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Abstract— Despite recent progress, autonomous navigation
on Micro Aerial Vehicles with a single frontal camera is still
a challenging problem, especially in feature-lacking environ-
ments. On a mobile robot with a frontal camera, monoSLAM
can fail when there are not enough visual features in the scene,
or when the robot, with rotationally dominant motions, yaws
away from a known map toward unknown regions. To overcome
such limitations and increase responsiveness, we present a
novel parallel tracking and mapping framework that is suitable
for robot navigation by fusing visual data with odometry
measurements in a principled manner. Our framework can
cope with a lack of visual features in the scene, and maintain
robustness during pure camera rotations. We demonstrate our
results on a dataset captured from the frontal camera of a quad-
rotor flying in a typical feature-lacking indoor environment.

I. INTRODUCTION

Using mainly a single frontal camera for obstacle detection
and avoidance to enable fully autonomous navigation on
Micro Aerial Vehicles (MAVs) in unknown areas is still a big
challenge, although camera is a desirable sensor for MAVs
due to their limited payload and power capabilities [1], [2].
The frontal monocular camera design is also common on
commercial MAVs1. Other sensors such as laser scanners
are either heavy or power hungry, hence not preferred for
lightweight MAVs in long-term navigation tasks. However,
latest achievements in MAV navigation either rely on laser
scanners [3], [4], [5] and known 3d maps [6] or use stereo
cameras [7], [8] but require human-specified waypoints for
collision-free trajectories [7].

Most state-of-the-art monocular SLAM systems are not yet
ready for autonomous navigation. These systems typically
build a map of corner-type features, which do not contain
enough information for obstacle detection and avoidance,
therefore, they need to rely on human assistance for robot
navigation [7]. Moreover, feature-based monoSLAM systems
might fail in common indoor environments, as in Fig. 1. This
is because monoSLAM often requires an ample amount of
visual features, but these environments do not possess many
distinct corner-type features, while the few that are present
are mostly far-away, providing only little information to
localize the camera reliably. Also, due to the lack of motion
parallax needed to triangulate new landmarks in the scene,
pure monoSLAM systems will easily break down when the
camera undergoes a pure yaw or pitch motion toward an
unknown region. This further limits applications of pure
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Fig. 1: Feature-based monoSLAM is not suitable for robots
with a frontal camera, especially in this type of indoor
environment with only a few features that are mostly far
away along the robot’s direction. Our framework for robot
navigation overcomes these limitations by fusing visual and
odometry measurements together in a principle manner.

monoSLAM in robot navigation, since pure yaw is a very
common robot motion. Using inverse-depth representation
[9] can mitigate this issue; however, its non-Gaussian priors
might decrease the system’s robustness. This helps explain
why successful applications of monocular SLAM on micro-
air vehicles use a bottom-facing camera, in which the cam-
era undergoes only a limited yawing and pitching motion
compared to the frontal camera [10], [11]. Unfortunately,
bottom-facing cameras do not help in obstacle detection.

Instead of using corner-type features, our previous sys-
tem proposed a special type of features which capture the
structure of the environment [2], allowing the robot to infer
and avoid lateral walls. However, while controlling aerial
vehicles requires fast responses, inferring scene structure
from elementary features is still not fast enough, contributing
largely to the latency and nonrobustness of the whole system.

This paper presents a parallel framework for robot nav-
igation, improved upon the well-known Parallel Mapping
and Tracking (PTAM) [12] framework, to increase the re-
sponsiveness and robustness of the whole system. Although
PTAM is originally designed for Augmented Reality (AR),
its parallel framework enables fast camera localization with
a real-time tracker and global map building with a keyframe-
based mapper, both of which are desirable in robotics appli-
cations. The tracker guarantees a fast response to changes
in the environment, while the mapper builds a high-quality
map of the environment and performs tasks such as structure
inference. Also, the keyframe-based and parallel structure
of PTAM have proven the system superior over traditional
monocular SLAM filtering methods [13].
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Fig. 2: Overall framework of our system

Recent years have also witnessed an increasing interest
in using PTAM for robot navigation [10], [11]. However,
beside the aforementioned problems of using pure monocular
SLAM for robot navigation, the particular parallel framework
of PTAM does not provide a flexible mechanism to fuse
visual measurements with other sensor data such as odometry
or IMU, making PTAM in robotics not as strong as it is
in its own AR domain. To address such limitations, some
recent work [10], [11] attempts to combine PTAM with
odometry or IMU measurements, but do not integrate them
tightly. These systems simply treat PTAM as a “black box”
and combine PTAM’s results with IMU measurements in an
outer loop; hence, the visual and IMU measurements are not
fused together in the same system, nor are the fused results
propagated back to PTAM to prevent it from failing, e.g.,
when there is a lack of visual features in the scene.

Our system overcomes the aforementioned difficulties of
monocular SLAM in robot navigation, and achieve robust-
ness with rotationally-dominant movements and texture-poor
indoor environments. The system is similar to PTAM in that
it consists of a mapper that builds a map of the environment,
and a tracker that localizes the camera within that map.
However, our system differs from PTAM and its variants
in the following key ways: first, while PTAM assumes a
simple decaying velocity motion model, our system uses
the odometry measurements to replace the motion model.
Second, while PTAM purely relies on a large number of
visual features to localize the camera, our system uses these
odometry measurements to deal with a lack of visual features
in the environment. Third, while other PTAM-IMU fusion
work treats PTAM as a black box [10], [11], our system
fuses visual and odometry measurements together in the
same framework in a principled way, preventing breakdowns
due to either a lack of features in the environment or a lack
of motion parallax in the camera movement.

We demonstrate our framework on a dataset captured from
the frontal camera of an AR.Drone quad-rotor flying in a
typical indoor environment. We present a simple loop-closure
detection method for indoor environments with straight or-
thogonal hallway segments. For comparison, we show the
results of PTAM and how it breaks down in this type of
environment. Finally, we evaluate our system’s mapping
results using the ground-truth map, and compare its accuracy
against the PTAM’s and the quad-rotor’s own estimates.

II. THE FRAMEWORK

Fig. 2 shows the overall layout of our framework, consist-
ing of a tracker and a mapper running in parallel. The tracker
receives a stream of timestamped images and odometry
measurements from the robot. Its task is to localize the
current camera in real-time within the optimized map of local
landmarks created and maintained by the mapper. Basing on
the localization results, it then decides if a new keyframe
and odometry measurements should be added to the existing
map to cover new parts of the scene. Performing these
tasks in real-time, the tracker’s localization results benefit
time-critical tasks such as controlling the robot to follow a
trajectory, or avoiding obstacles.

The mapper periodically receives a new keyframe image
from the tracker, as well as odometry measurements between
this new keyframe and the previously received keyframe.
These odometry measurements are created by accumulating
all odometry measurements of the intermediate frames be-
tween the two keyframes. The mapper’s task then is to build
a global map of visual landmarks in the environment, and
simultaneously compute the optimal keyframe poses. After
finishing an iteration, the mapper updates the tracker with
the newly optimized local map and keyframe poses, which
are then used by the tracker to localize the current camera
pose in real-time. Due to the inherently slower pace of the
mapper and the fact that it does not have to obey real-time
constraints, other time-consuming tasks such as inferring the
structure of the environment can also be added to the mapper
thread, to provide contextual information of the environment.

III. THE MAPPER

Unlike PTAM, which only uses visual measurements, we
employ both visual measurements and odometry measure-
ments between keyframes to build the map. We denote the set
of unknown camera poses and landmarks by X = {xi}ni=1

and L = {lj}mj=1 respectively, the set of all visual mea-
surements by Z = {zij}, with zij the visual measurement
of landmark j viewed from camera i, and the set of all
odometry measurements B = {bik}, with bik the odometry
measurement between the camera poses i and k.

The map-building problem is then to recover the maximum
a posteriori (MAP) estimate, given by

X∗, L∗ = argmax
X,L

p(X,L,Z,B)

= argmax
X,L

p(x1)
∏
i,k

p(xi|xk, bik)
∏
i,j

p(zij |xi, lj)
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Fig. 3: The factor graphs of PTAM’s mapper (top) and our
mapper (bottom)

This general map-building problem can be posed in terms
of inference in a factor graph [14]. As shown in the bottom
of Fig. 3, the camera poses xi and the landmarks lj are
represented as variable nodes (white circles) in the graph.
The factor nodes (black dots) in the graph represent the prior
densities p(x1) on the variable nodes, the motion models
p(xi|xk, bik) between two poses xi and xk given the odome-
try measurement bik, and the measurement likelihood models
p(zij |xi, lj) constraining a pose xi and a landmark lj , given
the corresponding visual measurement zij . The measurement
model can be derived for any type of landmark and their
visual measurements, using any standard camera projection
model. In Section VI-B we give a detailed measurement
model for the specific landmarks we use. For comparison,
the factor graph of the original PTAM is shown at the top
of Fig. 3. It has no odometry factors between camera poses.

This problem can be solved by techniques like bun-
dle adjustment [15], [12], smoothing and mapping [14],
or incremental smoothing and mapping methods [16]. We
use the state-of-the-art incremental smoothing and mapping
algorithm iSAM2 [16] implemented in the GTSAM library2

for the actual inference.

IV. THE TRACKER

While our mapper is fairly similar to PTAM’s, our tracker
differs significantly. PTAM’s tracker can robustly localize the
current camera pose xt within the known map (received from
the mapper), by relying on the visual measurements ztj of
many landmarks lj visible in the current image t. To do so,
it solves the well-known camera resectioning problem, i.e.,
computing the optimal camera pose from measurements of
known landmarks:

x∗
t = argmax

xt

p(xt| {ztj , lj}j=1..m)

= argmax
xt

∏
j

p(ztj |xt, lj)

The corresponding factor graph is very simple: there
is only a single variable node xt, and a single (unary)
resectioning factor for each of the visual measurements,
parameterized by the corresponding known landmark. The
top of Fig. 4 shows the factor graph of PTAM’s tracker.

2https://borg.cc.gatech.edu/download
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Fig. 4: The factor graphs of PTAM’s tracker (top) and our
tracker (bottom)

With the odometry measurements to compensate for the
lack of visual measurements and landmarks in the environ-
ment, our tracker is more involved. We compute not only
the current pose, but also all previous poses since the latest
keyframe received from the mapper. To make things precise,
let X]k,t] = {xi}ti=k+1 be those unknown camera poses, with
k the index of the latest keyframe received. Also, let Lk be
the set of known landmarks received from the mapper, Zk

]k,t]

the visual measurements from frame k + 1 to frame t, and
B[k,t[ = {bi,i+1}t−1

i=k the set of odometry measurements from
frame k to t. Our tracker computes:

X∗
]k,t] = argmax

X]k,t]

p(X]k,t]|xk, L
k, Zk

]k,t], B[k,t[)

= argmax
X]k,t]

∏
i

p(xi|xi−1, bi−1,i)
∏
i,j

p(zij |xi, lj)

where i ∈]k, t] and where the index j ranges over landmarks
in Lk observed in frame i. The corresponding factor graph
is shown in the bottom of Fig. 4. We also use the GTSAM
library mentioned above to optimize this graph.

At runtime, the tracker decides when to send a keyframe
to the mapper, to request for new landmarks in the new parts
of the scene. While waiting for the results from the mapper,
it keeps on adding new camera poses and optimizing the
graph as it receives new images and odometry measurements
from the robot. In our experiments, the tracker simply sends
a keyframe to the mapper after every 10 frames. Based on
the speed of our robot and the field of view of its frontal
camera, we found that this 10-frame sampling frequency
is good enough for the mapper to cover the space, while
preventing redundant overlap between them.

Upon receiving a new keyframe pose and landmarks back
from the mapper, the tracker removes from the graph all the
past frames before the latest keyframe received, including the
keyframe itself. This process is shown in Fig. 5. Based on the
new optimal keyframe pose and landmarks, it then updates
the prediction, redoes data association, and re-optimizes all
the remaining poses in the graph using the new prediction
as the initial value. The data association step might not be
necessary if the keyframe and landmark updates from the
mapper are not very different from their values currently
used in the tracker. However, this is not the case at loop
closure, as we will discuss next.
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(b) The tracker sends a new keyframe (and its odometry measurement from
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(d) After receiving the new map and the latest keyframe pose from the mapper,
the tracker removes the past poses and updates the remaining graph.

Fig. 5: The communication and updating process between
our tracker and mapper

V. LOOP CLOSING

While PTAM cannot close the loop, as mentioned in its
original paper [12], our use of odometry factors allows us
to employ a simple loop closing mechanism. We implement
the loop closure module in the mapper thread due to its high
computational complexity.

Although feature-based loop closure detection schemes
[17], [18] are available, we employ a simple yet effective
loop-closure detection method that can work for typical
indoor environments with straight orthogonal hallway seg-
ments. Our method is based on the Small-Blurry-Image (SBI)
technique used in PTAM to relocalize the camera when the
tracking is lost [19].

In particular, to detect a loop closure, we first determine if
current hallway segment is potentially a pre-visited segment.
When the robot makes a turn around a corner, based on
a corner detection scheme [2], we know that it is entering
a new segment. Thus, we can divide the trajectory into
segments, and average the yaw angles of the robot during

its stay on a segment and use it as the segment direction. If
the current segment direction is similar to another segment
in the past, a potential match is found.

To confirm a loop closure from a potential match, we
find the keyframe in the old candidate segment that best
matches with our current keyframe, and determine if their
difference is small enough to consider them a loop closure.
We do this by computing the SBIs, down-sampled and
blurred images [19] for keyframes in all segments, and
using the sum-of-square-differences (SSD) of pixels from
the candidate keyframe’s SBI and current SBI to measure
the difference between them. In order to aid the matching,
we also use image alignment technique to optimize for the
relative camera rotation that best aligns the two SBIs before
calculating the SSD. Finally, if the best match has differences
less than a threshold, we consider it a good match, and a loop
closure is found.

When a loop closure is found, we add a loop-closure factor
constraining the relative pose between the latest keyframe
and the best match keyframe to the mapper. Since keyframes
in the mapper regularly sample the space as the drone moves
at a constant speed, and the SBI match guarantees that the
two frames are very close together, we simply predefine the
values for this constrained relative pose measurement and use
a reasonable large uncertainty as its noise model. We note
that other traditional feature-based techniques, e.g. detecting
and matching features between the two keyframes using
fundamental matrix RANSAC, can also be used; however,
their effectiveness is questionable with the lack of features
and the regularity of indoor environments.

At loop closure, after receiving the latest keyframe and
landmarks from the mapper, it is important for the tracker
to redo the data associations for all visual measurements
of previous frames in its graph and re-compute the initial
values of those poses for optimization. This is because when
closing the loop, the latest keyframe can be shifted very far
back to an old place in the map, moving the attached frames
together with it due to their odometry constraints. Hence, the
visual measurements need to be re-associated with these old
landmarks, and the initial values need to be recomputed to
make sure the nonlinear optimization process converges at
the correct local minima.

VI. EXPERIMENTS

A. Platforms

We evaluate our system using a dataset captured from
an AR.Drone3 2.0 quad-rotor, flying twice around a square
hallway, shown in Fig. 7, at 1 meter above the ground.

The quad-rotor is equipped with a 30fps HD frontal
camera, a 60fps QVGA bottom camera, an ultrasound height
sensor, and an IMU system with a 3-axis accelerometer, a
3-axis gyroscope and a 3-axis magnetometer. An on-board
server program on the quad-rotor filters measurements from
the bottom camera, the height sensor, and the IMU system
to estimate the pose of the quad-rotor [20].

3http://ardrone2.parrot.com/



Fig. 6: Wall-floor Intersection Features. More details in [2].

We developed an additional on-board program to obtain
images from the frontal camera and stream JPEG compressed
320 × 180 grayscale images to the tracker running on
a MacbookPro 6.2 laptop with a 2.4 GHz Intel Core i5
CPU and 4GB DDR3 RAM. Our on-board program also
receives estimated robot poses from the on-board server
and creates odometry measurements between the frames,
using their relative pose. However, as shown in Fig. 7, these
odometry measurements are unreliable. They systematically
underestimate the traveled distance, perhaps due to the lack
of features on the floor corrupting the motion estimation
scheme that largely depends on the features from the bottom-
facing camera [20].

B. Wall-floor Intersection Features

To overcome the aforementioned problems of corner-type
features in typical indoor environments (Fig. 1), we use Wall-
floor Intersection Features (Fig. 6) in our experiments. As
detailed in [2], these features lie on the intersection of a
vertical line on the wall and the intersecting floor plane.
We represent each landmark as an element of the Lie-group
SE (2), encoding its 2D position and direction on the floor.
The projection of a landmark onto an image given the camera
pose is also an element of SE (2) encoding its projected point
and projected direction in the image.

C. PTAM results

We first run PTAM with our dataset to analyze its perfor-
mance in feature-poor environments. We initialize the system
as required [12] using the last frame when the quad-rotor is
on the floor and the first frame when it starts stabilizing in
the air. Since the quad-rotor is flying at about a 1 meter
height, we set the initial scale of the system, determined by
the baseline between these two frames, as 1 meter.

Fig. 7 shows the trajectory of the quad-rotor estimated by
PTAM. As we predicted, PTAM cannot estimate the motion
and shows that the quad-rotor does not move. This is because
there are not enough corner features in the scene, and the
few that are available are mostly at the end of the hallway,
as shown in Fig. 1, providing little information about the
robot’s forward movement; these features have almost no
motion parallax as they are close to the focus-of-expansion
point on the image. PTAM also breaks down when the quad-
rotor starts to turn around the first corner, failing to initialize
new landmarks with no motion parallax.

Fig. 7: Comparison between the ground-truth map of the
environment and the estimated trajectories from the quad-
rotor’s on-board program, PTAM, and our system. Our map
is manually-aligned to fit with the ground-truth map. The
Wall-Floor Intersection Features are shown in magenta and
the ground-truth floor layout is in grey (walls) and black
(doors). Our estimate roughly matches with the ground-truth
map even with an unreliable odometry input and a small
number of visual features.

D. Our results

Using the same dataset, we show the results of our system
in Fig. 7, where the estimated trajectory is in red and the
landmarks in magenta. Due to drift and unreliability in sensor
readings during AR.Drone’s take-off sequence [20], we only
start our system once the drone stabilizes in the air. Since
the entire map depends on the first robot pose at the system
start, which is arbitrary due to the drift, we manually rotate
our map to match the ground-truth map orientation.

Our system successfully finishes the sequence with a
proper loop closure. With the aid of the odometry measure-
ments, our system does not fail when the robot yaws around
the corner, or when it cannot detect any visual features in the
environment. For example, during the last hallway segment
before the loop closure at the bottom of Fig. 7, it relies



solely on the incorrect odometry measurements obtained
from the quad-rotor’s on-board program and underestimates
the amount of its forward motion. This is evident in the
estimated trajectory before the first loop closure, shown in
dashed lines in Fig. 7. Due to the underestimated forward
motion, the estimation results show that it is at the middle
of the bottom hallway, when it has already turned around
the corner. However, with the loop closure in our system,
this is corrected, as shown in the trajectory after the first
loop closure in Fig. 7. Our final map and trajectory roughly
match the ground-truth map of the environment, even with
the odometry input that drifts significantly.

In terms of speed, our unoptimized tracker runs favorably
at 10-12fps, while the mapper runs at 1-2fps with the
majority of time is spent on waiting for the new keyframe
and odometry measurements from the tracker. Comparing to
iSAM2 [16], which is also very fast due to its incremental
computation nature, our framework allows the extra resource
in the mapper to be utilized for other time-consuming wall
inference tasks without affecting the tracker speed.

VII. CONCLUSION AND FUTURE WORK

We have shown that PTAM is not suitable for robot navi-
gation with a frontal camera, because (1) features in front of
the robot do not provide enough information for localization
when the robot moves forward, and (2) there is not enough
motion parallax to triangulate new landmarks in the scene
when the robot rotates to change its heading. In fact, motions
typically performed by robots, mainly moving forward and
purely rotating to change direction, are challenging for any
monocular visual SLAM system in general. The lack of
visual landmarks in typical indoor environments add to the
challenge for feature-based systems.

We have presented a new parallel tracking and mapping
framework that fuses visual information with odometry
measurements for robot navigation. We have shown that
by fusing the odometry measurements, our framework can
overcome the key difficulties in frontal monocular SLAM
for robot navigation. Odometry information helps to prevent
breakdowns when the visual features do not provide enough
information to localize the camera. Our new framework also
enables a simple loop-closing mechanism to correct the robot
trajectory and the map.

Our future work is to further leverage the benefits of
the parallel tracking and mapping framework for robotics
applications. While the slow-paced mapping thread allows
room for complex structure inference and planning tasks,
the fast tracking thread guarantees fast responses to changes
in the environment and provides real-time information for
control. In our current implementation, the tracker and
mapper communicate with each other over TCP/IP and we
plan to implement the tracker on the quad-rotor itself so
that its results are immediately accessible to the on-board
controller. The mapper can also be improved to utilize other
visual information in the environment, using state-of-the-art
structure inference methods.
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