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Hydraulic Model· Study of Dilution Characteristics of Boston Wastewater Outfall 

Georgia Institute of Technology 

Monthly Progress Report 

Period Ending 5/31/89 

The Principal Investigator, Dr Philip Roberts, travelled to Boston on 27 March for 
a meeting to discuss the model study with Metcalf & Eddy and PBQ&D personnel. At 
this meeting, the initial modeling parameters were agreed upon. These were transmitted 
to the Fluid Modeling Facility in Research Triangle Park, and the model diffusers were 
constructed. 



Hydraulic Model Study of Dilution Characteristics of Boston Wastewater Outfall 

Georgia Institute of Technology 

Monthly Progress Report 

Period Ending 6/30/89 

Model testing began in Research Triangle Park under the direction of Dr. Philip 
Roberts on 12 June. Extensive testing of the dilution characteristics of various numbers 
of risers was undertaken for the remainder of this period. The diffusers tested consisted 
of 28, 33, 48, 64, 80 , and 111 risers. Prototype conditions tested included flows of 390, 
620, and 1270 mgd, current speeds of 0 and 12 em/ s perpendicular and parallel to the 
diffuser, and late summer and neutral stratifications. Most tests were conducted with 
the late summer stratification as this is the most critical for design purposes. Dilutions 
and wastefield rise heights were measured, and photographs and videotapes of the flow 
fields obtained. A demonstration of the model testing was held on 29 June for personnel 
from M&E, PBQ&D, and MWRA The results obtained to date were reviewed, and 
plans for the remainder of Phase I testing were discussed and agreed upon. 



EXHIBIT A.1 

WEEKLY LEVEL OF EFFORT REPORT 

LEAD DESIGN ENGINEERING SERVICES 
FOR 

MASSACHUSETIS WATER RESOURCES AUTHORITY 

Name of Subcontractor: Georgia Institute of Technology 

EMPLOYEE WEEK ENDING HOURS 

Philip J.W. Roberts 4/24/89 10 
Philip J.W. Roberts 5/05/89 10 
Philip J.W. Roberts 5/12/89 20 
Philip J. W. Roberts 5/19/89 20 
Philip J.W. Roberts 5/26/89 20 
Philip J.W. Roberts 6/02/89 20 
Philip J.W. Roberts 6/09/89 20 
Philip J.W. Roberts 6/16/89 40 
Philip J.W. Roberts 6/23/89 40 
Philip J.W. Roberts 6/30/89 40 
Philip J.W. Roberts 7/07/89 40 
Philip J.W. Roberts 7/14/89 40 
Philip J.W. Roberts 7/21/89 40 
Philip J.W. Roberts 7/28/89 40 



n 
Dr. Gifford H. Albright 
Program Director 
Structures and Building-Systems Program 
Division of Mechanics, Structures and 

Materials Engineering 
National Science Foundation 
Washington, D.C. 20550 

Dear Gifford: 

Georgia Institute of Technology 1;; _ ;:;;._0 -b._:- '/ 
Atlanta, Georgia 30332 

College of Engineenng 
School of Engineering Science and Mechanics 

October 22, 1986 

Please find the enclosed report of progress on our research, Grant No. 
MSM-8411757. Your comments or suggestions will be appreciated. Let me know if 
you want any additional information. 

I have tentative plans to be in the District during the week of December 14 
and hope that I can meet with you at that time. 

Looking forward to seeing you, I send my best regards, 

Sincerely, 

Gerald W.e'mpner 

GW:ds 

A Unit of the Un1vers1ty System of GF: .. ·~a An Equal Education and Employment Opportunity Institution 



An Investiga'tion of Simple Finite Elements 
Via the Hu-Washizu Theorem 

NSF Grant No. MSM-8411757 

Progress Report 10-20-86 

This investigation has proceeded along two avenues: One involves the 
exploration of simple triangular and quadrilateral elements of shells. Here the 
intent is the consistent and effective approximation, in accordance with the 
stationary conditions of Hu-Washizu. Various alternative approximations of the 
stresses and strains are under investigation. In each case the displacements 
are expressed by the linear and bilinear approximations which provide compatible 
assemblies of triangles and quadrilaterals, respectively. The formulations 
follow the concepts of the earlier work [Wempner, Talaslidis, Hwang, J. Appl. 
Mech., 1982]. It remains to provide additional comparisons, to implement the 
discrete constraints [Wempner, 1968] and to establish suitable guidelines for 
application. 

The other course of investigation has focused upon the foundations of a 
theory which describes the shell in a manner most amenable to approximation by 
finite elements. This study has produced a theory [J. Appl. Mech., to appear] 
which incorporates the desired attributes: Transverse shear and extensional 
strains are included to admit the simple elements. The approximation of 
displacement is linear through the thickness, so that a transition to more 
layers, or three-dimensional assemblies, is readily accomplished. The strains 
and rotations are decomposed to provide the means to develop the equations which 
describe geometrical nonlinearities; finite rotations and strains are admissible. 
Finally, this theory is cast in terms of the potential, the complementary 
functional, the Hu-Washizu and the Reissner functionals. Accordingly, one can 
formulate the elements, and assemblies, based upon any of the stationary (or 
extremal) theorems, i.e. mixed or hybrid forms. 

The investigation of the simple elements is being conducted in collabor
ation with Mr. William Dorris, graduate student. Additionl studies on 
quadrilateral elements are being conducted by Prof. D. Talaslidis. 

The general theory [attached preprint] provided the basis for a 
presentation at the Euromech Symposium 197, Warsaw, 1985. The latter appears in 
the proceedings and includes a discussion of application to the finite elements 
of shells and assemblies which exhibit finite rotations and the associated 
nonlinearities. 



Complementary Potentials for Finite 

Deformations of Shells 

Gerald Wempner 

A general expression of complementary energy was given by Fraeijs de 

Veubeke (1972). Here, the complementary properties of the various 

~unctionals are examined. Two-dimensional formulations are derived for a 

shell with finite deformations. These forms incorporate measures of stress 

and strain which admit precise definitions of complementary energies. The 

theory is founded upon the one underlying approximation: Normals remain 

~t~aight. 

The generality of the theory and the alternative functionals provide 

bases for approximations, specificially, various finite elements of mixed 

type. 



Ab~tract 

A General Theory of Shells and 
the Complementary Potentials 

This theory incorporates the attributes which are essential to the 

approximation of shells by finite elements. It is limited only by one 

assumption: Displacement is a linear function of distance along the normal 

to a reference surface. Deformation is decomposed into rotation and 

strain; the rotation carries elements of the reference surface to the same 

surface in any subsequent state. Transverse-shear deformations accommodate 

s: e ele~ents. 

The theory is couched in the potential Pv and in the complementary 

potential Pc; these have the property, Pv + Pc = 0 for all admissible 

(equilibrated) states. The theory is also cast in the complementary 

funct!onal Pc of stress and displacement, and the functional Pv of 

d:s acement, strain and stress; Pc and Pv are akin to the functionals of 

Hellinger-Reissner and Hu-Washizu. These alternate functionals provide the 

~eans to develop various hybrid elements. 



A General Theory of Shells 

and the 

Complementary Potentials 

by 

Gerald Wempner 
Georgia Institute of Technology 

Atlanta, GA 30332 



Introduction 

The role of thin shells in modern structures is evident.Increasingly, 

we turn to numerical methods, often based on finite elements, to predict 

the response of shells. When the strains are small, then the analysis of 

an element entails only small relative rotations; large rotations in the 

assembly are accommodated by the decomposition of rigid rotation and strain. 

To avoid complicated elemental approximations, the theory of the shell must 

ad~it transverse shear strains; then kinks are admissible along the 

contiguous edges of elements. The foregoing observations and a theory for 

"~inite elements, finite rotations and small strains" were presented 

previously (Wempner, 1969). 

Before and after the earlier work (Wempner, 1969) many contributions 

have been made to the subject of shells. Intrinsically, most theories 

admit finite rotations. These include the important works of Koiter 

(1960, 1966, 1973), Sanders (1963), Leonard (1961), Naghdi (1972) and 

Reissner (1974). Simmonds and Danielson (1970) and Pietraszkiewicz (1980) 

have explicitly addressed the decomposition and alternative representations 

oP the finite rotation. The works of Reissner (1974), Pietraszkiewicz 

(1980), Libai and Simmonds (1983) also accommodate transverse shear 

derormations. The literature is vast; the works cited include many 

additional references, beginning with the early work of Aron (1874) and 

~ove (1927). 

The ~oundations of structural mechanics were recently fortified by 

Fraeijs de Veubeke's Pormulation (1972) of the complementary potential. 

Independently, Koiter (1973) arrived at similar results: These demonstrate 

the roles of the rotation and the use of the tensors of stretch, 

engineering strain and the associated stress in the formulation of general 



which reveal the complementary character of those potentials and also the 

physical significance of the associated stress. 

Here we present a general theory which is drawn from the 

three-dimensional theory with one underlying assumption: The displacement 

varies linearly through the thickness. Our decomposition of rotation and 

strain differs from the usual decomposition of three-dimensions: Our 

rotation is more natural for shells because it carries elements of the 

reference surface to the same surface in any subsequent state. With no 

restrictions upon the magnitudes of rotations or strains, the theory is 

expressed by the complementary functionals which are analogous to the 

functionals of three dimensions. Some basic equations (kinematics and 

dynamics) apply to any continuous shell; all results apply to any 

continuous elastic shell. 

Since our theory is given by any of four functionals, accommodates 

finite deformations and transverse shear strain, it provides a vehicle for 

a variety of approximations and, specifically, hybrid elements. 

Three-Gimen~ional Theory 

In a previous paper (Wempner, 1980) we began with a primitive 

functional P of a stress vector Ti and the position vector ~ of a deformed 

~tate 

( ~ 

? [I~ R,~ ~ ~] dv ( 1 ) -
Jv 

l . - ~ 

r t . R da - r t (~ - ~)da )a Ja 
. 

v 

~ere ~ is body force (per unit of initial volume v), t is the traction (per 



unit of the initial bounding surface a) and R is the prescribed position on 

a portion av of the boundary surface. The variation of R in v and on 

surface at (where tractions are prescribed) provides the equilibrium 

conditions for the stress Ti in v and on at· The variations of Ti in v and 

~ on a are subject to the conditions of equilibrium; then the variation of 

the functional vanishes for kinematically admissible displacements. In 

short, the functional includes the potential P (R) and the complementary 
v -

functional PcC!i). To appreciate this fully we introduce the strain, 

stress and complementary energy densities: 

As before (Wempner, 1980), let r~ 1 denote components of rigid rotation 

which carries the initial tangent vectors, gi = r,i to an intermediate 

Bi - rj g .i j 
(2) 

A stretch with components ci carries the intermediate triad gi to the 

current system: 

R = G = Cj c:r 
-,i -i i Qj (3) 

Here the component of stretch, Cij = Cji' is related to the component of 

neering strain: 

ci ·- gi· 
J J ' 

( 4) 

gi . gi . gj gi . gj ... J 

The internal power is 

-1 
Ti• [cj ' w T ... . ~ 1 gi)• (5a) , i 



(5b) 

Here Q is the spin of the triad gi and ci "j 
hi. In another form, 

w (5c) 

The final sum of (5c) is the power expended in the rigid spin; it must 

vanish. The first term is the work expended in strain: 

W = T<ij> ~ij (5d) 

where T<ij> signifies the symmetric part of the stress component 

i. ' . 1 
T J gJ • I (6) 

If ~v(hij) and Wc(T<ij>) denote the complementary densities, then 

(7a) 

(7b) 

Upon substituting (?b) into (1), we obtain 

(8) 

w!lere 

p r [ w - f • B ] d v - r t • R da 
v j v j 

v at 
(9a) 

r p - ! 
c ;v 

[ W + Tij gi . ) dv - ( t 
c ... J J a 

R da (9b) 

v 

t · ( B - ~) da 



Pv(~) is the potential when [and~ are dead loads. Pc(!i) is subject to 

• i • 
·1ariations T which fulfill equilibrium and ! = 0 on at; therefore, in (9b) 

t • R da ( t • R da 
Ja 

r ·i 

J 
T • ~ i dv 

v ' 

In view of the foregoing, functional Pc can be rewritten: 

p 
c J [ W c - T ij g j • ( g i - g ~ J] dv - J ! • { ~ - ~ J da 

v a 
v 

(9c) 

.i 
It is important to note that the variation I requires the variation of the 

. i . . ' 
com~onents T J, and the vector g, i.e. the rotation~' which leads to the 

conditions for equilibrium of moment: 

0 { 10) 

?.eduction to Two-Dimensions 

Our theory of the shell is founded upon the assumption: 

R ( 11 ) 

~ere we follow the conventions: e0 denotes an arbitrary coordinate of the 

reference surface (a= 1,2) and e3 denotes distance along the initial 

normal n. Also, 

Top and bottom surfaces lie at e3 = h+, -h_; s denotes the reference 

~ur~ace; c denotes the bounding edge. If h and k denote the mean and 

~au~~:an curvatures of the initial reference surface, then 

dv = lJ(e3) ds 

lJ - - 2he3 + k(e3)2 



With these notations and the assumption (11), the functional (1) is 

integrated with respect to the coordinate e3, to obtain 

p - F • R0 
+ Ma • A + T • A - C • A_

3
] ds -3,a -3 

N • ( B 0 
- ~) de - J 

c v 

M • (A - A ) de -3 -3 

( 12) 

Instead of the one vector ~(e1,e2,e3) of three dimensions, we have two 

vectors, B0 (e1 ,e2) and ~3 (e1,e2), which fully define the configuration. F 

and~ are net external force and "couple", which include body force and 

surface tractions. The 11 stresses" are 

T 

h 
( + 

- J -h 

(13a) 

(13b) 

(13c) 

- -
~and~ are the edge tractions (force and "couple"); N and Hare prescribed 

on part Ct of the edge. 

The variation of vectors Bo and ~3 provides a variation of P (the 

v!rtual work) and the stationary conditions are the equilibrium equations 



ins and on ct. With the customary notation, ds =\a de1 de2, and the 

usual integration-by-parts, we obtain 

(\a N°) + F 0 in s 
- ,a 

( 14a) 

( \a t!o), o - T + c 0 in s ( 14 b) 

No n N M
0 n M on ct 

0 - 0 
(15a,b) 

0 (l 
Again, the variation of stresses ~ , ~ and I produces meaningful 

results only when their components are referred to a suitable basis. 

Natural Basis for the Shell 

W!th the presence of transverse shear strain the usual rotation (which 

carr:es gi tog~) would rotate the (initial) tangent vec~or (~a= r~a ) out 

of the (deformed) surface. Therefore, it is more natural to employ a 

rotation which carries the initial triad (§1 , §2, §3- Q) to a triad (Q1, 

~ 2 , 2
3 

= ~) such that Q
0 

are tangent and N is normal to the deformed 

reference surface. With this new meaning, we have 

( 1 6) 

The orientation of b is such that the stretch of the surface is given by a -a 
~ym~etrical tensor: 

A 
-a 

0 = R 
-,o 

( 1 7 a) 

The deformation also carries the vector N to the vector ~3 ; components of 



the stretch are 

( 17b) 

Note that b3 • A = 0. - -a 
All components of stress are referred to the natural basis: 

( 18a, b) 

To illustrate the basis, the initial triad (~i), the reference triad (Qi) 

and the current (deformed) triad (~i) are depicted in Fig. 1. 

Internal Power 

The internal power of the stresses (per unit area) is 

+ M0 
• A• + T -3,a 

• A • 
-3 

(19a) 

After much algebra, we obtain 

w ( 19b) 



Here a component of spin n is expressed by 

~i = Qi • n_• 1 ikj • 
"' "' = 2 f wjk 

Spin components about the normal ~3 = ~' tangents ~1 and b2 are, 

respectively, w21/ a, w32/ a, and w13/ a. The flexure K~ is defined as 

f'ollows: 

Ka - - Aa • A 
B - -3,8 (20a) 

c~ B~ - ( c~ c~) I 8 
(20b) 

Here 3~ and BaB are components of curvature: 

Ba - A a N B 
aB 

= A N (21a, b) 
8 -,8 -a,B 

Also, in ( 19b) t 

D - 2s . A KlJ c (21a,b) aS -3,a a IJB 

D = N • A = c3 + c8 clJ B 
a3 - -3,a 3,a 3 B IJa 

(22a,b) 

7he expression (19b) serves to identify the strairs associated with 

each o~ the stresses, NaB, Mal , Ta and T3, respectively: 

k 
a 

(23a) 

(23b,c) 

(23d,e) 



Since the stretch (C
0

B) and strain (h
0

B) of the surface are symmetric, only 

the symmetrical part of the membrane stress (NaB) plays a role in the 

power, in a potential or dissipation. Also, the shear stresses N°3 are 

merely reactive. 

In addition, the power (19b) serves to identify three conditions of 

equilibrium: Since no power is expended in the spin, each bracketed term 

vanishes. These three equations serve to determine, or eliminate, the 

skew-symmetric part of the stress NaB and the reactive stresses N° 3• 

Complementary Potentials of the Shell 

With the identification of strains and the associated stresses, we can 

formulate the two-dimensional counterparts of the potentials (9a) and (9b). 

The potential is analogous to (9a) and follows from (12). 

p 
v 

- r o 
) [N • R + M • A ] de 

c - - - -3 t 

(24) 

Here, the strains are implicit functions of the displacements (~0 and ~3), 

so that the potential (24) is implicitly a functional of displacement. 

The cc:nplementary "potential" is analogous to ( 9b) and follows from 

(12) and (24); Pc = P - Pv: 

? 
c 

I . c 
v 

- J 
Cy 

(25) 



The complementary density is defined, as in (7b), by the Legendre 

transformation: 

w 
c 

The sum of (24) and (25) is the functional (12): 

P = Pv + Pc 

(26) 

(27) 

Verification requires the definition of the complementary density (26), the 

stresses (18) and strains (23). 

The stationary conditions for Pv (~0 , ~3) provide six equilibrium 

equations (14a,b) and edge conditions (15a,b), consistent with the 

potential ~v (dependent upon the elasticity). 

The functional Pc of (25) depends on the stresses (Nai, M a! Ti) and 

rotation of the triad (Qi) just as it•s three-dimensional counterpart (9b). 

Admi~sible variations of stress must satisfy the equilibrium equations; in 

particular, variations vanish on ct. Therefore, enforcing (14a,b) in Pc of 

(25), we obtain 

r f R0 
-+ M A3] de ( [ ] de - J ] de 

)c l~ . . 
)c 

v ct 
{28a) 

r f Nai Qi . Ro + Mai b • A + T • A 
Js 

L -,a -i -3,a -3 
(28b) 

- F • R
0

- C • ~3 ] ds - J ] de 
ct 

Then, by employing (28b) in (25), we obtain the two-dimensional counterpart 

o~ (9c): 



p 
c 

aS( ) a3 -M b •A +b -M N•A -s -3,a aS - -3,a 

- T0 b " A - T 3 N • (A - N) + F • R 
0 

+ C • A_
3

] ds 
-a -3 -3 -

(29) 

The latter form of Pc is akin to the Hellinger-Reissner functional 

(Hell:.nger, 1911.!- Reissner, 1950). The functional is stationary under 

variations of stress provided that the displacement-stress conditions are 

.satisfied, e.g. 

aw 
2s • ( Ro - b ) = _c_ 

-,a -a <)NaB 

In addition, the functional (29) can be regarded as a functional of 

di.splacemnts (R, A
3
). The functional is stationary under variations of 

-o -
displacement provided that the equilibrium equations (1Lla,b) are satisfied 

in's' and (15a,b) are satisfied on 'ct'• Finally, the functional (29), 

like (25) is dependent on the rotation of the triad (Qi). Both are 

stationary under variations of rotation provided that the three conditions 

of equilibrium (of moments) are satisfied; these are the conditions that 

the jracketed terws of (19b) vanish. 



If we employ the transformation (26) to eliminate We in (29), we obtain 

p 
v 

p (= - p ) = 
v e 

r {w 
j v 
s 

- MaS(k - b • (A + b~ b )) 
aS -B -3,a a -~ 

+ Na3 (N • R0 
] - Ma 3 (k - N • A ) - Ta(h - b • A ] 

- ,a a3 - -3,a 3a -a -3 

[ o -o) )] !i • ( ~ - ~ + M • ( ~3 - ~ 3 de 

(30) 

The functional Pv is dependent on all variables, displacements (R ,A
3

), -o -
ai i ai 

strains (hij' kai)' stresses (N , T , M ) and rotations (of 2i). The 

latter is a two-dimensional counterpart of the Hu-Washizu functional 

(Hu, 1955 - Washizu, 1955) cast in terms of the rotated system (2i) and the 

engineering strains (hij' kai). The stationary conditions are all 

equilibrium conditions, stress-strain relations and the strain-displacement 

relations. 

Correlation with Classical Theory 

Alternative choices of strains and stresses are always possible. From 

(20a), we could adopt the flexural strain 

I Ct ~ Ct A bet 
t<B- M. • -3,8 + 6 



Then, from (21b) 

= + 

The first terms of (19b) assume the form: 

w 

This suggests that we adopt, as membrane and flexural stresses, 

respectively, 

The latter are the usual choices (cf. Koiter, 1966, 1973; Sanders, 1963; 

Leonard, 1961; Naghdi, 1972). Under the Kirchhoff-Love hypothesis, K~ 

If products of strains and stresses are also dismissed, then 

a a 
m.B M.B 

· nder these circumstances the latter choices pose no difficulties; however 

~n the general nonlinear theory, we need the separation of stresses and 

strains, and the unambiquous transformation (26). Though unconventional, 

our strains (hai' k
01

) and stresses (NaB, Mai, Ti) provide a precise theory 

under the one hypothesis (11). 

If transverse strains are neglected, and surface strains are small, 

then (19b) assumes the usual form: 

w a B h + maS 
n aS kaS ( 31 ) 



From (31) we can draw the anticipated conclusions: Since k
08

= k
80

, only 

the symmetrical part of m08 plays a role. Equilibrium requires that the 

stress T0 
= N° 3, the transverse shear force. Also, we note the equilibrium 

aB Ba requirement n = n • 

On Application of the Nonlinear Theory 

In general, 'solutions' (actually approximations) of the nonlinear 

equations (differential equations of the continuous shell or algebraic 

equations of a discrete model) must be obtained by successive solutions of 

linear systems which govern increments (Wempner, 1971). In particular, we 

record the linear relations between incremental rotations (~ji 

stra:ns 

. 
wia c!(Qi • ~; - C¢i) 

C b • A" - w ck 
ij - j -i j k i 

Recall that C
03 

0 and 

Note that the rotation (wi
0

) is determined entirely by the 

d:~~lace~ent (E 0
) of the reference surface. Also, increments of the 

rotation tensor are ven by 
• . • k . 
rJ rJ 
.i w.i .k 

The displacement of the 'normal' (~ 3 ) enters only in the determination of 

transverse shear (C
30

). 



Conclusion 

A theory of shells is founded on the one assumption: The normal 

remains straight or, equivalently, the displacement is a linear function of 

the normal coordinate. The theory is otherwise general: Finite rotations, 

~:nite strains and transverse shear strains are admitted without additional 

approximations. The theory is expressed by the potential and the 

complementary potential, in the manner of Fraeijs de Veubeke (1972). These 

runctionals are expressed in terms of a rotated system and engineering 

components of strain. The theory is also expressed by a functional of 

displacement and stress in the manner of Reissner (1950) and by a 

functional of displacement, strain and stress in the manner of Washizu 

(1955). All are precisely consistent with the one underlying assumption. 

The theory encompasses the more restrictive versions based upon the 

hypothesis of Kirchhoff-Love; all incorporating the decomposition of 

r8tat1on and strain. This provides a general basis for the approximations, 

via finite elements, without the limitations of earlier work (Wempner, 

1969). As noted then, approximations of small rotations within discrete 

ele8ents involve only small rotations relative to the rotated basis (Qi); 

such elemental models are nonetheless applicable to finite rotations in the 

assembly. 
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Appendix - Some Differential Geometry and Notations: 

Where possible, minuscules signify variables of the initial state and 

majuscules signify variables of the current (deformed state). Unless 

specifically noted, components are associated via the metric of the initial 

state. 

The basis of the initial state is the triad (~i) and reciprocal triad 

( ~ i): 

0 a - r 
-o -,o ' ~3 = D 

i 
a • 

i 
a. = 6. 
-J J 

The rigidly rotated triad (Qi) and reciprocal triad (Qi) also form the 

components of the initial metric: 

- a -a 
• a 

-B 

• a B 

b -a 

The triad (~i) and the reciprocal triad (~i) are defined by the 
equations: 

A = R0 

-o -,o 

The stretch is defined by (17a); the inverse (or contraction) is 

0 denoted by the minuscule c
6 

and defined by 

Relations between the triads, (Qi, Qj) and (~i' ~j) follow: 



A c 6 b caS 
be 

-a a -s 

A a a be 
cs -

b cs 
~B caB AB 

-a a 

ba = Ca AB 
B -

The shear is defined by ( 17b) ; the mixed components follow: 
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This article begins with a brief review of the foundations: The classical theory of 
Love is described with attention to the underlying hypothesis and consequent 
limitations. A more general theory is described which removes the constraints of 
Love~ the inclusion of transverse strains admits simpler finite elements, accom
modates the thick shell via layers and even a transition to the three-dimensional 
approximation. 

The concept of the finite element is reviewed in the context of the discrete 
approximation of shells. Specific attention is given to those problems which are 
peculiar to shells: The predominant roles of flexural and extensional deforma
tions, the lesser role of transverse shear, can lead to excessive stiffness(" locking"). 
Origins and procedures are described to circumvent these problems. 

The review is intended to bridge some chasms between the mechanics of the 
continua and the discrete models of finite elements. As such, the emphasis is 
upon those mechanical attributes of shells and elements which play key roles in 
forming practical models. Since the limitations of space. time and the author's 
knowledge, preclude a full expose, the review includes only commentaries on 
some topics. such as inelasticity, nonlinearity and instability. Citations include 
original sources and some recent works which provide entree to contemporary 
developments. 
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INTRODUCflON 

The mechanics of she1ls is a mature subject. Indeed. the 
classical theory of thin hookean she11s was well developed a 
century ago. In a paraphrase from Koiter, all one needs is Love. 
Love, Love-[Love. 1888]. To b., sure. the underlying theory of 
Love has been refined [Koiter, 1960: Leonard, 1961: Sanders. 
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1963] and extended to accommodate transverse shear [Reissner, 
1945] and other effects as might occur in thick shel1s. Through 
the intervening years. much activity has been directed toward 
reexamination and simplification of the governing equations. to 
achieve closed-form solutions. The activities and developments 
were dictated by the availability of tools. mathematical and 
computational. A recasting of the differential equations. a 
change of variables. a form of asymptotic expansion. a deletion 
of incidental terms, al1 might produce more useful theory or 
solution. With the advent and rapid development of digital 
computers our attention shifts to a reassessment of the subject. 
Refinements or simp1ifications. which are important to the 
dosed-form solutions. may be unimportant. even detrimentaL 
to a formulation for numerical approximation: other changes 
can improve and simplify an approximation by finite elements. 
These few observations provide a backdrop for this review. In 
particular. we wish to identify features which are most relevant. 
or irrelevant. to present tools and. if necessary. recast our 
description in forms most amenable to formulations of discrete 
models for computational purposes. Tv.·o different approaches 
can be taken to devise approximations of a continuous shell: 
One can employ entirely mathematical tools. finite-difference 
approximations of differential equations. or approximations of 
functionals. Altematin.'ly one can perceive a physical model of 
the shell as an assembly of finite pieces. Such assembly of finite 
elements can benefit greatly by an intimate view of the underly-
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ing mechanics. It is this aspect of the subject which commands 
our attention. 

An extensive review of the vast literature is not intended. As 
an introduction, the reader can consult the standard texts of 
Timoshenko and Woinowsky-K.rieger [1959] and Flugge [1962]; 
both provide much practical information and important histori
cal commentary. Some recent works have compiled excellent 
bibliographies: The book by Calladine [1983] provides a good 
introduction and key references to earlier works: it offers a 
variety of practical information in a traditional way. The book 
by Basar and Kratzig [1985] gives a thorough presentation of 
the technical theory, important practical applications and re
sults, and includes numerous citations. The recent monographs 
by Libai and Simmonds [1983; 1988] present the mathematical 
theory and extensive bibliographies. The definitive work of 
N aghdi {1972] presents the mathematical foundations and im
portant references. A review of some contemporary topics is 
given by Wempner [1980b ]. Recent work on approximation by 
finite elements is given in books edited by Hughes and Hinton 
[1986]. 

Thin shells play an ever-increasing role in structures, as the 
engineer strives to achieve strength and stiffness with minimal 
weight. The greater efficiency of the shell is attributed to the 
curvature; the price is the greater susceptibility to buckling. 
Buckling and postbuckling deformations, and at times the pre
buckling deformations, are characterized by nonlinear equa
tions. Often such deformations occur with small strains, and 
even hookean behavior. Then the nonlinearities are attributed 
to the occurrence of large, even moderate, rotations: the atten
dant curvatures and large membrane forces are coupled to 
produce crucial nonlinear terms. The nonlinear theories for thin 
hookean shells have been the subject of intense investigation. 
Most are founded on the hypothesis of Kirchhoff and Love: 
transverse shear strain is neglected. Nonlineari ties are geometri
cal in origin. These aspects of the theory are presented in an 
artiCle by Koi ter [1956]. the monograph by Naghdi [1972]. the 
works of Reissner [1974] and Koiter and Simmonds [1973], and 
the recent monograph by Libai and Simmonds [1983]. The role 
of finite rotation and its representation has been the subject of 
papers by Wempner [1969b]. Simmonds and Danielson [1970], 
and Pietraszkiewicz [1980]. These citations are incomplete. but 
provide the essentials as well as access to a wealth of additional 
references. 

THEORY OF SHELLS-PAST AND PRESENT 

By definition a shell is a thin body enclosed by two neigh
boring surfaces which are interrupted by edges, boundaries. or 
hole~. The common attribute of all shells is the proximity of 
these surfaces. It is this thinness which justifies approximations 
through the thickness and a two-dimensional description. a 
··theory" of the shelL From a practical viewpoint. we need a 
.. theory" which is suited to subsequent approximations in the 
remaining two dimensions, to provide the discrete modeL the 
algebraic equations, and basis for numerical computation. Also. 
from a realistic viewpoint we want a theory which is suited to 
refinements through the thickness. In any case, a ·• theory" is 
but one step in the approximation of the real shell. The first 
approximation [Love. 1888] implies that a normal to a surface 
remains normal. Higher-order theories are less restrictive. but 
also incorporate approximations which render the description 
in two dimensions. In former times. a primary motivation was 
the simplification of the governing differential equations in 
order to obtain solutions. The desire to simplify for purposes of 
solution led to various special theories. such as the theories for 
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shallow shells and Donnell's equations for cylindrical shells 
[Donnell. 1934]. 

The underlying approximations always impose some limita
tions. Basically. the theory precludes any refinements in the 
description of deformations or stress distributions through the 
thickness. A practical example is the question of stress at 
the juncture of two shells. At the f111et of such intersections the 
gradients can be large: the actual stress can be quite different 
than the distribUlion implicit in the two-dimensional theory. 
Stated otherwise, the actual behavior at the juncture. yie1ding or 
fracture, is a phenomenon which requires a three-dimensional 
description. 

In the past, investigators addressed questions of thick shells. 
concentrated loadings. and other extraordinary questions by 
refined theories. Such theories were founded upon better ap
proximations with respect to the thickness: for example. the 
displacement might be given by an approximation which in
cluded polynomials of higher degree. Invariably such theories 
tend toward more complicated equations. The reader may gain 
insights from the recent article by Reissner [1985]. 

The common feature of classical theories, first or higher 
approximations, is representation by continuous variables. In
deed, with the exception of isolated points or lines, continuity 
extends to derivatives of all orders. These features are all quite 
understandable. The attributes. the various simplifications or 
refinements. were intended to produce results by the traditional 
means of solving the boundary-value problems or by approxi
mations via continuous functions throughout the shell. 

The remarkable capacities and computational capabilities of 
electronic computers enable us to adopt quite different ap
proaches to the description and approximation of shells. To be 
sure, phenomena which depend upon the limits. ic. fracture and 
stress concentrations, cannot be described by finite elements or 
differences, unless appropriate singularities are specifically in
corporated. Othenvise. we can utilize these new-found capabili
ties and concentrate attention on Lhe discrete approximation of 
the three- or two-dimensional shell. 

If one seeks an assemblv of finite clement.~>, then the role of 
the theory is quite different. It is no longer important that the 
differential equations be simplified. but it is desirable that the 
theory be amenable to simple elemental approximations. It is 
also important that the theory be cast in alternative potentials 
and functionals which provide the means to formulate consis
tent elements based upon approximation of displacement, 
and/or stress andjor strain. so-called "mixed" elements. 

The essence of approximation via finite elements is the 
introduction of nodal values with intermediate interpolation. In 
this spirit. a refined approximation of the shell is accomplished 
by introducing·· nodes" through the thickness. Stated otherwise. 
the theory of the thin shell progre-.ses to the theory of a thick 
shell via more layers. From this viewpoint. the underlying 
theory ought to be amenable to such transition: in its primitive 
form it ought to include transverse extension and shear. Such 
theory opens the door to a complete transition from the sim
plest thin membrane. to the thickest shell and to the three
dimensional model. Unfortunately. the traditional f1rst approxi
mation omits the transverse qrains: hence. it docs not provide 
the requisite ba.-.is for such transition. Nonetheless. our wealth 
of knov.·ledge about this classical theory warrants our attention. 

THE FIRST APPROXI\IA TIO:\ 

It is fitting that any review of shells sketch the classical 
theory which originated with Aron [1874], Love [1888]. and 
Kirchhoff [1850]. Our intent here is to present the essentials as 
simply as possible. The deformation of a thin shell is essentially 
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described by the deformation of a surface, often the middle 
surface. The differential geometry of the surface is characterized 
by two second-order symmetrical tensors; they are the coeffi
cients in the fundamental forms. The differential of length s on 
the surface is expressed by a quadratic form in the differentials 
of the surface coordinates oa (a = 1' 2) 

ds 2 =aapd8ad8fl. (1) 

If r is the position vector to a point of the surface and n the unit 
normal, the second fundamental form is 

(2) 

The coefficients aafJ and batJ are the symmetrical components of 
the metric and curvature tensors, respectively. If the surface is 
deformed, then the position is given by the vector R, the normal 
by N; the surface is stretched and bent. The fundamental forms 
of the deformed surface are 

dS 2 =Aapd8ad811 , dR·dN= -Bapd8ad8!3. (3) 

The lines of the coordinates are now convected, stretched, and 
bent; eg, the measure of distance along the line of 81 is changed 
from all to A11 and the measure of curvature from b11 to B11 • 

Two symmetrical strain tensors characterize the deformation, 
an extensional strain Yap and flexural strain "ap; simple mea
sures are 

Yap= t(Aa/3 -aap), 

K.a/1 = ( Bap ba/3) · 

(4a) 

(4b) 

The internal power (per unit of area) m any deformation 
assumes the form: 

( 5) 

In short, the theory of the surface (first approximation of the 
thin shell) calls for two symmetrical stresses, naP and ma/3. To 
ascribe physical meaning to these stresses, one can invoke the 
hypothesis of Kirchhoff and Love: The initial normal n turns to 
the normal N during deformation. Work is done by forces and 
couples acting upon a section ( oa = const). Then the stresses 
nafl and mafl are identified with components of the force and 
couple. 

Several features of the theory are noteworthy: Transverse 
shear strain is nonexistent. Transverse shear force is merely 
reactive and transverse normal stress is also workless: neither 
contribute to the internal energy w. If the shell is elastic. then 
an internal potential w must depend upon the strain. w = 

w( Yap• K.ap ), and the stress-strain relations follow: 

aw 
na{J = 

dYaf1' 
( 6a) 

aw 
mafJ= . 

dKa/1 
(6b) 

If the shell obeys the theory of classical plasticity, then a yield 
function Y( naf.J, mafl) exists and incremental plastic strains fol
low: 

p • ay 
-v -A.--
la{J- anaf3' ( 7a) 

.p • ()Y 
K.af1 =A i};;1af.J . (7b) 

Now, the first approximation of elastic shells and, especially 
hookean shells, has attained a most definitive form. Edge condi
tions, constitutive equations, kinematical approximations for 
small strains, finite and moderate rotations, numerous approxi-

Wempner: Mechanics and finite elements of shells 131 

mations, and solutions are available. The reader can consult 
the works of Koiter {1956], Naghdi (1972], and Libai and 
Simmonds [1983]. These give references to notable contribu
tions by Reissner, Vlasov, Sanders, Leonard, and Goldenveizer. 
to name but a few. 

First approximations of inelastic shells remain quite obscure 
and pose many unresolved questions. Some recent work is given 
by Bieniek and Funaro [1976], Kutt and Bieniek [1988], and 
Eggers and Kroplin [1978]. Derived theories and approxima
tions are given by Wempner [1977; 1980a]. Additional refer
ences on specific theories are contained in the author's earlier 
review [1980b]. 

GENERAL THEORY FOR FINITE ELEMENTS 

In our opening remarks, we have noted certain limitations of 
the first approximation and have alluded to higher approxima
tions, derived from refined descriptions of the displacement. 
strain and/or stress distributions through the thickness. With a 
view toward approximation by finite elements, such refine
ments, and even a progression to a three-dimensional descrip
tion, can be achieved by a succession of layers, provided only 
that our basic theory of the shell (the layer) includes the six 
components of strain (and stress); specifically. the theory must 
then include transverse shear and extensional strain which are 
lacking in the first approximation. We can achieve the requisite 
theory by approximating the position in the shell (or layer) as a 
linear function of the thickness coordinate ( tP) in the current 
configuration (R) as in the initial configuration (r): 

r=r0 (l/1 ,0 2 ) +0 3n(01,0 2
), 

R=R0 (01,0 2
) +0 3A3(0 1 ,0 2

). 

(Sa) 

(8b) 

Here, 03 denotes distance along the initial normal n to a 
reference surface: Vector A, differs from the unit normal N of 
the deformed surface by virtue of a transverse shear and exten
sional strain. The geometrical approximation is expressed above 
in the symbolism of shell theories, ie, positions of a surface, r0 

and R 0 , initially and subsequently, and distance from the 
surface 03. Instead of the vectors R 0 and A 3 • the approxima
tion can be expressed in terms of positions R _ and R _ , on the 
inner ( 03 = h) and outer ( 0 3 = +h) surfaces, respectively: 

The vectors R0 and A 3• and the alternatives R _,_ and R _, are 
shown in Fig. 1. In the parlance of finite elements the position 
is approximated linearly between "nodal" values R_ and R_, 
at the inner ( ) and outer ( +) surfaces. If the vectors R 0 and 
A 3 (or R _ and R _) are approximated in a two-dimensional 
element of the surface bv a bilinear form in the coordinates 
( 01,0 2 ), then the hexahedral element of the shell is approxi
mated by a trilinear form: it is a familiar conforming element in 
three dimensions. Usually. a thin shell requires but one element 
through the thickness. As need arises, near an edge. a disconti
nuity or a concentrated load, transition can be made from the 
one element to more elements. 

To facilitate studies of finite deformations, especially the 
finite rotations of very thin shells, the motions can be decom
posed into rigid motions and strains. In theories of three-dimen
sional continua the so-called "polar decomposition" separates 
the strain from the rigid rotation of principal lines; the strain is 
expressed by a symmetrical tensor. Since the foregoing theory 
admits transverse shear strain, the rotation of the "polar de
composition" does not carry the reference surface to its final 
orientation, but rotates tangent lines out of the deformed sur-
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FIG. 1. Kinematics of the shell. 

face. Accordingly, it is more natural to employ the rotation 
which carries the initial normal n to the current normal N. and 
the initial tangent aa (aa = ro.a) to the tangent ba. Thus the 
initial triad (ap a 2 , n) is rigid~v transported to a similar triad 
(b1 ,~,N) wherein the ba are tangent to the current (deformed) 
surface and N is normal. That rigid motion is depicted in Fig. 1. 
The deformation carries the rotated triad (b1, ~, N) to the triad 
(A 1,A 2 ,A 3 ) (Aa = R 0.a), also shown in Fig. 1. The rotation is 
unique since the orientation of the intermediate triad is deter
mined by the condition Aa • bp = Ap • ba. Complete details of 
the decomposition, the rotation and strain are contained in a 
recent article [Wempner, 1986J. That article gives also the 
potential, modified potential (a functional of displacements, 
strains and stresses), the complementary potential, and the 
modified complementary functional (dependent on displace
ments, rotations, and stresses). Accordingly, the theory provides 
a basis for approximations of finite deformations by various 
"mixed" elements. Finally, if the transverse strains are ne
glected. the foregoing theory assumes a simpler form, like the 
classical first approximation. 

1WO FORMS OF APPROXIMATION 

Most approximations of a function are expressed as a linear 
combination of prescribed functions; for example, a function 
f ( x) of coordinate x might be approximated by a linear combi
nation of functions gN(x): 

f(x) = LA;vgN(x), N = 1,2, .. ·. 

The function gN can be of two distinct types. It may have 
global support or local support. The former has nonzero values 
throughout the region (the body). The latter is nonzero only in a 
subregion. An example of the former is the trigonometric func
tion sin N'ITxjl; a combination serves to approximate the de
flection of a beam, simply supported at the ends ( x = 0, I). An 
example of the latter is a" pyramid," nonzero in the subinterval 
XN-l <XII< XN+i: 

This latter form is no more than a linear interpolation between 
adjoining nodal values .AN (at xN ). The functions of global 
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support have long been the bases for the approximation of solid 
bodies and have proven particularlv effective when the defor
mations throughout the body are ~trongly coupled. The func
tion of our example (sin Nrrxjl) is a natural mode of vibration 
and also a buckled mode of equilibrium. The functions of local 
support are typical of the approximations via finite elements; 
they are often termed "shape" functions and described in books 
on finite elements. The region of support may be one element 
or, more often. the region of elements adjoining the node. Some 
pertinent comments are given in a previous note [Wempner. 
197lb]. 

Traditionally, theories of shells are founded upon approxi
mations in the thickness (coordinate {)3) by functions which are 
nonzero (usually continuous of all orders) throughout the thick
ness. For example, our theory [Wempner. 1986J assumes a 
displacement which is linear through the thickness. Higher-order 
theories employ polynomials of higher degree to describe the 
displacement and/or strain andjor stress throughout the thick
ness [cf. Reissner, 1985]. Such theories involve no sublayers and 
no functions of local support (through the thickness). 

Here, our focus is on approximations via finite elements with 
respect to a thin or moderately thick three-dimensional bodv. 
From this vie'"''Point, it is essential that the underlying theory ~f 
the shell incorporate all attributes (strains) of a three-dimen
sional deformation. But in the spirit of the finite elements, 
high-order functions are not needed through the thickness, since 
refinement is anticipated by increasing the numbers of layers. 
Stated otherwise, most traditional theories constitute a descrip
tion which is one element in the thickness. Now, we take the 
view that the description can be simple since more elements can 
be employed; however, the description must possess those fea
tures (specifically, the six strains), which admit the transition to 
the three-dimensional body. 

CONCEPT OF FINITE ELEMENTS 

The approximation of solids by finite elements is an effective 
means to utilize modem computational capabilities. The idea is 
quite simple: The body is subdivided into small finite elements. 
The variables (usually the variables which govern the theory of 
the continuum) are approximated within the elements. The 
approximations must be such that the assembly approaches the 
continuum as the size of the elements diminishes. At least the 
position must be approximated by some form of interpolation 
between the adjoining elements. Indeed, if the approximation of 
position is continuous and if the algebraic equations of the 
discrete assembly are drawn from the principle of minimum 
potential, then a convergence is assured {Johnson and McLay, 
1968]. One very important feature of such approximations of an 
elastic body deserves particular emphasis: The principle of 
minimum potential asserts that any valid approximation of a 
stable configuration possesses greater potential than the actual 
configuration (the "exact solution"). In practice, this means that 
the approximation of the body (eg, the assembly of elements) 
exhibits excessive stiffness. Very bad approximations often ex
hibit such unacceptable stiffness that they are said to ''lock." 
The very thinness of shells and the associated flexibility makes 
them most susceptible to inappropriate approximations and 
"locking." 

The use of finite elements has special implications in the 
theory and approximation of shells: A traditional theory of 
shells may be viewed as a first step toward the complete 
approximation via three-dimensional elements since the theory 
is founded upon approximations of the continuous variables 
(displacement and strain andjor stress) with respect to one 
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FIG. 2. Some realities of shells. 

coordinate, distance along the normal. The subsequent, or si
multaneous. approximation in the remaining two dimensions 
provides the fully discrete modeL Our studies show, however. 
that traditional theories are not necessarilv well suited to such 
approximation. Specifically, the theory or" Kirchhoff and Love 
requires a high order of interpolation so that the normals 
remain continuous at the contiguous edges of adjoining ele
ments. Stated otherwise, the reference surface cannot have 
kinks: the normals must possess continuous derivatives along 
the interelement lines. To use the theory of Kirchhoff and Love 
and also to insure such conformity of adjoining elements re
quires hermitian interpolation [see, eg, Zienkiewicz. 1977. p. 
206]; then, 16 nodal values are needed to approximate a func
tion in a quadrilateral element of a surface. Also. since assem
blies of elements are intended to accommodate unknown con
figurations. many elements are needed; then computational 
efficiency and limited storage call for simple elements. To admit 
simpler elements, the basic theory must forsake Kirchhoff's 
hypothesis and admit the relative rotation of the normal (trans
verse shear strain). 

In the context of approximation via finite elements. the she1l 
is most conveniently viewed as a three-dimensional. albeit thin 
body. This viewpoint has important practical consequences: 
some are illustrated by Fig. 2. Here we note that parts of the 
structure are quite adequately described by the simple theory of 
membranes: The thin cylindrical pipe expands under internal 
pressure: the only significant stress is the "hoop" stress ( S = 

pr jh ). Other regions are adequately described by the first 
approximation of Love, which accounts for bending. but dis
counts transverse shear strains. Now, important practical ques
tions (yielding and failure) arise at the junctures and at points 
of loading. Such questions entail a three-dimensional descrip
tion or, at least. a higher-order theory with respect to the third 
dimension. In a discrete mode] of elements, it is most natural to 
introduce transitions from the shell (one layer) to additional 
layers andjor to the three-dimensional assembly. Accordingly a 
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basic theory of the shell need not incorporate higher-order 
approximations through the thickness, but rather an approxi
mation which is readily adaptable to the transition. 

Two further considerations are basic to the discrete assembly 
of elements and to the effective numerical approximation. First, 
the theory of the continuum ought to be couched in the alterna
tive functionals and the associated variational theorems: The 
principle of minimum potential, or the stationary theorems of 
Reissner [1950] or Hu and Washizu [1955]. These alternatives 
are needed as means to develop so-called "mixed models" or 
"hybrid elements," which are devised by approximation of 
stresses and/ or strains, as well as displacement, and often 
admit discontinuities at interfaces [see texts by Zienkiewicz, 
1977 and Gallagher, 1974]. Second, the effective treatment of 
geometrical nonlinearities, particularly finite rotations, calls for 
the decomposition of strains and rotations. 

APPROXIMATIONS OF SHELLS BY FINITE ELEMENTS 

From the practical viewpoint it is well to remember that a 
shell is actually a three-dimensional body, albeit one which is 
thin in one dimension. As such, concepts which apply generally 
are also applicable to shells. Additionally, one tries to exploit 
the thinness and to reduce the theory of three dimensions to a 
theorv of two. Practicallv, one must remain wary that a given 
shell -is thin enough and -that the particular phenomena, defor
mations, and other responses are amenable to the inherent 
limitations of such two-dimensional theory. With this in mind, 
one ought to view each sheH as a candidate for a higher-order 
approximation or even a three-dimensional theory, as circum
stances warrant. Examples were cited previously and depicted 
in Fig. 2. 

The engineer can find some comfort in an approximation 
which is derived, in a consistent manner, by means of a varia
tional theorem: The basis is a potential, or functional. of the 
three-dimensional variables: the stationary conditions are the 
governing equations of the theory. Here. the term "consistent" 
is the key. In a very general way. consistent approximations 
must possess the mathematical attributes which insure conver
gence to the solution. From a practical viewpoint. the approxi
mations must provide an adequate description without exces
sive computational costs. 

Certainlv the most reliable basis for the approximation of an 
elastic bod-y is the principle of minimum potential energy. 
According to this principle, a stable equilibrium configuration is 
characterized by a local minimum of the potential. Any consis
tent approximation of the displacement increases the potential. 
Physically such approximation has the effect of constraining the 
bodv which then exhibits excessive stiffness. A simple example 
serv~s to illustrate our point: The simple beam of Fig. 3(a) is 
subJect to opposing couples at the ends. The beam can be 
approximated by dividing it into a finite number of elements 
(five are depicted). If the displacement is approximated linearly 
in each segment. then the hest approximation carries each 
rectangular element into a similar trapezoid. Under the usual 
assumptions of linear elasticity the potential is calculated and 
the result follows: 

Eh-~ ( G ( ·.) .1<;> 
M= 1+2 . 

12 E I 

In the limit. as the length of the element diminishes. I- 0. 

/j,<;>jl- K (curvature). 

ljh- 0, and the exact solution follows: M = ( £h-'j12)K. In the 
words of Bruce Irons, the elemental approximation is "legal": 
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FIG. 3. Simple bending of a beam. 

however, the approximation is bad from a practical viewpoint. 
It is bad, because the approximation of the shear strain is bad. 
The latter has the sawtooth plot of Fig. 3(b ). The approxima
tion is strictly consistent and, indeed, converges to the solution, 
but illustrates a need to examine the physical implications and 
consequences of an approximation. The foregoing example il
lustrates one pitfall of finite elements, a bad approximation 
which causes excessive internal energy and stiffness, so-called 
"shear locking." If one were to exclude the energy of the shear 
strain, then the element is entirely unconstrained from a mode 
of simple shear. The practical consequence of such "spurious" 
modes (zero energy) is worse: An assembly of elements may 
buckle; mathematically, the stiffness matrix may be singular. 
The challenge is to device consistent elements, which insure 
convergence and exhibit neither unwarranted "locking'' nor 
"spurious" modes. One must examine the mechanics of simple 
elements with a view toward consistently simulating all mo
tions, rigid and deformational modes, with attention to the 
resistance to alJ deformational modes. 

To devise any approximation, we ought to draw upon our 
years of experience with thin shells: We have ample evidence 
that Love's approximation is indeed quite good for thin shells: 
transverse shear strain is usually negligible. Clearly, the approx
imation can not be used with simple approximations such as the 
piecewise linear form of Fig. 3. No kinks are admissible at the 
intersections of contiguous elements. To utilize the Love ap
proximation, many earlier elements were derived from higher
order polynomials which provide the requisite continuity. An 
alternative was proposed by the author [1968], a discrete coun
terpart of Love's hypothesis: Admit transverse shear strain, 
impose discrete kinematical constraints and delete the energy of 
shear such that the model (the assembly of elements) converges 
to Love's approximation in the limit, as the size of the elements 
diminishes. In a manner of speaking, one can make Love 
simply, but one must do so discretely. The incidence of such 
affairs is quite common: the precise form of the constraint 
varies in keeping with the formulation. 

The discrete form of Love's hypothesis is not the sole means 
to avoid the excessive stiffness caused by shear. Indeed, the flaw 
in the model of Fig. 3 is not the approximation of the displace
ment, but the consequent approximation of the shear strain (the 
sawteeth). Note that the mean value of the latter is zero, the 
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correct value. A consistent and rational procedure is needed to 
achieve a better approximation of the strain. one which assures 
convergence to the correct relation l)f strain and displacement, 
but also inhibits any spurious modes. One vehicle is the modi
fied form of the potential as given by Hu and Washizu [1955]. 
The latter has been applied to formulate sill)ple. yet effective 
elements [Wempner. 1982: 1983] and is illustrated in our subse
quent discussion. 

The example of Fig. 3 serves also to illustrate the notion of 
"reduced integration," as espoused by various writers. eg, 
Zienkiewicz et al [1971]: If the shear strain is approximated by 
the midpoint value. then one obtains the correct result: in 
general, that value approaches the mean value. However. the 
"one-point integration" fails in the case of two-dimensional 
(plate or shell) elements: the latter exhibit one or two additional 
shear modes (in triangles or quadrilaterals, respectively), which 
are not constrained by the one value. The unrestrained modes 
possess no strain energy; hence. they are "spurious." The 
simple elements of our subsequent discussion illustrate such 
additional shear modes. 

The recognition of spurious modes led to alternative forms 
of" reduced integration." ''two-point integration,'' etc. and then 
to "selective integration." ie. to procedures which select the 
locations and/or values for the approximation. Always. the 
goal is a better selection of the value(s) and the suppression of 
all deformational modes. The interested reader can consult 
articles by Zienkiewicz et al [1971]. Hughes and Taylor [1977: 
Hughes and Hinton. 1986]. and Belytschko [1985: 19R6]. 

In general. thin bodies (beams. plates. and shells) have 
special attributes which greatly influence the character of an 
approximation: The beam or plate resists transverse loads by 
virtue of transverse shear stresses and bending stresses. which 
are accompanied by flexural strains. In marked contrast. the 
very thin shell ( eg. an egg) can resist transverse loads by virtue 
of membrane forces. which are accompanied by extensional 
strains. However. most shells support loads by the actions of 
transverse shear. bending stresses and membrane forces. More
over. these actions and the associated deformations are usually 
coupled: specifically. flexural strains (changes-of-curvature) are 
usually accompanied by extensional strains. A strong coupling 
accounts for the buckling and snap-buckling. ie. instability at a 
critical load. Coupling between extension and flexure can be 
aggravated by poor approximations: excessive stiffness, termed 
"membrane locking." is a consequence. The reader is referred 
to articles by Belytschko et a1 [1985: Belytschko, 1986]. 

Usually the dimensions of a finite element are much smaller 
than a radius of curvature. Also, the dimensions are necessarily 
much less than any characteristic length of the deformational 
pattern. (Otherwise. the shape functions must anticipate the 
deformation.) It follows that the concepts and approximations 
of shallow shells may be applicable to the individual finite 
element. Discussions of shallow shells are given by Koiter 
{1956 J and Libai and Simmonds [ 1983]. Applications to finite 
elements are given by Connor and Brebbia [1967], Cowper, 
Lindberg, and Olson [1970; 1971], Mote [1971]. Morris [1973], 
and Dawe [1974]. 

The deformations of thin bodies are peculiar in another 
respect: Elements can undergo finite rotations although strains 
are small: curvatures and changes-of-curvatures can be rela
tively larger than strains. These peculiarities have far-reaching 
consequences, in the theories of continuous sheJls and also in 
the approximations of finite elements. The mathematical theo
ries and the approximations must include geometrical nonlin
earities which are traceable to the rotations and curvatures. 
though strains may be very small. On the other hand, small 
strains imply small relative rotations of neighboring lines. Con-
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sequently, if the element is small enough, then relative rota
tions are small within the element. Therefore, it is possible to 
employ a linear theory of a hookean element to approximate 
certain problems of finite rotation, but, then, the nonlinearities 
must be introduced in the assembly (Wempner, 1968; 1969a, b]. 
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A very insightful account of the roles of extension and 
flexure (membrane and bending actions) is given in the recent 
article by Morley and Mould [1987]. Here, the authors note the 
various behaviors of shells, "pure" membrane action. inexten- -1.-1 

sional bending, and edge effects. The authors cite the classical 
theory wherein extensional and membrane energies may be 
uncoupled and employ the simple triangular element as the 
vehicle for their investigation. 

1,-1 

3 

a. b. 

FIG. 5. Quadrilateral and triangle-local coordinates. 

SIMPLE CONFORMING ELEMENTS 

Any surface can be approximated by discrete "nodal" points 
and straight interconnecting lines which delineate quadrilateral 
and/or triangular elements, as shown on the surfaces of the 
shell in Fig. 4. The simplest quadrilateral elements are hyper
bolic paraboloids; the simplest triangular elements are plane. A 
discrete model of the shell is customarily founded on such 
approximations of an intermediate surface and an approxima
tion of the normal. In any subsequent state the configuration of 
the shell can be approximated, in the manner of the reference 
state: The new position of the nodes provides the approxima
tion of the reference surface. The configuration of the shell 
requires also the motion (rotation and stretch) of the normal. 
The latter embodies the essential attributes and limitations of 
the shell theory. In the spirit of finite elements. we anticipate 
that additional layers could serve to accommodate thick shells. 
localized loads, and discontinuities in shape. Then the descrip
tion of the individual layer need only include the rigid rotation 
and uniform extension of the normal. This is the theory of Fig. 
1. Now, our attention is focused upon the individual element 
and the approximation of the element; however. the selection of 
nodes, the shape and size of the elements, are no less important 
in the approximation of the entire shell. Specifically. one must 
anticipate that irregular shapes are likely to cause poor approxi
mations and that large elements are less accurate. particularly 
near loads and edges. 

FIG. 4. Approximation-an assembly of firtite elements. 

With the foregoing geometrical description, the approxima
tions of initial and subsequent configurations are similar. This is 
consistent because both configurations play equivalent roles in 
a description of the strained state. (This is an "isoparametric" 
model.) The simple mathematical description of the vectors 
which define position (R0 ) and deformed normal (A 3 ) is conve
niently expressed in a normalized system of coordinates. For 
the quadrilateral element, the origin is at the midpoint. the 
intersection of the straight lines which bisect opposing edges in 
Fig. S(a): On the straight edges the normalized coordinates are 
~ .. = ± 1 (a = 1, 2). The simplest conforming quadrilateral is 
defined by vectors (r0 • n; R0 .A:l) in the bilinear form, eg, 

Ro = R+ RI~I + R2~2 + R12~1~2· (9a) 

Alternatively the four discrete vectors (R,R 1 ,R~.R 12 ) can be 
expressed in terms of the four nodal positions. A feature of 
such approximation is that edges conform to those of the 
contiguous element (since both vary linearly and both are given 
by the common nodal values) . One natural system of coordi
nates for the triangle are three so-called areal coordinates: 

~ 1 =A 1 /A. ~2 =A~/A. ~ 3 =A 3/A. 

where A 1• A 2 , and A~ are the areas shown in Fig. S(b) and 
A= A 1 + A 2 + A 3 is the entire area. Clearly. these coordinates 
are not independent (~ 1 + ~ 2 + t = 1). but are natural in the 
sense that they exhibit no geometrical bias. It is especially 
note~·orthy that the coordinate t = 1 at the node a and van
ishes at the opposing side; along any line parallel to that side 
the coordinate is constant. The counterpart of the approxima
tion (9a) has the linear form 

R0 = R 1 ~ 1 + R~~ 2 + R 3 ~ 3 . (9b) 

It is important to identify the motions in each case. rigid 
motion. homogeneous strain, and any higher modes of deforma
tion: First. the quadrilateral has. in accordance with the bilinear 
approximations of vectors R 0 and A3 , 24 degrees-of-freedom: 
six represent rigid-body motion and those remaining are defor
mational modes. For the sake of simplicity and practicality. let 
us exclude extensional strain in the transverse ( 0:) direction: it 
is usually negligible. Then four deformational modes are ex
cluded. and 14 deformational modes remain. It is important to 
note that three modes of deformation are linear in the thickness 
( 0~ ): these are not higher modes in a shell. but represent 
homogeneous states of bending. To be explicit. the element has 
eight dominant strains: these are the midpoint values of the 
membrane strains ( < .. 13 ), flexural strains ( K.a/3) and transverse 
shear (y,J. In the case of a rectangular element, the six remain
ing terms are linear; two are extensional, two are flexural, and 
two are shear modes, termed torsional and warping. as depicted 
graphically in Fig. 6. To accept all terms in the strain, which are 
compatible with the displacements (R 0 - r0 and A3 - n) , pro-
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FIG. 6. Higher deformational modes of the quadrilateral. 

duces locking, as in the beam of Fig. 3. Somehow, one must 
introduce better, yet consistent approximations of the strains: 
better approximations avoid such locking but still inhibit the 
higher modes. 

The motion of the plane triangular element has but 18 
degrees-of-freedom. Again, let us neglect the transverse exten
sion and thereby reduce the freedom to 15 degrees, six rigid 
modes, three homogeneous modes of extension, three of flexure, 
and two transverse shears. Evidently there is but one higher 
deformational mode, the torsional mode of Fig. 7(b ). Here too. 
the retention of all terms in the strains, compatible with the 
displacement (9b), produces the unacceptable shear energy and 
stiffness. Again, an approximation is required which avoids 
such "locking"; yet inhibits all deformational modes, particu
larly the transverse shear modes. To approach these questions 
in a natural way [Argyris and Scharpf, 1969; Argyris et al, 
1982], the nine deformational modes can be described in terms 
of three flexural strains, three extensional strains, and three 
transverse shear strains in the three directions of the sides. The 
latter encompass the two transverse shears and the higher-order 
torsional mode. 

The "shear locking," as illustrated by the simple beam of 
Fig. 3, must be avoided in any case. To this end, one can call 
upon Love and impose appropriate geometrical constraints 
against the transverse shear. Conceptually, the simplest are the 
discrete constraints, as proposed by the author [1968]: It is 

Transverse Shear 

a. 

Torsional Mode 

D.O.F. 

b. 

FIG. 7. Shear modes of the triangle. 
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sufficient to constrain the normal at prescribed points of the 
element. For example, one can imrose constraints such that the 
tangential component of transvers.:- shear vanishes at midpoints 
of each edge. The four shear modes of the quadrilateral and 
the three shear modes of the triangle are thereby constrained, 
the shear energy is omitted, and the discrete model emulates the 
lovable shell. This approach is workable, but has shortcomings; 
in particular, such models cannot exhibit the effects of trans
verse shear and. therefore, are not suited to thick shells. 

One means to accommodate the transverse shear and avoid 
the excessive shear resistance is to employ the functional and 
stationary theorem of Hu and Washizu [1955]. The functional is 
a modified form of the potential wherein the strain energy is 
expressed in terms of the strains. and strain-displacement con
ditions are enforced via lagrangian multipliers; the multipliers 
are the associated stresses. In short. strain. stress, and displace
ment are independently variable. so that better approximations 
of the strains (and stresses) are admissible, albeit not pointwise 
compatible. For example, the shear strain can be approximated 
by a constant within each element of a beam; such approxima
tion is better than the compatible sawteeth of Fig. 3(b), avoids 
the "locking," yet inhibits the shear. (The constants are zero 
under the simple bending.) An approximation for the quadrilat
eral element was given in an earlier article [Wempner et al, 
1982]. To appreciate that approach. consider the strains associ
ated with the higher flexural mode "11 ; the flexural and shear 
strains, which derive from the bilinear approximation (9a). 
include the following terms: 

"ll = Ku + K'u(. 

YJ = YJ + YJ( + 

(lOa) 

(lOb) 

The final term of the shear (lOb) accounts for the unwarranted 
stiffness, just as the strain in the beam of Fig. 3. However. that 
term is not needed, since the mode is inhibited if the approxi
mation of the flexural strain "u includes the final term of (lOa). 
Further details are given in the earlier work by the author 
[Wempner et al, 1982]. Suffice it to say that the strains are 
approximated independently. Such approximation must include 
the mean value, but need only include such additional term~ as 
are needed to inhibit the higher modes. The procedure provides 
a ready device for the enforcement of a discrete shear constraint 
so that the model approaches the continuum of Kirchhoff and 
Love: One need only delete transverse shear strain in the 
functional. The precise form of the constraints depend upon the 
approximation of the associated stresses (multipliers). An exam
ple is the formulation by Dvorkin and Bathe [1984], who chose 
multipliers in the form of Dirac-delta functions at the mid
points of the sides; then the discrete constraints are those 
suggested previously [Wempner, 1968}. 

The triangular element also admits transverse shear strain. 
To formulate that model in a natural way, the strain energies 
ought to be expressed in terms of natural components, exten
sions. flexures, and shears in the directions of the edges ( t: 1• "

1
, Y

1
, 

i = 1, 2. 3 ). Specifically. the energy of the isotropic hookean 
element is the quadratic form u = u" + u~ + u,, the sum of the 
extensional, flexural, and shear energies, u". u~.. and u,.. respec
tively. In particular, 

Eh 
u == Dl' "' 

s l2(1 + v) Y, ,, , 

7 7 cos- a cos- a Dll = 1 + ___ l + ___ I 
. 7 • 1 ' sm- a 2 sm- a3 

cos a1 cosa2 
D12 = . ., , etc. 

sur a 3 
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FIG. 8. Flexure of the triangle. 

Again, the approximation of the strain must suppress the three 
shear modes of Fig. 7, but admit flexural modes without shear. 
For example, a homogeneous flexure in the direction of the 
coordinate ~~ corresponds to the relative rotation (actually, a 
shear y1) 

(ll) 

Such flexure is shown graphically in Fig. 8. Though the areal 
coordinates are natural, they are less familiar. Integrals of 
powers are given in numerous texts [see. eg. Zienkiewicz, 1977]. 
One can readily verify that the flexural mode (11) is orthogonal 
to a homogeneous transverse shear, and to a simple torsional 
mode (also transverse shear), as depicted in Figs. 7(a) and 7(b), 
respectively. Again, if the shear strains Y; are suppressed in the 
functional, then three kinematical constraints follow. These 
constraints serve to suppress the shear modes and provide a 
discrete counterpart of the Kirchhoff-Love theory. 

Whether the elements are simple or complicated, conforming 
or nonconforming, the forms of the approximations are cer
tainly not limited to polynomials, nor even to continuous func
tions. Mathematically, convergence requires that the discrete 
values approach the mean values of the continuous functions 
and that the difference equations approach the differential 
equations. Examples of some piecewise constant, and discontin
uous. approximations of the strains and stresses are given in 
earlier articles [Wempner et al, 1982: 1983]. 

MORE ON FINITE ELEMENTS 

The foregoing review is but a synopsis of the mechanics of 
shells and an introduction to approximation via finite elements. 
The reader should have little difficulty in researching the well
established theories of shells. Approximation via finite elements 
is another matter. The latter approach is relatively recent, a 
by-product of electronic computation. In just two decades, the 
profusion of literature contains some important concepts, a few 
well-developed theories. many useful methods, but also many 
ill-conceived by-products of numerical experimentation. In time 
the fertile seeds will sprout from the chaff. Meanwhile, practi
tioners are well advised to accept computational programs with 
caution. Here. rudimentary notions are introduced and illus
trated by the simplest elements. The vehicles for these formula
tions, the potential and modified potential of Hu and Washizu. 
are specifically mentioned because they are well founded and 
insightful. Many alternative methods and nuances are available. 
Now, we cite some works, which set forth particular viewpoints, 
and some others, which provide an entree to the literature: 

In addition to the potential and the Hu-Washizu functional. 
one can employ the functional of Hellinger [1914} and Reissner 
[1950) which admits approximations of displacement and stress. 
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The application to "hybrid" elements was pioneered by Pian 
[1964; Pian et al, 1986] and elaborated by Spilker [1980; Spilker 
and Jakobs, 1986] and others. In the "hybrid" element the 
additional variables (discrete parameters), eg, stresses, are elimi
nated from the description of the element, prior to the assem
bly. The complementary functional, wherein stress is the vari
able, has been employed, particularly in approximations of 
linear problems; then, the potential and the complementary 
functional provide upper and lower bounds, as discussed by 
Fraeijs de Veubeke [1965; Fraeijs de Veubeke and Zienk.iewicz, 
1967]. We are unaware of a similar application of the comple
mentary functional [Fraeijs de Veubeke, 1972] for finite defor
mations. 

The term "mixed" signifies approximations of stresses 
andjor strains and displacements; often such "mixed" approx
imations are founded upon variational theorems of Hu and 
Washizu or Hellinger and Reissner. An early example is the 
plate element of Hermann [1967]. More recent work was re
ported at a conference on mixed and hybrid elements [Proceed
ings edited by Atluri and Zienkiewicz, 1982]. Our simple exam
ples are conforming elements, wherein the displacement is 
continuous across interelement edges~ such continuity is not 
essential to the formulation of effective approximations. Indeed, 
discontinuities (nonconforming elements) are admissible pro
vided that appropriate conditions are satisfied along interfaces 
of discontinuity. Such conditions are needed to insure the 
convergence of the discrete model: they can be auxiliary condi
tions of a variational theorem, as described by Prager [1967]. 
An advantage of approximations founded upon the modified 
potential and complementary functional (Hu-W ashizu and 
Hellinger-Reissner functionals) is the freedom to employ sim
ple, even discontinuous. approximations of strains and/or 
stresses. The piecewise constant approximations of our earlier 
article (Wempner, 1983] are examples. "Reduced integration" is 
another device which also can improve the discrete model: for 
example, the use of the midpoint shear in the beam of Fig. 3. 
Again, the practitioner must take care to insure that such 
approximations include the essential mean values and also 
inhibit all deformational modes of the finite element. The 
notion of "reduced integration" can be traced to the articles by 
Zienkiewicz, Taylor, and Too (1971] and Pawsey and Clough 
[1971]. The selection of the terms to ''integrate" in this manner 
and the values to employ has led to "selective integration." 
Discussion of the latter is given in the article by Malkus and 
Hughes [1978]. 

As noted earlier. strict enforcement of the Kirchhoff hypoth
esis implies the absence of transverse shear and requires the 
higher-order approximations of curved elements. Many of the 
early elements were founded upon such theory and. conse
quently, possess many degrees of freedom: for example. the 
reader can consult the works of Argyris [1965]. Argyris and 
Sharpf (1968, 1969]. Cantin and Clough [1968]. Dupius and 
Gael (1970], Morley [1972], Ashwell and Sabir [1972]. and 
Dawe [1976]. The inclusion of transverse shear was suggested 
by Fraeijs de Veubeke [1965], who also recognized the need to 
accommodate flexure without shear strain. so-called "Kirchhoff 
modes." An account of the manv elements. curved or flat is 
beyond the scope of this review. The reader wil1 find abundant 
references in the text of Zienkiewicz [1977]. the collection of 
articles edited bv Ashwell and Gallagher [1976]. and the recent 
collection edited by Hughes and Hinton [1986]. 

Many investigators have influenced the evolution of the 
topic: The form of approximation, ie. shape functions of local 
support. was known in the mathematical community at an early 
date [Courant, 1943]. Argyris and Kelsey [1960] recognized the 
role of discrete approximations to harness the new-found capa-
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bilities of electronic computers. Clough [1960] also envisaged 
the assembly of finite elements as a means to approximate 
continuous bodies. Important steps in such approximation of 
shells were made by Clough [1964] and by Argyris and Scharpf 
[1968], but many others have contributed. Here. we will attempt 
to highlight early contributions: 

The isopararnetric approximation of quadrilateral and trian
gular elements can be traced to articles by Taig and Kerr [1964] 
and Irons [1966]. Mathematical features and elaborations are 
given in most texts [eg, Zienkiewicz, 1977]. 

Approximations which are not founded upon the theorem of 
minimum potential require some assurance of convergence. To 
this end. Irons and Razzaque [1972] advanced the "patch test" 
as a necessary condition. The test assures that the discrete 
assembly accommodates homogeneous states. This clearly ap
plies equally to small extensional and flexural deformations of 
plates; applicability to shells is less apparent since these modes 
are generally coupled. The coupling of extension and flexure 
may impart excessive stiffness, termed "membrane locking": 
see articles by Morris [1973; 1976], Morley [1984]. and 
Belytschko et al [1985]. Approximations, which uncouple exten
sion and flexure, are reported by Morley [1982J. 

Finite elements of shells are usually based upon quadrilat
eral or triangular elements of the surface. It is quite natural and 
effective to place the four comers of a quadrilateral on lines of 
curvature; then the dominant deformational modes of the ele
ment are associated with the familiar orthogonal components of 
strain in the continuum. Moreover. the algebraic equations of 
the discrete system can be associated with corresponding equa
tions which govern the continuum. Representation of the sur
face by flat elements, usually triangular, can be traced to the 
works of Clough and Tocher [1964]. Melosh [1966]. and 
Zienkiewicz et al [1968]. Other effective elements were devised 
by Thomas and Gallagher [1976], Argyris et al [1977]. and 
Horrigmoe and Bergan {1978]. More recently, acceptance of 
transverse shear has led to renewed interest in simpler elements. 
flat triangular and quadrilateral elements. These necessarily 
incorporate approximations of the shear strain, which are not 
compatible with displacement; such approximations may be 
couched in the variational theorem of Hu and Washizu. as 
described previously, or devised by some alternative such as the 
"reduced integrations." A good approximation of the transverse 
shear strain provides the mean value, and also inhibits higher 
modes. Mechanically, all modes must possess strain energy; 
mathematically, the matrix must be nonsingular. The system is 
then stable. Methods to insure such stability are discussed by 
Belytschko [Belytschko et al, 1981; Belytschko and Tsay. 1983]. 
Various methods and forms of approximation are used to 
accommodate the transverse shear: Some are given by Hughes 
et al [1977], MacNeal [1978], Wempner el al [1982], Tesslar and 
Hughes [1983], and Dvorkin and Bathe [1984]. The shear modes 
can always be constrained by a discrete counterpart of the 
Kirchhoff hypothesis, discrete kinematical constraints. Exam
ples of the latter are found in the articles by Wempner [1968]. 
Baldwin et al [1973], Dhatt [1970], Batoz et al [1980; Batoz and 
Dhatt, 1972] and Irons [1976]. 

GEOMETRICAL NONLINEARmES AND BUCKLING 

Finite strains are always governed by equations which con
tain nonlinearities of geometrical and, usua1ly, physical origins. 
Thin structures, beams, plates and shells, seldom experience 
finite strain but can undergo large rotations. Indeed, the flexi
bility of such thin bodies admits large rotations and relatively 
large changes of curvature, though the strains remain smaJl. 
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Often the behavior remains elastic and nearly hookean. Then 
the nonlinearities are entirely geometrical. Most significant are 
the couplings between membrane forces and curvatures which 
are associated with the buckling and postbuckling behavior. 
The subject has received much attention from theoretical. ex
perimental. and practical viewpoints. The reader can find theo
retical foundations and references in the text of Libai and 
Simmonds [1983]. Valuable information on stability is given in 
the Collected papers on instahi/m· of shell structures [NASA TN 
D-1510, 1962] and later articles by Budiansky and Hutchinson 
[1979] and Simitses [1986]. 

Two classic examples illustrate forms of nonlinearity and 
instability which are typical of shells. The response of a thin 
cylindrical shell under uniform axial loading is illustrated by a 
plot of load versus mean axial displacement. A nearly perfect 
sheii is very stiff as depicted by the steep initial slope OB of 
Fig. 9. At a critical load the equilibrium states exhibit a bifurca
tion A: states along branches A B and A C are unstable. The 
severely deformed equilibrium states of CD are theoretically 
stable, although practically unattainable because of the severity 
of the deformation. Indeed, the critical load is also unattain
able, since imperfections promote flexure and premature buck
ling [see Koiter, 1945]. Theoretically the shell would exhibit the 
abrupt "snap buckling" from the bifurcation point A. Practi
cally the plot would trace another path OA'. as flexural defor
mations develop; actual buckling occurs at the lower load P'. 
To appreciate the low resistance of a postbuckled state C, one 
need only observe the severely deformed cylinder of Fig. 9: 
Here, the membrane resistance is nearly absent and the cylinder 
collapses like an accordian. Severe deformation is attributed to 
the bending which is confined to the narrow folds. These 
deformed, but inextensional, patterns were identified by 
Yoshimura [1955]. 

Another example, which iUustrates a different response, is 
the shallow cone of Fig. 10. The plot of load vs deflection traces 
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FIG. 10. Compressed shallow cone. 

the nonlinear curve OA CD. The initial stiffness can be traced to 
the circumferential extension in the outer portion, compression 
near the hole, and the attendant membrane forces. As the shell 
reaches a nearly flat configuration, the plot reaches the "limit 
point" A, and the shell "snaps through" to the stable configu
ration D (a nearly inverted form). 

General concepts and methods of finite elements apply as 
well to the nonlinear problems. Indeed, most nonlinear prob
lems require some form of discrete approximation and also 
computational procedures which accommodate the nonlinear 
equations. Usually the procedures trace the nonlinear path(s) in 
incremental steps; each step is governed by linear equations 
which must be revised with each successive step. Such schemes 
require special attention to bifurcation and limit points. Infor
mation about incremental procedures are given by Wempner 
[1971a], recent articles by Thurston et al [1986], Padovan [1985], 
and Bushnell [1985]. 

INELASTICITY OF SHELLS 

Theories of inelastic shells are much less prevalent than 
theories of elastic, and, especially, Hookean shells. This is quite 
understandable: First, one encounters the basic difficulties of 
nonconservative systems, specifically, the need to adopt an 
incremental approach. Secondly, even thin shells exhibit signif
icant gradients of strain and stress through the thickness; 
accordingly, inelastic deformations are usually initiated at a sur
face and progress through the thickness. Because of this evolu
tion of the inelastic regions, it is particularly difficult to devise 
theories which are expressed in terms of the two-dimensional 
fields, ie, bona fide shell theories. In all likelihood, workable 
theories of thin inelastic shells can be founded upon the 
Kirchhoff-Love hypothesis. Then. the strains and associated 
stresses follow [see Eq (5)] and, according to the concepts of 
classical plasticity, a yield condition and "flow law" must 
follow [see Eqs (7a) and (?b). The inirial form of the yield 
condition is readily obtained [Robinson, 1971; Crisfield, 1974: 
Bieniek and Funaro, 1976]. However, the evolution of the yield 
condition poses a great challenge: In the space of the shell 
stresses (forces and couples), even a she]] of perfectly plastic 
material exhibits a form of "strain hardening" [Bieniek and 
Funaro, 1976; Atkatsh et al, 1983; Bank and Bieniek, 1988: 
Kutt and Bieniek, 1988]. Two avenues are possible: The direct 
approach begins with the two-dimensional variables; then the 
evolution of the yield condition and flow is a matter of insight
ful speculation and, ultimately, correlation with experimental or 

Wempner: Mechanics and finite elements of shells 139 

computational data. The latter can be obtained by a series of 
numerical experiments wherein the model is a sheJl with many 
layers~ essentially, the results are obtained by a three-dimen
sional treatment of the shell under selected loadings. Such 
formulation of the yield condition is described by Eggers and 
Kroplin [1978, Eqs (13) and (14)]. An alternative approach to 
the inelastic shell is a derivation which begins with a three
dimensional description, assumptions with respect to the distri
butions through the thickness and, finally, reduction to a two
dimensional theory. An attempt at such derived theory is de
scribed by Wempner {1977]. 

As in any nonconservative mechanical system, the theory of 
an inelastic shell, or a discrete model, must be given in incre
mental form; it may be rate dependent as welJ [Atkatsh et al, 
1983]. In a classical approach, the strain is expressed as a 
polynomial through the thickness (IJ3 ); then virtual work pro
vides a hierarchy of stresses [Wempner, 1972}. In that spirit, 
Kollmann and Mukherjee f1985] set forth the bases of an 
inelastic theory which incorporates "rates of inelastic pseudo
resultants." In their conclusion, "the inelastic pseudo-resultants 
have to be computed by numerical integration" [through the 
thickness]. Hence, the evolution of the constitutive equations 
for the she)) are a matter of step-by·step numerical evaluation 
during the progressive loading. 

In the spirit of finite elements, it is logical to approximate 
the inelastic shel1 by layers. This seems to be the prevailing 
approach. Then the constitutive equations of the medium are 
applied to each layer; in this respect, the shell is treated as a 
three-dimensional body. The requisite storage, and the repeti
tive steps of incremental procedures, make the computations 
lengthy and expensive. Clearly, the theory and approximation 
of inelastic shells pose intellectual and practical challenges for 
current investigators and engineers. 

The concept of finite elements is applied to large plastic 
deformations in a unique manner by Lukasiewicz [1987]: His 
approach is based on the observation that such large deforma
tions are largely inextensional; for example, the deformational 
patterns might be formed by bending along folds, as the cylin
der of Fig. 9. It appears that this approach is a practical means 
to study instability and collapse. 

CONCLUDING REMARKS 

The foregoing overview is an attempt to integrate the bur
geoning, often disconcerting, methodologies for finite elements 
of sheJls with the generally accepted concepts and methods of 
the continuum theories. It is hoped that the focus upon simple 
forms of approximation will best serve the interests of the 
uninitiated and provide a sound basis for further study. The 
references are necessarily limited: Hopefully. they will enable 
the reader to trace historical developments and pursue further 
research. 

Lest the forest be lost behind the trees. the reader is re
minded of a few specific peculiarities: The shell (plate or beam) 
is a body which can exhibit large rotations with small strain. 
These are accompanied by changes of curvature and attendant 
gradients of strain through the thickness. The occurrence of 
large changes of curvature and rotations. coupled with the 
dominant role of membrane forces, accounts for geometrical 
nonlinearities, buckling and snapbuckling of shells. The strain 
gradients through the thickness, the flexural strains, play an 
essential, even crucial, role in shells. Hence. they pose problems 
which are less evident in bulky bodies: In the latter such 
gradients are merely higher-order contributions to the energy 
and to the stiffness of a finite element. In a shell, these gradients 
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are paramount: moreover, they are accompanied by transverse 
shear of the element. Additional approximations are needed, 
namely, the hypothesis of Kirchhoff and Love, a discrete coun
terpart for finite elements, or the omission of the parasitic shear 
via additional approximations. These gradients of strain, and 
stress, through the thickness are also the sources of much 
difficulty in rendering a two-dimensional theory of plasticity for 
shells. Of course. these and other special problems of sheJls are 
avoided, theoretically. if one treats them as three-dimensional 
and accepts the much larger computational effort. Eventually. 
this course may prove feasible. Meanwhile efficient means are 
needed and intellectual challenges persist. 

Undoubtedly, time will cast a heavy shadow on this effort. as 
most technical writings, but, hopefully. it will shed some needed 
light upon the current state of the art. 
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