GROUP ALGEBRAS WHOSE GROUP OF UNITS IS POWERFUL

VICTOR BOVDI

(Received 30 September 2008; accepted 3 June 2009)

Communicated by E. A. O'Brien

Abstract

A p-group is called powerful if every commutator is a product of p th powers when p is odd and a product of fourth powers when $p=2$. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.

2000 Mathematics subject classification: primary 20C05; secondary 16S34, 16U60.
Keywords and phrases: modular group algebra, group of units, powerful group, pro-p-group.

Throughout this note G is a finite p-group and F is a finite field of characteristic p. Let

$$
V(F G)=\left\{\sum_{g \in G} \alpha_{g} g \in F G \mid \sum_{g \in G} \alpha_{g}=1\right\}
$$

be the group of normalized units of the group algebra $F G$. Clearly $V(F G)$ is a finite p-group of order

$$
|V(F G)|=|F|^{|G|-1} .
$$

A p-group is called powerful if every commutator is a product of p th powers when p is odd and a product of fourth powers when $p=2$. The notion of powerful groups was introduced in [5] and it plays an important role in the study of finite p-groups (for example, see [2, 4] and [7]). Our main result is the following.

THEOREM. The group of normalized units $V(F G)$ of the group algebra $F G$ of a group G of p-power order over a finite field F of characteristic p, is never powerful except, of course, when G is abelian.

In view of the fact that a pro- p-group is powerful if and only if it is the limit of finite powerful groups, this has an immediate consequence.

[^0](C) 2009 Australian Mathematical Publishing Association, Inc. 1446-7887/2009 \$16.00

COROLLARY. The group of normalized units $V(F[[G]])$ of the completed group algebra $F[[G]]$ of a pro-p-group G over a finite field F of characteristic p, is never powerful except, of course, when G is abelian.

We denote by $\zeta(G)$ the center of G. We say that $G=A \mathrm{Y} B$ is a central product of its subgroups A and B if A and B commute elementwise and $G=\langle A, B\rangle$, provided also that $A \cap B$ is the center of (at least) one of A and B. If H is a subgroup of G, then we denote by $\mathfrak{I}(H)$ the ideal of $F G$ generated by the elements $h-1$ where $h \in H$. Set $(a, b)=a^{-1} b^{-1} a b$, where $a, b \in G$. Denote by $|g|$ the order of $g \in G$. Put $\Omega_{k}(G)=\left\langle u \in G \mid u^{p^{k}}=1\right\rangle$ and $\widehat{H}=\sum_{g \in H} g \in F G$. If $H \unlhd G$ is a normal subgroup of G, then $F G / \Im(H) \cong F[G / H]$ and

$$
\begin{equation*}
V(F G) /(1+\Im(H)) \cong V(F[G / H]) \tag{1}
\end{equation*}
$$

We freely use the fact that every quotient of a powerful group is powerful [2, Lemma 2.2(i)]).
Proof. We prove the theorem by assuming that counterexamples exist, considering one of minimal order, and deducing a contradiction. Suppose then that G is a counterexample of minimal order. If G had a nonabelian proper factor group G / H, that would be a smaller counterexample, for, by (1), $V(F[G / H])$ would be a homomorphic image of the powerful group $V(F G)$. Thus all proper factor groups of G are abelian, that is, G is just nilpotent of class 2 in the sense of Newman [6]. As Newman noted in the lead-up to his Theorem 1, this means that the derived group has order p and the center is cyclic. Of course it follows that all p th powers are central, so the Frattini subgroup $\Phi(G)$ is central and also cyclic.

Suppose $p>2$. Then a finite p-group with only one subgroup of order p is cyclic [3, Theorem 12.5.2], so G must have a noncentral subgroup $B=\langle b\rangle$ of order p. Now $(b, a)=c \neq 1$ for some a in G and some c in G^{\prime}. Of course $\langle c\rangle=G^{\prime} \leq \zeta(G)$, $a^{-1} b^{i} a=b^{i} c^{i}=c^{i} b^{i}$ and $b^{i} \widehat{B}=\widehat{B}$ for all i, so

$$
\begin{align*}
(a \widehat{B})^{2} & =a^{2}\left(1+a^{-1} b a+\cdots+a^{-1} b^{p-1} a\right) \widehat{B} \\
& =a^{2}\left(1+c b+\cdots+c^{p-1} b^{p-1}\right) \widehat{B} \\
& =a^{2} \widehat{G}^{\prime} \widehat{B} \tag{2}
\end{align*}
$$

Noting that

$$
\begin{equation*}
\left(\widehat{G}^{\prime}\right)^{2}=0 \tag{3}
\end{equation*}
$$

we get

$$
\begin{align*}
(a \widehat{B})^{3} & =a^{2} \widehat{G^{\prime}} \widehat{B} \cdot a \widehat{B}=a^{2} \widehat{G}^{\prime} a^{-1} \cdot(a \widehat{B})^{2} \\
& =a^{2} \widehat{G}^{\prime} a^{-1} \cdot a^{2} \widehat{G}^{\prime} \widehat{B}=a^{3}\left(\widehat{G}^{\prime}\right)^{2} \widehat{B}=0 \tag{4}
\end{align*}
$$

Therefore $|1+a \widehat{B}|=p$. We know from 4.12 of [7] that $\Omega_{1}(V(F G))$ has exponent p, so it must be that $((1+a \widehat{B}) b)^{p}=1$ as well. However,

$$
\begin{equation*}
b^{i} a b^{-i}=a\left(a, b^{-i}\right)=a c^{i}=c^{i} a \tag{5}
\end{equation*}
$$

which allows one to calculate that

$$
\begin{array}{rlrl}
((1+a \widehat{B}) b)^{p} & =(1+a \widehat{B})\left(1+b a b^{-1} \widehat{B}\right) \cdots\left(1+b^{p-1} a b^{-(p-1)} \widehat{B}\right) \cdot b^{p} & \\
& =(1+a \widehat{B})(1+c a \widehat{B}) \cdots\left(1+c^{p-1} a \widehat{B}\right) & & \text { by (5) } \\
& =1+\widehat{G}^{\prime}(a \widehat{B})+\frac{1}{2}(p-1) \widehat{G}^{\prime}(a \widehat{B})^{2} & & \text { by (4) } \\
& =1+\widehat{G}^{\prime}(a \widehat{B})+\frac{1}{2}(p-1)\left(\widehat{G}^{\prime}\right)^{2} a^{2} \widehat{B} & & \text { by (2) } \\
& =1+\widehat{G}^{\prime}(a \widehat{B}) & & \text { by }(3) \tag{3}\\
& \neq 1 . &
\end{array}
$$

(To see that the third line is equal to the second, it helps to think in terms of polynomials with $a \widehat{B}$ as the indeterminate and $F G^{\prime}$ as the coefficient ring, the critical point being that in the third line the coefficients of all positive powers of $a \widehat{B}$ are integer multiples of \widehat{G}^{\prime}.) This contradiction completes the proof when $p>2$.

Next, we turn to the case $p=2$. Then $G^{\prime}=\left\langle c \mid c^{2}=1\right\rangle$ and the ideal $\mathfrak{I}\left(G^{\prime}\right)$ is spanned by the elements of the form $\widehat{G}^{\prime} g$, while $F G$ is spanned by the elements h of G. It is clear that $\widehat{G}^{\prime} g$ and h commute, because

$$
\widehat{G}^{\prime} g h=\widehat{G}^{\prime}\left(g h g^{-1} h^{-1}\right) h g \quad \text { and } \quad \widehat{G}^{\prime}\left(g h g^{-1} h^{-1}\right)=\widehat{G}^{\prime},
$$

so $\mathfrak{I}\left(G^{\prime}\right)$ is central in $F G$ and $1+\Im\left(G^{\prime}\right)$ is central in $V(F G)$. As $\left(\widehat{G}^{\prime}\right)^{2}=0$, it also follows that $\left(\mathfrak{I}\left(G^{\prime}\right)\right)^{2}=0$ and so the square of every element of $1+\Im\left(G^{\prime}\right)$ is 1 . As $V(F G) /\left(1+\Im\left(G^{\prime}\right)\right) \cong V\left(F\left[G / G^{\prime}\right]\right)$, the derived group V^{\prime} of $V(F G)$ lies in $1+\Im\left(G^{\prime}\right)$, a central subgroup of exponent 2 . It follows that in $V(F G)$ all squares are central.

Let $w \in V^{\prime}$. By [5, Proposition 4.1.7], this is the fourth power of some element u of $V(F G)$. Write u as $\sum_{g \in G} \alpha_{g} g$ with each α_{g} in F. In the commutative quotient modulo $\Im\left(G^{\prime}\right), u^{2}=\sum_{g \in G} \alpha_{g}^{2} g^{2}$, hence

$$
u^{2}=v+\sum_{g \in G} \alpha_{g}^{2} g^{2}
$$

for some v in $\mathfrak{I}\left(G^{\prime}\right)$. Of course then v and all the g^{2} are central in $F G$ and $v^{2}=0$, so we may conclude that $w=u^{4}=\sum_{g \in G} \alpha_{g}^{4} g^{4}$.

In particular, as $V(F G)$ is not abelian, the exponent of G must be larger than 4. Recall that $\Phi(G)$ is central, the center is cyclic, and $\left|G^{\prime}\right|=2$, so [1, Theorem 2] applies and for this case gives the structure of G as

$$
G=G_{0} \mathrm{Y} G_{1} \mathrm{Y} \ldots \mathrm{Y} G_{r}
$$

where G_{1}, \ldots, G_{r} are dihedral groups of order 8 and G_{0} is either cyclic of order at least 8 (and in this case $r>0$) or an $M\left(2^{m+2}\right)$ with $m>1$, where

$$
M\left(2^{m+2}\right)=\left\langle a, b \mid a^{2^{m+1}}=b^{2}=1, a^{b}=a^{1+2^{m}}\right\rangle
$$

One of the conclusions we need from this is that every fourth power in G is already a fourth power in G_{0}, thus every element of V^{\prime} is an element of $F G_{0}^{4}$. In particular, when w is the unique nontrivial element of G^{\prime}, the linear independence of G as subset of $F G$ implies that w itself is the fourth power of some element of G_{0}.

It is easy to verify that, in $M\left(2^{m+2}\right)$ with $m \geq 1$, the inverse of the element $1+a+b$ is

$$
\left(a^{2^{m}-3}+a^{-3}+a^{-2}+a^{-1}\right)+\left(a^{2^{m}-2}+a^{2^{m}-2}+a^{-3}\right) b
$$

and so

$$
(1+a+b, a)=\left(1+a^{2^{m}-2}+a^{-2}\right)+\left(a^{2^{m}-2}+a^{2^{m}-1}+a^{-2}+a^{-1}\right) b
$$

Of course the left-hand side is an element of V^{\prime}, but the right-hand side is not an element of $\langle a\rangle$. When $G_{0} \cong M\left(2^{m+2}\right)$, this shows that there is an element in V^{\prime} which does not lie in $F G_{0}^{4}$. When G_{0} is cyclic, then $G_{1} \cong M\left(2^{m+2}\right)$ with $m=1$, and we have an element in V^{\prime} which does not even lie in $F G_{0}$. In either case, we have reached the promised contradiction and the proof of the theorem is complete.

Acknowledgements

The author would like to express his gratitude to L. G. Kovács and particularly to the referee, for valuable remarks.

References

[1] T. R. Berger, L. G. Kovács and M. F. Newman, 'Groups of prime power order with cyclic Frattini subgroup', Nederl. Akad. Wetensch. Indag. Math. 42(1) (1980), 13-18.
[2] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic Pro-p Groups, Cambridge Studies in Advanced Mathematics, 61 (Cambridge University Press, Cambridge, 1999).
[3] M. Hall Jr, The Theory of Groups (Macmillan, New York, 1959).
[4] L. Héthelyi and L. Lévai, 'On elements of order p in powerful p-groups', J. Algebra 270(1) (2003), 1-6.
[5] A. Lubotzky and A. Mann, 'Powerful p-groups. I. Finite groups', J. Algebra 105(2) (1987), 484-505.
[6] M. F. Newman, 'On a class of nilpotent groups', Proc. London Math. Soc. (3) $\mathbf{1 0}$ (1960), 365-375.
[7] L. Wilson, 'On the power structure of powerful p-groups', J. Group Theory 5(2) (2002), 129-144.

VICTOR BOVDI, Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O.B. 12, Institute of Mathematics and Informatics, College of Nyíregyháza, Sóstói út 31/b, H-4410 Nyíregyháza, Hungary e-mail: vbovdi@math.klte.hu

[^0]: The research was supported by OTKA No. K68383.

