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Abstract

The method of hypergraph containers has become a very important tool for dealing with

problems which can be phrased in the language of independent sets in hypergraphs. This

method has applications to numerous problems in combinatorics and other areas. In

this thesis we consider examples of such problems; in particular problems concerning sets

avoiding solutions to a given system of linear equations L (known as L-free sets) or graphs

avoiding copies of a given graph H (H-free graphs).

First we attack a number of questions relating to L-free sets. For example, we give

various bounds on the number of maximal L-free subsets of [n] for three-variable homo-

geneous linear equations L.

We then use containers to prove results corresponding to problems concerning tuples of

disjoint independent sets in hypergraphs. In particular we generalise the random Ramsey

theorem of Rödl and Ruciński by providing a resilience analogue. We obtain similar

results for L-free sets.

Finally we consider the Maker-Breaker game where Maker’s aim is to obtain a solution

to a given system of linear equations L amongst a random set of integers. We determine

the threshold probability for this game for a large class of systems L.
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Chapter 1

Introduction

1.1 Independent sets in hypergraphs

Let X be an algebraic object, such as a group, a field, or a subset of one of these such

as the set of positive integers [n] := {1, . . . , n}. Many famous questions in additive

combinatorics concern the combinatorial properties of a subset X ⊆ X which satisfy (or

fail to satisfy) some given algebraic structure. Two key examples of this are finding the

size of an extremal set, and counting the number of such sets.

Consider the example of sum-free sets, that is, a set which contains no solutions to

x + y = z. It is easy to see that the largest sum-free set X ⊆ [n] has size dn/2e. (One

example of an extremal set here is the set of odd numbers, which is sum-free since two

odd numbers can never sum to another odd number.) Indeed, a classical question is to

ask about the size of an extremal set avoiding solutions in [n] to a given system of linear

equations; the most famous of these concern sets not containing arithmetic progressions.

Note arithmetic progressions can be encoded as solutions to a system of linear equations.

Similarly to above, two famous questions in extremal graph theory concern finding

the size of an extremal graph, or counting the number of graphs, which have (or do not

have) a given property P . For example, Mantel’s theorem [80] says that all triangle-free
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graphs on n vertices have at most bn2/4c edges, where the extremal example is a complete

bipartite graph with two vertex classes of equal size. Generally, the size of an extremal

H-free graph is given asymptotically by the Erdős-Stone-Simonovits theorem [37], while

a result of Erdős, Frankl and Rödl [34] determines asymptotically the number of H-free

graphs on n vertices.

Many combinatorial problems, such as those described so far, can be phrased in terms

of independent sets in hypergraphs. Consider the examples already considered; let H be

a hypergraph with vertex set V (H) := [n] and a hyperedge for each solution to x+ y = z

in [n] (note that there are edges of size two and three). Then the independent sets in H

(subsets of V (H) which do not contain any edge of H) correspond to the sum-free subsets

of [n]. Alternatively, let H be a hypergraph with vertex set V (H) := E(Kn) (the set of

all edges of the complete graph Kn) and a hyperedge for each triple of edges in Kn giving

rise to a triangle. Here, the independent sets in H correspond to triangle-free subgraphs

of Kn.

The two key questions mentioned in each topic can now be formulated as follows:

(i) What is the size α(H) of the largest independent set in H?

(ii) What is the total number i(H) of independent sets in H?

Observe that since any subset of an independent set is still independent, there are at

least 2α(H) independent sets in H. A trivial upper bound can be found by counting all of

the subsets of V (H) of size at most α(H). For many hypergraphs H, it turns out that the

lower bound is closer to the truth, and so most efforts have gone into trying to improve

the upper bound. For example, Alon [2] proved a conjecture of Granville (see [2]) from

1988 that when H is an n-vertex, d-regular graph, then i(H) 6 2(1+O(d−0.1))n/2 (note that

here α(H) 6 n/2).
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1.1.1 Containers

The method of containers, which was first used by Kleitman and Winston [68, 69] and

Sapozhenko [103, 104, 105], has become a very good tool for establishing better upper

bounds for i(H). In general a ‘container theorem’ roughly states the following: There

exists a family C(H) of subsets of V (H) known as ‘containers’ such that

(i) Each container is ‘almost’ an independent set;

(ii) Every independent set in H is a subset of a container C ∈ C(H);

(iii) There are ‘not too many’ containers, i.e. |C(H)| is small;

(iv) No container is ‘large’.

So one may choose a container C ∈ C(H) and bound the number of independent sets

which it contains (in general this number should not be too big since no container is large).

Then since every independent set lies in some container, we obtain an upper bound for

the total number of independent sets by multiplying by the number of containers. Often

this approach gives good upper bounds on i(H), in particular as in many applications of

the method there are a sufficiently small number of containers. The container method is

often useful in the probabilistic setting for bounding the size of the largest independent

set.

The original method used by Kleitman and Winston involved the use of an algorithm,

in which a container method for graphs was implicitly stated within. They used it to

obtain upper bounds on the number of lattices, and graphs without cycles of length four.

In 2004 Green [48] developed a method of containers using Fourier analysis, for counting

the number of subsets of [n] avoiding solutions to a given linear equation. Recently Balogh,

Morris and Samotij [8], and independently Saxton and Thomason [106] developed very

general container theorems for independent sets in hypergraphs; both of which have seen
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numerous applications to a wide range of problems. These include problems in Ramsey

theory, combinatorial number theory, positional games and list colourings of graphs. See

the very recent survey article by Balogh, Morris and Samotij [9] for a detailed history and

a number of illustrative examples of the method of hypergraph containers. Throughout

this thesis we will apply the container method to a range of problems.

1.1.2 Removal lemmas

An important tool which often comes side by side with a container theorem is a so-called

‘removal lemma’. This is often used in the step of the container method mentioned above,

where one must bound the number of independent sets in a given container. The graph

removal lemma states that for any graphs G,H on n, h vertices respectively, and any ε > 0,

there exists a δ = δ(ε,H) > 0 such that if G contains at most δnh copies of H, then it

may be made H-free by removing at most εn2 edges. By considering the hypergraph H

with vertex set E(G) and edge set corresponding to copies of H in G, we observe that an

independent set in H is an H-free subgraph of G, and G itself is ‘almost’ an independent

set.

The triangle removal lemma (i.e. H is a triangle) was first used by Ruzsa and Sze-

merédi [102] in 1976. The general graph removal lemma was first explicitly stated by Alon,

Duke, Lefmann, Rödl and Yuster [3] and by Füredi [43] in 1994. As with the container

method, there has been much work on extending the graph removal lemma to a result for

hypergraphs, most notably by Gowers [44, 45] and independently by Nagle, Rödl, Schacht

and Skokan [84, 97]. Green also proved a removal lemma for abelian groups using Fourier

analysis [48]. This combined with Green’s container lemma gives an immediate result for

the number of subsets of [n] avoiding solutions to a given linear equation. This removal

lemma was also generalised to systems of linear equations by Král’, Serra and Vena [74].
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1.2 Our work

In Chapter 2, we state the aforementioned container and removal lemmas of Green, the

general container result of Balogh, Morris and Samotij, and the general removal lemma of

Král’, Serra and Vena. All of these results will explicitly be required for proofs of results

within Chapters 3–6. We now describe the content of these four chapters.

1.2.1 Solution-free sets of integers

Given a linear equation L of the form a1x1 + · · ·+ akxk = b, we call a set X ⊆ [n] weakly

L-free if it does not contain any ‘non-trivial’ solutions to L in [n] (see the notation section

below for a full definition). In Chapters 3 and 4 we prove a number of results concerning

weakly L-free subsets of [n] where L is a homogeneous linear equation in three variables.

In particular, our work is motivated by the following general questions.

(i) What is the size of the largest weakly L-free subset of [n]?

(ii) How many weakly L-free subsets of [n] are there?

(iii) How many maximal weakly L-free subsets of [n] are there?

A weakly L-free set X ⊆ [n] is maximal if it is not possible to add any other element

of [n] to X so that X remains weakly L-free. Notice that (iii) (as we showed with (i) and

(ii) earlier) can also be phrased in terms of independent sets in hypergraphs; if H has

vertex set [n] and the edges of H correspond to solutions to L, then the corresponding

question is to count the number of maximal independent sets in H.

We make progress on all three of these questions. For each question we use tools from

graph theory; for (i) and (ii) our methods are somewhat elementary. For (iii) our method

is more involved and utilises container and removal lemmas of Green [48]. In Chapter 3

we focus mainly on equations of the form px + qy = z for some fixed positive integers
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p, q with p > 2. In Chapter 4 we focus on equations of the form px + qy = rz for some

fixed positive integers p > q > r, and also obtain some generalisations of our results to

equations with more than three variables. These two chapters are based respectively on

the content of two papers with Andrew Treglown [56, 57].

1.2.2 Ramsey properties of graphs and the integers

Rather than forbidding a solution to some system of linear equations, one may instead

choose to assign colours to numbers in [n], and then see if there is any guarantee of there

being a monochromatic solution. A famous result of Schur [110] states that for any r ∈ N,

if n is sufficiently large, then however [n] is r-coloured, we can find a monochromatic

triple {x, y, z} with x, y, z ∈ [n] such that x + y = z. Van der Waerden obtained a

similar result [120] for arithmetic progressions. This was followed by the generalisation

by Rado [88] which describes all systems of linear equations L for which, for any r ∈ N,

if n is sufficiently large, then however [n] is r-coloured, we can find a monochromatic

solution to L in [n]. In the graph setting, Ramsey’s theorem [89] states that for any r ∈ N

and graph H, if n is sufficiently large, then however we r-colour the edges of Kn, there is

a monochromatic copy of H.

Recently there has been a trend of obtaining extremal results in sparse random sets

or graphs. For example, one may ask about Rado-type properties of [n]p (each element

of [n] is included with probability p independently of all other elements). Given a fixed

system of linear equations L which satisfies Rado’s partition theorem above, and integer

r > 2, how small must we make p so that with high probability (with probability one as n

tends to infinity; we will use the abbreviation w.h.p.) [n]p no longer has the property that

however r-coloured, there is always a monochromatic solution to L? Results of Friedgut,

Rödl and Schacht [42] and Rödl and Ruciński [93] together determine a threshold p0 which

depends only on L. Similarly, a famous result of Rödl and Ruciński [90, 91, 92] determines
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the threshold p0 for a given graph H, for when the Erdős–Rényi random graph Gn,p has

the property that however its edges are r-coloured, there is always a monochromatic copy

of H. (Recall that Gn,p has vertex set [n] in which each possible edge is present with

probability p, independently of all other edges.)

Consider the hypergraphs with edge sets corresponding to solutions to a given system

of linear equations or copies of a given graph H described earlier. Here a tuple of disjoint

independent sets describes a tuple of disjoint solution-free sets/disjoint H-free graphs. In

Chapter 5, we use the container method to prove results that correspond to problems

concerning tuples of disjoint independent sets in hypergraphs. That is, we are able to

tackle problems relating to the Rado property of sets of integers, and Ramsey properties

of graphs and hypergraphs. In particular, we strengthen the random Rado theorem of

Friedgut, Rödl and Schacht [42] described above by proving a so-called resilience version

of the result. We also generalise the random Ramsey theorem of Rödl and Ruciński

described above by providing a resilience analogue. This result also implies the random

version of Turán’s theorem due to Conlon and Gowers [28] and Schacht [108]. We also

obtain hypergraph and asymmetric generalisations and counting results. This chapter is

based on joint work with Katherine Staden and Andrew Treglown [55].

1.2.3 The Maker-Breaker Rado game on a random set of inte-

gers

Recently there has been a number of results which link extremal results in sparse random

graphs or sets to results in Maker-Breaker games (see, for example [75, 86]). This is due

in part to it being possible to phrase both problems in the language of independent sets

in hypergraphs.

Given a system of linear equations Ax = b, the Maker-Breaker (A, b)-game on a set of

integers X is the game where Maker and Breaker take turns claiming previously unclaimed
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integers from X, and Maker’s aim is to obtain a solution to Ax = b, whereas Breaker’s

aim is to prevent this. We can view the game as players taking turns claiming vertices

from the hypergraph with edges corresponding to solutions to Ax = b. Maker’s aim here

is to obtain an edge of the hypergraph; if Maker fails to claim an edge, her set is an

independent set and therefore a solution-free set.

When X := [n]p, we determine the threshold probability p0 for when the game is Maker

or Breaker’s win, for a large class of systems of linear equations. This class includes but

is not limited to all single linear equations. The Maker’s win statement also extends to a

much wider class of systems of linear equations, which include those which satisfy Rado’s

partition theorem. Its proof involves the use of the container method. The proof of the

Breaker’s win statement draws on the method used by Rödl and Ruciński [93] to prove the

0-statement of the random Rado theorem. This chapter is based on the author’s recently

submitted paper [54].

1.3 Notation and preliminaries

1.3.1 Solutions to systems of linear equations

Throughout the thesis, unless otherwise stated, we will assume that A is a fixed integer-

valued matrix of dimension `× k and b a fixed integer-valued vector of dimension `. We

will let L(A, b) denote the associated system of linear equations Ax = b, noting that for

brevity we will simply write L if it is clear from the context which matrix A and vector b

it refers to.

It is important to observe that in the problem of avoiding solutions to a given system

of linear equations, there are a few different notions of what constitutes a solution. For

example in the case of sum-free sets, should we care or not about whether we include

solutions with repetition, e.g. (3, 3, 6), or not? Historically most problems have focused

on studying the case where repetition is not allowed, however in some cases (especially
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Chapters 3 and 4) we wish to allow so called non-trivial solutions, which we will define

shortly.

Given a set of integers X, first let S(Ls, X) be the set of all vectors x = (x1, . . . , xk) ∈

Xk such that Ax = b (i.e. the vector x is a solution to L in X). If S(Ls, X) is empty then

we call X strongly L-free. If for a solution x, additionally the xi are pairwise distinct,

we call x a k-distinct solution to L in X. Let S(Ld, X) refer to the set of all k-distinct

solutions to L in X. If S(Ld, X) is empty then we call X distinct L-free.

Generally, we call a system of linear equations L homogeneous if b = 0. In the case

where we have a 1× k matrix, we simply have a linear equation of the form

a1x1 + · · ·+ akxk = b (1.3.1)

where a1, . . . , ak, b ∈ Z. If ∑
i∈[k]

ai = b = 0

then we say that L is translation-invariant. Let L be a translation-invariant linear equa-

tion. Then notice that (x, . . . , x) is a ‘trivial’ solution of (1.3.1) for any x. More generally,

a solution (x1, . . . , xk) to L is said to be trivial if there exists a partition P1, . . . , P` of [k]

so that:

(i) xi = xj for every i, j in the same partition class Pr;

(ii) For each r ∈ [`],
∑

i∈Pr ai = 0.

Let S(Lw, X) refer to the set of all non-trivial solutions to L in X. If S(Lw, X) is

empty then call X weakly L-free. This definition of non-trivial was introduced by Ruzsa

in [100]. Note that for non-translation-invariant L there are no trivial solutions, and so

the definition of weakly L-free coincides with the definition of strongly L-free. A definition

of non-trivial for `× k matrices is given in [99], though we do not state it here since this
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case is not studied in this thesis. Note that we have

S(Ld, X) ⊆ S(Lw, X) ⊆ S(Ls, X).

For shorthand notation, for t ∈ {d, w, s} we will use Lt-free for distinct/weakly/strongly

L-free sets respectively. We will also use µ(n,Lt) to denote the size of the largest Lt-free

subset of [n]; observe that

µ(n,Ls) 6 µ(n,Lw) 6 µ(n,Ld).

If the equation L (and type of solutions we are interested in) is clear from the context,

then we simply say X is solution-free. In Chapters 3 and 4 we consider weakly L-free

sets, whereas in Chapters 5 and 6 we mainly consider distinct L-free sets.

We also require definitions for r-colourings of sets of integers. Fix r ∈ N and t ∈

{d, w, s}. For each i ∈ [r] let Ai be a matrix of dimension `i×ki and bi a vector of dimension

`i. We say a set X is (Lt1, . . . ,Ltr)-free if there exists an r-colouring of X so that for each

i ∈ [r], the subset Y ⊆ X with colour i is Lti-free. We write µ(n,Lt1, . . . ,Ltr) to denote the

size of the largest (Lt1, . . . ,Ltr)-free subset of [n], and write µ(n,Lt, r) := µ(n,Lt1, . . . ,Ltr)

if L = Li for all i ∈ [r].

We also include some defintions which are important in both Chapters 5 and 6. We

call a system of linear equations L (and the matrix A in the case where b = 0) irredundant

if there exists a k-distinct solution to Ax = b in N, and redundant otherwise.

Call L (and again A if b = 0) partition regular if for any finite colouring of N, there is

always a monochromatic solution (of any kind) to Ax = b.

Let (∗) be the following matrix property:

(∗) Under Gaussian elimination A does not have any row which consists of precisely

10



two non-zero rational entries.

Index the columns of an ` × k matrix A by [k]. For a partition W ∪̇W = [k] of the

columns of A, we denote by AW the matrix obtained from A by restricting to the columns

indexed by W . Let rank(AW ) be the rank of AW , where rank(AW ) = 0 for W = ∅. We

set

m(A) := max
W ∪̇W=[k]
|W |>2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
. (1.3.2)

We remark that the denominator of m(A) is strictly positive provided that A is ir-

redundant and satisfies (∗). (Note that in Section 5.3.1 we will show that irredundant

partition regular matrices are a strict subclass of irredundant matrices which satisfy (∗).)

1.3.2 Notation

Let H be a (hyper)graph. We write V (H), E(H) and I(H) to represent the vertex set,

edge set and set of independent sets of H, and v(H), e(H) and i(H) for the respective

numbers of each of these. Consider any subset X ⊆ V (H). Let H[X] denote the induced

subgraph of H on the vertex set X and H \X denote the induced subgraph of H on the

vertex set V (H) \X. For an edge set Y ⊆ E(H), we define H−Y to be hypergraph with

vertex set V (H) and edge set E(H) \ Y .

For a set X and a positive integer x, we define
(
X
x

)
to be the set of all subsets of X

of size x, and we define
(
X
6x

)
to be the set of all subsets of X of size at most x. We use

P(X) to denote the powerset of X, that is, the set of all subsets of X. If B is a family of

subsets of X, then we define B to be the complement family, that is, precisely the subsets

of X which are not in B.

Given a hypergraph H, for each T ⊆ V (H), we define degH(T ) := |{e ∈ E(H) : T ⊆

e}|, and let ∆`(H) := max{degH(T ) : T ⊆ V (H) and |T | = `}.
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We write x = a ± b to say that the value of x is some real number in the interval

[a− b, a+ b].

For two constants α, β > 0 we use the notation α � β (often within a hierarchy of

constants) to mean that α is bounded by some unspecified function of β, so that the

calculations we wish to hold concerning α and β do indeed hold.

1.3.3 Probabilistic tools

We will need the Markov inequality and Chernoff bounds of the following form (see e.g.

[64, Theorem 2.1, Corollary 2.3]).

Proposition 1.1. Let X be a non-negative random variable. Then for all t > 0 we have

P[X > t] 6 E[X]
t

.

Proposition 1.2. Suppose X has binomial distribution.

(i) For every λ > 0, we have

P[X > E[X] + λ] 6 exp

(
− λ2

2(E[X] + λ/3)

)
.

(ii) For every 0 < ε 6 3/2, we have

P[|X − E[X]| > εE[X]] 6 2 exp

(
−ε

2

3
E[X]

)
.
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Chapter 2

Container and removal lemmas

Here we introduce the container and removal lemmas which will be required in the thesis.

Recall that the method of hypergraph containers was greatly advanced by the papers

of Balogh, Morris and Samotij [8] and Saxton and Thomason [106]. The first result we

require here is that of Balogh, Morris and Samotij. First we require some definitions.

Let H be a k-uniform hypergraph. A family of sets F ⊆ P(V (H)) is called increasing

if it is closed under taking supersets; in other words for every A,B ⊆ V (H), if A ∈ F

and A ⊆ B, then B ∈ F . Suppose F is an increasing family of subsets of V (H) and let

ε ∈ (0, 1]. We say that H is (F , ε)-dense if e(H[A]) > εe(H) for every A ∈ F .

Theorem 2.1 ([8], Theorem 2.2). For every k ∈ N and all positive c and ε, there

exists a positive constant C such that the following holds. Let H be a k-uniform hypergraph

and let F ⊆ P(V (H)) be an increasing family of sets such that |A| > εv(H) for all A ∈ F .

Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that, for every ` ∈ [k],

∆`(H) 6 c · p`−1 e(H)

v(H)
.

Then there exists a family S ⊆
(

V (H)
6Cp·v(H)

)
and functions f : S → F and g : I(H) → S

such that for every I ∈ I(H), we have that g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).
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Using the above notation, we refer to the set C := {f(g(I))∪ g(I) : I ∈ I(H)} as a set

of containers and the g(I) ∈ S as fingerprints. We use this result to derive an analogous

result for r-tuples of disjoint independent sets (see Theorems 5.14 and 5.15 in Chapter 5).

As mentioned in the introduction, container results often come side by side with a

removal lemma or supersaturation lemma. The removal lemma from which other results

we will require are a consequence of, is the following result of Král’, Serra and Vena [74].

Lemma 2.2 ([74], Theorem 2). Let A be an ` × k integer matrix of rank ` and b an

integer vector of dimension `. For every δ > 0 there exist n0, ε > 0 with the following

property. Suppose n > n0 is an integer and for X ⊆ [n], there are at most εnk−` solutions

in S(Ls, X). Then we can write X = B ∪ C where B is strongly L-free and |C| 6 δn.

The result is stated with b = 0 in [74], though clearly can be extended to general b as

stated above. Also within Lemma 2.2, since B is Ls-free, it is also Lw-free and Ld-free.

Thus, using little-o notation, we have |X| 6 µ(n,Lw) + o(n) and |X| 6 µ(n,Ld) + o(n).

Hence we obtain the following r-colour supersaturation lemma.

Lemma 2.3. Fix r ∈ N, t ∈ {d, w, s} and for each i ∈ [r], let Ai be an `i × ki integer

matrix of rank `i and bi be an integer vector of dimension `i. For every δ > 0 there

exist n0, ε > 0 with the following property. Suppose n > n0 is an integer and X ⊆ [n] is

r-coloured, and |X| > µ(n,Lt1, . . . ,Ltr) + δn. Then there exists an i ∈ [r] such that there

are more than εnki−`i solutions in S(Lti, X) in colour i.

We use Lemma 2.3 in Chapters 5 and 6. Note that Lemma 2.2 extends an earlier removal

lemma of Green for single linear equations, which we state here since we will use it directly

in Chapters 3 and 4.

Lemma 2.4 ([48]). Fix a k-variable homogeneous linear equation L. Suppose that A ⊆

[n] is a set containing o(nk−1) non-trivial solutions to L. Then there exist B and C such

that A = B ∪ C where B is weakly L-free and |C| = o(n).
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Finally, we also state Green’s container lemma for single linear equations (Proposition

9.1 of [48]), since it will also be directly used in Chapters 3 and 4. Lemma 2.5(i)–(iii)

is stated explicitly in Proposition 9.1 of [48]. Lemma 2.5(iv) follows as an immediate

consequence of Lemma 2.5(i) and Lemma 2.4 above.

Lemma 2.5 ([48]). Fix a k-variable homogeneous linear equation L. There exists a

family F of subsets of [n] with the following properties:

(i) Every F ∈ F has at most o(nk−1) non-trivial solutions to L.

(ii) If S ⊆ [n] is weakly L-free, then S is a subset of some F ∈ F .

(iii) |F| = 2o(n).

(iv) Every F ∈ F has size at most µ(n,Lw) + o(n).

Note that Lemma 2.5 can be recovered from Theorem 2.1 and Lemma 2.2. In fact

by using our r-colour container result (Theorem 5.15) we obtain an r-colour version of

Lemma 2.5 (see Theorem 5.21).
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Chapter 3

Solution-free sets of integers

3.1 Introduction

Recall from the introduction that a set A ⊆ [n] is weakly L-free if A does not contain any

non-trivial solutions to L in [n]. We will use the notation Lw-free for weakly L-free sets,

and throughout this chapter and the next, only consider weakly L-free sets.

The notion of an Lw-free set encapsulates many fundamental topics in combinatorial

number theory. Recall that in the case when L is x1 + x2 = x3 we call an Lw-free set

(or equivalently an Ls-free set, since x1 + x2 = x3 is not translation-invariant) a sum-

free set. This is a notion that dates back to 1916 when Schur [110] proved that, if n is

sufficiently large, any r-colouring of [n] yields a monochromatic triple x, y, z such that

x + y = z. Sidon sets (when L is x1 + x2 = x3 + x4) have also been extensively studied.

For example, a classical result of Erdős and Turán [38] asserts that the largest Sidon set

in [n] has size (1+o(1))
√
n. In the case when L is x1 +x2 = 2x3 an Lw-free set is simply a

progression-free set. Roth’s theorem [98] states that the largest progression-free subset of

[n] has size o(n). In [100, 101], Ruzsa instigated the study of solution-free sets for general

linear equations.

In this chapter we prove a number of results concerning Lw-free subsets of [n] where L

16



is a homogeneous linear equation in three variables. In particular, our work is motivated

by the following general questions:

(i) What is the size of the largest Lw-free subset of [n]?

(ii) How many Lw-free subsets of [n] are there?

(iii) How many maximal Lw-free subsets of [n] are there?

We make progress on all three of these questions. For each question we use tools from

graph theory; for (i) and (ii) our methods are somewhat elementary. For (iii) our method

is more involved and utilises container and removal lemmas of Green [48].

3.1.1 The size of the largest solution-free set

As highlighted above, a central question in the study of Lw-free sets is to establish the

size µ(n,Lw) of the largest Lw-free subset of [n]. It is not difficult to see that the largest

sum-free subset of [n] has size dn/2e, and this bound is attained by the set of odd numbers

in [n] and by the interval [bn/2c+ 1, n].

When L is x1 + x2 = 2x3, µ(n,Lw) = o(n) by Roth’s theorem. In fact, very recently

Bloom [18] proved that there is a constant C such that every set A ⊆ [n] with |A| >

Cn(log log n)4/ log n contains a three-term arithmetic progression. On the other hand,

Behrend [15] showed that there is a constant c > 0 so that µ(n,Lw) > n exp(−c
√

log n).

See [32, 50] for the best known lower bound on µ(n,Lw) in this case.

More generally, it is known that µ(n,Lw) = o(n) if L is homogeneous and translation-

invariant, and µ(n,Lw) = Ω(n) otherwise (see [100]). For other (exact) bounds on

µ(n,Lw) for various linear equations L see, for example, [100, 101, 11, 31, 53].

In this chapter we mainly focus on Lw-free subsets of [n] for linear equations L of the

form px + qy = z where p > 2 and q > 1 are fixed integers. For such equations the set

of Lw-free sets are precisely the same as the set of Ls-free sets since L is not translation-
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invariant. Also notice that for such L, the interval [bn/(p + q)c + 1, n] is an Lw-free set.

Our first result implies that this is the largest such Lw-free subset of [n].

Theorem 3.1. Let L denote the equation px + qy = z where p > q and p > 2, p, q ∈ N.

Let S be an Lw-free subset of [n], and let min(S) = b n
p+q
c − t where t is a non-negative

integer.

(i) If 0 6 t < ( p+q−1
p+q+p/q

)b n
p+q
c then |S| 6 d (p+q−1)n

p+q
e − bp

q
tc.

(ii) If t > ( p+q−1
p+q+p/q

)b n
p+q
c then |S| 6 (q2+1)n

q2+q+1
provided that n > 3(q2+q+1)(q3+p(q2+q+1))

q2+1
and

n > 5(q2+q+1)(q5+p(q4+q3+q2+q+1))
q4+(p−1)q3+q2+1

.

In both cases of Theorem 3.1 we observe that |S| 6 n − b n
p+q
c, hence the following

corollary holds.

Corollary 3.2. Let L denote the equation px+ qy = z where p > q and p > 2, p, q ∈ N.

If n is sufficiently large depending on p and q, then µ(n,Lw) = n− b n
p+q
c.

Roughly, Theorem 3.1 implies that every Lw-free subset of [n] is ‘interval like’ or

‘small’. In the case of sum-free subsets (i.e. when p = q = 1), a result of Deshouillers,

Freiman, Sós and Temkin [30] provides very precise structural information on the sum-free

subsets of [n]. Loosely speaking, they showed that a sum-free subset of [n] is ‘interval

like’, ‘small’ or consists entirely of odd numbers.

In the case when p = q, Corollary 3.2 was proven by Hegarty [53] (without a lower

bound on n).

3.1.2 The number of solution-free sets

Write f(n,Lw) for the number of Lw-free subsets of [n]. In the case when L is x+ y = z,

define f(n) := f(n,Lw).

By considering all possible subsets of [n] consisting of odd numbers, one observes that

there are at least 2n/2 sum-free subsets of [n]. Cameron and Erdős [23] conjectured that
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in fact f(n) = Θ(2n/2). This conjecture was proven independently by Green [47] and

Sapozhenko [104]. In fact, they showed that there are constants C1 and C2 such that

f(n) = (Ci + o(1))2n/2 for all n ≡ i mod 2.

Results from [71, 107] imply that there are between 2(1.16+o(1))
√
n and 2(6.45+o(1))

√
n

Sidon sets in [n]. There are also several results concerning the number of so-called (k, `)-

sum-free subsets of [n] (see, e.g., [17, 22, 109]).

More generally, given a linear equation L, there are at least 2µ(n,L
w) Lw-free subsets of

[n]. In light of the situation for sum-free sets one may ask whether, in general, f(n,Lw) =

Θ(2µ(n,L
w)). However, Cameron and Erdős [23] observed that this is false for homogeneous

translation-invariant L. In particular, given such an Lw-free set, any translation of it is

also Lw-free.

Green [48] though showed that given a homogeneous linear equation L, f(n,Lw) =

2µ(n,L
w)+o(n) (where here the o(n) may depend on L). Our next result implies that one

can omit the term o(n) in the exponent for certain types of linear equation L.

Theorem 3.3. Fix p, q ∈ N where (i) q > 2 and p > q(3q+ 2)/(2q− 2) or (ii) q = 1 and

p > 3. Let L denote the equation px+ qy = z. Then

f(n,Lw) = Θ(2µ(n,L
w)).

3.1.3 The number of maximal solution-free sets

Given a linear equation L, we say that S ⊆ [n] is a maximal Lw-free subset of [n] if it is

Lw-free and it is not properly contained in another Lw-free subset of [n]. Write fmax(n,Lw)

for the number of maximal Lw-free subsets of [n]. In the case when L is x+ y = z, define

fmax(n) := fmax(n,Lw).

A significant proportion of the sum-free subsets of [n] lie in just two maximal sum-

free sets, namely the set of odd numbers in [n] and the interval [bn/2c + 1, n]. This led
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Cameron and Erdős [24] to ask whether fmax(n) = o(f(n)) or even fmax(n) 6 f(n)/2εn for

some constant ε > 0.  Luczak and Schoen [79] answered this question in the affirmative,

showing that fmax(n) 6 2n/2−2
−28n for sufficiently large n. Later, Wolfovitz [121] proved

that fmax(n) 6 23n/8+o(n). Very recently, Balogh, Liu, Sharifzadeh and Treglown [6, 7]

proved the following: For each 1 6 i 6 4, there is a constant Ci such that, given any

n ≡ i mod 4, fmax(n) = (Ci + o(1))2n/4.

Except for sum-free sets, the problem of determining the number of maximal solution-

free subsets of [n] remains wide open. In this chapter we give a number of bounds on

fmax(n,Lw) for homogeneous linear equations L in three variables. The next result gives

a general upper bound for such L. Given a three-variable linear equation L, an L-triple

is a multiset {x, y, z} which forms a solution to L. (In other words, the set of all L-triples

in X corresponds to S(Ls, X).) Let µ∗(n,L) denote the number of elements x ∈ [n] that

do not lie in any L-triple in [n].

Theorem 3.4. Let L be a fixed homogenous three-variable linear equation. Then

fmax(n,Lw) 6 3(µ(n,Lw)−µ∗(n,L))/3+o(n).

Theorem 3.4 together with the aforementioned result of Green shows that fmax(n,Lw) is

significantly smaller than f(n,Lw) for all homogeneous three-variable linear equations L

that are not translation-invariant. So in this sense it can be viewed as a generalisation

of the result of  Luczak and Schoen. The proof of Theorem 3.4 is a simple application of

container and removal lemmas of Green [48]. The same idea was used to prove results

in [10, 6, 7]. Although at first sight the bound in Theorem 3.4 may seem crude, perhaps

surprisingly there are equations L where the value of fmax(n,Lw) is close to this bound

(see Proposition 3.19 in Section 3.5).

On the other hand, the following result shows that there are linear equations where
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the bound in Theorem 3.4 is far from tight.

Theorem 3.5. Let L denote the equation px + qy = z where p > q > 2 are integers so

that p 6 q2 − q and gcd(p, q) = q. Then

fmax(n,Lw) 6 2(µ(n,Lw)−µ∗(n,L))/2+o(n).

In the case when L is the equation 2x + 2y = z we provide a matching lower bound.

Again though, we suspect there are equations L where the bound in Theorem 3.5 is far

from tight. The proof of Theorem 3.5 applies Theorem 3.1 as well as the container and

removal lemmas of Green [48].

We also provide another upper bound on fmax(n,Lw) for a more general class of linear

equations.

Theorem 3.6. Let L denote the equation px + qy = z where p > q, p > 2 and p, q ∈ N.

Then

fmax(n,Lw) 6 2µ(b
n−p
q
c,Lw)+o(n).

Further, if q > 2 and p > q(3q − 2)/(2q − 2) or q = 1 and p > 3 then

fmax(n,Lw) = O(2µ(b
n−p
q
c,Lw)).

In Section 3.5 we provide lower bounds on fmax(n,Lw) for all equations L of the form

px+ qy = z where p, q > 2 are integers; see Proposition 3.21.

Our results suggest that, in contrast to the case of f(n,Lw), it is unlikely there is a

‘simple’ general asymptotic formula for fmax(n,Lw) for all homogeneous linear equations

L. It would be extremely interesting to make further progress on this problem.

The chapter is organised as follows. In the next section we collect together a number

of useful tools. In Section 3.3 we prove Theorem 3.1. Theorem 3.3 is proven in Section 3.4.
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We prove our results on the number of maximal Lw-free sets in Section 3.5. In Chapter 4

we obtain further results on the number of maximal Lw-free sets, and so see Section 4.6

for a note on which of our results produces the best upper bound on fmax(n,Lw) for a

given equation L.

3.2 Containers and independent sets in graphs

3.2.1 Container and removal lemmas

Recall from the introduction that we can phrase the problem in terms of independent sets

in hypergraphs. Let H denote the hypergraph with vertex set [n] and edges corresponding

to non-trivial solutions to L. Then an independent set inH is precisely an Lw-free set. We

will use the removal and container results of Green from Chapter 2 (that is, Lemmas 2.4

and 2.5), and the following result (which is an immediate consequence).

Theorem 3.7 ([48]). Fix a homogeneous linear equation L. Then f(n,Lw) = 2µ(n,L
w)+o(n).

We will use these results to deduce upper bounds on the number of maximal Lw-free

sets (Theorems 3.4, 3.5 and 3.6).

3.2.2 Independent sets in graphs

First observe the following obvious bound on the number of independent sets in a graph.

Fact 3.8. Let G be a graph and let A1, . . . , Ar be a partition of V (G). Then i(G) 6∏r
i=1 i(G[Ai]).

The following simple lemma will be used in the proof of Theorem 3.3.

Lemma 3.9. Let G be a graph on n vertices and M be a matching in G which consists

of e edges. Suppose that v ∈ V (G) lies in M . Then the number of independent sets in G

which contain v is at most 3e−1 · 2n−2e.
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Proof. First note that the number of independent sets in G which contain v is at most

i(G \ X) where X consists of v and its neighbour in M . Let A1, . . . , Ae be a partition

of the vertex set V (G \ X), where if 1 6 i 6 e − 1 then Ai contains precisely the two

vertices from some edge in M . So |Ae| = n − 2e. Clearly i(G[Ai]) = 3 for 1 6 i 6 e − 1

and i(G[Ae]) 6 2n−2e. The result then follows by Fact 3.8. �

3.2.3 Link graphs and maximal independent sets

We obtain many of our results by counting the number of maximal independent sets in

various auxiliary graphs. Similar techniques were used in [121, 6, 7], and in the graph

setting in [10, 5]. To be more precise, let B and S be disjoint subsets of [n] and fix a

three-variable linear equation L. The link graph LS[B] of S on B has vertex set B, and

an edge set consisting of the following two types of edges:

(i) Two vertices x and y are adjacent if there exists an element z ∈ S such that {x, y, z}

is an L-triple;

(ii) There is a loop at a vertex x if there exists an element z ∈ S or elements z, z′ ∈ S

such that {x, x, z} or {x, z, z′} is an L-triple.

Notice that since the only possible trivial solutions to a three-variable linear equation L

are of the form {x, x, x}, all the edges in LS[B] correspond to non-trivial L-triples.

The following simple lemma was stated in [6, 7] for sum-free sets, but extends to

three-variable linear equations.

Lemma 3.10. Fix a three-variable linear equation L. Suppose that B, S are disjoint Lw-

free subsets of [n]. If I ⊆ B is such that S ∪ I is a maximal Lw-free subset of [n], then I

is a maximal independent set in G := LS[B].

Let MIS(G) denote the number of maximal independent sets in G. Suppose we have

a container F ∈ F as in Lemma 2.5 and suppose F = A ∪ B where B is Lw-free.
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Observe that any maximal Lw-free subset of [n] in F can be found by first choosing an

Lw-free set S ⊆ A, and then extending S in B. Note that by Lemma 3.10, the number

of possible extensions of S in B (which we shall refer to as N(S,B)) is bounded from

above by the number of maximal independent sets in the link graph LS[B] (i.e. we have

N(S,B) 6 MIS(LS[B])). Hence Lemma 3.10 is a useful tool for bounding the number of

maximal Lw-free subsets of [n].

In particular, we will apply the following result in combination with Lemma 3.10.

The first part was proven by Moon and Moser [82] and the second part by Hujter and

Tuza [62]. We use the first condition in the proof of Theorems 3.4 and 3.5.

Theorem 3.11. Suppose that G is a graph on n vertices possibly with loops. Then the

following bounds hold.

(i) MIS(G) 6 3n/3;

(ii) MIS(G) 6 2n/2 if G is additionally triangle-free.

To prove Theorem 3.5 we will combine Theorem 3.11(ii) and the following result.

Lemma 3.12. Let L denote the equation px+ qy = z where p > q > 2 and p, q ∈ N. Let

A ⊆ [1, u] and let B ⊆ [u+ 1, n] for some u ∈ [n]. Consider the link graph G := LA[B] of

A on B. If q2 > p+ q then G is triangle-free.

Proof. Suppose that q2 > p+ q and suppose for a contradiction there is a triangle in G

with vertices b1 < b2 < b3. By definition of the link graph, there exist s1, s2, s3 ∈ A such

that {b1, b2, s1}, {b2, b3, s2}, {b1, b3, s3} are L-triples.

Since all numbers in A are smaller than all numbers in B we have 1 6 s1, s2, s3 <

b1 < b2 < b3. Also, since p > q > 2, for each of our L-triples {bi, bj, sk} (where bi < bj) it

follows that bj must play the role of z in L.
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Let ri ∈ {p, q} for each i ∈ [6], where r1 6= r2, r3 6= r4 and r5 6= r6, and consider the

three equations r1b1 + r2s1 = b2, r3b2 + r4s2 = b3 and r5b1 + r6s3 = b3; observe that each of

the possible ordered tuples (r1, . . . , r6) correspond to possible solutions. Combining the

second and third equations gives b2 = (r5b1 + r6s3 − r4s2)/r3. Then combining this with

the first equation gives (r1r3−r5)b1+r2r3s1+r4s2 = r6s3. Now since s3 < b1 and all terms

are at least 1, for such an inequality to hold we must have r1r3 − r5 < r6. Since r5 6= r6

this means we have r1r3 < p+ q. Hence as r1, r3 ∈ {p, q}, in order for G to have a triangle

at least one of p2 < p + q, q2 < p + q and pq < p + q must be satisfied. Since p > q > 2,

the first and third are not true and so we must have q2 < p+ q, a contradiction. �

We also use link graphs as a means to obtain lower bounds on the number of maximal

Lw-free sets. We apply the following result in Propositions 3.19 and 3.21.

Lemma 3.13. Fix a three-variable linear equation L. Suppose that B, S are disjoint

Lw-free subsets of [n]. Let H be an induced subgraph of the link graph LS[B]. Then

fmax(n,Lw) >MIS(H).

Proof. Suppose I and J are different maximal independent sets in H. First note that

S ∪ I and S ∪ J are Lw-free by definition of the link graph. Both cannot lie in the same

maximal Lw-free subset of [n]. To see this, observe by definition of I and J , there exists

i ∈ I \ J . There must exist s ∈ S, j ∈ J such that {i, j, s} forms an L-triple, else J ∪ {i}

would be an independent set in H, which contradicts the maximality of J . Hence any

maximal Lw-free subset of [n] containing S ∪ J does not contain i. Similarly there exists

j ∈ J \ I such that any maximal Lw-free subset of [n] containing S ∪ I does not contain

j. The result immediately follows. �
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3.3 The size of the largest solution-free set

Throughout this section, L will denote the equation px+ qy = z where p > q and p > 2,

p, q ∈ N. The aim of this section is to determine the size of the largest Lw-free subset of

[n]. In fact, we will prove a richer structural result on Lw-free sets (Theorem 3.1). For

this, we will introduce the following auxiliary graph Gm: Let m ∈ [n] be fixed. We define

the graph Gm to have vertex set [m,n] and edges between c and pm+ qc for all c ∈ [m,n]

such that pm+ qc 6 n. We will also make use of these auxiliary graphs in Section 3.4.

Fact 3.14. .

(i) The size of the largest Lw-free subset S of [n] with min(S) = m is at most the size

of the largest independent set in Gm which contains m.

(ii) The number of Lw-free subsets S of [n] with min(S) = m is at most the number of

independent sets in Gm which contain m.

Proof. Let S be an Lw-free subset of [n] with min(S) = m. Since {m, c, pm + qc} is

an L-triple contained in [n] for all c ∈ [m,n] such that pm + qc 6 n, S cannot contain

both c and pm + qc. Hence any Lw-free subset of [n] with minimum element m is also

an independent set in Gm which contains m (although the converse does not necessarily

hold). This immediately implies (i) and (ii). �

Note that Gm is a union of disjoint paths (and possibly isolated vertices). We refer to

the connected components of Gm as the path components. Given Gm, we define y0 := n,

and for i > 1 define yi := max{v ∈ V (Gm)| pm+qv 6 yi−1}. Thus we have yi = byi−1−pm
q
c.

For Gm we also define k to be the largest i such that yi ∈ [m,n], and refer to k as the path

parameter of Gm. We define the size of a path component to be the number of vertices

in it, and we define N(Gm, i) to be the number of path components of size i in Gm.
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Fact 3.15. The graph Gm consists entirely of disjoint path components, where for each

1 6 i 6 k−1 there are yi−1+yi+1−2yi path components of size i, there are yk−1−2yk+m−1

path components of size k and yk −m+ 1 path components of size k + 1.

Proof. Every vertex c ∈ V (Gm) satisfying yj+1 < c 6 yj for some 0 6 j 6 k − 1 is in

a path in Gm which contains precisely j vertices which are larger than it, whereas every

vertex c > yj is not in such a path. All the vertices in [m, yk] are in paths which contain

precisely k vertices which are larger than it, all vertices in [yk +1, yk−1] are in paths which

contain precisely k − 1 vertices which are larger than it, and so on.

Let Ai be the interval [yi + 1, yi−1] for 1 6 i 6 k and let Ak+1 be the interval [m, yk].

There are |[m, yk]| = yk−m+1 path components of size k+1 in Gm. For i 6 k all vertices

in Ai are the smallest vertex in a path on i vertices, however they may not be the smallest

vertex in their path component. In fact, by definition of the yi, all paths which start in Aj

for some j must include precisely one vertex from each set Aj−1, Aj−2, . . . , A1. This means

that for i 6 k, the number of path components of size i in Gm is precisely |Ai| − |Ai+1|.

For i 6 k − 1 this is yi−1 + yi+1 − 2yi and for i = k this is yk−1 − 2yk +m− 1. �

We use the graphs Gm and the above facts to obtain the bound for the size of the

largest Lw-free subset of [n] as stated in Theorem 3.1. For (ii), we will show that a largest

independent set in Gm has size at most (q2 + 1)n/(q2 + q + 1). Before going into full

details of the proof of Theorem 3.1, we briefly explain why this is a reasonable target for

an upper bound.

Since Gm consists of path components of different sizes, one picks an independent set

of maximum size by selecting dk/2e vertices from each path component of size k. (That

is, we select one vertex from a path component of size 1 or 2, two vertices from a path

component of size 3 or 4, etc.) Note that the ratio of vertices selected (percentage of

vertices chosen from a path of given size) is always 1/2 if k is even, while it tends towards

1/2 from above if k is odd and increasing. We show that there is at least one path
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component of size 3, and thus the ‘worst possible’ case should be having path components

of size at most 3. The relative number of path components of size 3 compared to those

of size 2 and 1 leads to the bound (q2 + 1)n/(q2 + q + 1). For an example, let L be the

equation 2x + 2y = z, suppose n = 21 and m = 1; see Figure 3.1 below. Here we can

see that a largest independent set is [1, 3] ∪ [10, 21]; the ratio of selected vertices here is

15/21 = 5/7 = (q2 + 1)/(q2 + q + 1). We now proceed with the formal proof.

10

4

1

11 12

5

13 14

6

2

15 16

7

17 18

8

3

19 20

9

21

Figure 3.1: Gm where L is 2x+ 2y = z, n = 21 and m = 1.

Proof of Theorem 3.1. Let t be a non-negative integer. To prove (i) suppose that

t < ( p+q−1
p+q+p/q

)b n
p+q
c. Suppose S is an Lw-free set contained in [b n

p+q
c − t, n] where m :=

b n
p+q
c − t ∈ S. By Fact 3.14(i) it suffices to prove that the largest independent set in Gm

containing m has size at most d (p+q−1)n
p+q

e − bp
q
tc. Since |V (Gm)| = d (p+q−1)n

p+q
e + t + 1 it

suffices to show that any independent set I in Gm satisfies |V (Gm)\ I| > b(p+ q)t/qc+ 1.

For 0 6 i 6 b(p+ q)t/qc, there is an edge between m+ i and (p+ q)m+ qi. Note that

since i 6 b(p + q)t/qc and q 6 p we have that the largest vertex in any of these edges is

indeed at most n:

(p+ q)(b n
p+q
c − t) + qi 6 n− (p+ q)t+ qb(p+ q)t/qc 6 n− (p+ q)t+ q(p+ q)t/q = n.

Since I can only contain one vertex from each of these edges, we have proven (i),

provided that these edges are disjoint. It suffices to show that b n
p+q
c+bpt/qc < (p+q)m =

(p + q)(b n
p+q
c − t) since the left hand side is the largest element of the set {m + i : 0 6

i 6 b(p+ q)t/qc}. But this immediately follows since t < ( p+q−1
p+q+p/q

)b n
p+q
c.
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To prove (ii) let t > ( p+q−1
p+q+p/q

)b n
p+q
c and suppose S is an Lw-free subset of [n] with

m := min(S) = b n
p+q
c−t. By Fact 3.14(i) |S| is at most the size of the largest independent

set in Gm which contains m. We will first show that Gm has path parameter k > 2, and

then the case q = 1 follows easily. Define ` := bk/2c and

Ck :=

(2`+1∑
i=0

(−1)(−q)i + p
∑̀
i=0

q2i

q2`+1 + p
2∑̀
i=0

qi

)
.

We will show that if q > 2 then the largest independent set in Gm has size at most Ckn+k.

We then further bound this from above by (q2 + 1)n/(q2 + q+ 1) for n sufficiently large.

Note that by Fact 3.15, to prove that k > 2 for Gm it suffices to show that there is a

path on 3 vertices in Gm. By definition of k, m lies on a path P on k + 1 vertices. Write

P = v0v1 · · · vk where m = v0 and observe that vj = (qj + p
j−1∑
i=0

qi)m for 0 6 j 6 k. To

prove k > 2 it suffices to show that there is indeed a vertex (q2 + pq + p)m in V (Gm),

i.e. (q2 + pq + p)m 6 n. Note that since t > ( p+q−1
p+q+p/q

)b n
p+q
c, we have m = b n

p+q
c − t 6

(p+q+p/q−p−q+1
p+q+p/q

)b n
p+q
c = ( p+q

q2+pq+p
)b n
p+q
c. Hence (q2 + pq + p)m 6 n as desired.

When q = 1 observe that yi = yi−1 − pm, so for i 6 k − 1 by Fact 3.15 we have

N(Gm, i) = yi−1 + yi+1 − 2yi = yi + pm+ yi − pm− 2yi = 0. Hence Gm consists entirely

of a union of path components of size either k or k + 1. Since at most di/2e vertices of

a path on i vertices can be in an independent set and k > 2, the largest independent set

in Gm has size at most 2n/3 = (q2 + 1)n/(q2 + q + 1) in this case, as desired. So now

consider the case when q > 2. We calculate the maximum size of an independent set in

Gm:

k+1∑
i=1

di/2e ·N(Gm, i)
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=

( k−1∑
i=1

di/2e · (yi−1 + yi+1 − 2yi)

)
+ dk/2e(yk−1 +m− 1− 2yk)

+ d(k + 1)/2e(yk −m+ 1)

= y0 +

( k∑
i=1

(d(i− 1)/2e − 2di/2e+ d(i+ 1)/2e)yi
)

+ (m− 1)(dk/2e − d(k + 1)/2e).

(3.3.1)

Here we used Fact 3.15 in the first equality. For i odd, the coefficient of yi in (3.3.1)

is (i − 1)/2 − 2(i + 1)/2 + (i + 1)/2 = −1. For i even, the coefficient of yi in (3.3.1) is

i/2− 2i/2 + (i+ 2)/2 = 1.

The following bounds are obtained from the definition of yi and k:

(a)
(
n− qj + 1− pm

j−1∑
i=0

qi
)
/qj 6 yj 6

(
n− pm

j−1∑
i=0

qi
)
/qj;

(b) n/
(
qk+1 + p

k∑
i=0

qi
)
< m 6 n/

(
qk + p

k−1∑
i=0

qi
)
.

Let ` := bk/2c (note k > 2 so ` > 1). First suppose k is odd, i.e. k = 2` + 1. Using

(3.3.1), the size of the largest independent set in Gm is bounded above by

y0 +
( k∑
i=1

(d(i− 1)/2e − 2di/2e+ d(i+ 1)/2e)yi
)

+ (m− 1)(dk/2e − d(k + 1)/2e)

= y0 − y1 + y2 − y3 + · · ·+ y2` − y2`+1

(a)

6 n−
(n− pm− q + 1

q

)
+
(n− pm(1 + q)

q2

)
−
(n− pm(1 + q + q2)− q3 + 1

q3

)
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+ · · · −

(n− (pm 2∑̀
i=0

qi
)
− q2`+1 + 1

q2`+1

)

=n
(

1− 1

q
+

1

q2
− · · · − 1

q2`+1

)
+m

(p
q

+
p

q3
+ · · ·+ p

q2`+1

)
+
q − 1

q
+
q3 − 1

q3

+ · · ·+ q2`+1 − 1

q2`+1

(b)

6
n

q2`+1

( 2`+1∑
i=0

(−1)(−q)i
)

+

(
n

q2`+1 + p
2∑̀
i=0

qi

)(p ∑̀
i=0

q2i

q2`+1

)
+
k + 1

2

=

([ 2`+1∑
i=0

(−1)(−q)i
]
(q2`+1 + p

2∑̀
i=0

qi) + p
∑̀
i=0

q2i

q2`+1(q2`+1 + p
2∑̀
i=0

qi)

)
n+

k + 1

2

=

(2`+1∑
i=0

(−q)i+2`+1 + p
∑̀
i=0

q2i+2`+1

q2`+1(q2`+1 + p
2∑̀
i=0

qi)

)
n+

k + 1

2
=

(2`+1∑
i=0

(−1)(−q)i + p
∑̀
i=0

q2i

q2`+1 + p
2∑̀
i=0

qi

)
n+

k + 1

2

=Ckn+
k + 1

2
6 Ckn+ k.

By definition, m > yk+1 + 1 and for k even, we have Ck = Ck+1. So if k is even (k = 2`)

then we have

y0 +
( k∑
i=1

(d(i− 1)/2e − 2di/2e+ d(i+ 1)/2e)yi
)

+ (m− 1)(dk/2e − d(k + 1)/2e)

= y0 − y1 + y2 − y3 + ...+ y2` −m+ 1 6 y0 − y1 + y2 − y3 + ...+ y2` − y2`+1

6Ck+1n+
k + 2

2
6 Ckn+ k.
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The penultimate inequality follows by using calculations from the odd case. The last

inequality follows since k > 2 and Ck = Ck+1. Thus we have shown that |S| 6 Ckn + k

and we know that k > 2. It remains to show that

Ckn+ k 6
(q2 + 1)n

q2 + q + 1
(3.3.2)

for k > 2 and n sufficiently large.

We know that m 6 n/(qk+p
k−1∑
i=0

qi) and so n > qk+p
k−1∑
i=0

qi, therefore condition (3.3.2)

is met if

( q2 + 1

q2 + q + 1
− Ck

)(
qk + p

k−1∑
i=0

qi
)
> k. (3.3.3)

Claim 3.16. For k > 6, (3.3.3) holds.

Proof. We use induction on k. Recall that p > q > 2. For the base case k = 6 we

directly calculate (3.3.3). First note that

q2 + 1

q2 + q + 1
− q7 − q6 + q5 − q4 + q3 − q2 + q − 1 + p(q6 + q4 + q2 + 1)

q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1)

=
(q6 + (p− 1)q5 + q4 + (p− 1)q3 + q2 + 1)

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))
,

and so we have

( q2 + 1

q2 + q + 1
− C6

)(
q6 + p(q5 + q4 + q3 + q2 + q + 1)

)
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=
(q6 + (p− 1)q5 + q4 + (p− 1)q3 + q2 + 1)(q6 + p(q5 + q4 + q3 + q2 + q + 1))

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))
.

Since p > q > 2 every power of q in the numerator has a coefficient of at least 1 in

both expressions, hence the numerator as a single polynomial in q has positive coefficients.

Hence we can make our fraction smaller by dropping lower powers of q. We then make

further use of p > q > 2 to get the desired result:

(q6 + (p− 1)q5 + q4 + (p− 1)q3 + q2 + 1)(q6 + p(q5 + q4 + q3 + q2 + q + 1))

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))

>
q12 + (2p− 1)q11 + (p2 + 1)q10 + (p2 + 2p− 1)q9

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))

>
q12 + (2p− 1)q11 + (p2 + 1)q10 + (p2 + 2p− 1)q9

(p+ 1)q10

=
q2 + (2p− 1)q + (p2 + 1)

p+ 1
+
p2 + 2p− 1

(p+ 1)q

>
p2 + 4p+ 3

p+ 1
+

p2 + p

(p+ 1)q
= p+ 3 + p/q > 6 = k.

For the inductive step, assume that (3.3.3) holds for k. It suffices to show that Ck >

Ck+1 as then the result holds for k + 1:

( q2 + 1

q2 + q + 1
− Ck+1

)(
qk+1 + p

k∑
i=0

qi
)
>
( q2 + 1

q2 + q + 1
− Ck

)(
qk+1 + p

k∑
i=0

qi
)

> q
( q2 + 1

q2 + q + 1
− Ck

)(
qk + p

k−1∑
i=0

qi
)
> qk > k + 1.
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For k even, we have Ck = Ck+1 by definition. For k odd, consider the following

calculations:

(i) D1 := qk+2
( k∑
i=0

(−1)(−q)i
)
− qk

( k+2∑
i=0

(−1)(−q)i
)

= −qk+1 + qk,

(ii) D2 := pqk+2
( (k−1)/2∑

i=0

q2i
)
− pqk

( (k+1)/2∑
i=0

q2i
)

= −pqk,

(iii) D3 := p
( k+1∑
i=0

qi
)( k∑

i=0

(−1)(−q)i
)
− p
( k−1∑
i=0

qi
)( k+2∑

i=0

(−1)(−q)i
)

= pqk+1 − pqk,

(iv) D4 := p2
( k+1∑
i=0

qi
)( (k−1)/2∑

i=0

q2i
)
− p2

( k−1∑
i=0

qi
)( (k+1)/2∑

i=0

q2i
)

= p2qk.

Using these we have

Ck − Ck+1 =

( k∑
i=0

(−1)(−q)i
)

+ p
( (k−1)/2∑

i=0

q2i
)

qk + p
( k−1∑
i=0

qi
) −

( k+2∑
i=0

(−1)(−q)i
)

+ p
( (k+1)/2∑

i=0

q2i
)

qk+2 + p
( k+1∑
i=0

qi
)

=
D1 +D2 +D3 +D4(

qk + p
( k−1∑
i=0

qi
))(

qk+2 + p
( k+1∑
i=0

qi
))

=
(p− 1)qk+1 + (p2 − 2p+ 1)qk(

qk + p
( k−1∑
i=0

qi
))(

qk+2 + p
( k+1∑
i=0

qi
)) > 0,

where the last inequality follows since p, q > 2. �

The claim is not a result which generally holds for 2 6 k 6 5 so instead we directly

calculate how large n should be to satisfy (3.3.2) in these cases. For k = 3 and k = 5

we obtain n > 3(q3+p(q2+q+1))(q2+q+1)
q2+1

and n > 5(q5+p(q4+q3+q2+q+1))(q2+q+1)
q4+(p−1)q3+q2+1

respectively. For
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k = 2 and k = 4 we obtain weaker bounds. Hence taking n to be sufficiently large (larger

than these two bounds), we have Ckn+ k 6 (q2+1)n
q2+q+1

for all k > 2.

�

3.4 The number of solution-free sets

Recall Theorem 3.7 states that f(n,Lw) = 2µ(n,L
w)+o(n) for any fixed homogeneous linear

equation L. The aim of this section is to replace the term o(n) here with a constant for

many equations L. This will be achieved in Theorem 3.18, which immediately implies

Theorem 3.3. Denote by f(n,Lw,m) the number of Lw-free subsets of [n] with minimum

element m. We first give bounds on f(n,Lw,m) for linear equations L of the form

px+ qy = z.

Lemma 3.17. Let L denote the equation px+ qy = z where p > q and p > 2, p, q ∈ N.

(i) If m > b n
p+q
c+ 1 then f(n,Lw,m) = 2n−m.

(ii) If n is sufficiently large depending on p and q and m = b n
p+q
c then f(n,Lw,m) 6

2µ(n,L
w)−1.

(iii) If n is sufficiently large depending on p and q, q > 2, m = b n
p+q
c−t for some positive

integer t and Gm has path parameter 1, then f(n,Lw,m) 6 2µ(n,L
w)−3/5+t(3q−2p)/(5q).

(iv) If q > 2, m = b n
p+q
c − t for some positive integer t and Gm has path parameter

k > 2, then f(n,Lw,m) 6 (4/3) · 2(5q2−2q+2)n/(5q2).

(v) If q = 1, Gm has path parameter `, and m = b n
`p+1
c − t for some integer t, then

f(n,Lw,m) 6 2(7`p+3p)n/(10`p+10)+(t(7−3p)+7)/10.

Proof. First note that (i) is trivial since all subsets S ⊆ [n] with min(S) > b n
p+q
c+1 are

Lw-free. By Fact 3.14(ii) we know that f(n,Lw,m) is at most the number of independent
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sets in Gm which contain m. For (ii), there is one edge between m = b n
p+q
c and (p +

q)m 6 n in Gm, hence there are at most 2n−b
n
p+q
c−1 = 2µ(n,L

w)−1 independent sets in Gm

containing m.

For (iii) suppose q > 2 and m = b n
p+q
c − t for some t ∈ N. Notice that Gm contains

a matching on y1 − m + 1 edges, namely there is an edge between c and pm + qc for

c ∈ [m, y1]. Observe that 3/4 6 2−2/5 and also

y1 −m =

⌊
n− pm

q

⌋
−m > n− (p+ q)m− q

q
>
t(p+ q)

q
− 1.

Hence by Lemma 3.9 the total number of independent sets in Gm which contain m is at

most

2n−m−2(y1−m)−13y1−m 6 2µ(n,L
w)−1+t(3/4)y1−m

62µ(n,L
w)−1+t(3/4)t(p+q)/q−1 6 2µ(n,L

w)−3/5+t(3q−2p)/(5q),

as desired.

For (iv) suppose q > 2, m = b n
p+q
c − t for some positive integer t and Gm has path

parameter k > 2. First note that

y1 − y2 =

⌊
n− pm

q

⌋
−

⌊
bn−pm

q
c − pm
q

⌋
>
n− pm− q

q
− n− pm− qpm

q2

=
(q − 1)n+ pm− q2

q2
>

(q − 1)n

q2
− 1.

Define F (i) to be the ith Fibonacci number where F (1) = F (2) = 1. There are

F (i + 2) independent sets (including the empty set) in a path of length i. Recall the

following Fibonacci identity: F (i + 2)F (i) − F (i + 1)2 = (−1)i+1. If i is even and a > b
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then

(
F (i)F (i+ 2)

F (i+ 1)2

)a(
F (i+ 1)F (i+ 3)

F (i+ 2)2

)b
=

(
F (i+ 1)2 − 1

F (i+ 1)2

)a(
F (i+ 2)2 + 1

F (i+ 2)2

)b
6 1.

Also observe that by omitting (F (i+ 1)F (i+ 3)/F (i+ 2)2)b the inequality still holds. By

use of Fact 3.15 and applying the above bounds, we can bound from above the number

of independent sets in Gm as required:

2y0+y2−2y13y1+y3−2y25y2+y4−2y3 . . . F (k + 1)yk−2+yk−2yk−1F (k + 2)yk−1+m−2yk−1F (k + 3)yk−m+1

= 2y0+y2−2y13y1−2y25y2
(

3 · 8
52

)y3(5 · 13

82

)y4
· · ·
(
F (k + 1) · F (k + 3)

F (k + 2)2

)yk(F (k + 2)

F (k + 3)

)m−1
6 2y0+y2−2y13y1−2y25y2 6 2y0+y2−2y1+y23y1−y2 = 2y0(3/4)y1−y2 6 2n(3/4)(q−1)n/q

2−1

6 (4/3) · 2n−2(q−1)n/(5q2) = (4/3) · 2(5q2−2q+2)n/(5q2).

For (v), since yi = n − ipm Fact 3.15 implies that if Gm has path parameter `, then

Gm is a union of paths of length ` and ` + 1. We use the bound F (i) 6 2(7i−11)/10 (a

simple proof by induction which holds for i > 2). Since m 6 y` = n− `pm we can write

m = b n
`p+1
c − t for some integer t > 0. Now using these bounds, we have

F (`+ 2)y`−1−2y`+m−1F (`+ 3)y`−m+1 = F (`+ 2)(`p+p+1)m−n−1F (`+ 3)n−(`p+1)m+1

6 2(3+7`)((`p+p+1)m−n−1)/10+(10+7`)(n−(`p+1)m+1)/10 = 2(7n+(3p−7)m+7)/10

6 2(7+7n+(3p−7)(n/(`p+1)−t))/10 = 2(7`p+3p)n/(10`p+10)+(t(7−3p)+7)/10.

�

Theorem 3.18. Let L denote the equation px+ qy = z where p, q ∈ N and
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(i) q > 2 and p > q(3q + 2)/(2q − 2) or;

(ii) q = 1 and p > 3.

Then f(n,Lw) 6 (3/2 + o(1) + C)2µ(n,L
w) where for (i) C := 2−2p/(5q)

1−2(3q−2p)/(5q) and for (ii)

C := 2(14−3p)/10

1−2(7−3p)/10 .

Proof. For both cases by Lemma 3.17(i)–(ii) there are at most 3 · 2µ(n,Lw)−1 Lw-free

subsets S of [n] where min(S) > b n
p+q
c. For (i), first consider Lw-free subsets arising from

Lemma 3.17(iv). Since k > 2,

m 6 y2 =

⌊bn−pm
q
c − pm
q

⌋
6
n− pm− qpm

q2

and so m 6 n/(q2 + pq + p). Now as n→∞,

n/(q2 + pq + p) · (4/3) · 2(5q2−2q+2)n/(5q2)

2µ(n,Lw)
=

2log2(4n/(3(q
2+pq+p)))+(5q2−2q+2)n/(5q2)

2µ(n,Lw)
→ 0,

as long as we have 2(5q2−2q+2)n/(5q2) � 2µ(n,L
w). This is satisfied if (5q2 − 2q + 2)/(5q2) <

(p+ q − 1)/(p+ q) which when rearranged, gives p > q(3q + 2)/(2q − 2).

For Lw-free subsets arising from Lemma 3.17(iii), set a := 2µ(n,L
w)−3/5, r := 2(3q−2p)/(5q)

and let u be the largest t such that Gm with m = b n
p+q
c − t has path parameter 1. Then

since p > q(3q + 2)/(2q − 2) > 3q/2 we have |r| < 1 and so

u∑
t=1

2µ(n,L
w)−3/5+t(3q−2p)/(5q) 6

∞∑
t=1

art =
∞∑
t=0

(ar)rt =
ar

1− r
=

2µ(n,L
w)−2p/(5q)

1− 2(3q−2p)/(5q) .

Altogether this implies that f(n,Lw) 6 (3/2 + o(1) +C)2µ(n,L
w) where C := 2−2p/(5q)

1−2(3q−2p)/(5q) .

For (ii), since p > 3, if Gm has path parameter k > 2 then we have f(n,L,m) 6

217pn/(20p+10)+7/10. We also have m 6 y2 = n − 2pm and so m 6 n/(2p + 1). Now as
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n→∞,

n/(2p+ 1) · 217pn/(20p+10)+7/10

2µ(n,Lw)
=

2log2(n/(2p+1))+17pn/(20p+10)+7/10

2µ(n,Lw)
→ 0,

since 217pn/(20p+10)+7/10 � 2µ(n,L
w).

Now consider Gm with path parameter k = 1. Set a := 2pn/(p+1)+7/10, set r := 2(7−3p)/10

and let u be the largest t such that Gm with m := b n
p+q
c − t has path parameter 1. Since

p > 3 we have |r| < 1 and so

u∑
t=1

2pn/(p+1)+t(7−3p)/10+7/10 6
∞∑
t=1

art =
∞∑
t=0

(ar)rt =
ar

1− r

=
2pn/(p+1)+(14−3p)/10

1− 2(7−3p)/10 6
2µ(n,L

w)+(14−3p)/10

1− 2(7−3p)/10 .

Therefore, Lemma 3.17 implies that f(n,Lw) 6 (3/2 + o(1) + C)2µ(n,L
w) where C :=

2(14−3p)/10

1−2(7−3p)/10 . �

3.5 The number of maximal solution-free sets

3.5.1 A general upper bound

Let L be a three-variable linear equation. LetM(n,L) denote the set of elements x ∈ [n]

such that x ∈ [n] does not lie in any L-triple in [n]. Define µ∗(n,L) := |M(n,L)|.

For example, if L is translation-invariant then {x, x, x} is an L-triple for all x ∈ [n] so

M(n,L) = ∅ and µ∗(n,L) = 0.

Let L denote the equation px + qy = z where p > 2, p > q and p, q ∈ N. Write

t := gcd(p, q). Then notice thatM(n,L) ⊇ {s ∈ [n] : s > b(n− p)/qc, t - s}. This follows

since if s > b(n − p)/qc then ps + q > qs + p > n and so s cannot play the role of x

or y in an L-triple in [n]. If t - s then as t|(px + qy) for any x, y ∈ [n] we have that
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s cannot play the role of z in an L-triple in [n]. Actually, for large enough n we have

M(n,L) = {s ∈ [n] : s > b(n− p)/qc, t - s} for all such L.

We need to show that if u ∈ [n] satisfies u 6∈ {s ∈ [n] : s > b(n−p)/qc, t - s} then u lies

in an L-triple. If u 6 b(n− p)/qc then p+ qu 6 n so u lies in the L-triple {1, u, p+ qu}.

So suppose u > b(n− p)/qc and u is divisible by t. Then since n is sufficiently large, u is

sufficiently large and hence can be written as u = pa+ qb where a, b are positive integers.

Therefore u lies in the L-triple {u, a, b}.

To prove that such a, b exist, observe that first since u, p, q are all divisible by t, write

u′ := u/t, r1 := p/t and r2 := q/t. Then u′ = r1a+ r2b; the largest u′ such that there does

not exist a, b positive integers such that r1a + r2b = s is r1r2 (see [116]). So we simply

require u > b(n− p)/qc > t(r1r2 + 1).

We now prove Theorem 3.4.

Theorem 3.4. Let L be a fixed homogenous three-variable linear equation. Then

fmax(n,Lw) 6 3(µ(n,Lw)−µ∗(n,L))/3+o(n).

Proof. Let F denote the set of containers obtained by applying Lemma 2.5. Since every

Lw-free subset of [n] lies in at least one of the 2o(n) containers, it suffices to show that

every F ∈ F houses at most 3(µ(n,Lw)−µ∗(n,L))/3+o(n) maximal Lw-free subsets.

Let F ∈ F . By Lemmas 2.5(i) and 2.4, F = A ∪ B where |A| = o(n), |B| 6 µ(n,Lw)

and B is Lw-free. Note that we can add all the elements of M(n,L) to B (and thus

F ) whilst ensuring that |B| 6 µ(n,Lw) and B is Lw-free. So we may assume that

M(n,L) ⊆ B.

Each maximal Lw-free subset of [n] in F can be found by picking a subset S ⊆ A

which is Lw-free, and extending it in B. The number of ways of doing this is the number

of ways of choosing the subset S multiplied by the number of ways of extending a fixed

S in B, which we denote by N(S,B). Since |A| = o(n), there are 2o(n) choices for S. It
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therefore suffices to show that for any S ⊆ A, we have N(S,B) 6 3(µ(n,Lw)−µ∗(n,L))/3.

Consider the link graph G := LS[B]. Then by definition, M(n,L) is an independent

set in G. Thus, MIS(G) = MIS(G\M(n,L)). Further, Lemma 3.10 and Theorem 3.11(i)

imply that

N(S,B) 6 MIS(G) = MIS(G \M(n,L)) 6 3|B\M(n,L)|/3 6 3(µ(n,Lw)−µ∗(n,L))/3,

as desired. �

As mentioned in the introduction of this chapter, Theorem 3.4 together with Theorem 3.7

shows that fmax(n,Lw) is significantly smaller than f(n,Lw) for all homogeneous three-

variable linear equations L that are not translation-invariant. So in this sense it can be

viewed as a generalisation of a result of  Luczak and Schoen [79] on sum-free sets.

Let L denote the equation px + y = z for some p ∈ N. Notice that in this case we

have µ∗(n,L) = 0 for n > p. The next result implies that if p is large then fmax(n,Lw) is

close to the bound in Theorem 3.4. So for such equations L, Theorem 3.4 is close to best

possible.

Proposition 3.19. Given p ∈ N where p > 2, let L denote the equation px+ y = z and

let n be sufficiently large depending on p. Then

fmax(n,Lw) > 3µ(n,L
w)/3−2pn/(3(p+1)(3p2−1))−p−5.

Proof. Given p, n ∈ N, let L denote the equation px + y = z. Set s := b (p−1)n
3p2−1 c and

a := bn−s
p
c. Consider the link graph G := L{s,2s}[a+ 1, a+ 3ps]. Observe that:

2s 6
(2p− 2)n

3p2 − 1
<

n

p+ 1
<

(3p− 1)n

3p2 − 1
=
n

p
− (p− 1)n

3p3 − p
6
n− s
p

< a+ 1;

a+ 3ps =

⌊
n− s
p

⌋
+ 3ps 6

n

p
+

(
3p− 1

p

)
s =

n

p
+

3p2 − 1

p

⌊
(p− 1)n

3p2 − 1

⌋
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6
n+ n(p− 1)

p
= n.

As a consequence, the sets {s, 2s} and [a+ 1, a+ 3ps] (a subset of [b n
p+1
c+ 1, n]) are

disjoint Lw-free sets in [n], and so Lemma 3.13 implies that fmax(n,Lw) >MIS(G). It re-

mains to show that G contains at least 3µ(n,L
w)/3−2pn/(3(p+1)(3p2−1))−6 maximal independent

sets.

Observe that for each i ∈ [ps] there is an edge in G between a+ i and a+ ps+ i (since

{s, a + i, a + i + ps} is an L-triple), an edge between a + i + ps and a + i + 2ps (since

{s, a+ i+ ps, a+ i+ 2ps} is an L-triple) and an edge between a+ i and a+ i+ 2ps (since

{2s, a+i, a+i+2ps} is an L-triple). Also since a > (n−s)/p−1, we have p(a+1)+s > n

and hence there are no further edges in G.

Hence G is a collection of ps disjoint triangles, where 4 vertices in G have loops

((p+ 1)s, (p+ 2)s, (2p+ 1)s and (2p+ 2)s). So G has at least 3ps−4 maximal independent

sets. Now observe:

ps− 4− µ(n,Lw)

3
= p

⌊
(p− 1)n

3p2 − 1

⌋
− 4− n

3
+

1

3

⌊
n

p+ 1

⌋
>

(
p2 − p
3p2 − 1

− 1

3
+

1

3(p+ 1)

)
n− p− 5

=

(
−2p

3(p+ 1)(3p2 − 1)

)
n− p− 5,

as required.

3.5.2 Upper bounds for px+ qy = z

Let L denote the equation px+ qy = z where p > q, p > 2 and p, q ∈ N. For such L, the

next simple result provides an alternative bound to Theorem 3.4.

Lemma 3.20. Let L denote the equation px + qy = z where p > q, p > 2 and p, q ∈ N.
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Then fmax(n,Lw) 6 f(b(n− p)/qc,Lw).

Proof. Set C := [bn−p
q
c] and B := [bn−p

q
c+1, n]. In particular, B is Lw-free. Notice that

every maximal Lw-free subset of [n] can be found by selecting an Lw-free subset S ⊆ C

and then extending it in B to a maximal one. Suppose we have such an Lw-free subset

S. By Lemma 3.10, the number of such extensions of S is at most MIS(LS[B]).

For any L-triple {x, y, z} in [n] satisfying px + qy = z, since z 6 n, we must have

x 6 n−q
p

and y 6 n−p
q

. Hence x, y ∈ C. This means that there are no L-triples in [n] which

contain more than one element from B. Thus the link graph LS[B] must only contain

isolated vertices and loops. So LS[B] has precisely one maximal independent set. Hence

the number of maximal Lw-free subsets of [n] is bounded by the number of choices of S

in C which are Lw-free, i.e. f(b(n− p)/qc,Lw). �

Lemma 3.20 together with Theorems 3.3 and 3.7 immediately implies Theorem 3.6.

The next result gives a further upper bound on fmax(n,Lw) for certain linear equations

L. Notice that for such L, Theorem 3.5 yields a better bound than Theorem 3.4.

Theorem 3.5. Let L denote the equation px + qy = z where p > q > 2 are integers so

that p 6 q2 − q and gcd(p, q) = q. Then

fmax(n,Lw) 6 2(µ(n,Lw)−µ∗(n,L))/2+o(n).

Proof. Let F denote the set of containers obtained by applying Lemma 2.5. Since every

Lw-free subset of [n] lies in at least one of the 2o(n) containers, it suffices to show that

every F ∈ F houses at most 2(µ(n,Lw)−µ∗(n,L))/2+o(n) Lw-free sets.

Let F ∈ F . By Lemmas 2.5(i) and 2.4, F = A ∪ B where |A| = o(n), |B| 6 µ(n,Lw)

and B is Lw-free. Note that we can add all the elements of M(n,L) to B (and thus

F ) whilst ensuring that |B| 6 µ(n,Lw) and B is Lw-free. So we may assume that

M(n,L) ⊆ B. Either we have min(B) > b n
p+q
c or we use Theorem 3.1 to say that
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either min(B) = b n
p+q
c − t for some non-negative integer t < ( p+q−1

p+q+p/q
)b n
p+q
c and |B| 6

d (p+q−1)n
p+q

e − bp
q
tc, or |B| 6 (q2+1)n

q2+q+1
.

Case 1: min(B) = b n
p+q
c − t for 0 6 t < ( p+q−1

p+q+p/q
)b n
p+q
c, or min(B) > b n

p+q
c (in which

case set t := 0). Write F = X∪Y where Y ⊆ [b n
p+q
c+1, n] is Lw-free, and X ⊆ [1, b n

p+q
c].

Note that |X| = t′ + o(n) and |Y | 6 d (p+q−1)n
p+q

e − bp
q
tc − t′ + o(n) where 0 6 t′ 6 t. Also

M(n,L) ⊆ Y . Choose S ⊆ X to be Lw-free. Consider the link graph LS[Y ] and observe

that by Lemma 3.10, N(S, Y ) 6 MIS(LS[Y ]). (Recall N(S, Y ) denotes the number of

extensions of S in Y to a maximal Lw-free set.)

Since p 6 q2 − q, by Lemma 3.12 LS[Y ] is triangle-free. By definition, M(n,L)

is an independent set in LS[Y ] and so MIS(LS[Y ])=MIS(LS[Y \ M(n,L)]). Therefore

Theorem 3.11(ii) implies that MIS(LS[Y ])6 2(|Y |−|M(n,L)|)/2. Overall, this implies that

the number of Lw-free sets contained in F is at most

2|X| × 2(|Y |−|M(n,L)|)/2 6 2t
′+o(n)+(µ(n,Lw)−µ∗(n,L)−b p

q
tc−t′)/2 6 2(µ(n,Lw)−µ∗(n,L))/2+o(n),

as desired.

Case 2: |B| 6 (q2+1)n
q2+q+1

. In this case |F | 6 (q2+1)n
q2+q+1

+ o(n). Choose any Lw-free S ⊆ A

(note there are at most 2o(n) choices for S). Consider the link graph LS[B] and ob-

serve by Lemma 3.10 that N(S,B) 6 MIS(LS[B]). Similarly as in Case 1 we have that

MIS(LS[B])=MIS(LS[B′]) where B′ := B \M(n,L). By Theorem 3.11(i),

MIS(LS[B′]) 6 3|B
′|/3 6 3((q2+1)n/(3(q2+q+1))−µ∗(n,L)/3) 6 2(µ(n,Lw)−µ∗(n,L))/2+o(n).

The last inequality follows since µ(n,Lw) = n − bn/(p + q)c and M(n,L) = {s : s >

b(n− p)/qc, q - s} since gcd(p, q) = q.
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To see this, first note that

µ∗(n,L) =
(q − 1)2n

q2
− o(n).

Hence for the inequality to hold we require that

9((q2+1)/(q2+q+1)−(q2−2q+1)/(q2)) < 8((p+q−1)/(p+q)−(q2−2q+1)/(q2)).

Let a := log9 8. This rearranges to give

p >
(1− a)(q4 − q) + q3 + q2

(2a− 1)q3 + (a− 1)(q2 + q − 1)
.

Since p > q it suffices to show that (3a−2)q3 + (a−2)(q2 + q) + (2−2a) > 0. This indeed

holds since q > 2.

Overall, this implies that the number of Lw-free sets contained in F is at most

2(µ(n,Lw)−µ∗(n,L))/2+o(n), as desired. �

The proof of Theorem 3.5 actually generalises to some other equations px + qy = z

where gcd(p, q) 6= q (but still p 6 q2 − q). However, in these cases Theorem 3.6 produces

a better upper bound on fmax(n,Lw).

3.5.3 Lower bounds for px+ qy = z

The following result provides lower bounds on fmax(n,Lw) for all equations L of the form

px+ qy = z where p > q > 2.

Proposition 3.21. Let L denote the equation px+ qy = z where p > q > 2 are integers.

Suppose that n > 2p. In each case fmax(n,Lw) > 2` where ` is defined as follows:

(i) ` := (n(q − 1)− pq + q − 2q2)/q2 if p > q2,
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(ii) ` := (n(p− q)− p2 + q2 − 2pq)/(pq) if q < p < q2,

(iii) ` := (n− 6q)/2q if p = q.

Proof. For each case, we shall let B := [b n
p+q
c + 1, n], and consider the link graph

G := L{1}[B]. Since B and {1} are Lw-free, by Lemma 3.13 it suffices to show that there

is an induced subgraph of G which contains at least 2` maximal independent sets. For

each case we will find an induced perfect matching on 2` vertices in G. (Note there are

2` maximal independent sets in such a matching.)

More specifically, for each case we shall find an interval I := [a, b] for some a, b ∈ V (G)

and let J := {qi+ p| i ∈ I}. Note that all edges in G (other than at most one loop) are of

the form {i, qi+ p} and {i, pi+ q}. By our choice of I and J , G[I ∪ J ] will form a perfect

matching on 2|I| vertices if the following conditions hold:

(1) qa+ p > b (which ensures that I ∩ J = ∅),

(2) qb+ p 6 n (which ensures that J ⊆ [n]),

(3) pa+q > n (which ensures that the only edges in G[I∪J ] are of the form {i, qi+p}),

(4) p+ q < a (which ensures that there is no loop at a vertex in G[I ∪ J ]).

Notice that actually we do not require condition (3) to hold in the case when p = q.

Indeed, this is because in this case an edge {i, pi + q} in G is the same as the edge

{i, qi+ p}. Further, there is at most one loop in G (if p+ q ∈ B). So even if (4) does not

hold we will obtain an induced matching in G on 2|I| − 2 vertices.

Thus, to obtain an induced matching in G on 2|I| − 2 vertices it suffices to choose a

and b so that (1)–(3) hold except when p = q when we only require that (1) and (2) hold.

By choosing b := b(n−p)/qc, (2) holds since qb+p = qb(n−p)/qc+p 6 q(n−p)/q+p =

n.
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If p > q2 then set a := b(n− q)/q2c+ 1. Then a ∈ B and further pa+ q > q2a+ q >

q2((n − q)/q2) + q = n and qa + p > qa + q2 > q((n − q)/q2) + q2 = n/q − 1 + q2 >

b(n− p)/qc = b. So (1) and (3) hold.

If q < p < q2 then set a := b(n−q)/pc+1. So a ∈ B. Further, pa+q > p((n−q)/p)+q =

n and qa+p > q((n−q)/p)+p = qn/p−q2/p+p > qn/q2−q+p > n/q > b(n−p)/qc = b.

So (1) and (3) hold.

If p = q set a := bn/(p+q)c+1 = bn/(2q)c+1 ∈ B. Observe that qa+q > qn/2q+q >

n/2 > b(n− q)/qc = b since q > 2. So (1) holds.

Now calculating the size of the interval I = [a, b] in each case proves the result:

• If a = b(n− q)/q2c+ 1, then |I|−1 = b(n−p)/qc− (b(n− q)/q2c+ 1) > (n−p)/q−

1− (n− q)/q2 − 1 = (n(q − 1)− pq + q − 2q2)/q2.

• If a = b(n− q)/pc+ 1, then |I| − 1 = b(n− p)/qc − (b(n− q)/pc+ 1) > (n− p)/q−

1− (n− q)/p− 1 = (n(p− q)− p2 + q2 − 2pq)/(pq).

• If a = bn/(p+ q)c+ 1 and p = q, then |I| − 1 = b(n− p)/qc − (bn/(p+ q)c+ 1) >

(n−p)/q−1−n/(p+q)−1 = (pn− (p+2q)(p+q))/(q(p+q)) = (qn−6q2)/(2q2) =

(n− 6q)/2q.

�

Although the lower bounds in Proposition 3.21 do not meet the upper bounds in

Theorems 3.5 and 3.6 in general, Theorem 3.5 and Proposition 3.21(iii) do immediately

imply the following, where we determine log(fmax(n,Lw)) asymptotically.

Theorem 3.22. Let L denote the equation 2x+ 2y = z. Then fmax(n,Lw) = 2n/4+o(n).

In the next chapter, we give a general upper bound on fmax(n,Lw) for equations L of

the form px + qy = rz where p > q > r are fixed positive integers (see Theorem 4.5). In

particular, our result shows that in the case when p = q > 2, r = 1 the lower bound in

Proposition 3.21(iii) is correct up to an o(n) term in the exponent.
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3.6 Concluding remarks

The results in the chapter show that the parameter fmax(n,Lw) can exhibit very different

behaviour depending on the linear equation L. Indeed, Theorem 3.4 gives a ‘crude’ general

upper bound on fmax(n,Lw) for all homogeneous three-variable linear equations L. (It is

crude in the sense that, in the proof, we do not use any structural information about the

link graphs.) However, this bound is close to the correct value of fmax(n,Lw) for certain

equations L (Proposition 3.19). On the other hand, for many equations this bound is

far from tight (Theorem 3.5). Further, for some equations (x + y = z and 2x + 2y = z)

the value of fmax(n,Lw) is tied to the property that any triangle-free graph on n vertices

contains at most 2n/2 maximal independent sets. Theorem 3.6 and upper bounds we obtain

in the next chapter suggest though that the value of fmax(n,Lw) for other equations Lmay

depend on completely different factors. Further progress on understanding the possible

behaviour of fmax(n,Lw) would be extremely interesting.
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Chapter 4

More on solution-free sets of

integers

4.1 Introduction

In the last chapter we obtained results concerning Lw-free subsets of [n] where L is a fixed

linear equation. We made progress on all three of our general motivating questions:

(i) What is the size of the largest Lw-free subset of [n]?

(ii) How many Lw-free subsets of [n] are there?

(iii) How many maximal Lw-free subsets of [n] are there?

Recall that we denote the answers to the above questions by µ(n,Lw), f(n,Lw) and

fmax(n,Lw) respectively. In this chapter we use a new lemma to obtain further results

for the above three questions. In particular we obtain results for equations of the form

px + qy = rz where p > q > r and p, q, r ∈ N. In Chapter 3 we used various auxiliary

graphs as a means to bound the size and number of elements in a solution-free subset of

[n]. In Section 4.2 we introduce a new auxiliary graph which similarly can be used for

this purpose.
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We also extend our results to equations in more than three variables. The following

simple but key proposition allows us to easily do this.

Proposition 4.1. Let L1 denote the equation p1x1+· · ·+pkxk = b where p1, . . . , pk, b ∈ Z

and let L2 denote the equation (p1 + p2)x1 + p3x2 + · · · + pkxk−1 = b. Then µ(n,Lw1 ) 6

µ(n,Lw2 ) and f(n,Lw1 ) 6 f(n,Lw2 ).

The proposition is just a simple consequence of the observation that any solution to

the equation L2 gives rise to a solution to the equation L1. So all Lw1 -free subsets of [n]

are also Lw2 -free.

4.1.1 The size of the largest solution-free set

The first key question in the study of Lw-free sets listed in the introduction, is to establish

the size µ(n,Lw) of the largest Lw-free subset of [n]. When L is a homogeneous equation

in two variables, the value of µ(n,Lw) is known exactly and an extremal Lw-free set can

be found by greedy choice. See [53] for further details. For homogeneous linear equations

in three variables, the picture is not as clear. First note we may assume without loss of

generality that the equation is of the form px + qy = rz, where p, q, r are fixed positive

integers, and gcd(p, q, r) = 1.

Now consider the following two natural candidates for extremal sets. Let t := gcd(p, q)

and let a be the unique non-negative integer 0 6 a < t such that n − a is divisible by t.

The interval

In :=

[⌊
r(n− a)

p+ q

⌋
+ 1, n

]
is Lw-free. To see this observe that since gcd(p, q, r) = 1 and gcd(p, q) = t, any solution

(x, y, z) to L with x, y, z ∈ In must have z divisible by t. Since px+ qy > r(n−a), z must

lie in [n − a + 1, n]; however then z is not divisible by t and so In is Lw-free. Note that

when r = 1, In := [br(n− a)/(p+ q)c+ 1, n] = [brn/(p+ q)c+ 1, n], though this does not
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hold in general when r > 1. Notice also that In is only a candidate for an extremal set if

r is ‘small’. Indeed, if r > p+ q and n is sufficiently large then In = ∅. The set

Tn := {x ∈ [n] : x 6≡ 0 mod t}

is also Lw-free: note that in any solution (x, y, z) to L, z must be divisible by t since

gcd(r, t) = 1. But Tn contains no elements divisible by t.

This raises the following question.

Question 4.2. For which L do we have µ(n,Lw) = max{|In|, |Tn|}?

When L is x + y = z it is easy to see that µ(n,Lw) = dn/2e and the interval In =

[bn/2c+ 1, n] is an extremal set of this size. In the previous chapter we established that

when L is the equation px+qy = z with p, q ∈ N, p > 2, we have µ(n,Lw) = n−bn/(p+q)c

for sufficiently large n. Again this bound is attained by the interval In. Our first result of

this chapter determines a further class of equations (of the form px+ qy = rz) for which

In or Tn gives an L-free set of maximum size.

Theorem 4.3. Let L denote the equation px + qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Write r1 := p/t and

r2 := q/t.

(i) If q divides p and p+ q 6 rq then µ(n,Lw) = |Tn| = d(q − 1)n/qe;

(ii) If q divides p and p+ q > rq then µ(n,Lw) = |In| = d(p+ q− r)(n− a)/(p+ q)e+ a

where a is the unique non-negative integer 0 6 a < q such that n− a is divisible by

q;

(iii) If q does not divide p, t > 1 and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
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then µ(n,Lw) = |Tn| = d(t− 1)n/te.

Theorem 4.3(ii) was already proven (for large enough n) in the last chapter (see Corol-

lary 3.2) in the special case when r = 1. (Note though that Corollary 3.2 determines

µ(n,Lw) for many equations L not covered by Theorem 4.3.) Previously, Hegarty [53]

proved Theorem 4.3(i) in the case when p = q. In Section 4.3 we also give a generalisation

of Theorem 4.3 concerning some linear equations with more variables (see Corollary 4.14).

Notice that in the case when q divides p, Theorem 4.3 gives a dichotomy for the value

of µ(n,Lw): when p + q 6 rq the set Tn is a largest Lw-free subset of [n], whilst when

p+ q > rq the interval In is a largest Lw-free subset of [n]. Theorem 4.3 does not provide

us with as much information for the case when q does not divide p; note though it is not

true that a similar dichotomy occurs in this case. Take the equation 3x + 2y = 2z; here

we have |In| ≈ 3n/5 and |Tn| = 0. However the set An := {x ∈ [n] : x 6≡ 0 mod 2 or

x > 2n/3} has size |An| ≈ 2n/3 and is Lw-free, since any solution (x, y, z) to L must have

that x is even and x 6 2n/3. It would be very interesting to fully resolve the case where

p > q > r and q does not divide p.

For equations px+qy = rz where r is bigger than p, q, there are a range of cases where

an extremal set is known and it is neither In nor Tn; see [11, 31, 53] for these, and also

other results on the size of the largest Lw-free subset of [n] for various L.

4.1.2 The number of solution-free sets

Recall Green [48] proved that f(n,Lw) = 2µ(n,L
w)+o(n) for any fixed homogeneous linear

equation L. In the last chapter we were able to replace the term o(n) in the exponent

with a constant for certain types of linear equation L. In Section 4.4 we find further linear

equations where we can omit the term o(n):

Theorem 4.4. Let L denote the equation px + qy = rz where p > q > r, p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Write r1 := p/t and
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r2 := q/t. If

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)

then f(n,Lw) = Θ(2µ(n,L
w)).

By applying Proposition 4.1 we also obtain equations L with more than three variables

for which f(n,Lw) = Θ(2µ(n,L
w)).

4.1.3 The number of maximal solution-free sets

In this chapter we prove the following result.

Theorem 4.5. Let L denote the equation px + qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Then

fmax(n,Lw) 6 2
Crn
q

+o(n) where C := 1− t

p+ q

(p2 + (p− t)(q − t)
p2

)
.

For a wide class of equations L this is the current best known upper bound on

fmax(n,Lw); see Section 4.6 for more details. In the case when p = q > 2 and r = 1, the

upper bound given by Theorem 4.5 is actually exact up to the error term in the exponent.

Theorem 4.6. Let L denote the equation qx+ qy = z where q > 2 is an integer. Then

fmax(n,Lw) = 2n/2q+o(n).

In Section 4.5 we will also generalise Theorem 4.5 to consider some linear equations with

more variables (see Theorem 4.18).

For the proof of both Theorems 4.3 and 4.5, a simple but crucial tool is a result

(Lemma 4.9) which ensures a certain auxiliary graph contains a large collection of disjoint
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edges. As in the previous chapter, we also make use of container and removal lemmas of

Green [48].

In the next section we collect together a number of useful tools and lemmas. We

prove our results on the size of the largest solution-free subset of [n], on the number of

solution-free subsets of [n], and on the number of maximal solution-free subsets of [n], in

Sections 4.3, 4.4 and 4.5 respectively.

4.2 Link hypergraphs and the main lemmas

4.2.1 Link hypergraphs

One can turn the problem of counting the number of maximal Lw-free subsets of [n] into

one of counting maximal independent sets in an auxiliary graph. Similar techniques were

used in [121, 6, 7], and in the graph setting in [10, 5]. Recall that in the previous chapter

we defined the link graph, which we used to deal with equations with three variables.

Since we will consider equations with more than three variables in this chapter, we need

to generalise this definition.

Consider the following generalisation of a link graph LS[B] to that of a link hypergraph:

Let B and S be disjoint subsets of [n] and let L denote the equation p1x1 + · · ·+pkxk = 0

where p1, . . . , pk are fixed non-zero integers. The link hypergraph LS[B] of S on B has

vertex set B; It has an edge set consisting of hyperedges between s 6 k distinct vertices

v1, . . . , vs of B, whenever there is a solution (x1, . . . , xk) to L in which {x1, . . . , xk} ⊆

S ∪ {v1, . . . , vs} and {v1, . . . , vs} ⊆ {x1, . . . , xk}. In this definition one could have edges

corresponding to trivial solutions. However in our applications, since we only consider

non-translation-invariant equations, there are no trivial solutions.

The link graph lemmas used in the previous chapter (Lemmas 3.10 and 3.13) can easily

be extended to the hypergraph case.
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Lemma 4.7. Let L denote a non-translation-invariant linear equation. Suppose that B, S

are disjoint Lw-free subsets of [n]. If I ⊆ B is such that S∪I is a maximal Lw-free subset

of [n], then I is a maximal independent set in the link hypergraph LS[B].

As with Lemma 3.10 in the previous chapter, the above result can be used in conjunc-

tion with the container lemma as follows. Let F = A∪B be a container as in Lemma 2.5

where |A| = o(n) and B is Lw-free. Observe that any maximal Lw-free subset of [n] in

F can be found by first selecting an Lw-free subset S ⊆ A, and then extending S in B.

Then the number of extensions of S in B is bounded by MIS(LS[B]) by Lemma 4.7.

We can also use link graphs to obtain lower bounds.

Lemma 4.8. Let L denote a non-translation-invariant linear equation. Suppose that B, S

are disjoint Lw-free subsets of [n]. Let H be an induced subgraph of the link graph LS[B].

Then fmax(n,Lw) >MIS(H).

The proof is analogous to that of Lemma 3.13.

4.2.2 The main lemmas

Here we use a specific link graph as a means to bound the number of elements in a

solution-free subset of [n].

Let L denote the equation px+ qy = rz where p > q > r and p, q, r are fixed positive

integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and write r1 := p/t, r2 := q/t.

Fix M ∈ [n] such that M is divisible by t. We define the graph GM to have vertex set

[drM/qe − 1] and an edge between x and y whenever px+ qy = rM .

Lemma 4.9. The graph GM contains a collection E of vertex-disjoint edges where

|E| =
⌊

rM

r2(p+ q)

⌋
+ (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋

and at most one edge in E is a loop.
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Proof. All edges in GM are pairs of the form {s, (rM − sp)/q} for some s ∈ N since

ps + q(rM − sp)/q = rM . Since p = r1t and q = r2t where r1 and r2 are coprime, for a

fixed integer s precisely one element in {(rM − (s − j)p)/q : 0 6 j < r2} is an integer.

(Note here we are using that M is divisible by t.) In other words there exists a unique

x ∈ N, 1 6 x 6 r2 such that (rM − xp)/q is an integer, and all edges in GM are of the

form {x+ ar2, (rM − xp)/q− ar1} for some non-negative integer a. In particular there is

an edge incident to x+ ar2 provided a satisfies (rM − xp)/q − ar1 ∈ N.

Write y := (rM − xp)/q. Note that if x+ ar2 6 rM/(p+ q) then

y − ar1 =
rM − (x+ ar2)p

q
>
rM − prM/(p+ q)

q
=

rM

p+ q
.

Hence there are brM/(r2(p+ q))c distinct edges in GM of the form {x+ar2, y−ar1} with

x+ ar2 6 rM/(p+ q) 6 y − ar1. Note that one of these edges may be a loop. (This will

be at rM/(p+ q) in the case when rM/(p+ q) ∈ N.) Call this collection of edges E1. Our

next aim is to find an additional collection E2 of edges in GM that is vertex-disjoint from

E1.

Note that x + ar2 ≡ x mod r2 and y − ar1 ≡ y mod r1. Also p(rM/p) + q(0) = rM

and drM/pe 6 drM/qe, hence there are at least

⌊(⌈
rM

p

⌉
− 1−

⌊
rM

p+ q

⌋)
/r2

⌋
>

⌊(
rM

p
− rM

p+ q
− 1

)
/r2

⌋
=

⌊
rM

r1(p+ q)
− 1

r2

⌋

edges in GM of the form {x+ ar2, y − ar1} with x+ ar2 > rM/(p+ q). Consider a set of

r1r2 edges {{x+ ar2 + br2, y− ar1− br1} : 0 6 b < r1r2} for a fixed a. Since r1 and r2 are

coprime, precisely r2 of these edges (1 in r1 of them) have x+ ar2 + br2 ≡ y mod r1, and

precisely r1 of these edges have y− ar1− br1 ≡ x mod r2. (Also, precisely 1 edge satisfies

both.) In all other cases since x+ ar2 + br2 6≡ y mod r1 and y− ar1− br1 6≡ x mod r2, the

edge {x + ar2 + br2, y − ar1 − br1} is vertex-disjoint from E1. Hence we obtain a set E2
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of at least (r1r2 − r1 − r2 + 1)bbrM/(r1(p+ q))− 1/r2c/(r1r2)c additional distinct edges.

Thus E := E1 ∪ E2 is our desired set. �

Observe that the graph GM is a link graph LS[B], where S := {M} and B :=

[drM/qe − 1]. If we wish to extend a solution-free set S into a solution-free subset of

S ∪ B, then we must pick an independent set in LS[B]. Similarly here if we wish to

obtain a solution-free subset of [n] which contains M divisible by t, then we must pick an

independent set in GM . This is the idea behind the following key lemma, which allows us

to bound the number of elements in such an Lw-free set.

Lemma 4.10. Let L denote the equation px + qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and write r1 := p/t and

r2 := q/t. Let S be an Lw-free subset of [n]. If M ∈ S is divisible by t, then S contains

at most

⌈
rM

q

⌉
− 1−

⌊
rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋

elements from [drM/qe − 1].

Proof. Consider the graph GM and observe that its edges correspond to L-triples: since

p > q > r there is an edge between x and y precisely when {x, y,M} is an L-triple. Hence

if I ⊆ V (GM) is such that I ∪ {M} is an Lw-free subset of [n] then I is an independent

set in GM . As a consequence if we find a set of vertex-disjoint edges in GM of size J , then

S contains at most drM/qe − 1− J elements from [drM/qe − 1]. The result then follows

by applying Lemma 4.9. �

First note that if L denotes the equation x+y = z, then in Lemma 4.10 we are simply

saying that if a sum-free set S contains M , then it cannot contain both 1 and M − 1, it

cannot contain both 2 and M − 2, and so on. So in a sense this lemma is a generalisation
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of the proof that sum-free subsets of [n] cannot contain more than dn/2e elements.

Let L denote the equation px+ qy = rz where p > q > r and p, q, r are fixed positive

integers satisfying gcd(p, q, r) = 1 and let t := gcd(p, q). Recall that Tn := {x ∈ [n] : x 6≡ 0

mod t} is Lw-free. Lemma 4.10 roughly implies that every Lw-free subset of [n] must have

‘not too many small elements’ or must ‘look like’ Tn. Clearly this lemma gives rise to an

upper bound on the size of the largest Lw-free subset of [n]. In Section 4.5 we also show

that this lemma can be used to obtain an upper bound on the number of maximal Lw-free

subsets of [n].

Recall from the introduction that we can use the following simple proposition to extend

our results for linear equations with three variables to linear equations with more than

three variables.

Proposition 4.1. Let L1 denote the equation p1x1+· · ·+pkxk = b where p1, . . . , pk, b ∈ Z

and let L2 denote the equation (p1 + p2)x1 + p3x2 + · · · + pkxk−1 = b. Then µ(n,Lw1 ) 6

µ(n,Lw2 ) and f(n,Lw1 ) 6 f(n,Lw2 ).

Proof. If (p1 + p2)x1 + p3x2 + · · · + pkxk−1 = b for some xi ∈ [n], 1 6 i 6 k − 1, then

p1x1 + p2x1 + p3x2 + · · · + pkxk−1 = b. Hence any solution to L2 in [n] gives rise to a

solution to L1 in [n]. So if A ⊆ [n] is Lw1 -free, then A is also Lw2 -free. Hence the size of

the largest Lw2 -free set is at least the size of the largest Lw1 -free set, and also there are at

least as many Lw2 -free sets as there are Lw1 -free sets. �

We will also make use of the following trivial fact.

Fact 4.11. Suppose L1 is a linear equation and L2 is a positive integer multiple of L1.

Then the set of Lw1 -free subsets of [n] is precisely the set of Lw2 -free subsets of [n]. In

particular µ(n,Lw1 ) = µ(n,Lw2 ), f(n,Lw1 ) = f(n,Lw2 ) and fmax(n,Lw1 ) = fmax(n,Lw2 ).

The two results above allow us to extend the use of Lemma 4.10 to equations with

more than three variables.
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Lemma 4.12. Let L denote the equation p1x1+· · ·+pkxk = 0 where pi ∈ Z. Suppose there

is a partition of the pi into three non-empty parts P1, P2 and P3 where p′ :=
∑

pj∈P1
pj,

q′ :=
∑

pj∈P2
pj and r′ := −

∑
pj∈P3

pj satisfy p′ > q′ > r′ > 1. Let t′ := gcd(p′, q′, r′)

and write p := p′/t′, q := q′/t′ and r := r′/t′. Let t := gcd(p, q) and write r1 := p/t and

r2 := q/t. Let S be an Lw-free subset of [n]. If M ∈ S is divisible by t, then S contains

at most

⌈
rM

q

⌉
− 1−

⌊
rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋

elements from [drM/qe − 1].

Proof. Let L2 denote the equation px + qy = rz. Now observe by repeatedly applying

Proposition 4.1 and Fact 4.11 that any Lw-free set is also an Lw2 -free set. Hence S must

be Lw2 -free and so we simply apply Lemma 4.10. �

This bounds the number of ‘small elements’ in solution-free sets for equations with

more than three variables, and in Theorem 4.18 we will use this lemma to obtain a result

for the number of maximal solution-free sets.

4.3 The size of the largest solution-free set

The aim of this section is to use our results from the previous section to obtain bounds on

µ(n,Lw) for linear equations L of the form px+ qy = rz with p > q > r positive integers

and also linear equations with more than three variables. As previously mentioned we

can use Lemma 4.10 to obtain a bound on the size of a solution-free set.

Corollary 4.13. Let L denote the equation px+ qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let S be an Lw-free subset of [n] and

suppose M is the largest element of S divisible by t := gcd(p, q). Write r1 := p/t and
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r2 := q/t. Then

|S| 6M−
⌊

rM

r2(p+ q)

⌋
−(r1r2−r1−r2+1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
+

⌈
(n−M)(t− 1)

t

⌉
.

Proof. By Lemma 4.10, S contains at most drM/qe − 1− brM/(r2(p + q))c − (r1r2 −

r1 − r2 + 1)bbrM/(r1(p+ q))− 1/r2c/(r1r2)c elements from [drM/qe − 1]. It also cannot

contain any element larger than M and divisible by t. �

Note in the statement of Corollary 4.13 we are implicitly assuming that M exists. If

it does not then |S| 6 dn(t− 1)/te.

We are now ready to prove Theorem 4.3, which determines µ(n,Lw) for a wide class of

equations of the form px+ qy = rz where p > q > r and p, q, r are fixed positive integers.

Theorem 4.3. Let L denote the equation px + qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Write r1 := p/t and

r2 := q/t.

(i) If q divides p and p+ q 6 rq then µ(n,Lw) = d(q − 1)n/qe;

(ii) If q divides p and p+ q > rq then µ(n,Lw) = d(p+ q− r)(n− a)/(p+ q)e+ a where

a is the unique non-negative integer 0 6 a < q such that n− a is divisible by q;

(iii) If q does not divide p, t > 1 and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)

then µ(n,Lw) = d(t− 1)n/te.

Proof. Let S be an Lw-free subset of [n] and suppose M is the largest element of S

divisible by t. If S does not contain an element divisible by t, set M := 0. If q divides p
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then t = q and r2 = 1 and hence by Corollary 4.13 we have

|S| 6
⌈

(p+ q − r)M
p+ q

⌉
+

⌈
(n−M)(q − 1)

q

⌉
. (4.3.1)

(This is true even in the case M = 0.)

If p+ q 6 rq then |S| 6 d(q − 1)M/qe+ d(n−M)(q − 1)/qe = dn(q − 1)/qe since M

is divisible by q. Observe that the set Tn := {x ∈ [n] : x 6≡ 0 mod t} is an Lw-free set

obtaining this size, and so this proves (i).

For (ii) we will show that (4.3.1) is an increasing function of M (when restricted to

running through M divisible by t) and hence it will be maximised by taking M = n− a.

Then |S| 6 d(p + q − r)(n − a)/(p + q)e + a. Observe that the interval In := [br(n −

a)/(p + q)c + 1, n] is an Lw-free set obtaining this size and so this proves (ii), provided

(4.3.1) is an increasing function of M .

Since M must be divisible by t = q, write M ′ := M/q and so (4.3.1) can be written as

⌈
((r1 + 1)q − r)M ′

r1 + 1

⌉
+

⌈
n(q − 1)

q

⌉
−M ′(q − 1) = M ′ +

⌈
−rM ′

r1 + 1

⌉
+

⌈
n(q − 1)

q

⌉
.

Now observe that the difference between successive terms M ′ and M ′ + 1 is given by

M ′ + 1 +

⌈
−r(M ′ + 1)

r1 + 1

⌉
−M ′ −

⌈
−rM ′

r1 + 1

⌉
= 1 +

⌈
−rM ′

r1 + 1
− r

r1 + 1

⌉
−
⌈
−rM ′

r1 + 1

⌉
> 0

where the inequality follows since r1 + 1 > r. Hence (4.3.1) is an increasing function of

M as required.

For (iii) if M = 0 then |S| 6 dn(t − 1)/te as required. So assume M > t. Then by

Corollary 4.13 we have
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|S| 6M −
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
+

⌈
(n−M)(t− 1)

t

⌉
6M − rM

r2(p+ q)
+ 1− r1r2 − r1 − r2 + 1

r1r2

(
rM

r1(p+ q)
− 1

r2
− 1

)
+ r1r2 − r1 − r2 + 1

− M(t− 1)

t
+

⌈
n(t− 1)

t

⌉
6

⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r(r21 + (r1 − 1)(r2 − 1))

tr21r2(r1 + r2)
− 1

t

)
=

⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r

tr2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)−1
− 1

t

)
6

⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r1r2 − r1 − r2 + 4

t
− 1

t

)
6

⌈
n(t− 1)

t

⌉
,

where the penultimate inequality follows by our lower bound on r and the last inequality

follows by using M > t. �

For Theorem 4.3(iii) it is easy to check that actually given the conditions on r we

must always have t > 1 (we just state t > 1 in the theorem for clarity). As an example,

p := 3t, q := 2t, r > 41, and t > r/2 gives a set of equations which satisfy the conditions

of Theorem 4.3(iii).

Theorem 4.3 together with Proposition 4.1 yield results for µ(n,Lw) where L is an

equation with more than three variables.

Corollary 4.14. Let L denote the equation a1x1 + · · ·+ akxk + b1y1 + · · ·+ b`y` = c1z1 +

· · · + cmzm where the ai, bi, ci ∈ N and p′ :=
∑

i ai, q
′ :=

∑
i bi and r′ :=

∑
i ci satisfy

p′ > q′ > r′. Let t′ := gcd(p′, q′, r′) and write p := p′/t′, q := q′/t′ and r := r′/t′. Let

t := gcd(p, q).
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(i) If m = 1, ` = 1, q′ = b1 divides ai for all 1 6 i 6 k and p + q 6 rq then

µ(n,Lw) = d(q − 1)n/qe;

(ii) If q divides p and p + q > rq then d(p + q − r)n/(p + q)e 6 µ(n,Lw) 6 d(p + q −

r)(n − a)/(p + q)e + a where a is the unique non-negative integer 0 6 a < q such

that n− a is divisible by q;

(iii) Write r1 := p/t and r2 := q/t. If q does not divide p, m = 1, tt′ divides ai and bj

for 1 6 i 6 k, 1 6 j 6 ` and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)

then µ(n,Lw) = d(t− 1)n/te.

Proof. Let L2 denote the equation px+ qy = rz. Then we have µ(n,Lw) 6 µ(n,Lw2 ) by

repeated use of Proposition 4.1 and Fact 4.11. Then the use of Theorem 4.3(i), (ii) and

(iii) respectively for each of the three cases stated gives the required upper bound.

For the lower bounds for each case we show that a suitable Lw2 -free set is also Lw-free.

For (i) and (iii) consider the Lw2 -free set T := {x ∈ [n] : x 6≡ 0 mod t}. Since tt′ divides

ai and bj for 1 6 i 6 k, 1 6 j 6 ` (noting for (i) that tt′ = qt′ = q′), any solution

{x1, . . . , xk, y1, . . . , y`, z1} to L must have z1 divisible by t. But T contains no elements

divisible by t and hence µ(n,Lw) > d(t− 1)n/te.

For (ii) consider the Lw2 -free set [brn/(p+ q)c+ 1, n]. Observe that

(a1 + · · ·+ ak + b1 + · · ·+ b`)(brn/(p+ q)c+ 1) = (p′ + q′)(br′n/(p′ + q′)c+ 1)

>r′n = (c1 + · · ·+ cm)n
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and so there are no solutions to L in the interval [brn/(p+ q)c+ 1, n], and so µ(n,Lw) >

d(p+ q − r)n/(p+ q)e. �

Note that for Corollary 4.14(ii) the lower bound is very close to the upper bound, and

in particular matches it in the case where r = 1.

4.4 The number of solution-free sets

In this section we will apply Lemma 4.9 and Proposition 4.1 to obtain upper bounds on

the number of solution-free sets for various equations. Let f(n,Lw,M) denote the number

of Lw-free subsets of [n] with maximum element M .

Lemma 4.15. Let L denote the equation px + qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Assume that M ∈ [n] is divisible by

t := gcd(p, q). Write r1 := p/t and r2 := q/t, and let c := 2(2−log2 3)(r1r2−r1−r2+4)−1. Then

f(n,Lw,M) 6 c · 2M(1−rt(2−log2 3)(p2+(p−t)(q−t))/(p2q(p+q))).

Proof. Note that if I is an Lw-free set with maximum element M , then I∩ [drM/qe−1]

is an independent set in GM . Since M is divisible by t, by Lemma 4.9 there exists a

matching H in GM of size

J :=

⌊
rM

r2(p+ q)

⌋
+ (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
− 1

> rtM
(p2 + (p− t)(q − t)

p2q(p+ q)

)
− r1r2 + r1 + r2 − 4.

Let A1, . . . , AJ+1 be a partition of V (GM) where if 1 6 i 6 J then Ai contains precisely

the two vertices from some edge in H. So |AJ+1| = drM/qe − 1− 2J . Recalling that we

use i(G) for the number of independent sets in G, we have i(GM [Ai]) = 3 for 1 6 i 6 J

and i(GM [AJ+1]) 6 2drM/qe−1−2J . So Lemma 3.8 implies that i(GM) 6 3J2drM/qe−1−2J .
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Observe that every Lw-free subset of [n] with maximum element M can be found by

picking an independent set I ⊆ V (GM) and extending it in [drM/qe,M − 1]. There are

at most 2M−drM/qe ways to form this extension. Hence we have

f(n,Lw,M) 6 i(GM) · 2M−drM/qe 6 3J2M−2J−1 = 2M−(2−log2 3)J−1

6 2M(1−rt(2−log2 3)(p2+(p−t)(q−t))/(p2q(p+q)))2(2−log2 3)(r1r2−r1−r2+4)−1.

�

Theorem 4.16. Let L denote the equation px+ qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Suppose

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
.

Then f(n,Lw) 6 C · 2µ(n,Lw) where

C :=
2(2−log2 3)(r1r2−r1−r2+4)

1− 21−rt2(2−log2 3)(p2+(p−t)(q−t))/(p2q(p+q)) .

Proof. If q does not divide p, since r > (r1r2− r1− r2 +4)r2(r1 +1+(r2−1)/(r21 +(r1−

1)(r2 − 1))) we have µ(n,Lw) = d(t− 1)n/te by Theorem 4.3(iii). If q divides p then our

condition on r implies rq > p+ q and so we have µ(n,Lw) = d(q − 1)n/qe = d(t− 1)n/te

by Theorem 4.3(i).

Every Lw-free subset A of [n] can be written as A = B ∪ D where the maximum

element M of B is divisible by t and minD > M and no element of D is divisible by t.

(Note here B or D could be empty. If B is empty then we define M := 0.) Thus

f(n,Lw) 6
∑

M≡ 0mod t
06M6n

f(n,Lw,M) · 2d(n−M)(t−1)/te =
∑

M≡ 0mod t
06M6n

f(n,Lw,M) · 2µ(n,Lw)−M(t−1)/t
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where we define f(n,Lw, 0) := 1.

Let b := 1−rt(2−log2 3)(p2+(p−t)(q−t))/(p2q(p+q)), d := 2bt−t+1 and a := c·2µ(n,Lw)

where c is as stated in Lemma 4.15. Note that |d| < 1 if r > r2(r1 + 1 + (r2 − 1)/(r21 +

(r1 − 1)(r2 − 1)))/(2− log2 3). But this is true since (r1r2 − r1 − r2 + 4) > 1/(2− log2 3).

By using Lemma 4.15 we obtain

f(n,Lw) 6
∑

M≡ 0mod t
06M6n

c · 2M(1−rt(2−log2 3)(p2+(p−t)(q−t))/(p2q(p+q)))2µ(n,L
w)−M(t−1)/t

=
∑

M≡ 0mod t
06M6n

a · 2M(b−(t−1)/t) =

bn/qc∑
i=0

a · 2it(b−(t−1)/t)

=

bn/qc∑
i=0

adi 6
∞∑
i=0

adi =
a

1− d

=C · 2µ(n,Lw) where C :=
2(2−log2 3)(r1r2−r1−r2+3)

1− 21−rt2(2−log2 3)(p2+(p−t)(q−t))/(p2q(p+q)) .

�

Note Theorem 4.16 implies Theorem 4.4. Recall Theorem 3.3 from the last chapter.

Both of these involve equations with three variables. To prove the following corollary, we

use Theorems 4.4 and 3.3 respectively, together with repeated use of Proposition 4.1.

Corollary 4.17. Let L denote one of the following equations:

(i) a1x1 + · · · + akxk + b1y1 + · · · + b`y` = r′z where ai, bi, r
′ ∈ N and p′ =

∑
i ai,

q′ =
∑

i bi satisfy p′ > q′ > r′. Let t′ := gcd(p′, q′, r′) and write p := p′/t′, q := q′/t′

and r := r′/t′. Write r1 := p/t and r2 := q/t. Suppose additionally tt′ divides ai

and bj for 1 6 i 6 k, 1 6 j 6 ` and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
.
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(ii) a1x1 + · · · + akxk + b1y1 + · · · + b`y` = z where the ai, bi ∈ N and p =
∑

i ai,

q =
∑

i bi satisfy p > q and additionally either q = 1 and p > 3 or q > 2 and

p > q(3q − 2)/(2q − 2).

Then f(n,Lw) = Θ(2µ(n,L
w)).

Proof. Let L2 denote the equation px+qy = rz. By repeated use of Proposition 4.1 and

Fact 4.11 we have f(n,Lw) 6 f(n,Lw2 ). By Theorems 4.4 and 3.3 respectively for cases

(i) and (ii), we have f(n,Lw2 ) 6 C · 2µ(n,Lw2 ) for some constant C. But by Corollary 4.14

we have µ(n,Lw) = µ(n,Lw2 ) and so f(n,Lw) 6 C · 2µ(n,Lw). �

4.5 The number of maximal solution-free sets

We start this section with the proof of Theorem 4.5.

Theorem 4.5. Let L denote the equation px + qy = rz where p > q > r and p, q, r are

fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Then

fmax(n,Lw) 6 2
Crn
q

+o(n) where C := 1− t

p+ q

(p2 + (p− t)(q − t)
p2

)
.

Proof. First note that C lies between 1/2 and 1 − t/(p + q). To see this, note that if

q divides p, then C = 1 − q/(p + q) > 1/2 since p > q. Otherwise, p > q > t, and so

(p−t)(q−t) < p2. Hence t(p2+(p−t)(q−t))/(p2(p+q)) < 2t/(p+q) 6 2(q/2)/(p+q) < 1/2

and so C > 1/2. We observe that C 6 1− t/(p+ q) since p > q > t.

Let F denote the set of containers obtained by applying Lemma 2.5. Since every

maximal Lw-free subset of [n] lies in at least one of the 2o(n) containers, it suffices to show

that every F ∈ F houses at most 2Crn/q+o(n) maximal Lw-free sets.

Let F ∈ F . By Lemmas 2.5(i) and 2.4, F = A ∪ B where |A| = o(n), |B| 6

µ(n,Lw) and B is Lw-free. Define M := max{x ∈ B : x ≡ 0 mod t} and u :=
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max{brM/qc, brn/2qc}. Every maximal Lw-free set which lies in such a container can be

constructed by:

(i) Picking S1 ⊆ A to be Lw-free;

(ii) Adding a set S2 ⊆ [u] ∩B so that S1 ∪ S2 is Lw-free;

(iii) Choosing a set S3 ⊆ [u+ 1, n]∩B so that S1 ∪ S2 ∪ S3 is a maximal Lw-free subset

of [n].

There are 2o(n) ways to pick S1. If M 6 n/2 then u = brn/2qc and so there are at

most 2rn/2q 6 2Crn/q ways to pick S2 so that S1 ∪ S2 is Lw-free. Write r1 := p/t and

r2 := q/t. If M > n/2 then since M is divisible by t, we apply Lemma 4.10 to show that

|[u] ∩B| = |[brM/qc] ∩B|

6

⌊
rM

q

⌋
−
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
=
CrM

q
+ o(n).

Hence there are at most 2CrM/q+o(n) 6 2Crn/q+o(n) ways to pick S2 so that S1 ∪ S2 is

Lw-free.

Let B′ := [u+ 1, n]∩B. For step (iii) we calculate the number of extensions of S1∪S2

into B′. Observe by Lemma 4.7, this is bounded above by MIS(LS1∪S2 [B
′]). We will show

that this link graph has only one maximal independent set. Then combining steps (i)-(iii)

we have that F contains at most 2o(n)× 2Crn/q+o(n) = 2Crn/q+o(n) maximal Lw-free sets as

desired.

If the link graph only contains loops and isolated vertices, then it has only one maximal

independent set. For it to have an edge between distinct vertices, we either must have

x, z ∈ B′, y ∈ S1 ∪ S2 such that px+ qy = rz or py+ qx = rz, or we must have x, y ∈ B′,

z ∈ S1 ∪ S2 such that px+ qy = rz.
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The first of these events does not occur since otherwise rz > q(x + y) > qx >

q(brM/qc+1) > rM and so z > M . Note that since z is part of the solution px+qy = rz

and gcd(p, q, r) = 1, it must be divisible by t. However this contradicts z > M as we have

z ∈ B, but M was defined to be the largest element in B divisible by t.

If M > n/2 then the second event does not occur since rz = px + qy > q(x + y) >

2q(brM/qc + 1) > 2rM > rn and so z > n. If M 6 n/2 then the second event does not

occur since rz = px+ qy > q(x+ y) > 2q(brn/2qc+ 1) > rn and so again z > n. �

Note that when r = 1, Theorem 4.5 gives us new results for equations of the form

px + qy = z. Recall that in the last chapter we found results for such equations. In

Section 4.6 we give a summary describing which result gives the best upper bound for

various values of p and q.

When L denotes the equation qx + qy = z for some positive integer q > 2, Propo-

sition 3.21(iii) gives a lower bound of fmax(n,Lw) > 2(n−6q)/2q. Combining this with

Theorem 4.5 allows us to determine log(fmax(n,Lw)) asymptotically.

Theorem 4.6. Let L denote the equation qx+ qy = z where q > 2 is an integer. Then

fmax(n,Lw) = 2n/2q+o(n).

By adapting the proof of Theorem 4.5 we obtain the following result for fmax(n,Lw)

for some equations with more than three variables.

Theorem 4.18. Let L denote the equation p1x1 + · · ·+pkxk = rz where p1, . . . , pk, r ∈ N

satisfy gcd(p1, . . . , pk, r) = 1 and p1 > · · · > pk > r. Suppose that p :=
∑k−1

i=1 pi and

q := pk satisfy t := gcd(p, q) = gcd(p1, . . . , pk). Then

fmax(n,Lw) 6 2
Crn
q

+o(n) where C := 1− t

p+ q

(p2 + (p− t)(q − t)
p2

)
.
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Proof. We follow the proof used in Theorem 4.5 precisely (except for using Lemma 4.12

instead of Lemma 4.10 in step (ii)) up until counting the number of ways of extending

S1 ∪ S2 to a maximal Lw-free set in B′ := [u + 1, n] ∩ B. Observe by Lemma 4.7, this is

bounded above by MIS(LS1∪S2 [B
′]) since B′ and S1∪S2 are Lw-free. To see that B′ is Lw-

free, suppose (x1, . . . , xk, z) is a solution within B′ and note that rz = p1x1 + · · ·+pkxk >

pkxk > q(rM/q) = rM and so z > M . (Here we needed that each pi is positive.) Since

gcd(p1, . . . , pk, r) = 1 and gcd(p, q) = gcd(p1, . . . , pk) we have gcd(t, r) = 1 and so in any

solution to L, z must be divisible by t. However this contradicts z > M as we have z ∈ B,

but M was defined to be the largest element in B divisible by t.

We will show that this link hypergraph LS1∪S2 [B
′] has only one maximal independent

set (and hence the number of maximal Lw-free sets contained in F is at most 2Crn/q+o(n)

as required). If the link hypergraph only contains loops and isolated vertices, then it has

only one maximal independent set.

For it to have a hyperedge between at least two vertices, there must exist a solution

(x1, . . . , xk, z) where either there is a hyperedge with distinct vertices xi, z ∈ B′ for some

1 6 i 6 k and {x1, . . . , xi−1, xi+1, . . . , xk} ⊆ B′ ∪ S1 ∪ S2, or there is a hyperedge with

distinct vertices xi, xj ∈ B′ for some 1 6 i < j 6 k and

{x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xk, z} ⊆ B′ ∪ S1 ∪ S2.

Suppose the first event occurs with (x1, . . . , xk, z). Then rz = p1x1 + · · · + pkxk >

pixi > pkxi = qxi > q(rM/q) = rM and so z > M . But since z is part of a solution,

it must be divisible by t. This contradicts z ∈ B, since M was defined to be the largest

element in B divisible by t.

If M > n/2 then the second event does not occur since rz = p1x1 + · · · + pkxk >

pk(xi + xj) > 2q(brM/qc + 1) > 2rM > rn and so z > n. If M 6 n/2 then the second
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event does not occur since rz = p1x1 + · · ·+ pkxk > pk(xi + xj) > 2q(brn/(2q)c+ 1) > rn

and so again z > n. �

We end the section with a lower bound.

Proposition 4.19. Let L denote the equation qx+qy = rz where q > r and q, r are fixed

positive integers satisfying gcd(q, r) = 1. Then

fmax(n,Lw) > 2dbrn/2q−rq/2c(q−1)/qe−1.

Proof. Let B be the Lw-free set {z ∈ [n] : z 6≡ 0 mod q}. Let M := max{z ∈ [n] :

rz/q2 ∈ [n]}; so M > n − q2. Let S := {M} and consider the link graph LS[B]. Note

that if i ∈ B where i < rM/q then rM/q − i ∈ B. This follows since rM/q2 ∈ N and

so rM/q − i 6≡ 0 mod q. Hence there is an edge in LS[B] between every such i and

rM/q− i since q(i+ rM/q− i) = rM . By running through all i ∈ B we obtain a total of

dbrM/2qc(q − 1)/qe disjoint edges in LS[B] of which at most one is a loop (at rM/2q if

it is an integer not congruent to 0 modulo q). Hence we obtain an induced matching E

in LS[B] of size dbrM/2qc(q − 1)/qe − 1 > dbrn/2q − rq/2c(q − 1)/qe − 1. It is easy to

see that the matching E contains 2|E| maximal independent sets. Since E is an induced

subgraph of LS[B], by applying Lemma 4.8 we obtain the result. �

Question 4.20. Let L denote the equation qx + qy = rz where q > r > 2 and q, r are

fixed positive integers satisfying gcd(q, r) = 1. Does fmax(n,Lw) = 2rn(q−1)/(2q
2)+o(n)?

We remark that it turns out that for equations L as in Question 4.20, we have that

2rn(q−1)/(2q
2)+o(n) = 2(µ(n,Lw)−µ∗(n,L))/2+o(n).

4.6 Best upper bounds on fmax(n,Lw)
In this section we give a summary of the best known upper bound on fmax(n,Lw) for

equations of the form px + qy = rz where p > q > r. First we recall some of the results
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from the previous chapter.

Theorem 3.4. Let L be a fixed homogeneous three-variable linear equation. Then

fmax(n,Lw) 6 3(µ(n,Lw)−µ∗(n,L))/3+o(n).

Theorem 3.5. Let L denote the equation px + qy = z where p > q > 2 are integers so

that p 6 q2 − q and gcd(p, q) = q. Then

fmax(n,Lw) 6 2(µ(n,Lw)−µ∗(n,L))/2+o(n).

Theorem 3.6. Let L denote the equation px+ qy = z where p > q, p > 2 and p, q ∈ N.

Then

fmax(n,Lw) 6 2µ(b
n−p
q
c,Lw)+o(n).

We can generalise Theorem 3.6 for r > 1 by following a very similar proof to that of

Lemma 3.20 to obtain the following.

Theorem 4.21. Let L denote the equation px+ qy = rz where p > q > r and p, q, r ∈ N.

Then

fmax(n,Lw) 6 2µ(b
rn
q
c,Lw)+o(n).

The upper bounds given by Theorems 3.5, 3.6 and 4.21 are all superseded by the

bound given by Theorem 4.5. We prove this here and also compare Theorem 4.5 with

Theorem 3.4.

Proposition 4.22. Let L denote the equation px + qy = rz where p > q > r, p > 2

and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and let

a := log2 3. The best upper bound on fmax(n,Lw) given by Theorems 3.4, 3.5, 3.6, 4.5

and 4.21 is:
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(i) fmax(n,Lw) 6 3(µ(n,Lw)−µ∗(n,L))/3+o(n) if

(a) r = 1, gcd(p, q) = q, p > max {q2, (q2 − q)a/(q(3− 2a) + a)}, and q 6 9;

(b) r > 2, µ(n,Lw) = d(t− 1)n/te, and additionally (1) p 6= q or (2) 2 6 q 6 18;

(c) r > 2, q divides p, p+ q > rq and additionally (1) p 6= q or (2) 2 6 q 6 18;

(ii) fmax(n,Lw) 6 2Crn/q+o(n) where C := 1− t(p2 + (p− t)(q − t))/(p2(p+ q)) if

(a) r = 1, gcd(p, q) 6= q or q > 9 or p < q2 or p < (q2 − q)a/(q(3− 2a) + a);

(b) r > 2, µ(n,Lw) = d(t− 1)n/te, and p = q > 19.

Proof. First suppose that r = 1 (and so µ(n,Lw) = d(p+ q − 1)n/(p+ q)e). Note that

C 6 1− t/(p+ q) = (p+ q− t)/(p+ q) 6 (p+ q− 1)/(p+ q) and so the exponent given by

Theorem 4.5 is at most the exponent given by Theorem 3.6. For Theorem 3.5 we require

gcd(p, q) = q and p 6 q2− q. In this case C = p/(p+ q) and (p+ q− 1)/(2(p+ q))− (q−

1)2/(2q2) = (2pq + q2 − p − q)/(2q2(p + q)) > p/(q(p + q)) = C/q and so the exponent

given by Theorem 4.5 is at most the exponent given by Theorem 3.5.

For r = 1 it remains to check when the bound given by Theorem 3.4 is better than the

bound given by Theorem 4.5. Since Theorem 3.5 gives a better bound than Theorem 3.4

when gcd(p, q) = q and p 6 q2 − q, it suffices to consider the case when gcd(p, q) = q and

p > q2, and when gcd(p, q) 6= q. For the latter, when t = gcd(p, q) 6= q, it certainly suffices

to show that 2µ(b(n− p)/qc,Lw) 6 µ(n,Lw)−µ∗(n,L) + o(n), since Theorem 4.5 gives a

better bound than Theorem 3.6. In this case we have µ∗(n,L) = (q−1)(t−1)n/(qt)+o(n),

and hence it suffices to show that t 6 (pq+q2−p−q)/(p+2q−2). First note that t 6 q/2

and so q 6= 1. Now observe that t(p+2q−2) 6 q(p+2q−2)/2 = pq/2+q2−q 6 pq+q2−p−q

and so our inequality on t holds as required. Now suppose gcd(p, q) = q and p > q2. To

prove (i)(a) it suffices to show that

3
(p+q−1)n
3(p+q)

− (q−1)2n

3q2 6 2
pn

q(p+q) ,
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or rearranging

p(q(3− 2a) + a) > (q2 − q)a.

If q > 10 then (q(3 − 2a) + a) is negative, but then we would require p negative, a

contradiction. Hence we must have q 6 9 and then the inequality holds if p > (q2 −

q)a/(q(3− 2a) + a).

Now suppose that r > 2 and µ(n,Lw) = d(t − 1)n/te. Then µ(n,Lw) − µ∗(n,L) =

r(t − 1)n/(qt) + o(n) and 3x/3 < 2x and so Theorem 3.4 gives a better bound than

Theorem 3.6. We wish to know when

3
r
q
t−1
3t < 2

r
q
(1− t

p+q
(
p2+(p−t)(q−t)

p2
))
.

Write r1 := p/t and r2 := q/t. The above rearranges to give

t((a− 3)r21(r1 + r2) + 3r21 + 3(r1 − 1)(r2 − 1)) < ar21(r1 + r2).

The right hand side is positive and the left hand side is negative unless r1 = r2 = 1. In

this case p = q = t and so we now require 3(q−1)/(3q) < 21/2, which holds when q 6 18.

Finally suppose that r > 2, q divides p and p + q > rq (so µ(n,Lw) = d(p + q −

r)n/(p + q)e). Since q divides p, we have t = q and p = r1q, and so Theorem 4.5 gives

a bound of 2rpn/(q(p+q))+o(n). This is better than Theorem 4.21 which gives a bound of

2r(p+q−r)n/(q(p+q))+o(n) since q > r. Therefore we wish to know when

3
p+q−r
3(p+q)

− (q−r)(q−1)

3q2 < 2
rp

q(p+q) .

Rearranging, we require r1(a(q+qr−r)/3−qr) 6 a(r−q)/3. Now note a(q+qr−r)/3−qr

is negative when r > 2, so this rearranges to give r1 > (q − r)/(r − q − rq + 3rq/a). If

p > q (so r1 > 2), it suffices to have 2 > (q − r)/(r − q − rq + 3rq/a) or rearranging,
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q(r(2−6/a)+3) 6 3r. This holds since r(2−6/a)+3 is negative for r > 2. Otherwise p = q,

and so since p+q > rq, we have that r = 2. So we require 1 > (q−2)/((6/a−3)q+2) which

holds when q 6 18. (In this final case, µ(n,Lw) = d(t− 1)n/te = d(p+ q− r)n/(p+ q)e =

d(q − 1)n/qe.)

�

4.7 Concluding Remarks

The crucial trick used in the proof of Theorems 4.5 and 4.18 was to choose our sets S

carefully so that the link hypergraphs LS[B] each contain precisely one maximal indepen-

dent set. In other applications of this method (see [6, 7] and Chapter 3) the approach was

to instead obtain other structural properties of the link graphs (such as being triangle-

free) to ensure there are not too many maximal independent sets in LS[B]. It would be

interesting to see if the approach of this chapter can be applied to obtain other results in

the area.

Although we have found an initial bound on fmax(n,Lw) for some equations with more

than three variables, we still do not know in general if there are significantly fewer maximal

Lw-free subsets of [n] than there are Lw-free subsets of [n]. Progress on giving general

upper bounds on the number of maximal independent sets in (non-uniform) hypergraphs

should (through the method of link hypergraphs) yield results in this direction.
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Chapter 5

Ramsey properties of graphs and

the integers

5.1 Introduction

In this chapter we use the container method to prove results that correspond to problems

concerning tuples of disjoint independent sets in hypergraphs. An overarching aim is

to demonstrate that with the container method at hand, one can give relatively short

and elementary proofs of fundamental results concerning Ramsey properties of graphs

and the integers. Moreover, our results give us a precise understanding about how re-

siliently typical graphs and sets of integers of a given density possess a given Ramsey

property. In particular, one of our main results is a resilience random Ramsey theorem

(Theorem 5.7). This result provides a unified framework for studying both the Ramsey

and Turán problems in the setting of random (hyper)graphs. In particular, Theorem 5.7

implies the (so-called 1-statements of the) random Ramsey theorem due to Rödl and

Ruciński [90, 91, 92] and the random version of Turán’s theorem [28, 108]. Moreover,

Theorem 5.7 also resolves a general subcase of the asymmetric random Ramsey conjecture

of Kohayakawa and Kreuter [70]. Since Theorem 5.7 unifies and generalises several fun-
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damental results concerning Ramsey and Turán properties of random (hyper)graphs, we

survey these topics in Sections 5.1.1.2–5.1.1.4 before we state this result in Section 5.1.1.5.

We also prove a sister result to Theorem 5.7, a resilience strengthening of the random

Rado theorem (Theorem 5.11). Again the container method allows us to give a rather

short proof of this result. We further provide results on the enumeration of Ramsey graphs

(Theorem 5.12) and sets of integers without a given Ramsey property (Theorem 5.13).

As mentioned the results we prove all correspond to problems concerning tuples of

disjoint independent sets in hypergraphs. In particular, from the container theorem of

Balogh, Morris and Samotij one can easily obtain an analogous result for tuples of inde-

pendent sets in hypergraphs (see Theorem 5.14). It turns out that many Ramsey-type

questions (and other problems) can be naturally phrased in this setting. For example, by

Schur’s theorem we know that, if n is large, then whenever one r-colours the elements of

[n] := {1, . . . , n} there is a monochromatic solution to x+ y = z. This raises the question

of how large can a subset S ⊆ [n] be whilst failing to have this property? (This problem

was first posed back in 1977 by Abbott and Wang [1].) Let H be the hypergraph with

vertex set [n] in which edges precisely correspond to solutions to x+ y = z. (Note H will

have edges of size 2 and 3.) Then sets S ⊆ [n] without this property are precisely the

union of r disjoint independent sets in H.

In Section 5.2 we state the container theorem for tuples of independent sets in hy-

pergraphs. In Sections 5.3 and 5.4 we give our applications of this container result to

enumeration and resilience questions arising in Ramsey theory for graphs and the inte-

gers.
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5.1.1 Resilience in hypergraphs and the integers

5.1.1.1 Resilience in graphs

The notion of graph resilience has received significant attention in recent years. Roughly

speaking, resilience concerns the question of how ‘strongly’ a graph G satisfies a certain

monotone graph property P . Global resilience concerns how many edges one can delete

and still ensure the resulting graph has property P whilst local resilience considers how

many edges one can delete at each vertex whilst ensuring the resulting graph has property

P . More precisely, we define the global resilience of G with respect to P , res(G,P), to be

the minimum number t such that by deleting t edges from G, one can obtain a set not

having P . Many classical results in extremal combinatorics can be rephrased in terms

of resilience. For example, Turán’s theorem determines the global resilience of Kn with

respect to the property of containing Kr (where r < n) as a subgraph.

The systematic study of graph resilience was initiated in a paper of Sudakov and

Vu [115], though such questions had been studied before this. In particular, a key question

in the area is to establish the resilience of various properties of the Erdős–Rényi random

graph Gn,p. (Recall that Gn,p has vertex set [n] in which each possible edge is present

with probability p, independent of all other choices.) The local resilience of Gn,p has been

investigated, for example, with respect to Hamiltonicity e.g. [115, 77], almost spanning

trees [4] and embedding subgraphs of small bandwidth [20]. See [115] and the surveys [27,

114] for further background on the subject. In this chapter we study the global resilience

of Gn,p with respect to Ramsey properties (in fact, as we explain later, we will consider

its hypergraph analogue G
(k)
n,p for k > 2). First we will focus on the graph case.

5.1.1.2 Ramsey properties of random graphs

An event occurs in Gn,p with high probability (w.h.p.) if its probability tends to 1 as

n → ∞. For many properties P of Gn,p, the probability that Gn,p has the property
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exhibits a phase transition, changing from 0 to 1 over a small interval. That is, there is

a threshold for P : a function p0 = p0(n) such that Gn,p has P w.h.p. when p � p0 (the

1-statement), while Gn,p does not have P w.h.p. when p� p0 (the 0-statement). Indeed,

Bollobás and Thomason [19] proved that every monotone property P has a threshold.

Given a graph H, set d2(H) := 0 if e(H) = 0; d2(H) := 1/2 when H is precisely

an edge and define d2(H) := (e(H) − 1)/(v(H) − 2) otherwise. Then define m2(H) :=

maxH′⊆H d2(H
′) to be the 2-density of H. This graph parameter turns out to be very

important when determining the threshold for certain properties in Gn,p concerning the

containment of a small subgraph H, which we explain further below.

Given ε > 0 and a graph H, we say that a graph G is (H, ε)-Turán if every subgraph of

G with at least (1− 1
χ(H)−1+ε)e(G) edges contains a copy of H. Note that the Erdős–Stone

theorem implies that Kn is (H, ε)-Turán for any fixed H provided n is sufficiently large.

To motivate the definition, consider any graph G. Then by considering a random partition

of V (G) into χ(H)−1 parts (and then removing any edge contained within a part) we see

that there is a subgraph G′ of G that is (χ(H)−1)-partite where e(G′) > (1− 1
χ(H)−1)e(G).

In particular, H 6⊆ G′. Intuitively speaking, this implies that (up to the ε term), (H, ε)-

Turán graphs are those graphs that most strongly contain H.

Rephrasing to the language of resilience, we see that if, for any ε > 0, G is (H, ε)-

Turán, then res(G,G ⊇ H) = ( 1
χ(H)−1 ± ε)e(G), and vice versa. (Recall that we write

x = a± b to say that the value of x is some real number in the interval [a− b, a+ b].) The

global resilience of Gn,p with respect to the Turán problem has been extensively studied.

Indeed, a recent trend in combinatorics and probability concerns so-called sparse random

analogues of extremal theorems (see [27]), and determining when Gn,p is (H, ε)-Turán is

an example of such a result.

If p 6 cn−1/m2(H) for some small constant c, then it is not hard to show that w.h.p. Gn,p

is not (H, ε)-Turán. In [58, 59, 72] it was conjectured that w.h.p. Gn,p is (H, ε)-Turán
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provided that p > Cn−1/m2(H), where C is a (large) constant. After a number of partial

results, this conjecture was confirmed by Schacht [108] and (in the case when H is strictly

2-balanced, i.e. m2(H
′) < m2(H) for all H ′ ⊂ H) by Conlon and Gowers [28].

Theorem 5.1 ([108, 28]). For any graph H with ∆(H) > 2 and any ε > 0, there are

positive constants c, C such that

lim
n→∞

P[Gn,p is (H, ε)-Turán] =


0 if p < cn−1/m2(H);

1 if p > Cn−1/m2(H).

Given an integer r, an r-colouring of a graph G is a function σ : E(G)→ [r]. (So this

is not necessarily a proper colouring.) We say that G is (H, r)-Ramsey if every r-colouring

of G yields a monochromatic copy of H in G. Observe that being (H, 1)-Ramsey is the

same as containing H as a subgraph. So the 1-statement of Theorem 5.1 says that, given

ε > 0, there exists a positive constant C such that, if p > Cn−1/m2(H), then

lim
n→∞

P
[

res(Gn,p, (H, 1)-Ramsey)

e(Gn,p)
=

1

χ(H)− 1
± ε
]

= 1. (5.1.1)

The following result of Rödl and Ruciński [90, 91, 92] yields a random version of

Ramsey’s theorem.

Theorem 5.2 ([90, 91, 92]). Let r > 2 be a positive integer and let H be a graph that

is not a forest consisting of stars and paths of length 3. There are positive constants c, C

such that

lim
n→∞

P[Gn,p is (H, r)-Ramsey] =


0 if p < cn−1/m2(H);

1 if p > Cn−1/m2(H).

Thus n−1/m2(H) is again the threshold for the (H, r)-Ramsey property. Let us provide

some intuition as to why. The expected number of copies of H in Gn,p is Θ(nv(H)pe(H)),
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while the expected number of edges in Gn,p is Θ(pn2). When p = Θ(n−1/d2(H)), these

quantities agree up to a constant. Suppose that H is 2-balanced, i.e. d2(H) = m2(H).

For small c > 0, when p < cn−1/m2(H), most copies of H in Gn,p contain an edge which

appears in no other copy. Thus we can hope to colour these special edges blue and colour

the remaining edges red to eliminate all monochromatic copies of H. For large C > 0,

most edges lie in many copies of H, so the copies of H are highly overlapping and we

cannot avoid monochromatic copies. In general, when H is not necessarily 2-balanced,

the threshold is n−1/d2(H
′) for the ‘densest’ subgraph H ′ of H since, roughly speaking, the

appearance of H is governed by the appearance of its densest part.

We remark that Nenadov and Steger [85] recently gave a short proof of Theorem 5.2

using the container method.

5.1.1.3 Asymmetric Ramsey properties in random graphs

It is natural to ask for an asymmetric analogue of Theorem 5.2. Now, for graphs

H1, . . . , Hr, a graph G is (H1, . . . , Hr)-Ramsey if for any r-colouring of G there is a copy

of Hi in colour i for some i ∈ [r]. (This definition coincides with that of (H, r)-Ramsey

when H1 = . . . = Hr = H.) Kohayakawa and Kreuter [70] conjectured an analogue of

Theorem 5.2 in the asymmetric case. To state it, we need to introduce the asymmetric

density of H1, H2 where m2(H1) > m2(H2) via

m2(H1, H2) := max

{
e(H ′1)

v(H ′1)− 2 + 1/m2(H2)
: H ′1 ⊆ H1 and e(H ′1) > 1

}
. (5.1.2)

Conjecture 5.3 ([70]). For any graphs H1, . . . , Hr with m2(H1) > . . . > m2(Hr) > 1,

there are positive constants c, C > 0 such that

lim
n→∞

P [Gn,p is (H1, . . . , Hr)-Ramsey] =


0 if p < cn−1/m2(H1,H2);

1 if p > Cn−1/m2(H1,H2).
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So the conjectured threshold only depends on the ‘joint density’ of the densest two

graphs H1, H2. The intuition for this threshold is discussed in detail e.g. in Section 1.1

in [51]. One can show that m2(H1) > m2(H1, H2) > m2(H2) with equality if and only

if m2(H1) = m2(H2). Thus Conjecture 5.3 would generalise Theorem 5.2. Kohayakawa

and Kreuter [70] have confirmed Conjecture 5.3 when the Hi are cycles. In [81] it was

observed that the approach used by Kohayakawa and Kreuter [70] implies the 1-statement

of Conjecture 5.3 holds when H1 is strictly 2-balanced provided the so-called K LR conjec-

ture holds. This latter conjecture was proven by Balogh, Morris and Samotij [8] thereby

proving the 1-statement of Conjecture 5.3 holds in this case. The full 1-statement of

Conjecture 5.3 has very recently been proven by Mousset, Nenadov and Samotij [83].

5.1.1.4 Ramsey properties of random hypergraphs

Consider now the k-uniform analogue G
(k)
n,p of Gn,p which has vertex set [n] and in which

every k-element subset of [n] appears as an edge with probability p, independent of all

other choices. Here, we wish to obtain analogues of Theorems 5.1, 5.2 and Conjecture 5.3

by determining the threshold for being (H, ε)-Turán, (H, r)-Ramsey, and more generally

being (H1, . . . , Hr)-Ramsey. The definitions of (H, r)-Ramsey and (H1, . . . , Hr)-Ramsey

extend from graphs in the obvious way. Given a k-uniform hypergraph H, let ex(n;H)

be the maximum size of an n-vertex H-free hypergraph. A simple averaging argument

shows that the limit

π(H) := lim
n→∞

ex(n;H)(
n
k

)
exists. Now we say that a k-uniform hypergraph G is (H, ε)-Turán if every subhypergraph

of G with at least (π(H) + ε)e(G) edges contains a copy of H. (Since π(H) = 1− 1
χ(H)−1

when k = 2, this generalises the definition we gave earlier.) We also need to generalise
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the notion of 2-density to k-density : Given a k-graph H, define

dk(H) :=


0 if e(H) = 0;

1/k if v(H) = k and e(H) = 1;

e(H)−1
v(H)−k otherwise,

and let

mk(H) := max
H′⊆H

dk(H
′).

The techniques of Conlon–Gowers [28] and of Schacht [108] actually extended to a proof

of a version of Theorem 5.1 for hypergraphs:

Theorem 5.4 ([28, 108]). For any k-uniform hypergraph H with maximum vertex de-

gree at least two and any ε > 0, there are positive constants c, C such that

lim
n→∞

P[G(k)
n,p is (H, ε)-Turán] =


0 if p < cn−1/mk(H);

1 if p > Cn−1/mk(H).

The 1-statement of Theorem 5.2 was generalised to hypergraphs by Friedgut, Rödl

and Schacht [42] and by Conlon and Gowers [28], proving a conjecture of Rödl and

Ruciński [94]. (The special cases of the complete 3-uniform hypergraph K
(3)
4 on four

vertices and of k-partite k-uniform hypergraphs were already proved in [94], [95] respec-

tively. Also in [85] Nenadov and Steger remark that their proof of the 1-statement of

Theorem 5.2 extends to Theorem 5.5.)

Theorem 5.5 ([28, 42]). Let r, k > 2 be integers and let H be a k-uniform hypergraph

with maximum vertex degree at least two. There is a positive constant C such that

lim
n→∞

P[G(k)
n,p is (H, r)-Ramsey] = 1 if p > Cn−1/mk(H).
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In [51], sufficient conditions are given for a corresponding 0-statement. However, the

authors further show that, for k > 4, there is a k-uniform hypergraph H such that the

threshold for G
(k)
n,p to be (H, r)-Ramsey is not n−1/mk(H), and nor does it correspond to the

exceptional case in the graph setting of certain forests, where there is a coarse threshold

due to the appearance of small subgraphs.

For the asymmetric Ramsey problem, we need to suitably generalise (5.1.2), in the ob-

vious way: for any k-uniform hypergraphs H1, H2 with non-empty edge sets and mk(H1) >

mk(H2), let

mk(H1, H2) := max

{
e(H ′1)

v(H ′1)− k + 1/mk(H2)
: H ′1 ⊆ H1 and e(H ′1) > 1

}
(5.1.3)

be the asymmetric k-density of (H1, H2). Again,

mk(H1) > mk(H1, H2) > mk(H2),

so, in particular, mk(H1, H2) = mk(H1) if and only if H1 and H2 have the same k-density.

Recently, Gugelmann, Nenadov, Person, Steger, Škorić and Thomas [51] generalised

the 1-statement of Conjecture 5.3 to k-uniform hypergraphs, in the case when H ′1 = H1

is the unique maximiser in (5.1.3), i.e. H1 is strictly k-balanced with respect to mk(·, H2).

Theorem 5.6 ([51]). For all positive integers r, k with k > 2 and k-uniform hypergraphs

H1, . . . , Hr with mk(H1) > . . . > mk(Hr) where H1 is strictly k-balanced with respect to

mk(·, H2), there exists C > 0 such that

lim
n→∞

P
[
G(k)
n,p is (H1, . . . , Hr)-Ramsey

]
= 1 if p > Cn−1/mk(H1,H2).

They further prove a version of Theorem 5.6 with the weaker bound p > Cn−1/mk(H1,H2) log n

when H1 is not required to be strictly k-balanced with respect to mk(·, H2).

84



5.1.1.5 New resilience result

Our main result here is Theorem 5.7, which generalises, fully and partially, all of the

1-statements of the results discussed in this section, giving a unified setting for both the

random Ramsey theorem and the random Turán theorem. Once we have obtained a con-

tainer theorem for Ramsey graphs (Theorem 5.34), the proof is short (see Section 5.4.6).

For k-uniform hypergraphs H1, . . . , Hr and a positive integer n, let exr(n;H1, . . . , Hr)

be the maximum size of an n-vertex k-uniform hypergraph G which is not (H1, . . . , Hr)-

Ramsey. Define the r-coloured Turán density

π(H1, . . . , Hr) := lim
n→∞

exr(n;H1, . . . , Hr)(
n
k

) . (5.1.4)

Observe that ex1(n;H) = ex(n;H) since a hypergraph is H-free if and only if it is not

(H, 1)-Ramsey. Note further that π(·, . . . , ·) generalises π(·). So when k = 2, we have

π(H) = 1− 1
χ(H)−1 . We will show in Section 5.4.2 that the limit in (5.1.4) does indeed exist,

so π(·, . . . , ·) is well-defined. Further, crucially for k-uniform hypergraphs H1, . . . , Hr,

there exists an ε = ε(H1, . . . , Hr) > 0 so that π(H1, . . . , Hr) < 1 − ε (see (5.4.3) in

Section 5.4.2).

Theorem 5.7 (Resilience for random Ramsey). Let δ > 0, let r, k be positive inte-

gers with k > 2 and let H1, . . . , Hr be k-uniform hypergraphs each with maximum vertex

degree at least two, and such that mk(H1) > . . . > mk(Hr). There exists C > 0 such that

if p > Cn−1/mk(H1), then

lim
n→∞

P

res
(
G

(k)
n,p, (H1, . . . , Hr)-Ramsey

)
e
(
G

(k)
n,p

) = 1− π(H1, . . . , Hr)± δ

 = 1.

Thus, when p > Cn−1/mk(H1), the random hypergraph G
(k)
n,p is w.h.p such that every

subhypergraphG′ with at least a π(H1, . . . , Hr)+Ω(1) fraction of the edges is (H1, . . . , Hr)-
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Ramsey. Conversely, there is a subgraph of G
(k)
n,p whose edge density is slightly smaller

than this which does not have the Ramsey property.

Note that the threshold of p > Cn−1/mk(H1) in Theorem 5.7 is tight up to the multi-

plicative constant C. Indeed, consider the random hypergraph G
(k)
n,p with p� n−1/mk(H1).

Let H ′1 ⊆ H1 be such that mk(H1) = dk(H
′
1). Then the expected number of copies of H ′1

in G
(k)
n,p is much smaller than the expected number of edges in G

(k)
n,p, so w.h.p. we can delete

every copy of H ′1 (and therefore H1) by removing o(e(G
(k)
n,p)) edges. So the hypergraph G

that remains has (1− o(1))e(G
(k)
n,p) edges, and is not (H1, . . . , Hr)-Ramsey because we can

colour every edge of G with colour 1. Then, since G is H1-free, there is no copy of Hi in

colour i in G.

Let us describe the importance of Theorem 5.7 (in the case k = 2 and H1 = . . . =

Hr = H) in conjunction with Theorem 5.2. The 0-statement of Theorem 5.2 says that

a typical sparse graph, i.e. one with density at most cn2−1/m2(H), is not (H, r)-Ramsey.

On the other hand, by Theorem 5.7, a typical dense graph, i.e. one with density at

least Cn2−1/m2(H), has the Ramsey property in a sense which is as strong as possible

with respect to subgraphs: every sufficiently dense subgraph is (H, r)-Ramsey, and this

minimum density is the largest we could hope to require.

The relationship between Theorem 5.7 and the previous results stated in this section

can be summarised as follows:

• The 1-statement of Theorem 5.1 is recovered when k = 2 and r = 1. This follows

from (5.1.1) and the relation between π(H) and χ(H).

• In the case k = 2 and H1 = . . . = Hr = H, we obtain a stronger statement in place

of the 1-statement of Theorem 5.2 as described above.

• Theorem 5.7 proves the 1-statement of Conjecture 5.3 in the case when m2(H1) =

m2(H2) in the same stronger sense as above.
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• The 1-statement of Theorem 5.4 is recovered when r = 1.

• Theorem 5.7 implies Theorem 5.5, yielding a resilience version of this result.

• Theorem 5.7 implies a version of Theorem 5.6 when mk(H1) = mk(H2) but now H1

is not required to be strictly k-balanced with respect to mk(·, H2).

Note that even though Theorem 5.7 implies many of the known results concerning

Ramsey properties of random (hyper)graphs, often the resilience random Ramsey prob-

lem is different to the random Ramsey problem. In particular, we have determined the

threshold for the former problem, whilst we have seen above examples of (hyper)graphs

H1, . . . , Hr where a lower value of p still ensures that G
(k)
n,p is w.h.p. (H1, . . . , Hr)-Ramsey.

5.1.1.6 Resilience in the integers

An important branch of Ramsey theory concerns partition properties of sets of integers.

Schur’s classical theorem [110] states that if N is r-coloured there exists a monochromatic

solution to x + y = z; later van der Waerden [120] showed that the same hypothesis

ensures a monochromatic arithmetic progression of arbitrary length. More generally,

Rado’s theorem [88] characterises all those systems of homogeneous linear equations L

for which every finite colouring of N yields a monochromatic solution to L.

As in the graph case, there has been interest in proving random analogues of such

results from arithmetic Ramsey theory.

Before we describe the background of this area we will introduce some notation and

definitions. As mentioned in the introduction of this thesis, we will assume A is an `× k

integer matrix where k > ` of full rank ` and b is an integer vector of dimension `. We

will let L(A, b) denote the associated system of linear equations Ax = b, noting that for

brevity we will simply write L if it is clear from the context which matrix A and vector

b it refers to. If A is stated but b is not, then we assume L refers to the system of linear

equations Ax = 0.
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Let S be a set of integers. Recall that if a vector x = (x1, . . . , xk) ∈ Sk satisfies Ax = b

(i.e. it is a solution to L) and the xi are distinct we call x a k-distinct solution to L in

S. Throughout this chapter, with the exception of Sections 5.3.6 and 5.3.7, we consider

Ld-free sets.

We generalise the definition of Ld-free to r colours in the obvious way: we call a

set S of integers (Ld, r)-free if there exists an r-colouring of S such that it contains no

monochromatic k-distinct solution to L. Otherwise we will call S (Ld, r)-Rado. In the

case when r = 1, we write Ld-free instead of (Ld, 1)-free. Define µ(n,Ld, r) to be the size

of the largest (Ld, r)-free subset of [n].

Recall from the introduction the definitions of irredundant, partition regular, and

m(A). As mentioned above Rado’s theorem [88] characterises all partition regular systems

of linear equations L. The study of random versions of Rado’s theorem has focused on

irredundant partition regular matrices. This is natural since for every redundant ` × k

matrix A there exists an irredundant `′×k′ matrix A′ for some `′ < ` and k′ < k with the

same family of solutions (viewed as sets). See [93, Section 1] for a full explanation. Also

note that most historical results concern distinct L-free sets; many methods (including

that of this chapter) require the use of a k-uniform hypergraph, so it is easier to work

with k-distinct solutions only. However since there are an insignificant number of non k-

distinct solutions compared to k-distinct solutions, a removal lemma such as Lemma 2.2

implies that it makes little difference to restrict to only k-distinct solutions.

Another class of matrices that have received attention in relation to this problem are

so-called density regular matrices: An irredundant, partition regular matrix A is density

regular if any subset F ⊆ N with positive upper density, i.e.,

lim sup
n→∞

|F ∩ [n]|
n

> 0,
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contains a k-distinct solution to L.

We now describe some random analogues of results from arithmetic Ramsey theory.

Recall that [n]p denotes a set where each element a ∈ [n] is included with probability p

independently of all other elements. Rödl and Ruciński [93] showed that for irredundant

partition regular matrices A, m(A) is an important parameter for determining whether

[n]p is (Ld, r)-Rado or (Ld, r)-free.

Theorem 5.8 ([93]). For all irredundant partition regular full rank matrices A and all

positive integers r > 2, there exists a constant c > 0 such that

lim
n→∞

P
[
[n]p is (Ld, r)-Rado

]
= 0 if p < cn−1/m(A).

We remark it is important that r > 2 in Theorem 5.8. That is, the corresponding

statement for r = 1 is not true in general. Roughly speaking, Theorem 5.8 implies that

almost all subsets of [n] with significantly fewer than n1−1/m(A) elements are (Ld, r)-free

for any irredundant partition regular matrix A. The following theorem of Friedgut, Rödl

and Schacht [42] complements this result, implying that almost all subsets of [n] with

significantly more than n1−1/m(A) elements are (Ld, r)-Rado for any irredundant partition

regular matrix A.

Theorem 5.9 ([42]). For all irredundant partition regular full rank matrices A and all

positive integers r, there exists a constant C > 0 such that

lim
n→∞

P
[
[n]p is (Ld, r)-Rado

]
= 1 if p > Cn−1/m(A).

Earlier, Theorem 5.9 was confirmed by Graham, Rödl and Ruciński [46] in the case where

L is x + y = z and r = 2, and then by Rödl and Ruciński [93] in the case when A is

density regular.
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Together Theorems 5.8 and 5.9 show that the threshold for the property of being

(Ld, r)-Rado is p = n−1/m(A). In light of this, it is interesting to ask if above this threshold

the property of being (Ld, r)-Rado is resilient to the deletion of a significant number of

elements. To be precise, given a set S, we define the resilience of S with respect to P ,

res(S,P), to be the minimum number t such that by deleting t elements from S, one

can obtain a set not having P . For example, when P is the property of containing an

arithmetic progression of length k, then Szemerédi’s theorem can be phrased in terms of

resilience; it states that for all k > 3 and ε > 0, there exists n0 > 0 such that for all

integers n > n0, we have res([n],P) > (1− ε)n.

The following result of Schacht [108] provides a resilience strengthening of Theorem 5.9

in the case of density regular matrices.

Theorem 5.10 ([108]). For all irredundant density regular full rank matrices A, all pos-

itive integers r and all ε > 0, there exists a constant C > 0 such that

lim
n→∞

P
[

res([n]p, (Ld, r)-Rado)

|[n]p|
> 1− ε

]
= 1 if p > Cn−1/m(A).

Note that in [108] the result is stated in the r = 1 case only, but the general result follows

immediately from this special case.

Our next result gives a resilience strengthening of Theorem 5.9 for all irredundant

partition regular matrices.

Theorem 5.11. For all irredundant partition regular full rank matrices A, all positive

integers r and all δ > 0, there exists a constant C > 0 such that

lim
n→∞

P
[

res([n]p, (Ld, r)-Rado)

|[n]p|
= 1− µ(n,Ld, r)

n
± δ
]

= 1 if p > Cn−1/m(A).

It is well known that for all irredundant partition regular full rank matrices A and all
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positive integers r, there exist n0 = n0(A, r), η = η(A, r) > 0, such that for all integers

n > n0, we have µ(n,Ld, r) 6 (1 − η)n. (This follows from a supersaturation lemma of

Frankl, Graham and Rödl [41, Theorem 1].) Thus, Theorem 5.11 does imply Theorem 5.9.

Further, in the case when A is density regular, [41, Theorem 2] immediately implies

that µ(n,Ld, r) = o(n) for any fixed r ∈ N. Thus Theorem 5.11 implies Theorem 5.10.

Theorem 5.11 in the case when r = 1 and L is x + y = z was proved by Schacht [108].

In fact, the method of Schacht can be used to prove the theorem for r = 1 and every

irredundant partition regular matrix A.

Intuitively, the reader can interpret Theorem 5.11 as stating that almost all subsets

of [n] with significantly more than n1−1/m(A) elements strongly possess the property of

being (Ld, r)-Rado for any irredundant partition regular matrix A. The ‘strength’ here

depends on the parameter µ(n,Ld, r). In light of this it is natural to seek good bounds

on µ(n,Ld, r) (particularly in the cases when µ(n,Ld, r) = Ω(n)). In general, not too

much is known about this parameter. However, as mentioned earlier, in the case when

A = (1, 1,−1) (i.e. L is x + y = z), this is (by replacing distinct L-free with strongly

L-free) a 40-year-old problem of Abbott and Wang [1]. In Section 5.3.6 we give an upper

bound on µ(n,Ls, r) in this case for all r ∈ N.

Instead of proving Theorem 5.11 directly, in Section 5.3 we will prove a version of the

result that holds for a more general class of matrices A, does not assume b = 0, and also

deals with the asymmetric case, namely Theorem 5.16. In [112], Spiegel proved the case

r = 1 of Theorem 5.16 and used the container method to give an alternative proof of

Theorem 5.9.

5.1.2 Enumeration questions for Ramsey problems

A fundamental question in combinatorics is to determine the number of structures with

a given property. For example, Erdős, Frankl and Rödl [34] proved that the number of
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n-vertex H-free graphs is 2(n2)(1−
1
r−1

+o(1)) for any graph H of chromatic number r. Here

the lower bound follows by considering all the subgraphs of the (r − 1)-partite Turán

graph. Given any k, r, n ∈ N with k > 2 and k-uniform hypergraphs H1, . . . , Hr, define

Ram(n;H1, . . . , Hr) to be the collection of all k-uniform hypergraphs on vertex set [n] that

are (H1, . . . , Hr)-Ramsey and Ram(n;H1, . . . , Hr) to be all those k-uniform hypergraphs

on [n] that are not (H1, . . . , Hr)-Ramsey. A natural question is to determine the size of

Ram(n;H1, . . . , Hr). Surprisingly, we are unaware of any explicit results in this direction

for r > 2. The next application of the container method fully answers this question up to

an error term in the exponent.

Theorem 5.12. Let k, r, n ∈ N with k > 2 and H1, . . . , Hr be k-uniform hypergraphs.

Then

|Ram(n;H1, . . . , Hr)| = 2exr(n,H1,...,Hr)+o(nk) = 2π(H1,...,Hr)(nk)+o(nk).

Note that in the case when k = 2 and r = 1, Theorem 5.12 is precisely the above

mentioned result of Erdős, Frankl and Rödl [34]. In fact, one can also obtain Theorem 5.12

by using the work from [84], a hypergraph analogue of the result in [34]; see Section 5.4.5

for a proof of this. Similar results were obtained also using containers by Falgas-Ravry,

O’Connell and Uzzell in [40], and by Terry in [118] who reproved a result of Ishigami [63].

Our final application of the container method determines, up to an error term in the

exponent, the number of (Ld, r)-free subsets of [n].

Theorem 5.13. Let A be an irredundant partition regular matrix of full rank and let

r ∈ N be fixed. There are 2µ(n,L
d,r)+o(n) (Ld, r)-free subsets of [n].

As an illustration, a result of Hu [61] implies that µ(n,Ld, 2) = 4n/5 + o(n) in the case

when L is x + y = z. Thus, Theorem 5.13 tells us all but 2(4/5+o(1))n subsets of [n]

are (Ld, 2)-Rado in this case. Related results (in the 1-colour case) were obtained by

Green [48] and Saxton and Thomason [107].
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5.2 Container results for disjoint independent sets

First recall from Chapter 2 the general hypergraph container theorem of Balogh, Morris

and Samotij [8].

Theorem 2.1 ([8]). For every k ∈ N and all positive c and ε, there exists a positive

constant C such that the following holds. Let H be a k-uniform hypergraph and let F ⊆

P(V (H)) be an increasing family of sets such that |A| > εv(H) for all A ∈ F . Suppose

that H is (F , ε)-dense and p ∈ (0, 1) is such that, for every ` ∈ [k],

∆`(H) 6 c · p`−1 e(H)

v(H)
.

Then there exists a family S ⊆
(

V (H)
6Cp·v(H)

)
and functions f : S → F and g : I(H) → S

such that for every I ∈ I(H), we have that g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

Throughout the chapter, when we consider r-tuples of sets, the r-tuples are always

ordered. For two r-tuples of sets (I1, . . . , Ir) and (J1, . . . , Jr) we write (I1, . . . , Ir) ⊆

(J1, . . . , Jr) if Ix ⊆ Jx for each x ∈ [r]. We write (I1, . . . , Ir) ∪ (J1, . . . , Jr) := (I1 ∪

J1, . . . , Ir ∪ Jr).

We write ij to denote the pair {i, j}. For a hypergraph H define

Ir(H) :=

{
(I1, . . . , Ir) ∈ P(V (H))r : Ix ∈ I(H) and Ii∩Ij = ∅ for all x ∈ [r], ij ∈

(
[r]

2

)}
.

Whereas Theorem 2.1 provides a set of containers for the independent sets of a hyper-

graph, the following theorem is an analogous result for the r-tuples of disjoint independent

sets of a hypergraph. It is a straightforward consequence of Theorem 2.1.

Theorem 5.14. For every k, r ∈ N and all positive c and ε, there exists a positive

constant C such that the following holds. Let H be a k-uniform hypergraph and let
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F ⊆ P(V (H)) be an increasing family of sets such that |A| > εv(H) for all A ∈ F .

Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that, for every ` ∈ [k],

∆`(H) 6 c · p`−1 e(H)

v(H)
.

Then there exists a family Sr ⊆ P(V (H))r and functions f : Sr → (F)r and g : Ir(H)→

Sr such that the following conditions hold:

(i) If (S1, . . . , Sr) ∈ Sr then
∑
|Si| 6 Cp · v(H);

(ii) every S ∈ Sr satisfies S ∈ Ir(H);

(iii) for every (I1, . . . , Ir) ∈ Ir(H), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f(S) where

S := g(I1, . . . , Ir).

Proof. Apply Theorem 2.1 with k, c, ε to obtain a positive constant C1. Let C := rC1.

We will show that C has the required properties. Let H be a k-uniform hypergraph which

together with a set F ⊆ P(V (H)) satisfies the hypotheses of Theorem 5.14. Since H,

F also satisfy the hypotheses of Theorem 2.1, there exists a family S ⊆
(

V (H)
6C1p·v(H)

)
and

functions f ′ : S → F and g′ : I(H)→ S such that for every I ∈ I(H) we have g′(I) ⊆ I

and I \ g′(I) ⊆ f ′(g′(I)). Define

S ′ := {S ∈ S : there exists I ∈ I(H) such that g′(I) = S},

and

Sr :=

{
(S1, . . . , Sr) ∈ P(V (H))r : Sx ∈ S ′ and Si ∩ Sj = ∅ for all x ∈ [r], ij ∈

(
[r]

2

)}
.
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Let (S1, . . . , Sr) ∈ Sr. First note that

∑
x∈[r]

|Sx| 6 C1r · pv(H) = Cp · v(H),

so (i) holds. Also since Sx ∈ S ′ for all x ∈ [r], we have Sx ∈ I(H) and so by definition of

Sr we have Sr ⊆ Ir(H) proving (ii).

Consider any (S1, . . . , Sr) ∈ Sr and any (I1, . . . , Ir) ∈ Ir(H). Define f : Sr → (F)r

by setting f(S1, . . . , Sr) := (f ′(S1), . . . , f
′(Sr)) and define g : Ir(H) → Sr by setting

g(I1, . . . , Ir) := (g′(I1), . . . , g
′(Ir)).

Note that since f ′(Sx) ∈ F , g′(Ix) ∈ S ′ and g′(Ii) ∩ g′(Ij) = ∅ for all x ∈ [r] and

ij ∈
(
[r]
2

)
, we do indeed have (f ′(S1), . . . , f

′(Sr)) ∈ (F)r and (g′(I1), . . . , g
′(Ir)) ∈ Sr.

Now for (iii), since g′(Ix) ⊆ Ix and Ix \ g′(Ix) ⊆ f ′(g′(Ix)) for all x ∈ [r], we

have g(I1, . . . , Ir) = (g′(I1), . . . , g
′(Ir)) ⊆ (I1, . . . , Ir). Now since f(g(I1, . . . , Ir)) =

(f ′(g′(I1)), . . . , f
′(g′(Ir))) we also have (I1, . . . , Ir) ⊆ f(g(I1, . . . , Ir)) ∪ g(I1, . . . , Ir) as

required. �

In all of our applications of the container method, we will in fact apply the following

asymmetric version of Theorem 5.14. In particular, in the proof of e.g. Theorem 5.7,

instead of considering tuples of disjoint independent sets from the same hypergraph H,

we are actually concerned with disjoint independent sets from different hypergraphs but

which have the same vertex set : For all i ∈ [r], let Hi be a ki-uniform hypergraph,

each on the same vertex set V , and define I(H1, . . . ,Hr) to be the set of all r-tuples

(I1, . . . , Ir) ∈
∏

i∈[r] I(Hi) such that Ii ∩ Ij = ∅ for all 1 6 i < j 6 r.

We omit the proof of Theorem 5.15 since it follows from Theorem 2.1 as in the proof

of Theorem 5.14.

Theorem 5.15. For every r, k1, . . . , kr ∈ N with ki > 2 for all i ∈ [r], and all c, ε > 0,

there exists a positive constant C such that the following holds. For all i ∈ [r], let Hi be
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a ki-uniform hypergraph, each on the same vertex set V . For all i ∈ [r], let Fi ⊆ P(V )

be an increasing family of sets such that |A| > ε|V | for all A ∈ Fi. Suppose that each Hi

is (Fi, ε)-dense. Further suppose p ∈ (0, 1) is such that, for every i ∈ [r] and ` ∈ [ki],

∆`(Hi) 6 c · p`−1 e(Hi)

|V |
.

Then there exists a family Sr ⊆ I(H1, . . . ,Hr) and functions f : Sr →
∏

i∈[r]Fi and

g : I(H1, . . . ,Hr)→ Sr such that the following conditions hold:

(i) If (S1, . . . , Sr) ∈ Sr then
∑
|Si| 6 Cp|V |;

(ii) for every (I1, . . . , Ir) ∈ I(H1, . . . ,Hr), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f(S)

where S := g(I1, . . . , Ir).

5.3 Applications of the container method to r-tuples

of solution-free sets

In this section we will prove Theorems 5.11 and 5.13 by using the container theorem for

r-tuples of disjoint independent sets, applied with irredundant partition regular matrices

A. Suppose that we have a k-uniform hypergraph H whose vertex set is a subset of N

and where the edges correspond to the k-distinct solutions of L. Then in this setting, an

(Ld, r)-free set is precisely an r-tuple of disjoint independent sets in H.

Theorems 5.11 and 5.13 will be deduced from a container theorem, Theorem 5.21,

which in turn follows from Theorem 5.15. Theorem 5.21 actually holds for a class of

irredundant matrices of which partition regular matrices are a subclass. Let (∗) be the

following matrix property:

(∗) Under Gaussian elimination A does not have any row which consists of precisely

two non-zero rational entries.
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For an integer matrix A and integer vector b, call the system of linear equations L

(and the matrix A in the case when b = 0) r-regular if all r-colourings of N yield a

monochromatic solution to Ax = b. Observe that a system of linear equations L is r-

regular for all r ∈ N if and only if it is partition regular. As outlined in the next subsection,

given any r > 2, all irredundant r-regular matrices A satisfy (∗). We will in fact prove

stronger versions of Theorems 5.11 and 5.13 that consider irredundant systems of linear

equations L for which the matrix A satisfies (∗).

These general results also consider ‘asymmetric’ Rado properties: Suppose that Li is

a system of linear equations for each 1 6 i 6 r (and, here and elsewhere, Ai and bi is

the matrix and vector such that Li = L(Ai, bi)). We say a set X ⊆ N is (Ld1, . . . ,Ldr)-free

if there is an r-colouring of X such that there are no k-distinct solutions to Li in X in

colour i for every i ∈ [r]. Otherwise we say that X is (Ld1, . . . ,Ldr)-Rado. We denote the

size of the largest (Ld1, . . . ,Ldr)-free subset of [n] by µ(n,Ld1, . . . ,Ldr).

In general it is not known which systems of linear equations L1, . . . ,Lr are such that

N is (Ld1, . . . ,Ldr)-Rado. However, if each Li is an r-regular homogenous linear equation,

then N is (Ld1, . . . ,Ldr)-Rado (see [76, Theorem 9.19]).

We will prove the following strengthenings of Theorems 5.11 and 5.13.

Theorem 5.16. For all positive integers r, all full rank integer matrices A1, . . . , Ar of

dimension `i × ki which satisfy (∗) with m(A1) > . . . > m(Ar), all integer vectors bi of

dimension `i where Li is irredundant, and all δ > 0, there exists a constant C > 0 such

that

lim
n→∞

P
[

res([n]p, (Ld1, . . . ,Ldr)-Rado)

|[n]p|
= 1− µ(n,Ld1, . . . ,Ldr)

n
± δ
]

= 1 if p > Cn−1/m(A1).

Theorem 5.17. For all positive integers r, all full rank integer matrices A1, . . . , Ar of

dimension `i × ki which satisfy (∗), all integer vectors bi of dimension `i where Li is
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irredundant, there are 2µ(n,L
d
1,...,Ldr)+o(n) (Ld1, . . . ,Ldr)-free subsets of [n].

Given a system of linear equations L, recall that a strongly L-free subset of [n] is a

subset that contains no solution to L of any kind. Although this is not quite the same

definition as distinct L-free, we remark that Theorem 5.17 implies a result of Green [48,

Theorem 9.3] in the case where k > 3, on the number of strongly L-free subsets of [n] for

homogeneous linear equations L.

As mentioned in the introduction of this chapter, Spiegel [112] independently proved

the case r = 1 of Theorem 5.16. (Note in [112] this result is mentioned in terms of

abundant matrices A. That is every ` × (k − 2) submatrix of A has rank `. But this is

clearly equivalent to (∗) in the case of irredundant full rank matrices.)

5.3.1 Matrices which satisfy (∗)

First we prove that irredundant partition regular matrices are a strict subclass of irre-

dundant matrices which satisfy (∗).

Suppose that an irredundant matrix A does not satisfy (∗). Then for all solutions

(x1, . . . , xk) to L, there exists a pair ij ∈
(
[k]
2

)
and non-zero rationals α, β such that

αxi = βxj. If α = β then no solution to L is k-distinct and so A is redundant, a

contradiction. Otherwise, without loss of generality, assume that α > β, and devise the

following 2-colouring of N: greedily colour the numbers {1, 2, 3, ...} so that when colouring

x, we always give it a different colour to βx/α (if βx/α ∈ N). Such a colouring ensures

that no solution to L is monochromatic, and so A is not partition regular.

Note that the converse is not true. An `×k matrix with columns a(1), . . . , a(k) satisfies

the columns property if there is a partition of [k], say [k] = D1 ∪ · · · ∪Dt such that

∑
i∈D1

a(i) = 0
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and for every r ∈ [t] we have

∑
i∈Dr

a(i) ∈ 〈a(j) : j ∈ D1 ∪ · · · ∪Dr−1〉.

Rado’s theorem [88] states that a matrix is partition regular if and only if it satisfies

the columns property. Now, for example A :=

(
2 2 −1

)
clearly satisfies (∗), and

additionally does not have the columns property, so is not partition regular.

The argument above actually implies that if an irredundant matrix A is 2-regular,

then it satisfies (∗). So in the symmetric case, Theorems 5.16 and 5.17 consider all pairs

(L, r) such that L is an irredundant r-regular system of linear equations and r > 2.

5.3.2 Useful matrix lemmas

Before we can prove our container result (Theorem 5.21), we require some matrix lemmas.

Note that all of these lemmas hold for irredundant matrices which satisfy (∗). As a

consequence, Theorem 5.8 was actually implicitly proven for irredundant matrices which

satisfy (∗), since in [93] the only necessity of the matrix being partition regular was so

that the results stated below could be applied.

Recall the definition of m(A) given by (1.3.2). Parts (i) and (ii) of the following

proposition were verified for irredundant partition regular matrices by Rödl and Ruciński

(see Proposition 2.2 in [93]). In fact their result easily extends to matrices which satisfy

(∗). We give the full proof for completeness, and add further facts ((iii)–(v)) which will

be useful in the proof of Theorem 5.21.

Proposition 5.18. Let A be an ` × k irredundant matrix of full rank ` which satisfies

(∗). Then for every W ⊆ [k], the following hold.

(i) If |W | = 1, then rank(AW ) = `.

(ii) If |W | > 2, then `− rank(AW ) + 2 6 |W |.
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(iii) If |W | > 2, then

|W |+ rank(AW ) > `+ 1 +
|W | − 1

m(A)
.

Furthermore,

(iv) k > `+ 2;

(v) m(A) > 1.

Proof. For (i), suppose that rank(AW ) = `− 1 for some W ⊆ [k] with |W | = 1. Since

AW is an ` × (k − 1) matrix of rank ` − 1, under Gaussian elimination it must contain

a row of zeroes. Hence A under Gaussian elimination contains a row with at most one

rational non-zero entry. If there is one, then there are no positive solutions to L, which

contradicts A being irredundant. If there are none, then A does not have rank `, also a

contradiction.

For (ii) proceed by induction on |W |. Assume first that there is a W ⊆ [k] with

|W | = 2, such that rank(AW ) < `. Using a similar argument to (i), under Gaussian

elimination A contains a row with at most two rational non-zero entries. If there are

two rational non-zero entries this contradicts A satisfying (∗). Otherwise we again get a

contradiction to either A being irredundant or of rank `. Assume now that |W | > 3 and

that the statement holds for |W | − 1. The rank of a matrix drops by at most one when a

column is deleted, hence the required inequality follows by induction.

For (iii), note that for |W | > 2, by definition we have m(A) > (|W | − 1)/(|W | − 1 +

rank(AW )− `). This can be rearranged to give the required inequality. For (iv), suppose

that k 6 ` + 1. Then under Gaussian elimination A must have a row with at most two

rational non-zero entries. This leads to the same contradiction as the base case of the

induction for (ii). For (v), take W = [k]. Then by definition m(A) > (k−1)/(k−`−1) > 1,

where the second inequality follows since the denominator is positive by (iv). �
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We will require Lemma 2.3. Finally we need the following well known result (and a

simple corollary of it), which gives a useful upper bound on the number of solutions to

a system of linear equations. Note that in this lemma only, we do not assume A to be

necessarily of full rank (as we will apply the result directly to matrices formed by deleting

columns from our original matrix of full rank).

Lemma 5.19. For an `×k matrix A not necessarily of full rank, an `-dimensional integer

vector b and a set X ⊆ [n], the system Ax = b has at most |X|k−rank(A) solutions in X.

Proof. Let m := rank(A). Proceed by induction on k. If k = 1, then m = 1 or m = 0.

If m = 1, then there is a unique solution to Ax = b, so Ax = b has at most 1 = |X|k−m

solution in X. If m = 0, then A is the zero matrix, and so each element in X could be a

solution (if b = 0), but then Ax = b has at most |X| = |X|k−m solutions in X.

For the inductive step, pick any c ∈ [k] and fix some xc ∈ X. Form a new system of

linear equations A′x′ = b′, where A′ is formed from A := (aij) by removing the cth column,

and b′ := (b′1, . . . , b
′
`) is formed from b := (b1, . . . , b`) ∈ Z` by setting b′r := br − arcxc. (So

x := (x1, . . . , xk) is a solution to Ax = b if and only if x′ := (x1, . . . , xc−1, xc+1, . . . , xk) is

a solution to A′x′ = b′.)

Note that A′ must have rank m or m − 1. If A′ has rank m then by the induction

hypothesis A′x′ = b′ has at most |X|(k−1)−rank(A′) = |X|k−m−1 solutions in X. Since there

are |X| valid choices for xc, there are at most |X|k−m solutions to Ax = b in X, as

required.

Now suppose A′ has rank m − 1. Then under Gaussian elimination, A′ and A have

`−m+ 1, and respectively `−m rows consisting entirely of zeroes, and in particular, A

has a row with precisely one non-zero entry which is in the cth column. Hence there is at

most one value xc can take in any solution x = (x1, . . . , xk) to Ax = b. So for this choice

of xc, Ax = b and A′x′ = b′ have precisely the same number of solutions in X. Since A′

is an ` × (k − 1) matrix of rank m − 1, the induction hypothesis implies that there are
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|X|(k−1)−(m−1) = |X|k−rank(A) solutions to A′x′ = b′ and thus Ax = b, as desired. �

Corollary 5.20. Consider an ` × k matrix A of rank `, a set X ⊆ [n] and an integer

1 6 t 6 k. Fix distinct y1, . . . , yt ∈ X and consider any W = {s1, . . . , st} ⊆ [k]. The

system Ax = b has at most |X|k−t−rank(AW ) solutions (x1, . . . , xk) in X for which xsj = yj

for each j ∈ [t]. Moreover, if the system Ax = b is irredundant and A satisfies (∗) and

t = 1, then the system Ax = b has at most |X|k−`−1 solutions (x1, . . . , xk) in X for which

xs1 = y1.

Proof. Write A =: (aij). Consider the system of linear equations AWx
′ = b′ where, for

each r ∈ [`], the rth term in b′ is

b′r := br −
∑
sj∈W

arsjyj.

Now by Lemma 5.19 the system of linear equations AWx
′ = b′ has at most |X|k−t−rank(AW )

solutions in X. The first part of the corollary then follows since all solutions (x1, . . . , xk) to

Ax = b with xsj = yj for each j ∈ [t], rise from a solution x′ to AWx
′ = b′. For the second

part, if Ax = b is irredundant and A satisfies (∗) and t = 1, then by Proposition 5.18(i),

we have rank(AW ) = ` and so the result follows. �

5.3.3 A container theorem for tuples of Ld-free sets

Recall that an Ld-free set is simply an (Ld, 1)-free set. Let I(n,Ld1, . . . ,Ldr) denote the set

of all ordered r-tuples (X1, . . . , Xr) ∈ P([n])r so that each Xi is Ldi -free and Xi ∩Xj = ∅

for all distinct i, j ∈ [r]. Note that any (Ld1, . . . ,Ldr)-free subset X of [n] has a partition

X1, . . . , Xr so that (X1, . . . , Xr) ∈ I(n,Ld1, . . . ,Ldr). We now prove a container theorem

for the elements of I(n,Ld1, . . . ,Ldr).
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Theorem 5.21. Let r ∈ N and 0 < δ < 1. For each i ∈ [r] let Ai be an integer matrix

of dimension `i × ki which satisfies (∗), let bi be an integer vector of dimension `i and

suppose Li is irredundant. Suppose that m(A1) > . . . > m(Ar). Then there exists D > 0

such that the following holds. For all n ∈ N, there is a collection Sr ⊆ P([n])r and a

function f : Sr → P([n])r such that:

(i) For all (I1, . . . , Ir) ∈ I(n,Ld1, . . . ,Ldr), there exists S ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆

f(S).

(ii) If (S1, . . . , Sr) ∈ Sr then
∑

i∈[r] |Si| 6 Dn
m(A1)−1
m(A1) .

(iii) Every S ∈ Sr satisfies S ∈ I(n,Ld1, . . . ,Ldr).

(iv) Given any S = (S1, . . . , Sr) ∈ Sr, write f(S) =: (f(S1), . . . , f(Sr)). Then

(a) for each 1 6 i 6 r, f(Si) contains at most δnki−`i ki-distinct solutions to Li;

and

(b) | ∪i∈[r] f(Si)| 6 µ(n,Ld1, . . . ,Ldr) + δn.

We emphasise that (iv)(b) does not necessarily guarantee
∑

i∈[r] |f(Si)| 6 µ(n,Ld1, . . . ,Ldr)+

δn. Rather it ensures at most µ(n,Ld1, . . . ,Ldr) + δn elements of [n] appear in at least one

of the co-ordinates of f(S). This property is crucial for our applications.

Proof. First note that since each of the systems of linear equations Li are irredundant,

a result of Kusch, Rué, Spiegel and Szabó [75] implies that there exists a constant d > 0

such that, for each i ∈ [r], there are at least dnki−`i ki-distinct solutions to Li in [n]. (This

is a generalisation of a result by Janson and Ruciński [65].)

Note that it suffices to prove the theorem in the case when 0 < δ < d. So let 0 < δ < d

and r ∈ N be given and apply Lemma 2.3 to obtain n0, ε > 0. Without loss of generality
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we may assume ε 6 δ. Define k := max ki and let

ε′ :=
ε

2
and c :=

k!

ε′
.

Apply Theorem 5.15 with parameters r, k1, . . . , kr, c, ε
′ playing the roles of r, k1, . . . , kr, c, ε

respectively to obtain D1 > 0. Increase n0 if necessary so that

0 <
1

n0

� 1

D1

,
1

k1
, . . . ,

1

kr
,
1

r
, ε, δ.

For n < n0, set Sr to be I(n,Ld1, . . . ,Ldr); set f to be the identity function and choose

D2 to be large. By setting D to be the maximum of D1 and D2, it remains to prove the

result for integers n > n0. So now fix n > n0.

For each i ∈ [r] let Hn,i be the hypergraph with V (Hn,i) := [n] and an edge set which

consists of all ki-distinct solutions to Li in [n]. Observe that Hn,i is ki-uniform and an

independent set in Hn,i is an Ldi -free set.

For each i ∈ [r] we define Fn,i := {F ⊆ V (Hn,i) : e(Hn,i[F ]) > ε′e(Hn,i)}. Note that

since ε′ < d, we have

ε′nki−`i 6 e(Hn,i). (5.3.1)

We claim that Hn,i and Fn,i satisfy the hypotheses of Theorem 5.15 with parameters

chosen as above with

p = p(n) := n−1/m(A1).

Clearly Fn,i is increasing and Hn,i is (Fn,i, ε′)-dense. By Lemma 5.19, a set F ⊆

V (Hn,i) contains at most |F |ki−`i solutions to Li (so e(Hn,i[F ]) 6 |F |ki−`i). Hence for all
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F ∈ Fn,i, we have

|F | > e(Hn,i[F ])
1

ki−`i > (ε′e(Hn,i))
1

ki−`i
(5.3.1)

> ((ε′)2nki−`i)
1

ki−`i > ε′n

where the last inequality follows by Proposition 5.18(iv).

For each j ∈ [ki], we wish to bound the number of hyperedges containing some

{y1, . . . , yj} ⊆ V (Hn,i). Suppose (x1, . . . , xki) is a ki-distinct solution to Li so that

{y1, . . . , yj} ⊆ {x1, . . . , xki}. There are ki!/(ki − j)! choices for picking the j roles the

yi play in (x1, . . . , xki). Let W be one such choice for the set of indices of the xa used by

{y1, . . . , yj}. In this case, Corollary 5.20 implies there are at most nki−j−rank((Ai)W ) such

solutions to Li, and if j = 1, there are at most nki−`i−1 such solutions. So for j = 1 this

yields

degHn,i(y1) 6 kin
ki−`i−1

(5.3.1)

6
ki
ε′
e(Hn,i)

v(Hn,i)
6 c

e(Hn,i)

v(Hn,i)
.

For j > 2, by Proposition 5.18(iii) we have ki−j−rank((Ai)W ) 6 ki−`i−1−(j−1)/m(Ai).

Also m(A1) > m(Ai) for all i ∈ [r] and hence we have

degHn,i({y1, . . . , yj}) 6 ki!n
ki−`i−1− j−1

m(Ai) 6 ki!n
ki−`i−1− j−1

m(A1)

6
ki!

ε′
pj−1

e(Hn,i)

v(Hn,i)
6 cpj−1

e(Hn,i)

v(Hn,i)
.

Since {y1, . . . , yj} was arbitrary, we therefore have ∆j(Hn,i) 6 cpj−1e(Hn,i)/v(Hn,i), as

required. We have therefore shown that Hn,i and Fn,i satisfy the hypotheses of Theo-

rem 5.15 for all i ∈ [r].

Then Theorem 5.15 implies that there exists a family Sr ⊆
∏

i∈[r]P(V (Hn,i)) = P([n])r

and functions f ′ : Sr →
∏

i∈[r]Fn,i and g : I(Hn,1, . . . ,Hn,r)→ Sr such that the following

conditions hold:
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(a) If (S1, . . . , Sr) ∈ Sr then
∑

i∈[r] |Si| 6 D1pn;

(b) every S ∈ Sr satisfies S ∈ I(Hn,1, . . . ,Hn,r);

(c) for every (I1, . . . , Ir) ∈ I(Hn,1, . . . ,Hn,r), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f ′(S),

where S := g(I1, . . . , Ir).

Note that I(Hn,1, . . . ,Hn,r) = I(n,Ld1, . . . ,Ldr). For each S ∈ Sr, define

f(S) := S ∪ f ′(S).

So f : Sr → P([n])r. Thus, (a)–(c) immediately imply that (i)–(iii) hold.

Given any S = (S1, . . . , Sr) ∈ Sr write f(S) =: (f(S1), . . . , f(Sr)) and f ′(S) =:

(f ′(S1), . . . , f
′(Sr)). (Note the slight abuse of the use of the f and f ′ notation here.)

By definition of Fn,i any F ∈ Fn,i contains at most ε′nki−`i ki-distinct solutions to Li.

By Corollary 5.20, the number of ki-distinct solutions to Li in [n] that use at least one

element from Si is at most kin
ki−`i−1|Si|. Further,

kin
ki−`i−1|Si| 6 kiD1pn

ki−`i 6 ε′nki−`i .

Here, the first inequality holds by (a), and the second since p = n−1/m(A1) and m(A1) > 0

by Proposition 5.18(v). Thus, in total f(Si) = Si ∪ f ′(Si) contains at most 2ε′nki−`i 6

δnki−`i ki-distinct solutions to Li, so (iv)(a) holds.

In fact, the argument above implies that there is an r-colouring of the set ∪i∈[r]f(Si)

so that there are at most 2ε′nki−`i = εnki−`i ki-distinct solutions to Li in colour i, in

∪i∈[r]f(Si). Hence, Lemma 2.3 ensures (iv)(b), as desired. �
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5.3.4 The number of (Ld
1, . . . ,Ld

r)-free subsets of [n]

Our first application of Theorem 5.21 yields an enumeration result (Theorem 5.17) for

the number of (Ld1, . . . ,Ldr)-free subsets of [n].

Proof of Theorem 5.17. By definition of µ(n,Ld1, . . . ,Ldr) there are at least 2µ(n,L
d
1,...,Ldr)

(Ld1, . . . ,Ldr)-free subsets of [n]. So it suffices to prove the upper bound.

For this, note that we may assume n is sufficiently large. Let 0 < δ < 1 be arbitrary

and let D > 0 be obtained from Theorem 5.21 applied to A1, . . . , Ar with parameter δ.

We obtain a collection Sr and function f as in Theorem 5.21. Consider any (Ld1, . . . ,Ldr)-

free subset X of [n]. Note that X has a partition X1, . . . , Xr so that (X1, . . . , Xr) ∈

I(n,Ld1, . . . ,Ldr). So by Theorem 5.21(i) this means there is some S = (S1, . . . , Sr) ∈ Sr

so that X ⊆ ∪i∈[r]f(Si).

Further, given any S = (S1, . . . , Sr) ∈ Sr, we have that |∪i∈[r]f(Si)| 6 µ(n,Ld1, . . . ,Ldr)+

δn. Thus, each such ∪i∈[r]f(Si) contains at most 2µ(n,L
d
1,...,Ldr)+δn (Ld1, . . . ,Ldr)-free subsets

of [n]. Note that, by Theorem 5.21(ii),

|Sr| 6

Dn
m(A1)−1
m(A1)∑
s=0

(
n

s

)
r

< 2δn,

where the last inequality holds since n is sufficiently large.

Altogether, this implies that the number of (Ld1, . . . ,Ldr)-free subsets of [n] is at most

2δn × 2µ(n,L
d
1,...,Ldr)+δn = 2µ(n,L

d
1,...,Ldr)+2δn.

Since the choice of 0 < δ < 1 was arbitrary this proves the theorem. �
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5.3.5 The resilience of being (Ld
1, . . . ,Ld

r)-Rado

Recall that the resilience of S with respect to P , res(S,P), is the minimum number t such

that by deleting t elements from S, one can obtain a set not having P . In this section

we will determine res([n]p, (Ld1, . . . ,Ldr)-Rado) for irredundant systems of linear equations

L1, . . . ,Lr for which matrices A1, . . . , Ar which satisfy (∗). We now use Theorem 5.21 to

deduce Theorem 5.16.

Proof of Theorem 5.16. Let 0 < δ < 1, r ∈ N and L1, . . . ,Lr be the systems of

linear equations as in the statement of the theorem. Given n, if p > n−1/m(A1) then since

m(A1) > 1 by Proposition 5.18(v), Proposition 1.2(ii) implies that, w.h.p.,

|[n]p| =
(

1± δ

4

)
pn. (5.3.2)

We first show that

lim
n→∞

P
[

res([n]p, (Ld1, . . . ,Ldr)-Rado)

|[n]p|
6 1− µ(n,Ld1, . . . ,Ldr)

n
+ δ

]
= 1 if p > n−1/m(A1).

For this, we must show that the probability of the event that there exists a set S ⊆ [n]p

such that |S| > (µ(n,Ld1, . . . ,Ldr)/n − δ)|[n]p| and S is (Ld1, . . . ,Ldr)-free, tends to one

as n tends to infinity. This indeed follows: Let T be an (Ld1, . . . ,Ldr)-free subset of

[n] of maximum size µ(n,Ld1, . . . ,Ldr). Then, by Proposition 1.2(ii), w.h.p. we have

|T ∩ [n]p| = (µ(n,Ld1, . . . ,Ldr)/n± δ)|[n]p|, and T ∩ [n]p is (Ld1, . . . ,Ldr)-free, as required.

For the remainder of the proof, we will focus on the lower bound, namely that there

exists C > 0 such that whenever p > Cn−1/m(A1),

P
[
res([n]p, (Ld1, . . . ,Ldr)-Rado) >

(
1− µ(n,Ld1, . . . ,Ldr)

n
− δ
)
|[n]p|

]
→ 1 as n→∞.

(5.3.3)
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Suppose n is sufficiently large. Apply Theorem 5.21 with parameters r, δ/8,L1, . . . ,Lr

to obtain D > 0, a collection Sr ⊆ P([n])r and a function f satisfying (i)–(iv). Now

choose C such that 0 < 1/C � 1/D, δ, 1/r. Let p > Cn−1/m(A1).

Since (5.3.2) holds with high probability, to prove (5.3.3) holds it suffices to show that

the probability [n]p contains an (Ld1, . . . ,Ldr)-free subset of size at least (
µ(n,Ld1,...,Ldr)

n
+δ/2)np

tends to zero as n tends to infinity.

Suppose that [n]p does contain an (Ld1, . . . ,Ldr)-free subset I of size at least (
µ(n,Ld1,...,Ldr)

n
+

δ/2)np. Note that I has a partition I1, . . . , Ir so that (I1, . . . , Ir) ∈ I(n,Ld1, . . . ,Ldr).

Further, there is some S = (S1, . . . , Sr) ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆ f(S).

Thus, [n]p must contain ∪i∈[r]Si as well as at least (
µ(n,Ld1,...,Ldr)

n
+ δ/4)np elements from(

∪i∈[r]f(Si)
)
\
(
∪i∈[r]Si

)
. (Note here we are using that | ∪i∈[r] Si| 6 δnp/4, which holds by

Theorem 5.21(ii) and since 0 < 1/C � 1/D, δ.) Writing s := | ∪i∈[r] Si|, the probability

[n]p contains ∪i∈[r]Si is ps. Note that |
(
∪i∈[r]f(Si)

)
\
(
∪i∈[r]Si

)
| 6 µ(n,Ld1, . . . ,Ldr) + δn/8

by Theorem 5.21(iv)(b). So by Proposition 1.2(i), the probability [n]p contains at least

(
µ(n,Ld1,...,Ldr)

n
+ δ/4)np elements from

(
∪i∈[r]f(Si)

)
\
(
∪i∈[r]Si

)
, is at most exp(−δ2np/256).

Write N := n(m(A1)−1)/m(A1) and γ := δ2/256. Given some 0 6 s 6 DN , there are at

most rs
(
n
s

)
elements (S1, . . . , Sr) ∈ Sr such that | ∪i∈[r] Si| = s. Indeed, this follows since

there are rs ways to partition a set of size s into r classes. Thus, the probability [n]p does

contain an (Ld1, . . . ,Ldr)-free subset I of size at least (
µ(n,Ld1,...,Ldr)

n
+ δ/2)np is at most

DN∑
s=0

rs
(
n

s

)
· ps · e−γnp 6 (DN + 1)(rp)DN

(
n

DN

)
e−γnp 6 (DN + 1)

(repn
DN

)DN
e−γnp

6 (DN + 1)

(
reC

D

)DN
e−γCN 6 eγCN/2e−γCN = e−γCN/2

which tends to zero as n tends to infinity. This completes the proof.

�
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5.3.6 The size of the largest (Ls, r)-free set

Both as a natural question in itself, and in light of Theorems 5.16 and 5.17, it is of

interest to obtain good bounds on µ(n,Ld1, . . . ,Ldr). For the rest of this section consider

the symmetric homogeneous case (A := A1 = · · · = Ar and b = 0) and assume that A is a

1× k matrix, i.e. we are interested in solutions to a linear equation a1x1 + · · ·+ akxk = 0.

Recall S ⊆ [n] is strongly (L, r)-free if there exists an r-colouring of S which contains

no monochromatic solutions to L of any type (that is, solutions are not required to be

k-distinct). Note that for any density regular matrix A, (x, . . . , x) is a solution to L

for all x ∈ [n] (as observed by Frankl, Graham and Rödl [41, Fact 4]) and so we have

µ(n,Ls, r) = 0. (Note that this result implies that all density regular 1× k matrices give

rise to an equation L which is translation-invariant.) In fact, if A is any 1×k irredundant

integer matrix, then for all ε > 0 there exists an n0 > 0 such that for all integers n > n0

we have

µ(n,Ls, r) 6 µ(n,Ld, r) 6 µ(n,Ls, r) + εn.

This follows from Lemma 2.2 since such L have o(nk−`) non-k-distinct solutions in [n]

(i.e. a solution (x1, . . . , xk) where there is an i 6= j such that xi = xj).

Consequently it is equally interesting to study µ(n,Ls, r) in the case when µ(n,Ld, r) =

Ω(n). In the case of sum-free sets (where L is x + y = z), the study of µ(n,Ls, r)

is a classical problem of Abbott and Wang [1]. (Note that the only difference between

µ(n,Ld, r) and µ(n,Ls, r) in this case is that µ(n,Ld, r) allows non-distinct sums x+x = z

whereas µ(n,Ls, r) does not.) Let µ(n, r) := µ(n,Ls, r) where L is x + y = z. An easy

proof shows that µ(n, 1) = dn/2e.

The following definitions help motivate the study of µ(n, r) for r > 2. Let f(r) denote

the largest positive integer m for which there exists a partition of [m] into r sum-free sets,

and let h(r) denote the largest positive integer m for which there exists a partition of [m]
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into r sets which are sum-free modulo m+ 1.

Abbott and Wang [1] conjectured that h(r) = f(r), and showed that µ(n, r) > n −

bn/(h(r) + 1)c. They also proved the following upper bound.

Theorem 5.22 ([1]). We have µ(n, r) 6 n− bcn/((f(r) + 1) log(f(r) + 1))c where c :=

e−γ ≈ 0.56 (γ denotes the Euler-Mascheroni constant).

We provide an alternate upper bound, which is a modification of Hu’s [61] proof that

µ(n, 2) = n−bn
5
c. (To see why this is a lower bound, consider the set {x ∈ [n] : x ≡ 1 or 4

mod 5} ∪ {y ∈ [n] : y ≡ 2 or 3 mod 5}.) First we need the following fact. Given x ∈ [n]

and T ⊆ [n], write x+ T := {x+ y : y ∈ T}. Given S, T ⊆ [n], say that T is a difference

set of S if there exists x ∈ S such that x+ T ⊆ S.

Fact 5.23. Let n ∈ N and S, T, T ′ ⊆ [n].

(i) If T is a difference set of a sum-free set S, then S ∩ T = ∅.

(ii) If T ′ is a difference set of T , and T is a difference set of S, then T ′ is a difference

set of S.

Proof. If there exists x ∈ S such that x+ T ⊆ S and moreover there exists y ∈ S ∩ T ,

then x + y ∈ S, proving (i). For (ii), suppose that there is x′ ∈ T and x ∈ S such that

x′ + T ′ ⊆ T and x + T ⊆ S. Then x + x′ + T ′ ⊆ S and x + x′ ∈ x + T ⊆ S, proving

(ii). �

Theorem 5.24. We have µ(n, r) 6 n− b n
br!ecc.

Note that Theorem 5.24 does indeed recover Hu’s bound [61] for the case r = 2.

Proof. Fix n, r ∈ N. Let `(0) := 1. For all integers i > 1, define

`(i) := i!

1 +
∑
t∈[i]

1

t!

 = bi!ec.
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Note that `(i) = i`(i− 1) + 1 for all i > 1. Choose the unique q ∈ N ∪ {0} and 0 6 k 6

`(r)− 1 such that n = `(r)q+ k. Consider any partition S1∪̇ · · · ∪̇Sr∪̇R = [n], where each

Si is sum-free. We wish to show that |R| > q, since then µ(`(r)q+ k, r) 6 (`(r)− 1)q+ k

and so µ(n, r) 6 n− bn/`(r)c.

Suppose not. We will obtain integers {j1, . . . , jr} = [r] and subsets D0, D1, . . . , Dr of

[n] such that the following properties hold for all 0 6 i 6 r.

P1(i) |Di| > `(r − i)q;

P2(i) Di is a difference set of Sjt for all t ∈ [i];

P3(i) Di ∩ Sjt = ∅ for all t ∈ [i].

Let D0 := [n]. Then P1(0) holds by definition, and P2(0) and P3(0) are vacuous. Suppose,

for some 0 6 i < r, we have obtained distinct {j1, . . . , ji} ⊆ [r] and D0, D1, . . . , Di such

that P1(t)–P3(t) hold for all t ∈ [i].

Suppose that |Di ∩
⋃
t∈[r]\{j1,...,ji} St| 6 (`(r − i)− 1)q. Then we have that

|Di ∩R|
P3(i)

> |Di| − (`(r − i)− 1)q
P1(i)

> q,

a contradiction. So by averaging, there exists ji+1 ∈ [r] \ {j1, . . . , ji} such that

|Di ∩ Sji+1
| >

⌈
(`(r − i)− 1)q + 1

r − i

⌉
= `(r − i− 1)q + 1.

Thus we can write Di ∩ Sji+1
⊇ {si,0 < . . . < si,`(r−i−1)q}. Let Di+1 := {si,x − si,0 : x ∈

[`(r − i − 1)q]}. We claim that P1(i + 1)–P3(i + 1) hold. Property P1(i + 1) is clear by

definition. For P2(i + 1), note that Di+1 is a difference set of both Di and Sji+1
. Then

Fact 5.23(ii) and P2(i) imply that additionally Di+1 is a difference set of Sjt for all t ∈ [i].

Fact 5.23(i) implies that Di+1 ∩ Sjt = ∅ for all t ∈ [i+ 1], proving P3(i+ 1).
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Thus we obtain Dr satisfying P1(r)–P3(r). By P1(r) and P3(r) we have that |Dr| >

`(0)q = q and Dr ⊆ R, a contradiction. �

5.3.7 Two-coloured analogue of the Cameron–Erdős conjecture

We conclude the section with a problem which, since the paper [55] corresponding to this

chapter was first submitted, has been (essentially) solved by Tran [119]. Recall Hu [61]

showed that µ(n, 2) = n−bn
5
c. So in the case when L is x+ y = z, Theorem 5.17 implies

that there are 24n/5+o(n) (Ld, 2)-free subsets of [n]. By considering (Ls, 2)-free subsets of

[n] instead, the error term in the exponent here can be replaced by a constant.

Theorem 5.25 ([119]). Let L denote x+ y = z. There are Θ(24n/5) (Ls, 2)-free subsets

of [n].

Note that Theorem 5.25 can be viewed as a 2-coloured analogue of the Cameron–Erdős

conjecture [23] which was famously resolved by Green [47] and independently Sapozhenko [104].

5.4 Applications of the container method to graph

Ramsey theory

In this section we answer some questions in hypergraph Ramsey theory, introduced in

Sections 5.1.1 and 5.1.2. How many n-vertex hypergraphs are not Ramsey, and what does

a typical such hypergraph look like? How dense must the Erdős-Rényi random hypergraph

be to have the Ramsey property with high probability, and above this threshold, how

strongly does it possess the Ramsey property?

Our main results here are applications of the asymmetric container theorem (Theo-

rem 5.15). For arbitrary k-uniform hypergraphs H1, . . . , Hr, we first prove Theorem 5.34,

a container theorem for non-(H1, . . . , Hr)-Ramsey k-uniform hypergraphs. To see how

one might prove such a theorem, observe that, if Hi is the hypergraph of copies of Hi on
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n vertices (i.e. vertices correspond to k-subsets of [n], and edges correspond to copies of

E(Hi)), then every non-(H1, . . . , Hr)-Ramsey k-uniform hypergraph G corresponds to a

set in I(H1, . . . ,Hr). We then use Theorem 5.34 to:

(1) count the number of k-uniform hypergraphs on n vertices which are not (H1, . . . , Hr)-

Ramsey (Theorem 5.12);

(2) determine the global resilience ofG
(k)
n,p with respect to the property of being (H1, . . . , Hr)-

Ramsey (Theorem 5.7). That is, we show that there is a constant C such that

whenever p > Cn−1/mk(H1), we obtain a function t(n, p) such that, with high proba-

bility, any subhypergraph G ⊆ G
(k)
n,p with e(G) > t+Ω(pnk) is (H1, . . . , Hr)-Ramsey.

Further, there is some G′ ⊆ G
(k)
n,p with e(G′) > t− o(pnk) which is not (H1, . . . , Hr)-

Ramsey.

(3) As a corollary of (2), we see that, whenever p > Cn−1/mk(H1), the random hypergraph

G
(k)
n,p is (H1, . . . , Hr)-Ramsey with high probability.

Notice that each of the statements (1)–(3) involve a common parameter: the maximum

size exr(n;H1, . . . , Hr) of an n-vertex k-uniform hypergraph which is not (H1, . . . , Hr)-

Ramsey. For this reason, we generalise the classical supersaturation result of Erdős

and Simonovits [36] to show that any n-vertex k-uniform hypergraph G with at least

exr(n;H1, . . . , Hr)+Ω(nk) edges is somehow ‘strongly’ (H1, . . . , Hr)-Ramsey. In the graph

case, an old result of Burr, Erdős and Lovász [21] allows us to quite accurately determine

exr(n;H1, . . . , Hr).

5.4.1 Definitions and notation

In this section, k > 2 is an integer and we use k-graph as shorthand for k-uniform

hypergraph. Recall from Section 5.1.1 that, given r ∈ N and a k-graph G, an r-colouring

is a function σ : E(G) → [r]. Given k-graphs H1, . . . , Hr, we say that σ is (H1, . . . , Hr)-
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free if σ−1(i) is Hi-free for all i ∈ [r]. Then G is (H1, . . . , Hr)-Ramsey if it has no

(H1, . . . , Hr)-free r-colouring.

Given an integer ` > k, denote by K
(k)
` the complete k-graph on ` vertices. A k-graph

H is k-partite if the vertices of H can be k-coloured so that each edge contains one vertex

of each colour. Given a k-graph S, recall the definitions

dk(S) :=


0 if e(S) = 0;

1/k if v(S) = k and e(S) = 1;

e(S)−1
v(S)−k otherwise

and

mk(S) := max
S′⊆S

dk(S
′).

5.4.2 The maximum density of a hypergraph which is not Ram-

sey

Given integers n > k and a k-graph H, we denote by ex(n;H) the maximum size of an

n-vertex H-free k-graph. Define the Turán density π(H) of H by

π(H) := lim
n→∞

ex(n;H)(
n
k

) (5.4.1)

(which exists by a simple averaging argument, see [66]). The so-called supersaturation

phenomenon discovered by Erdős and Simonovits [36] asserts that any sufficiently large

hypergraph with density greater than π(H) contains not just one copy of H, but in fact

a positive fraction of v(H)-sized sets span a copy of H.

Theorem 5.26 ([36]). For all k ∈ N; δ > 0 and all k-graphs H, there exist n0, ε > 0

such that for all integers n > n0, every n-vertex k-graph G with e(G) > (π(H) + δ)
(
n
k

)
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contains at least ε
(

n
v(H)

)
copies of H.

When k = 2, the Erdős–Stone–Simonovits theorem [37] says that for all graphs H, the

value of π(H) is determined by the chromatic number χ(H) of H, via

π(H) = 1− 1

χ(H)− 1
. (5.4.2)

For k > 3, the value of π(H) is only known for a small family of k-graphs H. It remains

an open problem to even determine the Turán density of K
(3)
4 , the smallest non-trivial

complete 3-graph (the widely-believed conjectured value is 5
9
). For more background on

this, the so-called hypergraph Turán problem, the interested reader should consult the

excellent survey of Keevash [67].

In this section, we generalise Theorem 5.26 fromH-free hypergraphs to non-(H1, . . . , Hr)-

Ramsey hypergraphs (note that a hypergraph is H-free if and only if it is not (H)-

Ramsey). Given ε > 0, we say that an n-vertex k-graph G is ε-strongly (H1, . . . , Hr)-

Ramsey if for all r-colourings σ of G there exists an i ∈ [r] such that the number of copies

of Hi in σ−1(i) is more than ε
(

n
v(Hi)

)
.

Using a well-known averaging argument of Katona, Nemetz and Simonovits [66], we

can show that
(
n
k

)−1
exr(n;H1, . . . , Hr) converges as n tends to infinity. Indeed, let G be

an n-vertex non-(H1, . . . , Hr)-Ramsey graph with e(G) = exr(n;H1, . . . , Hr). The average

density of an (n− 1)-vertex induced subgraph of G is precisely

(
n

n− 1

)−1 ∑
U⊆V (G):|U |=n−1

e(G[U ])(
n−1
k

) = (n−k)−1·
(
n

k

)−1 ∑
U⊆V (G):|U |=n−1

e(G[U ]) =

(
n

k

)−1
e(G).

But the left-hand side is at most
(
n−1
k

)−1 · exr(n − 1;H1, . . . , Hr), otherwise G would

contain an (n− 1)-vertex subgraph which is (H1, . . . , Hr)-Ramsey, violating the choice of
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G. We have shown that

exr(n;H1, . . . , Hr)(
n
k

)
is a non-increasing function of n (which is bounded below, by 0), and so this function

has a limit. Therefore we may define the r-coloured Turán density π(H1, . . . , Hr) of

(H1, . . . , Hr) by

π(H1, . . . , Hr) := lim
n→∞

exr(n;H1, . . . , Hr)(
n
k

) .

As for k > 3, the problem of determining π(H) is still out of reach, we certainly cannot

evaluate π(H1, . . . , Hr) in general. However, any non-(H1, . . . , Hr)-Ramsey graph is K
(k)
s -

free, where s := R(H1, . . . , Hr) is the smallest integer m such that K
(k)
m is (H1, . . . , Hr)-

Ramsey. Thus

π(H1, . . . , Hr) 6 π(K(k)
s ), (5.4.3)

which is at most 1−
(
s−1
k−1

)−1
(de Caen [29]). An interesting question is for which H1, . . . , Hr

the inequality in (5.4.3) is tight. We discuss the case k = 2 in detail in Section 5.4.3.

We now state the main result of this subsection, which generalises Theorem 5.26 to

r > 1.

Theorem 5.27. For all δ > 0, integers r > 1 and k > 2, and k-graphs H1, . . . , Hr,

there exist n0, ε > 0 such that for all integers n > n0, every n-vertex k-graph G with

e(G) > (π(H1, . . . , Hr) + δ)
(
n
k

)
is ε-strongly (H1, . . . , Hr)-Ramsey.

Proof. Let δ > 0 and let r, k be positive integers with k > 2. By the definition of π(·),

there exists m0 > 0 such that for all integers m > m0,

exr(m;H1, . . . , Hr) <

(
π(H1, . . . , Hr) +

δ

2

)(
m

k

)
.

Fix an integer m > m0. Without loss of generality, we may assume that m > v(Hi) for
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all i ∈ [r]. Choose ε > 0 to be such that

ε 6
δ

2r

(
m

v(Hi)

)−1

for all i ∈ [r]. Let n be an integer which is sufficiently large compared to m, and let G be

a k-graph on n vertices with e(G) = (π(H1, . . . , Hr) + δ)
(
n
k

)
. We need to show that, for

every r-colouring σ of G, there is i ∈ [r] such that σ−1(i) contains at least ε
(

n
v(Hi)

)
copies

of Hi; so fix an arbitrary σ.

Define M to be the set of M ∈
(
V (G)
m

)
such that e(G[M ]) > (π(H1, . . . , Hr) + δ

2
)
(
m
k

)
.

Then

∑
U⊆V (G):|U |=m

e(G[U ]) 6 |M|
(
m

k

)
+

((
n

m

)
− |M|

)(
π(H1, . . . , Hr) +

δ

2

)(
m

k

)
.

But for every e ∈ E(G), there are exactly
(
n−k
m−k

)
sets U ⊆ V (G) with |U | = m such that

e ∈ E(G[U ]). Thus also

∑
U⊆V (G):|U |=m

e(G[U ]) >

(
n− k
m− k

)
(π(H1, . . . , Hr) + δ)

(
n

k

)

=(π(H1, . . . , Hr) + δ)

(
n

m

)(
m

k

)
,

and so, rearranging, we have |M| > δ
(
n
m

)
/2. By the choice of m, for every M ∈M, there

exists i = i(M) ∈ [r] such that σ−1(i) contains a copy of Hi with vertices in M . Choose

M′ ⊆ M such that the i(M ′) are equal for all M ′ ∈ M′ and |M′| > |M|/r. Without

loss of generality let us assume that i(M ′) = 1 for all M ′ ∈ M′. So for each M ′ ∈ M′,

there is a copy of H1 ⊆ G[M ′] which is monochromatic with colour 1 under σ. Each such

copy has vertex set contained in at most
(
n−v(H1)
m−v(H1)

)
sets M ′ ∈ M′. Thus the number of
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such monochromatic copies of H1 in G is at least

δ
2
·
(
n
m

)
r
(
n−v(H1)
m−v(H1)

) =
δ

2r
·
(

m

v(H1)

)−1
·
(

n

v(H1)

)
> ε

(
n

v(H1)

)
.

So G is ε-strongly (H1, . . . , Hr)-Ramsey, as required. �

5.4.3 The special case of graphs: maximum size and typical

structure

The intimate connection between forbidden subgraphs and chromatic number when k = 2

allows us to make some further remarks here. (This section is separate from the remainder

of the chapter and the results stated here will not be required later on.)

5.4.3.1 The maximum number of edges in a graph which is not Ramsey

Given s, n ∈ N, let Ts(n) denote the s-partite Turán (2-)graph on n vertices; that is, the

vertex set of Ts(n) has a partition into s parts V1, . . . , Vs such that ||Vi| − |Vj|| 6 1 for all

i, j ∈ [s]; and xy is an edge of Ts(n) if and only if there are ij ∈
(
[s]
2

)
such that x ∈ Vi and

y ∈ Vj. Write ts(n) := e(Ts(n)).

We need to define two notions of Ramsey number.

Given an integer r > 1 and families H1, . . . ,Hr of graphs, the Ramsey number

R(H1, . . . ,Hr) is the least m such that any r-colouring of Km contains an i-coloured

copy of Hj for some i ∈ [r] and some Hj ∈ Hi. If Hi = {K`i} for all i ∈ [r] then we

instead write R(`1, . . . , `r), and simply Rr(`) in the case when `1 = . . . = `r =: `. Given

graphs H1, . . . , Hr, the chromatic Ramsey number Rχ(H1, . . . , Hr) is the least m for which

there exists an (H1, . . . , Hr)-Ramsey graph with chromatic number m.

Trivially, for any k-graph H, we have that Rχ(H) = χ(H). If H1, . . . , Hr are graphs,
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then

tRχ(H1,...,Hr)−1(n) 6 exr(n;H1, . . . , Hr) 6 tRχ(H1,...,Hr)−1(n) + o(n2). (5.4.4)

Thus

π(H1, . . . , Hr) = 1− 1

Rχ(H1, . . . , Hr)− 1
= π

(
KRχ(H1,...,Hr)

)
. (5.4.5)

The first inequality in (5.4.4) follows by definition of exr(n;H1, . . . , Hr); the second

from (5.4.2) applied with a graph H which is (H1, . . . , Hr)-Ramsey and has χ(H) =

Rχ(H1, . . . , Hr). Clearly, then, π(H1, . . . , Hr) = π(J1, . . . , Jr) if and only ifRχ(J1, . . . , Jr) =

Rχ(H1, . . . , Hr). So, in the graph case, the inequality (5.4.3) is tight when the Ramsey

number and chromatic Ramsey number coincide.

As noted by Bialostocki, Caro and Roditty [16], one can determine exr(n;H1, . . . , Hr)

exactly in the case when H1, . . . , Hr are cliques of equal size.

Theorem 5.28 ([16]). For all positive integers `, n > 3 and r > 1, we have exr(n;K`, . . . , K`) =

tRr(`)−1(n).

Thus in this case (5.4.3) is tight. The chromatic Ramsey number was introduced by

Burr, Erdős and Lovász [21] who showed that, in principle, one can determine Rχ given

the usual Ramsey number R. A graph homomorphism from a graph H to a graph K is

a function φ : V (H) → V (K) such that φ(x)φ(y) ∈ E(K) whenever xy ∈ E(H). Let

Hom(H) denote the set of all graphs K such that there exists a graph homomorphism φ

for which K = φ(H). Since there exists a homomorphism from H into K` if and only if

χ(H) 6 `, we also have that R(Hom(H)) = χ(H). Thus R(Hom(H)) = Rχ(H). In fact

this relationship extends to all r > 1.

Lemma 5.29 ([21, 26, 78]). For all integers r ∈ N and graphs H1, . . . , Hr,

Rχ(H1, . . . , Hr) = R(Hom(H1), . . . ,Hom(Hr)).
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Moreover, for all integers `1, . . . , `r > 3, we have that

Rχ(K`1 , . . . , K`r) = R(`1, . . . , `r).

The second statement is a corollary of the first since Hom(K`) = {K`}. Another

observation (see [21]) is that for all ` ∈ N, the chromatic Ramsey number Rχ(C2`+1, C2`+1)

is equal to 5 if ` = 2, and equal to 6 otherwise.

The first inequality in (5.4.4) is not always tight, for example when H is the disjoint

union of two copies of some graph G. Indeed, Hom(H) ⊇ Hom(G) and so Rχ(H, . . . , H) =

Rχ(G, . . . , G). Let F be an n-vertex graph with e(F ) = exr(n;G, . . . , G) which is not

(G, r)-Ramsey. Obtain a graph T by adding an edge e to F . Then there exists an r-

colouring of T in which every monochromatic copy of G contains e (the monochromatic-

G-free colouring of F , with e arbitrarily coloured). Hence T is not (H, r)-Ramsey and

so

exr(n;H, . . . , H) > exr(n;G, . . . , G) > tRχ(G,...,G)(n) = tRχ(H,...,H)(n).

We say that a graph H is (weakly) colour-critical if there exists e ∈ E(H) for which

χ(H−e) < χ(H). Complete graphs and odd cycles are examples of colour-critical graphs.

The following conjecture would generalise Theorem 5.28 to provide a large class of graphs

where the first inequality in (5.4.4) is tight.

Conjecture 5.30. Let r be a positive integer and H a colour-critical graph. Then, when-

ever n is sufficiently large,

exr(n;H, . . . , H) = tRχ(H,...,H)−1(n).

If true, this conjecture would also generalise a well-known result of Simonovits [111] which

extends Turán’s theorem to colour-critical graphs. It would also determine exr(n;H, . . . , H)
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explicitly whenever H is an odd cycle.

5.4.3.2 The typical structure of non-Ramsey graphs

There has been much interest in determining the typical structure of an H-free graph.

For example, Kolaitis, Prömel and Rothschild [73] proved that almost all Kr-free graphs

are (r−1)-partite. It turns out that one can easily obtain a result on the typical structure

of non-Ramsey graphs from a result of Prömel and Steger [87].

Given two families A(n),B(n) of n-vertex graphs such that B(n) ⊆ A(n), we say that

almost all n-vertex graphs G ∈ A(n) are in B(n) if

lim
n→∞

|A(n)|
|B(n)|

= 1.

The next result of Prömel and Steger [87] immediately tells us the typical structure

of non-Ramsey graphs in certain cases.

Theorem 5.31 ([87]). For every graph H, the following holds. Almost all H-free graphs

are (χ(H)− 1)-partite if and only if H is colour-critical.

Corollary 5.32. For all integers r and graphs H1, . . . , Hr, if there exists an (H1, . . . , Hr)-

Ramsey graph H such that χ(H) = Rχ(H1, . . . , Hr) and H is colour-critical, then almost

every non-(H1, . . . , Hr)-Ramsey graph is (Rχ(H1, . . . , Hr)− 1)-partite.

Proof. The result follows since every non-(H1, . . . , Hr)-Ramsey graph G is H-free, and

every (Rχ(H1, . . . , Hr)− 1)-partite graph is non-(H1, . . . , Hr)-Ramsey. �

In particular, if in Corollary 5.32, eachHi is a clique, sayHi = K`i , then by Lemma 5.29

we can take H := KR(`1,...,`r). So, for example, almost every non-(K3, 2)-Ramsey graph is

5-partite.
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5.4.4 A container theorem for Ramsey hypergraphs

Recall that Ram(n;H1, . . . , Hr) is the set of n-vertex k-graphs which are not (H1, . . . , Hr)-

Ramsey and Ram(H1, . . . , Hr) is the set of (H1, . . . , Hr)-Ramsey k-graphs (on any num-

ber of vertices). Recall further that an H-free k-graph is precisely a non-(H, 1)-Ramsey

graph. Write Gk(n) for the set of all k-graphs on vertex set [n]. Let Ir(n;H1, . . . , Hr)

denote the set of all ordered r-tuples (G1, . . . , Gr) ∈ (Gk(n))r of k-graphs such that

each Gi is Hi-free and E(Gi) ∩ E(Gj) = ∅ for all distinct i, j ∈ [r]. Note that for

any G ∈ Ram(n;H1, . . . , Hr), there exist pairwise edge-disjoint k-graphs G1, . . . , Gr such

that
⋃
i∈[r]Gi = G and (G1, . . . , Gr) ∈ Ir(n;H1, . . . , Hr). Given an integer k > 2, a k-

graph H and positive integer n, the hypergraph H of copies of H in K
(k)
n has vertex set

V (H) :=
(
[n]
k

)
, and E ⊆

(
V (H)
e(H)

)
is an edge of H if and only if E is isomorphic to E(H).

In this subsection, we prove a container theorem for elements in Ir(n;H1, . . . , Hr). To

do so, we will apply Theorem 5.15 to hypergraphs H1, . . . ,Hr, where Hi is the hypergraph

of copies of Hi In Hi, an independent set corresponds to an Hi-free k-graph.

We will need the following simple proposition from [8].

Proposition 5.33 ([8], Proposition 7.3). Let H be a k-graph. Then there exists c > 0

such that, for all positive integers n, the following holds. Let H be the e(H)-uniform

hypergraph of copies of H in K
(k)
n . Then, letting p = n−1/mk(H),

∆`(H) 6 c · p`−1 e(H)

v(H)
,

for every ` ∈ [e(H)].

We can now prove our container theorem for elements in Ir(n;H1, . . . , Hr).

Theorem 5.34. Let r, k ∈ N with k > 2 and δ > 0. Let H1, . . . , Hr be k-graphs such that

mk(H1) > . . . > mk(Hr) and ∆1(Hi) > 2 for all i ∈ [r]. Then there exists D > 0 such

123



that the following holds. For all n ∈ N, there is a collection Sr ⊆ (Gk(n))r and a function

f : Sr → (Gk(n))r such that:

(i) For all (I1, . . . , Ir) ∈ Ir(n;H1, . . . , Hr), there exists S ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆

f(S).

(ii) If (S1, . . . , Sr) ∈ Sr then
∑

i∈[r] e(Si) 6 Dnk−1/mk(H1).

(iii) Every S ∈ Sr satisfies S ∈ Ir(n;H1, . . . , Hr).

(iv) Given any S = (S1, . . . , Sr) ∈ Sr, write f(S) =: (f(S1), . . . , f(Sr)). Then

(a)
⋃
i∈[r] f(Si) is not δ-strongly (H1, . . . , Hr)-Ramsey; and

(b) e
(⋃

i∈[r] f(Si)
)
6 exr(n;H1, . . . , Hr) + δ

(
n
k

)
.

Note that if H is a k-graph with ∆1(H) = 1, then H is a matching, i.e. a set of

vertex-disjoint edges.

Proof. We will identify any hypergraph which has vertex set [n] with its edge set. We

may further assume that there are no isolated vertices in Hi for any i ∈ [r].

Apply Proposition 5.33 with input hypergraphs H1, . . . , Hr to obtain c > 0 such that

its conclusion holds with Hi playing the role of H, for all i ∈ [r]. Let δ > 0, r ∈ N

and k > 2 be given and apply Theorem 5.27 (with δ/2 playing the role of δ) to obtain

n0, ε > 0. Without loss of generality we may assume ε 6 δ < 1. For each i ∈ [r], let

vi := v(Hi) and mi := e(Hi) for all i ∈ [r]. Set v := maxi∈[r] vi; m := maxi∈[r]mi;

ε′ :=
ε

2 · v!
; and ε′′ :=

ε′(
v
k

)
· v!

.

Apply Theorem 5.15 with parameters r,m1, . . . ,mr, c, ε
′′ playing the roles of r, k1, . . . , kr, c, ε

respectively to obtainD1 > 0. Increase n0 if necessary so that 0 < 1/n0 � 1/D1, 1/k, 1/r, ε, δ.

If n < n0, then set Sr to be Ir(n;H1, . . . , Hr); set f to be the identity function and choose
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D2 to be large. By setting D to be the maximum of D1 and D2, it remains to prove the

result for integers n > n0. So now fix n > n0.

Let Hn,i be the hypergraph of copies of Hi in K
(k)
n . That is, V (Hn,i) :=

(
[n]
k

)
and

for each mi-subset E of
(
[n]
k

)
, put E ∈ E(Hn,i) if and only if E is isomorphic to a copy

of Hi. By definition, Hn,i is an mi-uniform hypergraph and an independent set in Hn,i

corresponds to an Hi-free k-graph with vertex set [n]. Since Hi is a k-graph with no

isolated vertices,

e(Hn,i) =
vi!

|Aut(Hi)|

(
n

vi

)
(5.4.6)

where Aut(Hi) is the automorphism group of Hi. For all i ∈ [r], let

Fn,i :=

{
A ⊆

(
[n]

k

)
: e(Hn,i[A]) > ε′e(Hn,i)

}
.

We claim that Hn,1, . . . ,Hn,r and Fn,1, . . . ,Fn,r satisfy the hypotheses of Theorem 5.15

with the parameters chosen as above and with

p = p(n) := n−1/mk(H1).

Clearly each family Fn,i is increasing, and Hn,i is (Fn,i, ε′)-dense. Next, we show that

|A| > ε′′
(
n
k

)
for all A ∈ Fn,i. In any k-graph on n vertices, there are at most vi!

(
n−k
vi−k

)
copies of Hi that contain some fixed set {x1, . . . , xk} of vertices. Therefore, for every

e ∈
(
[n]
k

)
, the number of E ∈ E(Hn,i) containing e is at most

vi!

(
n− k
vi − k

)
. (5.4.7)
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Thus every A ∈ Fn,i satisfies

|A| > e(Hn,i[A])

vi!
(
n−k
vi−k

) (5.4.6)

>
ε′vi!

(
n
vi

)
vi!
(
n−k
vi−k

)
|Aut(Hi)|

=
ε′(

v
k

)
|Aut(Hi)|

(
n

k

)
> ε′′

(
n

k

)
,

where, in the final inequality, we used the fact that |Aut(Hi)| 6 vi!. Note that ε′′ < ε′.

So Hn,i is (Fn,i, ε′′)-dense and |A| > ε′′
(
n
k

)
for all A ∈ Fn,i.

Certainly p > n−1/mk(Hj) for all j ∈ [r]. By the choice of c, we then have

∆`(Hn,i) 6 c · p`−1 e(Hn,i)(
n
k

)
for all i ∈ [r] and ` ∈ [mi]. We have shown that Hn,i and Fn,i satisfy the hypotheses of

Theorem 5.15 for all i ∈ [r].

Then Theorem 5.15 implies that there exists a family Sr ⊆ I(Hn,1, . . . ,Hn,r) and

functions f ′ : Sr →
∏

i∈[r]Fn,i and g : I(Hn,1, . . . ,Hn,r) → Sr such that the following

conditions hold:

(a) If (S1, . . . , Sr) ∈ Sr then
∑
|Si| 6 D1p

(
n
k

)
;

(b) every S ∈ Sr satisfies S ∈ I(Hn,1, . . . ,Hn,r);

(c) for every (I1, . . . , Ir) ∈ I(Hn,1, . . . ,Hn,r), we have that S ⊆ (I1, . . . , Ir) ⊆ S ∪ f ′(S),

where S := g(I1, . . . , Ir).

Note that (G1, . . . , Gr) ∈ I(Hn,1, . . . ,Hn,r) if and only if (G1, . . . , Gr) ∈ Ir(n;H1, . . . , Hr)

(where we recall the identification of graphs and edge sets). For each S ∈ Sr, define

f(S) := S ∪ f ′(S).

So f : Sr → P(
(
[n]
k

)
)r. (Note that under the correspondence of graphs and edge sets we

can view P(
(
[n]
k

)
)r = (Gk(n))r.) Thus (a)–(c) immediately imply that (i) and (iii) hold,

126



and additionally for any (S1, . . . , Sr) ∈ Sr we have

∑
i∈[r]

e(Si) 6 D1p

(
n

k

)
6 D1n

−1/mk(H1) · n
k

k!
< D1n

k−1/mk(H1),

yielding (ii).

Given any S = (S1, . . . , Sr) ∈ Sr write f(S) =: (f(S1), . . . , f(Sr)) and f ′(S) =:

(f ′(S1), . . . , f
′(Sr)). Let G :=

⋃
i∈[r] f(Si); so G is a k-graph with vertex set [n]. To prove

(iv)(a), we need to exhibit an r-colouring σ of G with the property that σ−1(i) contains

less than ε
(
n
vi

)
copies of Hi for all i ∈ [r]. Indeed, consider the r-colouring σ of G defined

by setting σ(e) = i when i is the least integer such that e ∈ f(Si). Then the subgraph of

G coloured i is σ−1(i) ⊆ f(Si) = Si ∪ f ′(Si). Since Si is an independent set in Hn,i, we

have that Si is Hi-free. Every copy of Hi in σ−1(i) either contains at least one edge in Si,

or has every edge contained in f ′(Si). Note that mk(Hi) 6 m. By (5.4.7), the number of

copies of Hi in G containing at least one edge in Si is at most

e(Si) · vi!
(
n− k
vi − k

)
6 D1n

k−1/mk(H1) · vi!(n− k)vi−k 6 D1vi! · nvi−
1
m <

ε

2

(
n

vi

)
.

For each i ∈ [r] we have that f ′(Si) ∈ Fn,i, and so e(Hn,i[f
′(Si)]) < ε′e(Hn,i). That is,

the number of copies of Hi in f ′(Si) is less than

ε′ · vi!

|Aut(Hi)|

(
n

vi

)
6
ε

2

(
n

vi

)
.

Thus, in total f(Si) = Si∪f ′(Si) contains at most ε
(
n
vi

)
copies of Hi, so G is not ε-strongly

(H1, . . . , Hr)-Ramsey. Since ε 6 δ, this immediately implies (iv)(a), and (iv)(b) follows

from Theorem 5.27, our choice of parameters, and since n is sufficiently large. �

As in Theorem 2.1, we will call the elements S ∈ Sr fingerprints, and each
⋃
i∈[r] f(Si)

with (S1, . . . , Sr) ∈ Sr is a container.
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5.4.5 The number of hypergraphs which are not Ramsey

Our first application of Theorem 5.34 is an enumeration result for non-(H1, . . . , Hr)-

Ramsey hypergraphs (Theorem 5.12), which asymptotically determines the logarithm of

|Ram(n;H1, . . . , Hr)|.

Proof of Theorem 5.12. Let 0 < δ < 1 be arbitrary, and let n ∈ N be sufficiently large.

Clearly, |Ram(n;H1, . . . , Hr)| > 2exr(n;H1,...,Hr) since no subhypergraph of an n-vertex non-

(H1, . . . , Hr)-Ramsey k-graph with exr(n;H1, . . . , Hr) edges is (H1, . . . , Hr)-Ramsey.

For the upper bound, suppose first that ∆1(Hi) > 2 for all i ∈ [r]. Let D > 0

be obtained from Theorem 5.34 applied to H1, . . . , Hr with parameter δ. We obtain a

collection Sr and a function f as in Theorem 5.34. Consider any G ∈ Ram(n;H1, . . . , Hr).

Note that there are pairwise edge-disjoint k-graphs G1, . . . , Gr such that
⋃
i∈[r]Gi = G

and (G1, . . . , Gr) ∈ Ir(n;H1, . . . , Hr). So by Theorem 5.34(i) this means there is some

S = (S1, . . . , Sr) ∈ Sr so that G ⊆
⋃
i∈[r] f(Si). Further, given any S = (S1, . . . , Sr) ∈ Sr,

we have

e

⋃
i∈[r]

f(Si)

 6 exr(n;H1, . . . , Hr) + δ

(
n

k

)
.

Thus, each such
⋃
i∈[r] f(Si) contains at most 2exr(n;H1,...,Hr)+δ(nk) k-graphs in Ram(n;H1, . . . , Hr).

Note that, by Theorem 5.34(ii),

|Sr| 6

Dnk−1/mk(H1)∑
s=0

((n
k

)
s

)r

< 2δ(
n
k),

where the last inequality holds since n is sufficiently large. Altogether, this implies

|Ram(n;H1, . . . , Hr)| 6 2δ(
n
k) × 2exr(n;H1,...,Hr)+δ(nk) = 2exr(n;H1,...,Hr)+2δ(nk). (5.4.8)

Since the choice of 0 < δ < 1 was arbitrary, this proves the theorem in the case when
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∆1(Hi) > 2 for all i ∈ [r].

Suppose now that, say, ∆1(H1) = 1. Then H1 is a matching. Certainly every non-

(H2, . . . , Hr)-Ramsey k-graph is non-(H1, . . . , Hr)-Ramsey. Let H ∈ Ram(n;H1, . . . , Hr).

Then there exists an r-colouring σ of H such that σ−1(i) is Hi-free for all i ∈ [r]. Thus H

is the union of pairwise edge-disjoint k-graphs J ∈ Ram(n;H2, . . . , Hr) and J ′ := σ−1(1).

But J ′ is H1-free and hence does not contain a matching of size bv(H1)/2c =: h. A result

of Erdős [33] (used here in a weaker form) implies that, for sufficiently large n,

e(J ′) 6 (h− 1)

(
n− 1

k − 1

)
.

Thus, for large n,

|Ram(n;H1, . . . , Hr)| 6
∑

J∈Ram(n;H2,...,Hr)

(h−1)(n−1
k−1)∑

e(J ′)=0

( (n
k

)
e(J ′)

)

= |Ram(n;H2, . . . , Hr)|

k(h−1)
n (nk)∑

e(J ′)=0

( (n
k

)
e(J ′)

)
6 |Ram(n;H2, . . . , Hr)| · 2δ(

n
k).

Iterating this argument, using (5.4.8) and the fact that 0 < δ < 1 was arbitrary, we obtain

the required upper bound in the general case. �

In fact Theorem 5.12 can be recovered in a different way, which, to the best of our

knowledge, has not been explicitly stated elsewhere. Let F be a (possibly infinite) family

of k-graphs, and let Forb(n;F) be the set of n-vertex k-graphs which contain no copy of

any F ∈ F as a subhypergraph. The following result of Nagle, Rödl and Schacht [84]

asymptotically determines the logarithm of |Forb(n;F)|. (This generalises the correspond-
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ing result of Erdős, Frankl and Rödl [34] for graphs.) Let

ex(n;F) := max{e(H) : H ∈ Forb(n;F)}.

(So when F = {F} contains a single k-graph, we have ex(n; {F}) = ex(n;F ).)

Theorem 5.35 (Theorem 2.3, [84]). Let k > 2 be a positive integer and F be a (pos-

sibly infinite) family of k-graphs. Then, for all n ∈ N,

|Forb(n;F)| = 2ex(n;F)+o(nk).

Since G ∈ Ram(n;H1, . . . , Hr) if and only if G is an n-vertex k-graph without a copy

of any F ∈ Ram(H1, . . . , Hr) as a subhypergraph, Theorem 5.35 immediately implies

Theorem 5.12.

We remark that the proof of Nagle, Rödl and Schacht [84] uses hypergraph regularity.

Our proof of Theorem 5.12 has the advantage that it is is regularity-free.

5.4.6 The resilience of being (H1, . . . , Hr)-Ramsey

Recall that G
(k)
n,p has vertex set [n], where each edge lies in

(
[n]
k

)
and appears with proba-

bility p, independently of all other edges. In this section we apply Theorem 5.34 to prove

Theorem 5.7, which determines res(G
(k)
n,p, (H1, . . . , Hr)-Ramsey) for given fixed k-graphs

H1, . . . , Hr. Explicitly, res(G
(k)
n,p, (H1, . . . , Hr)-Ramsey) is the minimum integer t such that

one can remove t edges from G
(k)
n,p to obtain a k-graph H which has an (H1, . . . , Hr)-free

r-colouring.

Observe that Theorem 5.7 together with (5.4.3) immediately implies the following

corollary.

Corollary 5.36 (Random Ramsey for hypergraphs). For all positive integers r, k

with k > 2 and k-graphs H1, . . . , Hr with mk(H1) > . . . > mk(Hr) and ∆1(Hi) > 2 for all
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i ∈ [r], there exists C > 0 such that

lim
n→∞

P
[
G(k)
n,p is (H1, . . . , Hr)-Ramsey

]
= 1 if p > Cn−1/mk(H1).

In the case when mk(H1) = mk(H2), Corollary 5.36 generalises Theorem 5.6 since we do

not require H1 to be strictly k-balanced. Further, Corollary 5.36 resolves (the 1-statement

part) of Conjecture 5.3 in the case when m2(H1) = m2(H2).

Proof of Theorem 5.7. Let 0 < δ < 1 be arbitrary, r, k ∈ N with k > 2, and let

H1, . . . , Hr be k-graphs as in the statement of the theorem. Given n ∈ N, if p > n−1/mk(H1),

then p > n−(k−1) since ∆1(H1) > 2. Proposition 1.2(ii) implies that, w.h.p.,

e(G(k)
n,p) =

(
1± δ

4

)
p

(
n

k

)
. (5.4.9)

For brevity, write π := π(H1, . . . , Hr). We will first prove the upper bound

lim
n→∞

P
[
res(G(k)

n,p, (H1, . . . , Hr)-Ramsey) 6 (1− π + δ)e(G(k)
n,p)
]

= 1 if p > n−1/mk(H1).

For this, we must show that the probability of the event that there exists an n-vertex

k-graph G ⊆ G
(k)
n,p such that e(G) > (π − δ)e(G(k)

n,p) and G ∈ Ram(n;H1, . . . , Hr), tends

to one as n tends to infinity. This indeed follows: Let n be sufficiently large so that

exr(n;H1, . . . , Hr) > (π − δ/2)
(
n
k

)
. Let G∗ be an n-vertex non-(H1, . . . , Hr)-Ramsey k-

graph with e(G∗) = exr(n;H1, . . . , Hr). Then, by Proposition 1.2(ii), w.h.p. we have

e(G∗ ∩G(k)
n,p) = (π ± δ)e(G(k)

n,p), and G∗ ∩G(k)
n,p ∈ Ram(n;H1, . . . , Hr), as required.

For the remainder of the proof, we will focus on the lower bound, namely that there

exists C > 0 such that whenever p > Cn−1/mk(H1),

P
[
res(G(k)

n,p, (H1, . . . , Hr)-Ramsey) > (1− π − δ)e(G(k)
n,p)
]
→ 1 as n→∞. (5.4.10)
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Suppose n is sufficiently large. Apply Theorem 5.34 with parameters r, k, δ/16, (H1, . . . , Hr)

to obtain D > 0 and for each n ∈ N, a collection Sr and a function f satisfying (i)–(iv).

Now choose C such that 0 < 1/C � 1/D, δ, 1/k, 1/r. Let p > Cn−1/mk(H1).

Since (5.4.9) holds with high probability, to prove (5.4.10) holds it suffices to show

that the probability G
(k)
n,p contains a non-(H1, . . . , Hr)-Ramsey k-graph with at least (π+

δ/2)p
(
n
k

)
edges tends to zero as n tends to infinity.

Suppose that G
(k)
n,p does contain a non-(H1, . . . , Hr)-Ramsey k-graph I with at least

(π + δ/2)p
(
n
k

)
edges. Then there exist pairwise edge-disjoint k-graphs I1, . . . , Ir such

that
⋃
i∈[r] Ii = I and (I1, . . . , Ir) ∈ Ir(n;H1, . . . , Hr). Further, there is some S =

(S1, . . . , Sr) ∈ Sr such that S ⊆ (I1, . . . , Ir) ⊆ f(S). Thus, G
(k)
n,p must contain (the

edges of)
⋃
i∈[r] Si as well as at least (π + δ/4)p

(
n
k

)
edges from (

⋃
i∈[r] f(Si)) \ (

⋃
i∈[r] Si).

(Note here we are using that e(
⋃
i∈[r] Si) 6 δp

(
n
k

)
/4, which holds by Theorem 5.34(ii)

and since 0 < 1/C � 1/D, 1/k, δ.) Writing s := e(
⋃
i∈[r] Si), the probability G

(k)
n,p con-

tains
⋃
i∈[r] Si is ps. Note that e((

⋃
i∈[r] f(Si)) \ (

⋃
i∈[r] Si)) 6 (π + δ/8)

(
n
k

)
by Theo-

rem 5.34(iv)(b) and since n is sufficiently large. So by Proposition 1.2(i), the probabil-

ity G
(k)
n,p contains at least (π + δ/4)p

(
n
k

)
edges from (

⋃
i∈[r] f(Si)) \ (

⋃
i∈[r] Si) is at most

exp(−δ2p
(
n
k

)
/256) 6 exp(−δ2pnk/256kk).

Write N := nk−1/mk(H1) and γ := δ2/256kk. Given some integer 0 6 s 6 DN , there are

at most rs
((nk)
s

)
elements (S1, . . . , Sr) ∈ Sr such that e(

⋃
i∈[r] Si) = s. Indeed, this follows

since there are rs ways to partition a set of size s into r classes. Thus, the probability

that G
(k)
n,p does contain a non-(H1, . . . , Hr)-Ramsey k-graph I with at least (π + δ/2)p

(
n
k

)
edges is at most

DN∑
s=0

rs
((n

k

)
s

)
· ps · e−γnkp 6 (DN + 1)(rp)DN

( (n
k

)
DN

)
e−γn

kp

6 (DN + 1)

(
rek+1pnk

DNkk

)DN
e−γn

kp
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6 (DN + 1)

(
rek+1C

Dkk

)DN
e−γCN 6 eγCN/2e−γCN = e−γCN/2,

which tends to zero as n tends to infinity. This completes the proof. �
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Chapter 6

The Maker-Breaker Rado game on

a random set of integers

6.1 Introduction

Given a finite set X and a family of subsets of X, F ⊆ P(X), we define the Maker-Breaker

game on (X,F) to be the game where Maker and Breaker take turns to select a previously

unchosen element x ∈ X, and at the conclusion of the game, if Maker has claimed all of

the elements of some F ∈ F , then Maker wins. Otherwise Breaker has claimed at least

one element x in every set F ⊆ F , and Breaker wins. The set X is known as the board,

and the family F as the winning sets. If Maker has a strategy so that no matter how

Breaker plays, Maker can always win, then we call the game Maker’s win. If Maker has

no such strategy, then since there is no draw scenario, the game is Breaker’s win.

Maker-Breaker games first stemmed from a seminal paper by Erdős and Selfridge [35],

where they proved their famous criterion which gives a general winning strategy for

Breaker. Some well-known examples of Maker-Breaker games are where the board X

is the edge set of a complete graph Kn, and the winning sets F are all sets of edges which

correspond to a perfect matching; a Hamilton cycle; or a fixed subgraph H. All of these
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games turn out to be Maker’s win if n is sufficiently large, therefore an adjustment to

the game is required if we wish to make the problem of determining whose win the game

is more interesting. This leads to the following two variations of Maker-Breaker board

games, which have each received significant attention.

• Biased board games. Maker claims one element of the board per turn, whereas

Breaker claims b elements per turn, for some fixed b ∈ N. We call the game the

(1 : b) game on (X,F). Maker-Breaker games are ‘bias-monotone’ (see e.g. [52]).

This means that there exists a threshold bias b0 such that the (1 : b) game on (X,F)

is Maker’s win if and only if b < b0.

• Random board games. For a fixed probability p = p(n) and game (X,F), let Xp

be obtained by including each element x ∈ X with probability p independently of

all other elements, and let Fp := {F ∈ F : x ∈ Xp for all x ∈ F}. We then consider

the game on the random board (Xp,Fp), noting that it is a probability space of

games. By the monotonicity of the game (X,F) being Maker’s win, the existence

of a threshold function follows from [19]. That is, there exists a threshold probability

p0 = p0(n) such that

lim
n→∞

P[The game on (Xp,Fp) is Maker’s win] =


1 if p/p0 →∞ as n→∞;

0 if p/p0 → 0 as n→∞.

The interesting problem now is to determine the threshold bias and threshold probability

for various Maker-Breaker games. For examples and further history of combinatorial

board games, see e.g. [12, 52].

Random board games were first introduced by Stojaković and Szabó [113], who con-

sidered games played on a random subset of the edges of a complete graph. Note that
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this precisely corresponds to the edges of the Erdős–Rényi random graph Gn,p. Here,

we focus on the game where Maker’s aim is to obtain a solution to a system of linear

equations within a random set of integers. To be precise, in our Maker-Breaker game,

the board will be a random set of integers [n]p (recall this is obtained by including each

element of [n] with probability p independently of all other elements). The winning sets

are all sets of size k which correspond to a k-distinct solution (i.e. x = (x1, . . . , xk) has

each xi distinct) to a system of linear equations Ax = b, where A is a fixed integer-valued

matrix of dimension ` × k and b is a fixed integer-valued vector of dimension `. We call

such a game played on a set of integers X the (A, b)-game on X, or the L-game on X

(recalling the use of L to represent the system of linear equations Ax = b used in previous

chapters). The class of all L-games are known as Rado games (introduced in [75]), due

to the intimate link with Rado’s partition theorem, which will be discussed shortly. As

in the majority of the last chapter, we only care about k-distinct solutions (and therefore

distinct L-free sets).

Maker-Breaker games in this setting were first considered by Beck [13], who studied the

van der Waerden game. Here, Maker’s aim is to obtain a k-term arithmetic progression

a, a + r, . . . , a + (k − 1)r for some a, r ∈ N and fixed k ∈ N. Note that the set of k-

term arithmetic progressions in [n] exactly coincides with the set of k-distinct solutions

to Ax = 0 in [n] where A is the (k − 2)× k matrix given by



1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

. . .

0 0 0 0 · · · 1 −2 1


.

Beck determined that the smallest n ∈ N such that the (A, 0)-game on [n] is Maker’s win

is n = 2k(1+o(1)).
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Here we consider a generalisation of the van der Waerden game using the following

definitions which we recall from the previous chapter. Let A be a fixed integer-valued

matrix of dimension ` × k and b a fixed integer-valued vector of dimension `. We call L

(and the matrix A in the case where b = 0) irredundant if there exists a k-distinct solution

to Ax = b in N, and partition regular if for any finite colouring of N, there is always a

monochromatic solution (of any kind) to Ax = b.

A cornerstone result in the area of Ramsey theory for integers is Rado’s theorem [88],

which characterises all partition regular systems of linear equations L. In [60], Hindman

and Leader extended Rado’s theorem to characterise all systems L for which given any

finite colouring of N, there is always a monochromatic k-distinct solution to Ax = b (in

particular, if b = 0 then A must be irredundant and partition regular). Hindman and

Leader’s result implies that given such a system L, if n is sufficiently large then however

we 2-colour [n], there exists a monochromatic k-distinct solution to Ax = b. So in order

for Breaker to win the L-game on [n], he must himself obtain a k-distinct solution. But

then by the classic strategy-stealing argument, Maker can claim this solution for herself.

Thus this game is an (easy) win for Maker. Therefore it is interesting to consider biased

and random versions of the L-game on [n]. In a very recent paper of Kusch, Rué, Spiegel

and Szabó [75], the biased version is considered. In this chapter, we consider the random

version.

In fact (as in [75]), we consider a wider class of systems of linear equations L. Recall

the definition of (∗), the matrix property we introduced in the previous chapter:

(∗) Under Gaussian elimination A does not have any row which consists of precisely

two non-zero rational entries.

In [75] the term abundant is used, which, recall from the previous chapter, is equivalent

to (∗) in the case of irredundant full rank matrices. Recall that in Section 5.3.1 it is proven

that irredundant partition regular matrices are a strict subclass of irredundant matrices
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which satisfy (∗).

Recall the definition of m(A) (see (1.3.2)). The biased game result of [75] is the

following.

Theorem 6.1 ([75], Theorem 1.3 and Proposition 1.4). Let A be a fixed integer-

valued matrix of dimension ` × k and b a fixed integer-valued vector of dimension `.

Given the system of linear equations L and the matrix A are both irredundant, then we

have the following:

(i) If A satisfies (∗) then the threshold bias for the (A, b)-game on [n] is Θ(n1/m(A));

(ii) If A does not satisfy (∗) then the (1 : 2) (A, b)-game on [n] is Breaker’s win.

In this chapter we mainly focus on the case when A satisfies (∗), though the case where

A does not satisfy (∗) does feature in our first result and also Section 6.4.

Our first result gives the threshold for the random L-game whenever L is a single

linear equation.

Theorem 6.2. Let A be a fixed non-zero-integer-valued matrix of dimension 1× k and b

a fixed integer (i.e. Ax = b corresponds to a single linear equation a1x1 + · · · + akxk = b

with the ai non-zero integers).

(i) If the system of linear equations L is irredundant and A is irredundant and satisfies

(∗), then the L-game on [n]p has a threshold probability of Θ(n−
k−2
k−1 );

(ii) If the system of linear equations L is irredundant and A is irredundant and does not

satisfy (∗), then the L-game on [n]p is Maker’s win if p� n−1/3 and Breaker’s win

if p� n−1/3;

(iii) If the system of linear equations L is irredundant and A is not irredundant, then
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(a) the L-game on [n]p is Breaker’s win w.h.p. for any p = o(1) if the coefficients

ai are all positive or all negative;

(b) the L-game on [n]p is Maker’s win if p� n−1/3 and Breaker’s win if p� n−1/3

otherwise;

(iv) If the system of linear equations L is not irredundant, then the L-game on [n] is

(trivially) Breaker’s win.

Note that most ‘interesting’ equations lies in the class of equations given by (i). In

particular it includes several natural equations that have been extensively studied, e.g.

x + y = z, x + y = z + t and x + y = 2z. In the L-games corresponding to these

equations, Breaker’s aim is to restrict Maker’s set to being a sum-free set, a Sidon set and

a progression-free set respectively. The remaining classes of equations given by (ii)–(iv)

are all in some sense ‘trivial’; the proofs of these statements appear in Section 6.4.3.

In fact Theorem 6.2(i) will follow immediately from a much more general theorem.

First we need some more definitions. We say that an ` × k matrix A of full rank ` is

strictly balanced if, for every W ⊆ [k] for which 2 6 |W | < k, the inequality

|W | − 1

|W | − 1 + rank(AW )− `
<

k − 1

k − 1− `

holds. In particular note that if A is strictly balanced then m(A) = k−1
k−1−` (though the

converse is not true). Given an irredundant matrix A which satisfies (∗), we define the

associated matrix B(A) to be a strictly balanced, irredundant matrix of full rank which

satisfies (∗), which is found by using elementary row operations on A then deleting some

rows and columns, and satisfies m(B(A)) = m(A). The fact that such a matrix exists

is not entirely obvious, and is essentially proven in [93]. We provide further details in

Section 6.3. Also note that if A itself is strictly balanced then we simply have B(A) = A.
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Recall µ(n,Ld) denotes the size of the largest subset of [n] which does not contain a

k-distinct solution to Ax = b. The main result of this chapter is the following.

Theorem 6.3. Let A be a fixed integer-valued matrix of dimension `′ × k′ and b a fixed

integer-valued vector of dimension `′. Given the system of linear equations L is irredun-

dant and A is irredundant and satisfies (∗) we have the following:

(i) Let ε > 0. There exists a positive constant C such that if p > Cn−1/m(A), then for

any R ⊆ [n]p satisfying |R| 6 (1− µ(n,Ld)
n
− ε)np, we have

lim
n→∞

P (Maker wins the L-game on [n]p \R) = 1.

(ii) Suppose the associated matrix B(A) is an `×k matrix of full rank `, where ` divides

k − 1. There exists a positive constant c such that if p < cn−1/m(A) then

lim
n→∞

P (Breaker wins the L-game on [n]p) = 1.

First note that it follows from a supersaturation result (Theorem 6.5) that for all pairs

(A, b) as stated in Theorem 6.3, there exist n0 = n0(A, b), δ = δ(A, b) > 0, such that for

all integers n > n0 we have µ(n,Ld) 6 (1−δ)n. Thus in particular Theorem 6.3(i) implies

that there exists a positive constant C such that if p > Cn−1/m(A), then Maker wins the

L-game on [n]p w.h.p. Also, note that if A is a 1×k matrix with non-zero entries, then it

is strictly balanced, and so B(A) = A. Thus A is a matrix which satisfies the hypothesis

of Theorem 6.3(ii). Theorem 6.2(i) follows immediately from these two comments.

Another example of a class of pairs (A, b) for which Theorem 6.3 gives the threshold

probability up to a constant factor are all irredundant systems of linear equations L for

which A is irredundant, has no columns consisting entirely of zeroes, satisfies (∗) and is
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of dimension 2× k′ for some odd k′. This follows since by construction either B(A) = A

or B(A) is a 1× k matrix for some k < k′. Either way, B(A) then satisfies the hypothesis

of Theorem 6.3(ii).

For the Maker’s win statement, the fact that we can delete a certain fraction of ele-

ments from [n]p and still have Maker’s win w.h.p. means we have a resilience theorem.

Note that in our result, the property is the game being Maker’s win w.h.p., and the re-

silience is best possible in terms of the bound on the size of the set R: Indeed, since the

largest subset of [n] with no k-distinct solutions to Ax = b has size µ(n,Ld), w.h.p. [n]p

contains a subset S of size p(µ(n,Ld)− εn) with no k-distinct solutions to Ax = b. Thus

we can remove (1− µ(n,Ld)
n

+ ε)np elements from [n]p to obtain S (noting that a game on

S is trivially Breaker’s win).

It is very interesting to note the parallels between our theorem and the following ran-

dom Rado theorems and the resilience theorem, which appeared in the previous chapter.

Theorem 5.8 ([93]). For all irredundant partition regular full rank matrices A and all

positive integers r > 2, there exists a constant c > 0 such that

lim
n→∞

P
[
[n]p is (Ld, r)-Rado

]
= 0 if p < cn−1/m(A).

Theorem 5.9 ([42]). For all irredundant partition regular full rank matrices A and all

positive integers r, there exists a constant C > 0 such that

lim
n→∞

P
[
[n]p is (Ld, r)-Rado

]
= 1 if p > Cn−1/m(A).

Theorem 5.11. For all irredundant partition regular full rank matrices A, all positive

integers r and all δ > 0, there exists a constant C > 0 such that

lim
n→∞

P
[

res([n]p, (Ld, r)-Rado)

|[n]p|
= 1− µ(n,Ld, r)

n
± δ
]

= 1 if p > Cn−1/m(A).
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Theorem 5.9 implies that by again using strategy-stealing, we could obtain a proof

for the non-resilient version of Theorem 6.3(i) for irredundant partition regular matrices.

However our method as already noted achieves the best resilience possible, and further it

extends to all irredundant matrices which satisfy (∗) (even those for which there exists a

2-colouring of N with no monochromatic k-distinct solutions to Ax = b). Our proof also

gives an explicit strategy.

The proof of Theorem 6.3(i) closely follows the method of Theorem 16 in [86]. Here,

Nenadov, Steger and Stojaković consider a similar problem: the H-game is where the

board is the edges of a complete graph, and the winning sets are sets of edges which

correspond to a copy of a fixed subgraph H. This game and its related Ramsey problems

resemble the L-game as follows: Set d2(H) := 0 if e(H) = 0, d2(H) := 1/2 if e(H) = 1,

and d2(H) := (e(H) − 1)/(v(H) − 2) otherwise. Then define the 2-density of H to be

m2(H) := maxH′⊆H d2(H
′). For most graphs H, the graph analogues of Theorems 5.8, 5.9

and 5.11 (the random Ramsey theorem and resilient subgraphs theorem, see Theorems 5.2

and 5.1) have a threshold of Θ(n−1/m2(H)). Bednarska and  Luczak [14] showed that the

threshold bias for the H-game is Θ(n1/m2(H)). Thus both the H-games and L-games (in

most cases) have a threshold bias which is the inverse of the threshold for the random

(respective) Ramsey/Rado theorem and the resilience theorems. Kusch, Rué, Spiegel and

Szabó [75] in fact show that there is an intimate link between resilience and the threshold

bias, which explains the parameters of m(A) and m2(H) appearing for both. They refer

to this phenomenon as the probabilistic Turán intuition for biased Maker-Breaker games;

see Section 6.4 of [75] for more details.

An analogous definition of strictly balanced exists for graphs. In [86], Nenadov,

Steger and Stojaković show that the threshold probability for the random H-game is

Θ(n−1/m2(H)) when H is strictly balanced (Theorem 2 in [86]). However there are a

class of graphs which have a threshold probability different to that of the random Ram-
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sey/resilient subgraph theorem and the inverse of the threshold bias (Theorem 4 in [86]).

Indeed, this is one of the main motivations for studying the random L-game: For the

proof of Theorem 6.3(ii), we build upon the method used by Rödl and Ruciński [93] to

prove Theorem 5.8. Although our Breaker win statement is ‘incomplete’, its proof does

seem to indicate that the threshold probability for the random L-game (for any system

of linear equations L which is irredundant and A irredundant and satisfying (∗)) should

be the same as the random Rado threshold. That is, we hope that there is no need for

the assumption that ` divides k − 1 in Theorem 6.3(ii). Also note that if we could prove

our Breaker win statement for all strictly balanced matrices, then the full result would

follow (see Proposition 6.8 and the paragraph following it). So interestingly in this sense,

the random L-game does not resemble the random H-game.

We prove the two parts of Theorem 6.3 in Sections 6.2 and 6.3 respectively, before

finishing by proving Theorem 6.2(ii)–(iv) along with making some further remarks in

Section 6.4.

6.2 Proof of Maker’s win in Theorem 6.3

First we list a few results which are required for the proof. We will use the following

simplification of Theorem 5.21. First recall I(n,Ld) denote all sets from P([n]) which

contain no k-distinct solutions to Ax = b.

Theorem 6.4. Let 0 < δ < 1. Let A be a fixed integer-valued matrix of dimension `× k

and b a fixed integer-valued vector of dimension `. Suppose the system of linear equations

L is irredundant and A is irredundant and satisfies (∗). Then there exists D > 0 such

that the following holds. For all n ∈ N, there is a collection S ⊆ P([n]) and a function

f : S → P([n]) such that:

(i) For all I ∈ I(n,Ld), there exists S ∈ S such that S ⊆ I ⊆ f(S).

Additionally, every S ∈ S satisfies

143



(ii) |S| 6 Dn
m(A)−1
m(A) ;

(iii) S ∈ I(n,Ld);

(iv) f(S) contains at most δnk−` k-distinct solutions to Ax = b; and

(v) |f(S)| 6 µ(n,Ld) + δn.

An upper bound on the size of the largest subset of [n] containing no k-distinct solu-

tions to Ax = b is also required. The following is a consequence of Lemma 4.1 in [75] and

Lemma 2.2.

Theorem 6.5. Let A be a fixed integer-valued matrix of dimension ` × k and b a fixed

integer-valued vector of dimension `. Given the system of linear equations L is irredundant

and A is irredundant and satisfies (∗), then there exist n0 ∈ N and δ > 0 such that for all

integers n > n0 we have µ(n,Ld) 6 (1− δ)n.

Finally, we require the Erdős-Selfridge Criterion, commonly used to prove a Breaker

strategy result, which we mentioned in the introduction. (Note that we do mean Breaker

here; in our proof, we create an auxiliary game where the original Maker needs to play

the role of Breaker!)

Theorem 6.6 ([35]). Let X be a set and let F be a family of subsets of X. Then if

Breaker has the first move in the game, and

∑
A∈F

2−|A| < 1,

then Breaker has a winning strategy for the Maker-Breaker game (X,F).

Proof of Theorem 6.3(i). Apply Theorem 6.5 with parameters A, b to obtain ε′ > 0

such that µ(n,Ld) 6 (1− ε′)n for sufficiently large n. Let ε > 0 noting that without loss
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of generality we can assume ε � ε′. Suppose n is sufficiently large. Apply Theorem 6.4

with parameters ε/4, A, b to obtain D > 0, a collection S ⊆ P([n]) and a function f

satisfying Theorem 6.4(i)–(v). Fix δ � ε and choose C such that 0 6 1/C � 1/D, δ, ε.

Let p > Cn−1/m(A). Note that m(A) > 1 (see Proposition 5.18(v)) and thus pn tends

to infinity as n tends to infinity. Let R be as in the statement of the theorem and set

X := [n]p \R.

Maker’s aim is to claim a k-distinct solution to Ax = b within X, and Breaker’s aim is

to prevent this. If Maker loses, then her set M ⊆ X does not contain a k-distinct solution

to Ax = b. Hence M ∈ I(n,Ld) and so there exists S ∈ S such that S ⊆ M ⊆ f(S)

and S ⊆ X. Given S ∈ S note that if Maker claims one element from X \ f(S) then

M 6⊆ f(S); hence consider the auxiliary game (X,F) where

F := {X \ f(S) : S ∈ S and S ⊆ X}.

Maker can ensure that she wins the L-game on X by picking at least one element from

each set in F , that is, she wins the auxiliary game as Breaker. We now make the following

claim about the auxiliary game.

Claim 6.7. (i) For all S ∈ S such that S ⊆ X, we have |X \ f(S)| > εnp/2 w.h.p.

(ii) We have |F| 6 2εnp/4 w.h.p.

Assuming the claim holds, it now easily follows that

∑
F∈F

2−|F | 6 2εnp/4 · 2−εnp/2 < 1,

that is, the hypothesis of Theorem 6.6 holds for the game (X,F). Thus Maker wins the

game as Breaker in the auxiliary game, and thus wins the original game (the L-game on

X). Since this happens w.h.p., it remains to prove the claim.
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Proof of Claim 6.7. First we shall count |F|. We wish to count the number of S ∈ S

such that S ⊆ X. Recall that every S ∈ S satisfies |S| 6 Dn1−1/m(A) 6 Dpn/C and there

are at most
(
n
s

)
sets S ∈ S of size s. Thus we have

E[|F|] 6
∑
S∈S

P[S ⊆ [n]p] 6
∑
S∈S

p|S| 6
Dpn/C∑
s=0

(
n

s

)
ps 6 (Dpn/C + 1)

(
n

Dpn/C

)
pDpn/C

(6.2.1)

6 (Dpn/C + 1)

(
Ce

D

)Dpn/C
6 eδnp 6 2εnp/8,

where the last two inequalities follows by our choice of C and since δ � ε respectively.

Thus by Proposition 1.1 we have

P[|F| > 2εnp/4] 6 2−εnp/8,

which tends to zero as n tends to infinity, proving (ii).

Now for (i), observe that if we show that the probability that there exists S ∈ S such

that S ⊆ X and |X \ f(S)| 6 εnp/2 tends to zero as n tends to infinity, we will be

done. First observe by Theorem 6.4 that for all S ∈ S we have |f(S)| 6 µ(n,Ld) + εn/4

and so |[n] \ f(S)| > n − µ(n,Ld) − εn/4. (In particular note |[n] \ f(S)| = Ω(n).) Let

γ := ε/(4 − 4µ(n,Ld)/n − ε) and Y := [n]p \ f(S) (noting γ > 0 since ε � ε′). By

Proposition 1.2(ii) we have

P
[
|([n] \ f(S)) ∩ [n]p| <

(
1− µ(n,Ld)

n
− ε

2

)
np

]
6 P [|Y | < (1− γ)E[|Y |]]

6 2e−E[|Y |]γ
2/3 6 e−2δnp,

where the last inequality follows since δ � ε� ε′. Note that since |R| 6 (1− µ(n,Ld)
n
−ε)np
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and X \ f(S) = Y \R we have

P[|X \ f(S)| < εnp/2] 6 e−2δnp, (6.2.2)

for all S ∈ S. Also since S ⊆ f(S), the events S ⊆ [n]p and |X \ f(S)| being small are

independent. Thus

P[There exists S ∈ S such that S ⊆ [n]p and |X \ f(S)| < εnp/2]

6
∑
S∈S

P[S ⊆ [n]p and |X \ f(S)| < εnp/2]

6
∑
S∈S

(P[S ⊆ [n]p] · P[|X \ f(S)| < εnp/2])
(6.2.2)

6 e−2δnp
∑
S∈S

P[S ⊆ [n]p]

(6.2.1)

6 e−2δnp · eδnp = e−δnp,

which tends to zero as n tends to infinity, as required. �

�

6.3 Proof of Breaker’s win in Theorem 6.3

The proof will follow a similar tactic to that used by Rödl and Ruciński [93] for their

proof of Theorem 5.8. Recall that the goal of Rödl and Ruciński was to show that, given

an irredundant partition regular matrix A, an integer r > 2, and an upper bound on

the probability p, then w.h.p. there exists an r-colouring of [n]p such that there are no

monochromatic k-distinct solutions to Ax = 0. The proof consisted of three parts:

(P1) A reduction of the problem. It is shown that it suffices to prove the result

for the associated matrix B(A). The problem is then rephrased to one about an

associated hypergraph.
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(P2) A deterministic lemma. It is shown that if all r-colourings of [n]p contain a

monochromatic k-distinct solution to Ax = 0, then the associated hypergraph must

contain a certain kind of connected subhypergraph.

(P3) A probabilistic lemma. It is shown that if p < cn−1/m(A), then w.h.p. the

associated hypergraph does not contain the kind of subhypergraph given by the

deterministic lemma.

Recall that our aim is to show that under the hypothesis of Theorem 6.3(ii), w.h.p.

Breaker wins the L-game on [n]p. Our proof consists of the same three general parts, with

appropriate amendments to the lemmas.

(Q1) A reduction of the problem. As (P1) above.

(Q2) Two deterministic lemmas. These together show that if Maker wins the L-game

on [n]p, then the associated hypergraph must contain a certain kind of connected

subhypergraph.

(Q3) A probabilistic lemma. It is shown that if B(A) is an ` × k matrix of full rank

` which satisfies ` divides k − 1, and p < cn−1/m(A), then w.h.p. the associated

hypergraph does not contain the kind of subhypergraph given by the deterministic

lemmas.

We will of course make this more rigorous as we get to each part of the proof. We

will shortly compare the differences between Rödl and Ruciński’s proof and ours, but in

order to do this it first makes sense to reduce each problem to one about an associated

hypergraph.

(Q1) A reduction of the problem. First we show that in order for Breaker to

win the (A, b)-game on any set of integers X, its suffices to show that Breaker wins the
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(B, b′)-game on X, for some matrix B := B(A) and vector b′ := b′(A, b). For a vector

x = (x1, . . . , xk) and a non-empty set W ⊆ [k], let xW := (xi)i∈W .

Proposition 6.8 ([75], Corollary 4.3 and Lemma 4.2). Let A be a fixed integer-valued

matrix of dimension `× k and b a fixed integer-valued vector of dimension `. Suppose the

system of linear equations L is irredundant and A is irredundant and satisfies (∗). There

exists a non-empty set W ⊆ [k], a matrix B of full row-rank which is irredundant, with

column-set W , satisfies (∗), and is strictly balanced, and a vector b′ for which the pair

(B, b′) is irredundant, such that if Ax = b, then BxW = b′.

Note that the homogeneous case for where b, b′ are zero vectors is implicitly stated

in [93]. We call the pair (B, b′) above the associated pair of (A, b), and call B = B(A) the

associated matrix of A. The consequence for us of Proposition 6.8 is that if Maker wins

the (A, b)-game, then Maker also wins the (B, b′)-game (since a solution to Ax = b always

gives rise to a solution to Bx′ = b′). Thus in order to prove Breaker wins the (A, b)-game,

it suffices to prove that Breaker wins the (B, b′)-game.

With any game (X,F) there exists an associated hypergraph H(X,F) with vertex set

X and edge set F . Write H(X,B, b′) := H(X,F) to represent the hypergraph where X is

a set of integers, and F is the set of all k-distinct solutions to Bx′ = b′ (assuming that B

is an `×k matrix). Thus we may think of the game as one where Maker and Breaker take

turns claiming a vertex of the k-uniform hypergraph H([n]p, B, b
′) and Maker’s aim is to

obtain an edge of H([n]p, B, b
′), and Breaker’s aim is to prevent this. For the remainder

of the proof we will assume that we have fixed A and b (and therefore B and b′), and set

H := H([n]p, B, b
′). We will assume that B is an ` × k matrix, and note that since B

satisfies property (∗), by Proposition 5.18(iv) we have k > 3.

Before we continue with the proof, we give a quick impression of the task at hand

by considering the following example. Let L be x + y = z and consider the hypergraph

H drawn in Figure 6.1, where ai ∈ [n]p for i ∈ [15]. Suppose Maker and Breaker are
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a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

Figure 6.1: Example H: different colours are used to represent each edge.

playing the L-game on H, (i.e. Maker must claim all of the vertices of an edge of H).

Maker has a strategy to win here. First she picks a1, then Breaker must pick from one

of the two cycles; without loss of generality he picks a number from {a9, . . . , a15}. Now

Maker picks a3, enforcing Breaker to pick a2. Next, Maker picks a5 enforcing Breaker to

pick a4. Finally Maker picks a7 ensuring that in her next turn she can win, since Breaker

cannot select both of a6 and a8, meaning that Maker will obtain the sum {a1, a8, a7} or

{a5, a6, a7}. Since Maker has a winning strategy here, this hypergraph H should be in

the list of connected subhypergraphs in (Q2). We now give a sketch of why with high

probability we can expect the associated hypergraph not to contain H.

We need to select numbers from [n]p to represent each of the ai. We go through each

edge in turn. For the first edge {a1, a2, a3} first pick a1 and a2 arbitrarily from [n]p. Then

note a3 must form a solution to x + y = z with a1 and a2 so there are at most 3 choices

for it (corresponding to which role of x, y, z a3 plays). Thus there are O(n2p3) choices

for this first edge (since each number is included with probability p). For the next edge

{a3, a4, a5}, note that a3 has already been chosen. One can arbitrarily pick a4, then there

are at most 3 choices for a5, so there are O(np2) choices for the second edge. Continuing

in this manner, there is a total of O(n7p15) choices for H. Now observe that for x+y = z,

the threshold is n−1/2, so the expected number of choices for H is o(1) as n→∞. Thus
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with high probability H does not appear in the associated hypergraph.

The overall aim of (Q2) and (Q3) is to ensure that any hypergraph for which Maker

could win on does not appear in the associated hypergraph with high probability. As a

comparison to the Rödl and Ruciński’s proof of Theorem 5.8, note that if Breaker can

win the L-game on the associated hypergraph, then certainly there exists a 2-colouring

of the vertices of the associated hypergraph such that there are no monochromatic edges.

Thus finding such a colouring should be an easier task than finding a strategy for Breaker.

Indeed, the deterministic lemma (P2) uses the fact that if a hypergraph has the property

that however its vertices are 2-coloured there is always a monochromatic edge, then the

hypergraph has chromatic number at least 3. Using this property it is then fairly easy to

show that the hypergraph must contain one of a small list of certain connected subhyper-

graphs. Since the task of creating a Breaker strategy is harder, more work is required to

do the analogous step (Q2); in particular the list of certain subhypergraphs in (P2) is

a proper subset of the list of certain subhypergraphs for (Q2). To further demonstrate

this point, note that the example in Figure 6.1 is a hypergraph for which there exists a

2-colouring such that there are no monochromatic edges (simply colour a1, a5, a12 red and

the rest blue), while simultaneously being a win for Maker.

Hypergraph notation. We now introduce some notation which will be required

for the deterministic and probabilistic lemmas. For the rest of Section 6.3, we assume

that k > 3. For a k-uniform hypergraph H with edge set E := E(H) and vertex set

V := V (H), let an edge order be an enumeration of the edges E. For a given edge order

of E and edge e ∈ E, call a vertex v ∈ e new in e if v did not appear in any edge which

came before e in the edge order. Otherwise call v old in e. We call an edge e good if it

has precisely one old vertex, bad if it has between two and k − 1 old vertices, and k-bad

if it has k old vertices. Note that we always consider edges to be good, bad, or k-bad
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with respect to a given edge order; similarly whether a vertex is new or old in a given

edge also depends on the given edge order. So throughout we will make it clear which

edge order we are referring to. Note that given an edge order, a vertex will always be new

in precisely one edge (and old in every other edge it appears in). For ease of notation

we may sometimes identify a hypergraph with an edge order of its edges, e.g. if we have

P := e0, . . . , et, then we consider the hypergraph P to have E(P ) := {e0, . . . , et} and

V (P ) := {x ∈ e, e ∈ E(P )}.

Let e0, . . . , et be an edge order. We call the edge order allowed if for all i ∈ [t], ei is

good, bad or k-bad (that is, there is no edge ei with i > 1 such that ei is vertex-disjoint

from all the edges e0, . . . , ei−1). We call it valid if for all i ∈ [t], ei is good or bad.

It is simple if for all i ∈ [t], ei is good. For a subset of edges ef1 , . . . , efu of e0, . . . , et

we do not assume f1 6 . . . 6 fu unless otherwise stated. For two vertex-disjoint sets

X1, X2 ⊆ V (H), we define a minimal path from X1 to X2 in {e0, . . . , et} to be a subset of

edges ef1 , . . . , efu of e0, . . . , et such that

(i) we have X1 ∩ ef1 6= ∅, and x /∈ efa for any a > 2 and x ∈ X1;

(ii) we have X2 ∩ efu 6= ∅, and x /∈ efa for any a 6 u− 1 and x ∈ X2;

(iii) for all i, j ∈ [u] with i < j we have |efi ∩ efj | > 1 if i = j − 1 and |efi ∩ efj | = 0

otherwise.

We now give names to a variety of k-uniform hypergraphs which will appear in our

deterministic and probabilistic lemmas. Suppose that ef1 , . . . , efu for some u ∈ N is a

valid edge order, where |efi ∩ efi+1
| > 1 for all i ∈ [u− 1]. We call ef1 , . . . , efu :

• An overlapping pair, if u = 2 and 2 6 |ef1 ∩ ef2 | 6 k − 1;
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• A loose cycle, if u > 3, and for all i, j ∈ [u] with i < j we have

|efi ∩ efj | =


1 if i = j − 1, or i = 1 and j = u;

0 otherwise;

• A loose path, if for all i, j ∈ [u] with i < j we have

|efi ∩ efj | =


1 if i = j − 1;

0 otherwise;

• A spoiled cycle, if P1 := ef1 , ef2 forms an overlapping pair, P2 := ef3 , . . . , efu forms

a loose path, and P1 and P2 are vertex-disjoint except for two vertices x 6= y, where

we have x = (ef2 \ ef1)∩ (ef3 \ efz) (where z = 4 if u > 4, and z = 1 otherwise) and

y = (ef1 \ ef2) ∩ (efu \ efu−1);

• A double loose cycle, if for some v 6 u − 2, P1 := ef1 , . . . , efv forms a loose cycle,

P2 := efv+1 , . . . , efu forms a loose path, and P1 and P2 are vertex-disjoint except for

two vertices x 6= y, where we have x = (efv+1 \ efv+2)∩ efv and y = (efu \ efu−1)∩ efa

for some a ∈ [v];

• A double overlapping pair, if u = 4, ef1 , ef2 and ef3 , ef4 each form overlapping pairs,

which are vertex-disjoint except for two vertices x 6= y, where we have x = (ef1 \

ef2) ∩ (ef4 \ ef3) and y = (ef2 \ ef1) ∩ (ef3 \ ef4), and |ef3 ∩ ef4 | 6 k − 2;

• An overlapping pair with handle/loose cycle with handle, if ef1 , . . . , efu−1 forms an

overlapping pair/loose cycle and efu is bad in the edge order ef1 , . . . , efu ;

• An overlapping pair/loose cycle to overlapping pair/loose cycle, if for some w 6 v <

u, P1 := ef1 , . . . , efw forms an overlapping pair or loose cycle, P2 := efw+1 , . . . , efv
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forms a loose path and P3 := efv+1 , . . . , efu forms an overlapping pair or loose cycle;

moreover if w = v then |V (P1) ∩ V (P3)| = 1; otherwise |V (P1) ∩ V (P2)| = 1,

V (P1) ∩ V (P3) = ∅, |V (P2) ∩ V (P3)| = 1, and additionally if w 6 v − 2, then

efw+2 ∩ V (P1) = ∅ and efv−1 ∩ V (P3) = ∅.

Note that since we identify hypergraphs with one of their allowed edge orders, a hyper-

graph may fit the description of more than one of the above (e.g. a hypergraph could be

both a spoiled cycle and an overlapping pair with handle, see Figure 6.2). We define a

bicycle to be a hypergraph which is one of:

• a spoiled cycle;

• a double overlapping pair;

• a double loose cycle;

• an overlapping pair with handle;

• a loose cycle with handle;

• an overlapping pair to overlapping pair;

• an overlapping pair to loose cycle;

• a loose cycle to overlapping pair;

• a loose cycle to loose cycle.

Suppose that ef1 , . . . , efu for some u ∈ N is an allowed edge order. We call ef1 , . . . , efu :

• A Pasch configuration if k = 3, u = 4, there are six vertices within the four edges,

and each of these appear in precisely two of the edges (one vertex for each of the

six pairs of edges); see Figure 6.3;
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An overlapping pair with handle
Also a spoiled cycle An overlapping pair to loose cycle

Figure 6.2: Examples of our hypergraphs: different colours are used to represent each
edge.

• A k-uniform loose u-star, if the edges are completely disjoint except for all inter-

secting in one ‘central vertex’;

• A (k, u/2, 2)-star, if u is even and the edges form two k-uniform loose (u/2)-stars

S1 and S2, and there is a bijection f between the edges of S1 to those of S2 such

that e and f(e) share all their vertices except for the two central vertices, for each

edge e in S1 (so a (k, u, 2)-star has one more vertex than a k-uniform loose u-star,

but has twice as many edges);

• A (k, u, a)-link, if there are k+a vertices within the u edges, and given any i, j ∈ [u]

with i < j we have |efi ∪ efj | = k + a (i.e. any pair of the edges contain all k + a

vertices between them).

Observe that a (k, u, a)-link with u > 3 must have a 6 bk/(u − 1)c, meanwhile a Pasch

configuration is unique up to isomorphism.

Given S is any of our defined hypergraphs, we say that et completes S if the edge

order e0, . . . , et−1 does not contain a copy of S, whereas e0, . . . , et does.

Note that all bicycles have a valid edge order which contains at least two bad edges;
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A Pasch configuration A (4, 3, 2)-star A (9, 4, 2)-link

Figure 6.3: Examples of our hypergraphs: different colours are used to represent each
edge.

we will in fact show that any hypergraph which has a valid edge order with at least

two bad edges must contain a bicycle (see Claim 6.12). Meanwhile Pasch configurations,

(k, u, 2)-stars with u > 2 and (k, u, a)-links with u > 3 and a 6 bk/(u− 1)c all have the

property that any allowed edge order contains at least one k-bad edge, and also precisely

one bad edge; in particular these hypergraphs do not contain a bicycle. The roles of

bicycles are crucial in our proof. The deterministic lemmas will imply that Breaker has

a winning strategy for the game played on any component of H which does not contain

a bicycle. The probabilistic lemma will show that w.h.p. H does not contain any bicycles.

(Q2) Two deterministic lemmas. Recall that we wish to show that if Maker wins

the game on the associated hypergraph H, then H must contain a particular subhyper-

graph. (In particular, this subhypergraph will be a bicycle.) This section contains two

deterministic lemmas, which together prove that the contrapositive statement holds; that

is, if H does not contain a bicycle, then Breaker has a strategy to win the game on H.

Lemma 6.9. Let H ′ be a connected component of H and suppose H ′ does not contain a
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bicycle. Then H ′ has an edge order e0, . . . , et with the property that there exists a ∈ [0, t]

such that ei is good for all i ∈ [a+ 1, t], and also precisely one of the following holds:

(i) a = 0;

(ii) a > 2 and e0, . . . , ea forms a loose cycle;

(iii) a = 1 and e0, e1 forms an overlapping pair;

(iv) a = 3, k = 3 and e0, . . . , e3 forms a Pasch configuration;

(v) a > 3 is odd and e0, . . . , ea forms a (k, (a+ 1)/2, 2)-star;

(vi) a > 2, and e0, . . . , ea forms a (k, (a+ 1), d)-link, where d 6 bk/ac.

Lemma 6.10. Let H ′ be a component of H which is as described in Lemma 6.9. Breaker

has a strategy for winning the Maker-Breaker game played on H ′.

Note that by Breaker always choosing a vertex from the same component as Maker if

he can, these results imply that if H does not contain a bicycle, then Breaker can win the

game played on H, and therefore the (B, b′)-game on [n]p.

We now prove four claims; the proof of Lemma 6.9 will follow easily from the state-

ments of these claims.

Claim 6.11. Suppose that E1 := e0, . . . , et is an allowed edge order of the edges of a

connected hypergraph J , for which ei for some i ∈ [t] is the first bad or k-bad edge. Then

we have the following:

(i) Either there exists j ∈ [0, i − 1] such that ej, ei forms an overlapping pair, or ei

completes a loose cycle.

(ii) Suppose that S is a connected subhypergraph of J with s edges, which contains the

overlapping pair or loose cycle guaranteed by (i). Then there exists an allowed edge
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order E2 of E(J) which starts with the overlapping pair or loose cycle, followed by

the rest of the edges of S, followed by any remaining edges of J .

(iii) If E1 is valid and if S in (ii) is a loose cycle or overlapping pair, then it is possible

to construct E2 in (ii) so that additionally it is valid.

Proof. For (i), if there exists j ∈ [0, i − 1] such that |ej ∩ ei| > 2 then ej, ei forms an

overlapping pair and we are done. So suppose:

(A1) For all j ∈ [0, i− 1] we have |ej ∩ ei| 6 1.

Also note that since ei is the first bad or k-bad edge in E1, we have:

(A2) For all j ∈ [1, i− 1], ej is good in E1.

Since ei is bad or k-bad, it has q > 2 old vertices in the edge order E1. Label these as

x1, . . . , xq and consider a minimal path P1 := ef1 , . . . , efu in {e0, . . . , ei−1} from X1 := {x1}

to X2 := {x2, . . . , xq}. By definition of P1, (A1) and (A2) we have

• |efj ∩ ei| =


1 if j = 1 or j = u;

0 otherwise;

• u > 2;

• P1 is a loose path.

It follows from these three facts that ef1 , . . . , efu , ei forms a loose cycle. By (A2) e0, . . . , ei−1

clearly does not contain a loose cycle, and hence ei completes a loose cycle in e0, . . . , ei.

For (ii), such an allowed edge order E2 exists since both S and J are connected; simply

pick the overlapping pair or loose cycle first, then pick the remaining edges of S in any

way so that each edge has non-empty intersection with the set of all previously chosen

edges. Then pick the remaining edges of J in the same way.
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For (iii), suppose E1 is valid and S is an overlapping pair or loose cycle. Then by the

definition of E1, there are k new vertices in e0, k− 1 new vertices in ea for each a ∈ [i− 1]

and at least one new vertex in ei. Thus the hypergraph J ′ := e0, . . . , ei satisfies

(A3) |V (J ′)| > k + (k − 1)(i− 1) + 1.

If there was an allowed edge order E3 of E(J ′) which contained a k-bad edge, we would

have |V (J ′)| 6 k + (k− 1)(i− 1) since E3 has one initial edge, at most i− 1 good or bad

edges, and at least one k-bad edge. However this violates (A3) and thus:

(A4) All allowed edge orders of E(J ′) are valid.

Now consider the edge order E2 which starts with the loose cycle or overlapping pair,

followed by the rest of the edges in {e0, . . . , ei} chosen so that each edge has non-empty

intersection with the set of all previously chosen edges, then followed by ei+1, . . . , et (in

this order). First note that for any ea with a ∈ [i + 1, t], the set of all previously chosen

edges is {e0, . . . , ea−1} in both edge orders E1 and E2. Thus if ea is good or bad in E1,

then it is also good or bad in E2. Finally note that by (A4), the first i + 1 edges in E2

form a valid edge order of E(J ′). We conclude that E2 is the valid edge order of E(J)

required. �

Claim 6.12. A hypergraph J does not contain a bicycle if and only if any valid edge order

of the edges of any connected subhypergraph J ′ of J has at most one bad edge.

Proof. First note that if J contains a bicycle, then by considering the edge order

ef1 , . . . , efu given in the definitions of each of the hypergraphs which the bicycle could be,

we see immediately that J contains a connected subhypergraph which has a valid edge

order with at least two bad edges.

Now we must show that if there exists a connected subhypergraph J ′ of J and a valid

edge order of E(J ′) with at least two bad edges, then J contains a bicycle.
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So let J ′ be such a hypergraph, and let E1 := e0, . . . , et be the valid edge order of

E(J ′) with at least two bad edges. By using all three parts of Claim 6.11, we may assume

without loss of generality that there exists i ∈ [t] such that we have precisely one of the

following:

(B1) i = 1 and e0, e1 forms an overlapping pair;

(B2) e0, . . . , ei forms a loose cycle (with edges ordered cyclically).

Let P1 := e0, . . . , ei and let j ∈ [i + 1, t] be such that ej is the next bad edge in E1 after

ei. We have precisely one of the following:

(B3) 2 6 |ej ∩ V (P1)| 6 k − 1;

(B4) There exists a ∈ [i + 1, j − 1] such that |ej ∩ ea| > 2 and x = ej ∩ V (P1) and

y = ea ∩ V (P1) are distinct vertices;

(B5) There exists a ∈ [i+ 1, j − 1] such that |ej ∩ ea| > 2 and |(ea ∪ ej) ∩ V (P1)| = 1;

(B6) There exists a ∈ [i+ 1, j − 1] such that |ej ∩ ea| > 2 and (ea ∪ ej) ∩ V (P1) = ∅;

(B7) For all a ∈ [0, j − 1] we have |ej ∩ ea| 6 1, and |ej ∩ V (P1)| = 1;

(B8) For all a ∈ [0, j − 1] we have |ej ∩ ea| 6 1, and ej ∩ V (P1) = ∅.

For each case, it suffices to find a subhypergraph of J ′ which is a bicycle. Throughout we

will make use of the following fact:

(B9) For all a ∈ [j − 1] \ {i}, ea is good in E1.

Case 1: (B3) holds. Clearly e0, . . . , ei, ej forms an overlapping pair/loose cycle with

handle.

Case 2: (B4) holds. We have precisely one of the following:
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• There exists d ∈ [0, i] such that x, y ∈ ed; then ej, ea, ed forms an overlapping pair

with handle.

• There does not exist d ∈ [0, i] such that x, y ∈ ed; without loss of generality suppose

that x ∈ e0 \ e1. If P1 is an overlapping pair, then e0, e1, ea, ej forms a double

overlapping pair. (Note that |ea ∩ ej| 6 k − 2 since otherwise ej would be k-bad

in the edge order E1.) If P1 is a loose cycle, then let d ∈ [i] be the smallest

integer such that y ∈ ed. If d = i, then ea, ej, e0, ei forms a spoiled cycle; otherwise

ea, ej, e0, . . . , ed forms a spoiled cycle.

Case 3: (B5) holds. Let P2 := ea, ej and note that |V (P2) ∩ V (P1)| = 1. It follows

that e0, . . . , ei, ea, ej forms an overlapping pair/loose cycle to overlapping pair.

Case 4: (B6) holds. Again let P2 := ea, ej and note that we have V (P2)∩V (P1) = ∅.

So consider a minimal path P3 := ef1 , . . . , efu in {ei+1, . . . , ej−1} \ ea from X1 := V (P1)

to X2 := V (P2). By (B9) P3 is a loose path, moreover by definition of P3, we have

|V (P1)∩V (P3)| = 1 and |V (P2)∩V (P3)| = 1. Additionally if u > 2, then ef2 ∩V (P1) = ∅

and efu−1 ∩V (P2) = ∅. Thus P1, P3 and P2 together form an overlapping pair/loose cycle

to overlapping pair.

Case 5: (B7) holds. Since ej has at least one old vertex which is not in e0, . . . , ei,

we may consider a minimal path P2 := ef1 , . . . , efu in {ei+1, . . . , ej−1} from X1 := V (P1)

to X2 := ej \ V (P1). First note by (B9) that P2 is a loose path. Now we have precisely

one of the following:

• We have (ef1 ∩ ej ∩ V (P1)) 6= ∅; then P3 := ef1 , . . . , efu , ej forms a loose cycle. Now

since |V (P1)∩ V (P3)| = 1, P1 and P3 together form an overlapping pair/loose cycle

to loose cycle.

• There exists d ∈ [0, i] such that x = ej∩ed and y = ef1∩ed are distinct vertices; then

P3 := ed, ef1 , . . . , efu , ej forms a loose cycle. If P1 is an overlapping pair, then let
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d′ ∈ {0, 1} be such that d′ 6= d. Then P3 together with ed′ forms a loose cycle with

handle. If P1 is a loose cycle, then let P4 be the loose path ef1 , . . . , efu , ej and define

z := j if u = 1 and z := f2 otherwise. Observe that P1 and P4 are vertex-disjoint

except for x = (ej \ efu)∩ ed and y = (ef1 \ ez)∩ ed, and thus together form a double

loose cycle.

• We have x = ej ∩ V (P1) and y = ef1 ∩ V (P1) are not together in any edge of P1;

without loss of generality suppose that x ∈ e0 \e1. If P1 is an overlapping pair, then

e0, e1, ef1 , . . . , efu , ej forms a spoiled cycle. If P1 is a loose cycle, then define P4, z as

in the previous bullet point. Then observe that P1 and P4 are vertex-disjoint except

for x = (ej \ efu) ∩ e0 and y = (ef1 \ ez) ∩ ed for some d ∈ [i], and thus as before,

form a double loose cycle.

Case 6: (B8) holds. Label the q > 2 old vertices of ej as x1, . . . , xq and con-

sider a minimal path P2 := ef1 , . . . , efu in {ei+1, . . . , ej−1} from X1 := V (P1) to X2 :=

{x1, . . . , xq}. Let xa := efu ∩ ej and consider a minimal path P3 := efu+1 , . . . , efv in

{ei+1, . . . , ej−1} \ E(P2) from X3 := X2 \ xa to X4 := V (P1) ∪ V (P2). By (B9) both P2

and P3 are loose paths. Now we have precisely one of the following:

• We have efv ∩ V (P1) = ∅; let d ∈ [u] be the largest integer such that efd ∩ efv 6=

∅. Then P4 := efd , . . . , efu , ej, efu+1 , . . . , efv forms a loose cycle. If d = 1, then

since |V (P1) ∩ V (P4)| = 1, we have that P1 and P4 together form an overlapping

pair/loose cycle to loose cycle. Otherwise let P5 := ef1 , . . . , efd−1
. Then we have

|V (P1) ∩ V (P5)| = 1, |V (P4) ∩ V (P5)| = 1 and V (P1) ∩ V (P4) = ∅. Additionally,

if d > 3, then we see that ef2 ∩ V (P1) = ∅ and efd−2
∩ V (P4) = ∅. Thus P1, P4, P5

form an overlapping pair/loose cycle to loose cycle.
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• We have efv ∩ V (P1) 6= ∅; the properties of the hypergraph

e0, . . . , ei, ef1 , . . . , efu , ej, efu+1 , . . . , efv

are identical to that the hypergraph e0, . . . , ei, ef1 , . . . , efu , ej found in Case 5 (up to

the labelling of the edges), so a similar case study yields a bicycle.

�

For the remainer of the proof, we shall call a valid edge order which contains at least

two bad edges a bad edge order. If a hypergraph J does not contain a bicycle, then by

Claim 6.12, the existence of a bad edge order of E(J ′) where J ′ is a subhypergraph of

J is a contradiction. In the claims which follow we will always assume that J does not

contain a bicycle, and hence whenever some assumed condition of a case within a case

analysis leads to the discovery of a bad edge order, we can immediately stop and move

onto the next case.

Claim 6.13. Let S be a hypergraph with s edges, which is an overlapping pair, a loose

cycle, a (k, s/2, 2)-star with s > 4, a (k, s, a)-link with s > 3 and a ∈ [bk/(s − 1)c], or

a Pasch configuration. Suppose J is a connected hypergraph which does not contain a

bicycle, and does contain S. Then there exists an allowed edge order E1 := e0, . . . , et of

E(J) such that

(i) e0, . . . , ei forms an overlapping pair or loose cycle, e0, . . . , es−1 forms S, and every

edge ej for j ∈ [s, t] is either good or k-bad;

(ii) For all j ∈ [s + 1, t], if ej is k-bad, then either ej−1 is also k-bad, or there exists a

vertex x ∈ ej which is new in ej−1.

Proof. For (i), by Claim 6.11(ii) we can assume that the edge order starts with the

overlapping pair or loose cycle, followed by the rest of the edges of S, and that ei is bad.
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If there exists another bad edge ej for some j ∈ [s, t], then the edge order E2, found by

deleting from e0, . . . , ej all k-bad edges, is bad. Thus for all j ∈ [s, t], ej must either be

good or k-bad.

For (ii) suppose that E1 = e0, . . . , et does not satisfy the property stated in (ii). Then

we have the following:

(C4) There exists j ∈ [s+ 1, t] such that ej−1 is good and ej is k-bad, and all vertices in

ej appeared in the edge order before ej−1.

Now consider the edge order E2 := e0, . . . , ej−2, ej, ej−1, ej+1, . . . , et. In this order, ej is

still k-bad and ej−1 is still good; moreover E2 still starts with the overlapping pair or

loose cycle. Hence by continuously performing swaps whenever such a pair ej−1 and ej

exists (satisfying (C4)), we eventually reach an edge order Ep where no such pair exists.

Thus in the final edge order Ep the property stated in (ii) holds. �

Claim 6.14. Let S be a hypergraph with s edges, which is an overlapping pair, a loose

cycle, a (k, s/2, 2)-star with s > 4, a (k, s, a)-link with s > 3 and a ∈ [bk/(s − 1)c], or

a Pasch configuration. Suppose J is a connected hypergraph which does not contain a

bicycle, and does contain S. Finally suppose E1 := e0, . . . , et is the allowed edge order

of E(J) guaranteed by Claim 6.13, which starts with the edges of S, in particular with

the overlapping pair or loose cycle P1 := e0, . . . , ei. Suppose that E1 contains at least one

k-bad edge amongst the edges es, . . . , et. Then we have precisely one of the following:

(i) We have that e0, e1, ej−1, ej forms a (k, 2, 2)-star for some j ∈ [s + 1, t]. More-

over either S is an overlapping pair, or S is a (k, s/2, 2)-star with s > 4 and

e0, . . . , es−1, ej−1, ej forms a (k, s/2 + 1, 2)-star.

(ii) We have that e0, e1, es forms a (k, 3, a)-link, where a = |e0 \ e1|. Moreover either

S is an overlapping pair, or S is a (k, s, a)-link with s > 3 and e0, . . . , es forms a

(k, s+ 1, a)-link.
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(iii) We have that S is a loose cycle with three edges, k = 3, and e0, e1, e2, e3 forms a

Pasch configuration.

Proof. Suppose that ej is the first k-bad edge amongst the edges es, . . . , et (so if j > s

then es, . . . , ej−1 are good). Let ej := {x1, . . . , xk} and let ef1 , . . . , efk be the respective

edges in which each xi is new in E1, noting that without loss of generality we have

f1 6 · · · 6 fk.

We have precisely one of the following:

(D1) We have j ∈ [s+ 1, t];

(D2) We have j = s and P1 = e0, e1 is an overlapping pair;

(D3) We have j = s and P1 = e0, . . . , ei is a loose cycle.

We will go through each of these cases in turn and show that Claims 6.14(i), (ii) and (iii)

hold respectively.

Case 1: (D1) holds. Without loss of generality, we have precisely one of the follow-

ing:

(D4) We have 2 6 |ej ∩ V (P1)| 6 k − 1;

(D5) We have |ej ∩ V (P1)| 6 1 and for all a ∈ [i+ 1, j − 1] we have |ej ∩ ea| 6 1;

(D6) There exists a ∈ [i+ 1, j − 1] such that |ej ∩ ea| > 2 and |(ej ∪ ea) ∩ V (P1)| 6 1;

(D7) There exists a ∈ [i + 1, j − 1] such that |ej ∩ ea| > 2 and x = ej ∩ V (P1) and

y = ea ∩ V (P1) are distinct vertices.

Case 1a: (D4) holds. We have that e0, . . . , ei, ea forms an overlapping pair/loose

cycle with handle, a contradiction to J not containing a bicycle.

Case 1b: (D5) holds. Since we have |V (P1) ∩ ej| 6 1 and for all a ∈ [i + 1, j − 1]

we have |ej ∩ ea| 6 1, we obtain
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(D8) f2 > i;

(D9) f1 < · · · < fk.

Then consider the edge orders E2 := e0, . . . , ef2 , ej and E3, which is formed by deleting

from E2 each edge which is k-bad. We will show that E3 is a bad edge order. First note

that clearly E3 is a valid edge order since all k-bad edges were deleted. By (D8), E2 and

hence also E3 both start with the edges of P1, so have at least one bad edge. Further ej is

bad in E2 since precisely two of the vertices in ej are old in E2, namely x1 and x2, which

appear in ef1 and ef2 respectively. Since ef1 and ef2 both contain a new vertex, they are

not k-bad, and so are both contained in E3. Thus ej is also bad in E3, and so E3 is indeed

a bad edge order.

Case 1c: (D6) holds. Let P2 := ea, ej and note that if |V (P1) ∩ V (P2)| = 1, then

V (P1) and V (P2) together form an overlapping pair/loose cycle to overlapping pair, a

contradiction to J not containing a bicycle. Otherwise we have V (P1) ∩ V (P2) = ∅, so

consider a minimal path P3 := eg1 , . . . , egu in {ed : d ∈ [i+1, j−1], d 6= a, ed is good in E1}

from X1 := V (P1) to X2 := V (P2). By the choice of where the edges in P3 are selected

from, P3 is a loose path. Additionally we have |V (P1)∩ V (P3)| = 1, |V (P2)∩ V (P3)| = 1,

and if u > 2, then V (P1) ∩ eg2 = ∅ and V (P2) ∩ egu−1 = ∅. Thus P1, P2, P3 form an

overlapping pair/loose cycle to overlapping pair, a contradiction to J not containing a

bicycle.

Case 1d: (D7) holds. First suppose that P1 is a loose cycle and without loss of

generality that x ∈ e0 \ ei. If y ∈ e0, then let E2 := ea, ej, e0. If y ∈ ei \ e0, then let

E2 := ea, ej, e0, ei. Otherwise let E2 := ea, ej, e0, . . . , ei. For each case ej and the last edge

are both bad edges in E2. Further it is easy to see that in each case, E2 is valid, and thus

E2 is bad.

Now suppose that P1 is an overlapping pair. If x and y are both in ed for d = 0

or d = 1, then ej, ea, ed is a bad edge order. So suppose without loss of generality that
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x ∈ e1\e0, and y ∈ e0\e1. If |ej∩ea| 6 k−2, then e0, e1, ej, ea forms a double overlapping

pair. Similarly if |e0∩e1| 6 k−2, then ej, ea, e0, e1 forms a double overlapping pair. Both

would contradict J not containing a bicycle, and thus we have |ej ∩ea| = |e0∩e1| = k−1.

Hence we also have x = e1 \ e0 = ej \ ea and y = e0 \ e1 = ea \ ej and so in particular, we

have that e0, e1, ej, ea forms a (k, 2, 2)-star.

The conclusion of our case analysis is that there exists a ∈ [2, j − 1] such that

e0, e1, ea, ej forms a (k, 2, 2)-star and that P1 is an overlapping pair where x = e1 \ e0

and y = e0 \ e1.

Since E1 is the edge order obtained from Claim 6.13, we have ej comes immediately

after the edge for which the last of the vertices of ej are new, or following another k-bad

edge. Therefore, since ej−1 is not k-bad and ej ⊆ (e0∪e1∪ea), we conclude that a = j−1.

Note that S cannot be a loose cycle or Pasch configuration, since P1 is an overlapping

pair. If S is a (k, s, d)-link for some s > 3, then we have e2 ∩ (ej−1 ∪ ej) = {x, y} and

so the edge order ej−1, ej, e2 is bad. If S is an overlapping pair, then there is nothing

further to prove. Finally if S is a (k, s/2, 2)-star, then clearly e0, . . . , es−1, ej−1, ej forms a

(k, s/2 + 1, 2)-star (with central vertices x and y).

Case 2: (D2) holds. First note that S cannot be a loose cycle or Pasch configuration,

since P1 is an overlapping pair. We have precisely one of the following:

(D10) We have |es ∩ (e0 ∪ e1)| = k;

(D11) We have 2 6 |es ∩ (e0 ∪ e1)| 6 k − 1;

(D12) We have |es ∩ (e0 ∪ e1)| 6 1.

Case 2a: (D10) holds. First suppose that |es∩e1| 6 1. Since e0, e1 is an overlapping
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pair, we have

k = |es| = |es ∩ e1|+ |es ∩ (e0 \ e1)| 6 k − 1,

a contradiction, and hence we must have |es ∩ e1| > 2. Similarly |es ∩ e0| > 2. Thus

any permutation of the edges e0, e1, es must have that the second edge is bad and the

third edge is bad or k-bad. In order to not obtain a bad edge oder, we must have

that the third edge is k-bad in all of these permutations. Thus by definition e0, e1, es

forms a (k, 3, |e0 \ e1|)-link. If S is an overlapping pair, then there is nothing further to

prove. If S is a (k, s/2, 2)-star for some s > 4, then without loss of generality we have

x = e0\e1 = e2\e3 and y = e1\e0 = e3\e2. But then since x, y ∈ es, the edge order e2, e3, es

is bad. Finally suppose that S is a (k, s, a)-link. Then for all d, d′ ∈ [0, s− 1] with d < d′,

we have that ed, ed′ forms an overlapping pair, and |ed \ e′d| = |e0 \ e1| = a. By repeating

the argument above for the permutations of e0, e1, es, we see that any permutation of

ed, ed′ , es must have that the second edge is bad and the third is k-bad. Thus e0, . . . , es

forms a (k, s+ 1, |e0 \ e1|)-link.

Case 2b: (D11) holds. We have that e0, e1, es forms an overlapping pair with

handle, a contradiction to J not containing a bicycle.

Case 2c: (D12) holds. First note that since es contains vertices outside of e0 ∪ e1,

we have that S cannot be an overlapping pair or a (k, s, |e0 \ e1|)-link, and thus S must

be a (k, s/2, 2)-star. If there exists i, j such that |ei ∩ ej| = k − 1 and |es ∩ (ei ∪ ej)| > 2,

then repeat the argument from Case 2a or 2b with e0 and e1 replaced by ei and ej.

For the remaining case we have that for all i, j such that |ei ∩ ej| = k − 1, we have

|es ∩ (ei ∪ ej)| 6 1 and in particular, the central vertices of the two stars are not in es.

Now without loss of generality, suppose e2 and e3 is an overlapping pair, |es∩(e0∩e1)| = 1

and |es ∩ (e2 ∩ e3)| = 1. Then the edge order e0, e1, e2, es is a bad edge order.

Case 3: (D3) holds. Since S contains a loose cycle, S cannot be an overlapping
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pair, (k, s/2, 2)-star or a (k, s, a)-link, and hence S is a loose cycle or Pasch configuration.

If S is the latter, then we have j = 4, and by the symmetry of the Pasch configuration, we

have without loss of generality that |e0∩ e4| = 2 and |e1∩ (e0∪ e4)| = 2. Hence e0, e4, e1 is

a bad edge order. Thus S must be a loose cycle and j = i+ 1. Without loss of generality

we have precisely one of the following:

• |e0 ∩ ei+1| > 2 and (ei \ e0) ∩ ei+1 = ∅; let E2 := ei+1, e0, . . . , ei. For all a ∈ [i], we

have |(ea \ ea−1) ∩ ei+1| 6 k − 2, and thus

|ea ∩ (ea−1 ∪ ei+1)| 6 |ea−1 ∩ ea|+ |(ea \ ea−1) ∩ ei+1| 6 k − 1.

Thus E2 is a valid edge order. Further e0 is bad in E2. Since ei completes the cycle

e0, . . . , ei, it is also bad in E2, and thus E2 is a bad edge order.

• |e0 ∩ ei+1| > 2 and (ei \ e0) ∩ ei+1 6= ∅; let E2 := ei+1, e0, ei. Here we have

2 6 |ei ∩ (ei+1 ∪ e0)| 6 k − 1

and so E2 is a bad edge order.

• For all a ∈ [0, i], we have |ei+1 ∩ ea| 6 1 and (ei \ (e0 ∪ ei−1)) ∩ ei+1 = ∅; We have

that (D9) holds, and thus E2 := e0, . . . , ef2 , ei+1, ef2+1, . . . , ei is a bad edge order.

• For all a ∈ [0, i], we have |ei+1 ∩ ea| 6 1, |(ea \ {ed : d ∈ [0, i], d 6= a}) ∩ ei+1| = 1

and k > 4; Then E2 := e0, e1, ei+1, e2 is a bad edge order.

• For all a ∈ [0, i], we have |ei+1 ∩ ea| 6 1, |(ea \ {ed : d ∈ [0, i], d 6= a}) ∩ ei+1| = 1

and k = 3. Then we have i = 2 and e0, e1, e2, e3 forms a Pasch configuration.

Only the last case does not produce a bad edge order, and thus we have that e0, e1, e2, e3

forms a Pasch configuration, as required. �
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We are now ready to prove our two deterministic lemmas.

Proof of Lemma 6.9. If there exists a simple edge order of E(H ′), then we have (i), so

suppose that any edge order of E(H ′) contains at least one bad or k-bad edge. Now by

Claim 6.11 we may assume that E1 := e0, . . . , et is an allowed edge order of E(H ′) which

starts with an overlapping pair or loose cycle P1 := e0, . . . , ei. Then using Claim 6.13

applied with S := P1, we have that every edge ei+1, . . . , et is either k-bad or good. If

all of these edges are good, then we have (ii) or (iii), so are done. So assume that there

is at least one k-bad edge. Then using Claim 6.14 applied with S := P1, we have that

H ′ contains a (k, 2, 2)-star, a (k, 3, |e0 \ e1|)-link or a Pasch configuration. We can now

repeatedly use Claims 6.13 and 6.14 as follows:

(a) Let S be the (k, p, 2)-star, a (k, p + 1, |e0 \ e1|)-link or a Pasch configuration found

previously (where p > 2). By Claim 6.13, there exists an allowed edge order of

E(H ′) which starts with all of the edges of S. If there are no further k-bad edges,

then we have (iv), (v) or (vi). If there are, then move to step (b).

(b) By Claim 6.14, either S was a (k, p, 2)-star and H ′ contains a (k, p+ 1, 2)-star, or S

was a (k, p+ 1, |e0 \ e1|)-link and H ′ contains a (k, p+ 2, |e0 \ e1|)-link. Now return

to step (a).

Since H ′ is a finite hypergraph, this process must eventually stop, and hence we have (iv),

(v) or (vi). �

For the proof of Lemma 6.10, we simply find an explicit strategy for Breaker to win

the game played on H ′.

Proof of Lemma 6.10. By Lemma 6.9, H ′ may contain a subhypergraph S for which

there exists an edge order which starts with all of the edges of S, and all subsequent edges

are good: The subhypergraph S if it exists must be

Case 1: A (k, u, 2)-star for some integer u > 2;
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Case 2: A (k, u, a)-link for some u, a ∈ N with u > 3 and a 6 bk/(u− 1)c;

Case 3: A Pasch configuration;

Case 4: A loose cycle;

Case 5: An overlapping pair.

Let the edges of S be e0, . . . , es−1, and the rest of the good edges es, . . . , et. (If S does

not exist, then set s = 0.)

Breaker uses the following strategy.

• If Maker selects a vertex in S, then Breaker does the following, corresponding to

the cases above for what S could be.

Case 1: There are 2u edges; suppose without loss of generality that they are labelled

so that ei and ei+u have intersection k−1 for each i ∈ [0, u−1]. Suppose Maker has

selected a vertex in ej ∩ ej+u for j ∈ [0, u− 1]. Then Breaker if he can, also selects

such a vertex. Otherwise he selects an arbitrary vertex.

Case 2: Breaker selects an arbitrary vertex in S if he can. Otherwise he selects an

arbitrary vertex.

Case 3: If Maker has two out of three vertices from one of the edges of S, Breaker

chooses the final vertex from this edge. Otherwise Breaker chooses an arbitrary

vertex in S if he can. If he cannot then he chooses an arbitrary vertex.

Case 4: Assume without loss of generality that the edges are ordered cyclically

e0, . . . , es−1. If Maker has selected an element from ei \ ej where i ∈ [s − 1] and

j = i− 1, or i = 0 and j = s− 1, then Breaker if he can, also selects such a vertex.

Otherwise he selects an arbitrary vertex.

Case 5: These two edges are e0 and e1. If Maker has selected an element from

e0 ∩ e1, then Breaker if he can, also selects such a vertex. Otherwise he selects an

arbitrary vertex.
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• If Maker selects any other vertex, let i be such that ei is the edge in which this

vertex is new. If Breaker can, he also selects a vertex which is new in ei. Otherwise

he selects an arbitrary vertex.

We must now show that at the end of the game, Maker has failed to claim every vertex

of any edge in H ′. First observe that Maker has failed to claim any of the edges es, . . . , et.

Indeed, let i ∈ [s, t]. In the edge order, ei is good, and so there exists at least k − 1 > 2

vertices xi and yi which are new in ei (they do not appear in any edge ej for j < i).

By part two of the strategy above, Maker cannot claim all of the vertices of ei since as

soon as she tries to claim one of the at least two new vertices in ei, Breaker will claim

another new vertex in ei. Thus if Maker has won the game, she must have claimed an

edge from S. However, we will now run through each case, corresponding to the cases for

S in Breaker’s strategy above, showing that Maker has not claimed such an edge.

Case 1: Let j ∈ [0, u − 1] and suppose Maker is trying to claim ej or ej+u. There

are k − 1 > 2 vertices in ej ∩ ej+u and so Maker cannot claim all of the vertices of ej or

ej+u since as soon as she tries to claim one of the vertices which lie in ej ∩ ej+u, Breaker

will claim another vertex in ej ∩ ej+u. Since all edges of S are of this form, Maker cannot

claim any edge of S.

Case 2: Note that a (k, u, a)-link has at most 2k − 2 vertices. Hence by Breaker

always claiming any vertex in S whenever Maker does, he ensures that Maker can claim

at most d(2k−2)/2e = k−1 of the vertices in S, therefore does not have enough to claim

a full edge of S.

Case 3: Breaker always tries to claims a vertex in S if Maker does, hence Maker

claims at most three of the six vertices in S. Note that any pair of vertices in S lie

together in at most one edge. Hence by Breaker selecting the third vertex of an edge if

Maker has selected the first two, Maker is never able to claim all three vertices of an edge

of S.
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Case 4: Suppose Maker is trying to claim ei for some i ∈ [0, s − 1]. Let j = i − 1 if

i > 1, and let j = s − 1 if i = 0. There are k − 1 > 2 vertices in ei \ ej and so Maker

cannot claim all of the vertices of ei since as soon as she tries to claim one of the vertices

in ei \ej, Breaker will claim another vertex in ei \ej. Since ei was arbitrary, Maker cannot

claim any edge of S.

Case 5: There are at least two vertices in e0 ∩ e1 and so Maker cannot claim all of

the vertices in e0 or e1 since as soon as she tries to claim one of the vertices in e0 ∩ e1,

Breaker will claim another vertex in e0 ∩ e1. �

(Q3) A probabilistic lemma.

Lemma 6.15. Suppose B is a strictly balanced full rank `×k matrix and suppose ` divides

k − 1. Then there exists a positive constant c such that if p < cn−1/m(A), then with high

probability H does not contain a bicycle.

Proof. Let Rbt be a random variable counting the number of bicycles which are in H.

By Proposition 1.1, it suffices to show that the expectation of Rbt converges to zero as n

tends to infinity.

We let Rb1 , . . . , Rb8 respectively count the number of hypergraphs J := ef1 , . . . , efu in

H with u 6 log n, for which J corresponds to

(i) a spoiled cycle;

(ii) a double overlapping pair;

(iii) a double loose cycle;

(iv) an overlapping pair with handle;

(v) a loose cycle with handle;

(vi) a loose cycle to loose cycle;
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(vii) an overlapping pair to overlapping pair;

(viii) an overlapping pair to loose cycle.

Note that each of these hypergraphs contain a loose path of length u − 2; hence let Rb9

count the number of loose paths ef1 , . . . , efu in H with u > (log n) − 1. Then we have

Rbt 6
∑9

i=1Rbi and hence it suffices to show E(Rbi) = o(1) for each i. The cases for

i = 1, 5, 9 were covered by Rödl and Ruciński’s proof, however we will repeat them here

for clarity.

Suppose that J := ef1 , . . . , efu is the valid edge order corresponding to one of the

nine cases listed above given by the definitions earlier. When calculating an upper bound

on the expected number of copies of some hypergraph J in H, we need to first bound

the number of ways to draw J (i.e. bound the number of non-isomorphic hypergraphs

which J could be - e.g. for a spoiled cycle ef1 , . . . , efu we need to choose the size of the

intersection ef1 ∩ ef2 , and also the number of edges u). Second, we should consider J as

being drawn, and bound the number of ways to pick elements from [n]p to represent each

vertex of J . Thus we are interested in bounding the number of ways of drawing each J

and also the number of ways of choosing representatives from [n]p for each vertex of J .

Each hypergraph J which we wish to count can be written as a union of at most

three hypergraphs P1, P2, P3, for which each of these are one of an overlapping pair, loose

cycle, or loose path. Further, if P2 and P3 exist, we have |V (P1) ∩ V (P2)| 6 k − 1,

|V (P2) ∩ V (P3)| 6 k − 1 and |V (P1) ∩ V (P3)| = ∅. Thus for each i ∈ [2] we have at most

(|V (Pi)| · |V (Pi+1)|)k−1 choices for how to make Pi and Pi+1 intersect. There is only one

way to draw a loose cycle or loose path of given length, and at most k − 2 ways to draw

an overlapping pair. Further for each J in (i)–(viii), we have |V (J)| 6 k log n. Thus the

total number of ways of drawing each J in (i)–(viii) is at most polylogarithmic in n.

Recall that B is a strictly balanced matrix of dimension ` × k, and hence for every
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W ⊆ [k] for which 2 6 |W | < k we have

|W | − 1

|W | − 1 + rank(BW )− `
<

k − 1

k − 1− `
. (6.3.1)

Additionally we have m(B) = k−1
k−1−` . Now let p < cn−1/m(B) = cn−(k−`−1)/(k−1) where we

choose c to be a constant satisfying

c < 1/(ke2). (6.3.2)

Given i ∈ [u] and J = ef1 , . . . , efu has been drawn, we wish to bound the expected number

of ways of picking efi to be an edge with q old elements. Such an edge represents a solution

x to Bx = b′, where q of the xi have already been chosen. Let these indices be W ; we are

now attempting to solve BWx
′ = b′′ for some vector b′′ of k − q elements. Note also we

must choose one of the q! possible assignments of the q indices in W to the q old elements.

Thus the expected number of ways, Y , of picking the k − q new vertices for ei, satisfies

Y 6
∑
W⊆[k]

|W |=q

q!nk−q−rank(BW )pk−q.

We wish to bound this conditional expectation Y . By rearranging the inequality given

by (6.3.1), we have (if |W | > 2)

`(k − |W |)− (k − 1)rank(BW ) < 0.

In fact since all quantities above are integers and ` divides k − 1, we must have

`(k − |W |)− (k − 1)rank(BW ) 6 −`. (6.3.3)
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Thus we have

nk−|W |−rank(BW )pk−|W | 6


ckn

`
k−1 if |W | = 0;

ck−1 if |W | = 1;

cn
−`
k−1 if 2 6 |W | 6 k − 1.

(6.3.4)

(Note that here we used Proposition 5.18(i) which states that rank(BW ) = ` if |W | = 1.)

For each hypergraph J in (i)–(viii), there is always precisely one initial edge, u − 3

good edges, and two bad edges. Thus the number of choices we have for picking which

element of [n]p to use for each vertex in J has expectation which is at most:

nk−`pk

∑
W⊆[k]

|W |=1

nk−|W |−rank(BW )pk−|W |


u−3 ∑

W⊆[k]

26|W |6k−1

|W |!nk−|W |−rank(BW )pk−|W |


2

(6.3.4)

6 (k!)2 · (kc)u · n−`/(k−1).

We conclude that for each i ∈ [1, 8] we have E(Rbi) < O(n−`/(k−1) · polylog(n)) = o(1).

Finally, note that a loose path with at most n vertices clearly has at most n edges.

Further using Proposition 5.18(iv), we have k > `+ 2. Thus we have

E(Rb9) 6O

 n∑
u>(logn)−1

nk−`pk
u−1∏
i=1

∑
W⊆[k]

|W |=1

nk−|W |−rank(BW )pk−|W |




(6.3.4)

6 O

n `
k−1

n∑
u>(logn)−1

(kc)u

 (6.3.2)
= o(1),

as required. �

Putting the parts together. To reiterate the main points of the proof of Theo-
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rem 6.3(ii), we finish by showing that it follows easily from the lemmas in each of the

parts (Q1)–(Q3).

Proof (summary) of Theorem 6.3(ii). Let A be a fixed integer-valued matrix of

dimension `′×k′ and b a fixed integer-valued vector of dimension `′, such that the system

of linear equations L is irredundant, and A is irredundant and satisfies (∗). In order to

prove w.h.p. Breaker wins the (A, b)-game on [n]p, by Proposition 6.8, it suffices to show

w.h.p. Breaker wins the (B, b′)-game on [n]p, where (B, b′) is the associated pair of (A, b).

We rephrase the problem to a game on the hypergraph H := H([n]p, B, b
′). We then show

that if a component H ′ of H does not contain a bicycle, then it satisfies certain conditions

stated in Lemma 6.9. Breaker wins the game played on such a component by Lemma 6.10.

Supposing that B is an `× k matrix where ` divides k − 1, then by Lemma 6.15, w.h.p.

H (and therefore each component of H) does not contain a bicycle. Finally since Breaker

can win the game on each component of H, he wins the game on H, and thus wins the

(A, b)-game on [n]p w.h.p., as required. �

6.4 Concluding remarks and Proof of Theorem 6.2

6.4.1 Improvements on Breaker’s strategy

The strange fact that our proof of Theorem 6.3(ii) works when B(A) is an ` × k matrix

such that ` divides k − 1 follows precisely via inequality given by (6.3.3). We found an

equivalence between bicycles and valid edge orders with two bad edges in Claim 6.12.

Suppose we extended our language to p-cycles (corresponding to valid edge orders with

p bad edges), and were able to find a winning strategy for Breaker playing the game

on any component of H that does not contain a p-cycle. We could then obtain a proof

for matrices A for which the associated matrix B of dimension ` × k satisfies ` = p − 1

(without the need for any divisibility conditions). However given the number of cases that
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arose from considering bicycles, it would seem unfeasible to attempt this.

Lemma 6.9 gives a precise description of hypergraphs with at most one bad edge and

a fixed number of k-bad edges. What can be said of hypergraphs with at most p bad

edges (for fixed p) and a fixed number of k-bad edges? Also note that our definition of

a valid edge order (where every edge after the first one is either good or bad, i.e. there

are zero k-bad edges) is a hypergraph generalisation of a tree. This is since trees have

precisely this property in the graph case; a 2-bad edge here is an edge which completes a

cycle. Thus it would be interesting to obtain a more detailed description of hypergraphs

with a valid edge order.

Observe the following connection of this with Rödl and Ruciński’s proof of Theo-

rem 5.8. It is very easy to 2-colour a hypergraph with a valid edge order so that it has

no monochromatic edges; simply go through the edges in order, colouring the (at least

one) new vertex of an edge ei the colour which was not assigned to one of the old vertices

of ei. Thus if the hypergraph associated to [n]p has a valid edge order, then [n]p can be

2-coloured so that there are no monochromatic solutions to Ax = 0.

6.4.2 Matrices which do not satisfy (∗)

Matrices A which are irredundant and do not satisfy (∗) traditionally have not received

as much attention. For such a matrix, N is not (Ld, r)-Rado for any r > 2 since we can

2-colour N and avoid any monochromatic solutions to Ax = 0 (see Section 5.3.1). Also

note that m(A) is ill-defined in this case. Further in the bias version of the L-game, recall

that Theorem 6.1(ii) states that Breaker wins the (1:2) L-game on [n]. All of these facts

follow easily via use of the row of the matrix which (under Gaussian elimination) has at

most two non-zero entries. We show through some examples that the threshold for the

random L-game is at least slightly less trivial.

Theorem 6.16. Let A be a fixed integer-valued matrix of dimension `× k and b a fixed
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integer-valued vector. Given the system of linear equations L is irredundant and A is

irredundant and does not satisfy (∗), we have the following:

(i) If additionally A =

(
α −β

)
where α, β are non-equal positive integers, then Maker

wins the L-game on [n]p w.h.p. if p� n−1/3.

(ii) Breaker wins the L-game on [n]p w.h.p. if p� n−1/3.

(iii) If additionally A =

α −β 0

0 α −β

 where α, β are non-equal positive integers, then

Breaker wins the (A, 0)-game on [n] (i.e. the non-biased non-random game; thus

with probability equal to one, Breaker wins the (A, 0)-game on [n]p for any 0 < p <

1).

Proof. For the L-game in (i), since L is irredundant, we have that there exists a solution

to αx1 − βx2 = b in N with x1 6= x2. Thus we have that t := gcd(α, β) must divide b:

hence we may assume without loss of generality that gcd(α, β) = 1.

Maker wins the L-game in (i) if there exists a distinct triple {(αx − b)/β, x, (βx +

b)/α} ⊆ [n]p, since she can have the first pick and choose x. Then she can complete

a solution by picking whichever of (αx − b)/β and (βx + b)/α remains unchosen after

Breaker’s turn.

Claim 6.17. There exists a fixed z ∈ [0, αβ−1] (depending on α, β, b) such that whenever

x ≡ z mod αβ, the triple {(αx− b)/β, x, (βx+ b)/α} is contained in the integers.

Proof. Let x ∈ Z. Note that we have (βx + b)/α ∈ Z whenever βx ≡ −b mod α.

Since gcd(α, β) = 1, there exists y ∈ [0, α−1] such that whenever x ≡ y mod α, we have

(βx + b)/α ∈ Z. Similarly there exists y′ ∈ [0, β − 1] such that whenever x ≡ y′ mod β,

we have (αx − b)/β ∈ Z. Combining these two facts, the Chinese remainder theorem

implies that there exists z ∈ [0, αβ − 1] such that whenever x ≡ z mod αβ we have

(βx+ b)/α ∈ Z and (αx− b)/β ∈ Z. �
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Call triples which satisfy the property in Claim 6.17 good. From the claim, for suffi-

ciently large n we deduce that [n] contains n/(2α2β2) good triples. Further, each x ∈ [n]

is in at most three good triples. Thus, there is a collection X of at least n/(6α2β2) good

triples in [n] that are all pairwise disjoint. The expected number of triples in X in [n]p is

Θ(np3). Hence if p � n−1/3 then by Proposition 1.2(ii) w.h.p. there exists x such that

{(αx− b)/β, x, (βx+ b)/α} ⊆ [n]p, so Maker wins as required.

If p� n−1/3, then the expected number of triples is o(1), so via Proposition 1.1 w.h.p.

there are no triples of this form at all. For the game in (ii), since A is irredundant but does

not satisfy (∗), under Gaussian elimination there exists one row of A which consists of

α,−β (where α and β are non-equal positive integers) and zeroes, and thus any solution to

Ax = b contains the positive integers (βz+c)/α and (β((βz+c)/α)+c)/α for some rational

number z and fixed integer c = c(A, b). Since w.h.p. there are no triples (replacing b with

c and x with z), whenever we have the pair (βz+ c)/α, (β((βz+ c)/α) + c)/α ∈ [n]p, then

z, (β((β((βz+ c)/α) + c)/α) + c)/α /∈ [n]p. Thus Breaker can devise a pairing strategy to

win the game.

For (iii), as in (i) we may assume without loss of generality that gcd(α, β) = 1. Then

every solution in [n] is a triple of the form {α2x, αβx, β2x} for some x ∈ N. Every element

of [n] which could be in a solution is of the form αiβjy with y ∈ N, where α and β do

not divide y, and i, j are non-negative integers where at most one of i or j is zero. Using

these facts, Breaker has a strategy to win the game. Indeed, Breaker can create a pairing

strategy as follows: pair αiβjy with αi+1βj−1y whenever i is even and j > 1. Then observe

that for any triple {α2x, αβx, β2x} with x ∈ N, the middle element is paired with one of

the two end elements, so Maker cannot obtain a triple. �

6.4.3 Proof of Theorem 6.2

We conclude the chapter by finishing the proof of Theorem 6.2.
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Theorem 6.2. Let A be a fixed non-zero-integer-valued matrix of dimension 1× k and b

a fixed integer (i.e. Ax = b corresponds to a single linear equation a1x1 + · · · + akxk = b

with the ai non-zero integers).

(i) If the system of linear equations L is irredundant and A is irredundant and satisfies

(∗), then the L-game on [n]p has a threshold probability of Θ(n−
k−2
k−1 );

(ii) If the system of linear equations L is irredundant and A is irredundant and does not

satisfy (∗), then the L-game on [n]p is Maker’s win if p� n−1/3 and Breaker’s win

if p� n−1/3;

(iii) If the system of linear equations L is irredundant and A is not irredundant, then

(a) the L-game on [n]p is Breaker’s win w.h.p. for any p = o(1) if the coefficients

ai are all positive or all negative;

(b) the L-game on [n]p is Maker’s win if p� n−1/3 and Breaker’s win if p� n−1/3

otherwise;

(iv) If the system of linear equations L is not irredundant, then the L-game on [n] is

(trivially) Breaker’s win.

Proof.

(i) As discussed in the introduction, this follows immediately from Theorem 6.3.

(ii) We have k > 3 if and only if A satisfies (∗). Hence if A does not satisfy (∗) and is a

linear equation, we must have k = 2. So write A =

(
α β

)
, where α, β ∈ Z. Note

that since A is irredundant there exist x1, x2 ∈ N such that αx1 + βx2 = 0 where

x1 6= x2. Thus we must have α > 0 and β < 0 or vice versa, and α 6= −β. Thus the

result follows from Theorem 6.16(i) and (ii).
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(iii) Note that any linear equation a1x1 + . . . akxk = 0 with k > 3 clearly has a k-distinct

solution in N if there exists at least one positive ai and at least one negative aj, for

some i, j ∈ [k]. The same holds for k = 2 unless if a1 = −a2. Thus, since A is not

irredundant, we have one of the following:

(a) the ai are all positive integers or all negative integers;

(b) we have k = 2 and a1 = −a2.

For (a), we may assume without loss of generality that a1, . . . , ak and therefore b are

positive integers. For such a game there are a finite number of k-distinct solutions

in N, all of which are contained in [b]. Thus for any p = o(1), w.h.p. there are

no solutions in [n]p by Proposition 1.1, so the game is Breaker’s win. For (b), the

existence of any triple {x− b/a1, x, x + b/a1} leads to a win for Maker, meanwhile

if no triples exist then Breaker can win by a pairing strategy. Since the number of

such triples in [n]p is of order np3, the result follows by a similar argument to that

given for Theorems 6.16(i) and (ii).

(iv) The L-game is trivially Breaker’s win, since there are no winning sets in N.
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[41] P. Frankl, R.L. Graham and V. Rödl, Quantitative theorems for regular systems of
equations, J. Combin. Theory A, 47, (1988), 246–261.
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[65] S. Janson and A. Ruciński, Upper tails for counting objects in randomly induced
subhypergraphs and rooted random graphs, Ark. Mat., 49, (2011), 79–96.

[66] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turán in the theory of
graphs, Mat. Lapok, 15, (1964), 228–238.

[67] P. Keevash, Hypergraph Turán problems, Surveys in Combinatorics, Cambridge Uni-
versity Press, 2011, 83–140.

[68] D.J. Kleitman and K.J. Winston, The asymptotic number of lattices, Ann. Discrete
Math., 6, (1980), 243–249.

[69] D.J. Kleitman and K.J. Winston, On the number of graphs without 4-cycles, Discrete
Math., 41, (1982), 167–172.

[70] Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey prop-
erties involving cycles, Random Structures & Algorithms, 11, (1997), 245–276.
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Vol. 25, 535–583, Bolyai Soc. Math. Studies, János Bolyai Math. Soc., Budapest,
2013.
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