K) and S € Syl (G) such that 7" < S. By Corollary 1.56 (2)
and Sylow’s Theorems there exists [ € G such that S < H'. Now let Hy = H'N K,
then T' < Hy so p | |Ho|. Further, unless K < HY for some g € G, we have
Hy=H'NK < K. Now let k € K\ Hy, then k € G\ H so p does not divide
|H' N H™|, hence it does not divide |Hy N HY| either, that is Hy is strongly p-
embedded in K as claimed.

Finally, if K < G, then we have G = KNg(T) < KH by Frattini’s Argument
(Theorem 1.1) and Corollary 1.56 (1). As H < G by assumption, we have K £ H,
so for all g € G we have K = K9 £ HY and by the previous part H N K is strongly
p-embedded in K. O

We now consider which groups can contain a subgroup which is both generated

by transvections and contains a strongly p-embedded subgroup.
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Lemma 1.62. Suppose that p is odd, K = GF(p), V is a vector space over K,
G < SL(V) is generated by transvections and G contains a strongly p-embedded
subgroup H. Then V =V, & Vi, G = SLs(p), Vi is 2-dimensional, and [Vy, G| = 1.

Proof. As G has a strongly p-embedded subgroup, Corollary 1.56 (3) implies that
O,(G) = 1. Then, as G is generated by transvections and O,(G) = 1, Theorem 1.42
implies that V =1, @ Vi @ --- @V and G = G; X Gg X - - - X G, where [Vj, G] = 1.
By assumption p | |G|, so we may assume that p | |G1|. Let S € Syl (G). If p | |G}
for some 1 < i < s then let S; = SN Gy € Syl,(Gy) and S; = SN G; € Syl (Gy).
Then Gy x -+ x Gs < Cg(S1) and G; < Cg(S;), hence G = Ng(S1)Ng(S:2) < H,
contradicting Corollary 1.56 (1). Thus p 1 |G;|, and Theorem 1.42 (3) implies that
Gi=1land V;=1,asp||SL,(p)| and p | |Sp.(p)| for all n > 2. Thus V =V, &V}
and G = G;. If n > 3 then the groups SL,(p) and Sp,(p) do not contain a
strongly p-embedded subgroup. This can be seen as in these situations the Sylow
p-subgroups have rank at least two, hence Theorem 1.58 implies that OF' (G/O, (G))
is almost simple. In this situation, O” (G/O,(G)) is isomorphic to PSL,(p) or
PSp,(p) respectively, both of which are known finite simple group not appearing
in [GLS98, Theorem 7.6.1], hence they do not contain a strongly p-embedded
subgroup. On the other hand the Sylow p-subgroups of SLs(p) = Sps(p) have
order p and are not normal in G, hence SLy(p) contains a strongly p-embedded
subgroup by Corollary 1.56 (4). We therefore conclude that G = SLy(p), and V; is

2-dimensional. O
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1.11 Subgroups of GL,(p) with a strongly p-em-
bedded subgroup

We will be interested in knowing which subgroups of GL,.(p) have a strongly

p-embedded subgroup when r < 4.

Lemma 1.63. Assume G is isomorphic to a subgroup of X = GLy(p) and p | |G]|.
Then either O,(G) # 1 or SLy(p) = X' < G. In particular, if O,(G) =1, then G

has a strongly p-embedded subgroup.

Proof. We may assume O,(G) = 1. Then we can choose Si, Sy € Syl (G) distinct.
By [KS98, (8.6.7)] we have (S}, S2) = SLa(p) = X', so X' < G. As |Si| = p and it
is not normal in G, Corollary 1.56 (4) implies that Ng(5) is strongly p-embedded
in G. O]

Proposition 1.64. Let V' be a 3-dimensional vector space over the field GF(p)
and let G < Aut(V') =2 GLs(p). Suppose that G has a strongly p-embedded subgroup

H. Then one of the following holds:

1. OY(G) = SLy(p) and G < Aut(U) x Aut(W) = G Ly(p) x GL1(p), for unique

subspaces U, W C V;
2. pis odd, OP (G) =2 PSLy(p) and G acts irreducibly on V ;
3. p=3,O0"(GQ) = Ci3:Cs and G acts irreducibly on V.

In particular, p | |G| but p* 1 |G|. If G acts irreducibly on V then every p-element
has Jordan form Js, whereas if G acts reducibly then the Jordan form of every

p-element is Jo B Jy.
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Proof. When p is odd, all but the last claim are in [Gral8, Theorem 1.10]. For the
last claim in all cases we have O (G) = (s, s9) for some s € G of order p and a
conjugate element. Hence if s does not have Jordan form J; we have |Cy(s)| > p?,
thus Cy (07 (G)) = Cy(s) N Cy(s9) is nontrivial, and O (G) acts reducibly on V
with OF'(G) = SLy(p).

If p = 2 we consider the maximal subgroups of GL3(2) = PSLy(7) (by Proposi-
tion 1.19 (11)) of order 23 - 3 - 7, which are isomorphic to either Sy or C7 : Cs, the
latter of which has odd order. We have O5(S;) = Cy x Cy # 1, and its maximal
subgroups M are Ay, Dg and S3 = SLy(2) (by Proposition 1.19 (8)), only the last
of which has Oy(M) = 1. Finally, the only further subgroups are either 2-groups
or have odd order, so by Corollary 1.56 (3) the result follows. Further, recall that
an element of order 2 acting nontrivially has Jordan form J, & Ji, as it satisfies

z? — 1= (z — 1) as its minimal polynomial. ]

Proposition 1.65. Suppose G < GL4(p) has a strongly p-embedded subgroup and

G has p-rank at least 2. Then O (G) is isomorphic to either SLy(p®) or PSLy(p?).

Proof. Under the assumptions above, Theorem 1.58 implies that K := O (G /O, (G))
is almost simple, and we can use Theorem 1.59 to obtain a list of candidates for K.
Let T € Syl,(K), we first rule out all candidates except PSLy(p®), then show that

O, (G) centralises OP (@), so that the result follows.

Claim 1.65.1. K = PSLy(p?).

Proof of claim. Note that a Sylow p-subgroup S of G'L4(p) has order p®, nilpotency
class 3, and K must be isomorphic to a section of GL4(p), in particular, | K| must
divide |GL4(p)| = pS(p* — 1)(p* — 1)(p* — 1)(p — 1). We obtain the candidates for

K from Theorem 1.59 and the structure of T' from Corollary 1.60.

38



If K= PSU3(p™), with p” > 3, then T has order p*", so we must have n < 2.
If n = 2 then T has order p°, so we need S = T, but T has nilpotency class 2, so
it cannot happen. Finally, if n = 1, we have p% — 1 | |PSUs(p)| and Zsigmondy’s
Theorem (Theorem 1.2) implies that there exists a prime ¢ such that ¢ | p® — 1 but
q1p*—1for k < 6 unless p = 2, but we have p” > 3, so that case does not happen
and we have | K| 1|GL4(p)|.

If K= Sz(2*+1) then |T| = (22"+1)2 < 25, so we must have n = 1, but then
T = S. However T has nilpotency class 2 while S has nilpotency class 3, so this
case does not happen either.

If K 22Go(3%") then |T| = (32"*1)3 > 35 a contradiction.

If K =2 Ay, with p > 5 then we must have p < 17, as otherwise we observe that
[ Azp| = (2p)!/2 > p'" > p'® > (p* = D(P* = D(p* — 1)(p — 1)p° = |GLa(p)], s0 it
cannot embed. For the remaining primes p = 5,7, 11, 13, we have, respectively, the
primes ¢ = 7,13,17,23 such that g | |As,| but ¢ 1 |GL4(p)|, so this case does not
happen. Note that if p = 3 then Ag = PSL4(9) by Proposition 1.19 (12), which we
consider later.

For the remaining cases other than P.S Lo(p™) there is always a prime dividing | K|
that does not divide |GL4(p)|. If p = 3, we have 7,111 |GL4(3)| but 7| |PSLs(4)],
7| |PSLy(8)| and 11 | [Myy]. If p = 5, none of 11, 13,41 divide |GL4(5)| but 11
divides |McL| and |Fig|, 13 | [*F4(2)'|, and 41 | | Aut(Sz(32))|. And for p = 11, we
have 43 does not divide the order of the sporadic Janko group Jy, but 43 1 |GL4(11)].

Finally, if K & PSLy(p") then |K| = €(p*™ — 1)p™ by [Gor80, Theorem 2.8.1]
where € = 1 if p = 2 and € = 1/2 if p is odd. Then, if n > 3, we have again
by Theorem 1.2 a prime ¢ such that ¢ | p** — 1 and ¢ t p* — 1 for any k < 2n

unless p = 2 and n = 3. In this case, we are looking at PSLy(8) embedding into
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GL4(2). But the Sylow 3-subgroups of PSLy(8) are cyclic of order 9 whereas those

in GL4(2) are isomorphic to C3 x C3, so this embedding does not happen either.

The Sylow p-subgroups of PSLy(p) are cyclic, so we cannot have n = 1.
Therefore we must have K = PSLy(p?) = Q (p) by Proposition 1.19 (5), which

embeds into G L4(p). =
Claim 1.65.2. If p is odd then Oy (G) < Z(OP(Q)).

Proof of claim. We have K = OF (G/Oy(G)) = PSLy(p?). Let R := Oy(G)
and T' € Syl (G). Then T' = C, x C, so pick # € T of order p, and consider
H = R(z) < G. H is p-solvable as R < H is a p’-group and H/R = (x) is a
p-group. Consider the action of z on the natural GL,(p)-module. The Jordan form
of = has largest Jordan block of size at most 4, so that its minimal polynomial is
(X —1)" for some r < 4.

Then, if O,(H) = 1, we have by the Hall-Higman Theorem ([Gor80, Theorem
11.1.1]) that p — 1 < r < p. This means that if p > 7 or p = 5 and r < 3 then
O,(H) # 1. Thus H = R x (x), and R centralises z. Since we can do this for any
subgroup of any Sylow p-subgroup of G, we conclude that R acts trivially on O (G)
and therefore R < Z(O?(G)) and O (G) is a central extension of PSLy(p?). The
Schur multiplier of PSLs(p?) has order 2 if p > 5 and its universal covering group
is SLy(p?) by [Hup67, V.25.7 Satz], so in this case the result follows.

The remaining cases are p = 3, or p = 5 and = € T has Jordan form Jj.

As O”'(G) < OY (G Ly(p)), there is some maximal subgroup M of SL4(p) such
that O (G) < M. Hence, if p = 3, we consider the maximal subgroups of SL,(3)
from [BHRD13, Table 8.8]. The maximal subgroups Cj : GL3(3), Cj : SLy(3)* : Cy

and SOj (3).Cy have order not divisible by 5, whereas the maximal subgroup
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SLy(9).C4.Cy satisfies O (M) 22 SLy(9), and SO, (3).Cy = (PSLy(9) x Cy).Cy
has O¥ (M) = PSLy(9). The last maximal subgroup Sp4(3).Cy requires more
attention via its own maximal subgroups, given in [BHRD13, Table 8.12]. Thus
the maximal subgroups of Spy(3).Cy are isomorphic to one of 3172 : (Cy x Spa(3)),
C3 : GLy(3), (Spa(3) x Spa(3)) : Ca, 21* A5, none of which have order divisible
by |Ag|, or Spa(9) : Oy, in which case O (G) = Spy(9) = SLy(9) by Proposition
1.19 (1). Thus if p = 3 then the claim holds, and both cases appear.

Note that a very similar argument also gives the result for p = 5.

Finally, if p = 5, and « has Jordan form J; then, T' < C' = Cgp,5)(2), and C
has shape C? : Cy by [LS12, Theorem 7.1]. We claim there is no subgroup of the
centraliser of order 5 with only elements with Jordan form .J;. This is because a

Sylow 5-subgroup of C' is generated by matrices

1 0 00 1 0 00 1 0 00
1 100 01 00 01 00
Tr = , Lo = , L3 = )
01 10 1 010 0010
0 011 0101 1 001

so that the subgroup generated by zs and z3 contains no element with Jordan
form J;. Any subgroup of order p* in Cgp,5)(x) must intersect this subgroup
nontrivially, hence it must contain some nonidentity element y with Jordan form
distinct from J;. Then as before R must centralise y by Hall-Higman. Note that
the subgroup (y&) = OP(G), since OP (G/O,(@G)) is almost simple, so that R
centralises O (@) in this case as well. Thus in every case O (G) is a central

extension of PSLy(p?). n

If p = 2, the following Magma code proves the claim. It enumerates those

subgroups H of GL4(2) with Os(H) = 1 and elementary abelian Sylow 2-subgroups.
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It outputs groups in the SmallGroups notation.

> [IdentifyGroup (i subgroup) : i in Subgroups(GL(4,2)
> OrderMultipleOf := 4) | 1 eq #pCore(i” subgroup, 2) and
> IsElementaryAbelian(Sylow (i subgroup,2))];

[ <36, 10>, <36, 10>, <60, 5>, <60, 5>, <180, 19> ]

Out of the outputted groups, the group H = <36, 10> satisfies H = 53 X S3
and does not contain a strongly p-embedded subgroup, as the only group containing
the centralisers of all involutions is H itself, contradicting Lemma 1.55, whereas
<60,5> = Ay = PSLy(4) and <180,19> = GLy(4) have a strongly 2-embedded
subgroup by [GLS98, Theorem 7.6.1].

The proposition now follows, and both cases arise for all primes. O
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CHAPTER 2

AN INTRODUCTION TO FUSION SYSTEMS

In this chapter we present some basic definitions about fusion systems and the
results which we use to work with them. We use the notation and terminology
from [AKO11], our main source. We begin by setting up the notation necessary
for the definition, following the motivating example of a fusion category of a finite

group G on a Sylow p-subgroup S. Recall that we write maps on the right.

Definition 2.1. Given a finite group G and two subgroups P, Q, we define

Homg (P, Q) := {¢ € Hom(P,Q) | ¢ = ¢, for some g € G such that P? < Q},

where ¢, is the conjugation map induced by g, that is ¢, : x — g xg.

Further, if P = @Q, we define the automiser of P in G to be
Autg(P) = Homg(P, P) = Ng(P)/Cg(P)

We also will denote Outg(P) := Autg(P)/ Inn(P).
Definition 2.2. Suppose G is a finite group, p is a prime and S a Sylow p-subgroup
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of G. The fusion category Fs(G) of G on S is the category whose objects are all

subgroups of S and, given P,Q < S, the morphisms between P and Q) are given by

Mor gy ) (P, Q) = Homg (P, Q).

Thus the maps in Fg(G) are conjugation maps by elements of G with specified
domain and codomain. As such, they are injective maps, that is, isomorphisms
followed by inclusions, and inclusion maps are in Fg(G) as conjugation by the
identity element of G with appropriate domain and codomain.

A way to generalise this structure to a more abstract setting is to forget the
group G, and consider maps between subgroups of the p-group S that act on
subgroups of S with some of the properties above. This leads us to the following

definition.

Definition 2.3. A fusion system F on a (finite) p-group S is a category whose
object set consists of the set of all subgroups of S and where, given two subgroups
P,Q of S, the collection of morphisms between P and @Q, denoted by Homz(P,Q),

satisfies:
1. Homg(P, @) € Homz(P,Q) C Inj(P, Q);
2. composition in the category is composition of maps; and

3. any map ¢ € Homz(P, Q) is the composite of an isomorphism in the category

followed by an inclusion from the category.

We write Aut#(Q) := Homz(Q, Q) for the automiser in F of (), and its quotient

Outz(Q) := Aut£(Q)/ Inn(Q).
Note that Fs(G) is a fusion system, and by Definition 2.3 (1), Fs(S) is contained

in every fusion system on S. In particular, Autg(P) < Autz(P) < Aut(P) and
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Outg(P) < Outx(P) < Out(P).

We are interested in not only capturing the properties of conjugation maps, but
also those extra properties satisfied S is a Sylow p-subgroup of GG, so we restrict
the definition by mimicking certain consequences of Sylow’s Theorems for finite

groups. We begin with some notation necessary for the definitions.
Definition 2.4. Let F be a fusion system on a p-group S, and P < S.

1. A subgroup Q of S is F-conjugate to P if they are isomorphic in F. Let P

denote the set of isomorphic images of P in F.
2. P is fully F-normalised if |[Ng(P)| > |Ns(Q)| for all Q € P”.
3. P is fully F-centralised if |Cs(P)| > |Cs(Q)| for all Q € P”.
4. P is F-centric if Cs(Q) = Z(Q) for all Q € P*.
5. P is fully F-automised if Autg(P) € Syl,(Autz(P)).

Definition 2.5. Given an isomorphism ¢ € Homz(P,Q), define its extension
control subgroup to be Ny := {g € Ng(P) | ¢ cy¢ € Auts(Q)}.

We say that Q@ < S is F-receptive if for every isomorphism ¢ € Homz(P, Q)
there exists a map ¢ € Homz(Ny, S) such that ¢|p = ¢. We say ¢ extends or lifts

to Ny and that ¢ extends ¢.
We can now define saturation and an equivalent characterisation.

Definition 2.6. A fusion system F on a finite p-group S is saturated if and only
if for every subgroup P of S there is a subgroup Q € P that is fully F-automised

and JF-receptive.
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Theorem 2.7 ([RS09, Theorem 5.2]). A fusion system F on a p-group S is

saturated if and only if:

1. Fach subgroup P < S which is fully F-normalised is also fully F-centralised

and fully F-automised;

2. Each subgroup P < S which s fully F-centralised is also F-receptive.

The conditions which define a saturated fusion system are motivated by similar
properties that a fusion category of G on S has when S € Syl (G). In particular,
by [AKO11, Theorem 2.3 (Puig)], if S € Syl,(G) then Fg(G) is saturated.

The group NNy controls when an isomorphism ¢ in F extends to a homomorphism

between larger subgroups, so we consider some of its elementary properties.

Lemma 2.8. Let ¢ € Homz(P, Q) be an isomorphism. Then

PCs(P) < Ny < Ng(P).

Proof. Ny < Ng(P) by definition. If g € P and x € @) then

vp~cgp = (97 (297 ")9)d = (97 9)((xd™")9)(99) = wcgy

S0 ¢ ey = ¢y € Autg(Q). If g € Cs(P) then ¢ lc,9 = 1 € Autg(Q). O

Lemma 2.9. Let F be a saturated fusion system on the p-group S. Suppose that
E < S is fully F-normalised. Then every element of Naw, ) (Auts(E)) lifts to
an element of Autz(Ng(E)).

Proof. Let 6 € Nau,(g)(Auts(E)). As E is fully F-normalised, by Theorem 2.7,

E is F-receptive so 6 extends to Ny. By Lemma 2.8, Ny < Ng(F). Now if
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g € Ng(E) then, as 6 normalises Autg(E), we have 0~ ¢c,0 € Autg(E), so g € Ny

and Ny = Ng(E). Thus @ lifts to a map 0 € Autz(Ng(E)). O

We call a saturated fusion system F realisable if F = Fg(G) for some finite
group G with a Sylow p-subgroup S. Even with the properties that we require,
there are saturated fusion systems on p-groups S which cannot be realised in this
way. We will call such fusion systems ezotic.

We now consider morphisms between fusion systems.

Definition 2.10. Let F, F be two fuston systems on p-groups S, S respectively.
A morphism « : F — F is a collection (a,apg: P,Q € F) such that a1 S — S s
a group homomorphism and apg : Homz(P, Q) — Homz(Pa, Qa) is a function
such that for all ¢ € Homz(P, Q) we have pa = a(papg).

The morphism « is an isomorphism if o : S — S is an 1somorphism and every

apg : Homzg(P, Q) — Homz(Pa, Qo) is bijective. We write F = F.

In particular, for o € Aut(S), the fusion system F* on S is defined by
Homza(P,Q) = {a '¢a | $ € Homzr(Pa™ ', Qa )} = Homz(Pa ™, Qo t)”

and is isomorphic to F.

If the collection (o, apg) is a morphism, then the maps apg are uniquely
determined by «a and the given property, so we sometimes refer to a as the
isomorphism. In particular, we can identify the group Aut(F) of automorphisms
of F with a subgroup of Aut(S).

If an isomorphism « as above is between fusion systems of finite groups Fg(G)

and F3(G) then we say it is fusion preserving. There is a notion of two fusion
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systems being isotypically equivalent if there is an equivalence of categories that
has a natural isomorphism of functors. It is shown in [BMO12, Proposition 1.3]
that two fusion systems Fg(G) and Fg(é) are isotypically equivalent if and only if

there is a fusion preserving isomorphism between S and S. We now present some

results of isomorphisms between fusion systems of finite groups.

Lemma 2.11. Let G be a finite group, S € Syl (G). Let N < G with p { |N|,
G =G/N, S € Syl,(G). Then Fs(G) = Fs5(G).

Proof. Since p t |N| we have S = S, with isomorphism « : S — S such that for
any s € S, sa = sN. Now define ap g : Homzy(g) (P, Q) — Homz g (Pa, Qo) for

P,Q < S by cgapg = cgn. Then
scga = s%a = s9N = sN = sNeyy = (sa)(cyapg),

so cga = afc,apg) and « is an morphism of fusion systems. Finally, given
¢1, 92 € Homzy ) (P, Q), there are g, h € G with P9 = P" = @, such tht ¢; = ¢,
and ¢2 = ¢;. Hence, since o : P — Pa is an isomorphism, ¢4q = cpq on Pa if and
only if ¢, = ¢, on P. Thus apg is bijective for all P,Q < S, and (o, apg) is an

isomorphism of fusion systems. O

Lemma 2.12. Suppose G1 and Gy and o : Gy — G5 is an isomorphism and let

S € Syl,(G1). Then Sa € Syl,(Gs), and Fs(G1) = Fsal(G2).

Proof. As « is an isomorphism, ker(a) = 1, so a|s : S — Sa is an isomorphism.
Let P,Q < S, ¢; € Homzpya,)(P,Q), and define apg by cyapg := cgo. Since
-1

a”lc,o0 = ¢y, We have c;a = afcyapg), so (a,apg) is a morphism of fusion

systems Fg(G1) = Fsa(G2). Finally, as « is an isomorphism, given g, h € G such
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that P9 = P" = @, we have ¢, ¢, € Homgzy (), and ¢, = ¢, on P if and only if
Cga = Cha O Pa, and each apg is bijective for all P,@Q < S. Hence (a, apg) is an

isomorphism of fusion systems. O

2.1 Alperin’s fusion theorem

Alperin’s fusion theorem will allow us to generate saturated fusion systems in
terms of automorphisms of some collection of subgroups. We begin by defining the

elements of such a collection.

Definition 2.13. Given a fusion system F on a p-group S, a proper subgroup
E < S is F-essential if:

1. E s F-centric;

2. E is fully F-normalised;

3. Outz(F) = Autz(F)/Inn(E) has a strongly p-embedded subgroup.

We will denote by Ex the set of F-essential subgroups.

The key property of F-essential subgroups is (3), which implies that there are

some isomorphisms that do not extend to any overgroups.

Proposition 2.14 ([AKOL11, Proposition 1.3.3]). Let F be a saturated fusion
system on a p-group S. Let P < S be fully F-normalised, and let Hp < Autz(P)
be the subgroup generated by those o € Autxz(P) which extend to F-isomorphisms
between strictly larger subgroups of S. Then either P is not F-essential and
Hp = Autz(P) or P is F-essential and Hp/Inn(P) is strongly p-embedded in
Outz(P).
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Before stating Alperin’s Theorem, we make precise what generating means in a

fusion system.

Definition 2.15 ([AKO11, Definition 1.3.4]). For any set X of monomorphisms
between subgroups of S and/or fusion systems on subgroups of S, the fusion system
generated by X, denoted (X)s (or (X) if the group S is clear), is the smallest
fusion system on S which contains X. Equivalently (X)g is the intersection of all
fusion systems on S which contain X. The morphisms in (X)s are the composites

of restrictions of homomorphisms in X or in Auts(S) and their inverses.

We note that this notion is slightly different to generation of a group. For
example, in a group of Lie type the F-essential subgroups are the p-cores of the
minimal parabolics, and the maximal parabolics generate the whole group. However,
if we consider the p-cores of the maximal parabolics, not every map of Fg(G) is in
the fusion system generated by their normalisers, as there are maps among larger
subgroups which would be extensions of these generators, whereas we only allow

for restrictions of the maps given.

Theorem 2.16 (Alperin-Goldschmidt Fusion Theorem [AKO11, Theorem 1.3.5]).

Suppose F is a saturated fusion system on a p-group S. Then

F = (Autg(S), Autz(E) | E is F-essential)s.

We now use Frattini’s argument to slightly refine Alperin’s fusion theorem,

noting that an analogous result holds with OP(Autz(F)).

Lemma 2.17 ([BCGT07, Lemma 3.4)). If F is saturated then

F = (0" (Aut(E)), Autz(S) | E € E).
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Proof. By Alperin’s Theorem F = (Autz(E), Autz(S) | E € Ez), by Frattini’s
argument for each E € Ex we have Autz(E) = O (Autz(E)) Nau»(p)(Auts(E)),
and by Lemma 2.9 any element ¢ € Nay,(g)(Autg(E)) extends to an isomorphism
¢ € Autz(Ng(E)), which again by Alperin’s Theorem is a composition of maps
& = G1y . .. b where ¢; € Autz(E;) for some E; € ExU{S} satisfying E; > Ng(E).
We can thus apply the same argument to each E; until F; is maximal among the
F-essential subgroups, at which point every lift of a map (Zz is a composition of
; € Autx(S), and thus every homomorphism can be obtained as a composition
of restrictions of maps which are in either O (Autz(F)) for some E € Ef or in

Autz(S), which concludes the lemma. O
The following are some straightforward properties of F-essential subgroups.
Lemma 2.18. Let F be a fusion system on S.
1. If H < S is F-centric then Z(S) < H.
2. If H < S is F-centric and abelian then it is mazximal abelian in S.
3. (Burnside) If S is abelian then F = (Autx(S5)).

Proof. Suppose H is F-centric. Then Cg(H) = Z(H), hence Z(S) < Cs(H) < H.
If H is also abelian then we have Cs(H) = Z(H) = H, which is equivalent to H
being maximal abelian in S. Finally, if S is abelian then every proper subgroup

is abelian and not maximal abelian, so there are no F-essential subgroups and

F = (Aut£(5)). O

Lemma 2.19. If £ < S is F-essential then E is not cyclic.
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Proof. Suppose E = C,n. Then Aut(E) is abelian by [Gor80, Lemma 1.3.10 (i)],
with Inn(F) = 1 as E is abelian. If F is F-essential then it is F-centric, in
particular Cs(F) = F, and as £ < S is a p-group, we have Ng(F) > E. Thus
Autz(F) and Outz(E) are abelian and have a nontrivial p-part. In particular,
O0,(Outz(E)) # 1 and Outx(E) does not have a strongly p-embedded subgroup by
Corollary 1.56 (3), contradicting our assumption. Thus, no cyclic group E can be

F-essential. O

As an application of coprime action, we have the following result.

Lemma 2.20. If E < S with O,(Outz(E)) = 1 then Cau ) (£/®(F)) = Inn(F).
In particular, if E is F-essential then Outxz(E) acts faithfully on E/®(E) and
embeds into GL,(p) where |E/®(E)| =p".

Proof. As ®(FE) is characteristic in E, any map in Autz(E) normalises it, so
acts on E/®(F). Consider the map ¢ : Autz(E) — Autz(E/P(E)) given by
projection. Then kert¢) = Cau,(p)(E/P(E)) < Autz(E), and by Theorem 1.36
Caure)(E/®(E)) is a p-group. Now Inn(E) < Caw,(p)(E/P(E)) as E/P(E) is
elementary abelian. Since O,(Outz(E)) = 1, we have O,(Autz(E)) = Inn(£), thus
Inn(E) = Cawyp)(E/P(E)), and Outz(E) = Autz(E)/ Inn(F) acts faithfully on
E/®(FE). Hence Outz(FE) embeds into Aut(E/P®(F)) = GL,.(p). Finally, if F is
F-essential then Outz(F) has a strongly p-embedded subgroup, hence Corollary
1.56 (3) implies that O,(Outz(E)) = 1 and we can apply the preceding argument

to obtain the same conclusion. O

When determining which subgroups can be F-essential, the action of their
overgroups will be important. For example, the following result will be used when

F' is extraspecial.
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Lemma 2.21. Suppose that E is F-essential, E < F < S, [E,F] < Z(F) and
[E, F| is normalised by Autz(E). Then E = F.

Proof. As [E,F| < Z(F) < Cs(F) < E, we have [E, F| 9 E. Consider the chain
1 < [E, F| < E of subgroups normal in F, with [E, F] normalised by Autz(E).
Then F/Z(E) normalises the chain and acts on the quotients as the identity, so by
Lemma 1.37 we have F'/Z(E) < Op,(Autz(F)) = Inn(F) = E/Z(E). Since E < F,

we have £ = F'. O

The smallest F-essential subgroups, which we will encounter, have been defined
as F-pearls in [Gral8]. In Chapter 3 we consider F-essential subgroups of order at

most pt.

Definition 2.22. An F-essential subgroup of S which is either elementary abelian

of order p* or nonabelian of order p* is called an F-pearl.

2.2 Local theory of fusion systems

Many concepts about finite groups can be generalised to the theory of saturated
fusion systems. We begin with normal p-subgroups. Throughout this section, F

will always be a fusion system on a finite p-group S.

Definition 2.23. 1. A subgroup T < S is strongly closed in F if no element

of T is F-conjugate to an element of S\ T.

2. A subgroup T < S is normal in F if T < S and for all PR < S and all
¢ € Homz (P, R), ¢ extends to a morphism ¢ € Homz(PT, RT) such that
T =T. We denote T being normal in F by T < F.
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Lemma 2.24. There is a unique mazimal normal p-subgroup of a saturated fusion

system F, which we denote by O,(F).

Proof. Suppose N, M < F. Then as N,M < S we have NM < S. Further,
any ¢ € Homz(P, R) extends to a morphism ¢ € Homz(PN, RN) such that
N@|y = N, which then extends to a morphism ¢ € Homz(PNM, RNM) such
that NM$|NM = NM. Hence NM < F. The product of all normal subgroups is

the unique maximal normal p-subgroup of F. O

The main assumption throughout our reduction theorem (Theorem 4.27) will
be that O,(F) = 1, that is, there is no nontrivial subgroup H of S with H normal
in F. We will often use the following characterisation of normal subgroups of a

fusion system.

Proposition 2.25 ([AKOL11, Proposition 1.4.5]). Let F be a saturated fusion system

on a p-group S. Then, for any H < S, the following conditions are equivalent:
e H is normal in F.

e H s strongly closed in F, and H < P for each P that is F-centric with

Op(Out;(P)) =1.
o If P < S is F-essential or P =S, then P > H and H is Autx(P)-invariant.

We now introduce subsystems, and the normaliser fusion system of a p-subgroup
of S, which we will use as a way to construct realisable fusion subsystems via the
Model Theorem, allowing us to uniquely determine parts of the fusion systems we
construct by realising them as fusion categories of finite groups. A fusion subsystem

of F is a subcategory £ C F which is itself a fusion system on a subgroup 7' < S.
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Definition 2.26 ([Crall, Definition 4.26]). The normaliser of Q in F is a cat-
egory Nz(Q) which has as objects all subgroups of Ng(Q) and has morphisms

Homy,q)(R,S) given by all ¢ € Homz(R,S) such that ¢ extends to a map

¢ € Homz(QR, QS) with ¢|g € Autx(Q).

Note that by definition the normaliser Nx(Q) is the largest subsystem of F in

which @ is normal. We now consider when Nx(Q) is saturated.

Theorem 2.27 ([Crall, Theorem 4.28]). Let F be a fusion system on S, and
Q < S. Then Nx(Q) is a fusion system on Ng(Q), and if F is saturated and Q is

fully F-normalised then Nx(Q) is saturated.

Definition 2.28. Let F be a saturated fusion system on a p-group S. Then
e F is constrained if there exists Q < F which is F-centric.

e If F is constrained, a model for F is a finite group G such that S € Syl,(G),
Fs(G) = F, and Ce(O,(G)) < O,(G).

We can now state the Model Theorem, the proof of which involves cohomological

methods.

Theorem 2.29 (Model Theorem [AKO11, Theorem II1.5.10]). Let F be a con-
strained fusion system on S. Fix Q < F that is F-centric. Then the following

hold:
1. There are models for F.

2. For any finite group G with S € Syl (G) such that Q@ < G, Ca(Q) < Q
and Autg(Q) = Autz(Q), there is f € Aut(S) such that Blg = 1 and
Fs(G) = FP. Thus there is a model for F which is isomorphic to G.
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3. The model G is unique in the following strong sense: if Gi and Go are two
models for F then there is an isomorphism ¢ : G1 — Go such that ¢|s = 1.

If ¢ and ¢ are two such isomorphisms then ¢ = ¢c, for some z € Z(S).

We now introduce normal subsystems as well as simplicity of a fusion system.

Definition 2.30. 1. A fusion subsystem &€ C F on T < S is normal, denoted
by E S F, if
e both £ and F are saturated,
o 1" is strongly closed in F,

o £* =& for each o € Autz(T) (invariance condition), that is, for each

P<Q<T, ¢ € Homg(P,Q), we have a '¢pa € Homg(Pa,T),

o for each P <T and each ¢ € Homz(P,T), there are a € Autx(T) and
¢o € Homg(P,T) such that ¢ = ¢oa (Frattini condition), and

o cach a € Autg(T) extends to some o € Autz(TCgs(T)) such that

[Cs(T),a] < Z(T) (extension condition).

2. A fusion system is simple if it contains no proper nontrivial normal fusion

subsystems.

When classifying fusion systems in search for exotic ones, it is more suitable
to consider the larger class of reduced fusion system which was introduced by
Andersen, Oliver and Ventura in [AOV12]. In order to define them, we need to

introduce some types of subsystems of F.

Definition 2.31. 1. The focal subgroup foc(F) < S and hyperfocal subgroup
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hyp(F) < S of F are defined by

foc(F) :=(g'(ga) | g € P < S,a € Autz(P)) < S,

hop(F) = (97" (9a) | g € P < S,a € OP(Autz(P))) < S.

2. A fusion subsystem € C F on T < S has p-power index in F if T > byp(F),
and Autg(P) > OP(Autz(P)) for each P < S.

3. A fusion subsystem & C F on T < S has index prime to p in F iof T = S
and Autg(P) > O (Autx(P)) for each P < S.

Among the subsystems of p-power index or index prime to p there are unique

smallest subsystems.

Theorem 2.32 (|[AKO11, Theorems 1.7.4 and 1.7.7]). There is a unique minimal
saturated fusion subsystem of p-power index on hyp(F), which we denote by OP(F).

There is a unique minimal saturated fusion subsystem of index prime to p on S,

which we denote by OY (F).

We now describe how to determine each of them. We consider OP(F) first,

which can be determined via the following result.

Proposition 2.33 ([AKO11, Lemma 1.7.2 and Corollary 1.7.5]). For any saturated

fusion system F on a p-group S, we have foc(F) = hyp(F) - S". Further, we have
np

OP(F) = F <= hpp(F) = 5 <= foc(F) = S.

The determination of OF (F) is a bit more complicated, and requires some
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notation. Recall that, by Lemma 2.17, if F is saturated, we have

F = (O (Autx(E)), Autx(S) | E € Ef).

Definition 2.34. Suppose F 1is saturated. We define the following.
1. If E € Ex then Aut2(S) := (o € Autx(S) | a|g € OY (Autx(E))).
2. Auth(S) := (Aut%(S), Inn(9) | E € Ez).
3. Fo = (0P (Autz(E)), Aut%(S)) C F.
4. Ty (F) = Autz(5)/ Aut%(9).

Thus Aut%(S) < Aut(S) is the subgroup of automorphisms that are con-
tributed to Autr(S) by OF (Autz(E)). Note that by definition and Alperin’s
Theorem, Fy is the smallest fusion system on S which contains O (Autz(P)) for
each P < S, and Fy C OP (F). We have F = (Fy, Autx(5)), so we will often
construct this fusion system Fy, show it is saturated by finding a group realising it,
determine the largest possible candidate for Autz(S), and then use the following

result to obtain all subsystems of p’-index as intermediate fusion systems.
Theorem 2.35 ([Ascll, Theorem 8]).

1. The map & v+ Aute(S)/ Aut%(S) is a bijection between the set of normal

subsystems of F on S and the set of normal subgroups of 'y (F).
2. F = OY(F) if and only if Autx(S) = Aut%(S).

3. F is simple if and only if the following hold:
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(a) For each normal subsystem D of F on a subgroup D of S, we have
D=SorD=1.

(b) Autz(S) = Auth(S).
We now define a reduced fusion system.

Definition 2.36. A saturated fusion system is reduced if O,(F) =1, OP(F) = F
and OV (F) = F. In other words a saturated fusion system is reduced if has no
nontrivial normal p-subgroups, no proper subsystem of p-power index, and no proper

subsystem of index prime to p.

We now use a special case of the surjectivity property (see [Crall, §6.1] for
details), which is another equivalent formulation of saturation. This result will

allow us to determine Aut%(S) from O (Autz(E)) and vice versa.

Lemma 2.37. If F is a saturated fusion system on S and E 1S is F-centric and

normalised by Autx(S), then there are isomorphisms

Aut£(S)/Cran(s)(E) = Nauer(p) (Auts(E)),
Outx(S) = Naue,(p)(Autg(E))/ Auts(E), and

Out(S) = Now aus () (Auts(E))/ Autg(E).

Proof. Since E is normalised by Autz(95), there is a map given by restriction
0 : Autz(S) = Nawrp)(Auts(EF)). As E 9 S, by Lemma 2.9 every map in
Nauty () (Autg(E)) is a restriction of an element of Autz(S), hence 6 is surjective.

Now let a € ker(#). Then a € Autz(S) with a|p =1 € Aut(F) so a centralises

Autg(E) = S/E. We thus have [S,a] < SN Cawrs)(E) < Cs(E) < E, so
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[S,a,a] = 1 and ker(f) centralises the chain 1 < E <9 S, so by Lemma 1.37 we
have ker(6) < O,(Autz(S)) = Autg(S) = Inn(S).
Hence ker(6) = Crun(s)(£) = Z(E)/Z(S), which gives an isomorphism

Aut;(S)/ker(@) = NAut}-(E)<AU-tS(E))-

Note that Autg(S)0 = Auts(E) < Naw,r)(Autg(E)), so we also obtain

Out;(S) = Aut;(S)/Inn(S) = NAut]:(E) (Autg(E))/AutS(E).

The third statement follows from restricting 6 to Aut%(S5). O

We now study the relationship between reduced, simple fusion systems, and
fusion systems with no normal p-subgroups, as in some of the results that we use
will refer to various of these concepts. Note that by definition a fusion system being
reduced implies, in particular, that O,(F) = 1, and we now prove that simplicity

is the strongest condition.
Lemma 2.38. Any simple fusion system is reduced.

Proof. By [AOV12, Proposition 1.25], for any saturated fusion system F, OP(F)
and O (F) are normal subsystems of F. Also, by a remark in [AKO11, 1.6 after
Proposition 6.2], if H 9 S, then H < F if and only if Fy(H) < F. Thus if a

fusion system is not reduced, it is not simple. O

Reduced fusion systems in general are not simple, but we have the following
sufficient condition as a corollary of Theorem 2.35. We note that containing no

proper non-trivial strongly F-closed subgroups implies that OP(F) = F.
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Corollary 2.39. If a fusion system F satisfies O” (F) = F and contains no proper

non-trivial strongly F-closed subgroups then it is simple.

Proof. We have O (F) = F, which by Theorem 2.35 (2) is equivalent to condition
(b) of Theorem 2.35 (3), which is Autz(S) = Aut%(S). Condition (a) holds since
every normal subsystem D of F is constructed on a strongly closed subgroup

D < S, but by assumption we have D = S, so the result follows. n

Our hypothesis during the reduction phase of our argument only assumes that
O,(F) = 1. In fact, during most of the reduction, we only assume that Z is not
strongly closed in F, but in order to narrow down the isomorphism classes of S we
use some other potential normal subgroups. As a consequence of the reduction, we
will prove that in almost all cases OP(F) = F, whereas O (F) will be considered
while constructing the fusion systems. Our strategy to classify saturated fusion

systems F on a given p-group S is as follows.

1. Find which subgroups E of S can be F-essential for some F.
2. For each such E determine the possibilities for O” (Outz(E)).

3. Determine Ex by identifying which combinations of F-essential subgroups

and F-automisers are consistent.
4. For each E € Ex determine Aut%(S) to construct Aut%(S).
5. Construct Fy C O (F) up to isomorphism and attempt to realise it.

6. Consider the largest possible Autz(.S) and attempt to construct a correspond-

ing fusion system.

81



7. Determine the intermediate subsystems of prime index, using the bijection in

Theorem 2.35.

8. Prove that the fusion systems constructed exist, are saturated, check unique-

ness up to isomorphism and check their exociticy.

To check simplicity of the fusion systems constructed, we require to determine

the possibilities of strongly closed subgroups, which will be further work.
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CHAPTER 3

SMALL F-ESSENTIAL CANDIDATES

In this chapter we assume that S is a p-group and F is a saturated fusion system
on S, and we determine which p-groups H < S satisfying either order at most p?,
abelian with rank at most 2 or of maximal nilpotency class can be F-essential.
We rule most cases out by finding a chain of characteristic subgroups to which we
apply Lemma 1.37 to show that we cannot have O,(Outz(H)) = 1, contradicting
the strongly p-embedded condition of Outz(H) whenever H is F-essential. Recall
that Lemma 2.19 shows that H cannot be cyclic. We begin by recalling well-known

results about groups of order p? and p?.

Lemma 3.1. If H is F-essential with |H| = p? then H = C, x C,. Further,

O (Autx(H)) = SLy(p) is uniquely determined.

Proof. There are two isomorphism types of p-groups of order p? which are C), x C,,
and C)z, and cyclic groups cannot be F-essential by Lemma 2.19, so H = C), x C),.

Then Aut(H) = GLy(p), so the second claim follows from Lemma 1.63. O

Lemma 3.2. Suppose H < S is F-essential of order p3. Then H is isomorphic to

one of C3, pi™* with p odd, or Qs when p = 2.
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Proof. There are five p-groups of order p3, three abelian and two extraspecial by
[Bur97, pp. 93-94 and pp. 100-101]. Cys is cyclic, so it cannot be F-essential by
Lemma 2.19. If H = ()2 x (), then we have a chain of characteristic subgroups
1< ®(H) < Qi (H) < H. Similarly if H 2 p*? and p is odd then by Corollary 1.15
there is a characteristic subgroup of K order p?, giving a chain 1 < ®(H) < K < H
as before. In either case each subgroup in the chain is characteristic in H with each
of index p in the next, so each quotient is normalised by Aut(H) and centralised by
T € Syl,(Aut(H)). Then Lemma 1.37 implies that 7' < Aut(H), which as |T| # 1
contradicts Outz(H) having a strongly p-embedded subgroup by Corollary 1.56 (3).
We thus conclude that no Outz(H) can have a strongly p-embedded subgroup and
H cannot be F-essential. The remaining isomorphism types of groups of order
p® are Cps and if p is odd also pi*?, which can be F-essential, the latter being an
F-pearl.

If p = 2 the extraspecial groups of order 8 are Dg, which contains a characteristic
Cy, and Qg, which satisfies Aut(Qs) = Inn(Qg) x S3 where S5 = SL,(2) has a
strongly p-embedded subgroup by Corollary 1.56 (4), therefore only QJg can be

F-essential. O]
We now consider p-groups of maximal class.

Lemma 3.3 (|Gral8, Corollary 1.8]). Suppose H < S has mazimal nilpotency
class and order at least p*. Then O,(Aut(H)) € Syl (Aut(H)). In particular H

cannot be F-essential.

Proof. Since H has maximal class we have |H : ®(H)| = p? and |Z(H)| = p,
so since |H| > p', Z(H) < ®(H). Thus the characteristic subgroup defined by
y(H) = Cy(v2(H)/v4(H))) described just before [Bla58, Lemma 2.5] has index
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p in H hence gives us a chain of characteristic subgroups ®(H) < ~,(H) < H to
which we apply Lemma 1.37 to conclude the first claim. The second claim follows

as F-essential subgroups have O,(Outz(H)) = 1 by Corollary 1.56 (3). O

3.1 Abelian p-groups of rank 2

We now consider abelian p-groups of rank two, beginning with Cy2 x C,2. Our
goal is to prove the following proposition, which we note coincides with [DRV07,
Proposition 3.13] where Cpn x Cpn is ruled out whenever p > 3 and n > 1, and is
the abelian part of [Sam14, Proposition 6.11] where the possibilities for F-essential

subgroups of rank at most 2 are determined, including p = 2.

Proposition 3.4. Suppose H has rank at most 2 and is abelian. If H is F-essential

in some F then either H = Cy, x C),, orp <3 and H = Cpr X Cp.

Outline of proof. If H has rank 1 then H is cyclic so by Lemma 2.19 is not F-
essential. Thus H has rank 2 and is abelian. We rule out non-homocyclic groups
in Lemma 3.5 and consider homocyclic p-groups in Lemma 3.8, where we prove

that either p < 3 or H is elementary abelian. O
We begin by ruling out non-homocyclic abelian groups of rank 2.

Lemma 3.5. If H is abelian of rank 2 and not homocyclic then O,(Outz(H)) # 1.

Proof. H = C)e x Cp with respective generators x and y where we can choose
a>b. As ®(H) = U (H)H' and H is abelian, ®(H) = U'(H) = (27, y?). Hence
we have |H/®(H)| = p?, and H contains p + 1 maximal subgroups, generated by

®(H) and 'y’ for some 4,j € {0,...,p— 1}. Out of these, the p with i # 0 have
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exponent p® and the remaining one M = (®(H),y) has exponent p®~!, hence is
characteristic in H. Thus we have a chain ®(H) < M < H as in Lemma 1.37 and

Op(Aut(H)) € Syl (Aut(H)). O

We now start studying the homocyclic case by calculating in G'Ly(Z/p*Z).

a+1 b
Lemma 3.6. Suppose x = € GLy(Z/p*Z) with p | a,b,c,d.
c+1 d+1
ka+ 1+ T 1b kb
Then z* = where

Tk_l(a —|— d) —|— k’(C —|— 1) + bk_gb k’d + 1 —f- Tk_lb

T =%F i=k(k+1)/2 and by = S8 Ty = (k +2)(k + 1)k /6

are respectively the k-th triangular number, and the k-th tetrahedral number. If

0
p > 5 then 2P = and x can have order p if and only if p < 3.
p 1
Proof.
S _ ka+1+T,_1b kb a+1 b _
To_1(a+d) +k(c+1) 4+ by_gb kd+1+Ty_1b c+1 d+1
(ka + 1+ Typ_1b)(a+ 1) + kb(c + 1) (ka + 1+ Typ_1b)b + kb(d + 1)
(Th—1(a+d) + k(c+1) + br_2b)(a + 1) (Tp—1(a+d) + k(c+1) + bbb | =
+(kd+ 14 Tp_1b)(c+ 1) +(kd + 14 Tp_1b)(d+ 1)
a+ka+1+Tp_1b+ kb b+ kb
ka+Tp_1(a+d)+k(c+1) -
+bg_ob+c+ kd+1+T,_1b kb+d+kd+1+Tj1b
(k+1)a+1+T3b (k+1)b

Tpla+d)+ (E+1)(c+1)+bprb (K+1)d+1+Tyb
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Note that we take b; = 0 = T; when ¢ < 0. We proceed by induction. If £ =1 then

k+1 has form as

To=0and b_; =0, so 2! = 2. The calculation above shows that z
claimed if 2* does too, where, as © € G Ly(Z/p*Z), any elements divisible by p? are
0, so the elements quadratic in p, a, b, ¢, d in calculations vanish and we are only
left with elements where at most one copy of p, a, b, c and d appears.

In particular, when k = p, we see that T, = p(p+1)/2 and b,_5 = p(p—1)(p—2)/6

are divisible by p whenever p > 5, so that the bottom left entry of xP is
T, 1(a+d)+plc+1)+b, sb=p (mod p?)

and x does not have order p. If p = 3, we see b; = 1 so it is possible to take b = 6
to obtain the bottom left entry Th(a +d) +3(c+1) + b =3+ 6 =0 (mod 9);
therefore x can have order 3. If p = 2 then 7} = 1 and by = 0, so we can choose
a=2,d=0 toobtain Ti(a+d) +2(c+1)+bb=a+d+2=0 (mod 4), thus x

can have 2. 0

For any F-essential subgroup H of rank 2, Outz(H) embeds into GLy(p) by
Lemma 2.20. Thus, we now proceed inductively to determine when there is a
subgroup isomorphic to SLy(p) in GLo(Z/p*Z), where Lemma 3.6 serves as a base

case.

Lemma 3.7. For each k € Zsy let Gy, = GLy(Z/p*Z) and vy : Gy — Gj_y
given by restriction modulo p*~' of each entry of A € Gj,. Then G} = C’;.Gk_l,

and Gy, contains a subgroup isomorphic to SLy(p) if and only if p € {2,3}.

b
Proof. Note that G}, = | a,b,c,d € Z/p*Z, ptad— be p. For each k
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we consider the map ¢y_1 : Gy — Gj_1 via — where we

)
SH
ol
l

define T = z (mod p*~1). The kernel of ¢, _; is

a—+1 b 1
K1 =keri_, = | a,b,c,d=0 (mod p" ")
c d+1

Kj._1 is generated by four commuting elements of order p which can be chosen to

have exactly one of a,b, ¢, d equal to p*~! and the rest equal to 0. Note that

1 _pkfl 1 0 1 pkfl 1_p2(k71) _pkfl 1 pkfl
0 1 pFl o1 0 1 ph—1 1 0 1

1= p2=1) 3tk

Pl P21 4

P! 10 . .
so that and commute whenever p?*~1) =0, as it does in
0 1 PPt

Z./p*7. We can similarly check that the remaining four generators commute, hence
K1 = Cy, thus as 1 is surjective we have Gy = C).Gj_1.

Thus Kj_; is an elementary abelian normal subgroup of G;. Then G}, splits
over Kj_; if and only if it splits over a Sylow p-subgroup of Kj_; by [Hup67, 1.17.4
(Gaschiitz)], and we proceed inductively to show that Gy, splits over K if and only
if Gy, splits over a Sylow p-subgroup of Kj.

Thus if there is a complement to K;_; in Gy, then there is an element z € G,

such that (z) is a Sylow p-subgroup of G'Ly(p), that is an element of order p such
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10 a+1 b _
that (Zlf@bk_l N LZJQ)@ZJl = . Thus ($¢k_1 .. ¢2) = with
11 c+1 d+1

a,b,c,d =0 (mod p) as in Lemma 3.6, which is possible if and only if p < 3. O
And now we use the calculation above to conclude.

Lemma 3.8. Let Hy be homocyclic of rank 2 and exponent k. Then SLs(p) embeds

into Aut(Hy) if and only if k =1 or p < 3.

Proof. We have Hj, = Cpr x Cpr. If k =1 then Aut(Hj) = GLy(p) and by Lemma
1.63 SLy(p) < GLy(p) is a subgroup with a strongly p-embedded subgroup. If
k > 2 then Aut(Hy,) = GLy(Z/p*Z), hence by Lemma 3.7 the condition is satisfied

if and only if p < 3. O

3.2 p-groups of order p*

We now turn our attention to p-groups of order p*. These were enumerated by
Burnside in [Bur97, pp. 100-102], and are available in the SmallGroups library

[BEOO02]. We first consider nonabelian p-groups.

Lemma 3.9. Suppose H < S of order p* is nonabelian and O,(Outz(H)) = 1

then either p is odd and H %pfg xCporp=2and H=QgxCy or H= DgoCy.

Proof. Let H of order p* be nonabelian with O,(Outz(H)) = 1. Lemma 3.3 rules
out H of maximal nilpotency class, hence H has nilpotency class 2 and H' < Z(H).
If Z(H) = H' of order p then, as H is not extraspecial by Lemma 1.12, we have
|®(H)| = p* and a chain 1 <4 Z(H) < ®(H) < Cyx(®(H)) as in Lemma 1.37.

Hence |Z(H)| = p* and we cannot have any characteristic subgroup of index p
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in H, so any characteristic subgroup of order p? coincides with Z(H). Now H
has nilpotency class 2, so if p is odd then H is regular by Proposition 1.5 (1),
hence Proposition 1.7 (3) implies |[H/Q(H)| = |6'(H)|. Therefore either H has
exponent p or | (H)| = |OY(H)| = p?, so that ®(H) = Q,(H) = U'(H) = Z(H)
and [Hup67, I11.11.4 Satz] implies H is metacyclic. In this case U*(H) = 1, so
H has exponent p? and is an extension of Cj2 by Cp2. As Aut(Cp2) = Cp_y, it
contains a unique subgroup of index p, and there is only one nontrivial extension
up to isomorphism, the group with presentation (x,y | Py [z, y] = 2P), which
contains a characteristic subgroup (z,y?) of index p.

The remaining case with p odd is H of exponent p, nilpotency class 2, and
|Z(H)| = p*. Hence H = (x1, 9,3, 74) such that 2f = 1, Z(H) = (x3,74), and
H' = ([x1, 7)) < Z(H) has order p. Thus (z;,25) = pl™ which commutes with
the remaining generator hence H = pfﬂ x O, as claimed.

If p = 2 then, as regular 2-groups are abelian by Proposition 1.6 (1), H is
not regular, so we use the SmallGroups Library [BEO02]. We see that the only
candidates of 2-groups of order 16 = 2* with nilpotency class 2 (and |Z(H)| = 4)
are in the SmallGroups notation H; = <16,i> where i € {3,4,6,11,12,13}. Out
of these, the only H; where Aut(H;) is not a 2-group are His and Hy3. We have
His =2 Qg x Cy and Hy3 & Dgo Cy = Qg o Cy, with automorphism groups 2°.53
and Cy x Sy respectively. As GLo(2) = SLy(2) = S3 acts on a section Qs/Z(Qs)

of H;, both His and Hi3 are candidates. A Magma snippet checks this.

> S1 := [H : H in SmallGroups(274) | NilpotencyClass(H) eq 2];
> [<FactoredOrder (PermutationGroup (AutomorphismGroup(H))),

> IdentifyGroup(H)> : H in S1];
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<[ <2, 5> 1], <16, 3>>,
<[ <2, 5> 1, <16, 4>>,
<[ <2, 4> ], <16, 6>>,
<[ <2, 6> 1, <16, 11>>,
<[ <2, 6>, <3, 1> 1], <16, 12>>,

<[ <2, 4>, <3, 1> ], <16, 13>>

We can now describe the F-essential candidates of order p*.

Proposition 3.10. Suppose H < S and H is an F-essential subgroup of order p*
for some saturated fusion system F on S. Then H 1is isomorphic to one of the

following:

1. CF or Cp2 x Cp x Cy, for all p;

p
2. Cp2 x Cp with p € {2,3};

3. ptt? x C, with p odd; or

4. Qg x Cy and Dg o Cy when p = 2.

Proof. In Lemma 3.9 we showed that the proposition holds whenever H is non-
abelian. If H is abelian then Proposition 3.4 shows that if it has p-rank at
most 2 then p < 3 and H = Cp2 x Cp2. The elementary abelian group C;l has
Aut(C';l) = (GL4(p), which contains subgroups with a strongly p-embedded subgroup

(even with Sylow p-subgroups of order p? by Proposition 1.65). The only remaining
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candidates have rank 3, hence they correspond to a partition of 4 with 3 non-zero
elements. There is a unique such partition: (2,1,1), hence H = Cj2 x C), x Cp,
whose automorphism group contains a subgroup isomorphic to G Ly(p) and we have

not ruled it out as an F-essential candidate. O

We finally show how to distinguish between certain groups of order p*, which

will appear in Chapter 7.

Lemma 3.11. Let S be a p-group of order p* containing a unique abelian subgroup

A of index p. Then the following hold.

1. If every nonabelian maximal subgroup of S has exponent p then either p = 3,

S22 <3* 9> and A= Cyx Cy, orp >3, S has exponent p and S = <p*, 7>.

2. If p=3, S satisfies |Z(S)| =3 and S contains a unique mazimal subgroup
isomorphic to 3172, then either S = <3% 7> with A = C3 or S = <3* 8>

with A = Cy x C.

Proof. 1f p > 3 then as |S| = p* < p?, S is regular by Proposition 1.5 (2). Hence if
S contains at least 2 maximal subgroups of exponent p, S is generated by elements
of order p and Theorem 1.7 implies that S has exponent p. Thus S is a split
extension of A = C? by an element of x order p, that is S = C? x C,. As A is
the unique abelian subgroup of index p in S we have |S’| = p? and |Z(S)] = p
by Lemma 1.21, that is S has maximal class and = has Jordan form J3 and is
unique up to conjugacy in Aut(A) = GL3(p). Hence Lemma A.6 implies that S
is unique up to isomorphism. In the SmallGroups notation S = <p*, 7>, and the

Sylow p-subgroups of PSp4(p) have this property. If p = 3, however, S is not
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regular, but the following Magma snippets prove the claims, where 3?2 >~ <33, 3>,

C3 =~ <33 5> and Cy x C3 = <33, 2>, and A = Cg(9").

[IdentifyGroup(i) : i in SmallGroups(374) | 3 eq #[M : M in
MaximalSubgroups(i) | IsIsomorphic (M subgroup,

SmallGroup(3°3, 3))1];

outputs: [ <81, 9> ]
Case (1) does not arise when p = 2 since 2-groups of exponent 2 are abelian.

Similarly the second claim is proved by the following snippet.

[<IdentifyGroup(i), IdentifyGroup(Centraliser(i,
DerivedSubgroup(i)))>: i in SmallGroups(374) | #Centre(i) eq 3 and
1 eq #[M : M in MaximalSubgroups(i) | IsIsomorphic (M subgroup,

SmallGroup(3~3, 3))1];

outputs: [ <<81, 7>, <27, 5>>, <<81, 8>, <27, 2>> ] (]
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CHAPTER 4

FUSION SYSTEMS ON p-GROUPS WITH AN
EXTRASPECIAL SUBGROUP OF INDEX p:
REDUCTION

We begin by setting up some notation that we use throughout this chapter.

Hypothesis A. Let p be an odd prime, S a p-group with an extraspecial subgroup
Q of index p, and let F be a saturated fusion system on S with O,(F) = 1. Denote

Z :=Z(9S), and |S| = p**T*".

We begin by proving that if Z(Q) # Z(S) then there is some subgroup of S
which is normal in F, which contradicts O,(F) = 1. We first adapt the proof of

[Oli14, Theorem 2.1] when |S| = p*, and then consider the general case.
Lemma 4.1. Assume Hypothesis A and |S| = p*. Then Z(S) = Z(Q).
Proof. Assume for a contradiction that Z(S) # Z(Q). Then we have | Z(S)| = p* by
Lemma 1.22, so that, as |S| = p*, we have |S/Z(S)| = p* and S/Z(S) is elementary
abelian by [Gor80, Lemma 1.3.4]. In this case the only proper subgroups of S

containing Z(.S) properly are abelian subgroups of index p in S, and there is exactly

p + 1 of them which we denote by E, ..., E,;;. Thus, by Lemma 2.18 (1), the E;
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are the only candidates for F-essential subgroups. By Lemma 3.2 those E; that
are JF-essential are isomorphic to C’;’. Fix one F;.

Note 5" = (QZ(S5)) = @' has order p, so that [S, E;] = S” has order p and
Cg,(S) = Z(S) has order p?. Hence Autg(E) is generated by transvections over
GF(p), and so is its normal closure O (Autx(E)) < Auty(E), which by Lemma
1.61 contanins a strongly p-embedded subgroup. Hence Lemma 1.62 implies
that H; := OP (Autx(E)) = SLy(p) and E; = W; x U; where U; = [E;, Hy] is a
faithful 2-dimensional H;-module and W; = Cg, (H;) is 1-dimensional. We have
U NZ(S) =29, thus Z(S) = 5" x W;, and W; is the unique subgroup of Z(5)
which is a complement to S” and is normalised by Ng, (Auts(E;)) = Autg(E;) x D;
of order p(p — 1). The subgroup D; consists of diagonal matrices in Ny, (Autg(E;))
hence acts faithfully on S” and permutes the p— 1 other maximal subgroups of Z(S).
Now every element d € D; extends to d € Autz(S) with d|g, = d by Lemma 2.9.
Further, as Z(S) is characteristic in S, d|z(s) € Autz(Z(S)). Therefore the only
maximal subgroups of Z(S) which can be normalised by Autz(Z(S)) are S’ and
W;. Since Autz(Z(S)) is a p’ group and normalises S’, it cannot act transitively
on the remaining p maximal subgroups of Z(S), so there is some complement to S’
in Z(S) that is normalised. Thus W; is normalised by Autz(Z(S)).

Further, as every element of Autz(S) restricts to Autz(Z(S)) and Autz(Z(S5))
normalises W;, so does Autz(S). Thus W; = W; for all ¢, j with E;, E; F-essential,
and W; is normalised by Autx(S) for all (potential) F-essential subgroups of S as
well as Autz(5), so W; < F by Proposition 2.25, which contradicts our assumption

that O,(F) = 1. O

Now we deal with the general case.
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Theorem 4.2. Assume Hypothesis A. Then Z(S) = Z(Q).

Proof. Suppose Z(S) # Z(Q). Then by Lemma 1.22 we have S = QZ(S) and
|Z(S)| = p*. If |S| = p* the result is Lemma 4.1, hence we may assume |Q| > p3.
We have S = (QZ(9)) = Q' = Z(Q), and &(5) = SPS' = QP Z(S)PQ" = Z(Q).

We will show that Z(Q) < F, contradicting our assumptions. Note that
Z(Q) < Z(S) by Lemma 1.22, so Lemma 2.18 (1) implies that Z(Q) < E for all
F-centric subgroups E. Hence, if Z(Q) 4 F, then H is not strongly closed in F by
Lemma 2.25, that is there is some v € Homz(Z(Q), S) such that Z(Q) # Z(Q)~.
Note that Z(Q) = S’ is characteristic in S, so it is normalised by Autz(S). Then,
by Alperin’s Theorem (Theorem 2.16), there is some F-essential subgroup E with
Z(Q) < F and a € Autz(F) such that Z(Q)a # Z(Q). In particular, Z(Q) is not
a characteristic subgroup of E.

If £ is not elementary abelian then 1 # ®(E) < &(S5) = Z(Q), which is
cyclic of order p, so ®(F) = Z(Q) is characteristic in E, a contradiction. Thus,
any F-essential subgroup E with f € Autz(F), such that Z(Q) # Z(Q)pS, is
elementary abelian. Further, £ < S as S’ = Z(Q) < E. Also [E, S| = Z(Q), and
E is F-centric, so 1 # [E,S] < 58" = Z(Q).

Claim 4.2.1. Let o € Autz(FE) such that Z(Q)a # Z(Q). Then

ICs(Z2(Q)a)| = |Co(Z(Q)a)lp € {]S], |S]/p}-

Proof of claim. Let x € Z(Q)a. Since S = QZ(S) we have x = gz for some g € Q,
z € Z(9), so Cs(Z(Q)a) = Cs({q)) with (¢) < Q. Let K := (q, Z(Q)), we have
K| € {p.p?}, and Z(Q) < K s0 |Q : Co(K)| = |K : Z(Q)| € {1,p} by Lemma
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1.10. Thus as

Cs(K) =Cs({q)) NCs(Z(Q)) = Cs({q)) NS = Cs({q))

we have |Cg(Z(Q)a)| = |Cs((9)| = |Cs(K)| = |Co(K)|p € {]S], |S]/p}- =

Then as |@Q| > p*, the maximal abelian subgroups of @ have index at least p?
in @ by Lemma 1.17, so Cs(Z(Q)«) is not abelian. In particular, as E' is abelian,
C5(2(Q)a) > E 50 Cauaey(Z(Q)) £ 1 and [E, Cruin (Z(Q))] # 1.

Now consider Autz(E). As £ < S, E is fully F-normalised and we have
S/E = Autg(E) € Syl,(Autz(E)). Consider Autg(E)* < Autz(E).

By Sylow’s Theorem, as Auts(E)* N Cau(r)(Z(Q)a) € Syl,(Cauym)(Z(Q)a))

and Caug(p)(Z(Q)a) is a p-group, there exists 8 € Cauir(m)(Z(Q)cr) such that:
L. Cautg(p)(Z(Q)a) < [Auts(E)* N Cautr(r)(Z(Q))]? < (Autg(E))™ and
2. Z(Q)af = Z(Q)a.

Now consider [E, Cawgr)(Z(Q)a)] < [E, Autg(E)] = [E, S| = Z(Q).
On the other hand,

B, Chues(e) (Z(Q))] < [E, (Auts(E))*™] = [Eap, (Auts(E))*]

= [E, 5]af = Z(Q)aB = Z(Q)e.

Thus, 1 # [, Caus(n(Z(Q)0)] < Z(Q) N Z(Q)a, s0 Z(Q) = Z(Q)ar,
contradiction. Hence Autz(FE) fixes Z(Q).

Therefore, all maps in F normalise Z(Q), and Z(Q) is strongly closed in F. As
Z(Q) < Z(S) < E for all F-essential subgroups F, by Proposition 2.25 Z(Q) is
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normal in F. Thus O,(F) # 1, a contradiction as claimed. Thus we must have

Z(8) = Z2(Q). O

If |S| = p* then by Lemma 1.20 S has an abelian subgroup of index p. The
simple fusion systems on these p-groups have been classified in [Olil4], [COS17]
and [OR17]. We will look at them more closely in Chapter 7. Hence from now on

we may assume the following.

Hypothesis B. Assume Hypothesis A, |S| > p®, and Z = Z(S) = Z(Q).

4.1 JF-essential subgroups contained in ()

Next we show that under Hypothesis B an extraspecial subgroup ) of index p
in S plays a role analogous to an abelian subgroup of index p, in the sense that
no proper subgroup of ) can be F-essential. In general the only subgroups of

extraspecial groups which can be F-essential are elementary abelian.

Lemma 4.3. Let F be a saturated fusion system on S. Suppose E is F-essential

and E < R < S with R extraspecial. Then E is elementary abelian.

Proof. Suppose F < R is not elementary abelian. Then, as R is extraspecial, we
have 1 # ®(F) < [E,R] < R' = Z(R), so ®(F) = [E, R] is characteristic in £, and
thus normalised by Autz(E). However then by Lemma 2.21 we have F = R, a

contradiction. Thus FE is elementary abelian. O]

Note that the result above does not assume that R has index p in S. Now we

look more closely at the case where () does have index p in S.
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Theorem 4.4. Assume Hypothesis B. Suppose E < @) is an F-essential subgroup.
Then E = Q.

Proof. Let |Q| = p'*?", where n > 2 as |S| > pb, and assume E < Q. Then E is
elementary abelian by Lemma 4.3. By Lemma 2.18, E is maximal abelian in S.
Therefore we have |E| = p'™™ and Aut(F) = GL,.1(p). Since E is maximal abelian
in @ we have Z(Q) < E, so E < @Q by Lemma 1.9. Thus | Autg(E)| € {p", p"™}.
Note 1 # [E,Q] < Q' =Z,s0 [E,Q] = Z.

Let x € Q\ E. Then |E/Cg(x)| = |[E,z]| = |Z] = p, so ¢, acts on E a
transvection over GF(p), hence Autg(E) = @/ E is generated by transvections, and
so are its conjugates in Autz(E). Therefore N := (Autg(E)A"#(F)) < Autz(E) is
generated by transvections. Further, as Autz(E) contains a strongly p-embedded
subgroup, by Lemma 1.61 so does N, hence Lemma 1.62 implies that N = SLy(p).
In particular | Autg(E)| = p, contradicting |Q/E| = p" > p*. Therefore if £ < Q

is F-essential and |S| > p% then E = Q. O

Remark 4.5. Using the fact that | Autg(E)| € {p",p"*}, we could use that
Autz(E) = Outz(FE) has a strongly p-embedded subgroup and apply [Sam14, Propo-
sition 6.10], which states that if E is F-essential of rank r then |[Ns(E)/E| < plr/2
to obtain the same result. However, we have chosen to supply a direct proof rather

than one which depends on the Classification of Finite Stmple Groups.

Next we look at possible F-essential subgroups not contained in any extraspecial
subgroup of index p. If there is an F-essential subgroup which is both abelian and

normal in S we use Sambale’s bounds as follows.

Lemma 4.6. Let S be a p-group with an extraspecial subgroup Q) of index p, and

F a saturated fusion system on S. Suppose E <1 S with E £ Q abelian and

99



F-essential. Then |S| = p*™2" < pb and E is elementary abelian of index p™.

Proof. Let |E| = p'. Then FE is abelian and has rank r < [, and if |S| = p*™™"
then [ <n+2 by Lemma 1.17. As £ < Q and £ < S, Lemma 1.27 implies that
S/E is elementary abelian, then we have | Autg(E)| = |S/E| < pl"/ by [Sam14,

Proposition 6.10]. Hence p?>t2" = |S| = |E||S/E| < p'*1/2) so

2+42n <1+ [r/2] <n+24 [n/2] + 1

Thus n < 1+ n/2, which implies n < 2. Therefore, S| = p?™" < pb. If n = 2
then, by Lemma 1.24, S does not contain an abelian subgroup of index p, thus
r =1=4 and FE is elementary abelian. If n = 1 then [ = 3, so, by Lemma 3.2, E is

elementary abelian. O]
We will use O,(F) =1 to restrict the structure of Z as follows.

Lemma 4.7. Assume Hypothesis B. Then there is some F-essential E < S such

that Autz(E) moves Z.

Proof. If every map in F fixes Z then, as Z < F for any F-essential subgroup F
and Z < S, by Lemma 2.25 Z < F, so Z < O,(F). Then by Alperin’s Theorem

2.16 we need some F-essential E such that Autz(E) moves Z. ]
Lemma 4.7 motivates the following definition.

Definition 4.8. Assume Hypothesis B. Define by M the set of F-essential sub-

groups of S such that Autz(E) moves Z. That is,

M ={E < S| FE is F-essential and Z is not normalised by Autz(E)}.
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For E € M, define Zg := (ZAFE)) and Cg = Cs(Zg).

Note that M is nonempty by Lemma 4.7, and £ € M implies £ £ Q by
Theorem 4.4. We will split the discussion according to whether there is £ € M
such that Zp < Q, or Zg £ Q for all E € M. Thus, we set up the following

Hypotheses.
Hypothesis C. Assume Hypothesis B and that there is E € M such that Zg < Q).
Hypothesis D. Assume Hypothesis B and that for all E € M we have Zg £ Q.

We discuss Hypothesis C and D each in their own section.

4.2 Hypothesis C: some F-essential subgroup
E € M has ZE < Q

In this section we study the case where Hypothesis C holds. That is, S is a p-group
with an extraspecial subgroup @ of index p, where |S| > pb and Z = Z(S) = Z(Q).
F is a saturated fusion system on S with O,(F) = 1, and there is an F-essential
subgroup E such that Z is not normalised by Autz(E) and Zp = (ZA%#(E)) < .

Important subgroups will be Cg = Cs(Zg) and Fg := ﬂ Co(Zg)a.
aEAut]:(CE)
In this section we prove the following result.

Proposition 4.9. Assume Hypothesis C. Let E € M with Zg < Q. Then |S| = p°,
E is mazimal in S with ®(E) € {Zg, Fr}, and either S is isomorphic to a Sylow

p-subgroup of SL4(p), orp > 5 and S is isomorphic to a Sylow p-subgroup of Ga(p).

Outline of proof. In Proposition 4.13 we prove that |S| = p® and C is maximal

in S with ®(Cg) € {Zg, Fg} and Zr = Z(E), then we show F = Cg in Lemma
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4.14. At that stage we split the discussion according to whether ®(E) = Zg or
®(F) = Fg. We then apply Lemma 1.26 to obtain the upper and lower central
series of S.

In the case where ®(E) = Fr we show that () has exponent p in Lemma 4.16
and, in Proposition 4.17, we prove that p > 5 and S is isomorphic to a Sylow
p-subgroup of Gy(p).

We then prove that if ®(E£) = Z(F) and p # 3 then S is a semidirect product
of C;‘ by C’g in Lemma 4.18, and conclude in Proposition 4.20 that S is isomorphic

to a Sylow p-subgroup of SL4(p). Lemma 4.19 deals with the case p = 3. ]
We begin by studying Zg.

Lemma 4.10. Assume Hypothesis C. Then Zg is normal in S, elementary abelian,

fully F-automised and F-receptive.

Proof. As Z < Z(E), we have Zp = (ZA"W(E)) < Z(E), so Zr < E is abelian and
generated by elements of order p, hence it is elementary abelian. As 7 < Zg < (@,
we have Zp < @) by Lemma 1.9. Thus, Zp < EQ = S, and Zg is fully F-
normalised. Then, by Theorem 2.7, Zg is fully F-centralised, fully F-automised

and F-receptive. O

Lemma 4.11. Assume Hypothesis C, then Z is not invariant under OP (Autx(Zg)),

Zp = (ZOPI(A‘“F(ZE))> and O (Autx(Zg)) acts irreducibly on Zp.

Proof. As every map in Autz(F) moving Z restricts to a map of Zg, we observe
Zp = (ZAF(E)) = (7Awr(Ze)) - Then, as Zg is fully F-automised by Lemma
4.10, we have Autg(Zg) € Syl (Autz(Zg)), so Auts(Zg) is a Sylow p-subgroup of

O (Autx(Zg)). Further, as OP (Autx(Zg)) < Autz(Zg), we have, by the Frattini
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Argument (Theorem 1.1), Autz(Zg) = O (Autz(Z5)) Nawy(z5) (Auts(Zg)). As
Zp <5, it is fully F-normalised, hence every element o € Nay,(z,)(Auts(Zg))
lifts to Ng(Zg) = S by Lemma 2.9. Thus a normalises Z, so Z is not invariant
under O (Autz(Zg)), and any image of Z under Autz(Zg) can be attained by
some a € O (Autz(Zg)). Hence Zp = (207 (Autx(Zp)),

Assume there is N < Zg normalised by Op/(Aut;(ZE)). As Zp < Q we
have N < @, as otherwise there would be ¢ € ) such that N¢, # N and
¢qlzs € OP (Autz(Zg)), a contradiction. Thus, Z < N by Lemma 1.9, and we have

Zp = (Zop,(Autf(ZE))> < N. Therefore, O (Autx(Zg)) acts irreducibly on Zg. O
We now determine the structure of Zz and OF (Autz(Zg)).

Lemma 4.12. Assume Hypothesis C. Then |Zg| = p* and Zg is a natural module
for OP (Autz(Zg)) = SLa(p).

Proof. By Lemma 4.10, Zg is elementary abelian and fully F-automised. Thus
as Zp < Q, we have Q/Cq(Zp) = S/Cp = Auts(Zgp) € Syl,(Autz(Zg)), and
Autr(Zg) has elementary abelian Sylow p-subgroups, hence so does OF (Autz(Z)).
Also recall that Zp < Z(F), so E centralises Zg, that is F < Cpg.

If € S = EQ with x = eq then the action of ¢, € Autz(Zg) is that of ¢,, so
let ¢ € Q\ Co(Zg). Thus 1 # [Zg,c,] < Z, has dimension 1 over GF(p). Further,
Cz,(cy) = Cz,(q), and as |Q : Cg(q)| = p, we have |Zg : Cz,(q)| = p, so ¢, acts
as a transvection over GF'(p) on Zg. Then S/Cp = Auts(Zg) € Syl,(Autz(Zg))
is generated by transvections and so are its conjugates. Hence, as OF (Autr(Zg))
is generated by its Sylow p-subgroups and all the Sylow p-subgroups are generated

by transvections, O” (Autx(Zg)) is generated by transvections.
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Then we have O (Autx(Zg)) that is generated by transvections and has ele-
mentary abelian Sylow p-subgroups acting irreducibly on Zg by Lemma 4.11. Thus
we conclude that Zp is 2-dimensional over GF(p) and O (Autx(Zg)) =2 SLy(p)

by Lemma 1.44. O]

We can now heavily restrict the structure of S and Cg as follows. Recall that

FE = ﬂ OQ(ZE)CY

a€Aut z(Cg)

Proposition 4.13. Assume Hypothesis C and fir E € M with Zg < Q. Then
1. Cg = Cs(Zg) is mazimal in S, F-essential, and Z(Cg) = Zg.

2. Outz(Cg) acts as a subgroup of GLs(p) on both Cg/Fg and Zg. Further,
OP (Outx(Cg)) = SLa(p) acts on Cp/Fg as a natural SLy(p)-module. In

particular, |Cg : Fg| = p*.
3. |S| =p° Fp=C3, ®(Cg) € {Zg, Fg}, |S'| = p|®(Cp)| and p* < |E| < p°.

Proof. We begin by considering the extensions of elements of Autz(Zg) to Cg, and
then we consider Autz(Cg) and Cauty(cy)(Autz(Zg)) and show that Fp < Cp is

abelian. Finally, we deduce some facts about the structure of S.

Claim 4.13.1. Cg = Cs(Zg) is mazimal in S, F-essential, and Z(Cg) = Zg.

Proof of Claim. By Lemma 4.12, we have that |Zz| = p?, OP (Aut£(Zg)) = SL(p).
Thus, |Q : Co(Zg)| = |Zk : Z] = p by Lemma 1.10. Therefore, as Co(Zg)E < Cg,
we have |S : Cg| = p, and Cf is a maximal subgroup of S.

Let ¢ € Autz(E). By definition, Autz(E) normalises Zg, so ¢|z, € Autz(Zg).
As Zp is F-receptive by Lemma 4.10, ¢|z, extends to ¢ : Ng|,, — S. Note

Cs(Zg) = Cp < Ny, by Lemma 2.8. Then ¢ = dlc, : Op — S. Finally, Z is
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characteristic in .9, so any map in Autz(S) normalises it, hence Ny 2y < S, and as
CE is maximal in S, we obtain that Ny|,, < Cg.

If Cpd # Cp then, as Z(Z¢) < Z(Cg), we have (Z¢)(Zod) < Z(Crd).
Therefore, Z¢ < Z(Cp(Cpd)) = Z(S), a contradiction. Hence, Cpé = Cp,
5 € Autx(Cg) and gg cannot extend to a map in Autz(S), in particular it does not
extend to an F-isomorphism between strictly larger subgroups of S. Therefore, the
subgroup He,, < Autz(Cg) as in Proposition 2.14, which is generated by those
a € Autx(Cg) which extend to F-isomorphisms between strictly larger subgroups
of S, does not contain 5, so Proposition 2.14 implies that He, < Autz(Cg) and
Cg is F-essential.

In particular, C'r < .S is fully F-normalised and, by Theorem 2.7, Cy is fully
F-automised. Thus Outz(Cg) has Sylow p-subgroups of order p. As |Q| > p° by
assumption, Cg(Zg) = Cr N Q is nonabelian by Lemma 1.17.

Now Z(Cg)NQ < Z(CgNQ) = Zg by Lemma 1.10, so if Z(Cg) # Zg we have
Z(Cg) £ Q. In this case Cp = (CpNQ)Z(Cg) and Cf = Z, a contradiction as
Autz(Cg) does not normalise Z. Thus we have Z(Cg) = Zg. This completes the
proof of part (1). "

We now study the subgroups Fp = ﬂ Co(Zg)a and ©(Cg) < Fg of

a€Autx(Cg)
Cg. Note that Fg is elementary abelian, since otherwise, as Fr < ), we would

have ®(Fg) = Z normalised by all @ € Autz(CE), a contradiction.

Claim 4.13.2. Outz(Cg)/Couwrcp)(ZE) has a subgroup isomorphic to SLs(p)
acting on Zg as on a natural SLy(p)-module. Further, OY (Outz(Cg)) = SLy(p)
acts on Cg/Fg as on a natural SLy(p)-module. In particular, |Cg : Fg| = p?.

Proof of claim. As Zr = Z(Cg) is characteristic in Cg, every a € Autz(Cg)
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restricts to a|z, € Autz(Zg), so 0 : Autx(Cg) — Autx(Zg) given by restriction
is a homomorphism. Note that 6 is surjective, since every ¢ € Autx(Zg) extends
to some ¢ : Ny — S with @0 = Pz, = ¢ where Ny > Cpg, and if Cr¢ # Cg then

Zpb # Zn.
Note that Inn(Cg) < ker() = Cautr(cp)(ZE), so we can consider the projection

map 0 : Outz(Cg) — Outz(Zg) = Autz(Zg). Thus Outx(Cg)/ker(6) contains

a subgroup isomorphic to SLy(p). Note that ker(d) = Cour(cp)(ZE). Since

S/Cg = Outs(Cg) € Syl,(Outz(Cg)) has order p, and im(¢)) contains a subgroup

isomorphic to SLy(p), | ker(0)| = | Outx(Cg)|/|im(8)]| is not divisible by p, that

is, ker(f) is a p’-group. Note that, by [PS15, Lemma 3.5 and Remark afterwards],

ker(6) is not necessarily trivial.

Recall that 1 # ®(Cg) < Fg = ﬂ Co(Zg)a. We consider the action of
OtGAut]:(CE)
Outz(Cg) on V := Cg/®(CE), an elementary abelian quotient of order at least p?.

As Cg is F-essential, O,(Outz(Cg)) = 1 so Lemma 2.20 implies that we have
Cautrc)(V) = Cautr(cs)(Cr/P(CE)) = Inn(Cg), and Outz(Cg) acts faithfully
on V. Consider G := O” (Outz(Cg)), which is generated by elements of order p,
hence contained in SL(V'). We have Outg(Cg) = S/Cr = Q/(Q N Cg) which does
not centralise V', but centralises C(Zg)/®(Cg) of index p in V. Since Outg(Cg)
has order p and centralises a hyperplane, its nontrivial elements act on V' as
transvections over GF'(p), hence G is generated by transvections. In particular,
[Cg, Q] = [CEg,Outg(Cg)| and S" = CLQ'[CE, Q], thus |S’| = p|®(Cg)|. Further, G
contains a strongly p-embedded subgroup by Lemma 1.61, so Lemma 1.62 implies
that V = Vo @ Vi, where |Vi| = p?, G = SLy(p), and V; is a natural SLy(p)-module
for G.
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Since Q/®(Cg) < Cy(S), we have V5 < Q. Thus Vj < @ N Cg and is
normalised by Autz(Cg), so Vo = Fg, hence |Cr/Fg| = |Q/Fg| = p*. Thus, part

(2) is proven. n

Now Fp is abelian and contained in @ with |Q| = p'*t®", so |Q : Fg| > p" by
Lemma 1.17, so n < 2. Since we assumed |S| > p%, we have n > 2, therefore n = 2,
|Q| = p® and |S| = p®. In particular, |Fg| = p® and, as Ff is elementary abelian,
we have 'y & C’;’.

We have Z < ®(Cg), so Zg < ®(Cg) < Fr and ®(Cg) € {Zg, Fg} has order
p? or p?, so that |S'| € {p3 p*}. Finally, E satisfies Zp < E < Cpg, so that

p® < |E| < p®, which completes the proof of the proposition. ]

We show Cg plays a similar role to ) in that no proper subgroups can be

JF-essential.

Lemma 4.14. Assume Hypothesis C and adopt the notation of Proposition 4.183.

If K < Cg is F-essential then K = Cg. In particular, E = Cg.

Proof. Suppose that K < Cf is an F-essential subgroup. We thus have Zp <
K < Cg. Assume that ®(Cg) = Zg. As [K,Zg] = 1, Cg/Cs(K), which is
isomorphic to a subgroup of Aut(K), normalises the subgroups 1 < Zp < K
and centralises K/Zp and Zg, so if Zg < Autz(K) then Lemma 1.37 implies
that Cp/Cs(K) < Op(Aut(K)) = Inn(K). Therefore, if Zp < Autz(K), we have
K =Cg.

If Zp 4 Autz(K) then we have ®(Cp) = Zp < K < Cp, so K < Cp and
thus, if |K| < p*, Proposition 1.64 yields a contradiction. Hence |K| = p* and,

as Zg < Z(K) is not characteristic in K, we have Z(K) > Zg, which implies
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K = Z(K) by [Gor80, Lemma 1.3.4]. Then, as K is abelian of index p in Cr and
|Cg|" = p?, Lemma 1.21 implies that K is the unique abelian subgroup of index p in
CE, hence K is characteristic in C'g. Thus K < S, therefore Proposition 1.64 implies
that K is elementary abelian, and Proposition 1.65 implies that O (Autz(K)) is
isomorphic to either SLy(p?) or PSLy(p?). Let T € Syl (O” (Autz(K))). Then,
as |Z(S9)| = p, we have |Ck(T)| = p, so that Lemma 1.33 implies that K is
a natural € (p)-module for O (Autr(K)) and every p-element acts on K with
Jordan form J; & J;. In particular every maximal subgroup M of S containing
K has M' # Z(M), which contradicts the existence of Cg. Therefore we have
Zr < Autz(K) and we can conclude that K = Cp.

Now assume ®(Cg) = Fp and K < Cg. Then by Theorem 4.4 K £ Q). We have
K < M < Cg for some maximal subgroup M # CrNQ of Cp. As ®(Cg) = Fg,
no maximal subgroup of Cg is normalised by Outz(Cg), and Cr N Q is the only
maximal subgroup of Cr that is normalised by Outs(Cg) by Proposition 4.13 (2).
Thus M is F-conjugate to Q N Cg, and K is F-conjugate to some L < () with
Q' =7 < L, hence L < Q. Further, |[Ng(K)| > |Ns(L)| > |Q| since K is fully
F-normalised.

Any fully F-normalised subgroup that is F-conjugate to an F-essential subgroup
is F-essential, so if Ng(K) < S then L < @ is F-essential too, which contradicts
Theorem 4.4. On the other hand if Ng(K') = S we have K®(Cg) < S so, as K < O,
we have K®(Cg) < Cg, hence M = K®(Cg) = Cr N Q, a contradiction. O

Therefore, if Hypothesis C holds, the situation is as follows.

Proposition 4.15. Assume Hypothesis C' and that E € M has Zg < Q). Then
|S| =p°, E = Cs(Zg) has order p°, Zp = Z(E) with | Zg| = p*, ®(F) € {Zg, Fr}
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and |S'| = p|®(F)|. Further, Outz(E) acts on Zg and E/Fg as a subgroup of
GLo(p) containing SLy(p).

Proof. Follows from Lemmas 4.12, 4.13 and 4.14. m

We note that in SLs(p) we have E with Zg = ®(F) = E' = Z(FE), hence E
is special, and in Gy(p) we have E with ®(F) = Fg. We organise the reduction
depending on ®(E), and subsequently |S’|. We consider ®(F) = Fg in Subsection
4.2.1, and ®(F) = Zg in Subsection 4.2.2.

4.2.1 &(F) = Fg leads to a Sylow p-subgroup of G,(p)

If ®(E) = Fg, we know that |S’| = p*, so, by Lemma 1.26 (1), S has maximal
nilpotency class. Hence we show that () has exponent p and that there is a
complement to ) in S in order to apply Proposition 1.32 to conclude that there is

a unique p-group with these properties, which is isomorphic to a Sylow p-subgroup

of G2 (p)

Lemma 4.16. Assume Hypothesis C and adopt the notation of Proposition 4.15.
If ®(E) = Fg then Q has exponent p.

Proof. As ®(F) = Fg we have |S'| = p|®(E)| = p*, so by Lemma 1.26 (1) S has
maximal nilpotency class. If @ does not have exponent p then Q = p*™ and,
by Corollary 1.15, there is a characteristic subgroup H of @ of order p?. Then
H < S, but, since S has maximal class, we must have H = Z5(S) = Z(FE) by
[Blah8, Lemma 2.2], so Z5(S) is characteristic in @, S and E.

In this case Zy := Z5(S) is normalised by the F-automorphism groups of S, Q

and E and contained in them. Thus, by Proposition 2.25, if Z, is not normal in F,
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we need some F-essential subgroup K that either does not contain Zs or such that
Autz(K') does not normalise Z.

By Lemma 4.14 if K < E then K = F, so that K £ Q and K £ E = Cs(Z»).
Then by [Gral8, Lemma 3.4] K is an F-pearl (that is, K is isomorphic to either
Cg or pi™?), but then [Gral8, Theorem 3.14] implies that ) has exponent p, a
contradiction as we were assuming () had exponent p?.

Thus () must have exponent p. O

Proposition 4.17. Assume Hypothesis C and adopt the notation of Proposition
4.15. If ®(E) = Fg then p > 5 and S is isomorphic to a Sylow p-subgroup of

Ga(p).

Proof. If ®(E) = Fg then |S'| = p|®(F)| = p* by Proposition 4.13 (3), so S has
maximal class by Lemma 1.26 (1). By Lemma 4.16 @) has exponent p. Now let
a € Auty(E) with QN E # (Q N E)a. Then (Q N E)a £ @ so there is an element
of order p in S\ @ and @ has a complement K in S. Then Proposition 1.32 implies

that p > 5 and S is isomorphic to a Sylow p-subgroup of Ga(p). ]

In the case above we can therefore use the results of [PS18]|. The remaining

case has ®(F) = Zg.

4.2.2 ®(F) = Zg leads to a Sylow p-subgroup of SL,(p)

Our strategy in this case differs when p = 3. We begin by finding an abelian
subgroup V of order p* and find a complement to V in S. Then if p # 3 we show
that V' and hence S has exponent p, and use Lemma 1.26 (2) to determine the

upper and lower central series of .S, then use Proposition 1.32 to reduce S to either
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a Sylow p-subgroup of SL4(p) or one of SUy(p), the latter of which does not contain
a maximal subgroup isomorphic to E.
If p = 3 we cannot use the arguments about exponent, so we perform a computer

calculation.

Lemma 4.18. Assume Hypothesis C and adopt the notation of Proposition 4.15.
If ®(E) = Zg then there exists V < S abelian of order p* and T € Autz(S) such
that V- =[S, 7| has a complement Cs(T) in S, that is, S = [S,T] x Cs(T). Further,
Cs(T) is elementary abelian and V = Cg(S") is either elementary abelian or p =3

and V =2 Cy x Cy.

Proof. Recall that by Proposition 4.13 (2), H = O (Outz(E)) = SLy(p), in
particular |Z(H)| = 2. Choose 7 € Autz(FE) of order 2 such that its image in
Outz(F) is the central involution of H. As ®(F) = Zg, E/Zg is elementary
abelian, so E/Zg = Cg/z,(7) X [E/Zp, 7] by Theorem 1.38. Thus 7 inverts E/Fg
and since 7 has determinant 1, |Cg/z,(7)| = p. The restriction of 7 to Zp is central
and has order 2 in OF (Autz(Zg)) = SL,(p) hence it inverts every nontrivial
element of Zg.

Now let V' be the preimage in S of [E/Zg, 7], then V has order p*. Then 7 acts
fixed point freely on V' so by [Gor80, Theorem 10.1.4] V' is abelian. Note V' has
index p in E.

Suppose W is abelian of index p in E, then by Lemma 1.21 either we have
VNW < Z(E) of order p* or V.= W. Since Z(E) has order p? V is the unique
abelian subgroup of index p in E. Thus V is characteristic in £ and in particular
Vs,

Now consider 7 € Autx(S), a lift of 7 to S, which exists by Lemma 2.9. Then
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T|g =7, s0 that T|pT™! = Ly, ().

Note that 7 acts on S/FE = Outg(E) via a map . Let 7 be the image of 7 in
Outr(E) and consider the action of v =471 on Outg(F). If it is not trivial then
v € Outz(E) such that its preimage in Autz(E) does not belong to Inn(£). Then
v does not act trivially on E. But 7|g7t = 7771 = Ly, (r), a contradiction and
v and thus 7 centralises S/E.

Thus |Cs(7)| = p*. By Theorem 1.38 we have S = Cs(7)[S,7]. Since 7|y = 7,
we have that 7 acts on V by inverting every nontrivial element, and we have
Cs(T)NV =1,80 S = Cg(T)V and Cg(T) = S/V is a complement to V in S. Note
that S/V = QV/V =2 Q/(VNQ) is elementary abelian by Lemma 1.27, thus Cg(7)
is elementary abelian. Thus S’ <V, and since C(S") = S’ as |S’| = p?, we have
Cs(S")=V.

Consider (V). We have (V) < ®(E) = Zgso ®(V) € {1,Zg}. U O(V) = Zg
then V = C2 x C)2 and there is a subgroup isomorphic to SLy(p) in Aut(V'), so

Proposition 3.4 implies that p < 3. Thus if p > 3 then V is elementary abelian. [J
When p = 3 we determine the isomorphism type of S computationally.

Lemma 4.19. Assume Hypothesis C and adopt the notation of Proposition 4.15.
If (E) = Zg and p = 3 then S is isomorphic to a Sylow 3-subgroup of SL4(3).

Proof. A Magma algorithm that proves the Lemma is in Appendix C.2. Below
we prove that the algorithm does as claimed. We use the SmallGroups library
to examine groups of order 3% and, using the fact that there is £ maximal in S
such that ®(F) = E' = Zg = Z(F) of order 3? and |S’| = 33, we reduce to seven

candidates which are stored in the sequence C'.
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By Lemma 4.18 there is a homocyclic subgroup V = Cs(S’) of order 3*. In
the notation of the SmallGroups library this means that V' is isomorphic to either
C§ = <81,15> or CZ = <81,2>. Further, we have S = [S,7] x Cs(7), that is,
there exists an involution in Aut(S) that centralises exactly nine elements of S,
exactly one of which is in V' (the identity element of S). This is what we use to
prune C' to the subsequence C'C', which contains one element which we then check
is isomorphic to a Sylow p-subgroup of SL4(3). Thus the code in Appendix C.2

proves the lemma. [

Proposition 4.20. Assume Hypothesis C' and adopt the notation of Lemma 4.15.

If ®(FE) = Zg then S is isomorphic to a Sylow p-subgroup of SL4(p).

Proof. If p = 3 this is Lemma 4.19. On the other hand, if p # 3 then, by Lemma
1.26 (2), |S’| = p® and S has nilpotency class 3, so S is a regular p-group. By
Lemma 4.18 both V' and Cs(7) have exponent p, so S is generated by elements of
order p and thus has exponent p by Theorem 1.7.

Therefore, S contains an extraspecial subgroup ) = p}rH, and a complement
K to @ in S. Thus, by Proposition 1.32, S is isomorphic to a Sylow p-subgroup of
either SLy(p) or SU,(p). But by Lemma 1.34 a Sylow p-subgroup of SU,(p) does

not contain a subgroup isomorphic to F, whereas a Sylow p-subgroup of SL4(p)

does. Thus S is isomorphic to a Sylow p-subgroup of SL4(p). O]

All cases have been checked and the proof of Proposition 4.9 is finished.
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4.3 Hypothesis D: every F-essential subgroup
EeMhas Zg £ Q

Now we consider the case where Hypothesis D holds, that is, S is a p-group with
an extraspecial subgroup @ of index p, where |S| > p® and Z = Z(S) = Z(Q).
Further, F is a saturated fusion system on S with O,(F) =1, and Zp % Q for all

E € M. In this case we prove the following result.

Proposition 4.21. Assume Hypothesis D. Let E € M. Then either S is iso-
morphic to a Sylow p-subgroup of SU4(p) and |E| = p* satisfies O (Autz(E)) =
PSLy(p*), orp>17, |E| =p?, and |S| = pP~, where S has mazximal class and is

unique up to isomorphism.

Outline of proof. We show that E and Autg(F) are elementary abelian, then use
Thompson’s Replacement Theorem in Lemma 1.53 to obtain that either £ <1 S or
E admits a quadratic action in Lemma 4.22. We then split the discussion according
to whether £ N @ is maximal abelian in () or not.

In the first case we use Lemma 4.6 to prove |S| = p° and restrict O (Autx(E)),
then in Proposition 4.23 we determine that S is isomorphic to a Sylow p-subgroup
of SU4(p) with OP (Autz(E)) = PSLy(p?).

In the second case we show in Lemma 4.24 that there is a subgroup of Autz(FE)
generated by transvections, which implies that | Autg(F)| = p. Then we bound
the order of S and E in Lemma 4.25 and finally in Proposition 4.26 we show that
E is an F-pearl and use a result from [Gral8] to determine the order of S before

proving uniqueness using Proposition 1.31. O

We begin by showing that E is elementary abelian and splitting the problem

into two cases which we will study separately.
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Lemma 4.22. Assume Hypothesis D and let E € M. Then E and Ng(E)/E
are elementary abelian. Fither E N Q is maximal abelian in Q) and E < S, or

ENQ < Co(ENQ) and E admits quadratic action.
Proof. Let E € M. As Z < OW(Z(E)), Zg = (ZA2E)) < Q) (Z(E)), so Zg is

elementary abelian. If F = Zg(F N Q) is not elementary abelian, we have

1#®(E)=E'E' = (Ze(ENQ)PZe(ENQ), Ze(ENQ)]

= Zp(ENQPENQ) <2Q) =7,

so Z = ®(F) is characteristic in E, a contradiction since we assumed Autz(FE)

moves Z. Thus F is elementary abelian. Note that

Ns(E)/E = No(E)E/E = Nqo(E)/(EN Nq(E)) = No(E)/(ENQ) <Q/(ENQ)

and since ®(Q) = Z < ENQ, Ng(F)/E is elementary abelian too.

Now if Co(EF N Q) > ENQ then Lemma 1.17 implies that there exists an
elementary abelian subgroup A < @ with |A| > |E|, in which case by Lemma 1.53
E admits quadratic action. Otherwise, we must have Co(E N Q) = E N Q, that is

E N Q is maximal abelian in @, and F = Cs(ENQ) I Ng(ENQ) = S. ]

We first consider the case Co(ENQ) = ENQ.

4.3.1 ENQ@ maximal abelian in () leads to a Sylow p-subgroup
of SU4(p)

In this case we have already proven the results that we need.
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Proposition 4.23. Assume Hypothesis D and suppose that E € M satisfies
Co(ENQ)=ENQ. Then S is isomorphic to a Sylow p-subgroup of SU4(p).

Proof. By Lemma 4.22, E < S is elementary abelian so that we can apply Lemma
4.6 to obtain |S| = p°, E = C}, hence Auty(FE) < GLy(p) and, by Proposition
1.65, A := O¥ (Autx(FE)) is isomorphic to either SLy(p?) or PSLy(p?). Hence E
is an X-module for X = SLy(p?) of dimension 4 over GF(p), where Z(X) may
act trivially. Note that PSLy(p?) = Q3(p?) = Q; (p) and PSLy(9) = Ag by parts
(2,5,12) of Proposition 1.19.

Consider Nz(F), which is saturated by Theorem 2.27, and has £ < Nx(E) by
definition. As E is F-centric, Nz(F) is constrained, and as A acts transitively
on the proper subgroups of S containing F, we have £ = O,(Nx(FE)). Hence, by
the Model Theorem (Theorem 2.29), there exists a model G for Nx(E), that is
a finite group G such that £ = O,(G), S € Syl,(G), and Cg(E) = E. Then G
is a semidirect product of E by Autg(FE), where Autg(FE) acts faithfully on E,
and O (G) =2 E x O (Autg(E)) =2 E x A where, as |Cg(S/E)| = p, Lemma 1.33
implies that E is a natural €, (p)-module for A.

Let P be a parabolic maximal subgroup of SU,(p) of shape C’;j 1 SLy(p?) : Cpy,
of which there is a unique conjugacy class by [BHRD13, Table 8.10], and let R €
Syl,(P). Consider OP(P) =2 C : SLy(p*), where we have again that O,(P) = C4
is a GF(p)X-module of dimension 4, and we have |Z(R)| = p by Proposition 1.32.
Hence Lemma 1.33 implies that Aute,y p)(Op(P)) = SLy(p®) acts on Oy(P) as a
natural 2, (p)-module.

By Theorem A.13 there is a bijection between the set of equivalence classes

of extensions of F by A giving rise to the given action of A on F and the 2-
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cohomology H?(A, E). By [Kiis79, Theorem 3.2] H*(2; (¢), E) = 0 for all odd
q. Thus O (P) = O”(G), and in particular S is isomorphic to R and hence to a

Sylow p-subgroup of SUy4(p). O

4.3.2 F N @ not maximal abelian in @)
In this situation we begin by proving that | Autg(E)| = p.

Lemma 4.24. Assume Hypothesis D and E € M with Co(ENQ) > ENQ. Then
| Autg(E)| = p.

Proof. Let |E| = p" and assume for a contradiction that | Autg(E)| > p®. Since E
is elementary abelian by Lemma 4.22, F can be considered as a vector space over
GF(p) and so Autz(E) < GL,.(p).

Since Cs(ENQ) = ECo(ENQ) and Co(ENQ) > ENQ by assumption, we have
E < Cs(ENQ), so Nogeng)(E) > E. Hence choose h € Negeng)(E) \ E, then
¢, € Autg(F) has order p and centralises ENQ, so ¢y, acts on F as a transvection over
GF(p). Let G := Autz(FE), which contains a strongly p-embedded subgroup H. We
consider N := (cﬁmr (E)> < G, which is generated by elements with determinant 1,
hence N < O (Aut(E)) = SL.(p). N is generated by conjugates of a transvection,
hence it is generated by transvections and, by Lemma 1.61, N contains a strongly
p-embedded subgroup. Then Lemma 1.62 implies that N = SLy(p), in particular
p* 1 |N|. As N < G, we have G/(NCg(N)) < Out(N). Further, by [CCNT85,
Table 5], we have | Out(N)| = 2, hence p* | [NCg(N)|. Let T € Syl (Cg(N)) and
P = (cx) € Syl,(N), then N < Cg(T) < Ng(T) and Cg(N) < Cq(P) < Na(P),
so, by Corollary 1.56 (1), we have G < NCg(N) < Ng(T)Ng(P) < H < G, a

contradiction. Therefore, we conclude that | Autg(E)| = p. O
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We now study the action of E on Q/Z.

Lemma 4.25. Assume Hypothesis D, and E € M with Co(ENQ) > ENQ. Then
|E| < p?, |S] < p*™ and elements of E act on Q/Z either trivially or with Jordan

form J, & L where L is trivial if |E| = p* and L = J, if |E| = p.

Proof. Lemma 4.22 implies that E is elementary abelian, and Lemma 4.24 shows
that | Auts(F)| = p. Since £ N Q acts trivially on Q/(E N Q), the action of £ on
Q/(ENQ) is that of a cyclic group of order p. We claim that if e € E\ ENQ
then ¢, acts on Q/(F N Q), with Jordan form consisting of a single Jordan block.
Otherwise, ¢, acts with Jordan form J, @& J where J; is a Jordan block of size k
and J is nontrivial. In particular, Cq/png)(E) = C,, (E) ® C;(E), which has order
at least p%. Let 2,y € Q be such that z(EN Q) € C,(F) and y(ENQ) € C;(E).
Then [E,2] < ENQ < E,and [E,y] < ENQ < E, so x,y € Ng(F). But then
|Ns(E)/E| > p?, a contradiction.

Further, (ENQ)/Z is centralised by QE = S, so the action of e on Q/Z has
Jordan form J, & J, S, D ... D J;.

Assume |E| > p?, and consider T, W of order p* with Z < T < ENQ and
Z <W < ENQ. Then T, W are normal in () and E, hence also in S, thus Cq(T)
and Co (W) contain £ N Q. By Lemma 1.10 both C(7") and Cp(W) have index p
in @, are normal in S, and have T'= Z(Cq(T')) and W = Z(Cqy(W)) respectively.
As the action of e on Q/(E N Q) has a single Jordan block, Q/(E N Q) is a cyclic
S-module, hence Lemma 1.39 implies that it has a unique S-invariant subgroup
of index p, thus Cg(T) = Co(W). Then T' = Z(Cy(T)) = Z(Co(W)) = W. Thus
ENQ@ =T and has order p*. So |E| < p® and (ENQ)/Z| < p.

Hence Q/Z = C & D, with C a cyclic module and |D;| < p, hence Q/Z
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has order at most p'™ as cyclic modules have order at most p? by Lemma 1.39.
Thus |S| < p'*P™2 and |E| < p3, where D is trivial if |E| = p? and |Dy| = p if

|E| = p®. O
And we can now conclude this case.

Proposition 4.26. Assume Hypothesis D and E € M with Co(ENQ) > ENQ.
Then p > 7, |E| = p%, |S| = p?~! has mazimal class and S is unique up to

1somorphism.

Proof. If |E| = p* then Lemma 4.25 implies that there is e € E \ (E N Q) such
that ¢, acts on @Q/Z with Jordan form J, & J;. Note that c. centralises Z, and
recall that Couyg)(Z) is isomorphic to a subgroup of Spy,(p) by Theorem 1.14.
But then Theorem 1.25 (2) implies that either k& = 1, or ¢, ¢ Spon(p), as we
have r; = 1. If k = 1 then we have |S| = p™***1 = p1 which contradicts the
assumption of |S| > p® from Hypothesis D. In this situation we would also have
Co(ENQ) = ENQ. Therefore we have |E| = p?.

Then £/ = C), x C,, is an F-pearl, so S has maximal class by Proposition 1.3. As
Q is extraspecial, [Gral8, Theorem 3.14] implies that |S| = pP~!, p > 7 and S has
exponent p. In particular it is a split extension of () by C, and then Proposition

1.31 implies that S is unique up to isomorphism. O

4.4 Summary of the reduction

We have covered all cases and we now finish proving the following first Main

Theorem, and we also determine the candidates for elements of M.
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Theorem 4.27. Suppose S is a p-group with an extraspecial subgroup Q) of index p

and |S| > p®, let F be a saturated fusion system on S with O,(F) =1, and define

M :={E < S| FE is F-essential and Z 1is not normalised by Autrz(E)}.

If S has maximal nilpotency class we define R := Cs(Z2(S)) and

Pi={P = (Z(5),x) |z € S\ (QUR)}.

Then M is nonempty and S is isomorphic to one of the following.

1. A Sylow p-subgroup of SLy(p). In this case M C { My, My} where My = M,

are the two mazximal subgroups of S with Z(M;) = M of order p*.

2. A Sylow p-subgroup of SU4(p). In this case M = {V'} where V is the unique

elementary abelian subgroup of order p* in S and OP (Autz(V)) = PSLy(p?).
3. A Sylow p-subgroup of Ga(p) with p > 5 and p #7. Then M = {R}.
4. A Sylow T-subgroup of G5(7), where M C {R} UP.

5. The unique p-group of order pP~', maximal nilpotency class, exponent p and

Q extraspecial of index p. In this case p > 11, and M C P.

If E € M and |E| # p* then O (Outx(E)) = SLy(p).
In all cases () is the unique extraspecial subgroup of index p in S.

Further, if E < L where L € {Q} UM then E cannot be F-essential.

Proof. We have proved in Propositions 4.9 and 4.21 that S is isomorphic to one of

the p-groups above. We now complete the determination of candidates in M in
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each of the cases, which is nonempty by Lemma 4.7. Let F € M, and note that
we must have E &« Q by Theorem 4.4. If |S| = p® then p? < |E| < p°.

If |S| = pP~! we use [Gral8, Theorem 5.4] to obtain that the F-essential
candidates are Q, P € P, or E < R with p? < |E| < p®, and if |E| > p* then F is
not abelian. Hence E € M also satisfies |E| < p° in this case.

If |[E| <p® then Zgp = E £ @ so E is abelian and Hypothesis D holds. Since
|S| > pb we have Co(E N Q) > E N Q, hence Proposition 4.26 implies that we are
in the case |S| = pP~! with |E| = p%. Then as E = Cs(E) we have E £ @ and
E £ R,so EeP.

If |[E| = p* and Zg < Q then, as Zp < Z(E), we have £ < Cs(Zg) = Cg.
Then Lemma 4.14 implies that £ = Cs(Zg) of order p°, so this case is not possible.
Hence Zg « @ and E is elementary abelian by Lemma 4.22, so Z5(S) > ENQ
and S does not have maximal nilpotency class, so Proposition 4.21 implies that
ENQ =Co(ENQ) and S is a Sylow p-subgroup of SU,(p) with £ < S. Then
Lemma 1.34 implies that F is the unique abelian subgroup of order p* and we
denote it by V.

Finally, if |E| = p° then both cases in Hypothesis C appear, and if Hypothesis D
holds then p = 7 and S is isomorphic to a Sylow p-subgroup of G5(7) by Proposition
4.21 and [Gral8, Theorem 5.4].

Thus if S is a Sylow p-subgroup of SU4(p) then Proposition 4.23 implies that
M = {V} and O (Autz(V)) = PSLy(p?). If |S| = p*~* we have shown M C P
unless p = 7. Hence parts (2) and (5) are proven.

If S is isomorphic to a Sylow p-subgroup of SL4(p) then |E| = p° satisfying
E' = ®(F) = Zg = Z(F). There are exactly two maximal subgroups of S with

this property by Lemma 1.34, which we will denote by M; and M,. Therefore
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M C {M;, My} in this case and (1) follows. O (Outz(M;)) = SLy(p) follows by
Proposition 4.13 (2).

Finally, if S is isomorphic to a Sylow p-subgroup of G5(p) then R is the only
candidate when p # 7 as every other maximal subgroup of S is either @ or a
p-group of maximal nilpotency class by [Gral8, Corollary 2.14]. If p = 7 we have
|S| = 7% = pP~! so we can also obtain F-pearls. Hence M C {R} UP. Again
Proposition 4.13 (2) implies that O” (Outz(R)) = SLy(p), and finally every P € P
is isomorphic to C, x C, hence OF (Outz(P)) = SLy(p) by Lemma 1.63.

The uniqueness of @ follows by Lemma 1.26 (1) in cases (3), (4) and (5), and
by Lemma 1.26 (2) in cases (1) and (2) of the Theorem.

The final statement follows from Lemma 2.18 (2) if L is abelian and from
Theorem 4.4 if L = (). The remaining cases are M; in a Sylow p-subgroup of
SL4(p) or R in Gy(p), that is Hypothesis C holds and L = Cg whence Lemma 4.14
proves that no proper subgroup can be F-essential.

This completes the proof. n

We have now completed the proof of the Main Theorem, as well as gathered
some extra information about M to be used to classify the fusion systems. Case
(1) will be the object of study of future work, with some preliminary results in
Chapter 5. Case (2) is studied in Chapter 5 when p > 5, and [BFM]| when p = 3.
Cases (3) and (4) have been classified in [PS18], and Case (5) is studied in Chapter
6.
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CHAPTER 5

FUSION SYSTEMS ON A SYLOW
p-SUBGROUP OF SU,(p)

In this chapter we classify, for p > 5, the saturated fusion systems F on S a Sylow
p-subgroup of SU,(p) satisfying O,(F) = 1. We assume this hypothesis and adopt
this notation throughout the chapter. The case where p = 3 has been studied by
Baccanelli, Franchi and Mainardis in [BFM]. This is case (2) of Theorem 4.27.

The Sylow p-subgroups of SL4(p) and SU,(p) are very similar, as discussed
before Lemma 1.34, in which we establish a way to differentiate between them.
Hence we begin the discussion of both p-groups together, determine the F-essential
candidates and O (Out#(Q)), before determining the fusion systems for each type
of group separately. We will refer to case U for a Sylow p-subgroup of SU(p) and
case L for a Sylow p-subgroup of SL(p).

In case U we prove the following.

Theorem 5.1. Assume p > 5 and S is a Sylow p-subgroup of SU4(p). Then
there is a one-to-one correspondence between saturated fusion systems F on S with
O,(F) =1 and groups G with SU,(p) < G < Aut(SU4(p)) which realise them. In

particular, there are no exotic fusion systems F on S with Oy(F) = 1.
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Outline of proof. In Lemma 5.2 we describe S and the p/-structure of Aut(S)
in Lemma 5.3. Then in Proposition 5.5 and Lemma 5.8 we determine the F-
essential subgroups to be V and ). We determine the isomorphism type of
O (Out£(Q)) and O¥ (Autx(V)) in Lemmas 5.6 and 5.9, and use lifts from these
described in Lemmas 5.10 and 5.11 to determine Aut%(S) in Lemma 5.12. With
the information about morphisms obtained thus far, we determine uniqueness of
Fo = (OP (Aut£(V)), 0P (Aut£(Q)), Aut%:(S)) up to isomorphism in Lemma 5.14,
and realise it via PSU,(p) in Lemma 5.15. Finally, Proposition 5.16 concludes the

proof. O

5.1 Structure of S for both SL,(p) and SU,(p)

Let S be in either case U or L. In Proposition 1.32 we build these two p-groups

as semidirect products of ) = p1++4 by an element of Spy(p) with Jordan form J3.

Note that from the parabolic structure of SU4(p) and SL4(p) taken from [BHRD13,
Tables 8.8, 8.10] we can also describe S as V' x T where V 2 C and T is a Sylow
p-subgroup of Q; (p) in case U or Q2 (p) in case L, as described in [PR10, Lemma

2.11]. The following properties of S can be deduced from these descriptions.
Lemma 5.2. 1. The order of S is p°.

2. S has nilpotency class 3, and the terms of its upper and lower central series

are Z = Z(S) =[S, 5, 5] of order p and Zy(S) = ®(S) = S’ of order p.
3. If p > 5 then S has exponent p.

4. Q is the unique mazximal subgroup of S with |Q'| = p. In particular, Q is the
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unique extraspecial subgroup of index p in S, and Q) is characteristic in S.

5. V is the unique abelian subgroup of order p* in S, in particular, V is charac-

teristic in S.

6. Let X .= {M < S|V <M<S}. Then |X| =p+1, every M € X has
|Z(M)| = |M'| = p* and cases L and U can be distinguished by the structure
of X. In case L the set X has two isomorphism classes of subgroups, one
with two elements My and My satisfying Z(M;) = M/, and the other with the
remaining p — 1 elements which satisfy Z(M) # M'. In case U there is an
element of Aut(S) of order p+ 1 which permutes transitively the elements of

X. In particular, the elements of X are all isomorphic and have Z(M) # M'.

7. Let M < S be a mazimal subgroup with M ¢ X. Then Z(M) = Z(S5).

Proof. Parts (1), (2) and (3) are proved in Proposition 1.32. Parts (5) and (6)
are proved in Lemma 1.34. Part (4) follows from part (2), as if there was another
maximal subgroup M of S with |M’| = p, then M’ = Z, and Z(S/Z) > Q/ZNM/Z,
which has order p®. This contradicts |Z(S)| = p>.

Finally, we turn to part (7). Since S" < M < Cs(Z(M)), we have that

Z(M) < Cg(5") =V, hence Cs(Z(M)) > VM =S5,s0 Z(M) = Z(S). O
We use this information to describe Aut(S).

Lemma 5.3. 1. In case U, we have | Aut(S)| = p®2(p + 1)(p — 1)? for some
a € Zg. Outz(S) is a subgroup of Outauy(su,p))(S) = Cp—1 X (Cpa_q : Cs)

up to Out(S)-conjugacy.
2. In case L, we have | Aut(S)| = p*2(p — 1) for some a € Z>q, and Outz(S)
is Out(S)-conjugate to a subgroup of Outauy(sL,(p)(S) = Cp1 X (C2_; : Cy).
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Proof. Consider the chain C : ®(S) < V < S of characteristic subgroups of S.
The stabiliser of this chain is a normal p-subgroup of Aut(S) by Lemma 1.37, and
any other element of Aut(S) acts nontrivially on this chain. In particular, since
|®(S)| = p*, Aut(S)/Caus(s)(C) embeds into GL;(p) x GLa(p). To describe which
subgroup of GLy(p) we obtain in each case we consider the action of Aut(S) on
S/V.

In case U, Lemma 5.2 (6) implies that all p 4+ 1 elements of X’ are isomorphic
with M’ # Z(M) and there is an element of order p + 1 permuting them. This
element acts transitively on the p + 1 nontrivial proper subgroups of S/V = C’g,
hence its only overgroups in G Ly(p) are either GLo(p) or contained in Cp2_q x Cy,
the normaliser in G'Ly(p) of a Singer cycle by [Hup67, 11.7.3 and 11.8.5]. There are
no p-elements in Aut(.S)/Caut(s)(C), as one such would normalise some M € X and
permute transitively the remaining elements N of X, all of which satisfy N’ # Z (V).
Hence the p-element would normalise Cs(M') € X \ {M}, a contradiction. Hence
| Aut(S) |, | 2(p — 1)*(p + 1). To obtain equality we observe that in Aut(SU,(p))
we have | Outausv, ) (S)] = 2(p—1)*(p+1) by [BHRD13, Table 8.10] and [KL90,
Table 2.1.C], hence | Aut(S)| = p*2(p +1)(p — 1)? as claimed, and the isomorphism
type of Outaus(su,(p))(S) is Cp_1 X (Cpa_q x Cy).

In case L, Lemma 5.2 (6) implies that there are two isomorphism classes of
maximal subgroups of S containing V', one with 2 elements and the other with
the remaining p — 1, hence Out(S) embeds into the subgroup of G Ly(p) preserving
this structure, which by [Hup67, I1.7.2] is isomorphic to C%_; x C3 acting on S/V.
Therefore | Aut(S)| < p®2(p — 1)3. As before we note that in Aut(SLy(p)) we have
| Out aus(sra(p) (S)] = 2(p — 1)?, and the isomorphism type of Outaug(sr, ) (S) is
Cp_1 % (C2_; x CY).
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In both cases Aut(9S) is solvable, and as Outz(S) is a p’-group, it is Out(.S)-
conjugate to a subgroup of Outau(sv,(p))(S) or Outaue(sr,p))(S) respectively by
Hall’'s Theorem [Gor80, Theorem 6.4.1]. O

5.2 JF-essential subgroups

In this section we complete the determination of the F-essential subgroups of S.

Recall that in Theorem 4.27 we described
M :={E < S| E is F-essential and Z is not normalised by Autz(F)}.

We proved that in case L we have M C {M;, My} where Z(M;) = M/ and
V < M;, whereas in case U we have M = {V}. In both cases if £ < L where
L € {Q} UM then E cannot be F-essential. In particular, any further F-essential
subgroups must normalise Z and not be contained in Q).

We begin with a lemma regarding the subgroups from M.
Lemma 5.4. 1. In Case U, if E =V is F-essential then E € M.
2. In Case L, if E € {My, My} if F-essential then E € M.

Proof. 1f case U holds and E =V is F-essential but £ ¢ M then O (Autxz(V))
preserves a 1-dimensional subspace and thus embeds into a parabolic subgroup P of
shape p? : GL3(p) : (p—1) in GL4(p), with |P| = p®(p*—1)(p*—1)(p—1)%. However,
O (Autz(V)) = PSLy(p?) by Theorem 4.27, hence (p* — 1)/2 | |O¥ (Autz(V))],
but by Zsigmondy’s Theorem (Theorem 1.2) there exists a prime ¢ dividing p* — 1

which does not divide p* — 1 for k < 4, hence ¢ | |O” (Autz(V))| but ¢ { | P|, so
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O” (Autx(V)) cannot embed into P, a contradiction. Therefore, if V is F-essential,
then V e M.

Now assume case L holds and let M = E = M, for i € {1,2}. Then Z(M) = M’
of order p* and V < M is characteristic in both M and S, so Outz(M) embeds
into G'Ly(p) x GL;(p) and Lemma 1.63 then implies O (Outz(M)) = SLy(p) acts
on M/Z(M) by centralising M/V and as a natural SLy(p)-module on V/Z(M).

In particular, there exists o € O (Autz(M)) of order p + 1 centralising M /V
and acting transitively on the 1-dimensional subspaces of V/Z(M). Therefore
Cumyz(my (@) has order p, and Caryzny () = Cry(o) Z(M)/Z(M) by coprime action
(Theorem 1.38). Let m € Cy(a), then M = (V,;m), and consider the morphism
0:V — Z(M) defined by v6 = [v,m]. Then 6 is a homomorphism as we have
(vw)f = [vw,m] = [v,m|*[w,m] = [v,m][w,m] = (v8)(wh) for v,w € V since

[v,m] € M' = Z(M). As « centralises m, we have

vl = [v,mla = [va, ma) = [va, m| = vad

and so 6 preserves the action of a in M. Since ker = Z(M), it follows that
V/Z(M) = Z(M) as («)-modules. Therefore a acts transitively on the subgroups

of Z(M) of order p, in particular Za # Z and M € M. ]
Now we proceed to determine the F-essential subgroups.
Proposition 5.5. If E < S is F-essential and E ¢ M then E = Q.

Proof. Suppose E is F-essential but £ ¢ M U{Q}.
If |[E] < p? then |Ng(E)/E| = p by Lemmas 1.63 and 1.64, which implies

128



|E%| =[S : Ng(E)| > p?. Notice that as Z < E and Z»(S) = S’, we have

EZy(S) < Ng(FE) < S,

so every F' € E° has F < Ng(FE). In each case we will find a subgroup of index p?
in Ng(F) normal in S which is contained in F, which, as |Ng(F)/E| = p, shows
that we have |E°| < p+ 1, a contradiction. If |E| = p? then Z < E works, whereas
if |[E| = p® we can take EN Zy(S) < S, since [E N Zy(S), 5] < Z < EN Zy(S).

If |E| = p* then as E # V, E is nonabelian, so by Proposition 3.10 we have
E = pi™ x O, and Lemma 1.64 implies that Ng(E) is maximal in S. If E' # Z
then, as F' < Z(FE), we have Z(E) = ZE' < 5', so Z(Ng(E)) = Z(FE), hence
Ng(E) = Cs(Z(E)) > V. Then, by the final statement of Theorem 4.27, we cannot
have Ng(E) = Z(Ns(FE)), which implies that E' < Ng(E)' N Z(Ng(F)) = Z,
a contradiction. Thus, we have E' = Z, so that Z3(S5) centralises the chain
1 < Z < E, which, as O,(Outz(E)) = 1, implies S’ = Z(S) < E, therefore £ < 5,
a contradiction.

The remaining subgroups have |E| = p® and are maximal in S. Let M = E
be a maximal subgroup of S. If M € X then Z(M) # M’ by Lemma 5.4 with
both of order p?. We therefore have a chain M’ < Z(M)M' < Cy(M') < M of
characteristic subgroups of M with successive indices p, contradicting Lemma 1.37.

It only remains to consider candidates M ¢ X, that is, with V' £ M. Then
Lemma 5.2 (7) implies that Z(M) = Z(S). If ®(M) = Z then M’ = Z hence
M = @ by Lemma 5.2 (4). Thus, any remaining maximal subgroup has ®(M) > Z.
If (M) = S then S acts trivially on M/S’, contradicting Lemma 2.20. Thus
|®(M)| = p?. Note that Zy(M) has index at least p? in M, so S’ = Zy(S) = Zy(M).
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We can therefore build a chain ®(M) 9 Zy(M) < Cp(P(M)) < M each with index
p in the next one, contradicting Lemma 1.37. We have now ruled out all subgroups

other than @), hence the proposition follows. O
We now determine O (Out(Q)) when p # 3 in both cases L and U.

Lemma 5.6. Suppose p > 5 and Q is F-essential. Then O (Outz(Q)) = SLy(p)

and Q/Z(Q) is a direct sum of two natural S Lo(p)-modules.

Proof. We know Q/Z(Q) is a 4-dimensional faithful Outz(Q)-module by Lemma
2.20, where Outz(Q) < Out(Q) = CSps(p) < GL4(p) with Outs(Q) = S/Q of
order p. As @ is F-essential, Outz((Q) has a strongly p-embedded subgroup, so
Corollary 1.56 (3) implies O,(Outz(Q)) = 1. Finally, as Z5(S) = S’ of order p* and
1S, S, S] = Z by Lemma 5.2 (2), we have Cq/z(0)(5) = [Q/Z(Q), S] of dimension 2.
Hence we can apply Lemma 1.50 to obtain O (Outx(Q)) = SLy(p) and Q/Z(Q)

is a direct sum of two natural SLy(p)-modules. O

5.3 Natural ) (p)-module calculations

Lemma 5.7. Suppose G = Q, (p) < GL4(p) acts on the natural Q; (p)-module V',
let R € Syl (G) and K = (t) be a complement to R in Ng(R). Then |R| = p?,

1. R preserves exactly p non-degenerate quadratic forms on V up to scalars.

2. V=ViaV,® Vs as a K-module with V; irreducible, dim(V;) = dim(V3) =1
and dim(V3) = 2. V3 = Cy(R) and [V, R] = Vo & V5. The element t has order
(p* — 1)/2 and acts as an element of order p — 1 on Vy and Vs, and as an

element of order p+ 1 on V5.
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3. Cx(Cy(R)) = (t"1) = Clps1y2-

4. Let i = t@*=1/4 pe the unique involution in K. If 4 | p+ 1 then i centralises

Vi and V3 and inverts Vy, whereas if 4 | p—1 then i centralises Vo and inverts

Vi and V5. In either case i inverts R.

5. If p > 5 then there is a unique non-degenerate quadratic form up to a scalar

which is preserved by both R and t.

Proof. Since G = Q) (p), it leaves invariant a quadratic form with matrix . Then

as G has type —, F' has Witt index 1 and [Asc86, 21.2] implies V' = QD where @

is a 2-dimensional definite orthogonal space and D a hyperbolic plane. Therefore

there is a basis {v1,va,v3,v4} of V such that [Asc86, 19.2 and 21.1] show that

0 0
01
0 0
10

0
0

(07

0

1
0
0
0

where —a generates GF(p), so that every g € G satisfies

gFg" = F by [Asc86, 19.7]. Fix this basis. Recall that as € (p) = PSLy(p?) by

Proposition 1.19 (5), we have |R| = p* and Ng(R) = R x K = C? % C(;2_1y, and

we can find R as lower triangular matrices. We now calculate which lower triangular
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matrices preserve the quadratic form given by F. Let a,b,c,d,e, f € GF(p). Then

0 0 01 1 000 0 001 1 a b d
o 01 00 | e 1 00 01 00 01 ¢ e _

0 0 a0 b ¢ 1 0 00 a O 0 01 f
10 0 0 d e f 1 1 000 0 001

00 0 1 1 a b d 0 0 0 1

01 0 a 01 c e 0 1 c e+a

0 c a b 0 0 1 f - 0 ¢ A +a ect+af+b

1 e af d 0 001 1 at+e b+ce+af d+e*+af’+d

therefore any such matrix satisfies c =0, e = —a, b = —af, and d = —(a® + f?)/2,

1 0 0 O 1 000
1 1 00 0 1 00
so that we have generators r; = and ry =
0 0 1 0 —a 0 1 0
~1/2 -1 0 1 —a/2 0 1 1

Hence R = (ry,r3) is the group of lower triangular matrices preserving F', and by
comparing orders we see 2 € Syl (G). Note that we can see that with respect to
this basis, Cy(R) = (v4) and [V, R| = (ve, v3,v4). Hence we will denote V; = (vy),
Vo = (vg,v3) and Vi = (v4) = Cy(R). In particular [V, R] = Vo, @ V5.

We now consider how many non-degenerate quadratic forms R leaves invariant.
Suppose there is a quadratic form L which is invariant under R, then we have

L =r;Lrl for i = 1,2, hence
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a b c d 1 0 00 a b c d 110 —-1/2

I b e f g _ 1 1 00 b e f g 010 -1
- c f h i - 0 0 10 c f h 1 0 01 0
d g i j -1/2 -1 0 1 d g i j 0 00 1

a b c d 110 —1/2

a+b b+e c+ f d+g 010 -1

- c f h i 001 0
—a/2—b4+d —b/2—e+g —c/2—f+i —d/2—g+] 000 1

a a+b c —a/2—-b+d a b c d

a+b a+2b+e c+f x1 b e f g

- c c+ f h —c/2—f+i - c f h 1
—a/2—-b+d x1 —c/2—f+i x2 d g i j

where 1 = —a/2 —b+d—b/2—e+g,xo=—d/2+e—g—d/2— g+ j. We see
that a +b=0,80 a =0, then a +2b+¢e¢ =2b+ e = ¢, so b = 0. Further, since
c+ f = f, we have ¢ = 0 too, and as —c/2 — f + i = i, we see that f = 0 as well.

Asx; =d—e+ g =g wededuce d =e, and as xo = —d + e — 2g + j = j, we see

00 0 d
0d oo _ o
that ¢ = 0, so that L = . To determine h,,j we perform a very
0 0 h 1
d 0 1 j
similar computation
0 0 0 d
0 d 0 0
L= rgLrg =
0 0 h h—ad+1i

d 0 —ad+h+i —ad/2+h+i—ad/2+i+]
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which shows that h = ad, i = 0, and puts no restrictions on j. Hence the non-

00 0 d
, , 0d 0 0
degenerate quadratic forms fixed by R have matrix L = , and up
0 0 ad O
d o 0 j

to scalars there are p such forms and part (1) holds.

We now consider Ng(R) = R x K where K is cyclic of order (p*> —1)/2, and we

A0 0O
: 0 a b 0 e : o
claim that K = (t) where ¢ = satisfying Ay = 1 with A a primitive
0 ¢c e 0

00 0 ~
element of GF(p). We note that as t € G, det(t) = 1, so that the submatrix

M = (%) preserves the quadratic form N = (}2) of type — and has determinant
1, hence embeds into SO; (p) = C,41 by Proposition 1.19 (3), and can be chosen
to have order p + 1. In order to preserve the form N, it must satisfy a? + b%a = 1,
ca+bea = 0 and ¢ + e?a = a. Hence we have ¢tPTD(P-1)/ged+1p=1) — 1 and ¢ has
order (p* —1)/2.

We see t € G when the above holds as it preserves F':

0 0 0 Ay

T 0 a?+b%a cat+bea 0
tFtt = =F.

0 ca+tbea 2+e2a 0

Ay 0 0 0
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We see that ¢ normalises R as follows:

Ao 0 0 1 0 00 A0 00
g 0 e —b 0 1 1 00 0 a b 0]

0 —c a 0 0 0 1 0 0 ¢c e O

0 0 0 ~°! -1/2 -1 0 1 00 0 v
At 0 0 0 A0 00 1 0 0 0
e e -b 0 0 a b 0 e 1 0 0
—c - a 0 0 c e O - —Ac 0 1 0
—y7t2 —y7t 0 47 00 0 v M2 —y7ta 7 1

is a lower triangular matrix in G as t,7; € G, and therefore t~'rit € R as claimed.
A similar calculation works for 5. Note that we get e = a and ¢ = —ab.

Now t € Ng(R) acts on V; = (v1) and on V3 = Cy(R) = (vy) as an element of
order p — 1, and as an element of order p + 1 on V5 of order p?, hence irreducibly.
We have shown parts (2) and (3) hold.

We can further see that the action of the involution i := ¢t®*~1/4 on V/ depends
on the value of p (mod 4). If 4 | p+1thenp—1]| (p*—1)/4and p+11(p* —1)/4,
hence t#*~1/4 centralises V; and Vs while inverting V;, whereas if 4 | p — 1 the

divisibility conditions are swapped, hence t®*=1/4 centralises Vy while inverting

e 0 0 O
0 —e 0 O
Vi and V5. Hence i = ,where e = 1if4 | p+ 1 and e = —1 if
0 0 —e O
0 0 0 e

4| p— 1. In either case we have iryi = ;' for k = 1,2, which establishes part (4).
We now consider which quadratic forms are preserved simultaneously by ¢ and

R. In part (1) we showed that any non-degenerate quadratic form preserved by R is
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0d 0 0 0 a b
of the form L = , and we have t = . We calculate
0 0 ad O 0 ¢c e O
d 0 0 3 0 0 0 v
A0 0 O 0 0 0 d A 0 0
0 a b 0 0 d 0 O 0 a c O
L=tLt" = _
0 ¢c e O 0 0 ad O 0 b e O
0 0 0 « d 0 0 j 0 0 0 ~
0 O 0 M A0 0 O 0 0 0 YAd
0 ad abd 0 0 a ¢ O 0 a?d+ab’*d acd+abde 0
0 cd ade 0 0 b e O 0 acd+ abde c2d+ ade? 0
dy 0 0 ~j 00 0 v \vd 0 0 25

The middle 2 x 2 submatrix is Iy by the constraints ¢ satisfies, and we only obtain

j = %7, which must hold for each nonzero v € GF(p), so unless p = 3, we must

have 7 = 0.
00 0 d
0d 0 0| , '
Therefore K = is the unique non-degenerate quadratic form
0 0 ad 0
d 0 0 0

that is preserved by Ng(R), and d can be chosen to be 1, hence in these circum-

stances claim (5) holds. O
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5.4 Classification of the fusion systems on a Sy-
low p-subgroup of SUy(p)

At this stage we restrict our attention to case U, that is, S is a Sylow p-subgroup
of SU4(p). We show that both remaining candidates ) and V' for F-essential

subgroups must be F-essential in order to have O,(F) = 1.

Lemma 5.8. In case U, if O,(F) =1 then the F-essential subgroups of S are @
and V.

Proof. By Theorem 4.27 (2) and Proposition 5.5, the F-essential candidates are
@ and V', both of which are characteristic in S, hence normalised by Autz(S). If
L € {Q,V} is the only F-essential subgroup then Alperin’s Theorem 2.16 shows
that F = (Autz(S), Autz(L)), where L is normalised by Autz(S) and Autz(L),
hence by Theorem 2.25 we have L < F, which contradicts O,(F) = 1. Thus both
V and () are F-essential. n

We now determine O (Aut=(V)) and Aut(S) as in Definition 2.34.

Lemma 5.9. Assume case U holds. Then OV (Autz(V)) = PSLy(p?) acts on
V' as a natural QU (p)-module. Let K = (ty) be a complement to Autg(V) in
Now (auty(vyy (Auts(V)). Then we have:

1. ty acts on Z and V/S" and S'/Z. Furthermore, all the actions are irreducible.

2. Inn(S)(ty) = Aut%(S) < Autz(S) where ty has order (p* —1)/2, ty|y = tv,
and tylo € Autz(Q) acting on Z and S/Q as an automorphism of order

p—1.
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3. The element %3’271)/4 € Aut'-(9) is an involution which centralises Z and
V/S" and inverts S'/Z when 4 | p+ 1 whereas when 4 | p — 1 it centralises
S"/Z and inverts Z and V/S'. In both cases it inverts S|V .

Proof. The structure of V as an O (Autz(V))-module was described in Lemma
5.7. We extract the notation from there. In particular, Lemma 5.7 (2) implies that
there is an element ¢y generating K and acting on V' in the way described in part
(1). Note that ¢y lifts to an element of Autz(S) by Lemma 2.9, that is, there exists
ty € Autx(S) such that ty |y =ty € O (Autz(V)), so that ty, € Aut(S). Then
Z =Cy(S) =Cy(Autg(V)) = Vs and [V, S] = [V, Autg(V)] = 5" = Vo & V5 as in
Lemma 5.7 (2), so that part (2) follows.

Finally, for part (3), the action of ’t\(f_l)/ll onV and S/V = Autg(V) is described

in Lemma 5.7 (4). O

Using very similar arguments, we obtain Cy v s)(Z), which will help us deter-

mine O (Outz(Q)) uniquely (not just up to conjugacy).

Lemma 5.10. Fiz a subgroup O (Autz(V)) = PSLy(p®) and assume p > 5. Then
Cauty(s)(Z) = Inn(S) &N where (571 is cyclic of order (p 4 1)/2. The image
u of the generator %7{’;1 acting on Q/Z is uniquely determined in a complement
Out£(Q) to Inn(Q) in Autz(Q) and is in the Sps(p)-conjugacy class Bg(2) of
[Sri6s].

Proof. By Lemma 5.7 (3) we have C(Cy(Auts(V))) = (1) 2 Cpy1y/2, that
is, with the notation of Lemma 5.9, a complement to Autg(V') in the subgroup
of Naut,(v)(Auts(V)) centralising Z and generated by %_1. As %7"/_1 has order

(p+1)/2 and p > 5, its eigenvalues are in GF(p?) \ GF(p) and are n*2, where
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n = 6P~ for § a primitive element of GF(p?). (This notation is taken from [Sri68],
which we will use later to determine the conjugacy class of ?";1 in its action on
Q/Z.)

Note that the lift %7"/_1 needs to be consistent with the commutator structure
of S, and that %" restricts to u := 2, '|g € Caw(g)(Z), centralising S/Q = V/S'.
Let s € V'\ S, then su = s by Lemma 5.7 (2), and let ¢, € Q and = € S’. We
again consider a homomorphism 6 : @ — S’/Z defined by ¢80 = [q,s]Z. Then
qro = [qr,s|Z = [q,s]"[r,s|Z = [q, s][r,s|Z = qbr6, hence 0 is a homomorphism.
Further, 6 preserves the action of u as ¢u = [q, s|Zu = [qu, su|Z = [qu, s]Z = qub
since u centralises s and Z. Since kerf = Cq(V) = §', we conclude that Q/5’
and S’/Z are isomorphic as (u)-modules and the eigenvalues of the projection of u
to Q/Z, which are 0%, n?, n=2, n~2. This determines the conjugacy class of u as
an element of Cou(g)(Z) = Spa(p) by Theorem 1.14 to be the class Bg(2) in the
notation of [Sri68], which has |Csy, ) (u)| = p(p + 1)(p* — 1) = |GUs(p)|. O

We now consider lifts of elements from O (Autx(Q)) to Autz(S) and when
these maps can coincide with the lifts of maps from O (Autz(V)) to Autz(S)

determined in Lemmas 5.9 and 5.10.

Lemma 5.11. Assume p > 5 and let K = (tg) be a complement to Auts(Q)
i Now (aut (@) (Auts(Q)). Then Inn(S)(tg) = Aut®(S) < Autx(S) where the
element to € Aut@(S) has order p—1 and to|g = tq. The projection of to to Q/Z

is in the Spy(p)-conjugacy class Bs(1,1) of [Sri68].

Proof. By Lemma 5.6, O” (Out£(Q)) = SLy(p) and acts on Q/Z as a direct sum
of two natural SLs(p)-modules. As @) is characteristic in S, Lemma 2.9 implies

that there exists a map to € Aut?(S) satisfying fo|q = g, whence Lemma 2.37
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implies that Out%(S) = Now (autr (@) (Auts(Q))/ Auts(Q) = Cp—y. As in the proof
of Lemma 1.50 we see that tg acts on ()/Z as an element of Cau(q)(Z) = Spa(p)
has eigenvalues {\, \, \™1, A1} where (\) = GF(p), so that its conjugacy class is
given by Bs(1,1) in [Sri68]. O

We now consider the lifts from both O (Autx(V)) and O (Aut£(Q)) obtained
to Autz(S) together to calculate Aut%(S), which, together with O (Aut£(Q)) and

O” (Autz(V)), will generate the fusion system Fy on S.

Lemma 5.12. Assume p > 5 and case U holds. Then
Aut%(S) = Inn(S) Aut@(S) Aut(S) = Inn(S) x (Cp_1 0p Crz_1y2),

where D = Aut®(S) N Aut¥(S) has order ged(4,p +1)/2.

Proof. Lemma 5.9 yields a group (ty) with Inn(S)(ty) = Aut%(S) < Aut%(S) of
order (p® —1)/2 such that only the subgroup Caut¥(s)(Z) = Inn(S) (") studied in

Lemma 5.10 centralises Z. Recall that %(‘ffl)k

is in Sp4(p)-conjugacy class Bg(2k),
that is its eigenvalues over GF (p?) are {n?* n?* n=2F n=2F}.

From Lemma 5.11 we similarly get (fo) with Inn(S)(tg) = Aut?(S) < Aut%-(S)
of order p — 1 which centralises Z. Since the only F-essential subgroups are )
and V, Aut%(S) is generated by Aut%(S), Aut’(S) and Inn(S) by definition. It
remains to consider Aut?(S) N Aut%(S). Any power of ¢y which coincides with
some power of t, must centralise Z, hence is in C' Aut¥(s)(Z) = Inn(S) .

We saw that the action induced by o on Q/Z is in Sps(p)-conjugacy class
G

Bs(1,1), that is has eigenvalues {\, \, \™', A\7'}, so any element ) inducing

the same action must have its eigenvalues in GF(p). In other words, if 6 is a

140



generator of GF(p?), we must have n?* = 2*¢=1) € GF(p). Now ' € GF(p) when
p+ 1|1, so we must have p+ 1| 2k(p — 1). Since ged(p+ 1,p — 1) = 2, this means
p+ 1|4k, in other words (p+1)/4 | k. Ask € Z,if44p+1 (hence 4 | p—1)
then only k = (p + 1)/2 works, but 5832_1)/2 = lauts(s) by Lemma 5.9 (2). On the
other hand, if 4 | p+ 1 then k = n(p+1)/4 € Z and %(‘5271)/4 has eigenvalues in
GF(p). Furthermore, Lemma 5.9 (3) implies that 5(‘52—1)/4 centralises Z and S/Q

fg’ -0/ 2, as seen in the calculation

and inverts ()/Z, in other words, it coincides with
in Lemma 1.50.

Therefore, if ged(4,p + 1) = 2, the only elements of Aut%(S) and Aut%(S)
which can coincide are in Inn(S), and Inn(S) Aut%(S) Aut¥(S) is isomorphic to
Inn(S) 1 (Cpo1 X Cp2_1y/2) in Auty(S). On the other hand, if ged(4, p+1) = 4 then
Aut(S) Aut(S) = Inn(S) x (Cp_y 0p Ciz_1y2) where D = Aut?(S) N Aut’(S)
has order 2. We can also see this as the elements in the Sp4(p)-conjugacy classes
Bg(2) and Bs(1,1) both power up to the central involution of Sps(p) in these

circumstances.

Hence the order and isomorphism type of Aut%-(S) is determined. O
We now determine uniqueness of Aut%(S) as a subgroup of Autau(sv, ) (9)-

Lemma 5.13. There is a unique subgroup H of OutAut(5U4(p))(S) 1somorphic to
Cp—1 X Cp2_1yj2. Further, H has two subgroups isomorphic to C,_1 oc, Cp2_1y/2,
only one of which contains an element of order (p* —1)/2 acting via an element of

order p— 1 on S/Q. In particular, Autof(S) 15 uniquely determined as a subgroup

Of AUtAut(SU4(p)) (S) :

Proof. Since Aut%(S) > Inn(Q) and by Lemma 2.20, we work in the p’-group

Outaue(su,(p) (S) via its faithful action on S/®(S). We fix generators z,y, z of

141



Out au(sv,(p) (S) = Cp—1 X Da(2_q) such that
Outg(S) = (z,y, 2 | mp_l,y’ﬂ_l, 2oyt =y ).

As in Lemma 5.3, we see that x acts on S/Q and centralises QQ/®(S) whereas (y, z)
centralises S/Q) and act on Q/®(S5) = S/V as the normaliser in GLs(p) of a Singer
cycle, which is a dihedral group by [Hup67, 11.8.4]. We consider subgroups of index
4, noting that H = (x,y?) is one such.

We also see that since p > 3, z does not centralise y(pQ_l)/ 4 hence z is not
contained in the subgroups in question. There are three subgroups of index 2 in
(x,y), which contain (22, y?): H, = (2%,y), Hy = (z,y?) and Hs = (2% 42 zy).
Now H,; and Hs contain an element of order p? — 1, hence are not of the required
shape and thus H = H, is the unique subgroup of the given isomorphism type. We
note that if 4 | p — 1 then uniqueness of Aut%(S) follows, whereas if 4 | p + 1 we
require a bit more work as |D| = 2.

In the latter case, we consider subgroups K; of index 2 in H, which must
contain (z%,y*). Hence there are again 3 such: K; = (22, 9?), Ky = (2%, y*, 2y?)
and K3 = (x,y*). Since the ones we are interested are K; = -1 90, Cip2-1)2;
such K; contain an element of order (p? — 1)/2; hence K; = Ci-1)72 X Cip2—1y2.
However, K3 has exponent (p?> —1)/4; hence it is not an option, but both K; and
K3 are isomorphic to C,—1)/2 X C(p2_1/2, as required. We again consider the action
on S/®(S) to observe that in Aut%(S) we have an element £, which by Lemma 5.9
acts on S/Q as an element of order p — 1, whereas in K there is no such element.
Thus K, is the only subgroup that we can have, and since the element xy? € K,

acts on S/®(S) as desired, and the lemma is complete. O
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We finally prove uniqueness of the subsystem JFy.
Lemma 5.14. If case U holds and p > 5 then Fy is unique up to isomorphism.

Proof. We have determined Autg,(S) = Inn(S) x (Cp—1 op Cye_q)/2) uniquely
as a subgroup of Autpgy,)(S) in Lemmas 5.12 and 5.13. Fix this subgroup.
Then, since we are determining Fy up to isomorphism, and by Frattini’s Ar-
gument Autg, (F) = Op/(Auth(E))NAutFO(E)(Autg(E)), we need to determine
O” (Aut £, (Q)) and O (Autx,(V)) uniquely.

As V is characteristic in S, we consider as in Lemma 2.37 the restriction map
0 : Autx,(S) = Nausz (v)(Auts(V)), which is surjective by Lemma 2.9.

Recall that OP (Autz,(V)) = € (p), where Autgs(V) € Syl,(Autz, (V) we see
Now Aut;O(V))(AUtS(V>) of order p*(p* —1)/2. As ty is determined uniquely, we
have ty =ty € Nautz, (v)(Auts(V)), hence as p > 5 Lemma 5.7 (5) implies that
there is a unique non-degenerate symmetric form which is preserved by Autg(V')
and ty, that is a unique €, (p) which satisfies the required conditions. Thus
O (Autz,(V)) is uniquely determined.

We now turn our attention to ). Recall that Out(Q) = C'Sps(p) by Theorem
1.14 and that Lemma 5.8 implies that the F-essential subgroups are exactly ) and
V and OP (Outr,(Q)) = SLy(p) by Lemma 5.6. As O (Autz, (V) = PSLy(p?) is
uniquely determined, Lemma 5.9 (2) yields a unique element of Autz, (Q) which
acts on Z as an automorphism of order p — 1, hence we can restrict our attention
to Cau@)(Z(Q))/Inn(Q) = Spa(p).

By Lemma 5.10 we have a uniquely determined element u € Outz,(Q)) which
acts on Q/Z via a matrix u € Outz,(Q) in Sps(p) with eigenvalues {n* n=2, 7% n=2}

in an extension field GF(p?), and centralises Z and S/Q.
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Since O” (Outz,(Q)) < Outz,(Q), u normalises O (Outx, (Q)) = SLy(p). As
Aut(SLy(p)) = PGLy(p) and if T' € Syl (PG Ly(p)) then T = Cpgr,p)(T), and
u centralises Outg(Q), u centralises O” (Out#(Q)), and has order (p + 1)/2 by
Lemma 5.10. Hence unless (p+1)/2 | p—1, which can only hold if (p+1)/2 | 2, that
is p = 3, u is in Spy(p)-conjugacy class Bg(2). As we assume p > 5, u centralises
07 (Out (Q)).

Hence by [Sri68] we have |Cgy, ) (u)] = p(p + 1)(p* — 1) = |GUs(p)|. Note
that Cgp, () (u) normalises an extension field, hence it is contained in a maximal
subgroup M in Aschbacher’s family %3. Hence, as p > 5, we deduce from [BHRD13,
Table 8.12] that M is a subgroup of shape either Sps(p?) : Cy or GUs(p).Cy, only
the second of which has elements of order (p+ 1)/2 centralising a normal subgroup
which is isomorphic to SLy(p). Hence M = GUy(p).Cs.

If there was some H £ M containing O” (Outz,(Q)) as a normal subgroup, then
O¥ (Outx,(Q)) < HM = Couwg)(Z) = Spa(p), a contradiction. Hence given u, M
is the unique maximal subgroup of Sp,(p) which can contain both OP (Outx,(Q))
and u with the required properties. Further, note that M contains a unique
subgroup isomorphic to SLy(p), hence O (Outz,(Q)) is uniquely determined in
Out(Q), and so is O (Autz,(Q)).

As Fy = (O (Autx(V)), O (Aut(Q)), Aut%-(S)) by definition, we have shown

that fixing Aut%(S) uniquely determines Fy, and the Lemma is proved. O

At this stage we determine the fusion system of PSU,(p). Recall that the fusion

systems of SU,(p) and PSUy4(p) coincide by Lemma 2.11.

Lemma 5.15. Fg(PSUy(p)) is isomorphic to Fy whenever p > 5. In particular
Fo is saturated and Fo = OV (F).
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Proof. By the Borel-Tits Theorem and [GLS98, Corollary 3.1.6], the Alperin-

Goldschmidt conjugation family for PSU,(p) (F-essential family) consists of the

subgroups O,(P) as P ranges over the minimal parabolic subgroups of PSUy(p).
Note that by [KL90, Table 2.1.D and Proposition 2.3.5], we obtain

d :=|Z(SUs(p))| = [SUL(p)|/|PSUs(p)| = ged(4,p + 1).

In [BHRD13, Table 8.10] we see two maximal subgroups of SU,(p) with structure
Nsv,p)(@Q) ~ p"™ = SUs(p) = Cpe—y and Ny, ) (V) ~ Cp : SLy(p?) : Cp—y1, whose
intersection is the Borel subgroup Ngy, ) (V) of shape S : (Cp—1 x Cp2_1). Note
that these all contain Z(SU,(p)).

We observe now that for H € {S,V,Q}, |Npsv,)(H)/H| = | Outg (H)|, and
O (Autpgy, ) (H)) is isomorphic to OF (Autz (H)). Let X = Aut(SUs(p)). In
Lemma 5.3 (1) we proved that Outz(S) is Out(S)-conjugate to a subgroup of
Outx (S), hence the same is true for the respective automisers and, up to conjugacy
in Aut(S), we may assume that Autg, (S) < Autx(S). Therefore Lemma 5.13
determines that Autz (5)* = Autpgsy,()(S) for some isomorphism a € Aut(S5).
Further, by Lemma 5.14, this determines Fg(PSU4(p)) uniquely, whence F§' is
isomorphic to Fg(PSUs(p)). In particular Fy = F¢ is saturated, and thus we have
Fo = O (F) =

We have now constructed and realised the unique smallest possible fusion system
Fo with O,(F) =1 on S in case U. Recall that any saturated fusion system on S
with O,(F) = 1 satisfies F = (Fp, Autz(S)) by Lemma 2.17. We now consider the
largest possible Autz(S), which by Lemma 5.3 has | Aut#(S)| = p°2(p+1)(p — 1),

to conclude the following.
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Proposition 5.16. Assume S is a Sylow p-subgroup of SU4(p) and p > 5. Then
there is a one-to-one correspondence between saturated fusion systems F on S with
O,(F) =1 and groups G with PSU4(p) < G < Aut(PSU,(p)) which realise them.

In particular, there are no exotic fusion systems F on S with O,(F) = 1.

Proof. In Lemma 5.14 we uniquely determined Fy up to isomorphism, which Lemma

5.15 shows is realised by PSUy(p). We can thus assume

Autz, (S) = Autpsy, ) (S) < Autauepsvsp) (S),

and for any F on S with Op(F) = 1, Outz(5) is a subgroup of Outaue(psv,(p))(S)
containing Out 7 (S) by Lemma 5.3, hence Aut%(S) < Autz(S) < Autaw(rsvsp)(S),

and by Lemma 5.12 and [KL90, Theorem 2.1.4 and Table 2.1.D] we have

| Autaue(sva(p)) (S)/ Auti(S)| = 2ged(4,p + 1) = | Aut(PSUa(p))/ PSUs(p)| = 2d.

We now note that F := Fg(Aut(PSUs(p))) is a saturated fusion system with
Op(F) =1 on S containing Fy and with Autauepsu,(p)(S) largest possible. The
bijective correspondence Nayi,(g)(Auts(E))/ Autg(E) = Outy(S) from Lemma
2.37 determines also Autz(F) for E € {V,Q} to be largest possible.

Hence Theorem 2.35 implies that there is a one-to-one correspondence between
saturated fusion subsystems between Fy < £ < F and intermediate subgroups
Autg(S), each of which is realised by a corresponding intermediate subgroup
between PSU,(p) and Aut(PSU,(p)), as claimed. Any other saturated fusion
system K on S with O,(F) = 1 would contain O” (K) & F by Lemma 5.14, hence

it would be one of the above considered. Thus this classification is complete. [
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CHAPTER 6

FUSION SYSTEMS ON S OF ORDER pr~!

In this chapter we study the case of Theorem 4.27 (5), that is p > 11, S has maximal
class, order pP~! and exponent p, and @ is the unique extraspecial subgroup of
index p in S. In this situation, Proposition 1.31 implies that S is unique up to
isomorphism. We note that there are constructions of p-groups which have these
properties in [PS15] with p = m + 4 and in [LGM02, Example 3.1.5(v)] when
t = (p—1)/2, hence they are isomorphic to S. From the construction in [LGMO02]
we see that not all 2-step centralisers coincide, and denote R := Ky o = Cs(Z5(.5)),
a maximal subgroup of S with @) # R.

If p = 7 then |S| = 7% and Proposition 1.32 implies that S is a Sylow p-subgroup
of Go(7), hence it is dealt with in [PS18], and our proof here follows a similar
structure as their case when R is not F-essential, in [PS18, Theorems 5.13 and
5.15].

Recall that in Theorem 4.27 (5) we showed that M C P where

M :={E < S| E is F-essential and Z is not normalised by Autz(F)},

Pi={P = (Z(5),z) |z € S\ (QUR)}.
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We again define
X ={PS"|PeP}={M| M is maximal in S, Q # M # R}.

We now give a sketch of the construction of S following [PS15]. Note that by
[PS15, Proposition 2.4] we have F = GF(p).

Let V,_4 be the simple (p — 3)-dimensional F-vector space of homogeneous
polynomials of degree p — 4 in two variables. As p — 4 is odd, V,_4 can be
equipped with an alternating form (3,_4, which determines a multiplication making
Q = V,_4 x F* extraspecial by [PS15, Lemma 2.2] and has order |Q| = p?~2.

Define L = F* x GLy(IF), which acts on V,,_4 via

XYY (t,(20)) = tlaX + BY)*(vX +6Y)°, (6.1)

and L acts on @ via (v, 2)®Y = (t(v- A),t*(det A)P~1z). We build P := Q x L
with the action of L on @ having kernel K := C(Q) = { (=", (} 2)) | peF*}
by [PS15, Lemma 2.3 (1)]. As K < Z(L), we have K = Cp(S). Note that
L/CL(Q/Z) = GLy(p).

Further, we define By = F* x {($§)} < Land S = {1} x {(19)} < L.

Let S = QSy € Syl,(P), then we have Np(S) = B = QB,. Further,

Out(S) = N5(8)/SCx(S) = B/SK = C,_y x Cy_;. (6.2)

In particular (p — 1)? | | Aut(S)|. Note that K = O,(P), so by Lemma 2.11 we
have Fg(B) = Fs(B/K). We claim S has the properties desired.

We have |S| = |Q||So| = pP~*. As the action of Sy on V,,_4 is indecomposable,
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the Jordan form of Sy has a single Jordan block of size p — 3 and S has maximal
class as in Proposition 1.31. As |[S| < p? and @ and Sy have exponent p, S is
regular by Proposition 1.5 (2) and has exponent p by Theorem 1.7.

We now identify certain subgroups that will be important. Let Z = Z(S) of

order p, and by [PS15, Lemma 2.3 (ii)] we have

Z5(S) = Cq(So) = (X"~ N) | A\, u € F)

of order p?, and R := Cs(Z5(S)) = SoCq(Z2(9)) is maximal in S with Q 2 R as
|Z(Q)| # |Z(R)|. Further, ®(S) = 5" = QN R = Cqy(Z2(9)).

We will use the following elements of S: ¢ := (=Y?™%,0) € Q \ 9, and
e:=(1,(19)) € R\ S as generators.

Then @ and R are maximal subgroups of S,
and any other maximal subgroup has maximal
class by [LGMO02, Exercise 3.1(1)] or [VLLOI1,
Lemma 1.2]. In particular, ) and R are char-
acteristic in S, and since by (6.2) we have
Outp(S) = Cp—1 x Cp_; acting faithfully on
S/®(S) = C2, there is an element of order p — 1
acting transitively on the maximal subgroups
of S of maximal class. Thus all p — 1 maximal
subgroups of maximal class must be isomorphic

and so Aut(S) acts transitively on X'

Throughout this chapter we let S be the
Figure 6.1: Action of d € B on S
group just defined. Now we calculate in Aut(95),
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generalising [PS18, Lemmas 3.6, 4.8].

Lemma 6.1. 1. Aut(S)/Caus)(S/®(S5)) = Cp—1 x Cp_1 1is isomorphic to the
subgroup of diagonal matrices in GLy(p). In particular, |Aut(S)| = p*(p—1)?
for some a € Z>o and Aut(S) = Autp(S)Caur(s)(S/P(S)).

2. Outx(S) is conjugate in Out(S) to a subgroup of diagonal matrices in G Ly(p)

and we may assume Outz(S) < Outp(S).

3. An element of the form d = (¢,(39)) € B with t,\ € GF(p)* acts via cq
on S via the map induced by qcq = ¢' and ecqy = e where q := (=Y?™4)0),
and e := (1,(19)). The element d acts on v;(S)/7ix1(S) as tA™! for each

i €{2,...,p—2} and on Z via t*\P7*.

4. In particular, if a p'-element in Aut(S) centralises Z5(S) then it has order
dividing (3,p — 1).

Proof. Consider the projection 7 : Aut(S) — Aut(S/®(S)). Note that as S has
maximal class, Aut(S/®(S)) embeds into GLy(p). Then

ker(r) = Cau(s)(S/2(5)) < O,(Aut(S))

by Burnside’s Theorem (Theorem 1.36). Let 6 € Aut(S). Since the maximal
subgroups of S are @), R, and p — 1 groups of maximal class by [Gral8, Corollary
2.14], 7 normalises the subgroups Q/®(S) and R/®(S), hence acts as diagonal
matrices, thus as a subgroup of C,_; x C,—1. By Equation (6.2) we see that
Autp(S)m is isomorphic to C,—1 x C,_1 hence so is Aut(S)r. In particular, as

Outz(S) is a p’-group by saturation, it embeds into Outp(S) = C>_,. Further,
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by Hall’s Theorem ([Gor80, Theorem 6.4.1]), as | Out(S)| = p*(p — 1)?, Outz(S)
is conjugate in Out(S) to a subgroup of Outp(S). An element d = (,(39)) as
above acts on ¢ = (=Y?7%,0) via gcqg = (=Y?74,0)? = (—=tYP=4,0) = ¢!, and on
e=(1,(19) asecg = (1,(19))% = (1,(19)) = ¢*. Note that ¢ € Q \ S" and
e€ R\ S soS = {(q,e) and we have the following structure.

So = 2,3 := [q, €] € 5"\ 13(9) satisfies sacq = [qcq, eca] = [¢', €] = sby for
some y € S" and s; = 2,1 = [Si—1,€] = [q,€,...,€] € i(S) \ 1+1(S) satisfies
SiCq = sf’\i_lyi fori € {3,...,p—3} and some y; € v;11(S5). Finally, z := [, 20) € Z
satisfies zcq = [qeg, zocq] = [¢f, 2N "] = 27

In particular d acts on Zo(S)/Z via AP~* and on Z via \P~*? so if it centralises
both then \?=4t2 = A% =1 thust =1and "> * =1 = M"! hence > =1 and d

has order (3,p — 1). O

The action of the element d above will be used to immediately know how any
p/-element of Autz(S) acts on the successive quotients of the upper central series

of S. We now study the action of Aut(S) on X and on P.

Lemma 6.2. There are p—1 S-conjugacy classes in P. Ey, Es € P are S-conjugate
if and only if E1S" = EyS" € X. Autp(S) acts transitively on P and X .

Proof. A subgroup E, of S of order p? is in P if and only if it is not contained in

QUR, and E, = E,/ if and only if 2/ € E, \ Z. We thus have, as S has exponent p,

Sl— 10— R+ 1RNQ| -2 aps
Pl = = = —1).
7 El-1Z o= 1) =

Let E € P. Then Ns(E) = EZ,, so |E®| = |S : Ng(E)| = p*~*, hence P

contains p — 1 S-conjugacy classes of subgroups as claimed. As E £ ®(S), it is
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contained in a unique maximal subgroup of S. As ®(S) = 5’ is characteristic in
S, two subgroups Fi, F, in P are S-conjugate if and only if F1S” and FyS’ are
S-conjugate, and as they are maximal and normal in S, they coincide. Now by
Lemma 6.1 (1) Aut(S) acts transitively on the maximal subgroups of S distinct

from () and R, so the last claim follows. n

We now complete the determination of the F-essential candidates in a fusion

system F on S.

Proposition 6.3. Assume p > 11, S is as above and F is a saturated fusion system
on S with O,(F) = 1. Let E be an F-essential subgroup of S, then E € {Q} UM
with M C P.

Proof. We proved that M C P in Theorem 4.27 (5), and if £ € P is F-essential
then Lemma 1.63 implies that OP (Autz(E)) = SLy(p) and E moves Z, so E € M.
Hence any further F-essential subgroup F normalises Z and if £ < @ then F = @
by Theorem 4.4. Assume F # @, then [Gral8, Lemma 5.3 and Theorem 5.4] imply

that £ < R is one of:
1. E/Zy(S) = pt*? with Z not normalised by Autz(E);
2. E~C, x p? with ENQ = Z3(S) and Z(E) = Zy(9); or
3. E=C, x Cp x Cp.
We will prove that the cases do not happen in three claims.
Claim 6.3.1. Case (1) does not occur.

Proof of claim. In Case (1) Z not normalised by Autz(F), hence E € M, which

contradicts Theorem 4.27. m
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Claim 6.3.2. Case (2) does not occur.

Proof of claim. 1f |E| = p* then we have E = C, x pi** and Z(FE) = Z,(S) by the

previous discussion. We consider E’, of order p. If E' = Z then

Z5(8) = [Z5(8),8] = [ENQ,EQ| = [ENQ,E|Z < E'Z

so E' > Zy(S) of order p?, a contradiction. Thus E’ # Z and Zy(S) = ZF'.
Now O (Outx(E)) acts faithfully on E/®(FE) which has order p* and centralises
Z(E)/®(FE), hence it embeds into GLy(p) x GL1(p) as O,(Outz(E)) = 1, thus
O (Outz(E)) = SLy(p) by Lemmas 1.63, 1.64 acting on E/Z(E). Therefore
O” (Autx(E)), which is generated by p-elements which centralise Z(E), centralises
Z(E).

Let 6 € OY(Outr(E)) be an element which normalises Outg(FE) and acts
as (*,'9) on E/Z(E) of order p — 1. Then consider a corresponding element
08 € Now (aut,(m)) ((Auts(E))), which acts on E by centralising Z(F) and acting
as A on F/Z3 and \ on Z3/Z,. As no overgroups of E are F-essential and F is
saturated, by Alperin’s Theorem, 6z extends to a map in 0 € Autx(S) of order p—1

which centralises Z(FE) = Z5(S) as 6|z = 05. However this contradicts Lemma

6.1 (4), hence E cannot be F-essential as p — 11 3. n

It remains to prove that |E| # p?, which we do in the following claim.

Claim 6.3.3. Case (3) does not occur.

Proof of claim. We have E = C;’ and as ENQ I EQ =5, ENQ = Zy(9) so
E < R. Note that no overgroup of E can be F-essential, as £ £ @ by Claim (2).

Recall that Theorem 4.27 (5) implies that E ¢ M, that is Autz(E) must normalise
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Z. Thus, as Autg(F) is a p-group, it centralises Z. Now as p > 11, we have
Ns(Ng(E)) > Ns(E), so let x € Ng(Ng(FE))) \ Ns(E) (note that this fails when
p = 5, as can be seen in Chapter 7). Then F # E* < Ng(E), so [E, E*, E*] =1
and as ¢, € Autg(E), the Jordan form of an element of Autg(E) < GL3(p) is
Jo @ Jy, whence Proposition 1.64 implies that O (Autz(E)) = SLy(p). Let 7
be the unique involution in Z(O” (Autz(E))). Then 7 centralises Z and inverts
Z5(S)/Z and E/Z5(S). As 7 € Nau,(p)(Auts(£)) and there are no F-essential
subgroups containing E, 7 extends to a map 7 € Autz(S5). Now let e € E'\ Z5(9),
then er = e™! (mod Z). Since E/Zy(S) = E/(ENS') = ES'/S" = R/S', we
observe that 7 acts on R/S’ by inverting every nontrivial element.

Let 2y € Zy(S)\ Z, then 27 = 2, '2® for some 0 < b < p — 1. Then, as
Co(z2) = Co(Zy(5)) = 5, for any ¢ € Q \ 5" we have [q, 23] = 2 € Z\ 1 and
qT =q'y forsome 1 <l <p—1andy€ S = Cy(Zy(S)). Then

a

Z" = Za’,]‘-’ — [q’ 22}/7\: — [q7’\—/’ ’ZQT — [qu7zglzb] — [ql7251] — [q7z2]l(pfl) — Zal(pfl)

Y

hence [ = —1 and 7 inverts Q/S’.

Hence Lemma 6.1 (3) implies that 7 corresponds to (—1,(,'{)) € B, and

>\:

. . ~ 2 _ . . ~ .
using Figure 6.1 we see that 27 = 2! 27! a contradiction as 7|g = 7, which

centralises Z. =

Combining Claims 6.3.1, 6.3.2 and 6.3.3 we conclude that the only candidates

for F-essential subgroups are () or E € P as claimed. O
Now we determine Autx(E) for E € P.

Lemma 6.4. If E € P is F-essential then Autz(E) = OF (Aut(E)) = SLy(p) is
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uniquely determined in Aut(FE). Let 6 = (6\ )\91) be an element of order p — 1 in
Nauwty () (Autg(E)). Then 6 extends to a map 6 € Autz(S) which acts as conjuga-
tion by d = (A7, (*,'9)) € B and restricts to an element of Nau, (o) (Auts(Q))
of order p — 1 which acts as an automorphism of order p —1 on S/Q and Z. For
every E € P the subgroup A := Naye,(s)(Aut(£)) Inn(S)/Inn(S) is generated by
the images of cq as above as A € GF(p)* independently of the choice of E.
Furthermore, A < Outz(S) is the stabiliser in Outg(S) of X and has order
p — 1. In particular, P is the union of (p — 1)?/| Outx(S)| F-conjugacy classes of

subgroups.

Proof. As E is F-essential and Aut(E) = GLy(p), Autz(FE) is isomorphic to a
subgroup of G'Ly(p) with OP (Autz(E)) = SLy(p) by Lemma 1.63.

Let N := Nau,(p)(Autg(E)) of order p(p — 1). Let § € N have order p — 1,
then it acts on E/Z via A and on Z via A for some generator A of GF(p). As
by Proposition 6.3 no overgroup of E is F-essential, Proposition 2.14 implies that
§ extends to some 0 € Autz(S) with 4|z = & and by Lemma 6.1 (2) we may
assume that & acts as ¢, for some d = (¢, (’5 (1))) Then 6 normalises @, R and
the unique maximal subgroup of S containing F, so § normalises all subgroups of
S/S’ and acts on S/S’ as a scalar matrix. Hence ¢t = 4 = A~! by Lemma 6.1, and
d= (A" (*"9)). Note that this is independent of the choice of E € P.

Further, & restricts to 0 € Autz(Q) as @ is characteristic in S. We define
U:=5/Q=EQ/Q=E/(ENQ) = E/Z, then the projection of J to Outz(Q) is

an element of order p — 1 normalising U. Now

de A= Nauty(s)(Aut(£)) Inn(S)/Inn(S) = ﬂ Nautr(s)(X) Inn(S)/ Inn(S),

XeXx
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hence |A| < p—1, and since we obtain |(§)| = p — 1, we have equality at each point
E. Thus Autz(E) = SLy(p) and |A| =p — 1.
The final statements then follow as A stabilises X. By Lemma 6.2, since

| Outp(S)/Al = p—1, A must be the stabiliser of X in Outp(.S). O
Now we determine Outz(Q) when @ is F-essential.

Lemma 6.5. Suppose that Q) is F-essential. Then Outz(Q) = GLy(p) is unique

up to Out(Q)-conjugacy and acts on Q/Z as the module V,,_y described in (6.1).

Proof. Following the notation in [COS17], we let ¥, be the class of finite groups
whose Sylow p-subgroups are not normal and have order p. Let %pA be the class
of all G € ¢, such that | Autq(U)| = p — 1 for U € Syl,(G). Note that as |[U| = p,
| Aut(U)| = p — 1, so the assumption is equivalent to Aut(U) = Autg(U).

Let G := Outz(Q), U := Outg(Q) = S/Q. As @ is F-essential, @ is fully F-
automised, that is S/Q = U € Syl (G). Further, G contains a strongly p-embedded
subgroup, so we have U 4 G, hence G € ¥,. Since O,(F) = 1, Lema 4.7 implies
M is empty, and by Lemma 6.4 we have 0 € Ny, (0)(Auts(Q)) acting as p — 1
on §/Q and Z, hence | Autg(U)| =p—1, and G € 4.

We can therefore use the results from [COS17] to obtain Outz(Q). Note that
we do not know whether our groups satisfy the conditions of [COS17, Corollary
2.10].

We consider the elementary abelian group V := Q/Z. As Z = ®(Q), by Lemma
2.20 G acts faithfully on V. Recall that Proposition 1.31 implies that S = @ % (s)
where s € Sp,_3(p) has a single Jordan block of size p — 3. Hence V' is a minimally
active, faithful, indecomposable GF(p)(G)-module of dimension p — 3 > 8 (as

p>11).
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Let Gy = F*(G). Then [COS17, Proposition 5.4] implies that, as p > 11 and
dim(V) < p, the image G of G in PGL(V) is almost simple, and p | |F*(G)|. These
cases are classified in [COS17, Sections 6-11]. In Proposition 6.1 the groups of Lie
type in defining characteristic p are considered, with the only example with |U| = p
being PSLy(p), and we obtain the unique simple module Vg, = V,_4|¢,, which is
exactly the module of homogeneous polynomials of degree p — 4 in two variables
described in [PS15], and can also be described as the (p — 4)th symmetric power of
the natural module (note that it is denoted by V,_3 in [COS17]).

The remaining almost simple groups G are considered as follows: the case when
G is sporadic is ruled out by [COS17, Proposition 7.1], the alternating groups
are eliminated in [COS17, Proposition 8.1], and the groups of Lie type in cross
characteristic are considered in [COS17, Propositions 8.1, 10.1, 10.2, 10.3, 10.4 and
11.1], which rule out the linear, unitary, symplectic, orthogonal and exceptional
ones respectively.

Hence V' is (isomorphic to) the module described above, and further as in
[COS17, Proposition 4.2] as V' is simple and even dimensional, we have Gy = SLy(p)
acting faithfully on V as we require, and G < G = Npuw(Go) = GLa(p).

Note that as Gy = O (G) < Sp,—3(p) = Caw)(Z(Q)) and by Lemma 6.4
we have 6 € Nau,()(Autg(Q)) acting on Z via an element of order p — 1, we
deduce that G = G = GLy(p) and [BHRD13, Proposition 5.3.6] implies that
G = Outz(Q) is unique up to conjugacy in Out(Q). Thus we conclude that
G = G Ls(p), which preserves the symplectic form of @), is unique up to conjugacy
in Out(Q) = CSpp-s3(p)- O

Now we work with the subsystem Nz(Q) to determine the remaining uniqueness

157



properties.

Lemma 6.6. Assume @ is F-essential. Then Nx(Q) is uniquely determined up to
isomorphism, Fs(P/CL(Q)) = Nx(Q), and, in particular, Autz(Q) and Autx(S)

are uniquely determined.

Proof. By Proposition 6.3 the only F-essential candidates are () and E € P. Note
Q < Nx(Q), so only @Q is Nx(Q)-essential by Proposition 2.25. Then Lemma 6.5
implies that Outz(Q) = G'Ly(p) is unique up to Out(Q)-conjugacy, hence Autz(Q)
is determined uniquely up to conjugacy in Aut(Q).

In particular, Nous,(g)(Outs(Q)) = C,, : C?

»_1, and by Lemma 2.9 every map in

Nautr(@)(Autg(Q)) extends to a map in Autz(S) < Aut(S) giving us a subgroup of
size Autp(S) by Lemma 6.1 (2), hence the order and isomorphism type of Autz(S)
is known.

Further, under the assumption that F is saturated, Nz(Q) is saturated by
Theorem 2.27. Nz(Q) is further constrained as @ < Nx(Q) and @ is F-centric. We
have K = Cg(Q), hence by applying the Model Theorem 2.29 we obtain a model
P/CL(Q) for F which is unique up to isomorphism, hence Nz(Q) = Fs(P/CL(Q)).

Therefore Autz(S) = Autp/c, (@) (5) = Autp(S) is uniquely determined. O
Now we show that if () is F-essential we obtain a unique fusion system.

Theorem 6.7. Suppose p > 11 and @) is F-essential. Then there is a unique
saturated fusion system Fg on S with Oy(F) = 1 up to isomorphism, which is

exotic. Then F is the fusion system described in [PS15, Proposition 3.5].

Proof. As O,(F) = 1, Theorem 4.27 (5) implies that there is £ € P which is

F-essential. As ) is F-essential, Lemma 6.6 implies that Autz(Q) = Autp(Q)
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and Autz(S) = Autp(S) are uniquely determined. Since Autz(S) = Autp(S5),
Lemmas 6.2 and 6.4 imply that Autz(S) acts transitively on P, that is all £ € P
are F-conjugate. Since they are all fully F-normalised, they are all F-essential.
Further, Lemma 6.4 shows that each E € P satisfies Autz(E) = O (Aut(E))
which is uniquely determined. Thus, there is at most one F up to isomorphism. It
satisfies the conditions of [PS15, Proposition 3.5], hence the fusion system exists,

is saturated and exotic. This concludes the case where () is F-essential. O]

It remains to consider the case when () is not F-essential, which we do as follows.
Note that we prove the result before stating it, since the notation is involved and
defined throughout the proof.

Assume () is not F-essential, then the set of F-essential subgroups is a union of
conjugacy classes of members of P, and by Lemma 6.2, as each S-conjugacy class of
elements of P is contained in the same maximal subgroup of .S, this corresponds to a
subset of X. As we can label X by M;, ..., M,_;, we can identify each configuration
with a nonempty subset of 7 = {1,...,p — 1}. Recall that by Lemma 6.1 (2),
Autz(S) < Autp(S) and we have A < Outz(S) by Lemma 6.4. Now Outp(S)/A,
which has order p — 1, acts on X as C),_y = F; = GF (p)*. Hence a nonempty
subset J of J determines uniquely a fusion system with Autz(FE) = OF (Aut(F))
if B < M; where j € J, and Autz(E) = Now (pum)(Auts(E)) otherwise, all of
which is uniquely determined.

Some of the configurations described will give rise to isomorphic fusion systems.
This is the case when the subsets Ji, Jy of J which determine the F-essential

subgroups are Autp(.S)-conjugate. Hence in order to uniquely determine a fusion

system up to isomorphism we require a subset J C J corresponding to the S-orbits
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which are F-essential, and a subgroup of Autg(S) containing A and stabilising J.

Hence, given an orbit representative J, we define B := Stabay,(s)(J) and
Fi = (0" (Aut(E)), A | E < My, k € J),

which is the smallest fusion system on S containing the given set of F-essential
subgroups by Lemma 2.17.

Finally, we define F7/ = (FJ, B;), which is the largest fusion system with
J corresponding to the set of F-essential subgroups. Note OP (F’) = FJ, and
[, (F’) = B;/A. Hence the result follows by Theorem 2.35.

With this notation we have showed the first part of the following Theorem.

Theorem 6.8. Suppose p > 11, S is as in Theorem 4.27 (5) and Q is not F-
essential. Then F is isomorphic to a subsystem of p'-index of F’ containing
Fi = OY(F’) where J is a nonempty Aut(S)-orbit on X. Furthermore, these

fusion systems are saturated and exotic, and no two of them are isomorphic. There

2r—1-1
p—1

are at least such fusion systems. All these fusion systems are subsystems of

the fusion system in Theorem 6.7.

Proof. It remains to prove saturation and exoticity of F”/. To prove saturation
we begin with &7 = (Autz(S)) < F”, which is saturated. Let {E; : j in J} be
F7-conjugacy representatives of the F”/-essential subgroups. As E; € P and Ej is
F7-essential, the E; are fully £/-normalised, £”/-centric, and no proper subgroups
of the E; are F”-centric or F”-essential. Then F is saturated by [Sem14, Theorem
C].

To prove F7 is exotic, assume F/ = Fg(G) for some finite group G with

S € Syl (G), where we may assume Oy (G) = 1, as Lemma 2.11 implies that
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Fs(G) = fsop,(g)/op,(g)(G/Op/(G)). Let N be a minimal normal subgroup of
G. Then1 # SNN <85, s0 Z(S) < N. Let E € P be F/-essential. Then
E = (z2vrE)y — (zN6(E)y < N where Ng(E)/Ca(E) = SLy(p). Thus

ES' = E[E,Q] < E[E,S] = (E®) < N,

therefore (NN Ng(E))Cq(E)/Cq(E) contains a Sylow p-subgroup of Ng(E)/Cq(FE)
and so N N Ng(F) < Ng(E) and Ng(E)/Cq(E) = SLy(p). This implies that
Ng(E) = (NN Ng(E))Cq(E), hence Fs(NS) must contain some Fy, so by Lemma
6.4 [S,Outyg(S)] = 5, that is S < N thus S € Syl (N). Now as |Z(S5)| = p,
N is nonabelian simple and the unique minimal normal subgroup of GG, whence
Lemma 1.57 implies that G is almost simple. Now as p > 11, we have |S| > p° so
Proposition B.1 implies that there is no finite simple group N with S € Syl,(N).
Therefore F7 is exotic.

It remains to consider the orbits of the action of GF(p)* on the subsets of
GF(p)*, for which we see that there are 2P~! — 1 nonempty subsets J C J to

choose from, and each orbit has length at most p — 1, hence there are at least

11
p—1

such orbits, hence the same number of saturated fusion systems Fy. There
is a snippet of Magma code in Appendix C.1 which calculates the number of orbits
for a given representatives, but due to the large number of calculations necessary,
it is not very fast. It yields 107 fusion systems when p = 11, 351 when p = 13,
4115 when p = 17, and 14601 when p = 19, taking over 25 minutes in the latter
case. We note that the result appears not to be very far from the lower bound
above, which gives 102.3, 341.25, 4096, and 14563.5 respectively, and gives a lower

bound of 190650 when p = 23, which is too large to calculate. The case p =7 is
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considered in [PS18, Notation 5.14], where there are 13 orbits whereas our bound

gives at least 10.5. O]

We note that when F contains is a unique S-conjugacy class as JF-essential

subgroups with E a representative, we can construct a saturated fusion system

FNz’ = <A11t]:(E>, Aut]:(S)

Ni> on Nz where N1 = Ns(E) and Ni+1 = Ns(Nl) for

i€{2,...,p—4}. Further, in this case, N,_4 = ES’ is strongly closed in F.
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CHAPTER 7

SIMPLE FUSION SYSTEMS WHEN |S]| = p*

In this chapter we consider the case when p is odd and |S| = p*. In this case S
contains an abelian subgroup of index p by Lemma 1.20. The simple (reduced)
fusion systems on S with abelian subgroup of index p have been classified by Oliver,
Craven, Semeraro and Ruiz in [Olil4, COS17, OR17]. In [Olil4] the case where
the abelian subgroup A of index p is not F-essential was studied, in [COS17] they
considered the case where A is F-essential and elementary abelian, and in [OR17]
the remaining case was dealt with, but not a classification given. The latter will

not be required in our situation. Our goal is to prove the following.

Theorem 7.1. Assume p is odd, S is a p-group of order p* and F is a saturated
fusion system on S with O,(F) = 1. If F is simple then F is one of the fusion

systems described in Tables 7.1 and 7.2.

We now establish some notation to synchronise with the results form [Olil4,

COS17, OR17] and describe Tables 7.1 and 7.2.

Notation 7.2. We denote by Ex the set of F-essential subgroups of S, with A

being the unique maximal subgroup of S that is abelian. Q@ = By = pi*? is the
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extraspecial subgroup of index p that is normalised by every p’-element of Aut(S),
which exists by [Olil4, Lemma 2.6]. We denote by By, ..., B,_; the other maximal
subgroups of S. They are all extraspecial. H; denotes the S-conjugacy class of
S-centric subgroups of B;, which are elementary abelian if they are F-essential.
In particular, members of H, are subgroups of (), and we denote H, = ?:—11 H;
for the remaining ones. When we write “union of H,”, there are p isomorphism
classes of simple fusion systems, each with Ex consisting a different number of
conjugacy classes Hy U H.,, none of which are F-conjugate. The cases are labelled
J.(x) where J = I when A ¢ Ex and J=II otherwise, and (x) refers to the subsection
of [Olil4, Theorem 2.8] and [COS17, Theorem 2.8 and Table 2.1] in which they
are described. If F is realisable, F; represents its name in Proposition B.1 and
Table B.1. S is given in the SmallGroups notation, for example <3*,7> = C51 Cs,
<pt, 7> € Syl,(Spa(p)). The lattice of conjugacy classes subgroups of S’ containing

Z = Z(S) is described in the following picture.

S
N
Cs(2:(5)) = A Q QB/B
[(Ji] \22(5)/%% H Hpr
\\ //
Z(9)
1
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P Case S E e ExrU{S} | Outz(E) | Realisable or exotic
H() SLg(p) ]:a, PSU3<8) 1fp = 3,

3,5 | L(a)(i) | <3%,9>, <5, 7> | Unionof H; | SLy(p) all H; F-essential
S Cp-1 Exotic otherwise
Q GLs(p) | Fy, D4(2) for p=3

3,5 | L(a)(ii) | <3%,9>, <5 7> H. SLy(p) | Exotic for p =5 from
S [ [PS15]

p>71 L(a)(iv) <pt, 7> 7o SLa(p) Exotic

S Cp1

3 L(b) | <3% 7>, <3% 8> o SLy(3) Exotic
S Co

Table 7.1: Simple fusion systems on p-groups of order p* with A not F-essential.

D Case S EecErU{S} Outx(F) Realisable or exotic
A S, = PGLy(3)
3| IL(i) | <34, 7> Ho ST>(3) Fa, Ay
S Cy
A (Cy x As) : Cy
5 I1.(ii) | <b%, 7> ,S* 2A5G2LQ§?2(5) Co,
S C?
A PGLy(5) = 55 F.. PSU,(4) if
5 | IL(iii) | <5*,7> | Union of H; SLy(5) all H; F-essential
S Cy Exotic otherwise
A PSLQ(p) : Cg(p,l)/d Exotic
p>T H.(iii) <p4, ™ Ho SLz(p) : C(p—l)/d [CPlO]
S Cp_l X C(p—l)/d d=ged(4,p—1)
A GLy(p)/{£1>
p | ILGv) | <pt, 7> Q SL2(;§) ):/é(,,_l)};g PSpa(p)
S Cp—l X O(p_l)/g Fl when p = 3

Table 7.2: Reduced fusion systems on p-groups of order p* with A F-essential.
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We gather here the remaining relevant notation.

Notation 7.3 ([COS17, Notation 2.4 and 2.9]). We will denote by Z = Z(S) and
Zy = Z NS’, which in our case coincide, and Ay = 25 = 5.

Let A = (Z/pZ)* x (Z/pZ)*, and A; = {(r,7") | r € (Z/pZ)*} < A, and
consider the action of A on S/A and Z. Define p : Aut(S) — A and its projection

f: Out(S) — A by setting, for a € Aut(S) (respectively [a] € Out(S5)),

za=ax"Aforze S\ A
ap = [a]fp = (r,s) if
ga = g° for x € Z.

We also define Autx(S) := {a € Autz(S) | [, Z] < Z}, and note that in
our case Autx(S) = Autz(9), its projection Outy(A) = Autx(S)/Inn(S), and
Auts(A) == {a|s | @ € Autx(9)}.

We will sometimes consider A as a GF(p)Go-module, which we will then denote
by V, and define G = Autz(A), G¥ = Aut¥(A4) and uy = pa : G¥ — A the
restriction of y to G, and let Gy = F*(G) = O (G), and ¢ is a certain element
of S which we will need not use, but appears in the tables. In this context
U = Autg(A) € Syl,(G), and we will consider V' = A as a quotient module of Z[U]

by a suitable ideal. Further, Gy < G < Nerwvy(Go) is a suitable overgroup of G.

We now proceed to the proof of Theorem 7.1.

Proof of Theorem 7.1. S contains an abelian subgroup of index p by Lemma 1.20,
and we use the results of [Olil4] and [COS17] to obtain the simple/reduced fusion
systems. Then [Olil4, Theorem 2.1] implies there is a unique abelian subgroup of

S of index p in S, which we denote by A, hence the remaining maximal subgroups
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of S are extraspecial, and S contains extraspecial subgroups of index p. Thus
Hypothesis A holds and Lemma 4.1 implies that Z = Z(S5) = Z(Q) has order p.
Further, Lemmas 3.1 and 3.2 imply that the only possible F-essential subgroups
are isomorphic to p}r” or elementary abelian, and we divide the classification as in
[Oli14] according to whether A is F-essential or not.

We have m = log,(]A|) = 3. In both cases the classification depends on the value
of 3 (mod p — 1) so it behaves differently when p = 3,5 than when p > 7. Recall
that in the SmallGroups notation <p*, 7> = T € Syl;(PSp4(p)), <3*,7> = C31C;
and <3*,9> =T € Syl (*D4(2)). The map i : Out(S) — A = C2_, will be very
important.

Case I. We assume that A is not F-essential, and we use [Olil4, Theorem 2.8].
Asm=3,if 3= —1 (mod p—1) then p—1 |4 and p € {3,5}. So cases I.(a)(i)
and I.(a)(ii) only happen if p < 5. Note that 3 =0 (mod p — 1) is not possible as
p is odd. Thus we are in case I.(a)(iv) if and only if p > 7. The remaining case
I.(b) only happens when 3 =m =k(p — 1) + 1, that is k = 1 and p = 3.

In case I.(a) all H; can be F-essential, so they are all elementary abelian hence
B; = pit? for all i € {0,...,p}. Therefore Lemma 3.11 (1) implies that either
p=3and S <3 9> or p>5and S = <5 7>,

In case I.(b) we look more closely at the structure of S. We have k =1, p = 3,
|Z(S)| = 3, and A = Z[U]/I where I = (po,p + lo) for 0 = 1+ u + u? € Z[U]
and some [ € Z such that p{{+ 1. As po € I, only the value [ (mod 3) matters
and there are 2 possible choices, which can be taken tobel=0o0r{=1. If [ =0
then I = (po,p) = (3), so A has exponent 3, that is A = C3. If however | = 1,
then 3 ¢ I = (po,p+ o) (otherwise 0 = (34 o) — 3 € I, which contradicts oW # 1

in this case, see Step 3, Case 3 of the proof of [Olil4, Theorem 2.8]), hence the
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image of 1 € Z[U] in S has order 9. In particular, A does not have exponent 3, and
A = (Cy x C3. Further, in Step 3, Case 3 of the proof of [Olil4, Theorem 2.8], it is
shown that out of the three nonabelian maximal subgroups of S, one has exponent
p and the remaining two have exponent 9. Thus, Lemma 3.11 (2) implies that
either S = <3%, 7> =~ (5105 or S = <3% 8>, and we have shown that both cases
arise according to the choice of [.

In every case except I.(a)(i) (and for each choice of S) we then get a unique
fusion system up to isomorphism. In case I.(a)(i) we have Outz(S)i = A_y, thus
[Olil4, Lemma 2.6 (b)] implies that none of the H; are F-conjugate and that H,
is normalised by every a € Autz(S). The situation here is slightly different to
that of Chapter 6, as in this case there are p S-conjugacy class of pearls, there
is an element of order p in Aut(S) permuting the H; transitively, and H, is not
characteristic in S. This can be observed when p = 5 via an embedding of S into
K = (51 (5, and by embedding S into K := Cy ! C3 when p = 3, where the
only maximal subgroup of S normal in Ng(S) is A. In particular, Aut(S) acts
2-transitively on {Ho, Hi1,...,H,—1} and there is a unique isomorphism class of
reduced F for each choice of number of F-essential classes. Hence there are p
reduced fusion systems up to isomorphism arising from case I.(a)(i).

Whether Hy € Ez or not does not affect the reduced fusion systems, but
different extensions arise in each of the cases. When p = 3 all saturated fusion
systems on <3* 9> were constructed in [DRV07, Table 2].

Therefore one of the following holds:

1. p = 3. There are 3 simple fusion systems up to isomorphism from I.(a)(i), one

from I.(a)(ii) and one from I.(b) for each choice of S. Note that S = <3* 9>
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in case I.(a), whereas in case I.(b) we have S & C51C3 or S & <3* 8>.

2. p=5,5 =<5 7> € Syl,(PSp4(5)) and there are 6 simple fusion systems
up to isomorphism. These are 5 from I.(a)(i) and one from I.(a)(ii), which is

the exotic fusion system described in [PS15].

3. p>7, 8= <p*, 7> and there is a unique simple fusion system from case
L.(a)(iv).

In each case [Olil4, Theorem 2.8 determines both Outz(H;) = SL,(p) and
Outz(Q) = GLa(p) whenever H; or @) are F-essential. Further, as filout,(s) is
injective, Outz(S) = C} | where i = 1 if fiout,(s) = A1 (that is Ex € Ho U H,)
and i = 2 if filout,5) = A (that is @ € Ex). By the second bullet point in the
statement of [Olil4, Theorem 2.8] the fusion systems above are all exotic except
when p = 3 in case I.(a)(ii), in which case it is realised by 3Dy(q) for ¢ coprime
to 3 and in case from I.(a)(i) when all 3 conjugacy classes H; are F-essential,
which is realised by PSL3(q) or PSUs(q) for appropriate g. These are F, and F,
respectively in the notation of Table B.1.

This completes the proof of Case I, that is when A is not F-essential, and Table
7.1 is correct.

Case II. If A € Ef then then by Lemma 3.2 A is elementary abelian and the
reduced fusion systems F are studied in [COS17, Theorem 2.8, Theorem 4.1}, and
they are all simple. They are either realised by one of the groups in [COS17, Table
2.2] or exotic. Most of the relevant information can be found in [COS17, Tables 2.1
and 4.1], hence we now reproduce the relevant parts of these tables.

We have n = m = dim(A) = 3, which reduces the modules to consider to

special cases of the first and fifth rows of [COS17, Table 4.1], with the fifth row
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appearing only when p = n = 3. Note that for reduced F we require also [COS17,

Table 4.2], which contains no 3-dimensional modules, hence we need not consider

it.
(Aut%(A)pa | G = OP'(G)X where | m (mod p — 1) o Er\ {4}
(i) A X = Aut%(A) =0 o€ d(Z) Ho U B,
(ii) A X = Aut%(A) =-1 o€ d(Z) Bo U H.
=-1 o € ®(Z) | union of H;’s
Gi) | > A X =A_ypuy
- - Ho
X = Aoy =0 o € ®(Z) | union of B;’s
(iV) > Ag
Zy not G-invariant — — By
Table 7.3: [COS17, Table 2.1]
R|p Go dim(V") G G'uy| GYw |E.R
SL or PSL 3<n<p*2) GL or ,
Ly 2(p) 2(p) | 3<n<p 2(p) A | {way | EBR
(p>5) socle of dim. i | PGLa(p) x Cp—1
5| p n(4-4(b)) Cp 1S, (n>p)| A ER

Table 7.4: [COS17, Table 4.1, rows 1 and 5]

We begin by considering the case p = 3, which satisfiesn =3 = —1 (mod p—1).

Since A is elementary abelian and |Z(S)| = 3 (by Lemma 4.1), we have S = C51C}

by Lemma 3.11. S has maximal class, hence four maximal subgroups: A, @

o 3}%+2

and the remaining two are isomorphic to 32, Hence the only possible F-essential

subgroups are A, @ = By and the conjugacy class Hy of F < Q, E = (2 with

Cs(E) = E, S-conjugate to Hy. Both @ and E cannot be F-essential in the
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same fusion system, since if Q is F-essential then O (Outz(Q)) = SLy(p) from
Lemma 1.63, hence Autz((Q)) acts transitively on the maximal subgroups of Q.
In particular, E is F-conjugate to Z5(S), hence F is not fully F-normalised and
not F-essential. Thus either Ex = {A,Q} or Ex = {A, E}. We also obtain that
OP (Outy(E)) = SLy(p) from Lemma 1.63 if E € Ex. It remains to consider
O” (Autx(A)), which is in described in the first row or in the fifth row of [COS17,
Table 4.1] reproduced above as Table 7.4.

In the first row we see that i = 3, so Gy uy = {(u? u?)} < A = (C? is the trivial
subgroup, which means that there are no elements in Gy = O (Autz(A)) which
extend to Autz(S). This is only possible if Npw gy, (a))(Auts(4)) = Auts(A),
which since O (Autx(A)) = Gy implies that O (Autz(A)) = PSLy(3), which also
follows from [COS17, Proposition 4.2]. In the fifth row Autz(A) < G = C51S3, and
0% (C5183) = PSLy(3), hence in every situation O (Autx(A)) = PSLy(3), and no
p/-elements of O” (Autz(A)) extend to S, in other words Aut(S) = Inn(S). This
means that if O (F) = F, we have Autz(E) = SLy(p) or Outz(Q) = SLy(p).

Thus when p = 3 there are exactly two reduced fusion systems which correspond
to the cases (iii) and (iv) of [COS17, Table 2.1], corresponding to each of the first and
last rows of Table 7.2. Now Lemma B.19 implies that there are 4 saturated fusion
systems on .S up to isomorphism which are realisable by finite simple groups, which
can be chosen to be the fusion systems of Fy = Fg(PSp4(3)), Fa = Fs(PSLg(2)),
F3 = Fs(Ay), Fi = Fs(Aq1). Note that Ag < Ayy. Further, PSU4(2) = PSp4(3)
by Proposition 1.19 (15), which implies that PSps(3) = PSU4(2) < PSLg(2).
Hence we see see that F; and F3 are subsystems of F, and Fy, respectively (of
index 2). Thus F, and F, are not reduced, but they satisfy O,(F) = 1. Hence the

only reduced fusion systems on S are F; and F3, which agrees with [COS17, Table
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2.2]. We note here that despite Auta,(A) = Autpgp,3)(A) = PGLy(3), we have

Nuy(A) 2 Npgp,3)(A), in other words Autz(A) acts slightly differently in the two

fusion systems.

r p | conditions | G =Autp(A4) | Ex\ {A} | Table B.1
Ay 3| n=p=3 10908, Ho Fs
Spa(p) |p — GLo(p)/{=I} By Frifp=3
PSLs5(q) | 5 | vplg—1) = Ss Ho U H. Fe
PSLa(q) | 3| v(e—1)=1 S4 Bo 1
PQg(q) | 3| vplg—1) = C3 » S5 Bo Fy
Coq 5 — 4 x S5 Bo U H,
Table 7.5: [COS17, Table 2.2] with rk(A) =m =3, e = 1.

When p > 5 we are in the case of the first row of [COS17, Table 4.1], with
A elementary abelian. As O,(F) =1 and A is Aut(S)-invariant, by Proposition
2.25 there is some F-essential subgroup other than A, hence there is an element
x of order p in S\ A. Therefore S = p!*? x C, = <p* 7> by Lemma 3.11. In
this case Lemma 1.64 implies that O” (Autx(A)) is isomorphic to either SLy(p) or
PSLy(p). But since A is simple as a GF(p)Go-module and odd-dimensional, the
simple composition factors of A are odd dimensional and [COS17, Proposition 4.2]
implies that OP (Autz(A)) = PSLy(p).

When p = 5 we have 3 = —1 (mod p — 1), so we need to consider cases (ii),
(iii), (iv) of [COS17, Table 2.1], and this case is discussed just before the end of
Chapter 4 in [COS17], and collated in the second row of [COS17, Table 4.3], which

we reproduce here for p = 5. Note the rows correspond to cases (ii), (iii) and (iv)

from top to bottom.
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P Go dim(V) | Gy uy G GYuy | Ex \ {A} | Group/Exotic

Go.Cy x Cy A Bo U H. Coq

5| PSLy(5)| 3

el
P
_

PGL2(5> A_l UH, FE or PSL5(11)

Go.CQ X 02 AO.CQ BO Sp4(5)

Table 7.6: [COS17, Table 4.3, row 2] for p = 5.

There is a unique fusion system of type (ii) which is realised by C'o; as seen
by comparing with [COS17, Table 2.2] or by the local subgroups 52 : GLy(5),
C3: (Cy x A5).Cy and C2 : 2A5' from [WWTT05], which show that @, A and at
least one H; are Fg(Coy)-essential, and the only candidate fusion system is the one
from (ii). In particular, as Aut=(A)us = A, by [COS17, Lemma 2.5 (c)], we have
that Outz(S) = A = C?_, fuses all the conjugacy classes in H..

In case (iii), the F-essential subgroups can be any nonempty union of H;’s. As
by [COS17, Table 4.3, row 2] we have GVua = A_1, the H; are not F-conjugate
by [Olil4, Lemma 2.6 (b)], and as O,(F) = 1 there must be some F-essential
subgroup other than A by Proposition 2.25. Hence we have the same 5 possibilities
for Ex \ {A} as when A is not F-essential. According to [COS17, Table 2.2] these
are all exotic except the one with every conjugacy class H; being F-essential, which
is realised by PSLs(q), PSUs(q) for suitable q.

Since we have Gyuy = {(v*,v*)} € A, = {(u,u™!)} again by the first
row of [COS17, Table 4.1] (as u? = u~?), we have Autz(H;) = SL,(p) and
Autz(A) =2 PGLy(p), so Outz(S) = C,_;. This complicated situation is again
related to the examples in [PS15] and the case |S| = pP~!, and this particular

situation is even richer than the general case due to there being p S-conjugacy

!The ATLAS [CCN*85] gives this as CZ : 4A5 but it is a known error, see [Will7, Section 4].
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classes of H; being potentially F-essential. Further, A = Cs(Z5(S)) can also be
F-essential, which can be seen as analogous to the role of R = Cs,(Z5(S7)) for
Sr € Syly(Ga(7)).

In case (iv) there is a unique fusion system for p = 5 that can be seen to be
realised by PSp4(p) by comparing with [COS17, Table 2.2].

At this stage it only remains to establish the last two rows of Table 7.2 whenever
p > 7, in which case we only need consider the first row of [COS17, Table 4.1], and
we have 3 # 0, —1 (mod p — 1) hence there are exactly two reduced fusion systems
corresponding to cases (iii) and (iv) of [COS17, Table 2.1]. In this situation [COS17,
Proposition 4.2] implies that O (Autz(A)) & PSLy(p) and Gyuy = {(u? u?)}.
Each F has exactly one F-conjugacy class of F-essential subgroups other than
A, either H, in case (iii), or By = {@} in case (iv). The fusion system F with
Er = {A,Q} is realised by PSp4(p), since Sps(p) has p-local subgroups of shapes
Pt (Cpo1 X Spa(p)) and C3 : GLy(p) by [BHRD13, Table 8.12], concluding the
last row of Table 7.2. On the other hand the fusion system F with Ex = {A} UH,
is exotic, since it does not appear in [COS17, Table 2.2]. This exotic F has
O (Autz(E)) = SLy(p) whenever E € Hy, by Lemma 1.63, which gives us
Aut%(S)p = A_;, and can be found in [CP10, Theorem 5.1].

It remains to consider the relationship between the subgroups of A determined
by AutZ(S)u = A_; and Gyuy = {(v? v?)}, which depends on the value of p
(mod 4). Let d € A_y, then d = (u*,u™") for some k € Z, so in order to have
d € Gy py we need u* = u™* with k even, that is u is an involution and k = (p—1)/2
even. Thus if 4 | p — 1 then A_; N {(u? u?)} has order 2, whereas if 4 | p + 1
then A_; N {(u? u?)} is trivial. Notice that if p = 5 we saw this earlier, and if

p = 3 the intersection is trivial, since u has order p — 1 = 2, so this coincides with
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the previous cases of II.(iii), which are in different rows of Table 7.2 due to their
complexity.

We thus see that Outz(S) = Cp_1 X Cpo1))ged(ap-1), Autr(A) has shape
PSLy(p) : Cogp—1)/ged(a,p—1) and the shape of Autz(E) is SLa(p) : Cip-1)/ ged(a,p—1)-

Further, all the reduced fusion systems in Case II are simple by [COS17,
Theorem 2.8], so we have classified both the reduced and simple fusion systems in
this case.

We have now considered all possible cases and completely determined Tables
7.1 and 7.2. We further note that all the relevant known fusion systems of finite
simple groups from Table B.1 (F, F3 and F. in Case II, F, and F;, in Case I) have
been described, as well as all of the relevant ones in [COS17, Table 2.2]. F, and
F4 do not appear since they are not reduced, as they are extensions of F; and F3

respectively of order 2, with O (F;) = F;_ for i = 2, 4. ]
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CHAPTER 8

CONCLUSION

After the results in this thesis, the problem of classifying saturated fusion systems
with O,(F) = 1 on p-groups with an extraspecial subgroup of index p is at an
advanced stage. In Theorem 4.27 we reduced the situation when p is odd and
|S| > p® to a few cases, all but one of which have been classified Chapters 5 and
6 of this thesis, [BFM] and [PS18]. The case when |S| = p* was determined in
Chapter 7 using the classifications in [Olil4] and [COS17]. Finally, the case of a
Sylow p-subgroup of SL4(p) remains future work.

In the proof of the Reduction Theorem 4.27 we assume that p # 2, but we
believe that this assumption can be removed. Removing this assumption will
involve modifying the applications of McLaughlin’s results on groups generated by
transvections, but appears doable. In the case p = 2 we only need to show that
|S| < 25, as then we can conclude by [Oli16, Theorem A].

When S is a Sylow p-subgroup of SL4(p) there are some partial results in
Chapter 5 and we will attempt to proceed in a similar manner, although there
are 3 F-essential subgroups instead of just 2 to worry about in the uniqueness

arguments. The case p = 3, as in a Sylow p-subgroup of SU4(p), will require
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different arguments.
We did not prove which of the fusion systems satisfying O” (F) = F constructed

are simple, but we have the following partial results using strongly closed subgroups.

Lemma 8.1. The saturated fusion systems F obtained in Theorems 6.7 and 6.8
contain no proper non-trivial strongly closed subgroups unless Ex consists of a
unique S-conjugacy of F-pearls, in which case the unique mazximal subgroup contain-
ing them is strongly closed in F. In particular, F is simple whenever OF (F)=F

except possibly for the exception above.

Proof. Assume X < S is strongly closed. Then X < S, which implies that Z < X.
Let E € ExNP, then (ZA"#(F)) > B so £ < X and as X < .S we have ES’ < X,
so X is the only candidate for a strongly closed subgroup and is strongly closed
if the only F-essential subgroups are the S-conjugates of E. If there is another
F-essential subgroup then X = S and there are no proper non-trivial strongly
closed subgroups in F. The second part follows from Corollary 2.39 as OF (F) = F

and F contains no proper non-trivial strongly closed subgroups. O]

Lemma 8.2. Ifp > 5, S is a Sylow p-subgroup of SU4(p), and F is a saturated
fusion system on F with O,(F) = 1 and OV (F) = F then there are no proper

non-trivial strongly F-closed subgroups. In particular F is simple.

Proof. With the assumptions above Lemmas 5.8 and 5.9 imply that V' is F-essential
and V is a natural Q} (p)-module for O (Autx(V)), hence V is irreducible and we
have (ZA"7(V)) = V5o any strongly closed subgroup in F is a maximal subgroup
containing V. By Lemma 1.34 there is p 4+ 1 such, all of which are isomorphic.
Further, by Lemmas 5.7 and 5.9, we have an element ty € Autz(S) of order

(p* — 1)/2 normalising V', hence acting on S/V as an element of order (p + 1)/2,
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and in PSU,(p) we see that this element acts on the p+ 1 maximal subgroups of S
containing V' with two orbits of size (p+1)/2, hence does not normalise any of them
and they cannot be strongly closed in F. Thus, there are no proper non-trivial
strongly closed subgroups in S, and, as O’ (F) = F, Corollary 2.39 implies that F

is simple. O

With regards to the subsystem OP(F), we now prove that, unless p = 3, all

saturated fusion systems on S with O,(F) = 1 satisfy OP(F) = 1.

Lemma 8.3. Suppose S is a p-group with an extraspecial subgroup Q) of index p
and F is a saturated fusion system on S with O,(F) = 1. Then OP(F) = F unless
p =3 and either S € Syl;(SL4(3)) or |S| = 3% and all F-essential subgroups have

order 33.

Proof. By Proposition 2.33 we have OP(F) = F <= hyp(F) = S <= foc(F) = S.
Now S contains an extraspecial subgroup @Q of index p and O,(F) = 1, so if | S| > p°
we apply Theorem 4.27 to obtain the structure of S and () # M C Ex.

If S is a Sylow p-subgroup of SLs(p) then M C {M;, M,} and as M is not
empty M; € Ex for either i = 1 or ¢ = 2. Now as M; N My = V is characteristic in
S by Lemma 5.2 (5), since O,(F) = 1 by using Proposition 5.5 we see that (@) is
F-essential. If p > 5 then Lemma 5.6 implies that O (Out#(Q)) = SLy(p) acts on
Q/Z(Q) as a direct sum of 2 natural SLy(p)-modules. Thus [Q, O (Autx(Q))] = Q,
and there is a complement K to Auts(Q) in Naus(o)(OF (Autz(Q))) of order p— 1
which acts on S/Q with kernel Z(O? (Autx(M;))) of order 2. Thus as p > 5 we
obtain foc(F) > @, and foc(F) = S.

If S € Syl,(G2(p)) we have p > 5, so if R € M then we can use Proposition
4.13 to obtain that O (Outz(R)) = SLy(p) acts on a R/®(R) as a natural SLy(p)-
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module, thus we have foc(F) > [R, Autz(R)] = R, and there is a cyclic group («)
of order p — 1 in Now ouir(ry) (Outs(R)) acting on Outs(R) = S/R with kernel
Z(O¥ (Outx(R))) of order 2. Let g € S\ R, then gRa = g™ R for some A € GF(p),
so taking an appropriate @ € Autx(S) we see that ga = M for some z € R, so
g 'ga = g 'z ¢ R. We thus have foc(F) > R, hence foc(F) = S.

If S € Syl,(SUs(p)) then M = {V} with O (Autz(V)) = PSLsy(p®) acting
on V' as a natural €, (p)-module by Proposition 4.23, hence we see by Lemma
5.7 (2) that [V, R] has index p in V for each R € Syl,(O¥ (Autz(V))), thus
[V, 07 (Aut£(V))] = V. There further is an element ¢ € Autz(S) of order (p>—1)/2
which inverts S/V, that is for 2V € S/V we have 2V~ (2Vt) = 2V =2 and thus
foc(F) > VIS, ()] = S.

If |S] = p*~! (including when p = 7 with S € Syl,(G2(7)) and R ¢ Ez) then
there exists P € P N Ez, hence P is an F-pearl, a natural SLs(p)-module for
O (Autz(P)) = SLy(p), and we have [P, Autz(P)] = P. Further, Lemma 6.4
implies that there exists A < Outz(S) of order p — 1 whose elements act on S/S" as
diagonal elements as before, hence, as p > 5, foc(S) > PS’[S,A] = Mp[S,A] = S,
since [S, A] € Mp, where Mp is the unique maximal subgroup containing P in S
by Lemma 6.2.

Finally, we consider the case when |S| = p*. By Lemma 1.20, S contains
an abelian subgroup A of index p and we use [Olil4, Lemma 2.2(a)] to obtain
that Er C {A} U By U B, UHo U H. (see Notation 7.2). Now if A ¢ Ex then as
O,(F) =1 we have (Ho UH.)NEx # 0. Let H € (HoUH.) NEx. Then since
OP (Autx(H)) = SLy(p) we have [H, Autz(H)] = H, and we have an action on

Outg(H) as before, hence Autz(S)u > A_;. As |S| = p* we have m = 3, and in
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the proof of [Olil4, Theorem 2.8] it is proved that

Op(f) =F = Aut;(S)uﬁAm_l :AQ or (H*UB*)UE}‘#Q

Now we have A_y = {(r,r™1) | r € (Z/p)*} £ Ay = {(r,7?) | 7 € (Z/p)*},

1= ¢2 that is 7* = 1, whereas 7 has order dividing p — 1, thus in this case

unless 7~
we always have OF(F) = F.

If A is F-essential we instead use [COS17, Lemma 2.7(b)] to obtain that
OP(F) = F if and only if [A, Autz(A)] = A. We see from the proof of [COS17,
Lemma 2.7(b)] that if OP(F) # F then (Outz(S))i < Ag, whereas F € Ex \ {A}
forces (Outz(9))fi > Ay where t = 0 if |E| = p® and t = —1 if |E| = p?. The only

way that A; < Ay is when p = 3 and t = 0, where we have

Ao ={(r,r") |7 € (Z/p)*} = Do ={(r,1?) |7 € (Z/p)"}

as 2 = r® = 1. Thus the lemma is proved. O

A possible extension of the problem considered is to study the situation for Sylow
p-subgroups of Chevalley groups in defining characteristic p in higher dimensions,
where we know that the finite groups in question will give rise to examples. Under
the assumption that the F-essential subgroups coincide with those in the above
situation, it seems reasonable to attempt to prove that when p is large enough
these are the only examples arising, or find counterexamples. Another question to
tackle is whether there will arise other possible F-essential subgroups, which we
answer negatively for SLy(p) and SU,(p) but has a positive answer in for example

SLs(p), where the Sylow p-subgroups are extraspecial pr.
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Another extension of the problem would involve considering the classical groups

considered over larger fields, where similar questions arise.
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APPENDIX A

GROUP EXTENSIONS

We are studying p-groups S containing an extraspecial subgroup ) of index p,
thus @ < S, and S/Q = C,. This is a group extension of @ by C,, hence we
look at groups with this structure. We begin by describing some notation about
homomorphisms and diagrams, then consider the less complicated case of the
semidirect product, before considering more general group extensions. When the
group being extended is abelian this has a straightforward solution, but when it
is nonabelian as in our case the situation is a bit more complicated. We work in
full generality until Theorem A.18 and afterwards we focus on the case of interest.
Standard references on this topic in order of importance are [ML63, Chapter IV],
[Bro94, Chapter IV] and [Ben91, §3.7].

Our goal is to prove the following result, which we will do as Propositions 1.31

and 1.32.

Proposition A.1. Suppose ) = p1++2” s an extraspecial group of exponent p and

K = C,. Then

1. There exists a unique isomorphism class of split group extensions S of @ by



K of maximal nilpotency class if and only if 1 + 2n < p.

In particular, if n = 2, then p > 5 and S s isomorphic to a Sylow p-subgroup

of Ga(p).

2. If n = 2, then there exist exactly two isomorphism classes of split group
extensions S of Q by K with |S'| = p®. One is isomorphic to a Sylow

p-subgroup of SLy(p) and the other to a Sylow p-subgroup of SU4(p).

A.1 Diagrams and the short five lemma

We begin with some background notation that we will use.

Definition A.2. A pair of homomorphisms («, 5) witha : A — B and §: B — C
is exact at B if ker § = ima.

A sequence of homomorphisms G1 =5 Gy =2 G5 =3 . an2, Gt Znl, G,, 1s
exact if (o1, ;) is exact at G; fori € {2,...,n — 1},

A short exact sequence is an exact sequence of the form
1—>G22>G3Q%BG4—>1.

In particular aq is injective, ag is surjective and G3/Gaas = Gy.
A diagram of groups and homomorphisms is said to be commutative if any two

directed paths from one group to another yield the same composite homomorphism.

The following result, the Short Five Lemma, is very familiar in the literature
for abelian groups and abelian categories, but the version we present here deals

with arbitrary groups. It is a particular case which in the terms of category theory
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has been shown to hold exactly in those categories that are protomodular, as in

[Bou91]. We take the proof from [ML63, Lemma 1.3.1].

Lemma A.3. Assume the commutative diagram

l—A—=B—"-(C——+1

| A |
1 AT 1
of (not necessarily abelian) groups has both rows exact.

1. If a and v are monomorphisms, then so is 3.
2. If o and ~y are epimorphisms, then so is 3.

In particular, if o and v are isomorphisms then so is 5.

Proof. We “chase the arrows”. For (1), assume « and ~ are injective and let
b € ker 8. As the right square is commutative, bry = bSn’ = 1, and as 7 is
injective we have br = 1. As the top row is exact, ker m = im¢ so there is a € A
with ac = b. Now since the left square is commutative aat’ = atff = bp = 1p.
As the bottom row is exact ' is injective, which means that ac = 14/. Since « is
injective, a = 14. Hence b = ar = 1. Thus f is injective.

For (2), assume « and ~ are surjective. We consider O/ € B’ and apply 7. As
~ is surjective there is ¢ € C such that ¢y = b'7’. As the top row is exact, 7 is
surjective. Hence there is b € B with b = ¢. As the right square is commutative
bin' = bry = ¢y = b'n’. Therefore ((bG)0'")7’ = 1¢v. Thus as the bottom row
is exact, kerm’ = im// and there is @’ € A’ such that o't/ = (bB)0'"". As a is
surjective there is a € A with aa = d/, and since the left square is commutative
baY ' = at = aca’ = a3 so that b = ((ar)"'B)(bB) = ((ar)~'b)5. Therefore f is

surjective.
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The last claim follows from parts (1) and (2). O

A.2 Semidirect products

We now consider a well-known construction on groups which generalises the direct
product by introducing an action. As with direct products it can be seen both as
an internal and an external construction. Note that, as we write maps on the right,

we write the normal subgroup on the right throughout this chapter.

Definition A.4. We say a group G is the internal semidirect product of N by H
if G is the product of subgroups G = HN, where N is normal in G and H NN = 1.
We denote it by G = H x N. Any such H is called a complement to N in G.

If N,H are groups and ¢ : H — Aut(N) is a group homomorphism, the
external semidirect product H x4 N of N by H with respect to ¢ is defined as a
group with underlying set H x N where the multiplication in H x4 N is defined by
(h1,n1)(h2, n2) = (hiha, (n1(ha¢))nz) for hi,he € H and ny,ny € N.

With this notation the external direct product corresponds to the external
semidirect product H x4 N with ¢ : H — Aut(/N) the trivial homomorphism, that
is h¢) = Law(n) for all h € H. As in the direct product case, both definitions of
semidirect products are equivalent, so we will refer to a semidirect product for

either. This is sensible due to the following.

Lemma A.5. A group S is an internal semidirect product if and only if it is
isomorphic to an external semidirect product H x4 N where for every h € H we

have ho = cp|y € Aut(N).
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Proof. Suppose S is an internal semidirect product. Then there are N < S5, H < S
such that S = HN and H NN = 1. Then every element s of S can be written
uniquely in the form s = hn where h € H and n € N. As N < S we have
0, € Aut(N) where nf), = n" € N.

We define ¢ : H — Aut(N) such that h¢ = 0, = ¢;|n. Then ¢ is a homomor-
phism as (hk)¢p = Opx = 0,0, = hoko. Hence we can build the external semidirect

product H x4 N. We define ¢ : H x4 N — S by (h,n)y = hn. Then

((h1,71)(ha, n2))e = (haha, (n1(hag) o)t = (haha(ni*)ns)
= (hany)(hang) = (h, 1)1 (ha, )1
Hence 1) is a homomorphism. If (h,n) € kert then 1g = (h,n)1) = hn so that
h™=ne HN N =1 and ker is trivial. Thus 1 is an isomorphism.
Conversely assume S = H x4 N. Then we have N = {(1,n) |n € N} 4§
and H = {(h,1y) | h € H} < S such that S = HN and H NN = 1 so that S is

an internal semidirect product of N by H. m

By definition given groups (), K the semidirect products of @) by K are deter-
mined by the maps ¢ : K — Aut(Q). There are many choices which give rise
to isomorphic groups. Below we present a sufficient condition for K x4, @ to
be isomorphic to K x4, ). There are other ways to find isomorphisms involving

changing the normal subgroup or complement.

Lemma A.6. Suppose K, Q are groups, 11,1, : K — Aut(Q) are homomorphisms

and there exist u € Aut(K) and o € Aut(Q) such that



K —% Aut(Q)

Ml Ca’l
P2
K — Aut(Q)
commutes. Then K Xy, Q = K Xy, Q. In particular Aut(Q)-conjugate maps give

rise to isomorphic semidirect products.

Proof. Define 6 : K %y, Q = K x4, Q via (k,q)0 = (kp, qo). To check that 6 is a

homomorphism we compare:

((k, ) (R, 1))0 = (kky, (q(k11)) )0 = (KR, ((g(k1¢n))an)o)

= (kpkip, (q(k1¢r)o)(quo))

and

(k. )0(k1, )0 = (kp, qo)(kip, 10) = (kpkyp, (qo(kpba)) (qio)).

Both expressions coincide whenever qo[o™(kiv)o] = q(kitr)o = qo(kypubs).
Hence as pi, = 11¢, by assumption, # is a homomorphism. The inverse of 6 is
¢ K Xy, Q = K Xy, Q defined by (k,q)¢ = (ku',qo"). Hence the lemma
holds. O

A.3 Group extensions

Now we look at general group extensions. A group extension contains a normal
subgroup, but may not contain a subgroup isomorphic to the quotient group as

in the semidirect product. They can be defined in terms of subgroups and short
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exact sequences, and both concepts coincide.

Definition A.7. Given groups A and C' a group extension of A by C' is a group
B such that B has a normal subgroup Av isomorphic to A and B/Ar = C via a
projection map .

A group extension splits if m has a one-sided inverse p, that is a homomorphism
p: C — B such that pr = 1¢. A nonsplit extension is an extension that does not

split.

A group extension B of A by C' determines a short exact sequence of groups

E: 1 A—=B-1-(C 1

and such a short exact sequence determines a group extension B of A by C'. We
refer to both the group B and the short exact sequence E as a group extension.

A group extension F induces an action  : B — Aut(A) given by b+ 1cy¢|,)
as B acts on Ar < B by conjugation and ¢ is injective.

If a group extension splits then the diagram becomes

E: 1 A—=B-"=(C 1
\_/
p

and there is a subgroup C'p < B isomorphic to C, but in general C' may not embed

in B. We make the statement precise below.

Lemma A.8. An extension E splits if and only if B is a semidirect product of A
by C'.

Proof. f E:1— A% B5 C — 1 splits then A < B and by definition there
exists p : C' — B such that pm = 1¢, therefore Cp < B, Cp N Ar = 1 and
B/At=B/imit = B/kerm =Zimm = C so Cp is a complement to A¢ in B hence

B is an internal semidirect product of Ac and Cp.
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Conversely if B is an internal semidirect product of A by C' then B = C'A such
that A < B and CN A =1, so that B/A = C which gives a short exact sequence
1—-A—B— B/A=(C — 1. As C embeds into B, the inclusion map gives us

our splitting. O]

When classifying extensions we do it according to the following equivalence

which is called congruence.

Definition A.9. A morphism of extensions I' : E — E' is a triple
I'=(a, 8,7) € Hom(A, A") x Hom(B, B") x Hom(C, C")

such that the following diagram is commutative:

E:1 A—>B—T"-(C——>1

ST
E:1 A BT 1
Two group extensions are congruent if A = A, C = C’ and there exists a

morphism (14, 5,1¢) : E — E'. In this case the previous diagram becomes

Note that if two group extensions E, E’ are congruent then [ is an isomorphism

by the Short Five Lemma A.3.
Lemma A.10. Congruence of group extensions is an equivalence relation.

Proof. E is congruent to itself via (14,1p,1¢). If E is congruent to £’ then  is

an isomorphism by Lemma A.3, so E’ is congruent to F via (14,37, 1¢), hence
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congruence is symmetric. Further, congruence is transitive via composition of

morphisms as we now show.

If E,F" and E', E" are congruent extensions we have a diagram as above. Since
E., E" are congruent ¢ = ¢ and 7’ = 7 and since E’, E” are congruent /5’ ="
and f'n" = x’, so that 185 =5 =" and f'n" = prn’ = 7. Thus (14, 55, 1¢)

makes the diagram commutative therefore E and E” are congruent. O]

We note that if there is an isomorphism of extensions then, since ai’ is injective

and 7'+~ is surjective, we can build a congruence between the extensions as follows.

E:1 A———-pB—" (C 1
| ]
o B w1y
/

E':1 A———B T 1

Thus isomorphism and congruence classes of extensions coincide. However two
group extensions can have B isomorphic to B’ despite not being congruent, as for
example with extensions of C), by C), where all p — 1 nonsplit group extensions are
isomorphic to Cp2. Thus the number of isomorphism classes of groups B which are
a group extension of A by C' is smaller than the number of congruence classes of
extensions of A by C.

The theory of group extensions with an abelian normal subgroup A is well

known and involves cohomology groups in dimension 2. We refer to [Bro94, Section
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IV.3] for the general details and will present some results in the next section. For
A nonabelian it is less familiar. A crucial difference is the following, arising from
the fact that Aut(A) = Out(A) if and only if A is abelian.

Recall that a group extension E induces an action 6 : B — Aut(A) given by
b— Ly L|ZL1 as B acts on Ar < B by conjugation and ¢ is injective. The action
of 8 on A is given by (a)(bf). = (at)c,. Note that A = Inn(A). Hence there is
a projection 6 : B/At — Aut(A)/Inn(A) = Out(A). We have ker6 = Cz(Ar) so
that ker @ N Av = C,(Ar) = Z(Ar). As the sequence is exact, Ac = im ¢ = ker 7 so
the projection 7 : B/At — C'is an isomorphism, hence there is 771 : C' — B/A..

Therefore from the group extension a homomorphism is obtained satisfying
¢ =710 : C — Out(A) given by ¢ — 1¢y 1|3 Tnn(A). This is the information
that we will use when studying group extensions, as opposed to a homomorphism
¢ = pb : C — Aut(A) which we have in the semidirect product (split extension).
Note that if A is abelian we have Aut(A) = Out(A), so that 6 also gives an action
¢:C — Aut(A).

We note now that congruent extensions give rise to the same induced action.

Lemma A.11. If E and E' are congruent extensions then they induce the same

homomorphism 1 : C'— Out(A).

Proof. The congruent extensions F and E’ determine the commutative diagram

We should compare ¢ = 716 : C' — Out(A) with ¢/ = #~16" : C — Out(A).



Let ¢ € C, we show that cip = ci’. Recall that ey = wcye| ;) Inn(A) for some b € B
with b = ¢ and ¢’ = Veyd/| ;) Inn(A) for some ¥ € B’ with V7' = c.

As the diagram is commutative 7 = fn’, so that b7’ = br = ¢ = b'n’ and
(bB)~'0' € kern’. That is there is a € A such that ¥ = (b3)(at). Similarly

v =131 and as Inn(A) < Aut(A) we have i/cot| ;] € ITnn(A). Thus we have

e’ = Veyd |3k Inn(A) = eyt |an Inn(A) = deygt |30 cart’| 5 Inn(A)

= Vepat| 45 Inn(A) = B e8| Inn(A) = wepe| ) Inn(A) = cip

and Lemma A.11 is proven. O]

A.4 Low dimensional cohomology

As noted above, the problem of determining group extensions involves the coho-
mology groups in small dimension. We require them them for group extensions
of Z(Q), so we state them for abelian groups. Note that when we have a group
extension of an abelian group A by G with action ¢ : G — Aut(A), the action ¢
makes A into a ZG-module. Here we present the characterisations that we will use

before applying them to our particular case.

Proposition A.12 ([Ben91, Proposition 3.7.2]). Given a group G and a ZG-
module M, the cohomology group H*(G, M) is in one-to-one correspondence with

the set of conjugacy classes of complements to the subgroup M in the split extension

G x M.

Theorem A.13 ([Bro94, Theorem IV.3.12]). Let G be a group and M a ZG-
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module. Then the set of congruence classes of extensions of M by G giving rise to
the given homomorphism ¢ : G — Aut(M) is in bijection with H*(G, M). Under

this bijection the split extension corresponds to the zero element of H*(G, M).

The higher dimensional interpretations get contrived, but in the case of finite

cyclic groups they can be recovered from the results above.

Theorem A.14 ( [ML63, Theorem IV.7.1]). For a finite cyclic group C,, a ZCy,-
module A and n > 2, H*(Cy,, A) = H*(Cyn, A) and H*1(Cyn, A) = HY(C,p,, A).

In the case in which we are interested we have M = Z(Q) = C,, and G = C),
so that since p{ | Aut(M)|, G acts trivially on M. In particular, we can talk about

H™(G, M) without needing to specify the action.

Lemma A.15. Suppose Z = C), and K = C,. Then Z is a trivial ZK-module,
and HY(K,Z) 2 H(K,Z) & H3(K, Z) = C,,.

Proof. Note that K acts trivially on Z. Thus the split extension is the direct
product P = (), x C,. Therefore P contains p + 1 subgroups of order p, one
of which is Z, hence there are p conjugacy classes of complements to Z in P.
Proposition A.12 then implies that H'(K, Z) = C,,.

For the determination of H?(K, Z) we look at group extensions of Z by K.
Recall that K acts trivially on Z. Fix a generator z of Z and a generator k of K.
For each 0 < a < p — 1 we define a group

G(l = <la,Ca | Cg = 17 [layca] = 17lp = Ca>

a a

and homomorphisms ¢, : 7 — G, such that zt, = ¢, and 7, : G, — K with

lomq = k. Then each G, is a group extension of Z by K hence it determines a short
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exact sequence

1756, K- 1.

Now let a,b € {0,...,p— 1} and suppose G, and G}, are congruent extensions.

Then there is an isomorphism 0 : G, — G,

G,
1—Z7 0 K——1
N
Gy
so that c,0 = zt,0 = zty, = ¢ and [,0m, = l,7, = k = [ym, and therefore

101" € kerm, = (). Thus 1,0 = [,2™ for some m € {0,...p— 1}.

Then ¢ = 20 = (1,)P0 = (1,0)? = [z = ¢}, which requires a = b (mod p)
and the p constructed groups are pairwise not congruent. Thus there are at least p
congruence classes of group extensions of Z by K and |H*(K, Z)| > p by Theorem
A.13.

Now consider an arbitrary group extension GG of Z by K given by

122725G5S K —1.

Pick [ € G such that it = k. As K acts trivially on Z we have [z:,1] = 1.
As Z=(C,= K we have (zt)? = 1 and [ € kerm, that is [ = 2™ for some
m € {0,...p —1}. Thus G is a congruent extension to G,, via 0 : G — G,
determined by z:0 = ¢, and 10 = [,,. Hence any group extension of Z by K is
congruent to one of the p above, and there are exactly p congruence classes of
extensions of Z by K. Thus by Theorem A.13 |H?*(K, Z)| = p.

Finally, H3(K,Z) = H'(K,Z) by Theorem A.14. ]
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A.5 Extensions with nonabelian normal subgroup

Now we have all the tools we require to state the results used in the extension

problem.

Definition A.16. An abstract kernel is a triple (C, A, ) where C' and A are (not

necessarily abelian) groups and a homomorphism 1 : C' — Out(A).

The problem becomes classifying all group extensions arising from a given
abstract kernel. Recall that a group extension determines a map ¢ : C' — Out(A)
induced by the conjugation action 6 : B — Aut(A) and so determines an abstract
kernel. Here we consider the converse, that is when the given homomorphism
¥ C'— Out(A) extends to a homomorphism 6 : B — Aut(A) and then how many
extensions it yields which give rise to ¢ : C' — Aut(A). In [ML63, §IV.8] this
question is studied in detail. We offer a sketch.

For each ¢ € C, pick a map c¢ € Aut(A) which is in the coset cyp € Out(A) and
specify that 1c¢ = 1¢. Then (2¢)(y®)(zy$) ! is an inner automorphism of A which
we denote by (x,y)f. Thus f: C' x C' — Aut(A) is a map measuring how ¢ differs
from a homomorphism from C' into Aut(A). Studying the group axioms, particularly
the associative law, gives rise to an obstruction, a map k : C x C' x C — Z(A)
satisfying the properties of a 3-cocycle [ML63, IV.(8.5"), p. 126]. That is k is an
element of H3(C, Z(A)) up to a quotient.

Note that since Z(A) is abelian, the restriction of ci) to Z(A) gives Z(A)
the structure of a C-module where Inn(A) acts trivially, so that any choice of
automorphism c¢ € Aut(A) which is a coset representative of the automorphism

induced by ¢y will give rise to the same action on Z(A).
Theorem A.17 ([ML63, Theorem IV.8.7]). Let (C, A, ) be an abstract kernel and
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interpret the centre Z(A) as a C-module as above. The assignment to this abstract
kernel of the cohomology class of any one of its obstructions yields a well-defined
element of H3(C, Z(A)). Furthermore, the abstract kernel has an extension if and

only if one of its obstructions is 0.

Theorem A.18 ([ML63, Theorem IV.8.8]). Fiz an abstract kernel (C, A,v). Then
the group H?(C, Z(A)) acts on the set of extensions of the abstract kernel simply
transitively, so that given an extension any other extension can be obtained by
operation with exactly one element of H*(C, Z(A)).

In particular, the set of congruence classes of extensions 1 - A — G — C — 1
giving rise to ¥ : C — Out(A) is either empty or in one-to-one correspondence
with H*(C, Z(A)).

A note from the proof of Theorem A.18 is that non-congruent extensions give
rise to different maps f, which can be chosen to be identically 0 in a split extension,
and in particular, if the abstract kernel has an extension, it has a unique split

extension.

Remark: if A is abelian then A = Z(A) and Theorem A.18 reduces to Theorem
A.13. A sufficient condition to guarantee the existence of group extensions of an

abstract kernel is the following.

Lemma A.19. Suppose Aut(A) splits over Inn(A). Then every abstract kernel
(C, A,4) has |H?*(C, Z(A))| extensions.

Proof. As Aut(A) splits over Inn(A) we have p : Out(4) — Aut(A) such that
Out(A)p < Aut(A) and pm = Loye(a) where 7 : Aut(A) — Out(A) is the projection

map. Hence for any element i) € Out(A) we have cipp € Aut(A), that is we have
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Yp: C' — Aut(A) and we can build a split extension C' X, A of the abstract kernel
(C, A, ). Thus by Theorem A.18 it has |H?*(C, Z(A))| extensions. O

Lemma A.20. Suppose (C,A,¢) and (C,A,1s) are two abstract kernels, let

X € Out(A) and p € Aut(C) be such that the diagram

¢ —% Out(A)

N[ Cxl
C —"2 Out(A)
commutes. If Aut(A) splits over Inn(A) then both abstract kernels have a split

extension whose groups are isomorphic.
In particular, the isomorphism type of the split extension of an abstract kernel

(C, A 1) is unique up to conjugacy of Cvb in Out(A).

Proof. We have C'uyy = Cipc,,.. Since Aut(A) splits over Inn(A), with p the inverse
of m, we define ¢ := 1pp : C' — Aut(A) and ¢y := p : C' — Aut(A), as in Lemma
A.19.

Let ¢ = xp be an element in Aut(A) which is in the coset of x. Then

¢ € Inn(Aut(A)) and p € Aut(C) build a commuting diagram

C —% Aut(A)

Hl Caj
C —2 Aut(A)
as in Lemma A.6, which implies that C' x4 A = C x4, A.

Now it C' x4, A is a split extension of the abstract kernel (C, A, 1), that is
that the projection ¢om = 1)y : C'— Out(A), which follows since gom = 1hopm = 1y
as pm = idou(a) by definition of the splitting of Aut(A) over Inn(A).

It remains to show that given an abstract kernel (with extension), only one

of the extensions is split. This can be seen via the map f : C' x C' — Aut(A)
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mentioned earlier which can be seen to be 0 if the extension splits, and is different
in each of the extensions by the proof of [ML63, Theorem 8.8].
Thus abstract kernels (C, A, 1) and (C, A, 1) give rise to the same isomorphism

type of split extension. O
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APPENDIX B

FINITE SIMPLE GROUPS WHOSE SYLOW
p-SUBGROUPS CONTAIN AN
EXTRASPECIAL SUBGROUP OF INDEX p

The finite simple groups are the primary source of examples of saturated fusion
systems which satisfy O,(F) = 1, and indicate part of the behaviour that arises
when considering saturated fusion systems, as well as being required to determine
which fusion systems are exotic or realisable. Our main goal in this chapter is to

prove the following propositions.

Proposition B.1. Suppose p is odd and G is a finite simple group whose Sylow
p-subgroups S contain an extraspecial subgroup Q of index p. Then |S| < p®, G is

in Table B.1 and Fs(G) is isomorphic to one of the following.
1. Fs,(PSLs(p)), Fs,(PSUs(p)), Fs,(PSpa(p)), p odd; or Fs,(Ga(p)), p # 3;
2. Fo = Fs(PSU3(8)) or Fy, = Fs(3D4(2)) with S = <3, 9>;

3. .Fz = fs(PSL6(2)), f3 = fs(Ag), OT’.F4 = fs(AH) withS c Syl3(PSp4(3));1
1.7:1 :fs(PSp4(3))
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4. Fs(PSLs(11)) or Fs(Coy) with S € Syl5(PSpa(5));

5. Fs(Fi(2)) or Fs(HN) with S € Syly(PSLy(3));

6. Fs(PSLg(4)), Fs(McL), Fs(Coy) with S € Syly(PSUL(3));
7. Fs(Ly), Fs(HN), Fs(BM) with S € Syl;(G2(5));

8. Fs(M) with S € Syl,(Ga(7)).

We note that if G is not a classical group of Lie type in characteristic p then

p<T

Outline of proof. G is determined for the alternating groups in Lemma B.10, groups
of Lie type in characteristic p in Proposition B.9, and in cross characteristic (when
p is odd) in Propositions B.13 (Classical) and B.14 (exceptional), and the sporadic
groups are considered in Proposition B.15 and Table B.4. Then in Section B.5 we
determine the isomorphism types of the fusion systems as follows: Lemma B.18
determines part (2), Lemma B.19 deals with part (3), part (4) is covered by Lemma
B.20. Lemma B.21 proves parts (5) and (6), and finally Lemma B.22 concludes

parts (7) and (8). Part (1) is determined as a collation of the Lemmas above. [

If p =2 and G is not a group of Lie type in odd characteristic then we prove

the following.

Proposition B.2. If p =2 and G is a finite simple group that is not a group of
Lie type in odd characteristic with S € Syly(p) containing an extraspecial subgroup
of index 2 then G is one of PSL4(2) = Ag, Ag, PSU4(2), M1, Mis, and Fs(G) is
isomorphic to exactly one of Fs(PSL4(2)), Fs(PSUL(2)), Fs(Mi1) or Fs(Miz).
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G D S Congruences Notes
PSLy(p) | all | <p° a;>
PSU,(p) | all | <p® ax>
PSpy(p) | all <ph, 7>
Ga(p) |p>5] <p° as>
Ag, Aw 3 <34, 7> F3
AH 3 <34, 7> Fu
PSLi(q) | 3 <3%,9> q = 10,19 (mod 27) Fa
PSLy(q) 3 <34, 7> q=4,7 (mod 9) Fi
PSLe(q) | 3 | <3% 321> ¢=4,7 (mod 9) i
PSLg(q) 3 <34 7> q=2,5 (mod9) Fo
PSL:(q) 3 <34 7> qg=2,5 (mod9) F
PSLs(q) 5 <54 7> | ¢=6,11,16,21 (mod 25) F,
PSUs(q) 3 <3%,9> q=38,17 (mod 27) Fa
PSUL(q) | 3 | <3%,7> ¢=2,5 (mod 9) PSUL(2) = PSpa(3). 7
PSUs(q) | 3 | <3° 321> q=2,5 (mod 9) Fp
PSUs(q) | 3 <34 7> q=4,7 (mod 9) Fa
PSU;(q) 3 <34 7> q=4,7 (mod9) Fo
PSUs(q) 5 <b1, 7> | ¢=4,9,14,19 (mod 25) F,
PSpsla) | 3 | <357> | q=2,4,5,7 (mod9) | PSps(2) = P(2).
PQ:(q) 3 <3 7> q=2,4,5,7 (mod 9) Fo
PQE(q) 3 <34, 7> q=4,7 (mod 9) Fi
PQg (q) 3 <34, 7> q=2,5 (mod 9) Fi
PQg (q) 3 <34 7> qg=2,4,5,7 (mod 9) F
3Dy(q) 3 <31, 9> qg=2,4,5,7 (mod 9) Fb
Fi(q) 3 | <35.307> | ¢=2,4,57 (mod 9) Fe
Es(q) 3 <3° 307> q=2,5 (mod 9) Fi(q) < Es(q). Fg
2Fs(q) 3 <35 307> q=4,7 (mod 9) Fi(q) <%Fs(q). Fr
Co, 5 <5% 7>
McL | 3 | <3°.321> PSUL(3) <ntaw McL
Co, 3 <35 321> McL <jppqp Cog
Ly 5 <56, 643> G2(5) < Mazx Ly
HN 3 | <3%, 307> S 5,(PSLi(3))
HN 5| <50, 643> S 55(Ga(5))
BM ) <5%, 643> HN < BM
M 7| <7.807> S = 51(Ga(7))

Table B.1: Finite simple groups whose Sylow p-subgroups have an extraspecial
subgroup of index p when p is odd.
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We remark that the groups Go(2) = PSU;3(3) : Cy and PSpy(2) = S also

contain Sylow 2-subgroups with () extraspecial of index 2, but they are not simple.

Outline of proof. The possibilities for G are determined in Lemma B.10, Proposition

B.9 and Proposition B.15, and those for Fg(G) in Lemma B.16. O

We now gather some particular cases of S in their own corollaries, as well as
setting up notation. Note for example that when p is odd Corollary B.3 coincides

with [PS18, Theorem 2.11].

Corollary B.3. Suppose G is a finite simple group with S € Syl (G) isomorphic
to a Sylow p-subgroup of Go(p). Then either G = Go(p) or one of the following
holds:

1. p =2 and G 1s either Myy or a group of Lie type in odd characteristic,
2. p=2>5, and G s one of B, HN, Ly;
3. p=Tand G= M.

When [S| = p* all but two examples of finite simple groups are on a Sylow
p-subgroup of PSp4(p), hence we have the following, where we omit p = 2 since its
Sylow 2-subgroups are isomorphic to Dg x Cs, and any examples will arise from

groups of Lie type in odd characteristic.

Corollary B.4. Suppose p # 2, G is a finite simple group and S € Syl (G) is
isomorphic to a Sylow p-subgroup of PSpsy(p). Then either G = PSpy(p) or one of
the following holds:

1. p=3 and we get the following groups with S = C51 Cj:
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when ¢ = 4,7 (mod 9): PSLy(q), PSUs(q), PSUz(q), PQd(q);
when q = 2,5 (mod 9): PSU,(q)', PSLe(q), PSL:(q), P (q);
when q¢ = 2,4,5,7 (mod 9): PSps(q), PQ(q), PQg (q);

Ag; AlO; All-

2. p="5and G is PSL;5(q) for ¢ =6,11,16,21 (mod 25); PSUs(q) whenever
q=4,9,14,19 (mod 25); or Co;.

3. p>5 and G = PSpy(p).

When there may be confusion about which prime a Sylow p-subgroup of G
is over, we will write it as S,(G). We will show in Lemma B.17 that every
row in the table gives rise to a single isomorphism class of fusion systems. We
will denote the cross characteristic fusion systems by F, = Fg,(PSL3(19)), and
Fy & Fs,(3D4(2)) when S = <3* 9>; by F. & Fg. (PSLs(11)) that with p = 5;
and by Fp = Fs,(PSLg¢(4)) and Fr = Fs,(Fy(2)) those with |S| = 35 When
S = (31 C5 we will denote the fusion systems in Table B.1 by F; = Fs,(PSpa(3)),
Fo = Fs,(PSLg(2)), F3 = Fsy(Ag), and Fy = Fg,(Aqr). It will also be determined
that the fusion systems of the sporadic simple groups are not isomorphic to any
other fusion system on the table.

If a fusion system F is simple and realisable, then we have the following result

about the smallest groups realising F.

Theorem B.5 ([Crall, Theorem 5.71]). Let F be a simple fusion system on

a p-group P, and suppose that F is realised by a finite group G. Suppose that

1PSps(3) = PSU,4(2) by Proposition 1.19 (15)
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Oy (G) =1 and that Fp(G) # Fp(H) for any proper subgroup H of G containing

P. Then G is simple.

Thus if a simple fusion system F comes from a finite group G, and G is chosen
smallest possible, then G is a simple group. However not all fusion systems of finite
simple groups are simple, but we have the following, which is a consequence of a
result of Flores and Foote [FF09] and allows us to use the Reduction Theorem 4.27

to restrict the structure of S when p is odd. We begin with a piece of notation.

Definition B.6. A nonabelian finite simple group G is p-Goldschmidt if Ng(S)
controls p-fusion in G, that is Fs(G) = Fs(Ng(9)).

Proposition B.7. Suppose G is a nonabelian finite simple group, S € Syl,(G)

and S contains an extraspecial subgroup of index p. Then O,(Fs(G)) = 1.

Proof. Let H := O,(Fs(G)) and suppose H # 1. Then H < Fg(G), where
Fs(G) is a saturated fusion system on S, and Ng(H) controls p-fusion in G
(that is Fs(G) = Fs(Ng(H))). Thus if H = S then G is p-Goldschmidt by
definition. Otherwise 1 # H < S so H is a proper nontrivial subgroup of S
strongly closed in S with respect to Fs(G) by Proposition 2.25, and H < E for
every Fg(G)-essential subgroup E. Then [Ascll, Theorem 15.8 (Flores-Foote)]
([AKO11, Theorem I1.12.12]) implies that either G is p-Goldschmidt, or p = 3,
G = Gi(q) with ¢ = £1 (mod 9), and H = Z(S) has order 3. In this case
Gl =¢"(¢" - 1)(¢* = 1) =¢°(g + 1)(¢* — g+ 1)(g = 1)(¢* + g+ 1)(g +1)(g - 1).
Let a be the largest power such that 3* | ¢ £ 1, then a is even as ¢ = £1 (mod 9),
so |S| = 3'2% has odd exponent and S cannot have an extraspecial subgroup of

index p.

Xx1il



If G is p-Goldschmidt then [Ascll, Theorems 15.6 and Remark 15.7] together
imply that either S is abelian, G is a group of Lie type in characteristic p of Lie
rank 1, S = p'*™2 or G = J3 for p = 3 (where |S| = 3° by [CCN'85]). The group
S cannot have an extraspecial subgroup of index p in any of these cases, which we

now justify in the rank 1 case. These are:
1. PSLy(p"), with S abelian;
2. PSU;3(p"™), with S special;

3. 2By(22"1), where |Z(S)| = 22", whereas ?By(2) = Cs ([GLS98, Theorem
2.2.7));

4. 2Go(320+H1), with || = 367+,

Hence none of the above S have an extraspecial subgroup of index p, and the

proposition follows. m
This result allows us to use Theorem 4.27 to conclude.

Corollary B.8. Suppose p is odd, G is a finite simple group with S € Syl (G)
containing an extraspecial subgroup @ of index p. Then |Z(S)| = p and either
|S| € {p*,p®} or p > 11, |S| = p*~! and S has maximal nilpotency class and

exponent p.

Proof. Let G be a finite simple group and ' € Syl(G). If G is abelian then S cannot
contain an extraspecial subgroup of index p. If G is nonabelian then Proposition
B.7 implies that O,(Fs(G)) = 1, and Theorem 4.2 implies that Z(S5) = Z(Q) has
order p. If |S| = p* we are done, so we may assume |S| > pb and F = Fg5(G)

satisfies all properties of Theorem 4.27. If S is in cases (1), (2), (3) or (4) then
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|S| = p®, whereas in case (5) we have p > 11, S has order pP~!, maximal nilpotency

class and exponent p. Thus in all cases the corollary holds. O

We now consider each of the families of finite simple groups separately, with p
being an arbitrary prime except in the groups of Lie type in cross characteristic,

where we assume that p is odd.

B.1 Groups of Lie type in defining characteristic

Proposition B.9. Suppose G is a finite simple group of Lie type in characteristic
p and let S € Syl (G). Then S contains an extraspecial subgroup of index p if and
only if G is one of Asz(p) = PSLy(p), 2As(p) = PSU,(p), Ba(p) = PSpy(p) for

any prime p, or Gy(p) for p > 5.1

Proof. We use notation from [GLS98]. Consider Ng(X_,,), the normaliser in
G € Lie(p) of the lowest root —a, with respect to a fundamental root system II
of G. Let S € Syl (G), as in [GLS98, Example 3.2.6 and Theorem 3.3.1], which
imply that we have X_,, < U, < Z(S) < 5,505 < Ng(X_,,). Thus, by Lemma
1.27, either S = Q x O,(Ng(X_4,)), or S/O,(Ng(X_,.)) is elementary abelian, or
O,(Ng(X_4.)) < Q. The direct product does not happen since Z(S) N Q # 1. We

now consider the case O,(Ng(X_4.)) < @, where we have
X o, < 0,(Na(X_0.)) N Z(8) < QN Z(S) = Z(Q)

so, as X_,, # 1, we have X_,, = Z(Q). Then [Q,O,(Ng(X_..))] < [Q,Q] =
Z(Q) = X_,,, thus @ centralises the normal chain 1 < X_, < O,(Ng(X_.,)),

INote that G(2) and PSp4(2) are not simple, but S has an extraspecial subgroup of index 2.
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and by Lemma 1.37 we have @ < O,(Ng(X_,.)). In this case they are equal,
s0 S/O,(Ng(X_,,)) is abelian of order p. Thus in any case S/O,(Ng(X_,,)) is
elementary abelian.

From [GLS98, Example 3.2.6] we can see that I_,, = Ng(X_,.) = P; where
J =TIINat. By the same discussion we see that J is the root system associated to
the affine Dynkin diagram in [GLS98, Table 1.8] left when removing the darkened
vertex (corresponding to the lowest root) and any adjacent ones. Thus, since
S/0,(Ng(X_q,)) is elementary abelian and nontrivial, the remaining Dynkin
diagram cannot have any edges. The only possible diagrams are Az, By, Bz, Gs
and Dy, and the groups with those diagrams are As(q), Ba(q), Bs(q), G2(q), Da(q),
and the twisted groups 2A4(q), >A3(q), 2Da(q) and 3Dy(q) by [Car72, Section 13.3].
Now if G is not one of Go(p*) for p = 2,3, By(2F), 2By(22m+1), 2G5(3*™*1), we can
apply [GLS98, Theorem 3.3.1 (a)] to see that F < Z(S) = U4 < U? = ®(5) < Q,
so we need the field to have order p, otherwise the centre is too big.

For the exceptions above, we have the following.

For Go(2F) we can use part (b) of [GLS98, Theorem 3.3.1] to still obtain
that F < Z(S) = U, < Uy < ®(5) < @, so we need the field to have order 2.
But by [GLS98, Theorems 2.2.7 and 2.2.10] G»(2) is not simple and G5(2)" =
2A5(3) has Sylow 2-subgroups of order 2°. Thus none of the Gy(2*) with k > 2
has any extraspecial subgroups of index p. However the Sylow 2-subgroups of
G2(2) = PSU;(3) : Cy do contain an extraspecial subgroup of index 2, checked

computationally via:

#[i:1 in MaximalSubgroups(Sylow(G2(2),2)) |IsExtraSpecial (i~ subgroup)];

1
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In G5(3%) we have |Z(S)| = 3?* by [GLS98, Theorem 3.3.1 (c)] so we need k = 1.
But G2(3) has Z(S) = C5 x Cs, which contradicts Corollary B.8.

B, (2%): Similarly we have |Z(S)| = 2%* so we need k = 1. But By(2) & Sg is not
simple, and By(2)" = Ag by [GLS98, Theorem 2.2.10], which has Sylow 2-subgroups
of order 23, so it cannot have an extraspecial subgroup of index 2. We note however
that By(2) = S does have Sylow 2-subgroups isomorphic to Cy2Cy x Cy = Dg X Cs,
which do contain an extraspecial subgroup Dg of index 2. In the SmallGroups
notation it is <2*, 11>.

2By (2%™ 1) has Sylow 2-subgroups whose centre has order 22! so we need
m = 0. This gives 2B,(2) which is not simple, and 2By(2)" = C5 by [GLS9S,
Theorem 2.2.7].

2Go(3%™ 1) has | S| = 39™%3 whose order has odd exponent, thus no extraspecial
subgroups of index 3.

In the cases it remains to consider the field has order p, hence they are As(p),
Dy(p), Ba(p) for p > 3, Bs(p), Ga(p) for p > 5, and the twisted ones ?A3(p), 2A4(p),
2Dy(p) and Dy(p).

For Az(p) note that |S| = p°. Consider a positive system of roots with
fundamental subsystem II = {a,b,c¢}. Let J = {a,c}. Then by [GLS98, The-
orem 3.2.2] we see that U; has nilpotency class 2, |U} = p°, |U3| = p and
Ufatvrey = U7 = ®(Uy) = U, = Z(Uy). Thus U, is extraspecial of index p in S.

In 2A3(p) we have by [Wil09, Theorem 3.9 (ii)] with & = 1 a subgroup of
type p'™.SUy(p) as the stabiliser of a totally isotropic 1-space, where we can
see an extraspecial subgroup of index p in its Sylow p-subgroups. Note that the
statement in the book is not correct, but the amended version can be found

in http://www.maths.qgmul.ac.uk/~raw/TFSG.html. Hence we always have an
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extraspecial subgroup of index p in this case.

For By(p) = PSpy(p) we note that |S| = p*. If p > 3 we can again use [GLS98,
Theorem 3.2.2] with a positive root system with fundamental subsystem I = {a, b}
where a is short. Let J = {a}, then U; has nilpotency class 2, |U} = p?, |[U3| =p
and Upgaipy = U7 = ®(Uy) = U, = Z(Uy). Thus Uy is extraspecial of index p
in S. If p > 5 then |S| = p* < pP so S is regular by Lemma 1.5 (2), thus as it
is generated by elements of order p, it has exponent p by Theorem 1.7. Then
Lemma 3.11 implies S = <p*,7>. When p = 3 a Magma calculation checks that
S (051052 <34, T>:

> IdentifyGroup(Sylow(PSp(4,3),3));

<81, 7>

Similarly for Go(p) note that |S| = pb. If p > 5 then G is U-nonsingular, hence
we can apply [GLS98, Theorem 3.2.2] with positive root system with fundamental
subsystem II = {a, b} with a short and J = {b} to see again that U; has nilpotency
class 2, |Uj| = p°, |U3| = p and Ugsgyoy = U7 = ®(U,;) = U} = Z(Uy). Thus Uy is
again extraspecial of index p in 5.

In Bs(p) = PSps(p) the Sylow p-subgroups have order p°, which has odd
exponent, hence no extraspecial subgroups of index p.

If G = Dy(p) for e € {1,2} then there is respectively parabolic subgroups
of shape CJ.(GL1(p) x GO{ (p)) and C.(GL1(p) x GOg (p)), hence the Sylow
p-subgroups of GO{ (p) and GOg (p) must contain abelian subgroups of index p
by Lemma 1.27 do not contain any abelian subgroups of index p by Lemma 1.24.
However we have P (q) & PSLs(q) and PQg (q) = PSU4(q) by Proposition

1.19 (7), hence their Sylow p-subgroups contain no abelian subgroups of index p
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and we have a contradiction. Thus S has no extraspecial subgroups of index p.

Now ?Dy(p) has |S| = p'? and has p-rank 5 by [GLS98, Theorem 3.3.3], which is
too small since an extraspecial subgroup of index p would have p-rank 6 by Lemma
1.17.

In 2A,(p) we similarly contain a subgroup M of shape H.SUs(p) where H = p'*¢
but in this case a Sylow p-subgroup S has order p'°. If S contained @ =2 pi*®, since
the Sylow p-subgroups of PSUs(p) are not elementary abelian, by Lemma 1.27
H < @. But then @) centralises the normal chain 1 < Z(H) < H so by Lemma
1.37 Q < O,(M) = H, a contradiction. Thus there cannot be any extraspecial
subgroup of index p in S.

Therefore the only (simple) groups of Lie type in characteristic p whose Sylow
p-subgroups contain an extraspecial subgroup of index p are Az(p) = PSL4(p),
2A3(p) = PSU,(p), Ba(p) = PSps(p) when p > 3, Ga(p) when p > 5. We claim
their Sylow p-subgroups are pairwise non-isomorphic except So(A3(2)) = S5(*A3(2)).
Those of PSp,(p) have order p*, whereas the rest have |S| = p®, and those of Go(p)
have nilpotency class 5 (if p > 5), whereas the Sylow p-subgroups of PSL,(p) and
PSUy4(p) have nilpotency class 3. Finally, the latter two can be distinguished when
p is odd by Lemma 1.34.

When p = 2 we can check computationally that So(A3(2)) = S3(*43(2)) and

they are not isomorphic to Ss(G2(2)):

> IdentifyGroup(Sylow(PSL(4,2),2));
<64, 138>
> IdentifyGroup(Sylow(PSU(4,2),2));

<64, 138>
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> IdentifyGroup(Sylow(G2(2),2));

<64, 134>

B.2 Alternating groups

We now consider the symmetric and alternating groups. We note for completeness
that PG Lo(9) and Mo, which are maximal subgroups of Aut(Ag) have respectively
dihedral and semidihedral Sylow 2-subgroups of order 16, which contain extraspecial

subgroups of index 2.

Lemma B.10. Suppose that G = A,, is an alternating group or G = S,, a symmetric
group. The only Sylow p-subgroups of G' with an extraspecial p-group of index p
are those of Ag, A1o, A11, Sg, S0, S11 with S = C51C3 when p = 3, those of Sg
and S; with S = Dg x Cy when p = 2, and those of Ag, Ag, with S isomorphic to

a Sylow 2-subgroup of PSL4(2) also when p = 2.

Proof. By [Hup67, Theorem II1.15.3] a Sylow p-subgroup of S, is a direct product
of Sylow p-subgroups of S, which are of the form By, := C,1Cp1...0C,, (k wreathed
factors). If we have more than one By factor, then Lemma 1.29 implies that
S =@ x C, = By, X By,, which is only possible if p = 2, By, = By = C51Cy = Dy
and By, = (5, which happens only in S and S;. This can also be seen as
Se¢ = PSpy(2). Otherwise S does not have an extraspecial subgroup of index p by
Lemma 1.29 and we can focus on the B;.

If p # 2 then By, is also a Sylow p-subgroup of A,x. By Lemma 1.28 then p = 3
and S = (3 Cs. This happens only in Sy, Sig, S11, Ag, A9 and Aqq, all of which
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have isomorphic Sylow 3-subgroups.

If p = 2 the Sylow 2-subgroups H of A,x have index 2 in By. Since any cycle
of even length is an odd permutation, the exponent of S € Syl,(Ayx) is 2871, so
k < 4 by Lemma 1.23. If & < 2 then |H| < 227! which is too small, and if
k = 3 we get |H| = p%, and by Proposition 1.19 (13) we have Ag & PSL,(2), so
by Proposition B.9 it has an extraspecial subgroup of index 2. Ay has isomorphic
Sylow 2-subgroups to those of As.

If £ = 4 we look at Ajg, which has an irreducible section of the natural
permutation representation in characteristic 0 of dimension 15. But since its Sylow
2-subgroups have order 2!, an extraspecial subgroup ) of order 2!3 would have
its smallest nonlinear representations of dimension 2° = 64 by Lemma 1.18, a

contradiction. Thus this does not happen. O

B.3 Groups of Lie type in cross characteristic
when p #£ 2

B.3.1 Classical groups

Throughout this section we assume p # 2.

Lemma B.11. Suppose b,c,p € Z~q. Let ny := Llﬂ Then for all a > 0 we have
Ng 2 Pap.

Proof. We can write ¢ = an, +t with 0 <t < a, and ¢ = apng, + ka + s where
0<k<p, 0<s<a. Thusa(n,—png) =c—t—(c—ka—s)=ka+s—t. Then,
if k£ = 0, this gives two expressions of ¢/a with residues s and ¢, so we have s =t
and ng, — png, = 0. If k£ > 1 then a(n, — pney) =ka+s—t>a—a=0.
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In either case the lemma holds. O

Lemma B.12. Suppose that p # 2. Let G be a finite classical group of Lie type in
characteristic r # p, and X be the corresponding classical simple group. Then the
Sylow p-subgroups of X and those of G are isomorphic except when G = GL,(q)

andp|lqg—1orG=GU,(q) and p | g+ 1.

Proof. If G = GL,(q) then X = PSL,(q) = SL,(q)/Z(SL,(q)) where we have
|GL,(q) : SL,(q)| = ¢ —1and |Z(SL,(q))| = (n,q—1) by [GLS98, Theorem 2.2.7]
or [KL90, Tables 2.1C and 2.1D]. Thus if p{ g — 1 the Sylow p-subgroups of G and
X are isomorphic.

If G = GU,(q) then X = PSU,(q) = SU,(q)/Z(SU,(q)) where we have
|GU,(q) : SUL(¢)| = ¢+ 1 and |Z(SU,(q))| = (n,q+ 1) by [GLS98, Theorem 2.2.7],
so if pt g+ 1 the Sylow p-subgroups of G and X are isomorphic.

If G =2 O4(q) then X = PQS(q). By [CCN*'85, Section 2.4, p. xi-xii
we have that any M € O¢(q) satisfies MMT = 1 hence det(M) = +1 and
05.(q) = SOR(q)| = 2. Further, |Z(SO;,(q))| = (2,¢—1). Also [SOL(q) : 27,(q)] < 2,
and X is its image in PSO( (q) of index at most 2. Thus |O%(q)| and |PQS(q)]
differ by a factor of a power of 2 and their Sylow p-subgroups are isomorphic.

If G = Spon(q) then X = PSpy,(q) and by [GLS98, Theorem 2.2.7] we
have |Z(Spam(q))| = 2 and the Sylow p-subgroups of Spa,(q) and PSpa,(q) are

isomorphic. O

Proposition B.13. Suppose that p # 2. If a Sylow p-subgroup S of a classical
simple group G of Lie type in characteristic v for p # r contains an extraspecial

subgroup of index p, then G, S, p, ¢ =r" are as follows:

e In the linear case PSL,(q) we have one of:
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p=3:n=3and ¢ =10,19 (mod 27) with S = <81,9>;
n=4and q=4,7 (mod 9), with S = C31Cs;

n==6 and q=4,7 (mod 9) with S = S3(PSU4(3)) = S3(*A3(3));
n=6,7 and ¢ = 2,5 (mod 9) with S = C3Cs.

Orp=>5,n=5and ¢ =6,11,16,21 (mod 25) with S = <625, 7>.

e In the unitary case PSU,(q) we get the following list:
Forp=3:n=3 and ¢ = 8,17 (mod 27) with S = <81,9>;
n=4and q=2,5 (mod9), with S = C3Cs;
n=06 and ¢=2,5 (mod 9) with S = S3(PSUL(3)) = S3(*A3(3));
n==6,7 and ¢ =4,7 (mod 9), with S = C351 (5.
Forp=5,n=05and ¢=4,9,14,19 (mod 25) with S = <625, 7>.

e In the symplectic case PSp,(q) we get: p = 3, S = C51C5 whenever G
isPSpg(q) and ¢ = 2,4,5,7 (mod 9).

e In the orthogonal case PQE(q) we get p =3 and S = C31Cs in the cases:
PQE(q) when g =4,7 (mod 9),
PQg (q) when g =2,5 (mod 9),
PQ+(q) when ¢ =2,4,5,7 (mod 9),
PQg (q) when g =2,4,5,7 (mod 9).

Proof. We follow the construction and notation of [Weib5] except for GU,,(q) where

he denotes this group by U, (¢?). Let e be minimal such that p | ¢¢ — 1, (which by

Fermat’s Little Theorem satisfies e < p — 1) and s maximal such that p* | ¢ — 1.
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Choose a such that ¢+ ea = n with 0 < ¢ < e in case GL,(q) and if e is even in
cases GU,(q), Spam(q) with 2m = n, Ogy,41(q) with 2m + 1 = n. Choose b such
that ¢ + 2eb =n with 0 < ¢ < e if e is odd in cases GU,(q), Spam(q) with 2m = n,
Oamy1(q) with 2m + 1 = n. Denote by %, (¢q) an arbitrary classical group. We will
denote a = Ya;p’, b= Lb;p’, and p;(p) =1+p+---+p~ L.

By [Wei55, Final statement] GL,(q), GU,(q), O5(q), Spam(q) all have Sylow
p-subgroups isomorphic to a direct product of the H, , = Cp:0C,1- - -1C, with k > 0
wreathed factors where s > 0, as in Lemma 1.28. Note that H; is homocyclic.

By Lemma B.12 the Sylow p-subgroups of the simple classical groups are
isomorphic to the H,j as above whenever we do not have PSL,(q) with p | ¢ —1
or PSU,(q) with p | ¢+ 1. Thus in all these cases Lemma 1.28 implies that p = 3
and S = (C31C5, and s = 1.

Thus in PSL,(q) if p{q— 1 the Sylow p-subgroups are isomorphic to those of
GL,(q) and the only possibility is C5¢ C5 by Lemma 1.28, when a = 3. Then as
1 < e < p we have e = 2 since e < p, and ¢ € {0, 1}, so this Sylow appears when
n=c+eac€ {6,7} and ¢ =2,5 (mod 9).

For PSU,(q) we similarly get when p { ¢ + 1 isomorphic Sylow p-subgroups
to those of GU,(q). As we need p = 3 and s = 1, we have e = 1 (e = 2 means
pfp—1andp|p?—1, thus p | p+ 1, a contradiction), hence ¢ = 4,7 (mod 9)
and n = ¢+ 2b € {6, 7} since the blocks now have degree 2. Thus PSUs(q) and
PSU;(q) have Sylow 3-subgroups isomorphic to Cs ¢ Cs.

In the symplectic case as e < p = 3 we have either e = 2 and Sp,(q) shares its
Sylow p-subgroups with GL,(q), in which case the only possibility is Sps(q) for
q = 2,5(mod 9); or e = 1 and from the construction in [Weib5, Section 3, p.531] we

see that n = d+2b, s0 4 = M = sb+ > bju;(p) > bos + by (14 3s) + ba(1 + 3+ 9s).
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Then as s = 1, the only possibility is b = 3, that is Sps(q) for ¢ = 4,7 (mod 9).
Thus PSps(q) appears whenever ¢ = 2,4,5,7 (mod 9).

For odd degree orthogonal groups again (5 Cjs is the only possible Sylow, and
either e = 2 and Oy,,41(¢) has Sylow p-subgroups isomorphic to those of G Loy, 11(q),
which gives us O;(q) for ¢ = 2,5 (mod 9); or e = 1, and we obtain 2m + 1 = d + 2b
and as before 4 = M = sb+ > b;ju;(p) sob=3 and 2m +1 =1+ 6 = 7, that is
O+(q) when ¢ = 4,7 (mod 9). Thus we obtain PQ;(q) when ¢ =2,4,5,7 (mod 9).

Note that |0F,,(q)] = ¢™" Y (¢* = 1)(¢" = 1) ... ("% = 1)(¢™ — 1),

05 (@)] = " V(@ = 1)(g* — 1) (@™ — D) + 1), and

|Oomi1(q)] = @™ D(g? = 1)(¢* —1)...(¢*" 2 —1)(¢*" — 1) and these have iso-
morphic Sylow p-subgroups with those of PQ2X(q) by Lemma B.12, so we get the
following:

[O31112(0) : O2mi1(q)] = ¢ = 1, [O2mya(q) : O3 (@)] = g™ + 1.

(O 42(@) : O2in11(q)] = ¢ + 1, [O2npa(q) : Os,(9)] = g™ — 1.

Thus, since the Sylow 3-subgroups need to coincide with those of O7(q), m = 3.
We have that ¢* =1 (mod 3) so Og (¢q) has Sylow p-subgroups isomorphic to C51C3
for ¢ = 2,4,5,7 (mod 9) and so does Py (q). Similarly we get PQd (¢) when
g=4,7 (mod 9) and also P (¢) when ¢ = 2,5 (mod 9).

The above covers the cases when the quotient of the orders is coprime to p.
When p divides this index we get a subgroup of index p* and a quotient by the
centre of order p* = (n,q—1) in PSL,(q) or p' = (n,q+ 1) in PSU,(q). Note that
t < s by definition.

Now we have in GL,(¢q) a homocyclic group of exponent p* and rank a which
becomes in SL,(q) a homocyclic group of exponent p® and rank a — 1. In PSL,(q)

we lose p' from Z(SL,(g)). Thus in PSL,(q) we have |S| = p*™?* = pV and
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containing an abelian subgroup of order p**~*~* < p?>** and of index

=Y e <> (1) e

p—1
which yields the following inequality:
. a
sa—2s—2<sa—s—t—2<k<j;j<——

p—1

This gives us a < %, and k < s(jjf)s_l which satisfies k < 4 for p = 3,

k< 2forp=>5and k <1 for p> 7. So the only possibilities are either p = 5,
s=1and |S|=5%orp=3,s=1and |S| <3% orp=3,s>2and|S| < 3"

Thus any further examples have either p = 3,5 and |S| = p* or p = 3 and
|S| < 3. We note that by Theorem 4.27 we have |S| < p°.

For PSL,(q) we have e = 1 since p | ¢ — 1. Its Sylow p-subgroups then have
order pV =57t < pb and as 7 is not divisible by 3 or 5 in PSLz(q) contains a
homocyclic subgroup C’Ss, hence we have n < 6.

When n = 6 we are considering PS Lg(q), where we observe if p = 5 a homocyclic
C’gs, which is too big. If p = 3 this becomes a C’;,i, which implies s = 1. Therefore
g =4,7 (mod 9), where S does have an extraspecial subgroup of index 3. In G Lg(q)
the Sylow 3-subgroups are T' = (C31C3) x (C31C3), of nilpotency class 3. This
contains 31++2 X 3?“2 of index p?, which is contained in the subgroup T'N SLg(q),
and contains Z(SLg¢(q)) NT of order 3. Then S = (T'NSL¢(q))/(Z(SLe(q) NT))
has a subgroup 3}&2 o 3?2 = 3}:“4 which is extraspecial by Theorem 1.13 and
has index 3 in S. Thus S is isomorphic to a Sylow 3-subgroup of either PSL4(3)
or PSU4(3). Since this description does not depend on the particular value of ¢,

just modulo 9, we can then check with ¢ = 4, and a Magma computation shows
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S =T € Syl,(PSUL(3)):

> IsIsomorphic(Sylow(PSU(4,3),3), (Sylow(PSL(6,4),3))) eq true;

true

If n =5 and p = 3 then |S| = 3! hence there can be no extraspecial subgroup
of index 3. If p = 5, we have |S| = 5% and observe a C2,, hence s = 1 and the
only case is PSLs(q) when ¢ = 6,11,16,21 (mod 25) where the Sylow 5-subgroups
of GLs(q) are T = C5 1 C5 and those of PSLs(q) a subquotient of order 5 with
extraspecial subgroups of index 5. Now Z(T') = T°, thus S has exponent 5, hence
S =~ <5* 7> by Lemma 3.11.

If n < p then the Sylow p-subgroups of GL,(q) are abelian, thus there are no
more examples with p = 5. It remains to consider n € {3,4} for p = 3.

If n = 4 then the Sylow p-subgroups of PSL4(q) and SL4(q) are isomorphic,
hence we have S < (U35 1 C3 x (3 of index 3, and we must have s = 1. That is
g =4,7 (mod 9), where the Sylow p-subgroups of SL4(q) are S = C31Cj5 and have
extraspecial subgroups of index 3 by Lemma 1.28.

Finally, GL3(q) has Sylow p-subgroups isomorphic to Css ! C3, and we observe
in SL3(q) a homocyclic C% : C3 which in PSL3(q) becomes (C3s x Cys-1) : Cs
containing an abelian subgroup of index p, therefore |S| = 3% by Lemma 1.24, which
implies s = 2. Hence we are considering PSL3(q) when ¢ = 10,19 (mod 27), where
S 2 (Cy x C3) : C3 has at least one extraspecial subgroup 3172 2 (O3 x C3) : Cs

and index 3. We determine the isomorphism type of S via:

> IdentifyGroup(Sylow(PSL(3,19),3));

<81, 9>

This covers all cases of PSL,(q).
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In the case of PSU,(q) we need p | ¢ + 1 for subgroups or subquotients to

/2 Thene =2 soe=1

appear, that is e = 2 since in [Wei55] the notation is with ¢
and the Sylow p-subgroups coincide with GL,(¢?). Then like in the linear case
we can get the same order N and the indices s,¢ correspond when using p | ¢ + 1,

instead of p | ¢ — 1, so we get the same cases as in PSL,(q) with the analogous

congruences. O

B.3.2 Exceptional groups

Type 18] 2K,
JASY
A B[], P (1+1g-1)
2A q)f (I)[lcrr{(%lm)] @[%] l 1 1
A Y | (mod 4) P [To=2 (mod 4), m=2 Pm (I+1,q+1)
BZ Hle (I)Lllcm(lm)] (27 q— 1)
20
Ce Hmzl CDL;CIH(ZM] (2,¢—1)
[tz | [tz ) 1 (2, -1)if 21
D, Hmf?ﬁ or m|¢ P Hm|2€ and m{¢ D (4’ ql _ 1) if 2 Tl
2¢ 20 1
QDe Hmf@ q)Lllcm@’M)] Hm\f (I)Lchm(va)] (47 ql + 1)
B, ¢,d, 1
5D, D220, 1
Gy P7P;D3Pg 1
2G2 PP, D¢ 1
Fy DlOi0202020D), 1
2F, D20202DaD, 1
E6 @?@%@§®i®5®%®8®9®12 (3, q— 1)
2E6 q)ilq)gq)gq)ifpgcbgq)loq)lgq)lg (3, q+ 1)
Er OIOID302D5030;BgDyd gD 10 4Dy (2,4 —1)
By O30S0 0iD2D1 D, D2DeD2, D2, D 14D 5D 15Dy Doy Py 1

Table B.2: Cyclotomic polynomials expressing the r’-part of the orders of universal
versions of Lie type groups and their centres.
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Lemma B.14. Assume that p is odd. Suppose G is an exceptional finite simple
group of Lie type in characteristic v for r # p and q is a power of r. Then G has
Sylow p-subgroups S with an extraspecial subgroup of index p if and only if p =3

and G is one of:
e Fy(q) forq=2,4,5,7 (mod 9);
e Eg(q) forq=2,5 (mod 9);
e 2Es(q) for q=4,7 (mod 9);
e 3Dy(q) for q=2,4,5,7 (mod 9).

where S = T € Syly(PSL4(3)) in the first three cases and S = <3* 9> in the last

one.

Proof. For exceptional groups of Lie type, using the notation from [GLS98, Theorem
4.10.2] and Table B.2, in S we get a homocyclic subgroup of exponent p®, rank
N, and index b, where n; denotes the exponent of ®;(¢) in Table B.2, which is
taken from [GL83, Tables 10:1, 10:2] and [GLS98, Table 2.2 and Theorem 2.5.12],
myg is the multiplicative order of ¢ modulo p, p® is the p-part of ®,,(¢q), and
b= i pemo.esoi- We note that for S to be nonabelian we need p to divide the
order of the Weyl group associated with G. Thus |S| = p®*mo™®. We recall that
Ny + b = 2 + 2k must be even by Lemma 1.23 and b > k by Lemma 1.17. Hence
we need b # 0 to have nonabelian Sylow p-subgroups, and we look at the values of
chains p®mg. Thus we need p to divide some index in the expression in Table B.2,
which reduces to p = 3,5, 7.

For example we have |Fy(q)| = ¢*'®1(q)'®2(q)" ®3(¢)*P4(q)*P6(q)*Ps(q)P12(q)

so the only nonabelian Sylow p-subgroups are for p = 3 since p is the only odd prime
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dividing the possible indices. Then my = 1, or my = 2, and in both cases n,,, = 4,
hence | S| = 3%mmott = 34442 Since b = 2, this forces S to have an abelian subgroup
of index 3%, so |S| < 3% by Lemma 1.17. Thus we need a = 1, and |S| = 3°%. Now
Fy(q) contains 3%.5L3(3) by [CLSS92, Theorem 1]. By the previous result and
[CCN*85] we see that 33.5L3(3) < PSL4(3) < Fy(2), thus the Sylow 3-subgroups
of Fy(q) (which are isomorphic to those of F;(2) by the uniform construction) are
isomorphic to those of PSL,(3) that have an extraspecial subgroup of index 3 by
Proposition B.9. This happens whenever a = 1, that is ¢ = 2,4,5,7 (mod 9).

Next we consider Fg(q):

1

o 0 () () 04005 ()P0l () Po(0) 1),

|E6(CI)| =

so the possible chains arise when p = 3 or p = 5.

When p = 3, my = 1,2 according to ¢ = +1 (mod 3), and we can have
b=3+1=4orb=2. Then |S] is respectively 3¢"mo+? g0 3644 or 34¢+2 Those
with ¢ = —1 (mod 3) appear as by [LS04, Theorem 1], Fy(q) is isomorphic to a
subgroup of Es(q), so when |S| = 3%, that is ¢ = 2,5 (mod 9), Fy(q) and Es(q)
have isomorphic Sylow 3-subgroups which have an extraspecial subgroup of index
3. When ¢ =1 (mod 3) then 3 | |Z(K,)| and the Sylow p-subgroups of the simple
group have size 3%, so no extraspecial subgroups of index p.

When p = 5, as the only index divisible by 5 appearing is 5 itself with multiplicity
1, the only possibility is b = 1. But then as mg € {1,2,4}, we have n,,, € {6,4,2}
hence |S| = 5%m0 ! which has odd exponent, so no extraspecial subgroups of index

p.
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The case of ?Fg(q) is similar. We have

*Es(q)| = ¢ ®1(q) ' ®2(q)°®s(q)*Pa(q)*Ps(q)* s(q) P10(q) P12(q) P1s(q),

(3,¢+1)

sop =3, and either mg =1, b=20r my =2,b=3+1=4. When g = —1 (mod 3)
we have p | |Z(K,)| and the Sylow 3-subgroups have order 3%, a contradiction.
When ¢ =1 (mod 3) we have by [L.S04, Theorem 1] Fy(q) < ?Es(q), so their Sylow
3-subgroups are isomorphic and have an extraspecial subgroup of index 3. This
happens when ¢ = 4,7 (mod 9).

FE;(q) has b # 0 for p = 3,5,7. If p = 5 or p = 7 then we get an abelian
subgroup of order p” < p?**, which is too big since in this case k¥ < b = 1. For
p =3 we get |S] = 37" > 31 50 we again get an abelian group of order 37* and
index 3*, hence there are no extraspecial subgroups of index 3 either.

Fg(q) has b < 5 with equality when p = 3 for mg = 1,2, so |S| < p'2. However

38ats platl 78atl which have odd exponent,

the orders of the Sylow p-subgroups are
or 582 but in this case we have b = 2 so |S| < 5%, a contradiction. Thus we don’t
have extraspecial subgroups of index p in any case.

We now consider the remaining small cases. For 2By(22" 1), 2G5(3* 1) only
p = 2,3 appear, which is either defining characteristic or p = 2, so for any other p
we have b = 0 and all relevant Sylow p-subgroups are abelian.

2F,(2%*1) has b < 1 with p = 3 so |S| < p?. However as the corresponding
polynomials are ®? and ®2, we have |S| = 32%*1 a contradiction.

G3(q) has two chains for p = 3, but its Sylow 3-subgroups have order 32", a

contradiction.

3D4(q): the only chains with b # 0 are for p = 3, which is an exception in
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[GLS98, Theorem 4.10.2]. Using the Weyl group we see that b = 1, so the only
possibility is a = 1, S = (C3 x Cy) : Cs of order p*. This happens whenever
qg=2,4,5,7 (mod 9). Since the description of S does not depend any further on g,

we calculate in Magma that in 3D4(2) we have S = <3 9> via:

> IdentifyGroup(Sylow(ChevalleyGroup("3D",4,2),3));

<81, 9>

Hence the same holds for the remaining *Dy,(q). O

B.4 Sporadic groups

The necessary information about orders, maximal subgroups and number of elements
of a given order was obtained and uses the notation of the ATLAS in its book and
online versions [CCN*85] and [WWT*05]. The p-rank information is taken from

[GLS98, Proposition 5.6.1].

Proposition B.15. Suppose G is a sporadic simple group and S € Syl (G) has
an extraspecial subgroup of index p. Then G and |S| are as in the final rows of

Table B.1.

Proof. Recall that for S to have an extraspecial subgroup of index p it is necessary
that its order must be p>*2* for some k € Z-o by Lemma 1.23. This reduces the
primes to be considered to those in the second column of Table B.4, with the third
column giving the respective orders. Further, by Corollary B.8, as in every case

p < 7, we obtain that |S| < 3%, which rules out Fiy,, Th and M for p = 3.
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Name P |S]| Extraspecial index p Notes
M11 2 24 Yes S = SD16
M, 2 26 Yes S =T e Syly(Ga(2))
Mo, Mo none - - -
Moy 2 210 No -
Ji, J2, J3, J4 | none - - -
Co,; 5 54 Yes ST e SylS(PSp4(5))
McL 3 30 Yes PSUL(3) <ppax McL
Co, 2.3 218 36 2 No, 3 Yes McL <oz Coo
Cos 2 210 No -
Fio none - - -
Fi23 2 218 No -
Fi,, 3 316 No -
HS none - - -
Suz none - - -
He 2 210 No -
Ru 2 ot No -
O'N 3 3 No -
Ly 2.5 28 50 2 No, 5 Yes G2(5) <prae Ly
Th 3 310 No -
14 96 £6 S5 =T € Syly(PSL4(3))
HN 2,3,5 | 2,3%5 2 No, 3 Yes, 5 Yes S5 2T € Syl.(Ga(5))
BM 5) 50 Yes HN : 2 <jppoe BM
M 23,7 | 2% 329 76 | 2 No, 3 No, 7 Yes S =T e Syl.(Go(7))

Table B.3: Sporadic finite simple groups whose Sylow p-subgroups have an ex-
traspecial subgroup of index p.

We now consider each of the cases left.

Miy: when p = 2, Mj; has a maximal subgroup 255 = GLy(3) = Qs : S3, so its

Sylow 2-subgroups are isomorphic to QJg

extraspecial subgroup of index 2.

1Oy =2 SDyg = <16,8> and contain an

Mis: when p = 2 M5 has a maximal subgroup of shape 23r+4:83 containing a

Sylow 2-subgroup with an extraspecial subgroup of index 2. We check that S is

isomorphic to a Sylow 2-subgroup of Go(2), that is <2°,134> via:
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> load "ml2";

Loading "/Applications/Magma/libs/pergps/m12"

M12 - Mathieu group on 12 letters - degree 12
Order 95 040 = 276 * 3°3 * 5 x 11; Base 1,2,3,4,5
Group: G

> IsIsomorphic(Sylow(G,2), Sylow(G2(2),2)) eq true;

true

The group My, when p = 2 has |S| = 219 Tt contains H:C3'Sg as a maximal
subgroup where H = C$, and since the Sylow 2-subgroups of S/H are not abelian,
by Lemma 1.27 we need H < Q, but this is too big since |Q| = 2° and the maximal
abelian subgroups have order 2° by Lemma 1.17. Hence we see that there are no
extraspecial subgroups of index 2.

For the group Coy, p = 5 is the only possible prime. It has a maximal subgroup
5772:G Ly(5), so it has an extraspecial subgroup of index p. The remaining 5-local
maximal subgroups have shape C? : (Cy x As).Cy and C? : 2A5, in particular, S is
generated by elements of order p, and thus its Sylow p-subgroups are isomorphic
to those of PSpy(5) (see e.g. Lemma 3.11).

The group MecL contains a maximal subgroup isomorphic to PSU,(3) so the
Sylow 3-subgroups of PSU,(3) and McL are isomorphic and have an extraspecial
subgroup of index 3 by Proposition B.9.

For the group Coy we need to examine p = 2,3. When p = 2 the Sylow
2-subgroups do not have an extraspecial subgroup of index 2. This can be seen
since there is a maximal subgroup M with shape H:Myy:Cy with H = 0210, and we

take S € Syl,(Coy) such that S < M. As M/H has nonabelian Sylow 2-subgroups,
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H < @ by Lemma 1.27. However by Lemma 1.17 maximal abelian subgroups of ()
have order at most 2°, a contradiction. If p = 3, as McL is a maximal subgroup
of Coy, and they have Sylow 3-subgroups of order 3%, they are isomorphic, so as
above they have an extraspecial subgroup of index 3.

The group Coz contains a maximal subgroup M = (- Ag which contains a
Sylow 2-subgroup S of Cos. Let H = Oo(M) < S. As the Sylow 2-subgroups of
Ag have order 25 and an extraspecial subgroup of index 2, by Lemma 1.24 S/H
does not contain an abelian subgroup of index 2. Then, by Lemma 1.27, S does
not contain any extraspecial subgroup of index 2.

For Fliy3 we have p = 2 to consider, but Fiys has an abelian subgroup H = C1!
observed in the maximal subgroup HMs,3. But if it had an extraspecial subgroup
Q of index 2 then |H N Q| > 2'9 whereas the maximal abelian subgroups of Q
would have order 2° by Lemma 1.17.

The group He has p = 2 to consider, with Sylow 2-subgroups of order 2%, but
we have a maximal subgroup C5:C3.55 > S, and we can argue as for Moyy,.

The group Ru has p = 2 as the only possibility. If Ru had an extraspecial
subgroup of index 2 then exponent of the Sylow would be at most 8 by Lemma
1.23, but Ru has elements of order 16.

The group O'N has p = 3 as the only possibility. But we can see in the maximal
subgroup Cj:2'7.Dyq that it has elementary abelian Sylow 3-subgroups, so no
extraspecial subgroup of index 3.

The Lyons group Ly has possible primes p = 2,5. For p = 2 we have the
maximal subgroup 2.A;; containing S. Then either S = @) x C5 or by Lemma 1.27
S/C4y should have either elementary abelian subgroups of index 2 or be elementary

abelian. But the Sylow 2-subgroups of A;; have index 2 in those of Si;, isomorphic
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to Cy 0 O3 Cy x Oy as in Lemma B.10, hence they are not abelian nor extraspecial
nor do they contain an abelian subgroup of index 2. Thus S does not contain any
extraspecial subgroups of index 2. For p =5, G(5) is a maximal subgroup of Ly,
and their Sylow 5-subgroups are isomorphic and have an extraspecial subgroup of
index 5 by Proposition B.9.

For HN we need to consider p = 2,3,5. We consider a 2A involution ¢, which
has centraliser 2.HS.2 of order 2!!. If this involution is in @, then by Lemma
1.10 applied to (Z(S),1), its centraliser would have index at most 2 in @), hence
|Cs(t)| > 2'% so t is not in Q. On the other hand as |S : Q| = 2, every square of
an element of 2-power order is in (), but we can see from the character table in
[CCNT85] that ¢ is the square of some elements in classes 44 and 4B, so t € @, a
contradiction. Thus S does not contain an extraspecial subgroup of index 2.

For p = 3, the maximal subgroup M; = 31++4:C4.A5 shows that there is
an extraspecial subgroup of index 3. Its other 3-local subgroup N3 has shape
Cd . Cy: (Ay x Ay).Cy, which shows that S contains an elementary abelian Cf,
hence a complement to @ = 31" in S. Thus Proposition 1.32 implies that S
is isomorphic to either a Sylow p-subgroup of SL4(3) or that of SU4(3). Fur-
ther, Proposition 1.19 (4,9) implies that Cy.(A4 x Ay) = QF (3), whence Nj is
isomorphic to a parabolic subgroup of PSL4(3), and therefore S is isomorphic to a
Sylow 3-subgroup of PSL,(3). For p = 5, we have the maximal 5-local subgroups
M; = 5.74:21.C5.Cy and N5 = C2 : 5172.C4. A5, which are Fg, (HN)-essential
subgroups, and we can see an extraspecial subgroup of index 5. From N5 we observe
that Zo,ng) < Q, and |®(O5(Ns))| = 5%, so Hypothesis C holds and Proposition
4.17 implies that Sj is isomorphic to a Sylow 5-subgroup of G5(5).

BM has p =5 as the only possible prime. But it has maximal subgroup HN:C5,
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so it contains HN and their Sylow 5-subgroups are isomorphic.

And finally, in M the primes left to consider are p = 2,7. For p = 2, we see
that M contains elements of order 32 = 25, thus there can be no extraspecial of
index 2 in its Sylow 2-subgroups by Lemma 1.23.

For p = 7 we have an extraspecial of index p, as seen in the maximal subgroup
M; = 774:(Cy x 28;). The remaining 7-locals of M are Ny = 7*71%2 . GL,y(7) and
P; = C2 : SLy(7), thus there is a self-centralising subgroup O (P5) of order 72, thus
Proposition 1.3 implies that S € Syl,(M) has maximal nilpotency class whence we

see that S is isomorphic to a Sylow 7-subgroup of G(7) by Proposition 1.32. [

B.5 Fusion systems of the finite simple groups

Even though we have an infinite number of finite simple groups from whose Sylow
p-subgroups contain an extraspecial subgroup of index p in Proposition B.1, they
only give rise to a small number of isomorphism types of fusion systems in addition
to the 4 infinite families of groups of Lie type in defining characteristic. We now
classify the isomorphism types on each S. We begin with the known cases with

p = 2, which does not include all groups of Lie type in odd characteristic.

Lemma B.16. Suppose p = 2 and G is a finite simple group which is not a group
of Lie type in odd characteristic. If S € Syly(G) contains an extraspecial subgroup
of index 2 then S and G are, up to isomorphism of Fs(G), one of the following,

with Fs(G) always simple:
1. S SD16 and G = MH,'

2.8 € Syly(PSL4(2)) and G = PSL4(2) = As or G = PSU4(2) = PSp4(3).
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3. S s of type M5 and G = M,.

We remark that in this situation G2(2) has Sylow 2-subgroups as in (3), and
PSp4(2) has Cg x Cy, but they are not simple groups. As S has sectional rank at
most 4, we can use [Olil6, Theorem A] to see that G(q) will arise in case (3) for ¢
with ve(g £ 1) = 2, as well as PSL3(q) where ¢ =22 — 1 (mod 2°) (va(q £ 1) = 2)

in case (1), and PSps(q) when vy(¢> — 1) = 3 in case (2).

Proof. Proposition B.2 implies that G is one of PSL4(2) = As, Ag, PSU4(2), My,
or Mis. In Proposition B.15 we showed that if G = My, then S = SDjs and if
G = M then S = T € Syly(G2(2)), whereas in Lemma B.10 we showed that
PSL,(2) = Ag, Ag have isomorphic Sylow 2-subgroups. Further, the following easy
Magma computation checks that the Sylow 2-subgroups of PSL4(2) and PSU,(2)

are isomorphic.

> IsIsomorphic(Sylow(PSU(4,2),2), Sylow(PSL(4,2),2)) eq true;

true

Finally, the fusion systems of Ag and Ag at p = 2 coincide since the normalisers of

2-groups do not grow. Each Fg(G) is simple by [Olil6, Theorem A]. O

We recall before stating the next lemma that isotypically equivalent implies
that the fusion systems are isomorphic, as per the discussion just after Definition

2.10 where isomorphism of fusion systems is introduced.

Lemma B.17. Out of the groups of Lie type in cross characteristic from Table

B.1, the following have isotypically equivalent fusion systems on S € Syl (G):

1. Fvery family of groups in the same row independently of the characteristic.
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2. The PSL,(q) and PSU,/(q) where n =n' and ¢ = —¢' (mod p).
3. The PQE(q).
4. The groups Fy(q), Es(q) and *Es(q) for all ¢ as in the table.

Proof. All the parts follow from [BMO12, Theorem A].

From [BMO12, Theorem A (a)] we see that whenever ¢ = ¢’ (mod p) we have
F,(G(q)) ~ F,(G(¢')), which gives all of (1) except the cases PSps(q), P(q),
PO (q), 3D4(q) and Fy(q), all of which follow from part [BMO12, Theorem A (c)].

From part (c) we get all cases of (1) whenever W contains an element inverting
all elements of the torus, that is if G is not one of A,, (m > 1), Dopy1 (m > 1),
Es. In those cases we have only one congruence class of ¢ (mod p) so part (a) (or
(b) in the twisted cases) completes (1).

Part (d) gives us parts (2), (3) and those of “Ej in (4) since we have the twists
exactly when ¢ = —¢' (mod p).

Fsy(Fu(q)) =~ Fsy(*Es(q)) from [BMO12, Example 4.5 (b)] as the second ones

appear only when ¢ =1 (mod 3). Hence (4) follows as well. O

At this stage we know that, except for the rows of groups of Lie type in defining
characteristic, for each row of Table B.1 there is a unique fusion system Fg(G)
up to isomorphism, and that certain rows give rise to isomorphic fusion systems.
In each of the cases we can take the smallest candidate for ¢ and we have a
particular group with which we can compute in Magma, hence we can run the code
in Appendix C.3 to obtain a list of potential Fg(G)-essential subgroups E, and
Outg(F) = Ng(F)/E, which allow us to easily check that certain fusion systems

are not isomorphic. We note that in Appendix C.3 we do not only return the Fg(G)-
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essentials, but rather those E with O,(Outg(E)) = 1, but when |Outs(E)| = p
this is sufficient by Corollary 1.56 (4).

All fusion systems on the sporadic simple groups in Proposition B.1 are simple
by [Ascll, (16.8) and (16.10)].!

The only p-groups on which we still have more than one fusion system arising
from a group of Lie type in cross characteristic are C3 ! C3 and <3* 9>, which are

labelled Fi, Fa, F3, F4, and F,, F, respectively, and we consider them now.

Lemma B.18. Suppose G is a finite simple group with S € Syly(G) isomor-
phic to <3* 9>. Then Fs(G) is isomorphic to either F, = Fs(PSL3(19)), or
Fy = Fs(®Dy(2)).

Proof. By Proposition B.1 and Lemma B.17 there are at most the two fusion
systems F, = Fg(PSU3(8)) = Fs(PSL3(8)) and F, = F5(*D4(2)) on S, which we
now show are not isomorphic. In PSL3(19) (or PSU;(8)) we check computationally
using Appendix C.3 that the Fg(PSL3(19))-essential subgroups are exactly the 3
S-conjugacy classes of self-centralising subgroups of order 3%, whereas in 2D,(2)
there is a 3-local subgroup 31" : 25, using [WWT*05]. Thus these two fusion

systems are not isomorphic. O]

Lemma B.19. Suppose G is a finite simple group with S € Syly(G) isomor-
phic to C32C3. Then Fg(Q) is isomorphic to exactly one of Fs,(Ag), Fss(A11),
Fss(PSpa(3)), or Fs,(PSLe(2)).

Proof. The groups with S as in the statement are listed in Corollary B.4 (1).

For the alternating groups we can see that Ag and Ay give rise to the same

fusion system since the normalisers of 2-groups do not grow, as opposed to A,

!The 5-fusion system of Co; is said not to be simple, but there is an error. We describe it in
Lemma B.20 and Table 7.6



where Sy < Ajq but Sy £ Ag, Ay, the fusion systems will be different as in the
two instances Autg, (S) 2 Auts,(S). Hence we have two non-isomorphic fusion
systems Fg,(Ag) and Fg,(A11).

By Lemma B.17 the cases left to consider are PSU4(2), PSL¢(2), PSL(2),
PSpe(2), PQ7(2), PQE(4), PQg (2).

Since Proposition 1.19 (15) implies that PSU4(2) = PSp4(3) and [KL90, Propo-
sition 2.5.1] or [Car72, p.11] we have PSpg(2) = P$27(2), their fusion systems are
isomorphic.

Further, we have that PSpg(2) < PSLg(2) < PSL7(2), and PSps(2) < PQg(2),
and in all cases above we checked using the Magma program from Appendix C.3 that
the Fg(G)-essential candidates are A = Cj and Q = 312 which have isomorphic
normalisers in all the inclusions above. Then in all cases the F-essential subgroups
are C3 or 3172 and SLy(p) = O (Outz(E)) < Outx(F) < Out(E) = GLy(p) is
uniquely determined by its isomorphism type, so by Alperin’s fusion theorem their
fusion systems are isomorphic to Fg, (PSLg(2)) = Fes, (PSps(2)).

It only remains to consider PQF(4). We have PSLy(4) < PQE(4), and we
similarly established using Magma that the fusion systems are isomorphic and of
index 2 in the previous ones, in particular to those of PSU4(2) by Lemma B.17 (1),
and thus to Fg, (PSp4(3)) since PSU4(2) = PSp4(3).

Hence any fusion system on a finite simple group with S3 = C'51Cj is isomorphic
to one of Fg,(Ag), Fs,(A11), Fsy (PSpa(3)), or Fs,(PSLg(2)).

These are all pairwise non-isomorphic since Npgp,3)(S3) = Cy whereas we
have Npgrq2)(S3) = Co x Cs, and in the alternating cases there is an F-essential

subgroup of type C3 x C3 whereas in the rest they all have order 33. O
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We have now considered all p-groups of order p* except for <5, 7>, which we

study now.

Lemma B.20. Suppose G is a finite simple group with S € Syl;(G) isomorphic
to <5, 7> 2 T € Syl;(PSps(5)). Then Fs(G) is isomorphic to exactly one of
Fs(PSps(5)), Fs(PSLs(11)) or Fs(Coy).

Proof. The groups in question are listed in Corollary B.4 (2) and are PSp4(5);
PSLs(q) for ¢ =6,11,16,21 (mod 25); PSUs(q) for ¢ = 4,9,14,19 (mod 25); or
Co;. Lemma B.17 (2) implies that all the cross characteristic groups give rise to
isomorphic fusion systems. Thus there are at most the 3 fusion systems in the
statement, which we consider now. In Co; the maximal 5-local subgroups have
shapes 572 : GLy(5), C2: (Cy x A5).Cy and C? : 2A5, which shows that there
are JF-essentials of order 5%, that is Fg(Co;)-pearls, as well as the unique abelian
subgroup A = C2 of index 5 in S, and an extraspecial subgroup 5?2.

In PSp4(5) the only maximal 5-local subgroups are of shapes 512 : 245 : C,
and C3 : (Cy x Ajs).Cy, thus there are no Fg(PSpy(5))-pearls.

Finally, in the cross characteristic case, we consider PSUs(4), the smallest
example, in which the code in Appendix C.3 outputs as essential candidates 5
conjugacy classes of CZ and the unique abelian subgroup A of index 5 in S. In
particular, there is no nonabelian Fg(PSUs(4))-essential, and all three fusion
systems are pairwise nonisomorphic. This information is also contained in Table

7.6 [l

We now consider Sylow p-subgroups of order p® with p odd. When p = 3 we
have two isomorphism classes of Sylow 3-subgroups, isomorphic to the Sylow 3-

subgroups of PSL4(3) and PSU,(3) respectively. We see from the discussion above
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that in the first case we have at most 3 fusion systems up to isomorphism, those of
Fs,(PSL4(3)), Fsy(F4(2)), and Fg,(HN), while in the second case we have at most
4, any being isomorphic to one of Fg,(PSU4(3)), Fs,(PSLs(4)) = Fs,(PSUs(2)),
Fs,(Cog) or Fs,(McL).

Lemma B.21. 1. Fg,(PSL4(3)), Fs,(Fu(2)), and Fs,(HN) are pairwise non-

1somorphic.

2. .FSS(PSU4(3>>, f53(PSL6(4)) = .FS3<PSU6(2)), fs3(002) or .FS?)(MCL) are

pairwise non-isomorphic.

Proof. We show that Ng(Q) has different shapes for each G. We have that
Npsry3)(Q) ~ Q : GL2(3), Npy2)(Q) ~ @ : ((@Qs x @s) = C3) : C2 (Appendix
C.3 takes around 100 seconds to run and gives Np,9)(Q)/Q = <384,18131>,
then GAP’s StructureDescription yields the above) and Ngy(Q) ~ Q : 4" A5 from
[(WWT*05].

In the PSU4(3) Sylow we have Npgy,3)(Q) ~ @ : 254 as in [CCN*85, p.52],
Npsve2)(Q) ~ Q : (Qs X Qs) : S5, Narer,(Q) ~ Q : 2.55 and Neo, (Q) ~ Q.2174.55,
obtained from [WWT*05]. Thus none of the 4 fusion systems above are isomorphic.

]

We notice that the fusion systems on the two Sylow 3-subgroups above are more
complicated to classify than in the general cases. A source of complications is the
different nature of quadratic modules for p = 3, which yields some extra modules
seen above. We also have PSLy(9) & Ag, yielding extra automorphisms, hence the
p/-extensions are harder to classify, and some arise from almost simple groups such

as Q4 (2) : S5 < Fy(2). S a Sylow 3-subgroup of PSU,(3) is classified in [BFM].
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We now consider the case with p > 3 and |S| = p°®, where there are always 3
isomorphism classes of Sylow p-subgroups, those of PSLy(p), PSU,(p) and Ga(p).
In this situation these GG are the only finite simple groups that have Sylow p-
subgroups isomorphic to one of the above except for a Sylow p-subgroup of G(5)

and G5(7), which we consider now, as in Corollary B.3.

Lemma B.22. 1. The fusion systems Fs(G2(5)), Fs(HN), Fs(Ly), Fs(BM)

are pairwise non-isomorphic.
2. The fusion systems Fs(M) and Fs(Go(7)) are not isomorphic.

Proof. Corollary B.3 implies that there are 3 sporadic groups HN, Ly and BM for
p=>5, and only M for p = 7. For p = 5 by the maximal subgroups from [CCN*85]
we have: Ng,5)(Q) ~ Q : GLa(5), Nun(Q) ~ Q : 257.C5.C4, N1, (Q) ~ Q : Cy.Ss,
and Np(Q) ~ @ : 27 A5.Cy. For p = 7 we have Ng,7)(Q) ~ Q : GLy(7)
(computed using Magma as G(7) is not in [CCNT85]) and Ny (Q) ~ @ : (C5x2S57).

Hence all these groups give rise to non-isomorphic fusion systems. O]

At this stage all isomorphism types of fusion systems arising from Proposition

B.1 as in Table B.1 have been classified.

B.6 Almost simple groups

In the above we have only considered the simple groups. We now use Lemma
8.3 to prove that if p # 3 and F is realised by an almost simple group G then
o (F) is realised by a finite simple group, hence we do we need not consider the

almost simple groups. When p = 3, O3(F) may be smaller than F, as in the group
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G = Q4 (2) : C3, which has Sylow 3-subgroups isomorphic to those of SL4(3), and
foc(Fs(@G)) is a Sylow 3-subgroup of Qf (2) and has index 3 in S.

Lemma B.23. Suppose S is a p-group with an extraspecial subgroup Q) of index
p and F is a saturated fusion system on S with Oy(F) = 1. Suppose F is
realised by an almost simple group G with socle X. Then, unless p = 3 and either
S € Syly(SL4(3)) or |S| = 3* and all F-essential subgroups have order 3%, OP (F)

15 a fusion system on S realised by a finite simple group and is reduced.

Proof. As X < G, we have Fr(X) 9 Fs(G) by [AKO11, Proposition 1.6.2] where
T = SNX. Now as G is almost simple by the Schreier conjecture G/X < Out(X) is
solvable, and there is a series of normal subgroups X < X; < X, <--- 94X, =G,
where X;/X;_1 is cyclic of prime order. In particular, if 7" # S at some point
Xi/Xi—1 = C,, whence OP(Fg,(X;)) # Fs,(X;). However, by Proposition B.7
O,(Fs(X)) =1, s0 also O,(Fs,(X;)) =1, and we can apply Lemma 8.3 to obtain
that OP(F) = F, a contradiction. Thus T'= S and Fg(X) has index prime to p
in Fs(G), and Theorem 2.35 and the discussion immediately before it show that
O" (Fs(@)) = Fg(X), and Fg(X) is reduced. O
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APPENDIX C

Magma CODE

C.1 Orbits calculation

p :=11; P :=[1..p-1]; T := [];
time for i in P do
Q :=[; R:=1[]; s :=[];
time for N in Subsets({1l..p-1},i) do
if N notin Q then
LL := [I;
for 1 in P do L := SequenceToSet([(m*1) mod p : m in NJ]);
if L notin Q then
Append(“Q,L); Append("R, N); Append("LL, L);
end if; end for;
Length := #LL; Append(~S, Length);
Append (T, SequenceToSet(R));
if Length notin {0, p-1} then N;
end if; end if; end for;
i, #Subsets({1l..p-1},1)/(p-1), #SequenceToSet(R), Multiset(S), #T;
end for;
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C.2 Reduction to SL4(3)

//Find groups of order $3°6$% with $|S'| = 373%, $Q$ extraspecial
//of index $p$ and $E$ as in Hypothesis C.

SG := SmallGroups(376);

time C := [S : S in SG [#DerivedSubgroup(S) eq 373 and

0 ne #[j : j in MaximalSubgroups(S) | IsExtraSpecial(j  subgroup)]
and 0 ne #[j : j in MaximalSubgroups(S) | Centre(j subgroup)

eq DerivedSubgroup(j subgroup) and #Centre(j subgroup) eq 372]1];
#C;

//Find involutions in $Aut(S)$ which centralise 9 elements of $S$
//only one of which is in $V$, which is homocyclic. This reduces
//to a Sylow $p$-subgroup of $SL(4,3)$.

CC:= [1;
for i in C do

A := AutomorphismGroup(i);

V := Centraliser(i, DerivedSubgroup(i));
phi, P := PermutationRepresentation(A);
T := Sylow(P,2);

maps := [Inverse(phi)(k) : k in T ];
for k in maps do
if Order(k) eq 2 then
if (IsIsomorphic(V, SmallGroup(81,15)) or
IsIsomorphic(V, SmallGroup(81,2))) and
#[s: s in i | k(s) eq s] eq 9 and
#[s: s in i | k(s) eq s and s in V] eq 1
then IdentifyGroup(i);
Append(~CC, 1i);
//CC := [1; Append(~CC, <i,k>);
end if;
end if;
end for;
end for;
#CC; IsIsomorphic(CC[1], Sylow(SL(4,3),3)) eq true;
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C.3 Magma code to find subgroups that can be
Fs(G)-essential

/*Function Essentials: Given a group $G$, a Sylow $p$-subgroup $S$
*x0f $G$ and the prime $p$, returns a list E of possible
*$\FF_S(G) $-essential subgroups and $S$, and in NN their
xcorresponding $\Out_G(E)$.x*/
Essentials := function(G,S,p);
j = O0;NN := [I; E := [];
for i in Subgroups(S) do H := i subgroup;
//Check H is $\FF_S(G)$-centric:
if Centraliser(S,H) subset Centre(H) then
q,pi := Normaliser(S,H)/FrattiniSubgroup(H);
if Centraliser(q,pi(H)) subset pi(H) and
pi(H) subset Centraliser(q,pi(H)) then
N := Normaliser(G,H)/H;
//Check $0_p(Out_G(H)) = 1$ so that it can have a strongly
//$p$-embedded subgroup:
if Order(pCore(N,p)) eq 1 then
j+:=1; E[j] := H; NN[j] := N;
end if;
end if;
end if;
end for;
return E, NN;
end function;
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