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Abstract 
Visual search traditionally has two main competing theories of parallel and serial search and this               

architectural issue has not been solved to this day. The latest developments in the field have                

suggested a possibility that response time distributions may aid in differentiating the two             

competing theories. For this purpose we have used the best available serial model Competitive              

Guided Search and two biologically-plausible parallel models inspired by the theory of biased             

competition. The parallel models adopted a winner-take-all mechanism from Selective Attention           

for Identification Model as base model that was extended to form a novel model for explaining                

response time distributions. These models are analytically intractable, therefore we adopted a            

more accurate kernel density estimator for representing unknown probability density function.           

Introduced robustness properties to the fitness method and developed a more efficient algorithm             

for finding the parameter solutions. Then these methods were applied for comparison of the              

respective models and concluded that winner-takes-all model poorly generalises to response time            

distributions. The results were followed by introducing a novel Asymmetrical Dynamic Neural            

Network model that managed to explain distributional changes better than Competitive Guided            

Search model. 
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Chapter 1:  

General Introduction 

1.1 Response Time Distributions 

Many psychological experiments produce response time (RT) distributions as a manipulated           

variable. Historically, this crucial information has been used to study and raise hypothesis of              

underlying processes that have generated these distributions (Luce, 1986; Hohle, 1965). This            

time from stimulus appearance to the response covers a number of underlying psychological             

processes within brain such as encoding, identification, decision making and motor execution            

times. Understanding these processes requires identifying how every process contributes to           

overall execution time by manipulating experimental designs. The importance of          

RT-distributions has been appreciated but application was limited due to violations of normality,             

violations of independence per trial and present contaminations. 

It is well established that often RT distributions are not normally distributed and contain              

skewness as well as kurtosis, thus logarithmic transformations frequently are not applicable.            

Moreover, these features can cover different attributes of the underlying processes within brain             

such as working memory, attentional lapses and other psychological processes (see Matzke &             

Wagemakers, 2009 for review). It has been shown on several occasions that different features of               

the distribution vary differently across different conditions. For instance, in visual search            

experiments the set size increase changes mean and standard deviation values more or less              
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linearly. However, other features such as skewness and kurtosis do not change linearly and the               

average of RTs cannot capture these changes (Palmer et al., 2011). 

It is generally believed that many trials are required to appropriately approximate unknown             

RT-distribution (van Zandt, 2000), which may not be feasible for the given task. Repeatedly              

performing the same/similar task is subject to learning which may not be desirable. Consider a               

visual search example, the purpose is to identify whether a search is perform in parallel or                

serially in conjunction search task. However, it has been shown that participants learn to quickly               

discount a set of distractors within conjunction search by focusing on a single feature such as                

colour. Some larger scale visual search experiments confirmed that such strategy was used by              

participants (Wolfe, Palmer & Horowitz, 2010; Moran et al., 2013). In statistical literature, this is               

also known as violation of independence as the future outcome depends on previous trials. Thus,               

it is reasonable to assume that a true RT-distribution is different at the beginning of the                

experiment when compared to the distribution at the end of the experiment. In this thesis, this                

assumption is also taken but datasets are kept smaller and a method with greater accuracy is                

developed instead. 

Contaminants are the most problematic issue as it indicates processes that are irrelevant to the               

task such as attentional lapses (Ratcliff & Tuerlinckx, 2002) and introduces biases to the results.               

The contaminants consist of fast responses that are too fast for the given task. Slow contaminants                

that generally reside within a tail and can be an indicators of attentional lapses. The issue is with                  

hidden contaminants which are within the RT-distribution itself. It can be difficult to             

differentiate a genuinely prolonged task execution from attentional lapses. The distribution of            

these hidden contaminants are not known and a number of assumptions have to be made when                
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modelling them. We propose relying on robust statistical methods which reduce the effect of              

these contaminants when a proposed model properly defines the studied phenomena (For more             

information refer to 3rd Chapter). 

1.2 Visual Search 

Many visual tasks in our daily life would be impossible without our capability to find visual                

objects of interest. This is a key feature aiding us in processing an enormous amount of visual                 

information available in our environment. This search procedure is also regularly used for             

day-to-day tasks such as seeking for ingredients in the shopping list or cooking a meal.               

Researchers study this phenomena in a more controlled settings and visual search experiments             

are one of the most commonly used experimental paradigms for studying underlying cognitive             

processes within brain (see Eckstein, 2011 for a review). For example, determining the presence              

of predefined target among distractors is a standard visual search task. The time taken from the                

stimuli onset and a decision is known as response or reaction time (RT) and repeated               

measurements produce an RT-distribution. This variable is studied to determine the difficulty of             

visual search experiment in relation to the number of the distractors presented to the participant.               

A standard approach averages these measurements for the given number of distractors and the              

slope of the reaction time from few to many distractors is determined. This slope indicates the                

difficulty of the task and has been pivotal in the development of visual search theories. 

The underlying cognitive processes have been elusive thus far and two main competing theories              

have emerged to explain this information processing phenomenon. One theory is inspired by the              

base knowledge of neuronal systems in the brain which proposes the parallel processing system              
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(e.g., Palmer, 1995; Ward & McClelland, 1989). This theory roots from the realisation that              

humans are extremely quick at discounting irrelevant information within the enormous quantity            

present in our immediate environment. However, this theory has been challenged by the             

observations that some searches are quite slow and various objects have to be identified in a                

serial manner before a goal target is found (e.g. Sternberg, 1966). These observations have firmly               

positioned the visual search theory into two completely different architectural beliefs of serial vs              

parallel because parallel theory could reproduce the effects attributed to serial processing            

(Townsend, 1976). 

Treisman and Gelade (1980) in their groundbreaking study proposed a Feature Integration            

Theory that introduced a two-stage model. This theory suggested that there is a feature map that                

is processed in parallel and in case a relevant map triggers more than one location, a serial                 

process is begun to reject the items that were not discounted in the first phase. This enabled to                  

explain a flat search slopes (aka, pop-out search) commonly attributed to parallel theory as well               

as steep slopes. However, the discussion did not end with this new model and alternative               

single-stage proposals emerged. In 1989, Duncan and Humphreys have suggested Biased           

Competition theory that assumes a parallel interference between competing items within visual            

field. This interference is measured by the similarity of the items and results in the overall                

slowdown of the processing time. The biggest bottleneck for models assuming serial component             

was to identify when a parallel process ends and a serial process begins because the observed                

slopes were not limited to pop-out outcomes or visibly serial identification of the items. Instead,               

there seemed to be no obvious switch and the slopes have a gradual increase from flat to very                  
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steep. As a result, Wolfe (1994) coined a term efficient vs inefficient search which has been                

widely accepted throughout visual cognition community. 

Throughout the research, central tendencies remained as the main experimental measurement           

even though these central tendencies failed to determine the correct architecture. The issue             

resides within the capability of the parallel models to explain slower processing with each              

additional distractors intuitively attributed to serial processing (e.g., Townsend & Ashby, 1984;            

Townsend & Nozawa, 1995). Overall, this mimicry of the opposing theories failed to resolve an               

initial architectural issue (Townsend & Werger, 2004). Due to this unfalsifiability of the two              

architectures, the question has been largely ignored up until recently. Palmer et al. (2010)              

following the findings that different aspects of the response time distribution refer to different              

cognitive processes looked how different properties of the response time distributions vary in             

visual search paradigm. This study found quantifiable properties of the response time            

distributions changed differently and not always linearly as mean RTs approach assumes. A             

follow-up study by Wolfe, Palmer and Horowitz (2010) have shown that this falsifies the best               

available model inspired by serial architecture (Wolfe, 1994; Chun & Wolfe, 1996). This failure              

was solved by Moran et al. (2013, see Chapter 5 for more details) in their proposed Competitive                 

Guided Search model. To this day there is no successful parallel model that could also explain                

RT distributions with a growing number of distractors. 

Whether RT-distributions could aid in solving this unresolved issue is an open scientific             

question. These two theories posit two completely different predictions on how the            

RT-distributions are formed as the number of distractors is increased. Serial theory states that a               

resulting RT-distribution is a convolution of multiple identification processes, i.e. every selected            
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item is identified in a serial manner. Each additional item indicates an increase in required               

number of serial scans. On the other hand, a parallel theory predicts that a change in the shape of                   

the RT-distribution is due to other cognitive limitations such as limited attentional capacity or a               

direct competition between the presented stimuli. Parallel theory is stationed within knowledge            

that decision is attained via diffusion process (Ratcliffe, 1978) of accumulating evidence for as              

well as against presence of the target (aka. accumulator). The issue is, this diffusion process is a                 

single two-choice accumulator of evidence while multiple distractors are present in visual search.             

Moreover, it would not be difficult to fit RT-distributions using the diffusion process because is               

has been proven that this model can fit any two-choice distribution (Jones & Dzhafarov, 2014).               

This indicates that only a relationship between diffusion model parameters and setsize effect             

would have to be established to form a model, in other words, there is a strong suggestion that a                   

2-stage unfalsifiable parallel model already exists. Thus, one of the purposes of the thesis is to                

design a single-stage parallel model that can account for distributional changes present in visual              

search experiments without changing any of its variables. 

At this point it is worth stressing that the thesis focuses on the dichotomy of parallel vs. serial                  

rather than on how visual features, such as colour, orientation, etc. influence visual search. In               

other words, such perceptual features in this framework turn into free model parameters rather              

than explicit computations.  
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1.3 Models 

1.3.1 Serial Model 

The most influential serial model is Guided search (e.g., Wolfe et al., 1989; Wolfe, 1994, 2007;                

Chun & Wolfe, 1996) which introduced a two stage model. The first stage computes an               

activation map (Koch & Ullman, 1995). This activation map is assumed to be a combination of                

bottom-up saliencies that define how distinctive the items are among themselves and top-down             

influence that indicates interest in the particular item(s) (Itti & Koch, 2000). This activation map               

guides selection for the second stage which identifies each chosen item. More active items will               

have a higher probability to be selected in compared to other items within visual display. When                

all items have an equivalent activation, the search slope becomes completely probabilistic and             

produces very steep slopes. However, this activation map is the main workaround for serial              

model to explain highly efficient searches with flat slopes because highly active items can have a                

probability to be selected equivalent to one. 

A recent realisation of potential importance of RT-distributions for visual search (Palmer et al.,              

2011) and the failure to fit RT-distributions using Guided Search model (Wolfe, Palmer &              

Horowitz, 2010) has sparked a speculation that RT-distributions may falsify some models. The             

biggest failure of the model emerged due to RT-distributions of target absent condition being              

very similar to the target present condition. This weakness was tackled by Moran et al. (2013) in                 

their novel Competitive Guided Search (CGS, for more detailed introduction see chapter 5)             

model which extended Guided Search model by introducing a better termination criteria. This             

proved to be crucial change for explaining RT-distribution in absent trials. Namely, it was              
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disproven that people perform exhaustive search nor the half of the items within display and this                

quitting criteria has introduced a viable solution for termination (Townsend & Wenger, 2004). 

1.3.2 Parallel Models 

1.3.2.1 Race Models 
Unlike a single model representing the serial class of models, parallel models divide into a               

couple of classes. The simplest parallel model, race model, assumes that the individual items              

compete in non-interfering fashion with each other for determining the response. Importantly the             

items (racers) don’t interfere with each other in this race. Linear Ballistic Accumulator (LBA:              

Brown & Heathcote, 2008) is one of the best and simplest multi-choice decision making race               

model that has become a gold standard for studying cognitive decision making processes             

(Forstmann et al., 2008; 2010; Ho, Brown, & Serences, 2009) as well as a toy model for testing                  

cognitive modelling methodology (Turner et al., 2013; Turner & Sederberg, 2014; Jones, &             

Dzhafarov, 2014). Different versions of the race model were also applied for stroop effect by               

introducing independent accumulators for colour and word (Eidels, 2012) and for visual search             

using signal detection theory (Verghese, 2001). 

Overall, none of these models were adapted or fitted to response time distributions. Therefore,              

Moran et al., (2016) have developed and fitted a parallel race model to RT-distributions using               

quantile maximum likelihood (QML) method and compared it to CGS model. This model made              

a number of assumptions common in parallel modelling research. They adopted a race model              

with drift rates adapting to the number nodes within display which is a common practice for                

modelling n-choice decision making (Usher, Olami, & McClelland, 2002; Brown & Heathcote,            
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2008). Additionally, they adopted a traditional self-terminating process within present conditions           

meaning a decision is made right after the first identification but not an exhaustive search for                

absent trials (Townsend & Wenger, 2004). Instead they introduced an additional diffuser that             

accumulates after each rejection for absent trial as in CGS model (Moran et al. 2013). Another                

very important assumption was within enforcing the input to be the same for all diffusers. No                

input bias is assumed, they motivate this by stating that modifying the initial accumulation level               

is sufficient for the bias.  

They found that CGS model outperformed this parallel model despite it having more parameters.              

There were a number emerging differences and the main issue was within balancing error rates               

with RT-distributions. When the model would match the distributions, it would fail with error              

rates and when it would match error rates, it would fail with the distributions. The issues with                 

independent accumulators are as outlined by the authors within statistical chance of different             

accumulator reaching a decision threshold. While this work only considered single race model, it              

does illustrate the possible underlying issues with such models. 

1.3.2.2 Competitive Models 
A class of parallel models that was not considered by Moran et al. (2016) is based on the Biased                   

Competition Theory which probably is the most influential parallel search theory (e.g.,            

Desimone & Duncan, 1995; Duncan, Humphreys, & Ward, 1997). In contrast to the race model,               

this theory suggests that models are competing for activation in an inhibitory fashion. The nodes               

accumulate information under constant interference from other nodes until a winner is declared.             

The biases in this model are introduced in an identical approach to activation maps used for CGS                 

model by combining bottom-up and top-down influence (e.g., expectations about targets,           
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Anderson, Heinke & Humphreys, 2010; or short-term memory, Woodgate, Strauss, Humphreys           

& Heinke, 2015). Competitive models explain various cognitive processes such as decision            

making (Wang, 2002; Bogacz et al., 2007) or selective attention (Mordkoff & Yantis, 1991).              

Finally, studies using the Selective Attention for Identification Model (SAIM; Mavritsaki,           

Heinke, Humphreys & Deco, 2006; Heinke & Humphreys, 2003; Heinke & Backhaus, 2011)             

have shown that search efficiency is another area that competitive models may be able to               

explain.  

It is worth noting that this theory has been overlooked by authors testing whether              

RT-distributions are sufficient to distinguish serial vs parallel problem, thus this thesis attempts             

defining a competitive model that is capable to explain RT-distributions. It is biologically             

plausible class of models but it raises a multitude of applied modelling challenges due to being                

analytically intractable (this issue will be covered in greater detail within next section) therefore              

a few chapters will be dedicated to addressing these underlying issues. 

1.4 Modelling RT-distributions 

1.4.1 Statistical Modelling 

A viable option to model RT-distributions is to use parametric functions as models such as               

Weibull, ex-Gauss or ex-Wald (see Burbeck & Luce, 1982; Schwarz, 2001; Logan, 1992;             

respectively) to characterise such distributions, though these are limited to one distribution.            

Though such functions are not perfect, they can explain individual distributions relatively well             

and can provide a valuable insight into how distributions change themselves (Palmer et al.,              

2011). 
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In a number of cases a non-parametric function as a model is more suitable. Such models, unlike                 

parametric functions, do not assume the shape of the distribution and the data defines it instead.                

These methods choose to approximate either probability density functions (PDF) or cumulative            

density functions (CDF). CDFs are most commonly approximated functions using quantiles           

(Heathcote, Brown & Mewhort, 2002). The main advantage of CDFs is that it allows for               

constructing a super participant. PDFs were considered as an alternative but it has not been used                

much other than for considerations even though its effectiveness has been verified (van Zandt,              

2000). The choice is justifiable due to higher mathematical complexity of the approximations             

with little to no gain in accuracy of the approximation. It also leads to higher computational costs                 

for parameter estimation and is generally perceived a that a large number of samples is required.                

Due to these reasons PDF approximation has been overlooked and its potential has not been fully                

explored. 

The most commonly used statistical models for approximating unknown probability functions           

are non-parametric, although, parametric models have been and still is a viable choice when              

computational resources are an issue (for example, Ratcliffe, 1978). The choice of the statistical              

model mainly depends on the theoretical model used and available computational resources as             

some methods are more accurate than other methods. This thesis aims to determine if              

RT-distributions can aid in separating parallel from serial search thus we opted for emphasising              

the accuracy over efficiency. As discussed in Statistical Models section, approximation of the             

CDFs is the most commonly used method. Though, PDF approximations have reemerged in             

recent years thanks to the work by Turner, Sederberg (2014) showcasing that the simplest PDF               
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approximation via kernel density estimation (KDE, Silverman, 1986) outperforms the most           

commonly used CDF approximation in posterior approximation. 

1.4.2 Theoretical Modelling 

There is a whole class of models that make architectural assumptions about the cognitive              

processes (see Teodorescu & Usher, 2013; for a review). These models hypothesise how systems              

generating response time distributions work and can be targeted by carefully designed            

experiments. In general, the processes generating these distributions are produced by stochastic            

systems where some information accumulation with random noise occurs before the actual            

response. Two simplest models of such systems are drift diffusion (DDM) and            

Ornstein-Uhlenbeck (OU) (Ratcliff, 1978; Busemeyer & Townsend, 1993). These models are           

relatively simple and have known probability functions that determines the probability of various             

model outcomes. However, even the simplest psychologically plausible extensions make these           

probability functions analytically intractable. For example, an extended DDM for two alternative            

choice decision making introduces additional variabilities (e.g. between trials) which renders it            

intractable (Smith & Ratcliff, 2009). The same issue arises with an OU extension for              

multi-choice decision making (Usher & McClelland, 2001) thus no analytical function is            

available for either model. 

1.4.3 Intractable models  

Analytically, intractable models create a wealth of issues because parameter estimation of the             

given model becomes biased for the data. Generally, parameter estimation is performed via             

finding the maximum likelihood value (see robust likelihood chapter for more in depth             
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discussion). The likelihood value indicates how well the model presents the data given a certain               

parameter setting. Hence the maximum likelihood determines the parameter values of the model             

that represent the data most accurately. In other words, maximum likelihood is the mode within a                

likelihood function which describes how well the model represents data as a function of              

parameter values. If this likelihood function is known analytically, it is easily computed and the               

maximum is trivially found. Analytically intractable models, by extension, do not have a known              

likelihood function. These models are solved using numerical methods by simulating a number             

of times until a reasonable approximation of their function can be determined. In essence it is an                 

identical process as attempting to model RT-distributions because these models approximate           

these distributions via simulations, therefore, statistical models are used as an intermediary.            

These intermediary approximations can be used for approximating likelihoods of the data, e.g.             

response time data.  

The approximation of the PDF is not the only issue concerning modelling analytically intractable              

models. Unavailability of the likelihood function makes methods that rely on gradient such as              

Nelder-Mead algorithm (Singer & Nelder, 2009) to perform poorly or fail completely. In such              

cases intelligent sampling methods are desirable because grid sampling is too costly even with              

small number of dimensions. Sampling methods use some strategy with randomisation to inform             

the sampler where a good solution is likely to reside. A good sampler reduces the overall                

optimisation costs by reducing the number of required samples (Doucet & Johansen, 2008).             

These methods use MCMC algorithms which are also known as Bayesian approximators. In fact,              

an optimal sampler produces the samples that are distributed equivalently to the posterior             

distribution. In other words, a sampler minimises the deviation between the distribution of             
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produced samples and true posterior distribution. These approximators either rely on a good             

approximation of the likelihood values or introduce some acceptance threshold. Algorithms that            

use acceptance threshold as the sampling guidance are also known as likelihood-free Bayesian             

methods or Approximate Bayesian Computational (ABC) methods. These methods rely on           

arbitrary error threshold which does not guarantee the correctness of the approximator            

(Beaumont, 2010). In our work we found that these methods perform very poorly when              

maximum likelihood is undefined (Grazian & Robert, 2015) and proposed an alternative            

algorithm for approximating analytically intractable models that predict RT-distributions (see 4th           

Chapter for more information). 

1.5 Outline 

The structure of this research is as follows. We divided it into two parts since the entire research                  

is dealing with two larger scientific questions. In the first part we will introduce the new methods                 

for broader scientific usage in analysing intractable models as well as their associated unknown              

probability density function (PDF). In the three chapters within this part we will introduce the               

most common methods and present  improvements and alternatives for these methods. 

The main focus of the thesis addresses an unsolved problem appropriately approximating the             

reaction time (RT) distribution of humans as well as analytically intractable models.            

Characterising these models is a crucial factor in opening a whole class of models for speculation                

and falsification such as various accumulator models (e.g., Smith & Ratcliff, 2009; Usher &              

McClelland, 2001). All these models predict RT-distributions which cannot be expressed in a             

analytical PDF. Thus, researchers have generated a wealth of literature on various approaches to              
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approximate PDFs and in the first chapter we will propose a new method as an improvement                

compared to most other methods. 

The second chapter addresses an issue that RT data have the tendency to be contaminated by                

processes that were not generated by the cognitive processes of interest. Moreover, data cleaning              

tends to be biased and some poor samples cannot be identified within distributions because they               

are hidden within an actual RT distribution which can lead to poor inferences about the cognitive                

processes of interest (Miller, 1991; Ulrich & Miller, 1994). Some authors started to model the               

contaminants as part of the models (Ratcliff & Tuerlinckx, 2002; Ratcliff & McKoon, 2008;              

Wagenmakers et al., 2008) but we argue against such practice and suggest instead to adopt               

robust methods by introducing a robust likelihood method for recovering true parameters without             

requiring to identify contaminants within data. 

The third chapter deals with arising issue from the use of the described two methods within the                 

first two methodological chapters. This new issue emerges when parameter estimation is            

performed and most of the currently available methods fail to find the best solutions within a                

reasonable time. Moreover, these methods negatively impact posterior approximation algorithms          

therefore we have developed a novel non-parametric posterior approximation algorithm for           

analytically intractable models when the key two methods are adapted. 

The second part will apply a combination of these methods to compare a serial CGS model with                 

parallel SAIM-WTA and ADyNeN models using the data generated from visual search            

experiments (feature search, conjunction search and spatial configuration search). The fifth           

chapter will compare SAIM-WTA model with CGS using some of the outlined methods             
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demonstrating their applicability as well as how that translates to a practical example. It              

demonstrates that basic SAIM-WTA model does worse than CGS in representing           

RT-distributions combined with accuracy. The sixth chapter extends the findings in the fifth             

chapter and will compare ADyNeN model that overall has a capacity to explain RT-distributions              

slightly better than CGS model. We will follow the findings of the two studies with broader                

overview of implications into a long-standing question of serial vs parallel search and suggest              

that ADyNeN model has a capacity to explain a wide range of visual search processes as well as                  

possible natural extensions to explain additional processes. 
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Part 1:  

Methodology  
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Chapter 2: 

Kernel Density Estimators 

Abstract 
For decades now, reaction time (RT) analysis has been a main outcome of many experimental               

paradigms encompassing psychology in humans as well as animals. However, while importance            

has been appreciated the usage has been limited due to its inherently skewed properties, violation               

of independence assumption and vulnerability to contaminations. Additionally, the associated          

processes and by extension the models are too complex to solve analytically. There have been a                

number of attempts to address these issues but the preference for usage of mean RTs and other                 

less accurate methods has remained strong. An alternative approach of using kernel density             

estimator (KDE) has often been overlooked, possibly due to its higher computational demands to              

compute multiple distributional approximations. However, modern computers have reduced this          

issue substantially. In this research we present one of the latest publicly available KDE methods,               

apply it to modelling of RT-distributions and show its performance in relation to a better known                

traditional KDE method. We found that it outperforms traditional KDE method yet retains fewer              

distributional approximations in order to accurately represent underlying RT distributions.          

Moreover, we show that as few as 100 trials produce a relatively reasonable approximation of               

target RT distribution. 
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2.1 Introduction 
Response time is a vital experimental measurement for studying and understanding cognitive            

processes. A set of these measurements form an RT distribution which has eluded cognitive              

modellers to this day and the most common modelling approach is to simplify the data by finding                 

a central tendency of the distribution. This approach assumes that moments of the unknown PDF               

do not change as the task is modified or that these changes do not affect core findings of the                   

study. However, the assumption of the moments generally is not true and visual search is a prime                 

example where the shape of the distribution changes as the number of distractors is changed               

(Wofle, Palmer & Horowitz, 2010). Moreover, a second assumption makes a very gross             

generalisation about experimental conditions and may lead to statistical evidence when there is             

none if precaution analysis is not performed (demonstrating it is beyond the scope of the thesis,                

though, see general discussion chapter for further look at this particular issue). 

Various summary statistics have been proposed to accomplish this; Ratcliff (1978) used            

intermediate model ex-Gauss while Heathcote, Brown and Mewhort (2002) suggested quantile           

maximum likelihood method (QML). For instance, QML divides cumulative functions into           

percentiles (usually 5 quantiles but can contain more for higher accuracy given sufficiently large              

data is present) containing the same number of data points. Quantiles work reasonably well, they               

are fast and robust to noise within data, thus a viable option when a single decent solution is                  

desirable. It has been used in a wide range of RT distributional analysis (Pleskac & Busemeyer,                

2010; Schmiedek et al., 2007; Vandekerckhove & Tuerlinckx, 2008) and while reasonable            
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solutions will be produced, these will be subject to biases which can be evidently shown when                

posterior distributions are approximated (Turner & Sederberg, 2014).  

Indeed, a more accurate representation of RT distributions would produce better predictions for             

the best solutions and a more stringent comparison of the models. For this purpose kernel density                

estimate (KDE) methods are attractive as they can model RT distributions without requiring             

summary statistic. These methods combine multiple smaller probability functions into one           

common function. Such method is flexible enough to approximate any desirable PDF. KDEs are              

a natural extension to histogram methods by having probability functions rather than bars; this              

extension has a property of naturally smoothing the approximation of the underlying distribution.             

Surprisingly, it is relatively uncommon to use KDEs to represent RT probability functions and              

even when it is used, the simplest KDE where every single datapoint have their own kernel                

(Silverman, 1986) is used (Turner, van Zandt & Brown, 2011; Turner & Sederberg, 2014;              

Miletic et al., 2017; Turner, Sederberg, & McClelland, 2016), we will refer to this              

implementation as traditional KDE. The usage of such methods has received little attention in              

psychological literature mainly due to perception that a lot of trials are required to approximate               

an underlying PDF (van Zandt, 2002). 

However, KDE methods have progressed extensively from commonly used traditional KDEs and            

distributions can be approximated with relatively few kernels as well as fairly high accuracy.              

Recently we have presented the usage of relatively advanced online kernel density estimate             

(oKDE) method in practice (Narbutas, Lin, Kristan & Heinke, 2017) designed by Kristan,             

Leonardis and Skočaj (2011). While this implementation is designed for online distributional            

approximation, we were only using it for offline approximations. There we confirmed earlier             
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results by Van Zandt (2000) that relatively few trials (100) are enough to represent response time                

(RT) distributions to some degree of accuracy. We also speculated that this method is better than                

a traditional KDE; however we did not perform any direct comparison. To address this              

shortcoming we carried out simulation studies that specifically compared these two methods. 

2.2 Description 

2.2.1 Traditional Kernel Density Estimate 
Kernel density estimate is expressed as a mixture of weighted probability functions 

,f (X , ) h ((X )/h) h = n−1 −1 ∑
n

i=1
K − μi  

with corresponding to a smoothing parameter (commonly termed as bandwidth), stands for h           n    

the number of kernels while is their centre and a kernel function itself. A kernel function     μ      K         

represents an expected form of uncertainty surrounding the point this function represents. Most             

commonly used functions are Gaussian and Epanechnikov (we used the former) though other             

distributions such as Poisson can be utilised as well. The smoothing parameter is determined by               

Silverman’s rule of thumb: ; where is standard deviation    .9/N min(σ, q )/1.349)hn = 0 0.2 ( 3 − q1   σ     

and are first and third quartiles of the given dataset containing points. 0.9 is a scalar ,q3 q1            N       

value that can be adjusted as long as it remains below 1. It should be set to the value that best                     

describes data which minimises the difference between target KDE distribution and an unknown             

probability function. A general suggestion is to start with 0.9 and change until the most               

reasonable value is found (van Zandt, 2002). The number of kernels as well as their locations                

can be chosen rather arbitrarily or centred on all available datapoints. The most accurate choice               

would correspond to data but can be computationally very inefficient with large datasets as it               
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grows linearly with each data point, a reasonably small but not too small number of kernels                

could be the best compromise, e.g. van Zandt (2000) has chosen 60 equally spaced points within                

the range of the given data but this is far from optimal choice as it will be demonstrated later.  

Figure 2.1: An illustration of the approximately of the best solutions for traditional KDE. The figure on

the left show that scale parameter has a decreasing best smoothing parameter values but this decrease is 

sharper for smaller KDE. The figure on the right show log-likelihood values illustrating an increase in 

accuracy of the underlying distribution as the set size grows. 

2.2.2 Online Kernel Density Estimate 
To illustrate the progress of KDE methods we employed oKDE (Kristan, Leonardis, & Skočaj,

2011). This method has been shown to find a good balance between the number of components                
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and accuracy of the target distribution in complex multivariate space. It is Gaussian mixture              

distribution and, unlike traditional KDE, does not rely on equivalent components for each point              

but adjusts them by clustering these points. As a result, it retains relatively compact mixture               

distribution that places components to characterise uneven sparsity within data in a more             

efficient way. Each component has its own weight corresponding to the relative number of points               

falling within it and covariance matrix. This can be expressed as a convolution of kernels:               

ϕ(X , ).∑
n

i=1
wi − μi h + σi  

 

Figure 2.2: An illustration of results as permissible error is manipulated for oKDE. An illustration on the

left shows how many kernels are required as the permissible error is modified. Lower accuracy leads to                 

fewer components that are used to represent original data (with minimum being at 2). The figure on the                  
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right demonstrates how AIC changes as accuracy is changed. The best solutions are concentrated at               

relatively low accuracy levels. 

Most importantly, oKDE approximates an optimal bandwidth. Since the original distribution is            

unknown, it can be approximated by minimising an ​asymptotic mean integrated squared error             

(AMISE, Wand & Jones, 1995). Once the approximate optimal smoothing parameter is known,             

the algorithm clusters kernels within KDE in order to find a mixture distribution that              

approximates an original distribution with fewer components       

where . This smaller KDE function induces anϕ(X , ) ϕ(X , )m :  ∑
n

i=1
wi − μi σi = ∑

m

j=1
ŵj − μ̂ σ̂j   m < n        

error within approximation of original distribution which is expressed using Hellinger distance            

metric that shows how similar two distributions are. The entire clustering is performed using              

hierarchical top-down clustering (Goldberger & Roweis, 2005) in order to minimise the number             

of components but retain acceptable level of disparity between original sample and an             

approximated KDE. This is done by making sure that each component is below this threshold.               

Each component representing its subset data worse than this threshold is divided into two new               

components. These new components are centred by clustering the corresponding subset data            

using k-means algorithm. ​This reduces oKDE set-up variables to permissible level of error within              

clusters. For comparison, traditional KDE requires to determine the scale of the bandwidth and              

locations as well as the number of kernels for more efficient representation of the data.               

Clustering reduces these requirements with an introduction of some bias, as we will show, a               

good choice for permissible error leads to a better generalisation over unknown PDF. 
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2.3 Materials and methods 
To compare the two methods we used Weibull parametric function with the same parameters              

values as van Zandt (2000) used. These parameters were set to 163.15 for scale, 1.5 for shape                 

and 652.72 for shift which produces a distribution that arguably resembles a possible response              

time distribution. These values were kept constant throughout and were used to generate             

hypothetical datasets of sizes between 20 and 400 with 20 being an increment. The largest set                

size of 400 was chosen to represent a realistic size of the RT datasets as gathering larger datasets                  

can be cumbersome and is widely unpopular. We also do not expect any significant difference               

between the two methods at larger datasets in terms of accuracy. From each data set 100 samples                 

were taken and which were used to the determine a KDE. We also generated one large dataset                 

containing 10000 data points. This large dataset was used to evaluate each KDE which was               

created from the smaller datasets. This evaluation used the likelihood principle i.e., the             

likelihood that this large dataset were generated by the given distributions. According the             

likelihood principle, a more accurate representation of true distribution would produce higher            

likelihood values over points that were generated by this distribution.  

2.4 Identifying good settings for KDE methods 

2.4.1 Optimal Bandwidth for traditional KDE 
The traditional KDE has components centred on datapoints and has a common bandwidth for all               

kernels (Silverman, 1986). Identifying the best common bandwidth provides the most accurate            

PDF approximation that can be used for comparing two KDE methods. This section of the article                

focuses on finding the approximate best solutions for the scale parameter for bandwidth             

computation as the sample size is changed. The variable had values set between 0.01 and 1, the                 
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intermediate step was equivalent to 0.01 (100 parameter settings in total). Since there were no               

changes in the KDE other than the scale itself, log-likelihoods are sufficient for identifying the               

best performing parameter values. These settings were found by identifying the highest average             

log-likelihood values at each set size. Fig. 1b? illustrates the best average setting across              

increasing dataset size and a decrease in the best performing scaling values can be observed (Fig.                

1a). Log-likelihoods illustrate the increasing average accuracy of the approximate distribution           

and an availability of more data would improve accuracy.  

Figure 2.3: This figure show the optimal levels of accuracy for different set sizes. The best solutions have                  

a small negative slope as the number of items is increased but the level is relatively consistent.
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2.4.2 Optimal oKDE accuracy 
The previous results established the best performing values for smoothing parameter as a             

function of set size. The oKDE method approximates the optimal bandwidth and no             

identification is required by the user. Instead, it has an accuracy measure as threshold for data                

clustering. We repeated the experimental design as used for smoothing parameter earlier and             

found the optimal permissible error level for the same set size settings. This accuracy level is                

expressed as Hellinger distance which we varied from 0.002 to 0.2 with 0.001 being an               

increment step. There were no changes in the procedure of generating simulated PDFs as              

described in general methods. Since no alternative method formulation was compared, we            

focused on AIC scores in order to identify the best settings. AIC was used instead of                

log-likelihoods since it takes into account the number of variables available. Due to clustering,              

the number of components varies depending on accuracy as well as the data size.  

The results showed that the number of components varied from 2 components at the minimum               

accuracy but has not exceeded more than 20 at the maximum accuracy. Though, in general it                

required around 6 kernels to represent response time distribution (Fig 3a). This may change              

when a differently shaped distribution is being used, but a similar number of optimal set of                

components should be expected. Possibly, as sample size grows and the number of kernels              

required to represent data settles, the only further improvement will be within accuracy of kernel               

placements in space. Fig 3b demonstrates how this number of components impacts the AIC score               

with the best performing values concentrated at relatively low values. The best accuracy             

solutions for different set sizes are illustrated in Fig 4, evidently, the best solutions reside around                

0.02 permissible error. Low sample sizes show more variance with two values being relatively              
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large (though they may simply be outliers) while the other values showed a consistent slight dip                

in the level of permissible error as the sample size is increased.  

 

Figure 2.4: Comparison between oKDE and traditional KDE with different smoothing scales when the

locations and the number of kernels correspond to data. The figure on the left show log-likelihood values                 

with green curve representing oKDE. The figure on the right show zoomed-in perspective. Traditional              

KDE performs equivalently under relatively high bandwidth values. 

2.5 Comparison between two KDE methods 

2.5.1 Smoothing setting
In order to illustrate the working of the two KDE methods and identify where the main                

weaknesses lie we have isolated individual parameters of the two mixture models by profiling              
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these parameters. We started with the traditional KDE and used the best oKDE accuracy across               

increasing set size as identified previously. Fig. 5 shows that most of the scaling values had a                 

worse likelihood value compared to oKDE. In order to further the comparison, we performed              

Wilcoxon signed-rank test across different set sizes and parameter values (Fig 6). In this graph               

all values between -2 and 2 indicate non-significant difference while values outside this             

boundary show significantly better fits in favour of oKDE when values are positive and in favour                

of traditional KDE when values are negative. The decrease in the best smoothing parameter              

value was observed with larger number of data points as observed previously. Importantly,             

regardless of the number of kernels available to approximate data, traditional KDE performed             

significantly better only in very small number of samples (e.g. 60). This may be due to clustering                 

which results in a higher variation between samples due to generalisation that clustering             

provides, though it may also be due to the best accuracy value being an outlier. A similar                 

characteristic can be observed at the area between 250 and 300. It has a brighter colour, but                 

accuracy is slightly above a general curve (Fig. 6). Note, that regardless of the sample size                

obtained for data, traditional mixture model can only perform equivalently to oKDE since             

matching kernels to data reduces the comparison to the accuracy of bandwidth. The approximate              

of the optimal bandwidth has not produced significantly better results and the only noteworthy              

difference is much fewer number of components required to equivalently represent target            

distribution. Therefore, carefully selected locations of kernels as well as their variances are more              

important than the values set for bandwidth or the number of kernels themselves. 
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Figure 2.5: This figure illustrates how z-values between two KDE methods change as a scale of                

bandwidth and set size changes when the number of kernels and their locations correspond to the data.                 

Z-values were produced by Wilcoxon signed-rank test as a function of set size and smoothing scale.                

Positive values favour oKDE while negative values favour traditional KDE. Colours corresponding to             

values between -2 and 2 indicate non-significant areas. Overall, the results favour oKDE but there are                

bandwidth values that produce non-significant differences between two methods. 
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Figure 2.6: ​This figure illustrates how z-values between two KDE methods as permissible error and set                

size changes. Z-values were produced by Wilcoxon signed-rank test as a function of set size and                

compression accuracy in terms of log-likelihood and AIC score. Positive values favour oKDE while              

negative values favour traditional KDE. Colours corresponding to values between -2 and 2 indicate              

non-significant areas. The top figure show log-likelihood comparisons and indicate that there’s no             

significant difference when a small sample sizes are available but from around 80 samples there are                

permissible levels of error that produce significantly better performance favouring oKDE. A bottom             

figure illustrates AIC scores and how the change in the number of components used to approximate                

distribution impact which mixture model is favoured. Since the number of components used for oKDE               

increases logarithmically while traditional KDE has a linear increase, the area favouring oKDE expands              

as the set size grows. 
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Figure 2.7: This figure displays AIC score under the best performing settings of each method. 50 and

more samples consistently favour oKDE over traditional KDE. 

2.5.2 Accuracy 
We followed the same procedure for accuracy parameter to repeat likelihood variation analysis             

as in previous study. The results in Fig. 7 show hardly any difference between two methods and

permissible error when a low number of samples are being used but that changed with larger set                 

sizes in favour of oKDE. Only relatively low levels of permissible error led to significantly better

performance when oKDE was used. In general, a significantly better performance can be             

observed from around 80 samples. However, a confidence area where significance can be

observed gets smaller as set size gets larger and larger. This further suggests our earlier claim                
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that two methods would hardly differ at large set sizes. Notice that oddities observed in previous                

study disappears strengthening our claim that these patches were likely to be outlier outcomes.  

 Task Participant 
Number of 

items 
Condition 

1 Feature 3 18 Absent 

2 Feature 6 6 Absent 

3 Spatial 5 3 Present 

4 Conjunction 3 6 Present 

5 Spatial 2 18 Present 

6 Conjunction 8 12 Absent 

Table 2.1: Datasets used to compare two mixture models. 

We believe that clustering of data within oKDE generalises about PDF functions better which 

leads to a better performance overall at smaller sample sizes. This clustering that creates larger 

components with larger weights and bandwidths better captures missing points within data. 

However, such benefit should drop as sample sizes increase. Then, this generalisation is all about 

efficiency in having fewer components. We looked how the number of components impacts the 

support on KDEs using Akaike information criteria score (AIC) and compared these scores with 

traditional mixture model. The number of components corresponds to the degrees of freedom. 

The oKDE had settings that outperformed traditional traditional KDE in majority of cases (Fig. 
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8) as AIC was smaller for oKDE in these cases. On the other hand, oKDE varied in its 

performance permissible error parameter and only relatively high accuracy has consistently 

outperformed traditional mixture model at larger set sizes. Notice the traditional KDE has 

saturated in performance at around 200 components and any further improvement only 

compensates for an increase in the number of components (Fig. 9). As the number of samples 

increase, the number of kernels matching data no longer is a viable choice as log-likelihood 

improvement becomes increasingly small.

 

Figure 2.8: Six distributions that were pseudorandomply (random participants but variation in set sizes

and tasks was enforced) selected to be fitted. 
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2.6 Real Data Example 
To affirm our findings of the two methods we have used real human data taken from publicly                 

available dataset (Wolfe, Palmer & Horowitz, 2010). This dataset has data taken from several              

participants performing visual search task with varying number of distractors. There were tasks             

that varied in difficulty, with colour being the easiest search task, a combination of colour and                

orientation being the average and 2s among 5s being the hardest task. 6 datasets were               

pseudorandomly (random participants but enforcing variation in display size and present vs            

absent conditions so the choices would represent a wide range of distributions) chosen, 2 from               

each task and random participants, 2 from each item set size, out of 6 datasets 3 were from target                   

present and 3 from target absent conditions (see Table 1 and Fig 10). These datasets varied                

substantially, some were very fast (a, b) but one had a few very unlikely data points in the tail                   

(b). There also were wider differently skewed distributions (c, d) and very wide more ones (e, f). 

Each dataset we bootstrapped 100 times generating new datasets that had the same set sizes as                

previously of 20 to 400 and 20 was an increment step. This time generated PDFs were tested by                  

original dataset utilising likelihoods as previously. As expected, in this experiment oKDE            

outperformed traditional KDE at smaller set sizes as well. However, the likelihoods of two              

methods converge at larger set sizes (Fig 11) and no significance can be observed there some                

datasets. Fig 12 shows all 6 examples with AIC score and none of the examples favour                

traditional KDE and Wilcoxon signed-rank test confirms this observation across all setups            

retaining significant values. Notice that AIC score of traditional KDE approaches the minimum             

roughly at 150 components A few datasets show an increase in AIC score suggesting that there                

are excessive degrees of freedom (number of components) which provide improvement in fitness             
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that does not compensate for additional components required to represent data. Such bend does              

not exist in the case of oKDE which is expected as the number of components for each dataset                  

settles where the number of components varied from 3 to 8 (see Fig 13) and is favoured by AIC. 

Figure 2.9: Likelihood fits over 6 distributions where green curve is produced by oKDE and red curve by

traditional KDE. Traditional mixture model under a couple of distributions show similar performance             

when many components are available to approximate target distribution. 

2.7 Discussion 
In this section we introduced a novel online kernel density estimator (oKDE: Kristan, Leonardis,              

& Skočaj, 2011) for non-parametric description of unknown probability density functions (PDF).            

We propose this method as one of the best available methods to describe response time (RT)               
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distributions and designed a series of experiments to illustrate its performance in relation to a              

more commonly used Silverman’s KDE implementation (Silverman, 1989). Numerical         

assessment was performed on both methods to identify the best respective parameter            

configurations for the two methods and evaluate their efficiency in describing RT data in relation               

to the size of the dataset. We believe that this introduction of the oKDE method for                

approximating RT-distributions will contribute to the available methods for describing this           

essential dataset. 

Figure 2.10: AIC score of 6 distributions where green is oKDE while red is traditional KDE. In all cases

oKDE shows a better performance. 
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Earlier we have mentioned that psychologists rarely exploit KDE methods and in those rare              

occasions mainly traditional KDE is being used while there is a number of alternative and better                

methods. In this study we showed how oKDE performs in relation to traditional KDE in various                

circumstances. For the purpose of comparison, firstly we established the best model descriptions             

for both methods. Traditional KDE requires setting the scale parameter of the bandwidth to              

properly smooth the pdf approximation which tends to be higher with smaller datasets. oKDE on               

the other hand approximates the optimal bandwidth thus it does not require identical assessment.              

However, it has accuracy parameter which determines how much precision is valued over the              

compactness of the KDE. It clusters components based on this accuracy threshold and the KDE               

of the collection of larger components is formed to represent approximation of underlying PDF.              

We found that the optimal accuracy drops with the growing size of the dataset, though that                

change was very small. A general guide for a good starting choice would be to set it to 0.02 and                    

decrease or increase accordingly.  

Using the identified best parameter configurations for both KDE methods we performed            

numerical comparisons by manipulating one configuration at a time, constraining the other            

method at its best set-up for give dataset size. Overall findings show that oKDE performs               

significantly better than Silverman’s KDE from ~50 datapoints. This superior performance drops            

with the growing dataset but it also increases the number of components that are used to                

represent traditional KDE. When the number of components used is considered, we find that              

oKDE is substantially more compact and retains a similar or better approximation that traditional              

KDE. This is a vital feature because matching the number of components with size of the dataset                 

leads to substantial computational costs to evaluate other data against the same KDE. This              
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indicates that a right choice for the number of kernels is an essential feature of efficient KDE                 

method. However, a more important factor in producing a superior outcome relates to the              

locations components are placed as well as flexible bandwidths across components allowing to             

adjust for local sparsity. These features make significant difference in the performance of the two               

methods and precisely due to them; oKDE can use fewer kernels and still perform better than                

traditional KDE on a number of settings.  

 

Figure 2.11: The number of kernels as function of set size. In general, 5-8 well placed components is                  

enough to properly represent respond time distributions.

Additional very important observation is in the fact that oKDE improves approximations for             

smaller datasets. A common perception for requirement of many trials to perform distributional
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analysis is a general factor in ruling out analysis of RT-distributions. We observed that 100+               

datapoints may be satisfactory to produce a good PDF approximation of the RT-distribution.             

However, this number varies depending on the task participants perform as well as how              

individual participants perform themselves. The oKDE method could describe better the data            

within the tails of RT-distributions. It could be argued that QML (Heathcote, Brown, &              

Mewhort, 2002) method is a more suitable than KDE because it divides cumulative function into               

equally likely bars. As a result, it deals better with increasing sparsity within tails. In other                

words, when tails are wide but unlikely, a common bandwidth provides a poor approximation of               

the probabilities at the tail and an extension for varying minimal bandwidth depending on which               

part of RT-distributions is being approximated would further improve their approximations.           

There are some KDE implementations that attempt to generalise data when the variance of the               

data changes (Wand, Jones, 1995; Cwik & Koronacki, 1998; Vincent & Bengio, 2003) which              

could be incorporated within oKDE. An alternative solution would be to replace Gaussian or              

Epanechnikov kernels with skewed kernels such as Poison (Wang et al., 1996; Byers & Shenton,               

1999). Skewed kernels could be better suited option to represent RT because both distributions              

can represent skewness properties. Most likely such kernel choice would further reduce the             

number of kernels required to represent RT-distributions improving efficiency of the evaluations            

and comparisons. 

KDE is a non-parametric method that approximate unknown PDF functions. This generally            

implies that an approximated distribution will not be normally distributed and general statistical             

methods assuming normality would fail. However, an approximation of PDF equips researchers            

with a possibility to compare datasets that have various distributional shapes. Distance measures             
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such as KL-divergence or Hellinger distance become available for approximation. However,           

currently KDE application is still limited for RT analysis because researchers are often interested              

in the comparison of groups and no aggregated KDE method is available. One especially              

attractive feature of QML is its ability to generate a super participant. However, a possible               

solution may rest within approximation of distance metrics such Hellinger because Hellinger            

comparison is only available when a common denominator is found (Kristan, Leonardis, &             

Skočaj, 2011). This common denominator may also be a solution for aggregating RT distribution              

from different participants. Further mathematical research is needed to clarify and develop a             

method for determining a superparticipant for more practical use of KDE methods. 

To sum up, we have introduced a novel KDE method that approximates RT-distributions in order               

to aid psychological analysis of cognitive processes. We provide a good illustrative guide for              

choosing appropriate settings for the configuration of the two methods and show that this oKDE               

is a better choice than traditionally used KDE method. However, there is further room for               

improvement of approximations for the RT-distributions that would enhance the description of            

the data sparsity at the tails as well as the right choice of the data size provided the knowledge of                    

expected RT-distribution of the experimental task. Finally, an addition of appropriate statistical            

tests for comparison of different RT data approximations would increase the attractiveness of the              

method and development of KDE aggregation for between population analysis would be            

welcome as well. Moreover, while we have limited this study to RT-distributions, it has much               

wider research applicability and we will show two additional applications for KDE methods in              

the next two chapters. 
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Chapter 3: 

Robust Likelihood 

Abstract 

An introduction of KDE approximation has additional properties that can be employed for             

statistical robustness. This chapter proposes a novel approach to deal with data that is              

misrepresented by the approximation of probability density functions (PDF). It is well            

established fact that RT-distributions are contaminated and that this negatively affect parameter            

estimation of the models. Various approaches showed that general practices such as cutoff can              

aid in finding the correct solutions but frequently fails in properly identifying these outliers.              

Moreover, RT-distributions are known to contain hidden contaminants that are within tail but do              

not correctly represent a processing time of the given task. The usage of known robust methods                

is still limited possibly due to limited development in statistical inference, especially in Bayesian              

inference. However, there is a growing interest in these methods though mainly outside of              

psychology field. In this research we aim to introduce robust statistics as a good alternative to                

traditional maximum likelihood estimation (MLE) approach. We present a novel robust           

likelihood method that behaves equivalently to traditional MLE method when the model is well              

defined but contains robustness properties similar to robust methods when that is not the case               

(i.e. presence of contaminants). 
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3.1 Introduction 
In previous section we have proposed the use of one of the best KDE methods for approximating                 

analytically intractable models. However, KDE simply provides with a more accurate unknown            

model description than a number of methods are generally used. Ratcliff (1978) showed that              

using moments fails to accurately capture skewness and kurtosis and suggested using ex-Gauss             

as intermediate simpler model. Heathcote, Brown & Mewhort (2002) and van Zandt (2000)             

further extended the literature by introducing quantile (QML) and cumulative density estimation            

(CML) methods. All these methods use some goodness-of-fit function for estimating the best             

fitting parameters. Arguably, MLE is the most commonly used goodness-of-fit measurement for            

fitting models to RT-distributions which was used for ex-Gauss parameter estimation (Hockley,            

1984; Ratcliff, 1978) as well as parameter estimation using quantile maximisation (Moran et al.,              

2013). An alternative commonly used method is Least Squares Estimation (LSE: Usher &             

McClelland, 2001; Bogacz & Cohen, 2004; Tsetsos, Usher, & McClelland, 2011) which was             

shown to be the most efficient method for models with intractable PDFs (van Zandt, 2000;               

Heathcote, Brown & Mewhort, 2002). 

Another issue some of these methods attempt to address is robustness. It is a very intriguing                

property that could potentially provide the solution for response time distribution modelling            

because RT data which is often plagued with outliers and general contaminations, whether it              

appears as fast, slow or hidden within main distribution (Miller, 1991; Ulrich & Miller, 1994).               

Some contaminants such as fast responses can be easily recognised as long as it does not overlap                 

with the RT distribution, but slow and especially hidden are trickier or simply impossible to               

distinguish. These contaminants can badly affect parameter estimation with bias being a likely             
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outcome (van Zandt, Colonius, & Proctor, 2000). QML also was designed with robustness             

properties in mind showing better robustness properties than CML.  

The most successful approach produced a workaround by modelling the contamination itself and             

employed MLE over that model (Ratcliff & Tuerlinckx, 2002; Ratcliff & McKoon, 2008;             

Wagenmakers et al., 2008). However, extending models by adding another component to the             

resulting PDF creates a number of theoretical issues on modelling RT-distributions. Firstly, it             

assumes how contaminants affect RT-distributions and research in this area appears to be limited              

at best. Ratcliff and Tuerlinckx (2002) proposed using uniform noise for hidden contaminants             

but there’s not theoretical backing over this suggestion. Moreover, it ignores the fact that the               

model may in fact be able to accommodate contaminants within itself by modifying the              

parameters accordingly. In these circumstances expecting parameter recover is a wrong initial            

expectation because the model is too flexible. Robust methods are a better choice for recovering               

parameters for cognitive models of RT-distributions because they will identify a possibility that a              

model is too flexible. If the resulting outcomes are equivalent to the outcomes produced by               

standard parameter estimation approaches, then it is flexible enough to account for these             

assumed contaminations. In fact, this is a potential extension to the assessment of the model               

complexity in terms of its flexibility since models can contain the equivalent number of              

parameters but one use more flexible functions. 

Another purpose for employing more robust goodness-of-fit is due to our introduced KDE             

method. Basically, many of psychological processes are modelled using stochastic models and            

these often have no known likelihood function as such problems quickly become mathematically             

intractable. In this modelling enterprise the model’s PDF needs to be created via Monte Carlo               
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sampling which sometimes leads to a misrepresentation of the model’s PDF particularly for             

unlikely simulation outcomes (i.e., unlikely data points). Unfortunately, response time          

distributions associated with these psychological processes are skewed while our used KDE            

method was the Gaussian mixture model. This means that sporadic RTs within tail have lower               

density and simulations may fail to produce any response at the low end of the RT distribution                 

completely. In other words, the KDE constructed from such a sampling error assigns small              

probabilities to these data points; in fact even smaller than implied by their presence in the                

dataset. But other sampling runs with similar parameter settings may assign reasonable            

probabilities to these data points. Such variations in sampling can lead to large problems in               

finding optimal parameters during the parameter estimation. 

The following chapter will introduce the methods we used to assess our robust likelihood method               

and how they compare to it. We designed multiple experiments emulating fast and slow but               

hidden contaminants. However, we do not introduce additional noise component and perform no             

data truncation (Ratcliff & Tuerlinckx, 2002). We use these contaminated distributions for            

showing how our method behaves in relation to the likelihood as well as Hellinger distance. 

3.2 Robust Divergence Functions 

It is relatively unknown in psychological literature that likelihoods and square distance belong to              

a broader class of goodness-of-fit power functions for finding the best solutions (Cressie & Read,               

1984). These functions are also known as divergence functions that provide with comparison             

measurement between two density functions. The likelihood equivalent divergence functions is           

commonly known as Kullback-Leibler (KL) divergence. In general, various power divergence           
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measurements have a trade-off between robustness and efficiency where efficiency means that            

less data is needed to recover proper parameters. Two most common goodness-of-fit, likelihoods             

and square distances, methods in Psychology are both efficient methods (Lindsay, 1994) and             

only these evaluation criterias were generally compared (van Zandt, Colonius, & Proctor, 2000;             

Ratcliff & Tuerlinckx, 2002). The observations found in their work is not surprising since the               

least squares implementation is represented by Pearson’s which is more efficient than       χ2       

likelihood equivalent KL-divergence. Therefore, it recovers parameters better when         

contaminants are removed or incorporated within a model. In fact, it is well understood how               

these methods differ in their asymptotic properties with MLE and being the best suited when          χ2       

the model is a good representative of the data.  

However, other very useful power divergence measures such as Hellinger distance, to the best of               

our knowledge, were never used in psychology, even though it is inherently robust to the               

contaminants present in the data. This metric is a special case of divergence measures because it                

is symmetric, i.e. a reverse comparison between two density functions produce identical value.             

The most important feature Hellinger distance possess is an inherent robustness to the             

contaminations when the model is poorly specified. It’s limited usage may in part be explained               

due to Hellinger distance requiring known density functions It does not have a convenient              

likelihood form as KL-divergence does, which implies that PDF approximation for the data is              

required. Overall, robust methods such as Hellinger are influenced substantially less by            

contaminants than commonly used methods within psychology. Bogacz and Cohen (2004) did            

observed that LSE methods can be adapted to be more robust by modifying normalising factor.               

In fact, a lesser known Neyman’s is robust to the outliers which has a different normalisation      χ2            
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factor than Pearson’s . However, modifying this normalisation factors trades efficiency in   χ2          

exchange of robustness. 

Generally, the Hellinger distance is rarely used outside statistical sciences despite its inherent             

robustness properties. Methods were also developed, albeit delayed compared to MLE, for            

statistical testing, for example, there is a likelihood ratio equivalent test designed for Hellinger              

distance (Simpson, 1989). Hellinger distance does require for a known PDF functions though             

more recently a number of methods were developed for Hellinger approximation (Lu, Hui, &              

Lee, 2003; Karlis & Xekalaki, 1998; 2001; Kristan, Leonardis, & Skočaj, 2011). However, its              

usage was still hampered by increased interest in Bayesian methods in the 90s due to growing                

available computer resources. Regardless, more recently there has also been growing interest in             

robust Bayesian inference by replacing likelihood function with various power divergence           

measures such as Hellinger distance itself (Hooker & Vidyashankar, 2014; Liu et al., 2014).              

Unfortunately, to the best of our knowledge there’s still no method available for model selection               

that would take into account model complexity when only the best solution is known. Finally,               

Hellinger distance compared to efficient method behaves poorly with low number of samples             

(Basu, & Lindsay, 1994; Lu, Hui, & Lee, 2003; Patra, Mandal, & Basu, 2008) which is a                 

common issue in psychology but the same issue has been in RT-distribution analysis thus we               

expect the sample sizes for RT experiments to grow.  

All in all, we opted to introducing a likelihood modification that would behave equivalently to               

the likelihood method when the model is well-defined but contain similar robustness properties             

as Hellinger distance. For this purpose we used Hellinger distance as performance evaluation of              
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the introduced modification to the likelihood function. Hellinger distance is expressed as            

follows:  

D(D, (θ)) ( ) ;H M = 2∫
 

 
√(D) − √(M (θ)) 2  

Where represents an approximated PDF of the process that produced data and is a PDF D            (θ)M    

of the model’s output given  parameters.θ  

3.3 Maximum Likelihood Estimation 

Suppose we have data set and a model where is a parameter set     x , , .., , }X = { 1 x2 . xn−1 xn    (θ)M   θ     

of the model Then the likelihood is computed as follows.M  

(X |θ) (x |θ).L = ∏
n

i=1
M i  

is also known as likelihood function and maximising it is finding the best solution.(X |θ)L               

Likelihood functions can be categorised into three groups based on the structure of the data. 

The simplest form of data contains only discrete values. This generally corresponds to a              

frequency of possible outcomes. Let’s denote a set of possible outcomes as            

then all outcomes in this set will have some probability value thats , , .., , },S = { 1 s2 . sm−1 sm              

corresponds to a frequency of outcome in the data set. This could be a number of correct and      sj              

incorrect responses by a participant. On the other hand, our task could be any two alternative                

choice task which then provides us with data on correct/incorrect responses for both choices.              

This could be expanded with even more possible choices. 
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Such data would require a corresponding model to explain the observed differences and predict              

possible different outcomes if more data was gathered. For data sets that have only two possible                

outcomes we would construct some binomial distribution to represent our observed data. For             

more outcomes we would further extend to a multinomial distribution. For a relative example              

assume that our chosen model can produce all outcomes contained in the set Also, our data        m       .S    

contains at least one example for each outcome in with a varying frequency. Furthermore, our         S        

model has a known probability mass function that gives some probability value for each possible               

outcome Now we can use these probabilities to (S) P (s ), (s ), .., (s ), (s )}.P = { 1 P 2 . P m−1 P m        

construct mass function directly into an equation of likelihood function          

Continuous data in that regard does not differ much from(X |θ) (x ) (s ) .L = ∏
n

i=1
P i = sj = ∏

m

j=1
P j

P (X=s )j           

discrete data. It simply is an extension from a fixed number of outcomes to an infinite number of                  

outcomes and probability for the categories is replaced with probability for the density forming a               

probability density function. 

The biggest different from the description provided above is when data is mixed. A slightly more                

straightforward example of mixed data could be a response time data generated from two              

alternative choice tasks. In this case we have two continuous distributions and containing           X   Y   

response time data. For illustration let’s return to discrete example, each possible outcome has              

only one associated value. If we were to express this in a probability distribution, we would use                 

dirac delta distribution and rewrite our equation as follows  

,(X |θ) (s ) (s ) (x )L = ∏
m

j=1
P j

P (X=s )j = ∏
m

j=1
P j ∏

X=sj

i=1
δsj i  
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this means that in a continuous space this outcome has only one value with a probability of one                  

and the rest has a probability of zero, thus these values did not occur. Dirac delta function has a                   

variance of 0, but as you increase this variance the amount of values increases and the             X ∈ sj     

probability drops. In other words, we can overwrite dirac delta function with any probability              

density function Therefore, a maximum likelihood for response time distributions and  (x).f          X   

 isY   

(X , |θ) (X) (x ) (Y ) (y )L Y = P ∏
 

i=1
f x i * P ∏

 

i=1
f y i  

and for any number of data distributions (S|θ) (s ) (x ).L = ∏
m

j=1
P j ∏

X=sj

i=1
f sj i  

3.4 Robust Maximum Likelihood 

We improved the robustness of estimating the likelihood function at unlikely data points by              

introducing a dataset-defined threshold for the model’s pdf. Note that thresholding very small             

pdf-values is common practice to avoid numerical issues (i.e., underflow) in the calculation of              

likelihood values. Consider a discrete example of two-choice decision making task with very low              

error rates such as one error. A model unable to produce any errors would not even be considered                  

due to multiplicative properties of likelihood. However, if the model does not have a known               

likelihood function and some stochastic process of the model has outcomes that have very low               

chance of occurring, you would regularly fail to acknowledge the best solution. Furthermore, if a               

considered model differs from data only by failing to produce that single error, it is not a bad                  

solution and does not imply that it can’t produce it. Importantly, a probability of that single point                 

is , where is the number of datapoints. This means that it cannot have a probability1/n   n               
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between zero and one. A viable solution to this numerical issue could be half of the minimum                 

value: The same reasoning can be applied to continuous data. In order to determine this/(2n).1                

threshold, we fitted a KDE to the dataset.  

 

Figure 3.1: This figure show Weibull dataset when no noise was introduced and how different               

goodness-of-fit measures behave. Top graph illustrates the dataset while the bottom two graphs show              

profiled parameter values with blue stars representing Hellinger, red stars showing likelihood and green              

stars show our proposed dynamic likelihood. Bottom left figure show the profiled shape parameter when               

the scale is being changed and right figure show the profiled scale when shape is being changed. When                  

shape is being profiled, the robust likelihood behaves similarly to both methods while in terms of scale, it                  

behaves more similarly to Hellinger rather than likelihood. 
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As stated in the KDE chapter, the oKDE method initially assumes a kernel for each data point                 

(similar to the traditional KDE-approach) and determines the smallest bandwidth for this initial             

KDE using an optimality criteria. This bandwidth defines a lower bound for a probability of a                

data point to occur. Hence, any PDF constructed for a model (KDE) should produce at least this                 

probability for each datapoint. In other words, if the model is correct, a failure to produce                

reasonable probabilities for unlikely data points has to be due to the sampling error.              

Thresholding the model’s KDE in this situation corrects this error, which means that this              

bandwidth forms a reasonable threshold for the model’s PDF (KDE). We used Gaussian             

function which has the mean equivalent to data point and some bandwidth then a probability            ,h     

for non-represented points would be expressed as follows: . To finalise, an ideal       1/(2n)ϕ(x, )   h      

solution for a given continuous dataset is data itself thus a KDE constructed from data would be                 

identical to the KDE constructed from simulated data. Therefore, we can construct a KDE for               

data prior simulations, find a value for non-represented points and re-express our original             

likelihood function to:  

(θ) ax (M (θ), (0, )/2).L = ∏
n

i=1
m ϕ h  

3.5 Materials and Methods 
In order to demonstrate how a dynamic thresholding of the likelihood impacts the parameter              

space we have conducted a series of numerical experiments. All experiments used shifted             

Weibull as a baseline model with scale, shape and shift being set to 1, 1.5 and 1 respectively.                  

Using these parameters, a hypothetical large dataset containing 10000 points was generated. We             

followed with constructing an equally distributed parameter grid of scale and shape for             
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evaluation while shift was retained constant throughout the study. This grid had scale varied              

from 0.1 to 2 and shape varied from 0.1 to 3 with a common intermediate step of 0.05, this                   

formed a 39x59 parameter set matrix. Each parameter combination had 1000 simulated            

datapoints generated to construct an approximate pdf of the model. All pdf approximations were              

performed using oKDE with a maximum error from data being set to 0.02. For comparison               

purposes we used likelihood with very low numerical threshold to protect against unlikely             

numerical underflow ( ) as well as proposed dynamic threshold. Both methods were  0t = 1 −200           

compared in relationship to the Hellinger distance as a reference to how robust methods behave. 

We constructed 4 case scenarios of possible contaminations present within given dataset. The             

first is a ground truth example to illustrate the differences in behaviour when there is no                

contamination other than asymptotic deviation produced 10000 random samples. Fig ? show the             

distribution produced by these samples and the parameter performance using the 3 outlined             

criterias. The top figure show the hypothetical data distribution used and the bottom two graphs               

show how the parameters interact. Since the goodness-of-fit measures cannot be compared            

directly, we looked how they affect the parameter landscape at each parameter dimension. We              

chose to use profiling rather than marginalising due to the same issue of comparison. Profiles are                

defined as maximum value across dimensions of interest: where is        (X |θ ) ax(f (X |θ );f θ−θ* = m *  θ*  

the dimensions we want to profile through and are remaining dimensions. The results show        θθ−θ*       

that robust likelihood behaves more similarly to the Hellinger distance rather than likelihood. A              

more rapid drop of the shape parameter when larger scale values are considered (left figure) can                

be observed for robust likelihood compared to the Hellinger. However, the main difference             

emerges in the right figure where the rate of change for scale parameter as shape is being                 
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increased is much higher for likelihood than the other two evaluation measures. Robust             

likelihood has almost identical behaviour compared to the Hellinger. 

 

Figure 3.2: This figure show Weibull dataset when responses that are too fast are recorded and how                 

different goodness-of-fit measures behave. Top graph illustrates the dataset while the bottom two graphs              

show profiled parameter values with blue stars representing Hellinger, red stars showing likelihood and              

green stars show our proposed dynamic likelihood. Bottom left figure show the profiled shape parameter               

when the scale is being changed and right figure show the profiled scale when shape is being changed. In                   

both cases, the robust likelihood behaves more similarly to Hellinger rather than likelihood. 

We considered 2 different contaminations separately and in combination. Firstly, we generated a             

hump of fast responses by replacing 0.05% of the datapoints with normally distributed noise              

 

54



which had a mean of 0.6 and standard deviation of 0.15. It is easily distinguishable noise and                 

simple data cleaning could remove these points but it is a good standard example for robustness                

study. Our next contaminants introduce slow error which visibly extend tail but difficult to              

determine as outliers. One contaminant noise followed uniformly distributed noise as modelled            

by Ratcliff’s & Tuerlinckx’s (2002). It was an additive noise to the RT data and the frequency                 

was assumed to be 0.05% of the time while the range was between 0 and 5. Such noise within                   

RT data makes it difficult to determine how much of that tail is caused by unrelated interfering                 

processes within brain and how much is a genuine processing time. 

3.6 Contamination studies 
Firstly, we will take a look at three different observable contaminations separately and then show               

how it impacts results when there’s a combination of noise. Fig ? show the considered dataset                

with contamination by fast responses and the bottom two figures show parameter relationships in              

the same way when no noise was considered. The parameter relationships clearly show that              

likelihood deviates from the other two curves for both parameters. Moreover, it does not stay in                

the 1 and 1.5 intersection for scale and shape respectively while the other two evaluation criterias                

stay within this intersection. Robust likelihood behaved very similarly to the Hellinger except for              

the same area of bottom left figure as in no noise case and this difference appears to increase                  

showing that methods while behaving similarly, they do behave differently away from the true              

solution. 
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Figure 3.3: This figure show Weibull dataset when additive flat noise is added to a 5% of the dataset and                    

how different goodness-of-fit measures behave. Top graph illustrates the dataset while the bottom two              

graphs show profiled parameter values with blue stars representing Hellinger, red stars showing             

likelihood and green stars show our proposed dynamic likelihood. Bottom left figure show the profiled               

shape parameter when the scale is being changed and right figure show the profiled scale when shape is                  

being changed. In both cases, the robust likelihood behaves more similarly to Hellinger rather than               

likelihood. 

Our next considered example introduced a identical model for contamination as proposed by             

Ratcliff & Tuerlinckx (2002) which adds uniform noise to small subset of the RT data. In this                 

case the noise simply extends the length of the tail and the cutoff is not so straightforward. Fig ?                   

show this example with distribution having a noticeably longer tail. This inclusion has changed              
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likelihoods behaviour which still shows a preference for lower scale values but the effect is               

smaller. However, it has clearly change the behaviour around shape parameter because it shows a               

clear tendency to increase value linearly with the increase in scale. The likelihood also misses 1                

and 1.5 interception as it did in the case of the fast contaminants. Importantly, the behaviour of                 

dynamically thresholded likelihood and Hellinger distance was almost identical with little           

observable difference between their behaviour. Both measures did not deviate from the proper             

interception illustrating that dynamic likelihood possess desirable robustness properties. 

Our final example contained fast responses as well as flat slow contaminants, this adds to 10%                

contamination which could be considered as bad data. Fig ? illustrates this scenario and results               

repeat an obvious advantage for Hellinger distance as well as dynamic likelihood. The typical              

likelihood exhibited the behaviour that is a mix two behaviour observed in previous examples. A               

more scarce shape parameter distribution tending to have values below 1 while correct solutions              

should have been around 1.5. The scale tended to go higher with increasing shape parameter but                

the slope is less pronounced compared to slow contaminant example but more pronounced             

compared to fast contaminant example. Dynamic likelihood very behaved similarly to Hellinger            

disparity measure with little observable difference. 

Fig ? show how dynamic likelihood behave under different contaminants. There are no             

noticeable differences in terms of scale parameter as shape is changed but there is observable               

difference when shape is considered. When contaminants are being introduced, the preferred            

shape parameter values appear to dip below 1.5 with the highest dip being introduced under the                

largest 10% contamination (both contaminants). It is not a surprising result since the possibility              

to remove outliers via parameter fitting and robust methods depends on the model itself. If there                
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are model specifications that can perfectly describe data (even if outliers are present), robust              

methods will find this model specification thus it is not surprising that there may be a Weibull                 

model specification which somewhat describes data with outliers. However, it may also be the              

result caused by the difference between non-contaminant parts of the data. The results are not               

sufficient to declare a systematic bias and asymptotic properties of the proposed method should              

be studied to properly identify its sensitivity to biases. Regardless, the proposed method behaved              

very similarly to a Hellinger method which has known asymptotic properties thus it could be               

expected to have them very similar. These results show that the proposed method is a viable                

alternative to Hellinger distance for robust statistical inference and is a good solution for finding               

the best parameter settings for RT data despite the presence of contaminants. 

3.7 Discussion 
In this section we introduced a modification to the approximate likelihood values for             

contaminated data. The general idea of the suggested method emerges from common practice to              

apply some small probability values to non-represented data points to prevent numerical            

underflow. We replaced this constant thresholding mechanism with dynamic thresholding that           

depends on the data itself. This modification introduces robustness properties to the likelihood             

function which is a desirable feature for model fitting on response time (RT) distributions. We               

propose this method as a viable option for performing model fitting in various contexts and               

designed a few experiments designed to outline its behaviour. Numerical comparisons were            

performed on most commonly used likelihood method, a known robust Hellinger distance and             

our suggested robust likelihood method to find how the robust likelihood behaves in relation to               

these two methods. We believe that this likelihood modification for recovering model parameters             
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modelling RT-distributions in the presence of various contaminants is a potential new method for              

identifying the best fitting parameters as well as applying it to Bayesian inference. 

 

Figure 3.4: This figure show Weibull dataset when additive flat noise is added to a 5% of the dataset as                    

well as 5% of the dataset is replaced with fast contaminants and how different goodness-of-fit measures                

behave under these contaminants. Top graph illustrates the dataset while the bottom two graphs show               

profiled parameter values with blue stars representing Hellinger, red stars showing likelihood and green              

stars show our proposed dynamic likelihood. Bottom left figure show the profiled shape parameter when               

the scale is being changed and right figure show the profiled scale when shape is being changed. In both                   

cases, the robust likelihood behaves more similarly to Hellinger rather than likelihood. 
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To illustrate robust likelihood properties we have constructed a hypothetical dataset using a             

Weibull function. The parameters for Weibull function were set to the best parameter settings of               

human RT distribution in order to create a realistic as well as controlled settings. We followed                

the example by contaminating this dataset with typical RT contaminants of fast responses as well               

as slow responses (Ratcliff & Tuerlinckx, 2002). Overall, there were four contamination settings             

with none, fast, slow and both contaminations that were considered. We used these 4 datasets to                

assess how well these metrics recover original parameters by observing their general behaviour             

as parameters are changed. The results suggest that robust likelihood behaves almost identically             

to the Hellinger distance in most scenarios suggesting equivalent robustness properties in most of              

the situations. Both metrics show little responsiveness to the presence of the outliers while              

original likelihood displayed deviation from original behaviour. 

No noise example result of the robust likelihood was disappointing when compared to the other               

two methods because the results showed equivalent behaviour to Hellinger distance. This result             

suggests that this modified likelihood also possess lower efficiency than traditional likelihood            

method. This means that larger samples are required to be able to recover original parameters               

compared to MLE or LSE methods (Lindsay, 1994). However, we used thresholding of 50%              

over the minimum probability but it most likely is not the best option. Further studies on                

specifying a proper thresholding criteria could improve suggested issue of efficiency since no             

thresholding is a true likelihood method. Moreover, our adopted KDE method is more efficient              

than Silverman’s KDE which possibly already improves efficiency of the robust methods in             

general. 
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Figure 3.5: This figure show how dynamic likelihood behaved under different contaminants. Red stars              

show the situation with no contamination, blue with fast contaminants, green with slow and purple shows                

a combination. The scale parameter does not show and difference in behaviour (right figure) and shape                

suggests a small deviation from the situation with no noise. 

In conclusion, we have modified a likelihood function by introducing robustness properties            

informed by the data itself and showed that this simple modification introduces robustness             

properties that are on part to the Hellinger distance which is known for its robustness properties.                

We demonstrated that both methods recover true or close to true parameters when commonly              

observed contaminants are included within RT-distributions and no additional complication of           

the model is required (Ulrich & Miller, 1994). While robustness is a nice extension for cognitive                
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modelling, there’s further work required to identify optimal implementation of the robust            

likelihood and how its introduction would impact Bayesian inference. 
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Chapter 4:  

Approximate Bayes Sampling with Excessively High Likelihood 
Errors. 

Abstract 
Every approximation produces some error from true solution which introduces some uncertainty            

variable over the true solution. Simple undefined models with its unknown PDF are easily dealt               

by adding some normally distributed error function which enables Bayesian Inference over the             

model. Such uncertainty simply expands confidence interval of the posterior distribution           

estimates without much additional impact. However, the KDE approximation over the model is a              

mixture approximation which is known to have undefined true maximum likelihood. A simple             

addition of the normal process to the variables does not aid in estimating model parameters. This                

is a mild issue for the best solution estimation but confidence intervals are difficult to define,                

especially for computationally expensive models. A standard method for posterior approximation           

uses acceptance/rejection criteria of Metropolis-Hastings mechanism which is a core mechanism           

in Markov Chain Monte Carlo methods. However, this mechanism fails with undefined            

maximum likelihood and this chapter illustrates this issue as well as designs a new algorithm that                

deals with the issue of undefined maximum likelihood. 
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4.1 Introduction 
Earlier we have shown that reaction time distributions can be represented using kernel density              

estimator methods (see KDE section). The same method can be used to characterise models with               

analytically intractable PDFs. A capability to describe models that do not have a known              

probability density function expands assessable models by extending solvable complexity of the            

models. This ability is particularly useful if the models are based on neurobiologically plausible              

mechanisms which go beyond the currently very popular decision models (Usher & McClelland,             

2001; Wang, 2002; Shadlen & Newsome, 2001). It is important to show that these accumulator               

models can produce equivalent RT-distributions to probabilistic models. However, currently          

available methods are limited and further work in designing accurate and efficient methods that              

are able to approximate these models is required.  

A classical approach to optimise the models is by estimating maximum likelihood (MLE) via              

likelihood function. Analytically intractable models do not have a known PDF thus quantile             

approximations are usually used (Maritz & Jarrett, 1978; Heathcote, Brown &, Mewhort, 2002;             

Heathcote, Brown, & Cousineau, 2004). These quantiles discretize probability functions into           

bins which are used as an alternative to the unknown PDF. Once approximation of the PDF is                 

constructed, MLE methods can be used to identify the best fitting parameters. An alternative              

approach exploits Bayesian methods which in the past several years have been growing in              

popularity in terms of usage as well as applicability and psychology is no exception (Turner &                

Van Zandt, 2012; Vincent, 2015). Classical Bayes is expressed as follows: 

(θ|X) (X |θ)P (θ)/ (L(X |θ)P (θ)),P = L ∫
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where left-side of equation is a probability distribution of the parameters (expressed as ) given            θ   

data referred as posterior, is a prior, is a likelihood function and an integral on  X    (θ)P    (X |θ)L         

the right-side of the equation is also known as marginal which makes posterior a proper               

probability distribution. This is a direct extension from MLE methods that provide distributions             

for the parameters of the model. This method is superior to MLE as it reuses available                

knowledge expressed within prior to construct probabilities for parameter settings given the new             

data. It also generalises better for model selection as an entire parameter space is used for                

comparing which model described data better. However, since it still uses likelihood functions, it              

inherits all the issues present in MLE methods for analytically intractable models. Moreover,             

MLE approximation methods such as QML based approach for approximation of           

RT-distributions are biased in Bayesian settings and an alternative KDE methods are better             

suited (Turner & Sederberg, 2014) which, as we will show later, create other issues in posterior                

approximation for analytically intractable models. 

A number of sampling algorithms have been developed to approximate the posterior distribution             

when likelihood functions are not available. Most of the algorithms are designed for models that               

do not have a known likelihood function but likelihoods themselves are easily evaluated. Well              

known examples involve using generic functions to describe model’s behaviour (Ratcliff, 1978)            

or using some stable summary statistics such as QML (Heathcote, Brown, & Mewhort, 2002).              

More notable Bayesian approximation algorithms follow Metropolis-Hastings MCMC        

probabilistic acceptance/rejection (Hastings, 1970). Other MC algorithms such as Importance          

Sampling exploit the knowledge of sampled space by resampling available samples (Doucet &             

Johansen, 2008). However, all these methods fail when likelihood values are not easily retrieved.              
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Contrary to other sampling methods, Approximate Bayesian Computation (ABC) algorithms          

assume likelihood functions are not available and replaces them with two alternative methods.             

One method introduces tolerance function to filter out poor parameter samples (Sisson, Fan &              

Tanaka, 2007; Beaumont, Cornuet, Marin & Robert, 2009) and another method weights these             

samples by mapping them via some kernel function (Beaumont et al. 2002; Wilkinson, 2008,              

2013). Both methods extend to posterior approximation algorithms though their accuracy is not             

fully understood while the algorithms tend to suffer from the curse of high-dimensionality             

(Beaumont, 2010). 

In this section we propose a new Importance Sampling algorithm based on clustering space as               

means to remove accept/reject notion to deal with the curse of high-dimensionality. We will also               

extend it by integrating tolerance threshold and propose a new method to determine this              

threshold by approximating the most likely model approximation at the best parameter solution.             

We will start this section with a brief introduction to a couple of main algorithms available for                 

Bayes approximation. We chose DE-MCMC algorithm to represent a class of algorithms that use              

MH acceptance criteria because it is a main component that hinders this class of algorithms. This                

class includes other algorithms such as Hamiltonian Monte Carlo (Neal, 2011) but will suffer              

from the same efficiency issues that are created due to undefined maximum likelihood, thus will               

not be looked at. However, DE-MCMC is one of the least costly methods computationally wise.               

Another class of algorithms originates from resampling mechanism used in Importance Sampling            

class of algorithms. We use this particular mechanism to develop a new algorithm based on               

parameter space clustering. It will follow with working examples when likelihood values are             
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computable but not the likelihood function. Afterwards we will consider the situation when             

likelihood values are not available and propose adjustments suitable for such situations. 

4.2 Differential Evolution - Markov Chain Monte Carlo (DE-MCMC) 

Recently a new algorithm based on differential evolution (DE: Storn & Price, 1997) for              

analytically intractable and linearly correlated models has been proposed (DE-MCMC: Turner,           

Sederberg, 2012; Turner et al., 2013). This algorithm has been successfully applied to a few well                

known analytically intractable models such as Leaky Competing Accumulator model (LCA:           

Miletic et al., 2017) and Feed-Forward Inhibition model (FFI: Turner, Sederberg, & McClelland,             

2016). It combines a couple of major algorithms to deal with issues of posterior approximation               

when such models are being used. 

Firstly, it incorporates a traditional Metropolis-Hastings probabilistic acceptance/rejection        

procedure of the algorithm (Hastings, 1970). It is a classic sampling algorithm for approximating              

posterior distribution which has been used in psychology as a standard method to approximate              

posterior distribution. This algorithm works by employing Markov Chain Monte Carlo (MCMC)            

property that accepting or rejecting proposal given a previous state of the chain would converge               

to the posterior distribution. The probability to accept or reject is defined by likelihood ratio               

between between a new proposal and previous state which is expressed as follows:             

, where is a transition kernel and is fitness value of thein (1, )α = m π(θ )K(θ )n n
π(θ )K(θ )n−1 n−1

  (θ |θ )K n n−1       (θ)π       

given state (parameter settings). The algorithm uses a single chain which is perturbed to generate               

a new proposal governed by the transition kernel which is positioned at the centre of the current                 

state of the chain. Usually this transition kernel is normally distributed with some unknown              
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covariance matrix. This matrix is one of the free parameters that are used to determine how far                 

away from the current state the new proposal should be generated. This can be tricky when                

analytically intractable models are being used because parameter relationships are not always            

easily determined. Current state corresponds to the last parameter settings proposal that was             

accepted using the outlined ratio criteria, in other words, the chain is a sequence of accepted                

parameter settings that form a posterior distribution (Hastings, 1970).  

DE-MCMC algorithm introduces an evolutionary approach to generate proposals within          

posterior distribution by expanding MCMC chain into multiple chains jumping within posterior            

distribution at the same time. This forms a population which then can be used in a standard                 

evolutionary approach by using its two core features of mutation and crossover to find the               

solutions. Mutation works by randomly perturbing certain individuals within a population while            

crossover combines members of the population to generate a new population. DE-MCMC uses             

differential evolution algorithm which performs crossover by exploiting parameter relationships.          

In other words, it adapts to local parameter space by adapting their variances as well as                

correlations. This feature removes the requirement for transition kernel which otherwise has to             

be provided by the researcher. These parameter settings transitions are computed by mixing             

existing parameter solutions within current populations. It is computed as follows: 

(θ ) (θ ) ;θn,k0
= θn−1,k0

+ γ1 n−1,k1
− θn−1,k2

+ γ2 b − θn−1,k0
+ ε   

where indicates a weight contributing to the shift from original location, indicates some γ            k   

chain, current and previous states while are the best known solutions thus far. The ,n n − 1      θb         

equation also has error component which introduces random perturbation to the new proposals.     ε         
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A second additive component yields a shift towards the best known solution. This second              

component violates equality condition of the parent and child particles and is suited for finding               

the best solution. Setting satisfies stationary conditions and will converge to the posterior    γ2 = 0           

distribution. 

The last two features of the algorithm are mutation and migration. Mutation feature is used to                

keep exploring the parameter space by introducing changes to the parameter settings. The             

migration on the other hand works by dividing population into groups. Then, a few poorly               

performing parameter settings are exchanged between between groups to mix them. This            

migration prevents groups getting stuck in their local minima since a bad member of one group                

may be a good member to other groups. Overall, an introduction of evolution within algorithm               

makes it substantially more efficient than traditional MCMC algorithms because it can adapt to              

local space in terms of correlations as well as variance of the parameters. 

4.3 Importance Sampling 
An alternative class of algorithms for posterior sampling is Importance Sampling algorithms (IS;             

Geweke, 1989). IS is based on the idea that random sampling can be improved substantially by                

generating proposals from dense areas of solutions. IS algorithms work by constructing the             

Importance distribution and sampling from it rather than from prior distribution. Importance            

distribution provides sampling probabilities based on whether certain areas are undersampled or            

oversampled in order to guide future samples. Consider a target posterior distribution  

,(θ|X) (X |θ)p(θ)/( (X |θ)p(θ)dθ)P = M ∫
 

 
M   
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where indicates some model and a given dataset. The importance distribution is defined M      X          

by introducing the weight distribution as follows: . Weight distribution     (θ)W    (θ) (θ)P (θ|X)I = W    

itself is defined as a ratio between likelihood function and the posterior distribution:             

An ideal solution would have this weight at one for all parameter settings(θ) (θ)/P (θ|X).W = M               

as this is an indication of convergence between importance and posterior distributions. Basic IS              

algorithm would use this weight distribution to resample previous samples after iterations by           n    

introducing copies of the undersampled samples to guide sampling algorithm (Doucet &            

Johansen, 2008). 

This algorithm is easily extended to work iteratively by treating a posterior distribution also as a                

prior or sampling distribution and every consecutive draw immediately updates a sampling            

distribution, such algorithms are also called Sequential Importance Sampling (SIS) algorithms           

and belong to a class of Sequential Monte Carlo sampling (SMC) algorithms (Sisson, Fan &               

Tanaka, 2007; Doucet & Johansen, 2008; Beaumont et al., 2009). In this section we will               

introduce a new SIS algorithm which can be applied for computationally expensive models. Our              

SIS algorithm introduces clustering and additional dimension to the posterior distribution. The            

clustering helps to better approximate the expected likelihood values in specific areas and             

replace resampling by producing duplicates with sampling from local areas. The additional            

dimension represents the distribution of approximated likelihood values. This is motivated by the             

fact that fitness outcomes have a distribution of their own and parameter values are correlated               

with these fitness values. This modifications to the original algorithm substantially improves            

efficiency compared to MH-style algorithms as all defined samples are retained.  
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4.4 Sequential Importance Sampling by Clustering (SISC) 

4.4.1 The Algorithm 
 
1: nitialise θ  by sampling f rom a priorI 1:n  

2:  (X |θ )  L1:n ← M 1:n  

3: luster (θ )  K ← C 1:n  

4: or 1f ≤ k ≤ K  

5:   W  W eight(L |K ); k ←  L∈Kk k  

6: end  

7: or nf < i ≤ m  

8:    θ enerate(θ , ) i ← G 1:i−1 W  

9:    L  (X |θ ) i ← M i  

10:   K luster(θ ) ← C i  

11:   for 1 ≤ k ≤ K  

12:          W  W eight(W L |K ); k ←  k, i∈Kk k  

13:   end  

14: nde  

Fig. 2.3.1: This figure shows a pseudocode for proposed algorithm. 

Our Sequential Importance Sampling by Clustering (SISC) algorithm replaces the concept of            

samples with the concept of weighted areas which are represented by kernels. Fig 2.3.1 outlines a                

general description of the algorithm where represents parameter settings, is a likelihood or      θ    L     
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any other fitness measure, indicates the clusters within posterior distribution and are    K        W  

resampling weights. We propose to replace the notion of chains with clusters of samples within               

parameter space that are dynamically modified to accommodate knowledge about parameter           

space. We cluster the drawn samples to represent the posterior distribution (lines 3 and 10). This                

clustering can be performed in multiple ways and it will be discussed later. Once the clusters are                 

formed, the weights for the clusters are computed (lines 4-6 and 11-13). These values are               

normalised to form the selection of individual clusters probabilities and is a crucial feature of the                

algorithm. The main body of lines 7-13 iteratively generate new proposals that are used to update                

the knowledge about the parameter space. It updates clusters as well as fitness values to guide                

future samples and with sufficient number of iterations will converge to the posterior             

distribution.  

4.4.2 Importance Sampling by Clustering 
The simplest posterior distribution is normally distributed and has linearly or near-linearly            

correlated parameters. Algorithms such as DE-MCMC can also approximate skewed posterior           

distributions but its performance would deteriorate with increasingly complex posterior          

distributions. Generally, complex posterior distributions are represented using mixture models          

(​Cite​) and can accurately approximate posterior distributions when the flexibility of the mixture             

models are somewhat constrained, i.e. centres are allowed to vary but not variances (Grazian &               

Robert, 2015). However, we suggest that compression via clustering of the mixture model can              

reduce degrees of freedom and ultimately enable to approximate a proper unknown posterior             

distribution using a mixture model. In order to approximate unknown posterior distribution we             
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incorporated a number of features within online kernel density estimator (oKDE: Kristan,            

Leonardis, and Skočaj, 2011) to our proposed SIS algorithm. 

Firstly, we propose treating parameter samples as kernels which enables sampling from            

undersampled local space rather than producing copies. Consider a parameter sample distribution            

with its corresponding weight distribution During resampling phase, the basic IS producesΘ      .W         

a new distribution which has parameter values equally weighted. The primary goal is to   Θ*            

obtain a sample distribution that is equally weighted. The same can be achieved when parameter               

samples are treated as kernels and new parameter distribution has new proposals drawn         Θ*   ΘW     

in the neighbourhood of previous samples. This improves efficiency in terms of the variation of               

various samples but sampling can be further improved by expanding this local neighbourhood by              

compressing local kernels into one. These compressed kernels forms a clustered local sampling             

space. Each cluster is represented using a weighted Gaussian distribution which is a convolution              

of the points within i-th cluster: , where indicates the weight, is a mean of the      N (μ , )wi i σi   wi    μi      

points within the i-th cluster and is the covariance of the points within that cluster. Then the      σi            

posterior approximation can be re-expressed as a mixture of Gaussian clusters:  

(θ|X) N (θ|μ , ).P = ∑
 

 
wi i σi   

As a result, importance distribution is re-expressed as follows:  

(μ) (μ)/ N (μ|μ σ );I = W ∑
 

 
wi i i   

where  represents the centres of the clusters and  their standard deviations.μ σ  
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The vital difference emerges in determining the weight distribution because it is a ratio between               

likelihood and posterior. Working with clusters requires to assign some likelihood value to these              

clusters that would appropriately define their fitness. This can be obtained by merging likelihood              

values of all points within that cluster which is equivalent to computing the expected likelihood               

value: where is a likelihood of the data. Then the weight distribution (X |μ) (X |θ);Ln = n−1 ∑
 

 
L   L            

for importance sampling algorithm is expressed into: 

(μ) (X |μ)/ N (μ σ ).W = nμ
−1 ∑

 

 
L ∑

 

 
wi i i  

4.4.3 Sequential Updating 
An important feature of the algorithm is its extension to sequential updating of the sampling               

distribution because iterative sampling, albeit more costly, is much more efficient since it can              

react to very good new samples. It is especially useful in early stages of sampling as some new                  

samples can change the direction of posterior sampling. The new proposals are drawn from this               

weight distribution which are either integrated into the old clusters or begin to form a new                

cluster. Parameters that are being integrated into old clusters are simply added to the old integral                

where is a centre of the cluster, indicating the(X |μ) 1 )L(X |Θ) L(X |θ ),Ln = ( − n−1
n−1 + n−1 *   μ        n   

number samples represented by the component, being all the previous samples and      Θ        θ*

corresponding to the new proposal. When clusters are merged, the new likelihood integral is              

computed in the same manner, except for the weights representing the weights of the clusters.               

We select the area for generating a new proposal with the probability equivalent to normalised               

weight distribution.  
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A new random sample is drawn from local Gaussian distribution (see Local Sampling             

Distribution section) which is evaluated against data and added to the posterior approximation             

with the contributing weight where is the   ax(1, (X |θ )P (θ |X)/(L(X |θ )P (θ |X)));wθ* = m L * *
b b   θb    

best known solution. This further increases efficiency of the system because the contribution is              

increased or reduced depending on whether it is oversampled or undersampled proposal. It also              

guards from contributions produced by oddly shaped likelihood functions, i.e. multi-modal           

function. 

Importantly, we do not compress posterior approximation iteratively because it is           

computationally a relatively expensive feature. Instead, we use the a maximum effective number             

of clusters as a threshold for clustering to be performed as defined in oKDE (Kristan, Leonardis,                

& Skočaj, 2011). During this phase, the algorithm assesses whether the present combination of              

clusters can represent the parameter samples thus far within desirable accuracy. If it can              

represent, a smaller set of clusters is formed to construct a new posterior distribution              

approximation. When that is not the case, the maximum effective number of clusters is expanded               

by some scalar and bad clusters are divided to form a new posterior approximation with a   c               

larger number of components. We had this scalar set to 1.5 since Kristan, Leonardis, and Skočaj                

(2011) showed it to be sufficient. 

4.4.4 Local Sampling Distribution 
Using our new weight distribution we could perform sampling directly through mixture model.             

However, it is prone to degeneration because it does not explore space further away from already                

known samples. We propose extending this local neighbourhood by expanding chosen           

component from the mixture model. All current parameter samples can be evaluated against             
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separate weighted components. This provides us with a weighted vector where          p(μ, |θ),w σ  

weights indicate the probability of the component within mixture model of the posterior, we can               

construct a new Gaussian kernel that combines these weighted components using this computed             

weighted vector. Then the new local neighbourhood kernel is defined as follows:  

;N (μ , p (μ , |θ)σ / p (μ , |θ))K i =  i ∑
 

 
wi  i σi i ∑

 

 
wi  i σi  

where  is i-th new sampling kernel centered at the same value as the i-th cluster but expandedK i  

to the neighbourhood with the weighted probability of that centre in other kernels (a measure of 

overlap). 

4.4.5 Importance Sampling by Clustering with Forgetting 
We also introduced a burn-in sampling mode for finding the good initial posterior when initial               

population does not represent prior distribution. It simply weighs new arriving samples higher             

than older samples retaining the overall weight of the sample distribution set to some constant               

value . We set this weight to where corresponds to the number of dimensions being c       n,c = w  n         

approximated and is a scaling factor which we always set to 100. Such constant weight was  w               

relatively efficient and consistent in converging to the posterior distribution, though we expect             

that there are better ways to converge to good initial posterior distribution. 

However, in early sampling a weighted sequential updating of the posterior approximation is             

unstable because the probability of the new proposals is likely to be close to zero in comparison                 

to the best known solution. In this circumstance we suggest setting this contribution weight to               

one for all new samples until a good initial approximation is produced. Reverting to proper               
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weight contribution during posterior approximation will gradually phase any accidental poor           

samples. 

4.5 Materials and Methods 
To illustrate the working of the algorithm we created multiple tests in order to compare it to                 

DE-MCMC algorithm. For this purpose we used an analytically tractable 3 parameter Weibull             

model. This model has scale, shape and shift as parameters. To assign realistic parameter values               

this model was fitted to human dataset (information about dataset) (Wolfe ?). The best solution               

to this dataset is approximately 755, 1.24 and 426. Throughout the simulations, the hypothetical              

dataset (500 samples) was generated from these parameters which was used to compute the              

likelihood under provided model, this same dataset was used in all examples. We used this               

hypothetical dataset to reduce error arising from incorrect model choice, in this case the              

difference between Weibull and human participant. Throughout the study we used           

non-informative bounded uniform priors with the best solutions being roughly centred within the             

range of the uniform bounds (see Table ?). 

 Min/Max Bounds  

Scale 0:1500 

Shape 0:3 

Shift 0:900 

Table 4.1: This table shows the prior range used for each parameter setting of the Weibull parametric 

function. 

 

77



This study was divided into two parts. First part assumed that a kernel method used is the                 

Weibull function itself. This reduces the flexibility associated with kernel methods since there             

are fewer degrees of freedom. It also enforces the best solution to correspond to the actual best                 

solution and limits the possible variations within approximated likelihood values. In the second             

part we will examine the issues arising when a pdf approximator with unlimited degrees of               

freedom is used and how it impacts SISC and DE-MCMC. In this case we used mixture model as                  

pdf approximator as described in KDE section. In both cases each proposed parameter setting for               

the model would be used to generate 100 samples. We chose 100 samples since it illustrates                

potential limitations for simulating the model. 

The methods differ in their underlying processes and strengths as well as weaknesses. To adapt               

to these differences the running process differed for the algorithms, the requirements also             

differed within separate studies. In the first section, during the burn-in period DE-MCMC was              

run to produce 25000 proposals from 25 chains and their initial parameter sets drawn from the                

priors while SISC algorithm produced 2000 proposals with 100 initial parameter settings drawn             

from the identical prior. For posterior approximation we produced 50000 samples for            

DE-MCMC and 10000 samples for SISC algorithm. Additionally, SISC algorithm used oKDE            

for approximating unknown posterior distribution. The accuracy of oKDE was set to default             

value at 0.02 which is not the optimal option but this level of the accuracy did produce                 

satisfactory approximations of the posterior distributions. 
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Fig 4.1: This figure illustrates the posterior approximations produced by DE-MCMC (blue) and SISC 

(red) algorithms. Each graph shows marginalised dimensions and approximates produced similar 

distributions. The fourth graph shows the acceptance rate of DE-MCMC algorithm 

4.6 Noise-free posterior approximation 
We begin our algorithm assessment in perfect conditions when the model is analytically tractable 

and likelihood values are easily evaluated. We perform posterior approximation using 

DE-MCMC and SISC algorithms on the shifted Weibull model. All parameters were free to vary 

and had the best solutions and non-informative priors as described in general section. There were 

no changes in the settings of the algorithms as well. 
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Fig 4.1 shows the fitted results indicating that both methods fitted the underlying posterior              

distributions similarly well. There’s very little noticeable difference for SISC even though there             

was a compounded error introduced by the accuracy of KDE. It also shows the approximations               

are close despite the limited number of samples for SISC which is an important feature when                

lengthy MCMC sampling is too costly to perform. The fourth illustration of the figure show that                

DE-MCMC attained closed to 30% of proposals being accepted. This a very efficient acceptance              

that we will use as reference in later sections because this efficiency is the highest possible. Any                 

drop in efficiency will show how uncertainty over likelihood values impacts it. 

4.7 Model Error 

The main advantage of the algorithm emerges when likelihood values cannot be accurately             

measured as this is not always the case and more complex models require simulations to               

approximate this value. The fewer simulations are performed, the less accurate a resulting             

approximation of the model is. Depending on the model, many simulations can be infeasible.              

This induces error on posterior results which can take numerous forms and these will negatively               

impact posterior approximation algorithms. Under such conditions, a likelihood approximation          

can be expressed as follows: where is a random variable characterised     (D|θ, ) (D|θ) ;L ε ≈ M + ε   ε      

by some probability distribution and is a likelihood function of the model. This error term     M            

could take a range of distributions and the likelihood value error generally changes as the               

parameter settings are modified. In general, this can be divided into two situations, when              

likelihood function is unknown and likelihood values are strictly bounded at the maximum and              

when they are not. 
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Firstly, we will consider a situation that has likelihood function is unknown but its values are                

strictly bounded at the maximum. This is an interesting situation where the kernel estimator will               

introduce incorrect parameter setting by some error probability. As a result, this may produce the               

maximum likelihood value but will not produce higher likelihood values than the true maximum.              

Such situation emerges when the estimator of the model is limited to a set of simple functions                 

which can range from linear regressors to simple distributions. This also known as a parametric               

likelihood approximation. For example, this situation would arise when a complex model is             

considered and its output is mapped to some simpler form of the model. It is a nice approach to                   

make sense of complex problems which was initially introduced by Ratcliff (1978) where             

ex-Gauss model was a simplifying parametric PDF for the proposed diffusion model. This             

approach was widely used (Smith & Mewhort, 1998; Hockley, 1984; Leth-Steenson, Elbaz, &             

Douglas, 2000) until a less biased QML method was proposed by Heathcote, Brown and              

Mewhort (2002). More recently a new approach has emerged that creates hierarchical models to              

explain complex models where lower layers use intractable models and these are mapped to              

simpler tractable models to form one large model (Liu, Shum & Zhang, 2001; Lee & Mumford,                

2003; Sanborn, 2017). 

The main argument against using simpler model approximators is their bias. An alternative             

approach would approximate model’s PDF shape using non-parametric methods. The most           

common methods use quantiles as statistical description of such models (Maritz & Jarrett, 1978;              

Heathcote, Brown & Mewhort, 2002; Heathcote, Brown & Cousineau, 2004). Quantiles create a             

limited number of bins of data which later are fitted to simulated RT-distributions. This approach               

has little variation in likelihoods values and any standard MLE method would work. However, it               
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is heavily biased posteriors are approximated. An alternative approach uses KDE methods where             

multiple simple pdf functions are used to approximate unknown distributions (van Zandt, 2002;             

Turner, van Zandt, & Brown, 2011; Turner & Sederberg, 2014). This is a challenging situation               

where Bayesian inference may not be possible due to ill-conditioning, multi-modality,           

non-linearity as well as unbounded likelihood values (Grazian & Robert, 2015). We will focus              

on unboundedness of error which makes sampling methods highly unstable. In this section we              

will propose an extension to the SISC algorithm to deal with unbounded likelihood errors by               

introducing the concept of  overfitting to the model evaluation.  

Overfitting is a rather artificial situation created by the introduction of robustness in previous              

chapter. In robust likelihood chapter we have emphasised that it is a known fact that               

RT-distributions are generally contaminated (Ulrich & Miller, 1994). We suggested that           

contamination removal is not necessary because there are robust methods that can find optimal              

solutions despite their presence in the data. However, using a robust method introduces a new               

issue for approximating posterior distribution. Identifying contamination using a robust          

goodness-of-fit means that the weight over certain values within data has to be shifted to other                

parts of the data (Mandal, Basu, & Pardo, 2010). The most interesting contaminants are hidden               

contaminants which imply that the tail is weighted more than it should (Ratcliff & Tuerlinckx,               

2002). However, this weight depends on the model itself which is being approximated by the               

sampling because not analytical solution is available. This means that there is a probability that               

an approximated model PDF will fit data perfectly and show excessively good likelihood values.              

We coined this emerging situations as overfitting of the data. 
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An overfitting issue will cause issues for posterior approximators that rely on likelihood ratios              

when datasets are relatively large. In this situation a likelihood ratio between a good PDF               

approximation and overfitting PDF approximation will be very close to zero. Moreover, the             

probability of overfitting can be relatively likely (5%). Once this outcome is generated, most of               

the future proposals will be rejected when DE-MCMC algorithm is being used. On the other               

hand, SISC algorithm will fail completely because it will only generate proposals from the              

cluster that has this overfitting value. Most of the new proposals will be within its cluster and                 

occasional proposals outside the cluster will be unlikely to generate overfitting PDF            

approximation. Depending on the PDF approximation, the scale of overfitting can range from             

mild to severe thus likelihood values are almost unbounded and most of the posterior              

approximation algorithms will struggle with such situations.  

A way to deal with overfitting is to treat it as a probability which can be linked to a method                    

called tolerance threshold and is a method to approximate unknown posterior distribution            

(Sisson, Fan & Tanaka, 2007; Beaumont et al., 2009). This method was introduced for posterior               

approximation when summary statistics are used while our proposed method suggests           

approximating likelihood values and determining the most likely maximum likelihood value as            

threshold point. We argue, that placing this threshold at this point indicates where the overfitting               

begins provides the most efficient posterior estimator. To determine the most likely likelihood             

value when the best parameters are used central tendency methods can be adopted since the               

generated values form a distribution as well. Out of the three central tendency methods (mean,               

median and mode) mean is the least suitable since this likelihood value distribution can take               

skewed forms as well. However, we also think that mode is a better choice than a median                 
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because it indicates the most probable likelihood value which is the best guess for the overfitting                

threshold. Throughout further work we assume that the mode of the likelihood value distribution              

at the maximum indicates this threshold level. 

4.8 Bounded Likelihood Values 

 

Fig 4.2: This figure illustrates the posterior approximations produced by DE-MCMC with 3000             

generations (blue) and SISC (red) algorithms when the likelihood values are bounded at the maximum.               

The distributional approximations poorly distinguishable approximation produced by DE-MCMC thus          

comparison is difficult. Fourth graph shows the acceptance rate of DE-MCMC algorithm. 
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Fig 4.3: This figure illustrates the posterior approximations produced by DE-MCMC with 10000             

generations (blue) and SISC (red) algorithms when the likelihood values are bounded at the maximum.               

The distributional approximations are close except for shift parameter where CSIS algorithm produced             

more values at the right-tail. Fourth graph shows the distributions of likelihood values produced when               

posterior was approximated. 

4.8.1 Materials and Methods 
We will generate this situation by using the approach used in RT modelling before QML               

methods were introduced. We consider a parametric simplifying model as our kernel            

approximator. To illustrate this, we picked a ‘perfect’ kernel model which is identical to the               

model being approximated. Such specification removes the possibility of unbounded likelihoods           
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which is the case with mixture models. Instead, the error will be within MLE estimation of                

parameters for simulated samples. 

As stated in general methods we assumed that unknown model is Weibull function and it was                

simulated to generate 100 samples for every parameter proposal. Using 100 samples is not              

sufficient to estimate unbiased maximum likelihood for Weibull parameters since it is            

asymptotically biased at shift parameter due to hard probability bound at the left side of the                

parameter range (Fig 4.1c;). However, we accept this bias as it is an illustrative example for                

posterior approximation and these samples were used to determine the Weibull parameters that             

best describe simulated distribution. Note that when Weibull function is used as a kernel, it has                

multi-modality as well as negatively skewed likelihood value distribution. Multi-modality is           

caused by shift parameter and would be easily observed if the posterior was only approximated               

for this parameter. We focused on all 3 parameters since multi-modal examples are simply              

equivalent to discrete probability of whether a sample distribution will give zero or non-zero              

probabilities and the probability of the two outcomes which is not an interesting example.              

Restraining on a full model replaces obvious multi-modality with very long tail instead. Since,              

Weibull is only 3 parameter distribution, we used a sufficiently fast fminsearch to determine the               

parameters for kernel representation. 

Additionally, at this stage we make one change to SISC algorithm. New random samples are               

drawn from local Gaussian distribution as described in non-extended algorithm version.           

However, due to high variation in likelihood values produced by the new samples the weighted               

contribution is completely omitted. Instead, all new samples receive a weight of one. 
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Finally, we increased the number of generations for DE-MCMC from 3000 to 10000 to improve               

posterior approximation since 3000 will not be enough to produce a decent approximation. 

4.8.2 Results 
Fig. 3 shows the results of posterior approximation when DE-MCMC had 3000 generations as in               

previous example. The result shows a poor approximation of the posterior distribution when             

DE-MCMC is used and the comparison has little value. The Fig. 3d demonstrate the acceptance               

rate under such conditions which is below 2%. The result is not surprising given such a low                 

efficiency.  

We expanded the number of samples produced by DE-MCMC with additional 7000 generations             

which produced better posterior approximations (Fig 4). Evidently, the posterior approximations           

are no longer identically looking for two algorithms as in no-noise example. DE-MCMC result              

shows less smooth distribution which is the case due to an increased chance for chains getting                

stuck with very good likelihoods. The distributions of likelihood values shows a large variation              

in the observed outcomes and most of these outcomes are rejected when likelihood ratio              

approach is used. However, more generations would smooth posterior distribution further until it             

would converge to a nice approximation.  

On the other hand, SISC algorithm is as smooth as it was in no-noise example though some                 

built-up modes are visible. More sampling and higher accuracy would remove this effect.             

However, a more interesting outcome is with a shift parameter, it illustrates the disadvantage by               

the algorithm produced when all proposals are accepted with an equal weight and poor clustering               

accuracy. This an artificial outcomes caused by encouraging some additional exploration by            

 

87



expanding local sampling area. A way to reduce this issue would be to increase the accuracy of                 

clustering, though working with more clusters makes algorithm slower. Irrespective of these            

limitations, the satisfactory posterior approximation was obtained with substantially smaller          

number of samples. 

4.9 Approximate Likelihood Values 

4.9.1 Sequential Importance Sampling by Filtered Clustering (SISFC) 

We extended the SISC algorithm by introducing an additional dimension to the mixture model.              

This is motivated by the argument made earlier in the section on the likelihood error that fitness                 

outcomes for each parameter setting have a distribution of their own. In order to deal with                

unbounded distributions of likelihood value error, this method relies on kernel filtered likelihood             

values to deal with high uncertainty about the accuracy of the result. The convolution of this high                 

uncertainty and actual likelihood values completely covers an entire likelihood value function            

and is an important observation to solve this problem. Given that error in likelihood value can                

take a distributional form from Normal to highly skewed as well as have one or more modes. We                  

used Gaussian mixture model as our complex kernel filter and integrated this new dimension into               

SISC algorithm by updating it after each new proposal to improve the knowledge about              

likelihood value distribution.  

Across an entire parameter space, poor fits are more common than overfitting fits and these will                

be the most likely thus to keep accepting all proposals, some directional sampling is required. In                

order to introduce direction when likelihood values are not reliable, we introduced a dynamic              

overfitting threshold as described in previous section but adapt it to clustering based sampling.              
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Instead of identifying it at the best solutions which is difficult to find under these circumstances,                

we propose sampling based on the probability of producing overfitting points as predicted by the               

most probable likelihood value within the best fitting cluster. This value is retrieved from the               

suggested additional dimension of likelihood value distribution. Our weight distribution for all            

clusters is re-expressed as the proportion of likelihood values exceeding the threshold within             

each cluster relative to the probability of the cluster which is a probability in current state of the                  

posterior: where is a cluster of parameter settings. Due to (k) (L(X |θ )/P (θ |X);W = P k ∈ k 1:n   k         

the introduction of the likelihood dimension, each cluster have their weighted mixture            

distribution of the likelihood values, thus 

(L(X |θ ) (L |k);P k ∈ k = 1 − F ε   

where is a cumulative function of all the likelihood values within cluster and is tolerance F             Lε   

threshold. 

. 

4.9.2 Materials and Methods 

In order to illustrate the example, we used identical settings as in bounded maximum likelihood               

value example except for kernel approximator being non-parametric. We used a Gaussian            

mixture model generated by oKDE with accuracy of 0.002. DE-MCMC algorithm in this             

scenario struggles to accept new proposals even more and produces rates of <1% in this simple                

example. To improve its performance we introduced overfitting threshold to DE-MCMC for a             

fair comparison. Our overfitting threshold was determined during a burn-in period of SISFC             

 

89



model and corresponds to the approximated point when the model begins producing overfitting             

proposals.  

 

Fig 4.4: This figure illustrates the posterior approximations produced by DE-MCMC (blue) and             

SISFC (red) algorithms when the likelihood values are unbounded at the maximum. The distributional              

approximations are closely matched for both algorithms. The fourth graph shows the acceptance rate of               

DE-MCMC algorithm 

4.9.3 Results 

Fig 2.3.5 show the results of the two algorithms when a non-parametric pdf approximation was               

used. Both algorithms performed very similarly and produced similar posterior approximations.           
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Our introduction of the overfitting threshold has greatly improved efficiency of the DE-MCMC             

algorithm since acceptance rate has jumped to 8% which is much higher than acceptance rate of                

<2% observed in the bounded likelihood example. Moreover, such acceptance did not require             

running more generations for a proper comparison of the two algorithms. However, this is still               

the main advantage for SISFC algorithm since the number of proposals required to approximate              

the posterior distribution remained much lower. The algorithm used the same number samples as              

in previous cases to arrive to the posterior approximation. We found that approximating posterior              

distribution of Weibull function was sufficient to perform 10000 parameter evaluations while            

DE-MCMC used 50000 samples. However, SISFC had all samples added to posterior            

distribution approximation while DE-MCMC had roughly 6000 contributing samples despite          

evaluating 50000 samples in total. This suggests that SISFC algorithm is a better choice as long                

as additional computation time per each new proposal for using KDEs for posterior             

approximation is not 12x higher. 

Moreover, unlike Weibull function, Gaussian function is not strictly bounded in any direction,             

thus there is no multi-modality in the results compared to the example when Weibull is used as a                  

model approximator. As a result, our proposed algorithm does not have issues observed in              

bounded maximum likelihood example due to accepting all proposals with the same weight.             

However, the asymptotic bias of the shift parameter has expanded to the opposite direction              

compared to the same example because Gaussian PDF does not have equivalent hard-bound as              

Weibull PDF. Therefore, the drift in the median of the simulated distribution does not produce               

zero probability values which tend to dominate when Weibull is used. 
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4.10 Discussion 

In this section we introduced a novel sequential importance sampling algorithm for            

approximating unknown posterior distributions. We present this algorithm in two          

implementations with minor modifications based on the situation with likelihood values.           

Sequential Importance Sampling by Clustering (SISC) is proposed for usage when likelihood            

values are known or contain a small error and likelihood function is unknown. The second               

implementation Sequential Importance Sampling by Filtered Clustering (SISFC) deals with the           

situation when likelihood function is unknown as well as likelihood values are unbounded at the               

maxima. We assessed these two modification in their respective applications by designing            

numerical experiments for scenarios with known likelihood function, with unknown likelihood           

function but likelihood values are strictly bounded and when both are analytically intractable.             

This new algorithm was compared with the performance of one of the best available posterior               

approximation algorithm Differential Evolution Markov Chain Monte Carlo (DE-MCMC) in          

these three scenarios. The results show that our proposed algorithm can be a default algorithmic               

choice in situations when each evaluation of the model is too costly for lengthy MCMC sampling                

posterior approximation approach. 

In order to assess a proposed algorithm we have constructed hypothetical datasets equivalent to              

robust likelihood study with no contamination. The comparison of the algorithms is in their              

ability to handle unknown likelihood functions. Initially, we produced the situations for SISC             

algorithm. The first experiment illustrates the circumstance when likelihood function is known            

and demonstrated the performance of both algorithms. We found that both algorithms had little              
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issue approximating the posterior distribution and there was little observable difference. In the             

next experiment we have considered the situation when likelihood function is not known but              

likelihood values are strictly bounded at the maximum likelihood because a more complex model              

is replaced with simpler model (Ratcliff, 1978). The performance of the two methods remained              

satisfactory though SISC struggled with a sharp drop in probability values at shift parameter.              

This is not surprising since accepting all values also accepts values outside the bound. It could                

have been improved by improving the accuracy and the number of the clusters but such decision                

would require more samples. This example illustrated a situation where accepting all proposals             

can lead to poor approximation of the posterior distribution. Regardless, there was no increase in               

the number of required samples for SISC algorithm and with tailed distributions the outcome              

would be much more satisfactory while DE-MCMC efficiency has dropped. 

Afterwards we assessed SISFC algorithm in comparison to DE-MCMC. In this case the             

likelihood values are no longer bounded to maximum and possess very unlikely extremely good              

fits instead. In such situations approximate Bayesian computation (ABC) methods are used to             

construct a likelihood-free posterior distribution. We chose to introduce likelihood          

approximation and use these to estimate the ‘true’ maximum likelihood value which then is used               

as a tolerance threshold when likelihood approximations are being used. It is a novel idea to treat                 

likelihood values as informative outcomes that define a proper tolerance threshold as a point of               

the best PDF approximation and better likelihood values are overfits. For a fair comparison, we               

used this threshold for both algorithms when model PDFs are estimated using KDE methods.              

Our constructed example combined with overfitting threshold has increased the efficiency of            

DE-MCMC sampler. However, the most striking result was in SISFC approximating posterior            
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distribution with the same number of samples from posterior distribution while DE-MCMC had             

its efficiency drop. 

These demonstrated examples used a single RT-distribution produced by Weibull model.           

Researchers are increasingly interested in mixed datasets with multiple RT-distributions (Pleskac           

& Busemeyer, 2010; Ratcliff & Starns 2009) and a combination of these distributions scales the               

uncertainty of the overall likelihood values since each RT-distribution approximation is           

unbounded. In these circumstances the DE-MCMC algorithm acceptance without very tolerant           

threshold is abysmal. Moreover, such models are explaining relatively complex cognitive           

processes and can contain a dozen of parameters to be estimated. These parameters in general               

have complex non-linear relationships that can reduce acceptance beyond reasonable levels due            

to proposals being frequently generated outside the dense space of the posterior distributions.             

DE-MCMC algorithm was applied in a couple of such models (Miletic et al., 2017; Turner,               

Sederberg, & McClelland, 2016) but this may be a feasible limit. In this research we have                

developed a novel model for visual search tasks which fits multiple distributions as well as have                

costly approximations for each parameter proposal (see Part II, Chapter 2 for more details) and               

posterior approximation using DE-MCMC is beyond reasonable scope under current          

implementations. 

Our proposed SISC algorithm introduces an idea of approximating posterior distribution using a             

compressed mixture model by constructing a smaller clustered mixture model. This is a novel              

idea and to the best of our knowledge has not been implemented before. The algorithm clusters                

sampled parameters to form a compact posterior distribution and guide future samples. Such             

implementation improves efficiency of the proposal generation and constructs complex          
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representation of parameter space. However, current examples were quite limited in their            

parameter space and more complex examples should be generated to test how it works. However,               

this algorithm can approximate multi-modal posterior distributions with different probabilities of           

each mode. DE-MCMC is capable to capture different modes (Turner & Sederberg, 2012) but              

modelling different relative probabilities for each mode could be tricky. Moreover, the algorithm             

may be able to approximate non-linear relationships further improving sampling beyond           

DE-MCMC algorithm’s capabilities which is well suited for linear or near-linear relationships.  

SISFC algorithm introduced an idea of identifying overfitting model predictions and use this as a               

boundary for posterior approximation. This idea is similar to tolerance threshold used when             

summary statistics are considered (Sisson, Fan & Tanaka, 2007; Beaumont et al., 2009) except              

that it is directly inferred from the likelihood outcomes to enforce the boundedness to the               

likelihood values. Working with overfitting threshold assumes that better results are accidental            

and non-representing of an actual model behaviour. As a result, the probability to produce better               

solutions than this threshold is assumed to be properly describing posterior distribution. At the              

moment we cannot prove or illustrate examples when this assumption would lead to incorrect              

approximations and a comparison to Beaumont et al. (2009) might be a good starting point for                

confirmation of the proposed method. However, a small drift away from optimal threshold             

expands the posterior distribution approximation and getting it poorly introduces a bias within             

approximation. Identifying it is subject to the accuracy of the likelihood value distribution at the               

best solution which has an approximation error thus a bias from a true posterior distribution is                

inevitable. 

 

95



An alternative proposal for approximating posterior distribution is via a mapping function            

(Wilkinson, 2013; Turner & Sederberg, 2012). This function replaces the threshold with some             

probability function that maps deviation from the true model. This mapping function could             

follow the likelihood value distribution itself but normality assumption at the expense of             

efficiency for the sake of simplicity and accuracy can be taken as well. It is important to be                  

cautious in using maximum likelihood value error distribution as a function since simply             

assigning the function corresponding to that distribution can produce highly misleading           

posterior. Recall an example with bounded likelihood error, it had a multi-modal situation which              

could also be the case for the best parameter values. Under such circumstances, a large               

probability would be assigned to non-performing likelihood values such as zero. This mapping             

method was designed for summary statistics as well with the probability of the deviation from               

the best solution being a replacement for fitness value. However, in terms of unbounded              

likelihoods that would indicate a very unlikely value and we ruled this out by designing               

overfitting threshold. Regardless, we do believe that it can improve posterior approximation by             

reducing reliance on identifying overfitting threshold to some degree. However, further research            

is required to identify the right probability function. 

To sum up, we have developed a novel algorithm for posterior approximations. Showed that it is                

well-suited for parameter approximations when analytically intractable models are used when a            

concept of overfitting is introduced. We compared this algorithm to a recently developed             

DE-MCMC algorithm (Turner, Sederberg, 2012) and showed that it is more efficient at             

approximating posterior distributions even when the considered model is relatively simple. These            

features are highly attractive for future cognitive model development and analysis. 
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General Discussion 

1 Summary 
In the three chapters of this part of the research we have discussed various methods available for                 

modelling cognitive processes. We focussed on modelling analytically intractable models which           

involves constructing approximation of the unknown probability density function (PDF),          

designing appropriate goodness-of-fit measure, designing efficient parameter estimation        

algorithm and dealing with excessive uncertainty around likelihood values. All these features are             

an important contribution to the cognitive modelling on their own but can be combined to               

contribute to our capabilities to do Bayesian analysis of complex models. It is a challenging               

problem that is being studied in a wide range of fields and new methods are constantly being                 

developed. Currently, the Bayes inference methodology for such models is still quite limited and              

most of the methods are mainly available for multivariate distributions that are constrained by a               

single mode and linear or near-linear relationships. 

In the first chapter we introduce an improved method to approximate response time (RT)              

distributions using a compact online kernel density estimator (oKDE) designed by Kristan,            

Leonardis, and Skočaj (2011). This novel KDE method outperforms usually used (Turner, van             

Zandt & Brown, 2011; Turner & Sederberg, 2014; Miletic et al., 2017; Turner, Sederberg, &               

McClelland, 2016) Silverman’s KDE (Silverman, 1989) when lower RT datasets are being used             

and is more compact for larger datasets. As a results, its usage is more efficient in practice. 

The second chapter dealt with the contamination of RT-distributions which is a commonly             

known issue (Miller, 1991; Ulrich & Miller, 1994). We suggested to exploit the usage of KDE to                 
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introduce robustness properties to the likelihood function and showed that it has similar             

properties as Hellinger distance which is known for its robust properties (Lindsay, 1994). The              

results were very promising and a wider adoption is possible to replace current practice of               

modelling contamination itself (Ratcliff & Tuerlinckx, 2002; Ratcliff & McKoon, 2008;           

Wagenmakers et al., 2008). 

The third chapter dealt with implications produced by the introduction of the methods in the first                

two chapters. The use of these methods creates unbounded likelihood values making most of the               

algorithms highly inefficient. In this chapter we proposed a new sequential importance sampling             

(SIS) algorithm as well as overfitting concept to improve efficiency of the sampling algorithms.              

We show that these introductions significantly reduce the number of required samples to             

approximate unknown posterior distribution compared to recently developed Differential         

Evolution-Markov Chain Monte Carlo (DE-MCMC: Turner et al., 2013). 

2 Future Directions 
The three covered chapters dealt with issues of representing response time distributions,            

contamination and Bayesian approximation when these methods are used. Though Bayes is a             

very powerful method it is often limited for analytically tractable models and extensions to              

difficult problems usually require to make a number of underlying assumptions to be able to               

perform Bayes inference. However, these assumptions can be perilous for models that are not              

well understood. When model is not tractable, computing marginal requires approximation of the             

unavailable likelihood function which in itself is a challenging and complicated issue.            

Furthermore, providing a good prior is often overlooked issue. This complication is one of the               
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main reasons the modelling was focused on the best solutions informed by local parameter              

curvature rather than Bayes methods (Jeffries, 1946; Ly et al., 2017). In fact, defining proper               

non-informative priors for ill-defined models is impossible and relying on them may lead to              

inconsistent posterior approximations. It can be shown that Jeffrie’s prior is improper (does not              

integrate to 1) for ill-defined models and posterior under such circumstances also is not a proper                

probability distribution. Furthermore, a non-informative prior is often preferred for model           

comparisons and an intuitive choice of a uniform prior is not a proper prior since it also does not                   

integrate to 1 and resulting posterior is not a pdf. However, improper posterior can be used as an                  

approximation of the proper posterior. The main issue within uniform prior is that it still does not                 

imply being non-informative prior because such thing as a non-informative prior does not exist.              

By choosing uniform prior we make an assumption that parameter space is equally distributed              

which may not, and generally is not, the case. A correct non-informative prior has the minimum                

possible influence on data and such a prior has to be provided to perform correct Bayesian                

inference (Liu et al., 2014). In general, there are two methods to arrive to non-informative priors:                

Jeffrie’s and reference prior (Jeffries, 1946; Bernardo, 1979; respectively) and neither is            

analytically tractable if the model isn’t. This substantially limits the possibility of Bayesian             

inference when complex models are being used. MacLachlan and Peel (2000) argued that             

non-informative priors should not be used for such problems since arising posteriors from             

improper priors are meaningless. However, simply opting to mildly informative prior may not be              

a proper choice as well. Recently, Nalisnick and Smyth (2017) proposed learning prior             

distributions when it cannot be determined analytically and show that their method converges to              

a proper Jeffrie’s prior. They also showed a model example for which scientists often apply               
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normal distribution as a prior and found that a proper non-informative prior is completely              

different from usually applied Normally distributed prior. In psychology, Turner and Sederberg            

(2014) suggested the usage of approximate methods for understanding analytically intractable           

models such as LCA (Usher & McClelland, 2001) and used mildly informative normally             

distributed priors to make observations about the model but most likely it suffers from the same                

issues outlined above. 

Our model is analytically intractable as well and its’ parameter behaviour is not well understood.               

In order to be able to perform Bayesian inference, non-identifiable parameters have to be              

identified and removed and only then we would be able to approximate a non-informative proper               

prior for our model, therefore we focused on finding the maximum likelihood (ML) rather than               

approximate posterior distributions for inference purposes. However, posterior approximation         

methods still are vital for identifying these ill-defined parameters. The most common approach to              

identify these parameter dimensions is by using local sensitivity around the best solution (Sun &               

Hahn, 2006). Such approach ignores how the model behaves globally to reduce the complexity              

of the system, however, this approach fails to appreciate that these parameters may have different               

global sensitivities and reparameterisation would lead to removal of other (if any) parameters. As              

a result, Bayesian inferences under these circumstances are expected to differ. An alternative for              

parameter reduction uses profiling, this is a special case of Bayes which uses local MLEs rather                

than marginal likelihoods as in Bayes. Ronald Fisher and others (Ly et al., 2017) propagated and                

focused on frequentist approach rather than Bayes because it did not suffer from the issues with                

poor priors. When the model is poorly specified, we know that defining proper priors is               

intractable, therefore profiling is an equivalent better choice to picking the right model as was               
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MLE in 50s (Raue et al., 2009). It is important to note that removing parameters based on their                  

curvature can be misleading (?) showed an example where such choice completely changes the              

prediction the model entails. However, parameters with very low curvature may be impossible to              

approximate thus either additional data has to be gathered or removed from consideration. 

3 Conclusions 
Our research was limited to analytically intractable modelling for visual search tasks but the              

methods are transferable to other fields of the research because it introduces a few methods that                

arguably are better approaches than many currently used methods as we illustrated with             

commonly used approaches in cognitive psychology. We showed that the approximations of the             

RT-distributions can be improved and the removal of the contaminants is not necessary when a               

good goodness-of-fit is chosen. Moreover, we dealt with the issues produced by these methods              

by introducing a novel algorithm informed posterior approximation. There’s still a lot of research              

to be done on these methods to identify their additional weaknesses or strengths but the results                

shown here are promising for the further development of cognitive modelling in psychology. 
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Part 2: 
Visual Search 
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Chapter 5:  
Selective Attention for Identification Model - Winner-Take-All 

(SAIM-WTA) model 

Abstract 
For 50 years or so, visual search experiments have been used to examine how humans find                

behaviourally relevant objects in complex visual scenes. For the same length of time there has               

been a dispute over whether this search is performed in a serial or parallel fashion. In this paper,                  

we approach this dispute by numerically fitting a serial search model and a parallel search model                

to RT-distributions from three visual search experiments (feature search, conjunction search and            

spatial configuration search). In order to do so, we used a free-likelihood method based on a                

novel kernel density estimator (KDE).  

The serial search model was the Competitive guided search (CGS) model by Moran et al. (2013).                

We were able to replicate CGS’s ability to model RT-distributions from visual search             

experiments and demonstrated that CGS generalizes well to new data. The parallel model was              

based on the biased-competition theory and utilized a very simple biologically-plausible winner            

take all (WTA)-mechanism from Heinke and Humphreys’s (2003) Selective Attention for           

Identification model (SAIM). With this mechanism, SAIM has been able to explain a broad              

range of attentional phenomena but it was not specifically designed to model RT-distributions in              

visual search. Nevertheless, the WTA was able to reproduce these distributions.  

However, a direct comparison of the two models suggested that the serial CGS is slightly better                

equipped to explain the RT-distributions than the WTA-mechanism. The CGS’s success was            

mainly down the usage of the Wald-distribution which was specifically designed to model visual              
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search. Future WTA versions will have to find a biologically plausible mechanism to reproduce              

such a RT-distribution. Finally, both models suffered from a failure to generalise across all              

display sizes. From these comparisons we developed suggestions for improving the models and             

motivated empirical studies to devise a stronger test for the two types of searches. 
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5.1 Introduction 
Its most recent instalment, VS-SAIM, was also able to simulate visual search experiments             

(Heinke & Backhaus, 2011). However, in this study SAIM was evaluated in a qualitative way.               

This research aims to rectify this shortcoming by taking SAIM’s core mechanism, a             

Winner-Take-All network; and evaluating it quantitatively with RT-distributions taken from Lin           

et al.’s (2015) data. It is also worth noting that Bundesen’s (1990) biased-competition model              

(TVA) was fitted quantitatively albeit based on mean RTs. Of course, any parallel search model               

is likely to represent a simplification of how visual search is implemented and a serial               

component is certainly part of a fuller picture. For one thing, eye movements are an obvious                

candidate for a serial component (see Hulleman & Olivers, 2016; on the importance of eye               

movements). It is also conceivable that some serial ‘internal rejecting’ after a parallel search may               

take place (see SEarch via Recursive Rejection SERR; Humphreys & Müller, 1993; for an              

example). It is also clear that such serial components are particularly important in target-absent              

trials (even though perhaps not in terms of eye movements as discussed in Wolfe, 2007). Hence,                

we will focus in this research on present trials. Nevertheless, previous studies with parallel-only              

models such as SAIM imply that such a parallel approach may go a long way in explaining                 

visual search, particularly for target-present trials. Here, we will follow this up and utilize              

RT-distributions to further evaluate this approach. Moreover, the direct comparison with a serial             

approach will give us a good insight into what may be missing in the parallel-only approach. In                 

fact, CGS represents a particularly strong challenge as CGS is developed especially for             

modelling visual search while SAIM was developed to account for a broad range of attentional               
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effects. Another argument for fitting a simple parallel model comes from the methodology issue              

posed by utilizing RT-distributions. 

5.2 Visual search experiment 

   

Fig. 5.1: Schematic representation of the tasks. From left to right: feature search, conjunction search and

spatial configuration search. 

Fig. 5.2: Search functions of the three tasks (feature search, conjunction search and spatial configuration               

search) used in this study. The error bars indicate the standard error.
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The data used for this research was collected as part of Lin et al.’s (2015) experiments. Details of                  

the design can be found in Lin et al. (2015). The search displays were arranged in a circular                  

layout (see Fig. 1; for an illustration) in which items can be placed in 25 locations. The display                  

size was either 3, 6, 12 or 18 items. Each condition comprised 100 trials. Three different search                 

experiments were conducted: feature search, conjunction search and spatial configuration search.           

In the feature search task, the target was a dark square while the distractors were gray squares. In                  

the conjunction search, participants looked for a vertical dark bar amongst two types of              

distractors, vertical gray bars and horizontal dark bars. The spatial configuration task used two              

items, digit 2 (target) and digit 5 (distractor). Each search task was completed by 20 participants                

though one participant has been removed from feature and conjunction search tasks due to high               

error rates. Figure 2 shows the resulting search functions for the present condition. In addition,               

Lin et al. (2015) found that for feature search and conjunction search the RT-distribution’s              

skewness increased with increasing display size. For spatial configuration search the relationship            

between skewness and display size was more complex. The skewness first increased over the              

smaller display sizes (3, 6, 12) but then decreased from 12 to 18. We will return to this finding                   

in the discussion section.  
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Fig. 5.3: The graph at the top shows SAIM-WTA’s architecture. All nodes compete via global inhibitory                

neuron. The time course at the bottom shows an example of SAIM-WTA’s output activation. The line                

colours correspond to the network’s nodes. The dotted line indicates the threshold for this particular

simulation. The simulation result came from the spatial configuration search with 6 search items with the               

parameters from the 8th participant (see appendix I). 

108



The results indicate that the data provides a good basis for testing the models on a range of                  

search task difficulties similar to Wolfe et al.’s (2010) data. However, there is an interesting               

difference between their data and our data. In our study, participants made roughly twice as               

many as errors as in their experiments. This difference can be explained by the fact that in Wolfe                  

et al.’s (2010) experiments participants completed all three tasks with 500 trials in each              

condition. In contrast, in our study participants completed only 100 trials per condition and not               

all tasks. In other words, in Wolfe et al.’s (2010) study participants were highly practiced               

compared to our study. In fact, when we re-analysed Wolfe et al.’s (2010) data and included only                 

the first 100 trials of each condition the error rates were similar to our error rate. Hence our                  

dataset poses the interesting challenge to CGS whether CGS will also be able to model less                

practiced participants. 

This dataset was chosen so CGS model would be tested on alternative dataset and challenged by                

parallel models. This dataset had unlimited duration which allowed the participants to choose             

their preference on speed or accuracy. As a consequence, this dataset allows eye movements that               

are not measured and by extension serial processes. The main criticism of such experiments is its                

inability to discriminate between serial vs parallel theories because parallel models can explain             

flat as well as steep RT slopes (Townsend & Ashby, 1983; Townsend & Wenger, 2004). An                

alternative experimental paradigm uses short display duration to prevent eye movements, thus            

rule out the possibility of serial search (e.g. Palmer, 1995, Palmer, Verghese, & Pavel, 2000;               

Verghese, 2001). Since parallel models can mimic serial data but not the other way around, long                

display duration study is more valuable if it can falsify parallel theory under some conditions.               
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This study aims to assess whether this is also the case for entire RT-distributions as well as                 

improve available parallel models in case it is viable.  

5.3 Computational models 

5.3.1 SAIM’s Winner-Take-All (SAIM-WTA)-model 
The biased competition model is based on the SAIM’s WTA-mechanism (Heinke & Humphreys,             

2003; Heinke & Backhaus, 2011; Zhao, Humphreys & Heinke, 2011). This WTA-mechanism            

uses a single layer of ‘neurons’ which are connected by a lateral inhibition (see Figure 3a; for an                  

illustration). If the correct parameters are chosen, the neuron with the highest input is activated               

while all other neurons are shut down (see Figure 3b for an exemplar simulation result). In other                 

words, all neurons compete with each other and the neuron with the largest input wins the                

competition. The mathematical description of the model is the following: 

;x − x (w( ) ) ξ  d i = τ
dt

i + τ
dt ∑

n

j=1
yj + I i + √ τ

dt
i  

;     ;f (x )yj =  j = 1
1+e−m(x −s)j

(0, )ξ = N σ  

f(x) is a sigmoid function with parameters slope (m) and intercept (s). is the accumulation rate            τ      

of input activation and w is the strength of the lateral inhibition. is Gaussian noise with the            ξ       

variance ( . is the input to the ​i​th neuron. is the output activation of ​i​th neuron. is the )σ  I i         yi         xi    

internal activation of the ​i​th neuron. These equations are based on a mathematical description of               

neurophysiological processes using a spiking-rate neuron model. The Gaussian noise takes into            

account the randomness of neural processes. The sigmoid-function models the non-linear           

relationship between cell activation and output spiking rate. The differential equation models the             
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leaky accumulation behaviour of synapses. The summation term realizes the lateral inhibition            

within the layer (inhibitory neuron).  

To adapt the model to modelling visual search data, we made several simple assumptions. Each               

‘neuron’ is assumed to correspond to an item location in the search display. If a location is empty                  

the input is set to zero. The neuron for the target location is set to one while the distractor                   

neurons are set to a saliency value. To model the response time, we introduced a decision                

boundary and computed the time it takes for a neuron to pass this threshold. If it is a distractor                   

neuron the response is recorded as ‘target absent’ whereas if it is target neuron the response is                 

‘target present’. 

It is worth noting that SAIM-WTA is similar to the Leaky Competing Accumulation (LCA)              

model (Usher and McClelland, 2001). However, to the best of our knowledge, LCA has never               

been applied to visual search. Moreover and similar to LCA, SAIM-WTA stands in the tradition               

of the Parallel Distributed Processing (PDP) framework (Rumelhart &McCleland, 1986) in that            

it draws on principles of neural information processing in order to understand phenomena at the               

behavioural level (see also Mavritsaki, Heinke, Allen, Deco & Humphreys, 2011 for a discussion              

of linking the neural level with the behavioural level through means of computational models).  

In addition, some mechanisms and conceptualisations are also similar to stochastic drift diffusion             

models (e.g., Busemeyer & Diederich, 2010; Ratclif, 1978). These models assume that            

perceptual decision making is based on an accumulation of perceptual information. Once, this             

accumulation has reached a certain level (i.e., threshold) a decision is made (i,e, a response is                

generated). The time it takes for the accumulation to reach the threshold is interpreted as               

response time. SAIM-WTA can be framed in terms of these drift diffusion models in that               
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SAIM-WTA’s model accumulates information about the search items (i.e., identifies them) and            

once this information has reached a certain level the model / participant initiates a corresponding               

response. However and different from drift diffusion models, the accumulators interfere with            

each other.  

SAIM-WTA has seven free parameters. In explorations of the parameter space prior to work              

presented here, we found several regions where it was possible to achieve a similar quality of fit.                 

Subsequently, we focused on a region where it was possible to reduce the number of free                

parameters to the smallest possible number (i.e., three) while still obtaining the best fits for all                

participants (see appendix I for the values of the fixed parameters). In addition, the remaining               

free parameters (accumulation rate, decision boundary and distractor saliency) allowed us to ask             

interesting theoretical questions about the factors which influence visual search performance.           

Given the biased-competition theory’s assumptions, we expect that the distractor saliency           

(target-distractor similarity) increases with task difficulty, but it is not clear if the distractor              

saliency is sufficient to explain the differences between the tasks or is there also a difference in                 

terms of the difficulty of identifying items (as expressed by accumulation rate)? In fact,              

computational models such as SAIM (and CGS) suggest the involvement of a separate object              

identification stage.  

5.3.2 Competitive guided search (CGS) 
Moran et al.’s (2013) CGS implements a serial search based on Wolfe’s (2007) two stage               

architecture. The guidance through the saliency map is implemented through a probabilistic            

selection where target item has the probability to be selected: 

.ptarget =
wtarget

n−1+wtarget
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and the distractor  items: 

.pdistractor = n−1
n−1+wtarget

 

is the saliency of the target relative to the distractor. If the target saliency is smaller thanwtarget                   

one there is no guidance. n is the number of items currently available for selection and is                 

decremented after each search step. Hence, CGS assumes that once an item is identified it is not                 

revisited again. Prior to each search step, CGS decides whether to continue with the search, or to                 

quit the search and decide that the target is absent. The probability to quit is calculated in the                  

following way: 

pquit =
wquit 

w +n−1+w  quit target
 

Again n is decremented after each search. Hence, the probability to quit increases with each               

search step. This effect is increased further by modifying  ​at each search stepwquit  

∆wwquit, new = wquit, old +  quit  

Note that the value of   ​is zero at the beginning of the search.wquit,   

At each search step, CGS assumes that an item is identified as to whether it is a target or a                    

distractor. This identification process is modelled as a drift diffusion process which is also used               

to describe the behaviour of SAIM-WTA’s nodes. However, instead of simulating the drift             

diffusion process Moran et al. (2013) used the Wald-distribution to represent the distribution of              

the identification time (i.e., passing of threshold): 

(α, , ) e  pwald v σ = √ ( )σ
α 2

2πxt3
2( ) tv

α 2
−( ) (t− )σ

α 2
v
α 2
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with the three parameters identification drift rate ( ), identification threshold ( ) and noise level       υ    θ     

( ). The noise level was fixed at 0.1 throughout the studies. The total response time is the sumσ                   

of all identification times from all search steps. Moran et al. (2013) also chose this distribution as                 

Palmer et al. (2011) found this distribution to be the best distribution to describe Wolfe et al.’s                 

(2010) data. 

Note that mathematically the probability distribution of the sum of independent random variables             

can be determined by convolving the probability distributions of the individual random variables.             

Hence, CGS’s total response time can be described as multiple convolutions of a             

Wald-distribution where the number of convolutions depends on the number of search steps. One              

consequence of this convolution is that CGS’s RT-distribution is more and more skewed the              

more search steps take place. Hence, CGS should produce an increase in skewness with              

increasing display size (depending on the search task). This relationship should enable CGS to              

model RT-distributions from visual search tasks.  

CGS also assumes that at the response execution stage an erroneous response can occur due to a                 

motor error with a certain probability ( ). Since the identification stage is assumed to be      m          

perfect, misses of targets can only occur through motor errors. It is also worth noting that motor                 

errors can “correct” misses as it is possible that search terminates without finding the target but                

due to an error the model still reports “target present”. Finally, a residual time accounts for the                 

duration of processes which are outside the actual search process such as encoding of items,               

post-decisional processes, response planning and execution. The residual time is assumed to be             
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distributed as a shifted exponential distribution with non-decision shift time ( ) and          T min   

non-decision drift time  as parameters.γ)(  

5.3.4 Discussion 
Apart from implementing two different types of searches, the models relate differently to the              

neural substrate. SAIM-WTA aims to be ‘biologically-plausible’ while CGC is less rooted in           

neural processes, even though the identification stage has a similar link (drift diffusion model) to               

neural processes as SAIM-WTA. Also both models have in common that they assume item              

identification plays a critical role in visual search.  

 

Fig. 5.4: An illustrative example of how oKDE decomposes a distribution in several kernels with varying

variance. 
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The selection process from the saliency map is seen by CGS’s authors as an approximation of a                 

competition process (hence ​competitive guided search). However, the approximation does not           

involve interference between items as SAIM-WTA implements. Hence, the selection process is            

probably better understood as a randomized selection process which is modulated by item             

saliency. 

However, for the purpose of this research these differences and commonalities are less             

important. More important is the fact that SAIM-WTA has fewer free parameters than CGS.              

SAIM-WTA absorbs CGS’s stages (such as identification stage, encoding stage, etc.) into the             

competition process. Hence, a numerical comparison between the models can look at whether             

this more parsimonious model is more successful than a more complex model.  

5.4 Materials and Methods 
Both models and all the methods used were implemented using Matlab. Both models were fitted               

to each participant separately. The resulting quality of fit and parameter settings were averaged              

in order to represent the population level. 

The best fitting parameter settings were determined using the maximum likelihood estimation            

(MLE). MLE allows us to base model fit on RT-distributions together with accuracy. In order to                

employ MLE, traditionally it is necessary for models to possess an analytic probability density              

function (PDF). However, models such as SAIM-WTA or GCS don’t possess such PDFs.             

Recent developments in model fitting, often termed approximate Bayesian computation (ABC)           

or ‘likelihood-free methods’ (see Beaumont, 2010; for a review) solve this issue by             

approximating the model’s PDFs. Here, we utilized a likelihood-free method based on a             

KDE-approach which estimates the model’s PDF for a given parameter setting using Monte             
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Carlo sampling (see also Turner & Sederberg, 2014). We utilised the online kernel density              

estimator (oKDE) introduced by Kristan, Leonardis and Skočaj (2011). We used DE-MCMC            

algorithm for parameter estimation for both models (Turner, Sederberg, Brown & Steyvers,            

2013, see chapter 4 for description). 

5.4.1 Likelihood-function 
The fit of the model with the data was evaluated with the likelihood principle using a pdf for                  

mixed data (Turner and Sederberg, 2014): 

 

(θ) (s )M (x |θ)L = ∏
2

j=1
∏

X=sj

i=1
P j j i  

 

where P(s​1​) is the probability of correct response and P(s​2​) is the probability of incorrect               

response. M​j​(x_i|θ) denotes the model’s probability density function (pdf) for any observation            

x_i, the parameters θ and response type. As stated earlier, here the model’s pdf is represented by                 

a kernel density estimate (KDE). However, this likelihood function is not fully suitable for our               

modelling approach, as we don’t consider the response times for incorrect responses. Therefore,             

Turner and Sederberg’s (2014) equation turns into: 

 

(θ) (X )M (x |θ)L = (1 (X ))− P c
ni ∏

nc

j=1
P c j  

 

Where n​i indicates the number of incorrect responses and n​c is the number of correct responses.                

P(X​c​) is the probability of correct responses in the model.  
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5.4.2 Comparison with Moran et al.’s (2013) methods 
To fit parameters, Moran et al. (2013) used the popular algorithm by Nelder and Mead (1965)                

which is implemented in MatLab’s fminsearch. However, it is also well-known that this method              

is very sensitive to the choice of the starting points of the parameter Estimation. Our DE-MCMC                

method reduces this problem by using a population of starting points . Moreover, to estimate the               1

RT-distributions Moran et al. (2013) employed the commonly used Quantile Maximal           

Probability (QMP) method by Heathcote, Brown, and Mewhort (2002). However, Turner and            

Sederberg (2014) showed that this method can lead to misleading results.  

Thus, given the differences between our approach and Moran et al. (2013), attempting to              

replicate Moran et al.’s (2013) parameter settings is unlikely to be successful. However, to              

demonstrate that our approach is more reliable than Moran et al.’s (2013) approach, we fitted               

CGS to Wolfe et al.’s (2013) data twice, using different starting points. First, Moran et al.’s                

(2013) parameter settings from the individual participants were used as starting points for the              

parameter estimation. Even though these starting points are unlikely to be the best fits given the                

differences in methods, they should at least be close to very good solutions which DE-MCMC               

would be able to find. Second, we used our parameter settings established by fitting Yishin et                

al.’s (2015) data. Interestingly, the quality of fit for Moran et al.’s (2010) parameter settings as                

starting points was not as good as for our parameter settings as starting points. Hence, we                

1 This sensitivity to the starting point of a search is due to the fact that complex models like the ones used here 
have many local solutions. These local solutions are the best solutions in particular areas of the parameter space 
but it is not clear whether a particular local solution is the overall best solution (global solution). Most, if not all, 
methods for parameter ​estimation​ find (get trapped in) local solutions and cannot guarantee that this is the global 
solution. Amongst other factors the starting point of the search is critical for which local solution is found. Broadly 
speaking, search algorithms tend to find local solutions near the starting point.  
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conclude that our parameter settings generalize better across different datasets while Moran et             

al.’s (2015) settings seem very specific to their chosen starting point of the search. 

5.4.3 Removal of outlier parameter settings 
It turned out that some participants’ parameter settings were extreme. We therefore applied an              

outlier elimination method, the median absolute deviation (MAD; Leys, Ley, Klein, Bernard, &             

Licata, 2013), to each parameter in each task. As criterion for an outlier we used five standard                 

deviations. A participant was identified as outlier if at least one parameter value was considered               

to be an outlier.  This participant was removed from the further analysis. 
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Fig. 5.5: Results of fitting SAIM-WTA. The top-left graph shows the mean log-likelihood ratios (quality of                

fit) for the different tasks. The remaining graphs show the mean parameters. The error bars indicate the                 

standard error.  

5.5 Results and discussion: SAIM-WTA 

5.5.1 Results 
We fitted SAIM-WTA with three free parameters (distractor saliency, decision boundary,           

accumulation rate) to Lin et al.’s (2015) 58 datasets from three visual search experiments, feature               

search, conjunction search and spatial configuration search. Hence we obtain 58 parameter            

settings (see appendix II for values), 19 parameter settings (participants) for feature search, 19              

settings (participants) for conjunction search and 20 settings (parameters) for spatial           

configuration. Eyeballing the parameter settings we noticed that there were a few settings which              

could be considered as outliers. Our outlier detection procedure led to the removal of 2               

participants from feature search, 3 settings from conjunction search and no participant from             

spatial configuration search.  
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Feature Search Conjunction Search 

Spatial Configuration search Errors 

Fig. 5.6: SAIM-WTA: KDE-based illustration of RT-distributions and response errors. Note that these             

graphs show the RT distributions for three participants. 

To assess the overall fit for each participant we calculated the log likelihood ratios, log               

likelihood value from the model divided by the log likelihood value of the KDE’s dataset (see

Fig. 5 for the results). We compared ratios from the different tasks with the Wilcoxon rank-sum                

test and found a significant decline of ratios between feature search and conjunction search

and feature search and spatial configuration ( ). Therez .36;( = 2 .018);p = 0        .85; 0.004z = 2 p =    

was no significant difference between conjunction search and spatial configuration search           
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). To illustrate the quality of fit (likelihood ratio), Fig. 6 shows the outcomez .14; .886( = 0 p = 0               

from three participants. Note that the choice of these participants was made randomly by MatLab               

to avoid an author bias. The likelihood ratio was -46.32 for feature search; -61.10 for conjunction                

search and -71.98 for spatial configuration search. The graphs indicate that SAIM-WTA was             

able to produce an increased skewness with increased display size. This increase broadly             

matched the increase of skewness in the data, but not to the same degree. The failure to match                  

skewness is particularly pertinent in spatial configuration search for display size 18. This effect              

is illustrated further in Fig. 10 where the likelihood ratio declined with increasing display size.               

Nevertheless, it is important to note that the only source of this effect is the increase of number                  

of distractors in the input of the model since all parameters are kept constant. In other words, the                  

competition between items due to lateral inhibition is able to explain the skewness found in the                

visual search.  

Figure 5 shows how the three free parameters (distractor saliency, decision boundary,            

accumulation rate) changed across the three tasks. The parameters were entered into a Wilcoxon              

rank-sum test. For accumulation rate there was significant difference between feature search and             

conjunction search (z=4.845, p<0.001) as well as between conjunction search and spatial            

configuration search (z=4.056, p<0.001). For distractor saliency the difference between feature           

search and conjunction search was significant (z=-2.684, p=0.007) and so was the comparison             

between conjunction search and spatial configuration (z=-3.659, p<0.001). Finally for decision           

boundary both comparisons were also significant (z=-3.368, p<0.001; z=-4.619, p<0.001). Hence           

all comparisons were significant. As expected, the distractor saliency increased with increasing            

task difficulty. However and interestingly, the other two parameters were also related to task              
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difficulty. Accumulation rate decreased with increasing task difficulty, i.e., framed in terms of             

drift diffusion models, discussed earlier, the accumulation of perceptual information about items            

was more and more difficult. Finally it is worth noting that the level of decision boundary                

increased with task difficulty. A closer inspection of this finding showed that it is a by-product of                 

the increase of competition leading to higher activations of distractors requiring higher decision             

boundaries to avoid response errors. 

5.5.2 Discussion 

On the whole, SAIM-WTA exhibited a reasonable fit with three search tasks. In particular, it was                

able to model the increasing skewness with increase in display size. However, the quality of the                

fit decreased with task difficulty. In particular, SAIM-WTA was not able to match the increase in                

skewness with increased display size.  

The three free parameters (distractor saliency, accumulation rate, decision boundary) were           

different for the three tasks. Distractor saliency increased across tasks as predicted by all major               

theories on visual search. Importantly, SAIM-WTA identifies distractor saliency as an important            

source for the increase in skewness across display sizes. The results also identify an increase of                

accumulation rate with task difficulty. As discussed in the introduction, accumulation can be             

linked with object identification. In other words, SAIM-WTA also indicates that not only does              

selection of target get more difficult across the three tasks, but also object identification gets               

harder. This is consistent with other theories on visual search such as biased-competition theory,              

and also with computational models such Moran et al.’s model and SAIM. However, both              

models consider object identification as a separate processing stage. Moreover, this finding            
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offers an interesting explanation for findings that responses in pop-out searches can be speeded              

up even further by additional manipulations such as priming (e.g., Maljkovic, Nakayama, 2000;             

Woodgate et al., 2015). SAIM-WTA suggests that the speed-ups are due to improved target              

identification. Fitting SAIM-WTA to data from priming experiments should support this           

prediction.  

Finally, the increase of the decision boundary makes an interesting prediction for an application              

of the Speed-Accuracy-Tradeoff (SAT)-procedure in visual search experiments. In a          

SAT-procedure participants’ response time is controlled by requiring them to respond within a             

set time window (e.g., Wickelgren, 1977; Zhao, Heinke, Ivanoff, Klein & Humphreys, 2011).             

For early time windows where participants have to sacrifice accuracy for speeded responses,             

SAIM-WTA should detect lower decision boundaries, but distractor saliency and accumulation           

rate remain unchanged. 
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Fig. 5.7: Results of fitting CGS: The top-left graph shows the mean log-likelihood ratios (quality of fit) for

the different tasks. The remaining graphs show the means of CGS’s seven parameters for the three tasks                 

(Feature Search = FS; Conjunction Search = CS; Spatial configuration search = SC). Note, for the                

purpose of a better illustration the target saliency parameter was scaled logarithmically. The results              

replicate Moran et al.’s (2013) findings. The error bars indicate the standard error.
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Feature Search 

Conjunction Search 

Spatial Configuration search Errors 

 

Fig. 5.8: CGS: KDE-based illustration of RT-distributions and response errors. Note that these graphs              

show the RT distributions for three participants. 

5.6 Results and discussion: Competitive Guided Search (CGS) 
We fitted CGS with seven free parameters (Target Saliency, Identification Drift, Identification            

Threshold, Quit weight increment, Non-decision time shift, Non-decision time drift and Motor
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error) to Lin et al.’s (2015) 58 datasets from three visual search experiments, feature search,               

conjunction search and spatial configuration search. Hence we obtained 58 parameter settings            

(see appendix II for values), 19 parameter settings (participants) for feature search, 19 settings              

(participants) for conjunction search and 20 settings (parameters) for spatial configuration. Our            

outlier removal procedure detected no outlier for feature search, two outliers for conjunction             

search and two outliers for spatial configuration. It is also worth noting that the parameter               

estimation revealed that there are good fits for conjunction search and feature search where the               

saliency values are implausibly high. This is not very surprising as fast target searches can be                

executed with arbitrarily high saliency value. To solve this problem, we first fitted spatial              

configuration and used these resulting parameter values as starting point for fitting the other              

searches. This way the best fits produced saliency values which were relatively small (see              

footnote 1 for an more explanations). 

To assess the overall fit for each participant, we calculated the log likelihood ratios, i.e., log                

likelihood value from the model divided by the log likelihood value of the KDE’s dataset. We                

compared ratios from the different tasks with the Wilcoxon rank-sum test and a significant              

difference was found between feature search and conjunction search ); and         z .92; 0.004( = 2 p =    

feature search and spatial configuration search ). And there was no      z .11; 0.002( = 3 p =       

significant relation between conjunction search and spatial configuration search         z .25;( = 0

Fig. 7 shows that the quality of fit declined with task difficulty. To illustrate the0.81).p =                  

quality of fit, Fig. 8 shows the outcome from three participants. Note that the choice of these                 

participants was made randomly by MatLab to avoid an author bias. The likelihood ratio was               

–18.44 for feature search; -38.82 for conjunction search and -44.10 for spatial configuration             
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search. The graphs illustrate that CGS’s distributions nicely overlap with the RT-distributions            

from the respective tasks. Hence, we were able to qualitatively replicate Moran et al.’s (2013)               

results.  

Interestingly, we were also able to replicate the qualitative relationship of parameter values with              

the search tasks (see Fig. 7; in appendix II and Moran et al., (2013); appendix C). The                 

parameters accounting for encoding, post-decisional process, etc. showed longer delay          

(non-decision shift) and more variance (non-decision drift) with increasing task difficulty. Also            

the motor error increased with task difficulty. The identification drift showed slower            

accumulation rate with increasing task difficulty. The identification threshold decreased with           

task difficulty (albeit counterintuitively). The likelihood to stop scanning the search display            

(w​quit​) increased less the more difficult the task was. Finally, the guidance (target saliency) was               

smaller the harder the task was. Interestingly and similar to Moran et al.’s (2013) findings, there                

was still residual guidance in the spatial configuration search task. In fact, there was no               

significant difference between our guidance parameters and Moran et al.’s (2013) parameters            

(see appendix II; Table II.1 for a comparison using Wilcoxon rank-sum test). This finding              

questions Moran et al.’s (2013) explanation for their result. They stipulated that guidance may be               

possible due to the fact that participants were highly practiced in Wolfe et al.’s (2010) dataset.                

However, in our experiment participants were not practiced and CGS still suggests that there is               

guidance involved. Note that due to the difference in numerical methods, as discussed earlier,              

this problem needs to be interpreted with caution and further studies are required, e.g. a direct                

comparison between fits with Wolfe et al.’s (2010) dataset and our dataset using our method.               
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However, how practice effects are explained with these models goes beyond the topic of the               

present research.  

 

Fig. 5.9: Comparison of mean log likelihood ratios from SAIM-WTA and CGS for the three tasks (feature                 

search, conjunction search and spatial configuration). The graphs indicate the contributions from the             

different display size to the overall log likelihood ratios. The error bars indicate the standard error

without within-participant variance (Cousineau, 2005).The graphs demonstrate that CGS was better at            

explaining the data than SAIM-WTA. However, they also show that the performance of both models is                

best at display size 6 and worse at all other display sizes (see main text for more discussion).  
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Fig. 5.10: Comparison of BIC scores and AIC scores from SAIM-WTA and CGS for the three tasks

(feature search, conjunction search and spatial configuration search). The error bars indicate the             

standard error without within-participant variance (Cousineau, 2005). BIC and AIC penalize the quality             

with the model complexity as measured with the number of parameters. The graphs indicate that CGS                

performed better than SAIM-WTA despite SAIM-WTA being the simpler model.

5.7 Comparison of SAIM-WTA and CGS

Fig. 9 compares SAIM-WTA and CGS in terms of log-likelihood ratio. Overall, it demonstrates

that CGS explained the visual search data better than SAIM-WTA. Fig. 11 also breaks down to                

the results in terms of how well the two models explained the data for the different display sizes.

The figure gives us an insight into why SAIM-WTA is worse than CGS and highlights a problem                 

with both models. The graphs show that irrespective of display size SAIM-WTA performed

130



worse than CGS. Hence, SAIM-WTA failed to replicate the RT-distributions with the same             

precision as CGS. However, both models showed their best fit with display size 6 and then a                 

decline in quality for larger and smaller display sizes. In other words, their ability to explain the                 

influence of display size and their effect on RT-distributions does not generalize to all display               

sizes equally well. Hence, both models need to be improved in this respect. 

z-value, p-value AIC BIC 

Feature 3.62, <0.001 2.29, 0.022 

Conjunction 3.82, <0.001 3.58, <0.001 

Spatial 3.55, <0.001 2.95, 0.003 

Table 5.1: Comparison of BIC scores and AIC scores from SAIM-WTA and CGS for the three tasks                 

(feature search, conjunction search and spatial configuration search) using Wilcoxon sign-rank test. All             

comparisons were significant. For all comparisons CGS showed better results than SAIM-WTA.  

The log-likelihood ratio does not take into account the complexity of models. This difference of               

complexity (as measured in terms of number of parameters) is particularly marked between CGS              

and SAIM-WTA. Normally, model complexity is included in a model comparison by using the              

Akaike information criterion (AIC) and/or the Bayesian information criterion (BIC). Both           

criteria penalize the quality of fit by the number of parameters needed to achieve this quality                

whereby BIC penalizes the quality more than AIC. Also note that the smaller the AIC/BIC scores                

is the better the model. Figure 10 shows the results for AIC and BIC. Since the results for the                   

two models are quite close we also entered the AIC values into a Wilcoxon sign-rank test (see                 

Table 1; for results). Again, the results show that apart from for conjunction search, CGS               

performs better than SAIM-WTA. However, the difference in the range of 2 and 3.82 for AIC                

and the range of 2.29 and 3.58 for BIC is not very large. 
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5.8 General Discussion 

This research aimed to contribute to the long-standing dispute on parallel versus serial search. In               

order to do so, we numerically fitted two computational models to RT-distributions from three              

visual search experiments (feature search, conjunction search and spatial configuration search).           

The two computational models, Competitive Guided Search (CGS; Moran et al., 2013) and             

SAIM-WTA (e.g., Heinke & Backhaus, 2011) implement a serial and parallel search            

respectively. The comparison of the two models’ success to explain the RT-distributions is             

expected to advance our understanding of visual search in humans. It also allows us to               

demonstrate how RT-distributions can contribute to this enterprise.  

The results with SAIM-WTA showed for the first time that a biased-competition model is able to                

reproduce RT-distributions from visual experiments in particular the increased skewness linked           

with increased display size. However, a direct comparison between SAIM-WTA and CGS            

revealed that CGS fits better to RT-distributions than SAIM-WTA. This is the case even if the                

evaluation takes into account that CGS is a more complex model than SAIM-WTA. In other               

words, GCS’s Wald-distribution modelling the item identification at search step constitutes a            

better description of search behaviour than the RT distribution generated by SAIM-WTA’s            

competition process. Also the addition of identification times by the way of serial search scans               

(mathematically the multiple convolutions of Wald-distributions) represents fairly well the          

increase of mean RTs and their increased skewness. However, it is notable that both models               

don’t generalize well across different display sizes as the quality of fit for both models decreases                

with increasing display size. It is also worth pointing out that we fitted CGS and SAIM-WTA to                 
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Wolfe et al.’s (2010) data. As this data set does not contain as many participants as Yishin et                  

al.’s (2015) dataset, the results were not as statistically conclusive as the ones presented here.               

Also some parameter settings were statistically different than ones presented here. These            

differences are certainly due to methodological differences, some of which we discussed in the              

section about Yishin et al.’s (2015) dataset. Since these differences go beyond the scope of this                

research we have not included reports of those results. However and importantly, the overall              

findings presented here, that CGS is slightly better than SAIM-WTA in explaining visual search              

experiments, was replicated. In other words, we can be quite confident that our results are valid                

for these three visual experiments irrespective of the methodological details, such as display             

geometry, practice effects, etc. 

So what are the lessons from this model comparison for SAIM-WTA and CGS? It shows that                

SAIM-WTA produced excellent fits, but CGS produced slightly better fits.This is probably due             

to the fact that Moran et al. (2013) chose to model the identification of each item with a                  

Wald-distribution which in turn was motivated by Palmer et al.’s (2010) finding that the              

Wald-distribution is the best distribution compared to other skewed distributions such as ex-Gaus             

or Weibull. Hence, it will be important for the progress of SAIM-WTA to find a way to produce                  

more Wald-like distributions. A possible solution is to add an identification stage. Such an              

identification stage would lead to more skewed RT-distributions possibly enabling SAIM-WTA           

to produce better fits for larger display sizes. Finally, it is also worth noting that SAIM-WTA                

was not specifically designed to model visual search and instead aimed to capture a broad range                

of experimental evidence typically associated with visual selective attention. Hence, matching           

CGS’s performance or even surpassing it was always a difficult goal to achieve. 
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In addition, SAIM-WTA (and CGS: see below) will have to improve on how the display size                

influences its response times. It is interesting to note that on the whole the quality of fit decreases                  

increased with increasing display size. This may point to a possible cause of this problem. Of                

course, with increased display density the spatial proximity between items increases. Hence, it is              

conceivable that perceptual grouping (e.g. Wertheimer, 1923) plays an increasing role in higher             

display sizes. Hence, a sensible extension of SAIM-WTA may be to integrate a grouping              

mechanism into the competition process. For instance, at present the inhibitory connections are             

homogenous independent of an item’s position. An extension of SAIM-WTA may modulate            

these weights depending on the distance between items. A corollary of this line of argument is                

that perceptual similarities between items may also play a role in visual search. Of course, this is                 

not a new idea and there is already evidence for this, in particular from the seminal paper by                  

Duncan and Humphreys (1998) (see also Müller-Plath & Elsner, 2007 for a systematic variation              

of spatial proximity and item similarity). In any case, this extension of SAIM-WTA will have to                

be tested with a series of studies manipulating grouping in visual search possibly along the lines                

of Müller-Plath and Elsner’s (2007) work. 

Obviously, an integration of a grouping mechanism into CGS’s saliency map along similar lines              

is also possible, and this modification may lead to the desired effect of improving the fit with                 

higher display sizes. However, such a modification would not improve CGS’s serial process as              

such. Instead, a simple modification of CGS consistent with its serial tenet could be to let the                 

parameters of the identification stage depend on at which point in the serial search scan the items                 

are identified. This additional mechanism could slow down identification or make           

RT-distributions more skewed the later an item is selected, possibly improving CGS’s            
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performance for larger display sizes. This modification can be seen as some sort of inhibition               

effect on the identification stage (object-based inhibition, e.g., Egly, Driver, & Rafal, 1994;             

Heinke & Humphreys, 2003; Study 5). However, it is highly questionable whether this new              

mechanism can successfully explain the potential influence of perceptual grouping as discussed            

earlier since it does not consider spatial proximity of items or item similarity. On a more general                 

note, it is worth pointing out that it is difficult to imagine how CGS’s slow serial identification                 

process can model perceptual grouping in a plausible way. (E.g., serially scanning through some              

items and making them as a group if they are the same would be far too slow). Hence, these                   

difficulties of CGS with perceptual grouping suggest that the series of visual experiments             

manipulating grouping, as suggested earlier, can produce data which allow for a stronger             

comparison between serial and parallel models where even the parallel approach may win the              

competition. 

In conclusion, we have demonstrated that it is possible to constrain computational models of              

visual search with RT-distributions. We were also able to replicate findings from a serial model               

of visual search (CGS: Moran et al., 2013). In addition we successfully fitted a parallel (biased                

competition) model of visual search (SAIM-WTA, e.g., Heinke & Backhaus, 2011) to            

RT-distributions for the first time. When the two models were compared the serial model was               

able to explain better RT-distributions from three visual search tasks. However, both models             

exhibited deficits in how they dealt with different display size. From the discussion of possible               

mechanisms to iron out this problem we inferred that a series of visual experiments manipulating               

perceptual grouping should lead to a stronger test for the models.  
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Chapter 6:  
Asymmetrical Dynamic Neural  Network Model (ADyNeN) 

Abstract 
In previous chapter we attempted differentiating serials from parallel process by numerically            

fitting the corresponding model representations to RT-distributions and their accuracys to visual            

search data representing very easy to very hard experimental tasks. The serial search model was               

the Competitive Guided Search (CGS) model by Moran et al. (2013) and winner takes all (WTA)                

mechanism from Selective Attention for Identification (Heinke and Humphreys (2003)) and we            

found that CGS model outperformed SAIM-WTA model. The given study was limited to the              

trials when the target was present because of SAIM-WTA was not designed to explain target               

‘absent’ trials. In this study we present a novel asymmetrical dynamic neural network (ADyNeN)              

proposing asymmetrical inhibition as means to flip WTA between target ‘present’ or ‘absent’             

trials. A comparison between CGS and the new model indicates that a new ADyNeN model               

performs slightly better than CGS model. Moreover, a proposed model naturally aligns with             

biased competition theory and is predicted to explain a wider range of phenomena observed in               

visual search experiments. The future work should directly challenge the model under different             

constraints different.  
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6.1 Introduction 
SAIM-WTA model was fitted only to ‘present trials, the ‘absent’ trials were omitted from the               

modelling fitting. This model was able to perform well on either `present' or `absent' trials but                

not both. The issue was that the feature search task would have to have a high difference between                  

target saliency and distractor saliency for `present' trials in order to produce fast response. In               

contrast, 'absent' trials would have to be as fast as 'present' trials. Setting low saliency for                

distractors means a very slow `absent' response instead. Setting high saliency means that there is               

a lot of competition between target and distractors, therefore a slow response in `present' trials.               

In order for SAIM-WTA to fit both conditions, at least one parameter would have to be changed                 

depending on whether the target is present or absent. This is not a desirable feature; therefore we                 

opted to structural change of the model. 

In this chapter we introduce a novel Asymmetrical Dynamic Neural Network (ADyNeN) model             

inspired by winner-takes-all mechanism described in SAIM-WTA chapter. This model suggest           

that to determine the absence of the target in a competitive parallel system within homogenous               

distractors there has to be a substantial top-down effort to break down similarity between              

distractors and this can be modelled by modifying inhibitory weights between items. Firstly, we              

will present the description of the model and perform equivalent studies to the SAIM-WTA              

chapter which will also include absent trials. 

6.2 Asymmetrically Dynamic Neural Network (ADyNeN) model  

In our work we introduce a modified SAIM-WTA model that is capable to explain present as                

well as absent visual search RT-distributions without changing parameters. Typically, an input is             
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treated as a saliency value which represents the bottom-up strength of the visual stimuli and               

similarity to the identity of the target somewhat contributes to it (Mavritsaki, Heinke,             

Humphreys & Deco, 2006; Heinke & Humphreys, 2003; Heinke & Backhaus, 2011). We             

propose to use bottom-up saliency meaning (Itti, & Koch, 2000) that two items belonging to the                

same category such as colour (for the sake of simplicity we assume there are no saliency                

differences or these differences are negligible between certain colours) are similarly salient            

whether they are targets or distractors. We motivate our choice by the fact that neuronal               

populations corresponding to the identity of the target fire more frequently than the populations              

corresponding to the distractors because top-down modulation can suppress as well as enhance             

the firing rate of the neuronal populations depending on whether these items are relevant to the                

task or not (Treue & Trujillo, 1999). 

SAIM-WTA model was modified by replacing a global inhibitory node with mutual connection             

for mutual inhibition. Mathematically, this is equivalent to original model since all inhibitions             

add-up to the same value. Next, the model had its inhibitory connections relaxed so the               

competition between nodes resemble how similar distractors are to the identity of the target. As a                

result, we have introduced separate inhibitory weights for inhibition from the target and from              

distractors. The inhibitory connections between distractors depended on the similarity of the            

distractors to the target. In addition, we set the inputs to 1 for all items within display since the                   

input is equivalently strong for all items. Fig ? illustrates the proposed architecture of the model.                

Each node retains the direct identity to the item being displayed within the particular location,               

none if the location is empty. The lines show mutual inhibition with end dots indicating the                
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strength of the inhibition. Larger end dots represent greater inhibition between particular nodes             

of the model. 

 

Fig 6.1: This graph illustrates ADyNeN model’s architecture. Each node demonstrates a corresponding             

locations of possible stimuli within. The given example shows “2 vs 5” task where “2” is a target and                   

“5” is distractor. All nodes compete by mutual inhibition. Inhibitory weights between distractors is              

symmetric but connections between targets and distractors is asymmetric. The size of the inhibitory dot               

indicates the inhibitory strength towards the particular node. 

Our novel dynamic asymmetrical neural network model’s (ADyNeN) mathematical equation is           

expressed as follows: 

x − x (− f (x ) f (x ) ) ξ ;  d i = τ
dt

i + τ
dt ∑

nd

j=i;i≠j,t
wij j − wti t + I + √ τ

dt
i  
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Where is an input which is either 1 or 0 depending on whether there is some item or not. The I                     

difference from previous equation is within weights as now it depends on which node is being       w           

inhibited. The number of distractors is indicated by and corresponds to the target node.        nd   t       

This model has two conditions, target is present and target is absent. A simpler form represents a                 

situation when the target is absent where . When this is the case, it is a SAIM-WTA       nd = n           

model as indicated earlier and the only difference is a constant input of 1 which does not change                  

the behaviour of the model in ‘absent’ condition. The observed delay in the predicted RT               

outcomes is due to the competitive interference between the distractors and other combinations             

of the parameters. However, trials with the target present will have a SAIM-WTA submodel              

among nodes and an additional inhibitor from the target. This weight will generally be higher nd                

than the inhibitory strengths coming from the common distractors. An important node is a target               

itself as it receives a common inhibitory input from all distractors. Note that the inhibitory               

weights from distractors to target and distractors to distractors are not the same. These are treated                

as separate parameters and allowed to vary freely for different datasets. The establishment of              

these asymmetrical weights enables a target to have a biased competitive advantage for the node               

representing the target. is a sigmoid function (see SAIM-WTA chapter) that has slope and   (x)f             

shift parameters which modulate the sensitivity towards the incoming input and the suppression             

of baseline neuronal activity. This function models non-linear relationship between output           

activation and firing rate. The populations’ sensitivity to the identity of the input can be modelled                

by varying the parameters of this function. We argue, that this sensitivity is a more sensible                

parameter to explain saliency than the biased inputs as commonly used in practice. Nodes              

representing items from different categories such as shape and colour would have different             
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sensitivity to the stimulus. This predicts attentional grab by more salient distractor present within              

display. 

ADyNeN model is a self-terminating model where the decision of target presence is made when               

some item passes the threshold. If the target passes the decision threshold, then the models               

determines that a target is present. When non-target passes the threshold, it makes a decision that                

target is absent. Items perceived as potential targets accumulate information and evidence. The             

noise within this system indicates the uncertainty around the identity of the item corresponding              

to the node. Such a decision making indicates a pure parallel process where the winning of the                 

distractor is treated as a proof that a target does not exist within display. It also assumes that no                   

serial process exists. Additionally, the model introduces a motor error to explain the errors within               

absent trials. Finally, in ‘absent’ trials there is no target node which could trigger an incorrect                

response, therefore we assume that people are perfect at identifying the absence but make a               

mistake in their motor response. This motor error may also work in favour of the correct choice                 

during the present trials, but these cannot be determined, therefore we treat them like correct               

responses. If the decision is incorrect, it is measured as an error. 

6.3 Materials and Methods 

In the following section, we will discuss the methods we used to find the best-fitting parameters.                

KDE-approach was identical to the study used for SAIM-WTA comparison with CGS model.             

We adapted the same approximate likelihood method for dataset containing present as well as              

absent trials. The main differences emerge in parameter estimation compared to SAIM-WTA            

study, hence we included a brief explanation for the algorithms and why these were chosen. 
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6.3.1 Parameter Estimation 

The methods used to find the optimal parameters differed from the methods in previous              

SAIM-WTA chapter. We still used DE-MCMC algorithm (Turner, Sederberg, Brown &           

Steyvers, 2013) but only for establishing initial parameter population to be used for our              

suggested Sequential Importance Sampling by Filtered Clustering (described in Methodology          

chapter) algorithm. Early in parameter estimation using DE-MCMC algorithm the acceptance           

rate is satisfactory and across all participants will converge to a number of highly dense areas.                

Since a good non-informative prior was not available, SISFC algorithm had a higher risk in               

settling to a wider good area while DE-MCMC explores space better as long as the best chain                 

value is not stuck in unlikely local maximum likelihood. Overall, each participant had 20 initial               

parameter settings drawn from the prior distribution (Table III.1) and had a greedy             

implementation of DE-MCMC run for 50 generations.  

We used a modified SISFC algorithm for the main parameter estimation. This algorithms is              

much more efficient than DE-MCMC in searching local area when uncertainty is excessively             

large and the used model is computationally expensive. However, to further improve efficiency             

and the convergence speed of the searching we introduced a stricter dynamic tolerance threshold.              

We used individual mean log-likelihoods of each cluster as a performance measure rather than              

proportion of values being above the threshold. Such choice will filter out more clusters from               

producing new proposals which will lead to faster convergence overall. We also used the median               

expectation of overall likelihood value distribution as filter instead of the proposed mode though              

median should produce similar results as compared to mode-based approach when unbounded            
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maximum likelihood is present. Our weights to choose clusters were computed the same way as               

in SISFC algorithm, except the earlier defined mean log-likelihoods were used to determine             

whether an entire cluster is above threshold or not and at what percentile it falls. This new                 

percentile was used as a fitness value to compute a weights using in methodology defined               

equation.  

 

Fig. 6.2: Results of fitting ADyNeN. This graph shows the mean log-likelihood ratios (quality of fit) for                 

the different tasks. The error bars indicate the standard error. 

We initialised all participants using the best solutions generated by DE-MCMC, 58 initial             

common parameter settings for all datasets. We performed fitting for all participants and tasks              

concurrently, each participant had a new parameter sample generated at at time. If this new               

proposal had the best fitting likelihood value for other participants, we used it to update the                
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knowledge about that participant by adding it to the posterior approximation. We fitted each              

participant for at least 1000 iterations though some tasks and participants required additional             

fitting processes. CGS model had the same issue with saliency parameter as in SAIM-WTA              

study and conjunction results failed to produce consistently good solutions when all participants             

and tasks were fitted concurrently. Firstly, we carried out 3000 iterations for all participants and               

tasks together. To deal with outlined issue we used the best solutions for spatial configuration               

dataset and performed additional parameter estimation for conjunction dataset together spatial           

configuration task for another 2000 iterations. ADyNeN model did not have issues with the same               

tasks, 1000 iterations were sufficient to find very good performing solutions for both tasks.              

However, feature task struggled to find the best solutions when fitted concurrently with other              

tasks. To help with this task we performed another 6000 iterations for all participants from               

feature task. 

144



 

Fig. 6.3: Results of fitting ADyNeN. The graphs show the mean parameters. The error bars indicate the                 

standard error. Accum - Accumulation.

6.3.2 Likelihood-function 

The fitness of the model over data was evaluated using likelihoods which were determined using               

approximate pdf of the model. The likelihood equation used was for mixed data (Turner and

Sederberg, 2014) as in SAIM-WTA study with one key difference. The equation also             

incorporated absent trials which expanded overall multiplied components in likelihood function

by two. The probability of target being present or absent were equal thus we introduced a scalar                

of 0.5 for both condition to form a proper probability function.
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6.4 Results and discussion: ADyNeN 

6.4.1 Results 

We fitted ADyNeN with nine free parameters (target-to-distractor, distractor-to-distractor,         

distractor-to-target, noise, decision boundary, sigmoid slope, sigmoid shift, accumulation, motor          

error) to Lin et al.’s (2015) 58 datasets from three visual search experiments, feature search,               

conjunction search and spatial configuration search. Hence we obtain 58 parameter settings (see             

appendix III for values), 19 parameter settings (participants) for feature search, 19 settings             

(participants) for conjunction search and 20 settings (parameters) for spatial configuration. Our            

outlier detection procedure led to the removal of 3 participants from feature search, 2 settings               

from conjunction search and 3 participants from spatial configuration search.  
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Feature Search 

Conjunction Search

Spatial Configuration Search 
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Fig 6.4: ​ADyNeN: KDE-based illustration of RT-distributions for one participant from each task. Figures              

on the right are from tasks with target present and the left figures are from tasks with target absent                   

from display.

 

Fig 6.5: ADyNeN: An illustration of error rates produced by participants and the simulated model for

each task. All error rates are from the same participants as shown by RT-distributions in Fig ? 

To assess the overall fit for each participant we calculated the log likelihood ratios, log               

likelihood value from the model divided by the log likelihood value of the KDE’s dataset (see                

Fig. ? for the results). We compared ratios from the different tasks with the Wilcoxon rank-sum                

test and found a significant decline of ratios between feature search and conjunction search              

but not for feature and spatial configuration searchesz .04;( = 2 .042);p = 0         z .49;( = 1
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There also was no significant difference between conjunction search and spatial0.135).p =              

configuration search ). Fig. ? shows the outcome from three participants.  z − .62; .535( = 0 p = 0          

Note that the choice of these participants was made randomly by MatLab to avoid an author bias.                 

The likelihood ratio was -95,16 for feature search; -102.11 for conjunction search and -99.36 for               

spatial configuration search. The graphs indicate that ADyNeN was able to explain distributional             

changes with the increased display size. The changes broadly matched the distributional changes             

in the data. There was little indication of potential shortcomings without broader comparison             

with other models which indicates a great success of the model to account for the effects of                 

display size on the resulting RT-distributions. The model had constant parameter settings for all              

datasets for the given participant and the only modifier was the number of competing              

accumulators which matched the display size. The broad results suggest that model            

parameterisation is sufficient to explain distributional changes with additional distractors. 

Figure 6.3 shows how the nine free parameters (target-to-distractor, distractor-to-distractor,          

distractor-to-target, noise, decision boundary, sigmoid slope, sigmoid shift, accumulation, motor          

error) changed across the three tasks. The parameters were entered into a Wilcoxon rank-sum              

test (Appendix ?; Table ?). The parameters varied differently from task to task showing complex               

relationships. A crucial asymmetrical weights novelty of the model over its predecessor            

SAIM-WTA show varying interactions between tasks. The weights of target-to-distractor and           

distractor-to-target are the only two parameters that make the difference between target present             

or absent conditions. Fig ? show that these two parameters are not linearly related with               

increasing task difficulty. Distractor-to-target show a relatively linear increase in the parameter            

values with increasing difficulty of the task. However, target-to-distractor illustrate a bound of             
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the inhibition coming from a item of interest within visual display. Feature and conjunction tasks               

have this inhibition parameter set to ~110 while spatial configuration best fitting settings fall to               

~80. This suggests that inhibition of distractors by the presence of the target is limited and does                 

not differentiate between feature or conjunction tasks. However, distractors have a much lesser             

influence to the target during feature search. In fact, this value ~1 and often less. This means that                  

target in feature task accumulates almost unhindered by the presence of the distractors and the               

distributional variance is more due to non-competition processes in the brain. This is not the case                

for conjunction and spatial tasks as both show an increase of the parameter value with values for                 

spatial configuration being the highest. The last weight interaction is between distractors. This             

weight show no difference between conjunction and spatial configuration tasks but a big             

difference for feature task. It appears the system prefers an active suppression of various              

irrelevant competing items within display to make a rapid decision about the presence or absence               

of the target. Decision boundary showed little difference between tasks with conjunction task             

indicating slightly higher decision threshold. This is not a surprising result since the task did not                

urge participants in any way, thus speed accuracy tradeoff is more of the individual preference               

rather than emerging property due to difficulty of the tasks. The noise show no difference               

between feature with conjunction tasks but a comparingly large difference compared to spatial             

configuration task. The noise modulates the confidence in the identity of the item and the result                

for spatial configuration show much greater fluctuation in the belief of the identity of the item                

over time hurting overall decision making. However, it is interesting that there was no difference               

between feature and conjunction tasks. Motor error had relatively low values at around 3%              

across the tasks and the tasks had no influence on the tendency to make a motor error. The                  
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sigmoid modulates firing rate of the neuronal population and it had two unique parameters of               

slope and shift. The slope indicates the sensitivity over incoming evidence while shift is an               

overall suppression of the population or the suppression of allowed baseline activity. The slope              

showed a linear decrease in sensitivity to the incoming information with the task difficulty while               

activity suppression was greater for feature task than other two tasks which had little difference               

between them. These parameters show that the system favoured quick responsiveness to the             

available information for feature task and reduced baseline activity to prevent unnecessary            

interference. This was not the case for other two tasks for which baseline activity was very                

similar but a greater sensitivity was for conjunction search task rather than structural             

configuration task. Accumulation parameter showed a small difference between conjunction and           

spatial configuration tasks where accumulation had a slightly higher value than conjunction task.             

On the other hand, feature task had much higher accumulation values than these two tasks. This                

parameter indicates a general information gathering which is much greater for feature search as              

expected. It is interesting, that this is not the case for the other two tasks indicating an equivalent                  

information gathering. Our closer inspection showed that sigmoid shift and accumulation had            

significant partial correlations for all 3 tasks indicating a strong relationship between parameters             

(Table ?). Higher sigmoid shift delays neuronal firing while higher accumulation speeds up             

information gathering thus observed differences between tasks may be completely explained by            

the relationship of these two parameters. There were no other consistently significant            

relationships between parameters. 
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6.4.2 Discussion 

On the whole, ADyNeN exhibited great fits for the given three search tasks. It was able to                 

explain the distributional changes with increase in display size and different visual search tasks.              

There is little evidence for the change in quality of the fits in relation task difficulty suggesting                 

that a parallel competitive model is sufficient to explain datasets that are traditionally deemed to               

illustrate serial processes. Though, a comparison to the best solutions of the serial model may aid                

in identifying potential weaknesses which are not observable by the resulting fits alone.  

The free nine parameters (target-to-distractor, distractor-to-distractor, distractor-to-target, noise,        

decision boundary, sigmoid slope, sigmoid shift, accumulation, motor error) varied differently           

for the three tasks. Unlike general modelling practice, input was the same for all items, instead it                 

was replaced with dynamical weight system as a driving force of visual search. The inhibition is                

affected by the similarity of the target and distractors which can be explained by biased               

competition theory as connections between neuronal populations are biased in favour of the             

target. Distractor-to-target weight can be perceived as a level of interference in finding the target               

and pop-out feature search has little to no interference by the distractors as is in most of the                  

experiments. Another main task predictor was sigmoid slope which decreased with the task             

difficulty. This parameter could be thought as a replacement of a general saliency term as it                

determines the sensitivity of the neuronal population. We think this could be a more appealing               

interpretation of the saliency since colours used in feature tasks are salient regardless of whether               

they are targets or distractors. The noise parameter of the ADyNeN model suggests that              

identification of structural items has greater degree of uncertainty and people are more likely to               
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make a wrong identification. Though this a common observation in speed-accuracy-tradeoff of            

visual experiments. This also explains why decision boundary is not affected by SAT between              

feature and spatial configuration tasks. On the other hand, the noise is relatively the same for                

feature and conjunction tasks while decision boundary is slightly elevated for conjunction task.             

These parameters have related behaviour and it is common practice to constrain noise to a               

constant value but Donkin, Brown and Heathcote (2009) discourage this idea as noise have some               

properties that help explain RT distributions. Indeed, decision boundary is an urgency to make a               

decision parameter while noise indicates the fluctuations in the evidence for the identity of the               

item. The last parameter is motor error and it shows no difference between different tasks as                

generally expected. 

There were limited persistent interactions between parameters though accumulation with shift to            

response time remained significant across all tasks. It is not surprising since these parameters              

have very similar roles in the equation as both affect how fast the information is gathered.                

Accumulation directly modifies this gathering while shift modifies the baseline activity of the             

neuronal population which results in similar overall influence on the behaviour. However, this             

relationship does not have a known realisation via equations that would allow replacing one              

variable with another. The observed linear relationship does not have solutions on a line, thus               

parameter confidence intervals for each participant would have to be identified in order to              

determine the possibility of removal of one parameter. A future study using Bayesian inference              

may help to confirm an actual linear relationship which would enable the model simplification. 
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Fig. 6.6: Results of fitting CGS: The top-left graph shows the mean log-likelihood ratios (quality of fit) for                  

the different tasks. The remaining graphs show the means of CGS’s eight parameters for the three tasks                 

(Feature Search = FS; Conjunction Search = CS; Spatial configuration search = SC). Note, for the purpose

of a better illustration the target saliency parameter was scaled logarithmically. The results replicate              

Moran et al.’s (2013) findings. The error bars indicate the standard error. 
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Feature Search 

Conjunction Search 

Spatial Configuration Search 

Fig 6.7: CGS: KDE-based illustration of RT-distributions for one participant from each task. Figures on               

the right are from tasks with target present and the left figures are from tasks with target absent from                   

display.
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Fig 6.8: CGS: An illustration of error rates produced by participants and the simulated model for each                 

task. All error rates are from the same participants as shown by RT-distribution in Fig? 

6.5 Results and discussion: Competitive Guided Search (CGS) 

We fitted CGS with eight free parameters (Target Saliency, Identification Drift, Identification

Threshold, Quit weight increment, separate values for Non-decision time shift for present and             

absent trials, Non-decision time drift and Motor error) to Lin et al.’s (2015) 58 datasets from

three visual search experiments, feature search, conjunction search and spatial configuration           

search. Hence we obtained 58 parameter settings (see appendix II for values), 19 parameter

settings (participants) for feature search, 19 settings (participants) for conjunction search and 20             
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settings (parameters) for spatial configuration. Our outlier removal procedure detected three           

outliers for feature search, four outliers for conjunction search and 5 outliers for spatial              

configuration. It is also worth noting that the parameter estimation revealed that there are good               

fits for conjunction search and feature search where the saliency values are implausibly high.              

The number of outliers was higher than the study containing only trials from present condition.               

Some participants showed general shift in parameters and firstly using fitted spatial configuration             

parameter settings as starting point for fitting the other searches has not aided since some               

participants in spatial search showed outlier tendences.  

To assess the overall fit for each participant, we calculated the log likelihood ratios, i.e., log                

likelihood value from the model divided by the log likelihood value of the KDE’s dataset. Fig. 7                 

shows that the quality of fit declined for conjunction task but not the other two tasks. We                 

compared ratios from the different tasks with the Wilcoxon rank-sum test and a significant              

difference was found between feature search and conjunction search ( ); but         .17; < .001z = 4 p = 0   

not feature search and spatial configuration search ( ). And there was a       .15; 0.877z = 0 p =       

significant relationship between conjunction search and spatial configuration search tasks          

). To illustrate the quality of fit, Fig. 8 shows the outcome from threez − .06; < .001( = 4 p = 0               

participants. Note that the choice of these participants was made randomly by MatLab to avoid               

an author bias. The likelihood ratio was –18.44 for feature search; -38.82 for conjunction search               

and -44.10 for spatial configuration search. The graphs illustrate that CGS’s distributions nicely             

overlap with the RT-distributions from the respective tasks. Hence, we were able to qualitatively              

replicate Moran et al.’s (2013) results.  
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Fig. 6.9: Comparison of mean log likelihood ratios from ADyNeN and CGS for the three tasks (feature                 

search, conjunction search and spatial configuration). The graphs indicate the contributions from the             

different display size to the overall log likelihood ratios. The error bars indicate the standard error

without within-participant variance (Cousineau, 2005).The graphs demonstrate that ADyNeN was better           

at explaining the data than CGS. 

Overall, the parameter relationships matched relationships observed in fitting study for trials

from present condition. The non-decision shift (for both conditions) and non-decision drift            

parameters suggest that non-decision processes such as encoding or motor execution predict that

harder tasks have more variation and require more time to perform these processes. The same               

parameter predictions also were for identification drift showing slower accumulation rates with

more difficult tasks while the identification threshold showed an increased preference for lower             
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settings with task difficulty. Motor error had little change with conjunction being slightly             

elevated in motor error than other tasks. The parameters also predict that the difficulty of the task                 

reduces the probability to quit searching after identifying the item. Finally, the the saliency of the                

target has dropped with increasing task difficulty as expected though guidance for spatial             

configuration task remained above 1 reproducing findings Moran et al.’s (2013) and our findings              

(see SAIM-WTA section). 

 

Fig. 6.10: Comparison of BIC scores and AIC scores from ADyNeN and CGS models for the three tasks                  

(feature search, conjunction search and spatial configuration search). The error bars indicate the             

standard error without within-participant variance (Cousineau, 2005).  BIC and AIC penalize the quality             
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with the model complexity as measured with the number of parameters. The graphs indicate that               

ADyNeN performed equivalently with CGS in feature and spatial tasks but better for conjunction task. 

6.6 Comparison of ADyNeN and CGS 

Fig. 9 compares ADyNeN and CGS models in terms of log-likelihood ratios across different              

tasks and conditions. Additionally, it shows how the model adapts to different display sizes              

without manipulating parameter settings. Overall, ADyNeN model performs better than CGS           

model but the difference in performance appears to drop with the difficulty of the tasks. Spatial                

configuration has the smallest overall difference. Interestingly, the CGS model in the absent             

trials show smaller difference in performance than present trials and disappears in spatial             

configuration task. This may be due to numerical reasons as additional parameter in present              

condition (target saliency) negatively impacts fitting process for this condition. However, this            

does suggest that there is a trade-off in whether present or absent conditions are represented               

better. Such situation would indicate that simply adding separate non-decision time for absent             

trials is not sufficient to explain the differences between tasks. Additionally, CGS model show a               

tendency for a drop in fit across display sizes but this was mainly the case for present trials                  

which could be explained by the same numerical issue since this tendency is not consistent in                

absent condition. However, conjunction task shows the deepest slip which may be the case              

caused by the constrained introduced to identification drift and threshold (Moran et al. 2013). We               

found that the model performed better in conjunction task when this biologically plausible             

constraint was omitted which matches their findings as well. Contrary to the CGS model,              

ADyNeN show similar performance on both conditions but the most surprising result was in its               

capability to fit different display sizes similarly way. Only the fits of small set sizes seem to be                  
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slightly lower for feature and spatial configuration tasks. This is a counter-intuitive result             

because parallel models are expected to perform well in these conditions. Overall, CGS predicted              

RT distributional changes with a lower precision than ADyNeN model. However, the            

weaknesses emerge in different areas, CGS should further be investigated in its ability to account               

for both conditions since this was a main selling point (Moran et al., 2013) and ADyNeN model                 

requires to address the issue of small set sizes.  

 

z-value, p-value AIC BIC 

Feature 0.36,0.717 -2.05, 0.040 

Conjunction -3.70, <0.001 -3.62, <0.001 

Spatial 0.45,0.654 0.67, 0.502 

Table 6.1: Comparison of BIC scores and AIC scores from ​ADyNeN and CGS for the three tasks (​feature                  

search, conjunction search and spatial configuration search) using Wilcoxon sign-rank test. Only            

conjunction comparisons were significant in favour of ​ADyNeN ​. BIC score also was different for feature               

task in favour of ​ADyNeN. ​The remaining comparisons were not significant.  

Considering that ADyNeN model has nine parameters while CGS eight we needed to asses the               

performance by taking account the complexity of the models. We used two standard model              

comparison methods for comparisons when maximum likelihood is known: Akaike information           

criterion (AIC) and the Bayesian information criterion (BIC). This difference of complexity (as             

measured in terms of number of parameters) is particularly marked between CGS and ADyNeN.              

Fig 6.10 show the resulting scores with AIC being represented by upper graph while BIC by the                 

lower graph. Both scores show very similar results for feature and spatial configuration tasks but               
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not conjunction task. The scores clearly indicate a better performance by ADyNeN model. We              

performed Wilcoxon sign-rank test on these scores (see Table ?; for results) and most of the                

observation made in the graph match significance test results. Both scores show a significantly              

better penalised fits for ADyNeN model in conjunction search task and both scores show non               

significantly better penalised fits for CGS model. However, the scores show significantly better             

penalised fits for feature search favouring ADyNeN model when BIC score is considered but              

there is no significance when AIC is considered. Overall, the results show a slight preference of                

ADyNeN model over CGS despite CGS having one parameter less. 

6.7 SAIM-WTA in absent trials 
ADyNeN model is an extension of SAIM-WTA with an introduction of asymmetrical inhibitory             

weights, i.e. target inhibits more than distractors. A key observation is that absent trials are               

modelled using SAIM-WTA model and the success is significantly better than in the results of               

the initial study. This setup has seven free parameters (mutual inhibition weights, noise, decision              

boundary, sigmoid slope with shift, accumulation and motor error) in contrast with the three used               

for present trials study. Saliency value is constant for all nodes and are set to one since all inputs                   

are the same. We can assess its performance in isolation of present trials since there are no                 

significant differences between the fits of present and absent conditions suggesting near optimal             

solutions (feature: conjunction: and spatial:  .14;z = 1 0.255,p =    − .17;z = 1 0.243p =     

). This assumption is quite reliable because fitting is biased towards the− .34;z = 0 0.735p =              

absent trials since it has fewer dimensions (equivalent to observed issue for CGS). We did not                

compare these results to the CGS model because it had issues balancing two conditions thus               

performance is likely to be below its capability when a single condition is considered. Such               
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comparison would only be possible if CGS was fitted to absent trials in isolation of present                

condition. 

6.8 General Discussion 

6.8.1 Summary 

This section aimed to introduce a novel parallel model for explaining distributional changes with              

an increasing display size. In order to do so, we repeated a study in section about SAIM-WTA                 

with some practical changes. We numerically fitted two computational models to           

RT-distributions from three visual search experiments (feature search, conjunction search and           

spatial configuration search) but also included absent trials which were deliberately left out in              

SAIM-WTA study. A serial Competitive Guided Search model (CGS; Moran et al, 2013) was              

fitted again in order to accommodate it to absent trials. A proposed new Asymmetrical Dynamic               

Neural Network (ADyNeN) model representing a parallel search was fitted to compare their             

performances. The introduction of this competitive parallel model extends the knowledge about            

visual search and suggests novel perspectives to think about this unresolved issue.  

Our study introduced a first parallel model that can explain visual search RT-distributions in              

present as well as absent conditions without changing any variables. It managed to successfully              

reproduce changes observed within distributions with additional items within display. Our direct            

comparisons between ADyNeN and CGS models illustrates that ADyNeN explains          

RT-distributions better than CGS but this difference become insignificant when model           

complexity is considered. However, there is significance in conjunction search task which may             

be due to parameter constraint imposed by Moran et al. (2013) to make model more plausible.                
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We confirmed their findings that this constraint negatively impacts overall fits in this task. This               

finding suggests that there is a focus on a single feature rathen two features in conjunction search                 

tasks even substantially smaller number of trials compared to Wolfe et al. (2010) dataset. Such               

strategy effectively reduces the number of distractors that impair visual search. Overall,            

ADyNeN model is slightly better than CGS model in explaining distribution changes of these              

visual search experiments.  

Crucially, ADyNeN model adapts better to the presence of absent trials and does not require any                

parameter changes to accommodate the lack of target. It explained the two conditions equally              

well, while CGS model introduced a different shift for trials without target to better explain the                

distributional differences between two conditions. This parameter models residual time which is            

not built explicitly for ADyNeN model. ADyNeN model explains this distributional difference            

between two conditions by the presence, or the lack, of inhibition from the target. The absence of                 

the target increases competitive processes between distractor items because overall neuronal           

activity becomes higher. This leads to slower or faster decision making depending on how              

similar the distractors are to the target. Therefore, ADyNeN does not predict a difference in               

residual time compared to CGS model. 

6.8.2 Perceptual Grouping 

An interesting weakness of ADyNeN model is its performance with few items within display.              

This is unexpected finding because it is a parallel model which is expected to perform well when                 

there’s few items within display. A plausible explanation for the result is in the change of the                 

processes required to search for the items because the average distance between items drops.              
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Lower average distance between similar items encourages perceptual grouping which disappears           

when only few items exist in the display. In this case the model would fit better the other three                   

display sizes because of its inability to fit items that do not group or due to numerical reasons                  

where larger display sizes together contribute more to overall fit. Interestingly, this was not              

observed with conjunction search task which suggests that people struggle to group items in such               

task unlike the other two tasks. Importantly, these findings confirm predictions about perceptual             

grouping in Biased Competition theory (Duncan, & Humphreys, 1989). Notice that           

distractor-to-distractor inhibition has the lowest value of the three tasks which is an indication of               

network rejection as a group. Additionally, the low item set effect is slightly lower for spatial                

configuration task when compared to feature task. In order to test these predictions the              

experiments would have to be designed that would modulate target-distractor and           

distractor-distractor similarities as well as control for distance between distractors. Probably, the            

most suitable experiment would reproduce grouping results for RT-distributions by Müller-Plath           

and Elsner (2007). 

6.8.3 Similarity vs Sensitivity 

Aside qualitative performance of ADyNeN model, it also introduces a few cognitive predictions             

that possibly could be tackled to push our understanding of underpinning processes within brain.              

We separate a traditional understanding of saliency into two processes contributing to the             

observations attributed to saliency (Itti & Koch, 2000). We believe that these two processes are a                

similarity between the components and a sensitivity to the stimuli itself. This means that the               

brain is equivalently sensitive to two items of the same feature but these items may be interfering                 
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with each other due to their similarity. For example, there may be a greater sensitivity to the                 

colour than orientation. This distinction suggests that it is possible to find a common perceptual               

similarity between target and distractor for the two features. However, the colour would produce              

a response at a different pace. This is a problematic comparison because equivalent similarity              

would have to be established for completely different stimuli in order to test this prediction.               

However, hypothetically such relationship introduces the possibility to model heterogeneity but           

produce effects via sensitivity to the stimulus, such involuntary attentional grab. 

6.8.4 Limitations 

Overall, the findings indicate that ADyNeN model describes RT-distributions with additional           

competing components better than a serial identification process convoled Wald-distribution.          

Palmer et al. (2011) showed that ex-Wald (convolution of Wald and exponential function)             

characterises RT-distributions the best in comparison to other parametric functions. Results by            

Palmer et al. (2011) suggest potential structural issues as the cause because they show that               

ex-Wald parameters change depending on whether it is absent or present condition as well as on                

the number of distractors. CGS model assumes that probabilistic termination combined with            

convolved Wald functions is sufficient to explain the parameter changes. For the model to work               

well, these parameter changes should match the changes observed in Palmer et al. (2011) study.               

The same study shows that exponential function is influenced by the display size which is               

assumed to be constant by Moran et al. (2013). Future studies should explore whether CGS               

reproduces Wald distribution parameter changes by combining a serial process with dynamic            

termination. In case the model cannot reproduce similar results to ex-Wald distribution, it would              
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raise questions on validity of serial architecture during long display visual search tasks as              

envisioned by the authors. 
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Chapter 7:  
General discussion 

7.1 Summary 

In our research we have attempted to expand the understanding about visual search by designing               

new models and developing novel methods to improve their assessment. Our goal was to design               

a parallel model capable of explaining distributional changes with a increasing number of             

distractors without changing the parameter values. We considered a winner-takes-all (WTA)           

mechanism used in Selective Attention for Identification Model (SAIM:) adapted for visual            

search task as a base model. Upon investigating its performance we developed a novel              

Asymmetrical Dynamic Neural Network (ADyNeN) model which relaxed symmetry of mutually           

inhibitory nodes within original architecture. We compared both models to Competitive Guided            

Search (CGS; Moran et al.) model designed for explaining serial search strategies evidenced by              

eye movement studies and identified as the best model to describe visual search data. We hope                

that these model developments will contribute to an already existing wide literature on the issue               

of serial vs parallel search and a general visual search understanding. 

In order to fit the models to the RT-distributions, we employed a novel non-parametric kernel               

density estimator (KDE) method. As a result, we successfully employed a robust maximum             

likelihood estimator (see Robust Likelihood Approximation section in Methodology part) to           

identify the best fitting parameters. We used the differential evolution Markov chain Monte             

Carlo (DE-MCMC) method to find the best fits for the SAIM-WTA chapter study and for               
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identifying initial parameter populations for ADyNeN chapter study. For further fitting in the             

second ADyNeN study we used a novel Sequential Importance Sampling by Filtered Clusters             

(SISFC) algorithm which showed superior efficiency compared to DE-MCMC. This section           

contributed to the claims made in Methodology chapter that these methods are capable to find               

solutions for analytically intractable computational models that fit RT-distributions produced by           

visual search experiments. Moreover, this research demonstrated that these methods can           

successfully fit computational models to RT-distributions from the visual experiments. We also            

showed that the KDE is an excellent method to represent RT distributions. 

7.2 Methodology 

7.2.1 Approximating RT-distributions 

The thesis has harnessed some of the most advanced methods in order to determine whether               

RT-distributions in respect to accuracy can sufficiently constrain serial or parallel theory and             

falsify either. An important introduction in the methodology was approximation of the unknown             

PDF using KDE. This approach has not been used much but has resurfaced in recent years                

(Turner et al...) as means to quantify models that do not have an analytical likelihood function.                

The KDE introduced in the thesis (Kristan et al. 2011) is more powerful than traditional KDE                

(Silverman, 1986) because it shows greater accuracy with fewer components. In general, this             

thesis shows that there is a more accurate solution with relatively few components (e.g. 8) than                

produced by traditional KDE. This indicates, by extension to be a more accurate solution than               

other approximation methods (Turner & Sederberg, 2014; van Zandt, 2001). The main benefit is              

achieved via clustering of the simulated RTs, which is a costly process. Though, the cost may not                 
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be acceptable for larger scale approximation such as Bayesian. We found that a single KDE               

approximation generally costs ~1s which adds to ~13h for 50000 parameter evaluations.  

Note that the benefit of the clustering is an important observation because quantile methods              

cluster data by discretizing cumulative function. Intuitively, it suggests that QML should be a              

better method, contrary to the findings by Turner and Sederberg (2014). Note, that the number of                

components required to approximate well KDE depended on the size of the data. Larger data is                

better approximated with more components. QML method has become a gold standard method             

that uses five bins irrespective of the data size. Turner and Sederberg (2014) did not question this                 

established notion in their study and used identical settings. Increasing the number of percentile              

bins should have produced equivalent to superior performance. Therefore, this was an unfair             

comparison from the very beginning. It is expected for future studies to confirm this observation               

which would firmly establish quantile-based method as the most accurate non-parametric density            

approximator due to its lower computational costs. Unlike proposed KDE, QML does not require              

hierarchical clustering and sorting is the most costly function within the method. The oKDE does               

not require sorting but performs multiple complex mathematical operations that add to greater             

overall costs. 

7.2.2 Robust Parameter Evaluation 

This thesis has proposed a robust likelihood method as an alternative approach to dealing with               

contaminants within RT-distributions. Currently, there exists a few approaches to handling this            

issue. The most common approach is to use QML (​Heathcote, Brown & Mewhort, 2002) which               

averages data, though using mixture model by explicitly modelling contamination has proven to             
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be the most successful approach thus far (Ratcliff & Tuerlinckx, 2002; Ratcliff & McKoon,              

2008; Wagenmakers et al., 2008). The thesis did not compare these methods explicitly but              

outlined issues on these methods within chapter enable additional verification studies. 

The most significant limitation of the introduced method is establishing proper weighting            

between fitting RT-distributions and accuracy. Accuracy is a discrete value while RTs are             

continuous values which can impact the relative importance during parameter estimation process.            

Frequently, matching accuracy via simulations is undervalued though can be overvalued as well.             

Currently there is no evaluations of the merits of chosen weighting of fitting importance between               

the two components. However, overall results show that this lack of proper weighing did not               

cause major issues to the parameter estimation process. In fact, our weighing approach is              

arguably better than the method proposed by Turner & Sederberg (2014). They suggested using              

defective cumulative functions which works only in the best case scenario. Generally, likelihood             

values for PDF distribution can vary from very small to very large depending on the width of the                  

distribution, thus the weighting becomes determined by the width of the PDF distribution which              

is not a desirable property. An alternative QML-based approach treats error rates as additional              

bin (Moran et al., 2016). It gives identical weighting to this new bin than larger percentiles                

irrespective of the error rate which violates the expectation that probabilities for correct and              

incorrect components sum to one. In conclusion, our robust likelihood reduces the effect of              

underrepresented RT points boosting the overall weighting towards the accuracy at matching            

error rates within data. However, some additional future mathematical work is required to             

establish proper weighting between correct and incorrect decisions. 
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7.2.3 Efficient Parameter Estimation 

There was an algorithm developed as part of the thesis for more efficient Bayesian              

approximation. This algorithm was successfully employed for parameter estimation. The purpose           

of the algorithm was to find the means to identify solutions when no maximum likelihood exists.                

The lack of maximum likelihood creates a numerical problem where virtually any algorithm fails              

to approximate the posterior distribution in a reasonable amount of time. Under these             

circumstances this novel algorithm has substantially reduced the parameter estimation costs for            

the given models. However, it remained insufficient for approximating posterior distribution of            

ADyNeN model because a single parameter set evaluation take ~8s, coupled with KDE             

evaluation it amounts to ~9s. Performing 50000 evaluations that are common in Bayesian             

settings would take 5 days per participant.  

Moreover, the algorithm lacks correctness analysis via mathematical proofs as all experiments            

are performed via simulations which does not establish a proof of correctness. Though results are               

very promising, some slight adjustments are expected before a true posterior distributions can be              

found. At the moment, this algorithm is within the Approximate Bayes Computation category             

since it lacks formal mathematical relationship between analytical and approximated posterior           

distributions. Regardless, the algorithm is good for finding good parameter estimates when no             

maximum likelihood exists which has been shown via cognitive modelling applications. 
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7.3 Discussion and Future Directions 

7.3.1 SAIM-WTA vs ADyNeN 

Our follow-up revisit of SAIM-WTA model in absent conditions (6th chapter) showed strikingly             

better fits than produced for present trials only (5th chapter). There’s a couple of possible causes                

for this inconsistency. Firstly, it may be the case that our observation that SAIM-WTA model               

does not explain RT-distributions well with increasing number of distractors when present trials             

are considered is correct. On the other hand, absent conditions had more free parameters than               

SAIM-WTA used for present trials. We may have overconstrained the model reducing its             

flexibility to explain distributional differences. This contradicts an earlier statement that the            

model performed similarly with additional parameters but the relationships between parameters           

also suggest overparameterisation for ADyNeN model. Thus, the best performing model is            

simpler than ADyNeN but more complex than SAIM-WTA. 

7.3.1 Race model overview 

Moran et al. (2016) had attempted fitting a parallel race model to the response time distributions.                

The model they have considered is architecturally different from our proposed SAIM-WTA and             

ADyNeN models and the results of our and their studies possibly solve some architectural issues               

outlined for designing parallel models of visual search task (Townsend & Wenger, 2014). It              

relatively difficult to disentangle the main causes of the failure of their parallel race model               

because one poor decision masks other good decisions. Firstly, for naming convenience we will              
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refer to Moran et al’s. (2016) model simply as RT-race model so there would not be confusion                 

with general race models. 

The following views are deduced using the knowledge about success of our models on Lin et al.                 

(2015) dataset and architecture of RT-race model. We have established that SAIM-WTA is a              

smaller version of ADyNeN model (see 6th chapter) thus we will focus on establishing the               

connection between SAIM-WTA and RT-race models. RT-race model does not have competitive            

interference as SAIM-WTA is the largest difference. However, RT-race model is a limited             

capacity model which enables to factor the increased interference observed as display size             

effects. Another difference is in the number of decision boundaries. RT-race model treats each              

node as individual diffuser that accumulates information about the identity of the corresponding             

item. SAIM-WTA model assumes there are no identification errors, thus a single decision             

boundary is used. 

For future analysis consider a simplified RT-race model that makes identical assumption that             

there is no identification error. This can be accomplished by introducing a separate drift rate as                

equivalent to different inputs for distractors in SAIM-WTA. This is a common simplifying             

model assumption for modelling n-diffusers (Usher & McClelland, 2001). However, the           

observed increase in errors for absent trials would no longer exist. By assuming it is always a                 

motor error, the observed increase in errors would no longer be present (Moran et al., 2016).                

Note that authors made an identical assumption for CGS model (Moran et al., 2013). Their               

model assumes that identification follows a diffusion process governed by Wald distribution            

which also is a simplifying diffusion process that was enforced on RT-race model (Schwarz,              

2001). If this assumption was relaxed and replaced with identical misidentification error            
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probability as RT-race model has, it would fail at fitting absent trials as well. The performance of                 

RT-race model would have been substantially better under equivalent assumption of perfect            

identification. 

Perfect identification does not prove equivalent performance. However, this RT-race model           

version can be further simplified. SAIM-WTA model terminates after the the first identification             

while RT-race model has a separate node for termination. For the sake of comparison RT-race               

model could have also terminated after the first identification. With this simplification the two              

models differ in the way interference is modelled. SAIM-WTA has mutual inhibition while             

RT-race model has a limited capacity, both processes slow down accumulation though not             

equivalently. However, upon closer look at quantile by Moran et al. (2016), these simplifications              

suggest RT-race model to be capable to account for RT-distributions equivalently well. Though,             

this has to be confirmed with a future study. 

7.3.2 Competition Implications 

The crucial difference between competitive and race models is within inhibitory connections            

between the components. A race model does not have inhibitory connection but frequently             

possess processing capacity limitations which slow down processing when more items are            

introduced by replacing the drift rate with the function dependent on the number of items (Ward                

& McClelland, 1989). Competitive model has a similar component in mutually inhibitory            

connections. These inhibitory connections limit the overall activity within network to some            

maximum activity which slows down accumulation with additional items. However, it differs in             

respect that race model does not limit an overall activity within the network and simply slows                
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down the overall accumulation while competitive architecture has a clear bound on the average              

activity and any gain for some nodes have to come at the expense of other nodes. It is difficult to                    

tell to what degree the two can mimic the behaviour but it may be possible to introduce a                  

capacity function such as Hick’s law (Usher & McClelland, 2001) that would capture similar              

overall accumulation slow-down as for competitive model. However, a parallel race model            

would not be able to exhibit suppression of all items but one though may be capable of                 

producing identical RT-distributions as that one item that passed the threshold. 

7.3.3 Competitive vs Race parallel models 

Provided our observations that leveling out playing field for parallel race model with CGS model               

should yield equivalently good results, a future study comparing parallel race model with             

competitive race model is required. However, there are underlying assumptions that influence            

overall preference for either model. Firstly, a race model is analytically tractable model that is               

easy to evaluate and parameters are easily found (Moran et al., 2016). Moreover, there is no issue                 

of absent trials being too slow during feature search because of the competitive nature of the                

model, an observation that has resulted into ADyNeN model. On the other hand, ADyNeN has               

relaxed a mutual inhibition parameter that was constrained for SAIM-WTA. In fact SAIM-WTA             

can be reduced to the race model by setting this inhibitory part to 0. This creates two possible                  

solutions that can explain RT-distributions, ADyNeN model which introduces asymmetrical          

interactions between competing items within visual display or a parallel race model which             

changes its drift rate and decision boundary depending on the number of parameters within              

visual field (Moran et al., 2016). It may seem that a race model would have too many free                  
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parameter, however, we expect that introducing the same identification assumption would reduce            

the number of required parameters (Usher, Olami, & McClelland, 2002) because Moran et al.              

(2016) made a genuine effort to fit RT-distributions by freeing up as many variables as possible.                

However, this has to be confirmed in the future studies. 

So where does ADyNeN stand if the observations are confirmed? Firstly, ADyNeN is an              

extension of SAIM-WTA which can be reduced to the race model. It is architecturally more               

complex and has a potential to adapt and explain a wider range of cognitive phenomena with                

observed race conditions being one side of the coin. Unlike the race model, ADyNeN can               

capture complex interactions between items, their relatedness and possibly group items if they             

are related enough. Moreover, the relations can be expanded to the spatial interactions of the               

items with distant but similar items being less likely to be grouped. On the other hand, it is not                   

tractable analytically and reduction to parallel race model may be preferred when such model is               

applicable. 

7.3.4. RT-distributions 

The main theme of the thesis addressed the question whether RT-distributions produced via             

standard visual search task could constrain the serial or parallel theory to falsify either. This was                

suggested by Wolfe, Palmer and Horowitz (2010) in his work showcasing the failure of the best                

serial model at the time in fitting RT-distribution. As a result, Moran et al. (2013) introduced an                 

extension to the model that equipped it with such capability and failed to develop a parallel                

model Moran et al. (2016) that has such capacity. This raised two questions, did they falsify the                 

theory positing a single-stage parallel architecture or there is an architecture that has been              
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overlooked and is there a more stringent evaluation to showcase the weaknesses within serial              

theory. This thesis answers both questions positively but not the main theme.  

The findings within thesis indicate that RT-distributions are a weak constraint at distinguishing             

the two theories. This indication was already present within their new and somewhat overlooked              

‘x-score transform’ method, which briefly appeared in the literature (Wolfe, Palmer, &            

Horowitz, 2010; Moran et al., 2013), though, never got published. This transform resulted in a               

remarkably similar distributions of the three visual search tasks, especially when averaged across             

participants. This finding somewhat negatively impacts the significance of the message that            

RT-distributions could be crucial for visual search because mean and variance are linear which is               

removed once transform is performed. This finding strongly suggests that an inclusion of the              

whole RT-distribution in parallel vs serial dichotomy is unlikely to aid in distinguishing the two               

tasks and an addition of variance may have been sufficient. Such transformation prior to              

proceeding the complex KDE analysis would have shown if simulations of the models could              

differentiate between different tasks. Note, that the transform was performed on quantiles which             

are known to be less accurate. Regardless, an improved transformation may prove that mean RTs               

are insufficient for this particular task, unless the data is very large and analytical solutions are                

available. 

A crucial development within the thesis is an introduction of the novel Asymmetrical Dynamic              

Neural Network model which represents the biologically plausible class of parallel models            

consisting of the single-stage. It is well-established that serial models require two-stages for the              

models to explain fast searches that are parallel accepted to be parallel (Treisman & Gelade,               

1979). This has not been proven for parallel model assumptions and ADyNeN model introduces              
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another single-stage model that is capable at explaining RT-distributions without requiring the            

change in the parameters as it would be required by employing diffusion model. The model on                

average outperformed the serial counterpart but it remains to see if it would perform as good or                 

even better as individual diffusion models for each set size and task difficulty. Such study is                

required to finalise the correctness of the model for setsize effects. 

The dispute resides within the presence of the seriality as a serial identification process (Wolfe et                

al., 1989; Wolfe, 1994, 2007; Chun & Wolfe, 1996; Moran et al., 2013). It would be difficult to                  

identify the transition from parallel to serial as evidence relying solely on RT-distributions or              

linear changes of these distributions (Wolfe, Palmer & Horowitz, 2010). All limited capacity             

models predict that it can be exceeded and a serial process is likely to fill the gap but this                   

limitation proved to be illusive. It is possible that it would not be possible to falsify a single-stage                  

model unless RT-distribution consistently (repeated studies produced the same outcome) has           

more than one mode in the resulting distribution. A standard visual search task may not be                

sufficient to consistently produce such outcome and alternative measurements, such as eye            

movements, may be required.  

We have sufficient evidence to believe that serial processes exist which generally are predicted              

by the eye movements (Deubel & Schneider, 1996; Hulleman & Olivers, 2016). The WTA              

mechanism is commonly used to model saccades (Parkhurst, Law, & Niebur 2002; Itti & Koch,               

2001) since selective attention precedes these eye movements (Peterson, Kramer, & Irwin,            

2004). However, overall the studies are inconclusive. While the first saccade takes time to              

process, the following saccades frequently are within a very short period compared to the initial               

computation of saccade. Moreover, the second saccade is frequently towards an actual target             
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which is in the neighbourhood of the initial eye movement (Findley, Brown & Gilchrist, 2000).               

These findings show that most of the eye movement cannot be treated as an indication of the                 

serial process as only an eye gaze to completely different visual processing area can be               

considered as close to serial. In fact, these eye movement findings suggest ADyNeN’s extension              

for explaining RT-distributions combined with eye movements produced by parallel processes.           

While current ADyNeN version does not consider the effects of distance between items, such              

introduction via modulation of the inhibition is viable. Items within groups could be rejected in               

rapid succession. The modified model would encourage accumulating until all the items are             

either above decision boundary or completely suppressed. Such mechanism enables a natural            

non-exhaustive parallel search. However, absence of eye movements indicate attention but           

attention can be shifted without saccades. Some studies show similar performance despite the             

presence/absence of saccades (Wolfe, 1998), thus an addition of eye movement would not             

introduce sufficient constraint to ADyNeN model. 

7.3.5 Speed/Accuracy Trade-off 

An important experimental paradigm focuses on speed/accuracy trade-off (SAT: Dosher, Han &            

Lu, 2004, 2010). It emphasis that RTs do not provide all the information about the underlying                

cognitive processes. This paradigm looks how RTs and accuracy change as various levels of              

speed are encouraged. A general average accuracy for the given speed is measured which              

illustrates flattening error rate for longer display sizes. The RT-distributions also change            

differently as a function of display size at various levels of speed being emphasised. These               

studies show that unlimited capacity parallel processes often are sufficient to explain SAT             

effects. However, for increasingly longer viewing durations distinguishing two architectures          
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becomes illusive. Lin et al. (2015) data represent the later category and the findings within the                

thesis is not unexpected for the proponents of the paradigm (Townsend & Ashby, 1984). Neither               

ADyNeN nor CGS were tested in this paradigm and it remains an open question whether either                

theory could explain SAT data. However, ADyNeN model is better positioned since it can be               

reduced to the race model. 

 

7.4 Conclusions 

To sum up, we have used some of the most advanced numerical methods to compare competing                

parallel and serial theories and their representative models in visual search paradigm.            

Specifically we looked at response time distributions and whether models can account for             

distributional changes with an increasing number of distractors. We used Competitive Guided            

Search (CGS; Moran et al., 2013) model which is the latest prominent installment of the serial                

search Guided model (Chun & Wolfe; 1996). We used a winner-take-all mechanism from             

Selective Attention for Identification Model (SAIM; Mavritsaki, Heinke, Humphreys & Deco,           

2006; Heinke & Humphreys, 2003; Heinke & Backhaus, 2011) as a base model which we               

compared to CGS model and found that on average it performed worse than SAIM-WTA model.               

We followed these findings with developing an extension of SAIM-WTA by relaxing inhibitory             

connection between competing nodes to introduce bias depending on the identity of the item the               

node represents. A new Asymmetrical Dynamic Neural Network (ADyNeN) model has           

successfully explained the distributional changes observed within different tasks and on average            
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outperformed CGS model. It is slightly more complex model than CGS but future research could               

identify relationships between parameters that can be simplified to reduce the complexity.  
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Appendix I: SAIM-WTA 

Constant 
parameters 

Noise Sigmoid slope Sigmoid shift 
Inhibitory 

weight 

0.1 50 0.5 -1 

 

The gamma-parameter in DE-MCMC was set to where ​d ​refers to the number of free       .38/  2 √2d          

parameters. A constant random noise was set to all parameter proposals of 0.001.  

 

Feature Search 
Participant 

Decision 
Boundary 

Accumulation 
Distractor 
Saliency 

Outlier 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0.5128 

0.5214 

0.5020 

0.5067 

0,5276 

0.5011 

0.5035 

0.5079 

0.5190 

0.5297 

0.5249 

0.5221 

0.0019 

0.0018 

0.0017 

0.0018 

0.0016 

0.0018 

0.0019 

0.0019 

0.0020 

0.0020 

0.0016 

0.0018 

0.6642 

0.6537 

0.6196 

0.6381 

0.0635 

0.6672 

0.6849 

0.7145 

0.6636 

0.6413 

0.5686 

0.6756 

No 

No 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 

No 
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13 

14 

15 

16 

17 

18 

19 

0.5068 

0.5184 

0.5503 

0.5047 

0.5412 

0.5058 

0.5075 

0.0020 

0.0019 

0.0018 

0.0020 

0.0017 

0.0021 

0.0019 

0.6695 

0.2815 

0.6467 

0.6612 

0.6884 

0.5642 

0.6968 

No 

Yes 

No 

No 

No 

No 

No 

 

 

Conjunction 
Search 

Participant 

Decision 
Boundary 

Accumulation 
rate 

Distractor 
Saliency 

Outlier 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0.5762 

0.5709 

0.5056 

0.5503 

0.7373 

0.5228 

0.5226 

0.5927 

0.5177 

0.8288 

0.5326 

0.0015 

0.0017 

0.0015 

0.0014 

0.0012 

0.0013 

0.0014 

0.0013 

0.0015 

0.0043 

0.0013 

0.7192 

0.7067 

0.6181 

0.7780 

0.6394 

0.6968 

0.8034 

0.7208 

0.6557 

0.8395 

0.6682 

No 

No 

No 

No 

Yes 

No 

No 

No 

No 

Yes 

No 
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12 

13 

14 

15 

16 

17 

18 

19 

0.5696 

0.5260 

0.5445 

0.6008 

0.5666 

0.5499 

0.5120 

0.6416 

0.0014 

0.0015 

0.0016 

0.0014 

0.0014 

0.0012 

0.0015 

0.0014 

0.6703 

0.6937 

0.5276 

0.6723 

0.6761 

0.6795 

0.6671 

0.7351 

No 

No 

Yes 

No 

No 

No 

No 

No 

 

 

Spatial 
Configuration 

Search 

Participant 

Decision 
Boundary 

Accumulation 
rate 

Distractor 
Saliency 

Outlier 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.7613 

0.7843 

0.6618 

0.7788 

0.5340 

0.7609 

0.7340 

0.7389 

0.7639 

0.7017 

0.0013 

0.0014 

0.0013 

0.0012 

0.0012 

0.0011 

0.0012 

0.0013 

0.0011 

0.0012 

0.7352 

0.7419 

0.7079 

0.7797 

0.7579 

0.7613 

0.7292 

0.7465 

0.7918 

0.7877 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 
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11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.6516 

0.7391 

0.7196 

0.7221 

0.6336 

0.6639 

0.6368 

0.7149 

0.6088 

0.7118 

0.0014 

0.0010 

0.0011 

0.0011 

0.0011 

0.0012 

0.0013 

0.0014 

0.0012 

0.0014 

0.7788 

0.7551 

0.7632 

0.7393 

0.8028 

0.7321 

0.7043 

0.7519 

0.8059 

0.7651 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 
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Appendix II: Competitive Guided Search (CGS) 

In order to fit CGS we followed the same procedure as in SAIM-WTA apart from the fact that                  

DE-MCMC was initialized with Moran et al.’s (2013) parameters rather than randomly.  

 

Feature 
Search 

Participa
nt 

wtarget  υ  θ  wΔ quit  T min  γ  m  Outlier 

1 509.73 0.9012 0.1936 87.46 0.1750 59.309 0.0679 No 

2 601.31 0.9948 0.2353 92.20 0.1632 53.809 0.0671 No 

3 427.05 1.3736 0.2190 138.58 0.2381 45.042 0.0586 No 

4 414.69 0.8981 0.1497 51.52 0.2202 41.927 0.0627 No 

5 703.09 0.9442 0.2183 10.79 0.2367 66.394 0.0030 No 

6 519.11 0.8869 0.1715 83.47 0.1964 64.822 0.0687 No 

7 470.43 1.0780 0.1787 57.55 0.2049 38.983 0.1109 No 

8 603.56 0.7128 0.1240 77.35 0.2003 53.991 0.0978 No 

9 541.55 0.9225 0.1748 78.00 0.1883 76.430 0.0726 No 

10 522.10 0.7007 0.1310 123.69 0.1514 28.384 0.0871 No 

11 374.24 1.1795 0.2349 75.31 0.2422 38.389 0.0187 No 
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12 313.05 0.7203 0.1452 53.64 0.1854 24.450 0.0690 No 

13 566.21 0.6860 0.0867 95.44 0.2251 49.145 0.0855 No 

14 486.48 0.7606 0.1221 81.15 0.2149 34.367 0.0306 No 

15 383.20 0.6314 0.0997 26.61 0.2311 42.630 0.0433 No 

16 539.41 0.8274 0.0964 116.18 0.2310 63.428 0.0852 No 

17 323.05 0.7722 0.2064 34.15 0.1694 47.416 0.0596 No 

18 651.63 0.7536 0.0746 1.12 0.2386 46.928 0.0399 No 

19 482.04 1.0000 0.2288 101.74 0.1539 60.497 0.0657 No 

Mean 496.42 0.8813 0.1627 72.93 0.2035 49.281 0.0628  

 

 

Conjunctio
n Search 

Participant 
wtarget  δ  θ  wΔ quit  T min  γ  m  Outlier 

1 2.6567 0.7215 0.0385 0.0296 0.3235 22.987 0.0670 No 

2 3.9355 0.7221 0.0385 0.0062 0.3076 21.287 0.1006 No 

3 5.3075 0.4667 0.0243 0.0236 0.3804 38.041 0.0606 No 

4 3.8513 0.8845 0.0538 0.0886 0.3268 8.6027 0.2885 Yes 
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5 1.4917 0.5548 0.0287 0.0047 0.4121 7.3934 0.0148 No 

6 5.6134 0.6043 0.0414 0.0093 0.3641 15.702 0.0720 No 

7 6.2059 0.8420 0.0540 0.0387 0.3214 13.922 0.2933 Yes 

8 3.3363 0.6934 0.0436 0.0094 0.3609 10.769 0.1021 No 

9 3.3293 0.6954 0.0367 0.0323 0.3248 19.404 0.0334 No 

10 0.9580 0.8742 0.0439 0.0590 0.2298 12.375 0.1097 No 

11 4.0060 0.5743 0.0337 0.0028 0.3974 11.466 0.0452 No 

12 4.9320 0.6380 0.0422 0.0078 0.3572 14.878 0.0547 No 

13 4.4002 0.6305 0.0319 0.0242 0.3430 21.556 0.1323 No 

14 3.2589 0.6728 0.0362 0.0048 0.3081 24.146 0.0208 No 

15 3.9908 0.5219 0.0323 0.0011 0.3907 20.714 0.0419 No 

16 4.9043 0.6137 0.0369 0.0024 0.3598 17.587 0.0550 No 

17 4.5750 0.6768 0.0459 0.0222 0.3855 12.596 0.0588 No 

18 4.3901 0.7781 0.0400 0.0236 0.3163 18.593 0.0940 No 

19 2.6121 0.8141 0.0519 0.0128 0.3034 7.3051 0.1020 No 

Mean 3.8818 0.6831 0.0397 0.0212 0.3428 16.807 0.0919  
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Spatial 
Configuration 

Search 
Participant 

wtarget  υ  θ  wΔ quit  T min  γ  m  Outlier 

1 0.7808 0.6625 0.0535 0.0002 0.4152 13.623 0.0143 No 

2 0.8427 0.4798 0.0383 0.0016 0.3729 13.779 0.0567 No 

3 2.4182 0.5085 0.0385 0.0119 0.4176 17.661 0.0993 No 

4 0.5615 0.6705 0.0627 0.0021 0.4086 15.636 0.0821 No 

5 2.9063 0.4395 0.0232 0.0132 0.4108 13.377 0.1779 No 

6 1.3379 0.5003 0.0644 0.0122 0.4648 17.407 0.0370 No 

7 0.8685 0.5045 0.0382 0.0002 0.4322 31.391 0.0369 Yes 

8 1.9042 0.6199 0.0474 0.0120 0.3735 7.285 0.1433 No 

9 1.1208 0.6009 0.0767 0.0279 0.4161 9.546 0.1216 No 

10 2.0736 0.6429 0.0778 0.0436 0.4443 17.560 0.1167 No 

11 2.6494 0.6500 0.0492 0.0319 0.3630 9.308 0.1728 No 

12 1.5317 0.4810 0.0501 0.0211 0.4816 3.984 0.1087 No 

13 1.8925 0.6139 0.0776 0.0288 0.4324 7.596 0.0944 No 
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14 1.3086 0.5378 0.0489 0.0109 0.4229 9.263 0.0551 No 

15 3.2230 0.6341 0.0829 0.0324 0.3912 15.537 0.1257 No 

16 2.2699 0.4245 0.0418 0.0304 0.4431 14.322 0.0563 No 

17 2.3946 0.6768 0.0406 0.0047 0.3850 14.435 0.0559 No 

18 0.8305 0.6198 0.0395 0.0040 0.4052 26.181 0.0837 No 

19 4.0731 0.7604 0.0932 0.0554 0.3875 18.036 0.3250 Yes 

20 2.2644 0.5925 0.0691 0.0225 0.3915 27.515 0.0630 No 

Mean 1.8438 0.5659 0.0537 0.0176 0.4142 13.932 0.0917  

 

z-value, 
p-value 

wtarget  υ  θ  wΔ quit  T min  γ  m  

Feature 
-0.84, 
0.403 

3.15, 
0.002 

3.00, 
0.003 

-3.84, 
<0.001 

-1.13, 
0.258 

-4.18, 
<0.001 

4.18, 
<0.001 

Conjunctio
n 

-1.35, 
0.176 

3.74, 
<0.001 

3.38, 
<0.001 

-2.59, 
0.010 

-0.89, 
0.371 

0.85, 
0.396 

4.02, 
<0.001 

Spatial 
0.87, 
0.383 

4.22, 
<0.001 

3.32, 
<0.001 

-0.35, 
0.724 

0.92, 
0.358 

-4.22, 
<0.001 

4.22, 
<0.001 

Table II.1 Comparison between Moran et al.’s (2013) parameters and our parameters using Wilcoxon 
sum-rank test. Results in bold font indicate a significant difference. 
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Appendix III: Asymmetrical Dynamic Neural Network (ADyNeN) 

A list of ADyNeN parameters: 

1. Target to Distractor weight - ;DT  

2. Distractor to Distractor weight - ;DD  

3. Distractor to Target weight - ;TD  

4. Noise - ;ζ  

5. Decision Boundary - ;hrt  

6. Sigmoid Slope - ;s  

7. Sigmoid Shift - ;d  

8. Accumulation - ;t  

9. Motor error - ;m  

 

DT  DD  TD  ζ  hrt  s  d  t  m  

0,200 0,150 0,100 0,0.4 0.5,1 0,150 0,0.2 0,0.005 0,0.5 
Table III.1: The parameter bounds for ADyNeN model. 

 

Outliers:  

1. Feature:        4th, 7th, 19th 

2. Conjunction: 4th, 10th 

3. Spatial:          2nd, 5th, 8th,  
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Feature 
Search DT  DD  TD  ζ  hrt  s  d  t  m  

1 124.3903 79.9497 1.069 0.0895 0.5624 35.4516 0.6608 0.0027 0.0212 

2 118.3452 64.5135 0.7137 0.1018 0.6666 27.8293 0.6573 0.0027 0.0417 

3 112.3337 75.9271 1.9872 0.0465 0.8845 49.311 0.8055 0.0044 0.0402 

4 86.4986 0.379 0.2005 0.092 0.6226 37.012 0.6796 0.0029 0.0237 

5 82.0935 135.284 0.1323 0.0579 0.6296 46.1509 0.7864 0.0034 0.0043 

6 114.1549 58.7303 2.2657 0.0578 0.8662 40.6812 0.7966 0.0044 0.037 

7 150.4281 79.0322 4.5986 0.0618 0.8539 38.5298 0.7647 0.0042 0.0616 

8 69.6937 27.4476 2.1202 0.0709 0.617 33.6018 0.7405 0.0035 0.0465 

9 137.2734 64.2373 3.1389 0.0557 0.8337 42.0765 0.7637 0.0041 0.0254 

10 63.4552 84.1684 0.3601 0.0936 0.7135 29.0801 0.8159 0.0047 0.0609 

11 144.3466 136.101 0.0288 0.0648 0.7215 50.6529 0.7647 0.0032 0.0214 

12 94.3155 103.7935 1.1335 0.0923 0.6408 27.5563 0.7356 0.0033 0.0592 

13 96.9523 77.7047 2.5708 0.0569 0.926 32.6229 0.77 0.0048 0.058 

14 107.0716 85.1993 0.5197 0.0661 0.5536 36.5859 0.7274 0.0033 0.0091 

15 126.5389 75.5599 0.452 0.0673 0.7572 36.3168 0.7997 0.0042 0.0343 

16 159.5913 81.0231 0.7746 0.0526 0.8737 58.2801 0.7371 0.004 0.0463 

17 83.715 128.0563 1.2521 0.1019 0.6539 26.442 0.8437 0.0041 0.053 

18 142.0826 82.7039 0.3158 0.0574 0.8473 60.8336 0.6 0.0028 0.009 

19 78.5121 0.3114 0.1514 0.0906 0.6216 36.0105 0.6741 0.0029 0.0248 

Mean 111.0221 85.024 1.177 0.070 0.734 39.592 0.7503 0.0037 0.0354 
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Conjun
ction 
Search 

DT  DD  TD  ζ  hrt  s  d  t  m  

1 124.3903 79.9497 1.069 0.0895 0.5624 35.4516 0.6608 0.0027 0.0212 

2 118.3452 64.5135 0.7137 0.1018 0.6666 27.8293 0.6573 0.0027 0.0417 

3 112.3337 75.9271 1.9872 0.0465 0.8845 49.311 0.8055 0.0044 0.0402 

4 86.4986 0.379 0.2005 0.092 0.6226 37.012 0.6796 0.0029 0.0237 

5 82.0935 135.284 0.1323 0.0579 0.6296 46.1509 0.7864 0.0034 0.0043 

6 114.1549 58.7303 2.2657 0.0578 0.8662 40.6812 0.7966 0.0044 0.037 

7 150.4281 79.0322 4.5986 0.0618 0.8539 38.5298 0.7647 0.0042 0.0616 

8 69.6937 27.4476 2.1202 0.0709 0.617 33.6018 0.7405 0.0035 0.0465 

9 137.2734 64.2373 3.1389 0.0557 0.8337 42.0765 0.7637 0.0041 0.0254 

10 63.4552 84.1684 0.3601 0.0936 0.7135 29.0801 0.8159 0.0047 0.0609 

11 144.3466 136.101 0.0288 0.0648 0.7215 50.6529 0.7647 0.0032 0.0214 

12 94.3155 103.7935 1.1335 0.0923 0.6408 27.5563 0.7356 0.0033 0.0592 

13 96.9523 77.7047 2.5708 0.0569 0.926 32.6229 0.77 0.0048 0.058 

14 107.0716 85.1993 0.5197 0.0661 0.5536 36.5859 0.7274 0.0033 0.0091 

15 126.5389 75.5599 0.452 0.0673 0.7572 36.3168 0.7997 0.0042 0.0343 

16 159.5913 81.0231 0.7746 0.0526 0.8737 58.2801 0.7371 0.004 0.0463 

17 83.715 128.0563 1.2521 0.1019 0.6539 26.442 0.8437 0.0041 0.053 

18 142.0826 82.7039 0.3158 0.0574 0.8473 60.8336 0.6 0.0028 0.009 

19 78.5121 0.3114 0.1514 0.0906 0.6216 36.0105 0.6741 0.0029 0.0248 

Mean 116.4638 28.2972 22.193 0.0710 0.788 22.450 0.5499 0.0020 0.0299 
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Spatial  
Configu
ration 
Search 

DT  DD  TD  ζ  hrt  s  d  t  m  

1 65.4658 24.6815 23.2552 0.1553 0.5616 6.4034 0.5961 0.0018 0.0265 

2 89.2456 41.389 37.0931 0.168 0.7325 6.8741 0.5292 0.0019 0.0639 

3 66.9934 52.2721 43.158 0.1125 0.8534 9.7997 0.4118 0.0021 0.0303 

4 71.7787 43.3261 38.8835 0.1919 0.7584 5.1527 0.5873 0.0026 0.0353 

5 189.579 23.9195 20.9947 0.0896 0.5815 21.9964 0.7442 0.0025 0.0315 

6 83.4007 41.6787 37.6695 0.2081 0.8529 5.4695 0.4529 0.002 0.0327 

7 83.4981 32.8276 31.2112 0.1342 0.6934 7.9076 0.5567 0.0019 0.0211 

8 78.1335 29.6979 29.405 0.1016 0.6883 8.683 0.8179 0.0038 0.055 

9 84.1313 29.2898 28.8115 0.155 0.6606 7.187 0.6184 0.0019 0.0333 

10 70.3223 27.0412 26.5685 0.102 0.7035 10.0902 0.7228 0.0028 0.0484 

11 107.828 24.9001 21.8516 0.1312 0.5539 14.0163 0.5666 0.0015 0.0252 

12 83.0408 46.8087 41.3161 0.2025 0.8622 5.5766 0.4649 0.0021 0.0421 

13 77.6819 32.421 29.8364 0.1689 0.6969 6.9992 0.5781 0.0018 0.0315 

14 74.8653 30.0233 27.4714 0.1679 0.6444 6.1196 0.6336 0.0021 0.0394 

15 96.7771 36.6325 32.0488 0.1319 0.7813 9.9764 0.699 0.0027 0.0562 

16 100.656 38.1026 31.7875 0.1344 0.7611 9.2423 0.5926 0.0019 0.0295 

17 104.948 28.8846 25.4629 0.0915 0.6572 13.547 0.6412 0.0023 0.0297 

18 67.596 44.3735 40.8627 0.0934 0.8424 8.7495 0.5549 0.0031 0.0444 

19 97.8113 22.471 22.0493 0.1305 0.5957 12.7919 0.6627 0.0019 0.0377 

20 104.523 29.2569 30.1452 0.1566 0.6706 8.3339 0.6169 0.0022 0.0339 

Mean 84.7835 34.4112 31.3170 0.1451 0.71468 8.668 0.5856 0.0021 0.0351 
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Appendix IV: Competitive Guided Search (CGS) 2nd Study 

Outliers:  

1. Feature:        ​18th and 19th 

2. Conjunction:​ 1st, 4th, 7th 

3. Spatial:          ​5th, 11th, 15th, 19th, 20th 
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Featur
e 
Search 

wtarget  υ  θ  wΔ quit  T present  T absent  γ  m  

1 
597.9089 1.0603 

0.209
4 409.3828 0.1704 0.1696 31.8507 0.0379 

2 
630.8515 1.1033 

0.276
4 429.6111 0.1352 0.1428 41.9189 0.0449 

3 
1020.412 0.86 

0.130
4 399.054 0.2606 0.2484 56.1228 0.0698 

4 
366.9662 0.9234 

0.118
4 325.5649 0.241 0.1617 28.4238 0.0148 

5 
347.0001 1.2604 

0.274
4 405.3118 0.2296 0.2286 39.2696 0.0085 

6 
600.5712 1.0433 

0.173
9 413.7916 0.1965 0.2086 25.7711 0.0462 

7 
991.651 0.8733 

0.147
1 391.3397 0.218 0.2256 63.7069 0.0619 

8 
606.7712 1.0765 

0.185
6 409.3845 0.1924 0.1911 30.7785 0.0457 

9 
600.054 1.1118 

0.157
2 415.1492 0.2084 0.2176 25.835 0.0336 

10 584.4948 1.1036 0.227 406.913 0.1435 0.1446 39.0397 0.0415 

11 
318.4201 1.3898 

0.301
4 468.0363 0.2249 0.207 39.801 0.023 

12 
598.2879 1.1749 

0.266
5 409.486 0.1495 0.1672 41.3642 0.0539 

13 
1054.131 1.147 

0.235
2 428.6241 0.1692 0.2088 65.1582 0.0629 
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14 
841.2155 1.0925 

0.171
9 431.0299 0.2119 0.2438 55.4448 0.0184 

15 
600.1325 1.0462 

0.182
5 409.8216 0.1992 0.2004 28.6878 0.0463 

16 
831.305 1.1305 

0.133
3 373.8617 0.2204 0.217 48.6937 0.0471 

17 
704.8592 0.772 

0.193
3 341.0633 0.1685 0.171 49.0647 0.0429 

18 369.7622 0.5622 0.029 231.244 0.2737 0.263 39.8363 0.0194 

19 
393.1467 0.9783 

0.133
7 311.3181 0.2303 0.1836 39.8196 0.0434 

Mean 664.4136 1.0687 0.199
0 

403.9662 0.1964 0.1972 41.8194 0.04113 
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Conjun
ction 
Search 

wtarget  υ  θ  wΔ quit  T present  T absent  γ  m  

1 52.5353 1.1506 0.3696 56.3225 0.1614 0.2167 71.0159 0.0192 

2 5.2457 0.7163 0.0483 0.8014 0.2967 0.3019 21.6476 0.1149 

3 3.8363 0.489 0.0263 1.7863 0.384 0.3687 15.844 0.0539 

4 65.007 0.4914 0.1613 125.533 0.1829 0.0533 12.2833 0.1558 

5 1.7965 0.5189 0.0357 0.0504 0.4083 0.3508 12.8873 0.0019 

6 4.2975 0.6242 0.0461 1.2103 0.3621 0.3643 18.5246 0.0248 

7 23.8112 2.34 0.8519 265.8012 0.1257 0.1151 70.7832 0.0219 

8 3.8356 0.5054 0.0346 0.3282 0.378 0.3483 18.7242 0.0575 

9 4.1196 0.694 0.052 0.6805 0.3321 0.3346 24.3372 0.0415 

10 2.9134 0.6236 0.0455 0.6693 0.2378 0.2774 11.1925 0.1066 

11 4.5345 0.3237 0.0164 0.3247 0.4145 0.4364 12.482 0.0614 

12 5.2258 0.4464 0.0258 0.5925 0.3786 0.3252 11.1809 0.0402 

13 6.7002 0.8888 0.0452 0.9433 0.3543 0.3731 31.2117 0.0868 

14 4.7236 0.6456 0.044 1.7929 0.3126 0.3578 19.8347 0.0019 

15 4.4064 0.3743 0.0212 0.4451 0.4023 0.3504 16.3568 0.0418 

16 4.4924 0.6649 0.0488 1.2718 0.3546 0.3565 17.0843 0.0406 

17 4.5279 0.2466 0.0144 0.4823 0.453 0.3906 15.2474 0.0893 

18 6.4921 0.5757 0.0358 1.1877 0.3308 0.3218 36.4661 0.0394 

19 2.869 0.686 0.0495 0.4627 0.3532 0.2627 13.3171 0.0864 

Mean 4.3760 0.5639 0.0368 0.8143 0.3595 0.3450 18.5211 0.0555 
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Spatial  
Configur
ation 
Search 

wtarget  υ  θ  wΔ quit  T present  T absent  γ  m  

1 0.9297 0.6967 0.0713 0.0024 0.4028 0.3788 19.9092 0.013 

2 2.1928 0.8838 0.1042 0.0441 0.4097 0.4074 40.5937 0.0417 

3 1.4702 0.5267 0.0293 0.0195 0.4125 0.336 16.9954 0.0437 

4 0.9402 0.5367 0.0517 0.0096 0.4602 0.4159 21.5886 0.036 

5 55.5617 1.2818 0.5128 43.1337 0.2195 0.1561 77.7109 0.0607 

6 1.0644 0.5017 0.0569 0.0246 0.4519 0.4469 9.0538 0.011 

7 1.2943 0.4488 0.0283 0.0026 0.4337 0.4046 10.1367 0.0352 

8 1.2943 0.4488 0.0283 0.0026 0.4337 0.4046 10.1367 0.0352 

9 1.0255 0.5555 0.0613 0.0317 0.444 0.3324 9.0722 0.0561 

10 0.4439 0.6108 0.0424 0.0162 0.4558 0.3802 28.5303 0.0583 

11 3.1182 0.5596 0.0464 0.4081 0.3757 0.3178 10.2446 0.0528 

12 0.9459 0.5037 0.0406 0.0149 0.4953 0.4749 5.5664 0.0378 

13 1.7779 0.5445 0.0487 0.0688 0.4696 0.4264 7.2598 0.0451 

14 1.3536 0.4296 0.046 0.0173 0.4242 0.3983 12.0196 0.0369 

15 14.5046 0.9167 0.5055 11.9088 0.1725 0.198 62.2988 0.0458 

16 1.2943 0.4488 0.0283 0.0026 0.4337 0.4046 10.1367 0.0352 

17 2.471 0.8632 0.0545 0.1096 0.3858 0.3057 23.3617 0.0277 

18 1.0814 0.6347 0.0407 0.0269 0.4053 0.3405 19.2556 0.0289 

19 10.8925 0.7959 0.31 17.2083 0.2329 0.2375 58.0916 0.0136 

20 8.3673 1.1836 0.388 3.4779 0.2392 0.2972 66.7059 0.023 

Mean 1.3052 0.5755 0.0488 0.0262 0.4345 0.3904 16.2410 0.0361 
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