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� Rasagiline protected against the kanamycin-induced hearing loss, a form of SNHLs, in mice. � Rasagiline enhanced the action potential-

evoked release of DA from LOC efferents in the cochlea. � DA-releasing effect of rasagiline was dose-dependent and involved the inhibition
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5 T. HORVÁTH, d,c A. HARNOS, e L. TAMÁS, a
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17 Abstract—Sensorineural hearing losses (SNHLs; e.g.,

ototoxicant- and noise-induced hearing loss or presbycusis)

are among the most frequent sensory deficits, but they lack

effective drug therapies. The majority of recent therapeutic

approaches focusedon the trials of antioxidants and reactive

oxygen species (ROS) scavengers in SNHLs. The rationale

for these studies was the prominent role of disturbed redox

homeostasis and the consequent ROS elevation. Although

the antioxidant therapies in several animal studies seemed

to be promising, clinical trials have failed to fulfill expecta-

tions. We investigated the potential of rasagiline, an

FDA-approved monoamine oxidase inhibitor type B

(MAO-B) inhibitor type anti-parkinsonian drug, as an otopro-

tectant. We showed a dose-dependent alleviation of the

kanamycin-induced threshold shifts measured by auditory

brainstem response (ABR) in an ototoxicant aminoglycoside

antibiotic-based hearing loss model in mice. This effect

proved to be statistically significant at a 6-mg/kg (s.c.) dose.

The most prominent effect appeared at 16 kHz, which is the

hearing sensitivity optimum for mice. The neuroprotective,

antiapoptotic and antioxidant effects of rasagiline in animal

models, all targeting a specific mechanism of aminoglyco-

side injury, may explain this otoprotection. The dopaminer-

gic neurotransmission enhancer effect of rasagiline might

also contribute to the protection. Dopamine (DA), released

from lateral olivocochlear (LOC) fibers, was shown to exert

a protective action against excitotoxicity, a pathological

factor in the aminoglycoside-induced SNHL. We have shown

that rasagiline enhanced the electric stimulation-evoked

release of DA from an acute mouse cochlea preparation in

a dose-dependent manner. Using inhibitors of voltage-gated

Na+-, Ca2+ channels and DA transporters, we revealed that

rasagiline potentiated the action potential-evoked release

of DA by inhibiting the reuptake. The complex, multifacto-

rial pathomechanism of SNHLs most likely requires drugs

acting on multiple targets for effective therapy. Rasagiline,

with its multi-target action and favorable adverse effects

profile, might be a good candidate for a clinical trial testing

the otoprotective indication. � 2014 Published by Elsevier

Ltd. on behalf of IBRO.

Key words: sensorineural hearing loss, kanamycin, auditory

brainstem response, lateral olivocochlear efferents, dopa-

mine, rasagiline.
18

19INTRODUCTION

20SNHLs and the lack of their effective pharmacological
21treatment

22Hearing loss (HL) is the most frequent human sensory

23deficit. In contrast to its conductive forms, there is no

24specific drug therapy for sensorineural hearing losses

25(SNHLs; e.g., ototoxicant drug- and noise-induced HL or

26presbycusis), except for symptomatic approaches with

27moderate efficacy. One of the main reasons for the

28absence of specific tools to prevent and cure SNHLs is

29the insufficient knowledge of the basic molecular

30mechanisms of normal and impaired adult hearing and

31of the endogenous protective factors.

32A consensus is evolving that the imbalance of the

33redox homeostasis and the consequent increase in

34reactive oxygen and nitrogen species (ROS, RNS) is a

35common pathological basis in all the acquired forms of

36SNHLs (Mukherjea et al., 2011), as well as in the many

37inherited forms (Noben-Trauth and Johnson, 2009). This

38knowledge initiated testing of different antioxidants and

39ROS scavengers (Tabuchi et al., 2010; Mukherjea et al.,

402011) for the protection of the cells of the organ of Corti

41and auditory neurons, which are primary targets in

42SNHLs.

43Rasagiline

44Rasagiline, a selective propargylamine inhibitor of

45monoamine oxidase inhibitor (MAO) type B, has been

46applied to Parkinson’s disease in clinical practice

47(Finberg, 2010). In addition to selectively inhibiting the

0306-4522/13 $36.00 � 2014 Published by Elsevier Ltd. on behalf of IBRO.
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48 dopamine (DA) metabolizing enzyme MAO-B, it also has

49 a cell protective action. It has been shown to protect

50 against neural degeneration (Huang et al., 1999;

51 Speiser et al., 1999; Youdim et al., 2006), oxidative

52 damage and apoptosis (Tabakman et al., 2004;

53 Siderowf and Stern, 2006). These protective effects

54 provide a rational to test its effect in different forms of

55 SNHLs. Furthermore, as an enhancer of DAergic

56 neurotransmission (Weinreb et al., 2010) in the central

57 nervous system, it may also potentiate the release of

58 DA from the lateral olivocochlear (LOC) efferents, which

59 is considered to be a protective feedback pathway of

60 the cochlea (Pujol et al., 1993; Pujol, 1994; Lendvai

61 et al., 2011; Maison et al., 2013).

62 The cochleoprotective role of DA released from LOC
63 efferent fibers

64 It has been shown that the excessive release of glutamate

65 (Glu) from inner hair cells (IHCs) in noise-induced HL,

66 presbycusis, cochlear ischemia or aminoglycoside-

67 induced ototoxicity results in the excitotoxic damage of

68 the primary auditory neurons (Duan et al., 2000; Ruel

69 et al., 2007; Tabuchi et al., 2010; Bernarding et al.,

70 2013). LOC efferents, forming axodendritic synapses with

71 the auditory neurons, serve as the effector arm of the

72 auditory neurons – cochlear nucleus – lateral superior

73 olivary complex – cochlea short-loop feedback and

74 provide protection to the auditory neurons against

75 excitotoxicity by releasing DA. DA inhibits the

76 postsynaptic effects of Glu and protects the IHC-afferent

77 nerve synapse (Halmos et al., 2005, 2008; Ruel et al.,

78 2007; Lendvai et al., 2011). Intracochlear application of

79 the D2/D3 dopamine receptor agonist piribedil reduced

80 the characteristic electrophysiological and structural

81 changes evoked by acoustic trauma and ischemia (Pujol

82 et al., 1993; d’Aldin et al., 1995a,b; Gil-Loyzaga, 1995),

83 and D1, D2 receptor agonists were shown to inhibit the

84 NMDA- and AMPA-induced firing of the primary afferent

85 nerve (Oestreicher et al., 1997). Although drugs acting on

86 the DAergic system have not yet been tested thoroughly,

87 theoretically, any drug able to boost the function of this

88 system could hold preventive or curative promises for

89 SNHLs (Halmos et al., 2005; Lendvai et al., 2011).

90 Aminoglycoside ototoxicity and its use as a SNHL
91 model

92 Aminoglycoside antibiotics, which still need to be used in

93 the treatment of certain serious infections caused by

94 aerobic gram-negative bacteria, can induce irreversible

95 HL (Xie et al., 2011). Hair cells, especially the outer hair

96 cells and the IHC ribbon synapse, together with the

97 auditory neurons, are very vulnerable to the

98 administration of aminoglycosides (Ylikoski et al., 1974;

99 Dodson, 1997; Duan et al., 2000; Maruyama et al.,

100 2008; Fransson et al., 2010; Liu et al., 2013). The

101 pivotal role of normal redox state disturbances,

102 generation of ROS and excitotoxic damage of the

103 auditory neurons in the pathomechanism has been

104 shown in several studies (Basile et al., 1996; Sha and

105 Schacht, 1999; Duan et al., 2000; Poirrier et al., 2010;

106Huth et al., 2011). This serious side effect is the basis

107of a well-established animal model used in hearing

108research (Wu et al., 2001). As the aminoglycoside

109induced HL involves oxidative stress, ROS generation

110and excitotoxic neuronal damage, we tested the effect

111of rasagiline in the kanamycin-induced hearing loss

112model.

113EXPERIMENTAL PROCEDURES

114In vivo measurement of the rasagiline effect in the
115aminoglycoside-induced ototoxicity model

116General experimental paradigm of kanamycin-induced
117ototoxicity and application of rasagiline. All animal care

118and experimental procedures were in accordance with

119the National Institute of Health Guide for the Care and

120Use of Laboratory Animals. Procedures were approved

121by the Animal Use Committee of the Institute of

122Experimental Medicine, Hungarian Academy of

123Sciences. Selections of the mouse strain and the type

124and concentration of aminoglycoside antibiotic were

125based on data from the literature (Wu et al., 2001). Our

126preliminary experiments (data not shown) testing

127different mouse strains, aminoglycoside antibiotics and

128concentrations of kanamycin, confirmed that the most

129pronounced and reliable aminoglycoside-induced

130hearing loss, suitable for testing otoprotection, could be

131produced in BALB/c mice by administering kanamycin in

132an 800 mg/kg s.c. dose. Male BALB/c mice, age

1334 weeks, were purchased from Charles River, Germany.

134First, a set of experiments exploring also the dynamics

135of the effect of kanamycin and rasagiline was carried out.

136Mice were assigned to one of the following four

137experimental groups: (1) Control (physiological saline),

138(2) Kanamycin, 800 mg/kg, (3) Rasagiline, 3 mg/kg, and

139(4) Kanamycin, 800 mg/kg + Rasagiline, 3 mg/kg.

140Treatment groups contained eight mice each. (One

141mouse in group 4 died during the auditory brainstem

142response (ABR) measurement under anesthesia.)

143Kanamycin sulfate (USB Corporation, Cleveland, OH)

144was injected s.c. twice daily (8–9 a.m. and 6–7 p.m.) for

1452 weeks. The first dose of the antibiotic was administered

146on the day of the first ABR measurement (6–7 p.m.) after

147all the measurements had been performed. Doses of

148rasagiline mesylate (3 mg/kg, s.c.; TEVA) were given

149once daily at the same time as the morning dose of

150kanamycin, but the injections were separate. In this way,

151the first dose of rasagiline was delivered 14 h after the

152first kanamycin dose. Rasagiline treatments lasted

1535 weeks. Mice in the Control group were injected s.c. by

154an equivalent amount of physiological saline. In the

155kanamycin treatment group, after the 2nd week, the

156kanamycin injections were replaced by injections of

157physiological saline till the end of the 5th week.

158Auditory thresholds were determined in both ears from

159the ABRs. Thresholds were taken from each animal prior

160to the start of the drug treatments on the 1st week (start-

161up threshold), 2 weeks after the start of drug treatment,

162and then weekly up to 5 weeks (5 measurements in

163sum). The threshold shift gives the difference of an
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164 actual threshold value and the threshold measured in the

165 same mouse before any treatment (start-up threshold).

166 Based on the time-dependent threshold changes

167 measured in the first set of experiments, a 3-week-long

168 experiment was performed, and two other doses of

169 rasagiline were tested (1. Control, 2. Kanamycin, 800 mg/kg,

170 3. Kanamycin, 800 mg/kg + Rasagiline, 0.5 mg/kg, 4.

171 Kanamycin, 800 mg/kg + Rasagiline, 6 mg/kg). The ABR

172 was measured in the left ear exclusively. The experiment

173 was carried out with larger sample sizes (n= 20 in each

174 treatment group), which were calculated based on the

175 first set of experiments. Two mice in the Control group,

176 one in the kanamycin group and two in the

177 kanamycin + rasagiline, 6 mg/kg treatment group died

178 during the ABR measurement under anesthesia. The

179 kanamycin dose and the treatment protocols were the

180 same as before.

181 In vivo recordings of ABRs. Micewere anesthetized by

182 i.p. injections of ketamine (100 mg/kg) and xylazine

183 (10 mg/kg). Body temperature was maintained by a

184 feedback-controlled heating pad. The auditory thresholds

185 were determined by an ABR workstation (Tucker-Davis

186 Technologies, Alachua, FL). Click (0.4-ms duration) and

187 tone burst (3-ms duration, 0.2-ms rise/decay) stimuli

188 were generated by the SigGen software package and

189 delivered in a closed acoustic system to the external

190 auditory meatus through a plastic tube connected to an

191 EC1 electrostatic speaker. ABRs were recorded with

192 subdermal needle electrodes as the potential difference

193 between an electrode on the vertex and an electrode

194 behind the left or right pinna. The rear leg served as a

195 ground. The evoked responses were amplified, and 800

196 sweeps were averaged in real time. The intensity was

197 increased in 10-dB steps from 0 to 80-dB in click

198 stimulation mode. To obtain auditory thresholds at

199 different frequencies, the sound intensity of the tone

200 burst stimuli were attenuated in 10-dB steps. Threshold

201 was defined as the lowest intensity at which a visible

202 ABR wave was seen.

203 Statistical analysis. Threshold data in both studies

204 were analyzed using a linear mixed statistical model (to

205 take into account the fact that every animal was

206 measured on each frequency, the ‘‘nlme’’ package of the

207 R statistical program was used (Pinheiro et al., 2013; R

208 Core Team, 2013), followed by pairwise comparisons of

209 the treatments, calculated using contrasts (Warnes,

210 2011). Left and right ear values were averaged in the

211 first set of experiments. Model effects were tested

212 together based on their F values. All factors and

213 potential interactions were evaluated with the cut-off for

214 inclusion of P< 0.05. The Tukey–Kramer corrections of

215 p-values and confidence limits were applied.

216 In vitro measurement of DA release from the LOC
217 terminals

218 Measuring the release of DA from mouse and guinea-
219 pig cochlea. CD-1 male mice, weighing 20–35 g, were

220 used. Procedures were approved by the Animal Use

221Committee of the Institute of Experimental Medicine,

222Hungarian Academy of Sciences. We used the

223microvolume superfusion method as described earlier

224(Gáborján et al., 1999; Halmos et al., 2005, 2008).

225Briefly, the bulla tympani was opened. The bony capsule

226of the cochlea was removed under stereomicroscopic

227guidance, the stria vascularis was stripped, and the

228cochlea was fractured at the basis of the modiolus. Our

229preparation contained the ganglion spirale, the afferent

230auditory fibers, the axons and axon terminals of the

231efferent bundles and both the inner and outer hair cells.

232All experiments were carried out in a perilymph-like

233solution (Ikeda et al., 1991), which contained 150 mM

234NaCl, 3.5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 2.75 mM

235HEPES and 2.25 mM Tris at 37 �C. The pH was

236adjusted to 7.4. The osmolarity was set by D-glucose,

237and the solution was gassed continuously with 100% O2.

238The cochleae were incubated with 0.2 lM
239[3H]dopamine (specific activity: 31.0–59.3 Ci/mmol;

240[7,8-3H]DA, Amersham, UK) for 35 min, placed in a

241microvolume plexi chamber (three cochleae per

242chamber) and then superfused with a perilymph-like

243solution (3 ml/min). After one hour pre-perfusion, the

244outflow was collected in 3-min fractions. The released

245radioactivity, indicating the release of DA from the LOC

246terminals, was determined by assaying 500 ll aliquots of

247each sample with a liquid scintillation counter (Packard

248Tri-Carb 1900TR). After collecting the samples for

24957 min (19 fractions), each cochlea was transferred from

250the microchambers to 500 ll of 10% trichloroacetic acid

251for one day; 100 ll was then used to measure the tissue

252content of the radioactivity. Earlier HPLC measurements

253in our laboratory showed that 91–95% of the released

254radioactivity was attributable to [3H]DA and its

255metabolites DOPAC and HVA (Gáborján and Vizi, 1999).

256Electrical field stimulation, evoking action potentials in

257the LOC efferents, was applied for one collection period

258(3 min) at 30-V, 5-Hz and 0.5-ms impulse duration at

259the 3rd (S1) and 13th (S2) fractions. The pulses were

260delivered by a Grass S88 stimulator (West Warwick,

261USA) through platinum electrodes at the top and bottom

262of the tissue chamber. Rasagiline was added to the

263perfusion solution at the beginning of the 8th fraction

264(21th min) and was maintained till the end of the

265experiment. Perfusion of CdCl2 and TTX was started

2666 min earlier (from the 15th min). The application of

267nomifensine and a decrease in the temperature to 17 �C
268were started in the 45th min of pre-perfusion and were

269maintained till the end of the experiment.

270In addition to the reversibility and reproducibility of DA

271release and its inhibition by voltage-gated sodium

272(VGSC) or voltage-gated calcium channel (VGCC)

273blockade (indications of neuronal exocytosis; see

274Gáborján and Vizi, 1999; Gáborján et al., 1999; Halmos

275et al., 2008), the viability of the cochlear preparation was

276also shown by light- and electron microscopy (EM)

277performed immediately before and after the experiments

278(Halmos et al., 2008).

279Data analysis and statistics. To best describe the

280release of DA during one collecting period, the fractional
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281 release (FR) of the tritium outflow was determined as the

282 percentage of the total radioactivity present in the tissue

283 at the time of sample collection. The FR due to the field

284 stimulations (S1 and S2) was calculated by the area-

285 under-the-curve, i.e., by subtracting the mean of the

286 basal release, determined from FR values before and

287 after the stimulation, from the total FR during the

288 electrical stimulation (Halmos et al., 2000, 2005). The

289 effects of drugs on the field stimulation-evoked [3H]DA

290 release were expressed by the calculated ratio of FR S2

291 over FR S1 (FRS2/FRS1). Data are expressed as the

292 means ± SEM. Analysis of variance (ANOVA) followed

293 by Tukey’s Honest Significant Difference method for

294 multiple comparisons was used to compare the

295 treatment groups with the R 14.1 program. Levels of

296 significance were as follows: ⁄p< 0.05, ⁄⁄p< 0.01 and

297
⁄⁄⁄p< 0.001.

298 RESULTS

299 In vivo effect of rasagiline on aminoglycoside-
300 induced hearing impairment

301 The effect of rasagiline on SNHL was tested in the

302 kanamycin-induced hearing loss model in mice (Wu

303 et al., 2001). Auditory thresholds were measured at four

304 different frequencies.

305 First, a five-week-long study was started with eight

306 mice in each treatment group (Fig. 1) to explore the

307 time dependency of the threshold changes. Kanamycin

308 (800 mg/kg, s.c.), administered for 2 weeks twice daily

309 impaired the hearing of BALB/c mice. The shift of the

310 auditory thresholds was highly significant (p< 0.001) at

311 higher frequencies (16 and 24 kHz), while the ototoxic

312 effect was less pronounced at lower frequencies (not

313 even significant at 8 kHz, see the legend of Fig. 1). After

314 3 weeks, a plateau in impairment was reached (Fig. 1).

315 Administration of rasagiline showed a clear tendency of

316 attenuation of the kanamycin-induced threshold

317 elevation. This is clearly seen at all four frequencies at

318 any time point measured, although the difference was

319 not statistically significant (Fig. 1). Contrary, the trace of

320 rasagiline administration alone (3 mg/kg) was

321 sometimes below, sometimes above the control trace

322 (physiological saline) at all four frequencies during the

323 5-week-long experiment. This is in accordance with the

324 lack of significant effect of rasagiline on the ‘control’

325 threshold (Fig. 1).

326 The kanamycin-induced hearing loss developed

327 thoroughly up to the 3rd week, and the influence of

328 rasagiline on kanamycin action did not change during

329 the 5 weeks. Therefore, in a second set of experiments,

330 we tested the effect of rasagiline on threshold shifts in

331 the 3rd week at 0.5 and 6 mg/kg (s.c.) doses.

332 Administration of kanamycin caused a significant shift in

333 the auditory thresholds both in click (p< 0.01) and tone

334 burst stimulation modes (4 kHz, p< 0.05; 8 kHz,

335 p< 0.001; 16 kHz, p< 0.001; 24 kHz, p< 0.001). The

336 effect was more robust at the higher frequencies

337 (Fig. 2). Rasagiline mitigated the kanamycin-evoked

338 hearing impairment by 0.5–8 and 8–19 dB when applied

339 in 0.5 and 6 mg/kg dose, respectively. The dose-

340dependency of the rasagiline effect was more prominent

341when its action in 3 mg/kg dose was included in the

342plotting (Fig. 2). The most pronounced protection

343appeared at 16 kHz (Fig. 2).

344We showed in a separate experiment that rasagiline

345alone did not influence significantly the auditory

346thresholds during the 3-week-long treatment even in the

347highest dose (6 mg/kg). The estimated overall difference

348was 0.24 ± 0.928 dB (p= 0.798, n= 7).

349Effect and mode of action of rasagiline on the release
350of DA from mouse cochlea

351Rasagiline enhanced the electrical field stimulation-

352evoked release of DA from isolated mouse cochlea

353preparations (Fig. 3). The effect was concentration-

354dependent and reached a plateau at 100 lM (Fig. 3,

355inset). The resting release of DA was not affected in any

356concentration applied (Fig. 3).

357To explore the possible molecular mechanism of the

358action underlying the effect of rasagiline on the DA

359release evoked by the field stimulation, we tested the

360effect of 100 lM rasagiline during the inhibition of

361VGCCs and VGSCs. In the presence of Cd2+ (100 lM)

362and TTX (1 lM), respectively, the stimulation-evoked

363release was completely inhibited, providing evidence

364that the release of DA was due to axonal activity and

365Ca2+ influx. Under these conditions, rasagiline failed to

366increase the release of DA (Fig. 4).

367Blocking the reuptake of DA into the nerve terminals is

368a known way of potentiation of DAergic

369neurotransmission. In order to test whether the uptake

370inhibition is a possible mechanism in rasagiline action

371on cochlear DA release, we measured the effect of

372rasagiline in the presence of uptake inhibition by low

373temperature or nomifensine. Cooling down the

374temperature to 17 �C before S2, but after S1,

375approximately doubled the FRS2/FRS1 ratio (2.52 ± 0.4,

376n= 4), confirming its efficacy in inhibition of the uptake,

377similar to what we have shown in brain slices (Vizi,

3781998; Vizi et al., 2004). The inhibitory effect of 10 lM
379nomifensine on mouse cochlear DA reuptake has

380already been demonstrated in our previous work

381(Halmos et al., 2008). During inhibition of DA uptake by

382either nomifensine (10 lM) or low temperature (17 �C),
383the potentiating effect of rasagiline was hampered

384significantly. These findings indicate that rasagiline

385inhibits DA uptake in isolated in vitro cochlea

386preparations, thereby potentiating DA’s release from the

387LOC in response to axonal activity (Fig. 5).

388DISCUSSION

389Current therapeutic regimen and potential new drugs
390in SNHLs

391Contrary to the conductive HLs, there are no specific

392pharmaceuticals for the sensorineural forms in the

393treatment of hearing deficits. Various hearing aids and

394cochlear implants have been proven to be effective

395therapies in appropriate clinical cases; however, a

396specific drug therapy is still missing. In current clinical
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397 practice, steroids, thrombolytics, vasodilators and

398 nootropic drugs are administered.

399 Potentially new therapeutic approaches in SNHLs

400 based on animal studies, including antioxidants and ROS/

401 RNS scavengers, apoptosis inhibitors, neuroprotective

402 compounds, anti-inflammatory drugs (such as steroids,

403 aspirin or TNF-a inhibitors), neurotrophic factors or

404 different gene therapeutic approaches (Atar and

405 Avraham, 2005; Rybak and Whitworth, 2005; Maruyama

406 et al., 2008; Fransson et al., 2010; Mukherjea et al., 2011;

407 Rudnicki and Avraham, 2012; Kohrman and Raphael,

408 2013), have been applied, but they have failed to fulfil

409 expectations. Although several animal studies have

410 shown significant effects of antioxidant therapy, clinical

411 studies have not yet reached a conclusive result (Tabuchi

412 et al., 2010; Mukherjea et al., 2011). Therefore, we

413 considered it relevant to test whether rasagiline, a

414 registered drug with a complex neuroprotective,

415 antiapoptotic and antioxidant effect, possessed any

416 otoprotective action.

417 Testing the potential otoprotective action of
418 rasagiline in vivo in an aminoglycoside-induced form
419 of SNHL

420 Compounds showing a potential to prevent or cure

421 hearing impairments in in vitro experiments need

422reliable in vivo testing to support their applicability in

423therapy. The otoprotective effects of a compound can

424be tested in vivo by measuring its effect on an auditory

425threshold elevated by a pathological insult. The use of

426aminoglycoside antibiotics, which have a well-known

427ototoxic side effect in medical practice, is widely

428accepted for evoking hearing impairment and testing

429potentially otoprotective compounds (Basile et al., 1996;

430Song et al., 1997; Duan et al., 2000; Nekrassov and

431Sitges, 2000; Wu et al., 2001). The mechanism of

432aminoglycosides-induced toxicity involves excitotoxicity

433(Basile et al., 1996; Duan et al., 2000) and the pivotal

434role of oxidative stress and ROS (Basile et al., 1996;

435Sha and Schacht, 1999; Poirrier et al., 2010; Huth et al.,

4362011). To determine the threshold in vivo, the recording

437of the ABR is a method of choice to obtain objective

438audiograms. The mouse is a well-established

439experimental model for human audition as it possesses

440a similar cochlear anatomy, physiology and pattern of

441ototoxicity-related hearing loss (Wu et al., 2001;

442Fernandez et al., 2010).

443Based on the literature (Wu et al., 2001) and

444preliminary experiments, we used 800 mg/kg kanamycin

445(s.c.) for 2 weeks in our aminoglycoside-induced SNHL

446model to test the otoprotective potential of rasagiline

447in vivo. The kanamycin-evoked shift in the auditory

448thresholds was more pronounced at higher frequencies,

Fig. 1. 5-Week-long follow-up of in vivo rasagiline effect in an aminoglycoside-induced SNHL model in mice. Kanamycin (800 mg/kg, s.c., twice

daily) was administered for 2 weeks, and it induced an elevation in hearing thresholds, especially at higher frequencies (compared to Control; p
values were 0.017, 0.066, < 0.001 and <0.001 at 4, 8, 16 and 24 kHz, respectively). Rasagiline treatments (3 mg/kg, s.c., once daily) were started

14 h after the first dose of kanamycin, and they lasted 5 weeks. Although rasagiline showed a tendency to decrease the kanamycin-induced

threshold elevation at all measured time points and frequencies, these effects were not statistically significant. Mice in the Control group received

physiological saline s.c. twice daily for 5 weeks. The effect of rasagiline alone did not differ from the Control. ABRs were recorded in BALB/c mice at

four frequencies, as described in the Methods. Data are the mean ± SEM; n= 8, except in Kanamycin + Rasagiline (n= 7). A linear mixed

model, followed by pairwise comparisons, was used for the statistical analysis (see Methods).
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449which was in perfect accordance with the observations of

450other studies in both human clinical practice and in

451laboratory animals. Aminoglycoside ototoxicity appears

452as a high-frequency SNHL (Wu et al., 2001; Guthrie,

4532008). Plotting the auditory thresholds as a function of

454time, measured at different frequencies, demonstrated

455that the plateau in the effect of kanamycin was reached

456after 3 weeks. This result was in good agreement with

457prior clinical observations that the ototoxic effect of the

458aminoglycosides might start after the cessation of

459treatment, develop slowly and ultimately become

460irreversible (Xie et al., 2011). In our experiments, the

461kanamycin-induced hearing loss had a tendency to be

462attenuated by the concomitant application of a single

463dose per day of rasagiline (3 mg/kg), and this beneficial

464tendency was maintained at multiple frequencies during

465the experiments that lasted for 5 weeks. The effect of

466rasagiline on the auditory thresholds showed dose-

467dependency. The most pronounced effect was exerted

468at 16 kHz. This frequency is right in the range of the

469hearing sensitivity optimum (15–20 kHz) of the mouse

470(Ehret, 1976) and is the equivalent of the human

4711–4 kHz optimum. With these findings, it is tempting to

472hypothesize that the otoprotection by rasagiline could be

473predominantly exerted in the frequency range most

474relevant to speech acquisition.

475The question arises regarding the potential mechanism

476of the otoprotective action of rasagiline. Rasagiline,

477indicated for the treatment of idiopathic Parkinson’s

478disease by the FDA, possesses neuroprotective,

479anti-apoptotic and antioxidant properties all in one. It

480upregulates the synthesis of anti-apoptotic members of

481the Bcl-2 family and of the neurotrophic factors BDNF

Fig. 2. Rasagiline attenuated the kanamycin-induced hearing impair-

ment in BALB/c mice. ABRs were recorded right before drug

administration (start-up threshold) and 3 weeks later as described in

the Methods. Threshold shifts were calculated as the difference

between the two measurements. Kanamycin (800 mg/kg, s.c., twice

daily) was administered for 2 weeks, and it induced a significant loss

of hearing in both the click and frequency selective tone burst

stimulations. Rasagiline treatments (0.5 and 6 mg/kg, s.c., once daily)

were started 14 h after the first dose of kanamycin and lasted till the

second threshold measurement in the 3rd week. Mice in the Control

group received physiological saline s.c. Respective data of the

Kanamycin + Rasagiline, 3 mg/kg treatment (n= 7; no click mea-

surements) were included in the figure (empty bars) to help demon-

strate the dose-dependent effect of rasagiline. The inset emphasizes

this dose-dependent effect at 16 kHz, which is in the highest

sensitivity frequency range of hearing in mice. Data are the

mean ± SEM; the number of experiments is given in parentheses.

A linear mixed model, followed by pairwise comparisons, was used

for the statistical analysis (see Methods; ⁄⁄p< 0.01).

Fig. 3. Rasagiline increased the electric field stimulation-evoked release of DA in a dose-dependent manner in the mouse cochlea. Rasagiline was

added to the perfusion from the 21st min and maintained till the end of the experiment (horizontal line). S1 and S2 bars show the electrical field

stimulations (5 Hz, 0.5 ms, 900 shocks). Rasagiline was applied in the 10–300 lM concentration range (Ras 10, Ras 30, Ras 100 and Ras 300).

The inset indicates the dose-dependent rasagiline effect on the electrical stimulation-evoked fractional release (FR) of DA, which is expressed as

the FRS2/FRS1 value (ratio of the effect of stimulation in the presence compared to the absence of rasagiline). Data presented are means ± SEM;

the number of experiments is given in parentheses.
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Fig. 4. Rasagiline (100 lM) did not have any effect on electrical field stimulation-evoked DA release during inhibition of VGCCs or VGSCs. A)

Blocking VGCCs (Cd2+, 100 lM) and VGSCs (TTX, 1 lM) hindered the effect of electric stimulation on the fractional release (FR) of DA, and the

potentiating effect of rasagiline was also lost. Drug application is indicated by the respective horizontal lines. B) Summary and statistical analysis of

the effect of Cd2+ (100 lM), TTX (1 lM), rasagiline (100 lM; Ras 100) and their combined application on electrical field stimulation-evoked DA

release (FRS2/FRS1). The asterisks indicate that all treatment resulted in a significant effect compared to the Control. Rasagiline lost its potentiating

effect in the presence of VGCC and VGSC inhibition (n.s., not significant). Data are presented as means ± SEM. The number of experiments was

6–6 in each treatment groups, except for in the Control (n= 20). ANOVA followed by Tukey’s multiple comparisons; ⁄⁄⁄p< 0.001.
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482 and GDNF, while it downregulates the pro-apoptotic Bad

483 and Bax proteins (Bar-Am et al., 2005; Weinreb et al.,

484 2005; Youdim et al., 2006). It also increases antioxidant

485 enzyme (glutathione peroxidase and catalase) activities

486 (Kitani et al., 2000) and inhibits mPTP opening,

487 mitochondrial swelling and cytochrome c release

488 (Youdim et al., n.d.; Maruyama et al., 2001; Akao et al.,

489 2002) and caspase 3 activation (Bar-Am et al., 2005). A

490 decrease in the synaptic density of NMDA- and AMPA

491 receptors, responsible for initiating excitotoxicity, has

492 also been reported with rasagiline treatment (Gardoni

493 et al., 2011). These cellular mechanisms are considered

494 responsible for the positive in vivo effects of rasagiline. In

495 addition, rasagiline has provided protection in closed

496 head injury (Huang et al., 1999) and in experimental

497 focal ischemia (Speiser et al., 1999), and it was also

498 supposed to slow the progression of Parkinson’s disease

499 (Hoy and Keating, 2012). Furthermore, its

500 neuroprotective effect has also been demonstrated in the

501 peripheral nervous system, i.e., in the retina (Eigeldinger-

502 Berthou et al., 2012).

503 These effects of rasagiline may counteract the

504 damages that aminoglycosides cause by disturbing

505 redox homeostasis, producing ROS (Basile et al., 1996;

506 Sha and Schacht, 1999; Poirrier et al., 2010; Huth et al.,

507 2011), and by impairing the function of auditory neurons

508 via excitotoxicity (Ruel et al., 2007; Tabuchi et al., 2010)

509 and depletion of the essential neurotrophic factors

510 (Poirrier et al., 2010).

511 In addition to these well-characterized actions,

512 rasagiline also potentiates DAergic neurotransmission in

513 the brain (Weinreb et al., 2010), and DA has an

514 important role in the feedback loop providing

515 endogenous protection against SNHLs (Lendvai et al.,

516 2011). Moreover, a recent study based on screening a

517 library of FDA-approved pharmaceuticals consisting of

518 640 compounds found that DA-modulating drugs bear

519protective effects against ototoxic aminoglycosides and

520cisplatin (Vlasits et al., 2012).

521Endogenous protective pathway in the cochlea –
522boosting effect of rasagiline on LOC terminals to
523increase DA release

524In our in vitro experiments, we investigated the potential of

525rasagiline to enhance the release of DA from the LOC

526terminals. DA-containing LOC fibers compose the

527efferent part of the cochlea-brainstem short-loop

528feedback, which plays an important role in inhibiting the

529harmful overactivation of the auditory neurons (Pujol,

5301994; Ruel et al., 2007; Lendvai et al., 2011). The

531overactivation of the Glu receptors is the consequence of

532the excessive release of Glu from hair cells, occurring in

533different types of SNHLs (Lendvai et al., 2011), and this

534excitotoxicity leads to neuronal damage, like in ischemic

535brain injury (Vizi et al., 2013). Considering the protective

536actions of cochlear DA, several target sites have

537appeared as candidates for increasing the endogenous

538DAergic protection. We have already shown that 5-HT6/7

539antagonists (Doleviczényi et al., 2008), group II mGluR

540ligands (Doleviczényi et al., 2005), selective NMDA

541receptor agonists (Halmos et al., 2008) and D2 DA

542receptor antagonists (Halmos et al., 2005) provide new

543possibilities for the enhancement of DA release from the

544LOC terminals in the cochlea (Lendvai et al., 2011).

545Boosting of protective LOC feedback in synchrony

546with the endogenous, action potential-evoked release of

547DA seems to be superior to simply evoking DA release

548from the terminal independently of the on-going axonal

549activity of the LOC efferents or to directly activating the

550postsynaptic DA receptors by the administration of

551appropriate receptor ligands. It can be hypothesized that

552rasagiline, registered as a selective MAO-B inhibitor

553type anti-parkinsonian drug, would meet this

Fig. 5. Inhibition of DA uptake carriers by nomifensine or low temperature inhibited the rasagiline-induced potentiation of the electrical field

stimulation-evoked DA release in the mouse cochlea. Application of nomifensine (10 lM) or cooling down the perfusion buffer to 17 �C was started

15 min before the beginning of the measurement of DA release (i.e., in the pre-perfusion) and was maintained till the end of the experiment.

Rasagiline was administered before S2, as in all the other experiments. Asterisks show the comparisons to Nomif 10 and 17 �C, respectively.
Further comparisons are indicated with the hashmarks. Data are presented as means ± SEM; n= 6 in all treatment groups. ANOVA followed by

Tukey’s multiple comparisons; ⁄p< 0.05, ⁄⁄p< 0.01, ⁄⁄⁄p< 0.001. Nomif 10, nomifensine, 10 lM; Ras 30, rasagiline, 30 lM; Ras 100, rasagiline,

100 lM.
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554 requirement by inhibiting the metabolism of DA and

555 loading up its stores (Hársing and Vizi, 1984) in the

556 LOC terminals. Indeed, rasagiline enhanced the action

557 potential-evoked release of DA in the cochlea in a

558 dose-dependent manner and did not influence the

559 resting release. The relatively higher concentrations

560 needed for its action might be due to the predominantly

561 MAO-A-dependent deamination of DA in mice (Garrick

562 and Murphy, 1980; Fornai et al., 1999). At higher

563 concentration rasagiline loses its MAO-B selectivity and

564 inhibits MAO-A, as well (Youdim et al., 2006).

565 Properly functioning VGSCs and VGCCs are

566 necessary prerequisites for the classical exocytotic

567 release of neurotransmitters. The dependence of the

568 potentiating effect of rasagiline on the proper functioning

569 of VGSCs and VGCCs confirmed that its action was

570 connected to the on-going axonal activity of the LOC

571 efferents. In contrast to indirect acting

572 sympathomimetics, such as amphetamine, which induce

573 the release of DA independently of action-potential-

574 dependent vesicular release (Fleckenstein et al., 2007).

575 In previous reports inhibition of DA reuptake by

576 rasagiline was found in the central nervous system

577 (Lamensdorf et al., 1996; Jankovic and Stacy, 2007). The

578 role of the inhibition of DA reuptake into the LOC efferent

579 terminals in the action of rasagiline was supported by the

580 loss of the potentiating effect of the drug during the pre-

581 inhibition of DA uptake by the selective DA uptake

582 inhibitor nomifensine and by a low temperature.

583 Rasagiline did not enhance the resting release, being

584 in line with the therapeutic aim of boosting the action

585 potential based LOC feedback response without causing

586 a continuous and endogenous protection independent

587 elevation of DA level. Continuously enhanced level of DA

588 could also be resulted in desensitization of DA receptors

589 attenuating the protective effect of the firing LOC terminals.

590 The question arises regarding how the doses used

591 in vivo relate to the concentrations used in vitro and

592 whether the otoprotective concentration of rasagiline

593 could be reached in humans. A simplified calculation,

594 presuming 60% water content of body mass and perfect

595 absorption of rasagiline and its distribution in body water

596 suggested that the in vivo doses and the in vitro
597 concentrations we used were approximately the same

598 order of magnitude. Considering the general experience

599 that the effective human doses are usually lower by an

600 order of magnitude than those used in mice and that

601 rasagiline is very well tolerated, its use in SNHLs is a

602 reliable possibility. The preferentially MAO-B-dependent

603 deamination of DA in human, contrary to the mouse,

604 where MAO-A is predominant (Garrick and Murphy,

605 1980; Fornai et al., 1999), might further support the

606 feasibility of a lower dose of the MAO-B inhibitor

607 rasagiline for otoprotection in human.

608 An otoprotective therapy might be delivered in the

609 form of prevention, intervention or regeneration.

610 Theoretically, the preventive therapy holds the highest

611 chance of curative action. In our case administration of

612 rasagiline started 14 h after the first injection of

613 kanamycin and still it attenuated the threshold shift

614 significantly in 6 mg/kg dose.

615Direct translation of our results to clinical application

616would suggest the use of rasagiline in prevention or

617intervention of acute trauma caused by an

618aminoglycoside antibiotic. However, the spectrum of

619possible therapeutical indications is wider, because of

620the strong similarities in the patomechamism of the

621different SNHLs (Hawkins, 1973; Poirrier et al., 2010;

622Mukherjea et al., 2011). Oxidative stress and the

623consequent elevation in ROS level is a key factor in

624presbycusis (Yamasoba et al., 2013), platinum-based

625anticancer drugs- (Kopke et al., 1997; Schacht et al.,

6262012) and noise exposure-induced HLs (Henderson

627et al., 2006), as well. Degeneration of the auditory

628nerves is also playing an important role in all of these

629SNHLs (Ylikoski et al., 1974; van Ruijven et al., 2005;

630Makary et al., 2011; Maison et al., 2013; Yamasoba

631et al., 2013). Therefore rasagiline, having antioxidant,

632neuroprotective and antiapoptotic effect, is predisposed

633for being also a promising choice of therapeutic tool for

634treating SNHLs other than the aminoglycoside induced

635one. In case of antitumor therapy by cisplatin and

636related compounds the concomitant administration of

637rasagiline to prevent or attenuate the side effects,

638similarly to its acute use in aminoglycoside therapy,

639might be a feasible way of application. On the other

640hand, chronic treatment with rasagiline seems to be the

641reasonable therapy in presbycusis and persistent,

642moderate-level noise exposure induced HLs.

643The complex pathomechanism of SNHLs, structured

644rather like a network than like a linear cascade, together

645with the failure to find the breakthrough in therapy till

646now, suggests that single-target interventions hold less

647promise in the therapy of SNHLs. Based on the

648significant overlaps in the pathomechanism of SNHLs,

649rasagiline, with its multi-target action, might be effective

650in treating not only the aminoglycoside-induced HL but

651other forms of SNHLs as well. Its good tolerability,

652proven since its introduction to human therapy in 2006,

653also supports the applicability of this new therapeutic

654indication.
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