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Abstract 

The solid phase crystallization of amorphous silicon thin films deposited on 

<111>-oriented wafers at high temperatures was investigated. The films were heated up 

by diode laser irradiation for some milliseconds to seconds. Time resolved reflectivity 

measurements together with numerical temperature calculations showed that 

temperatures above 1000°C were reached before significant crystallization took place. 

By comparing two different laser intensities it is shown that random nucleation and 

growth dominate solid phase epitaxy if high temperatures are reached faster. The 

interface between epitaxially grown and randomly crystallized material is very rough 

which can be attributed to contaminations found at the substrate-film interface. 
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1. Introduction 

Solid phase epitaxy (SPE) of thin amorphous silicon films on crystalline or 

polycrystalline substrates is a common technology in transistor fabrication on 

monocrystalline substrates [1, 2, 3]. It was also shown, that SPE is suitable for 

producing crystalline silicon thin film solar cells based on a polycrystalline seed layer 

prepared by aluminum-induced crystallization [4, 5] or by diode laser crystallization [6].  

Many investigations concerning the crystallization kinetics were carried out with 

furnace or hot plate annealing at relatively low temperatures around 600°C [7, 8, 9, 10]. 

In this case the heating-up time is small as compared to the time needed for 

crystallization of amorphous silicon. Thus the process can be evaluated in terms of a 
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constant temperature [7, 11].  Furthermore, the nucleation rates at this temperature are 

small enough to not disturb an epitaxial regrowth significantly, so that it can be 

neglected in most cases. 

Some experiments based on halogen lamp annealing [12] and argon or dye laser heating 

were reported [11], dealing with temperatures up to 1000°C and above. In this case the 

temperature rise during crystallization has to be taken into account since the growth 

velocity and nucleation rate increase rapidly with temperature [13]. Moreover, the ratio 

between growth velocity and nucleation determines which part of the amorphous 

volume is crystallized by SPE and which one by random nucleation and growth (RNG).  

In this work solid phase epitaxy of amorphous silicon layers on monocrystalline 

substrates is evaluated by TEM-investigations. In view of a later usage in seed layer 

based absorber thickening for crystalline thin film solar cells (see [6]) a diode laser is 

used for heating up and crystallizing the films within microseconds to seconds. To 

evaluate the worst case for an epitaxial thickening wafers with <111>-orientation were 

used as a substrate.  This orientation is known to grow most defective and slowest in 

SPE [14, 15]. 

 

2. Material and methods 

 <111>-oriented, one-side polished n-type wafers with a dopant concentration of 

8×10
-18

 1/cm³ were used as substrates. The wafers were cut into 1"x1" square samples to 

fit in the laser setup. A standard photoresist on the polished side was used to protect the 

surface during cutting. The resist was then removed in piranha solution 

(H2SO2:H2O2=4:1, 15 min) and a standard RCA clean [16] followed. After the cleaning 

procedure 550 nm of amorphous silicon were deposited by electron beam evaporation at 

250°C. During deposition the working pressure was 1×10
-7

 mbar. The deposition rate 

was 270 nm/min. 

For laser treatment of the samples a diode laser (=808 nm) was used with a well 

homogenized 1x1 mm² top hat profile spot.  For diagnostics a helium neon probe laser 

(=633 nm) is focused at the center of the diode laser spot. During irradiation the 

reflectivity of the sample is recorded (time resolved reflectivity, TRR). The focus of the 

helium neon probe laser has a circular Gaussian shape with a diameter of 150 µm, 

which is small enough to observe an area of nearly constant temperature on the 

irradiated sample. More details concerning the probe laser setup or the beam shape of 

the lasers can be found in [17], where, in contrast to this work, the reflectivity was 

measured from the backside of the sample. 

TEM cross sectional lamellae were prepared from the irradiated spots by mechanical 

cutting, embedding in a Ti-disk and polishing down to 50 µm. Then Ar
+
-ion milling at 7 

kV was applied till perforation. Finally the surface of the lamellae was cleaned first with 

3 kV then with 300 eV Ar
+
-ions. The cross sections were examined in a JEOL3010 

HRTEM equipped with a GATAN GIF Tridiem imaging filter. The TEM images were 

recorded at 300 kV from [110] direction of the monocrystalline Si substrate. 

Since it is very hard to measure the spatially varying temperature evolution over time 

during the irradiation, we used finite elements numerical calculations to determine the 

temperature profile evolution. The used equations and assumptions are described in 
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[17], where a film stack on a transparent glass substrate was treated. Differing from the 

latter, in this work an absorbing Si wafer is used as a substrate. Since the heat 

conduction lengths of crystalline silicon reaches the centimeter range within the 

considered times, the heat loss due to the contact between wafer and substrate holder 

has to be taken into account. This is done by considering a heat flux  (    )  
 ⃗ (   )at the contact area defining a Neumann type boundary condition.   is the 

thermal conductivity,   ⃗  is the normal vector,    is the ambient temperature, and   is the 

heat transfer coefficient, which was chosen carefully, so that the calculated times of 

surface melting coincided with the measured ones. Concerning the thin film on top of 

the wafer the phase change between amorphous and crystalline silicon influences 

mainly the reflectivity of the sample. The thermal contribution of the thin film is 

negligible [18]. The optical properties of the film were assumed as a mixture between a-

Si and c-Si whereas the time dependent crystalline part was taken roughly from the 

measured TRR curves. With this the interference dependent reflectivity   was 

calculated during simulation using temperature dependent optical parameters from [19] 

(a-Si) and [20] (c-Si). The equation for the depth dependent intensity distribution 
  

  
   ( )  was solved numerically for each time step, with the absorption coefficient 

 ( ) from [19, 20]. Finally the absorbed intensity is calculated according to (  
 )  (   ) ( ), where   (   ) is the spatial profile of the incident laser beam.  

 

3. Results and discussion 

Two sets of laser parameters were used for crystallization of the film: in set 1 the spots 

were irradiated with 12.5 kW/cm² for only 80 ms and in set 2 with 7.6 kW/cm² for 2500 

ms. In the following the spots irradiated with the two different sets are called spot 1 and 

2, respectively.  Figure 1 shows the TRR signal together with the calculated temperature 

evolutions of the two spots irradiated with different laser intensities. At the beginning 

the reflectivity rises due to the temperature increase and the related increase in the 

refractive index of silicon. After a certain while the reflectivity drops which is a clear 

indicator for the solid phase change from amorphous to crystalline silicon and the 

decrease in refractive index which comes along with it. This continuous drop also 

suggests that there is no flat epitaxy front reaching the surface since this would lead to a 

periodical decrease and increase in the reflectivity due to interference effects [10, 21]. 

The related faster rise in the calculated temperature curves is due to the decrease in 

reflectivity for the heating laser, which leads to an increase in absorbed power. 

Eventually the laser pulse heats up the crystalline silicon until the irradiation stops and 

the material cools down. When comparing the two experiments one can see that the 

solid phase change takes place in almost the same temperature range around 1050°C 

despite of the two different time evolutions. Since in spot 2 this range is reached later 

and is passed much more slowly than in spot 1, the corresponding solid phase change 

needs 400 ms instead of 40 ms. 
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Figure 1: Measured reflectivity and calculated temperature for spots 1 (top) and 2 (bottom) with different 

laser intensities and irradiation times (spot 1: 80 ms at 12.5 kW/cm², spot 2: 2500 ms at 7.6 kW/cm²). 

Take note of the different time scales. 

Figure 2 shows the TEM overview images of cross sections prepared at the center of the 

two aforementioned spots. It is clearly visible that the whole film was crystallized. The 

dark colored regions in the film have almost the same shading as the substrate which 

indicates the same crystallographic orientation and suggests that these regions were 

grown epitaxially. The orientation of the layer was also confirmed by selected area 

electron diffraction (SAED) patterns. In contrast to this the brighter regions above 

indicate grain orientations different from the substrate and were therefore crystallized 

by random nucleation and growth. Nevertheless all regions show strong varying shades 

of grey which indicates a high density of defects even in the epitaxially grown part, 

which is not surprising since the substrate was <111>-oriented. 
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Figure 2: TEM overview images for spot 1 (left) and 2 (right). The amorphous silicon was crystallized 

completely. The substrate-near part was grown epitaxially and is full of defects, whereas top part 

crystallized spontaneously. 

Figure 3 shows a TEM image and corresponding SAED patterns taken from spot 2. By 

comparing Figure 3a) and b) one can see that the dark regions have in fact the same 

crystallographic orientation as the substrate but are full of twins. In contrast to this, 

diffraction patterns of the bright regions show either polycrystalline material (c) or 

slightly misoriented grains (d). 

 

Figure 3: TEM image and diffraction pattern of selected film positions in spot 2. a) dark region, b) 

substrate, c) bright region - polycrystalline, d) bright region - misoriented. Images a) and c) are related 

to the left TEM image whereas b) and d) where taken from another image.  

 

By regarding the SPE grown material within spot 1 and 2 in Figure 2 one can observe, 

that in spot 1 only the first 100 nm tended to crystallize epitaxially whereas in spot 2 

this range is much wider and even reaches the surface of the sample in some regions. 

Concerning the growth velocity and the nucleation rate this means that in this 

temperature range the nucleation rate rises faster with the temperature than the growth 

velocity does (within spot 1 the film was heated up much more rapidly than in spot 2). 

Moreover, it is obvious that the interface between the SPE and RNG regions is very 

rough which was already indicated by the TRR measurements. The reason for that is 
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unclear so far, but may be related to interface contaminations which can retard epitaxy 

[22, 23]. Figure 4 shows a high resolution image of the interface between the substrate 

and the epitaxially grown layer. It is clearly visible that the contrast is smeared out over 

1 to 4 atomic layers. This could be attributed to interface imperfections like 

contaminations with foreign atoms. The varying thickness of the contamination layer 

leads to spatially different retardation times of the SPE and therefore to the rough 

interface between SPE and RNG regions. 

 

Figure 4: High resolution TEM image from the interface between substrate and epitaxially grown layer. 

The smeared out contrast next to the interface is caused by atoms not lying in the <110> direction, which 

was chosen for preparation. 

 

4. Conclusions 

In this work high temperature solid phase epitaxy of evaporated amorphous silicon on 

<111>-oriented wafers was investigated. The thin films were heated up with a diode 

laser for milliseconds up to seconds and the solid phase change was observed by TRR 

measurements. Numerical temperature simulations were done revealing that the phase 

change takes place around 1050°C whereas the time needed for completion of 

crystallization depends on the heating rate and therefore on the laser intensity. Cross 

section TEM investigations show that the irradiated areas crystallized completely, but 

are full of defects. Therefore the films showed epitaxially grown regions near to the 

substrate and regions crystallized by RNG. The SPE grown regions were larger for 

spots irradiated with lower intensities. This leads to the conclusion that the nucleation 

rate rises faster with the temperature than the growth velocity does. The interfaces 

between the SPE and RNG regions were very rough which could be attributed to 

imperfections visible at the substrate-film interface. 
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