
The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

A SUPERCOLLIDER CLASS FOR VOWEL SYNTHESIS
AND ITS USE FOR SONIFICATION

Florian Grond1, Till Bovermann2, Thomas Hermann1

1 Ambient Intelligence, CITEC, Bielefeld University Germany
[fgrond,thermann]@techfak.uni-bielefeld.de

2 Media Lab Helsinki School of Art and Design Helsinki Finland
till.bovermann@aalto.fi

ABSTRACT

In this paper, we present building blocks for the synthesis of
vowel sounds in the programming language SuperCollider.
We discuss the advantages of using vowel based synthesis, and
make a review where it has already been used in sonifications.
Then, we describe in detail the main class Vowel which handles
all parameters related to the formants that are typically used for
vowel synthesis. In order to simplify the handling of the Vowel
class, we introduce two auxiliary pseudo Ugens: Formants for
additive synthesis, and BPFStack for subtractive synthesis. This
introduction of the building blocks is followed by code examples
for sound synthesis, which make use of the described classes and
their specific features. We finally present sample applications,
showing how these building blocks can be used in sonification.

Keywords: vowel synthesis, sonification.

1. INTRODUCTION

The mapping of data features to sound parameters is one of the
most widespread methods in sonification. Whilst this is a straight
forward approach when the data are aptly preprocessed, the results
are often unsatisfying from a sonic perspective when only simple
sound parameters are used which are obviously easy to manipulate
. Typical examples are pitch and level as two of the most salient
sound characteristics. More complex sound features, such as tone
color or timbre, that encompass the spectral evolution of a sound
give many sounds their emotional appeal and enrich the listening
experience. The physical characteristics of sound that mediate the
perception of timbre are however more challenging in synthesis
and hence difficult to access for sonification.

If the sound design does not rely on the timbre of prerecorded
samples, one is only left with physical modeling as it has been
used e.g. in the sonification of a rolling ball by Rath et al. [1] [2]
and Lagrange et al. [3]. However, not all sonification scenarios
have a corresponding physical model. Here model-based sonifica-
tion opens the door to sonifications with rich spectral content but
the underlying simulation processes are generally computationally
expensive. In brief, the spectral characteristics which result in a
richer and more interesting sonic experience are in turn also more
difficult to synthesize and to control.

A fairly accessible type of sound signal with differences in the
spectrum that are highly characteristic and hence distinguishable
are vowels. This is why recently a growing number of sonification

approaches can be found in the literature where the sound syn-
thesis is based on vowel sounds. Examples of these sonification
originate from various contexts. Ben-Tal et al. [4] used vowel
synthesis in stock-market and oceanographic data. Cassidy et al.
[5] used vowel synthesis to improve the diagnosis of colon tissue.
Hermann et al. [6] explored intensively vowel based sonification
for the diagnostics of EEG signals. Kleiman et al. used vowels in
the context of an human motion display [7] for golf movements.

In this work we present classes for the sound synthesis envi-
ronment SuperCollider (SC) which allow for a convenient
and yet flexible synthesis and control of vowel sounds. The focus
of this work is not on the synthesis of perfectly natural sounding
vowels. We rather think of the spectral envelope that constitutes
a vowel as a convenient point of entry to get control over certain
aspects of timbre space. Using vowels in sonification or more gen-
erally speaking complex spectral envelops opens access to the fol-
lowing sound design options:

• By using vowel synthesis, we gain access to a continuous and
well controllable dimension in timbre space that is orthogo-
nal to pitch and loudness. The resulting potential to design
sounds is usually less accessible and therefore less systemati-
cally explored.

• Vocal sounds ’point’ to ourselves and to our capacity to make
vocal utterances. Therefore a vocal sonification constitutes
less a technological artifact from the outside world. It rather
refers to the listeners and their embodied knowledge and abil-
ity to interpret the particular sound type.

• As it has been mentioned in [6], vowel sounds are easy to
mimic. Hence, even people with less analytical listening skills
can literally talk about the sonic experience of a vowel based
sonification.

• There is no natural sounding object that does not vary - at least
slightly - its spectral characteristics with increasing sound
level. Hence spectral envelopes that can be systematically
manipulated constitute a necessary complement for the one-
to-many mapping scheme as proposed by Kramer [8].

1.1. Why do we need a new tool?

One problem in the field of sonification is the difficulty to reuse
displays and hence it is difficult to compare the various research re-
sults. Frameworks, like for instance the sonification sandbox 1 try

1http://sonify.psych.gatech.edu/research/sonification_
sandbox

http://sonify.psych.gatech.edu/research/sonification_sandbox
http://sonify.psych.gatech.edu/research/sonification_sandbox

The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

to address this problem. However, these functional frameworks,
which are often operated through a GUI that allows to config-
ure the mapping, restrict how sound parameters can be mapped
and hence limit the sound design space. As a consequence, these
frameworks do not allow to implement sonification methods like
data-sonograms [9]. Further, a large parameter space as spanned
by vowel synthesis cannot be expected to be orthogonal to the per-
ceptual domain. Therefore flexible mapping functions as demon-
strated in [10] need to be constructed for an efficient use of the
relevant subspaces.

We believe that the field of sonification is best served with
small but flexible building blocks, this is why we focus on a library
that addresses first and foremost vowel sounds. In order to fully
explore the sound design flexibility we chose to implement it in
SC, because many of the requirements mentioned above can only
be met if the sound synthesis can be flexibly scripted through a text
based programming language.

SC is considered do be more abstract compared to data flow
based sound synthesis environment such as as Pd and Max/MSP,
and hence has a steeper learning curve . The outweighing ben-
efits are that SC meets typical needs when dealing with sound
design, its strengths for sonification have been described in [11].
The building blocks which we implemented allow for the flexible
control of both, the low level synthesis parameters (frequencies,
bandwidths, and gains of the frequency components) as well as
the control of the gestalt of the vowel. Manipulation on this higher
level of perception include the change in brightness that leaves the
sonic gestalt intact or the controlled transition from one vowel to
another.

In this paper we will first describe the SC class Vowel, which
handles all formants (typically 5, or more) parameters of one vowel
sound. Then we describe in detail two auxiliary pseudo Ugens
which are both structurally similar with the only differences that
the first, Formants, is designed for additive synthesis and the sec-
ond, BPFStack, offers the possibility to implement a simple source
filter model of vowel sounds. We follow with synthesis examples
using synthesis definitions (SynthDefs). Finally we give two exam-
ple demonstrations: Firstly we demonstrate how vowel sounds can
be well combined with the one to many mapping paradigm [8].
Secondly, we show how the model based sonification technique
known as data-sonograms can be well combined with conceptual
mapping using vowel sounds as markers for categories.

We include code examples for a better integration of theory
and practice and recommend to study this paper together with the
implementation, The SC code and all sound examples discussed in
this paper can be downloaded. 2.

2. THE CLASS VOWEL

Sounds that are perceived as vowels have a characteristic spectral
structure i.e. their harmonic spectrum exhibits a particular shape
with pronounced local maxima which typically decrease in level
with increasing frequency. These maxima of the spectral envelope
are known as formants and can be described with the parameters
center frequency (fc), bandwidth(∆f) and gain(g). Please confer
Fant [12] as a standard textbook for formant definition.

2Note that this SC class is available as a Quark which can be found here
http://quarks.sourceforge.net/, but can also be conveniently installed
through SC, the sound files can be found here: http://www.techfak.
uni-bielefeld.de/ags/ami/publications/GBH2011-ASC

Figure 1: spectrogram for the vowels [a :] [e :] [i :] [o :] [u :] for
the register bass at 70 Hz

Figure 2: spectrogram for all the registers bass, tenor,
countertenor, alto, soprano for the vowel [e :] at 70 Hz

Usually two formants suffice to recognize and differentiate
the 5 vowels from the chart known in German as vocal triangle
[i:],[e:],[a:],[o:],[u:] as in bee, bear, bar, bot, boot. The result-
ing synthesized sounds are however rather unnatural and often a set
of 5 formants is taken for sufficiently natural sounding vowels. A
list of the resulting 15 vowel parameters for these 5 vowels span-
ning across the registers bass, tenor, countertenor, alto, soprano
can be found in the online Csound manual 3. Figures 1 and 2 show
spectrograms of generated vowels whose formants are based on
the Csound manual. In all spectrograms shown in this paper, the
base frequency is kept low (70 Hz) in order to make the spectral
envelope stand out through densely spaced harmonics.

The class Vowel allows for a convenient instantiation of a
vowel whose data structure holds an array representing the param-
eters fc, ∆f , g of all 5 formants from the source above.

2.1. The Formant Library

The class Vowel contains as class variable a library of formants
that is instantiated only once. This library is initialized with the
formants from the online Csound manual. The entries in the library
are hierarchically ordered:

Vowel.formLib.at(\a) for instance returns the whole set of
parameters for the vowel [a:] as a multilevel dictionary.

Vowel.formLib.at(\vowel, \bass) returns as a dictionary
the 15 parameters for a vowel of the chosen register bass that holds
arrays for the fc, ∆f , and g of all formants.

Vowel.formLib.at(\register, \vowel, \freq) finally re-
turns the array of frequencies for a vowel of a chosen register. The
parameters ∆f and g can be accessed with the corresponding key
\bw and \amp.

The inclusion of this formant library is meant to help users
to focus on the sound design by choosing parameter combinations
where they know what to expect in terms of the sonic result. While

3http://www.csounds.com/manual/html/MiscFormants.html

http://quarks.sourceforge.net/
http://www.techfak.uni-bielefeld.de/ags/ami/publications/GBH2011-ASC
http://www.techfak.uni-bielefeld.de/ags/ami/publications/GBH2011-ASC
http://www.csounds.com/manual/html/MiscFormants.html

The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

designing sounds, one often comes across parameter combinations
with a particular timbre. In order to be able to reproduce and study
these formant combinations, the class provides the methods save
to save it in a specified file with a specific name and register. These
file entries can be added to the library by using the load method
which allows to reuse them as conveniently as the standard set of
formants form the Csound manual.

2.2. The Instance of a Vowel

The entries of the formant library are all automatically assigned
to the member variables freqs, dBs, and widths of a Vowel in-
stance. The instantiation without arguments Vowel() defaults to
the parameters for the vowel [a:], bass. Any vowel from any
register can be instantiated like this: Vowel(\vowel, \register).
Following the multi-channel expansion paradigm from SC, arrays
of Vowels can be conveniently instantiated by either assigning an
array of vowels or registers or both to the constructor.

If there is the need to compose an individual Vowel
that originates from within the parameter space of the
library above the user can create an instance with the
method compose: Vowel.compose([\vowel1, ...\vowelN ,],

[\register1, ...\registerN ,], [\weight1, ...\weightN ,]), which
returns a linear combination according to the weights of the
specified vowels. Note that the weights need to be a normalized
sum.

However, if the user does not want to take advantage
of the predefined vowels from the library, there is the op-
tion to independently define formants by specifying the pa-
rameters manually using the following instantiation method:
Vowel.basicNew([fc1, ..., fcN], [bw1, ..., bwN], [g1, ..., gN]).

It is possible to alter any of the formant parameters by directly
setting the elements in the arrays of the member variables freqs,
dBs, and widths. For internal use and for convenience in combi-
nation with other synthesis Ugens, these member variables have
the complements midinotes, amps, and rqs, which are returned by
calling the methods of the same name.

In order to give a vowel additional extra flavor, the user can
add to or remove from a Vowel either a single or several formants
using the addFormant and removeFormant method. If the param-
eters are carefully chosen the sonic gestalt of the vowels might
resemble those extracted from the library with the additional sig-
nature of an individual voice.

2.3. Controlling the Sound of a Vowel

Figure 3: spectrogram for the blending between two vowels [a :
−e :], [e : −i :], [i : −o :], [o : −u :], [u : −a :] at the register
bass at 70 Hz

A salient mapping dimension in vowel based synthesis is the

transition of one vowel to another, which has been extensively used
in [6]. We make this mapping dimension accessible with the blend
method. Given the instance of two vowels v1 and v2, a blend-
ing of both is implemented as a linear interpolation between the
parameter sets midinotes, dBs, and widths. v1.blend(v2, frac)

morphs from v1 where frac is 0 to v2 where frac is 1. The same
method allows for more control by providing an array of 3 parame-
ters as arguments for the morphing of all three aspects of a formant
(midinotes, dBs, and widths) individually. Although the linear in-
terpolation is done in MIDI notes, the corresponding frequencies
in Hz are the units of the member variables. Figure 3 shows a
spectrogram of morphing vowels.

Figure 4: spectrogram for the brighten method applied to all the
vowels [a :] [e :] [i :] [o :] [u :] for the register bass at 70 Hz

The class also offers the options to change the brightness of a
vowel sound. This is generally achieved by raising the gain of the
higher formants for which there are 3 methods:

The fist method brightenLin(b, ref) changes the gain of a for-
mant i by adding to the level of this formant a value that is based
on the linear equation: gnew,i = gi + b log(fi) + N . Where the
term N = (gnew,i − gref) allows to compensate the change in
gain of all formants by adjusting it to the previous gain of a refer-
ence formant with the index ref . This index is by default 0, i.e.
the first formant. The range for the parameter b spans from nega-
tive to positive real numbers. For positive values higher formants
are raised which leads to a brighter sound and for negative values
they are lowered. The value b = 0 leaves the formants unchanged.

The second method brightenRel(b, ref) changes the formant
gain according to the following equation (2): gnew,i = b gi + N .
Here all gains are simply multiplied with the factor b and compen-
sated through the term N as in brightenLin. The value range of
b are all positive real numbers: 1 leaves the formants unchanged,
values greater 1 lower the gain of the higher vowels and values
smaller 1 brighten the sound. If b is set to 0 all formants are of
equal level (0 dB). A spectrogram for this method is shown in Fig-
ure 4.

The difficulty with those two methods is that the overall
gain can become very big, this is why there is the third method
brightenCAmpSum , which brightens the sound by manipulating

the amplitude of the formants according to the following equation
ampnew,i = ampb

i · N where the factor N =
P

ampnewiP
ampi

cor-
rects the gain of all formants so that the sum of all amplitudes re-
mains constant, this is only an approximate compensation in order
to achieve constant loudness but it yielded satisfying sonic results.

2.4. Methods that Return the Formant Data

In order to get the formant data as arrays there is
the convenience methods v.asArray which returns
[[fc1, ..., fcN],[bw1, ..., bwN],[g1, ..., gN]]. The amplitude

The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

a) b)

c) d)

Figure 5: Typical spectral envelops as frequency / dB value pairs
that can be easily generated through the convenience method plot
using internally ampAt.ampdb.

of any frequency under the spectral envelope can be accessed by
the method ampAt. This method takes also ranges of frequencies
and for each formant the transition steepness can be modeled with
an exponent as a function of the distance to the centre frequency
of the formant.

The convenience method plot renders a visual display of the
spectral envelope since it makes use of the ampAt exponents argu-
ment in order to control transition steepness. A selection of result-
ing plots is shown in Figure 5. Synthesis options based on ampAt
are discussed in detail below.

3. THE AUXILIARY PSEUDO UGENS

The class Vowel handles only the formant parameters. It exhibits
its full potential together with the two new pseudo Ugens Formants
and BPFStack . Whilst Formants is designed for additive syn-
thesis, BPFStack can be used for subtractive synthesis of vowel
sounds. As pseudo Ugens they are implemented in sclang and
contain the methods ar which instantiate and return a collection of
Ugens. In a nutshell they wrap around each formant the desired
unit generators.

3.1. Formants: pseudo UGen for additive Synthesis

Formants is based on the already existing Ugen Formant which
generates a set of harmonics around a centre frequency at a given
fundamental frequency. Formants takes the arguments baseFreq,
vowel, freqMods, ampMods, widthMods and unfold. The formant
parameters from the argument vowel (an instance of Vowel) are as-
signed to as many Formant Ugens, as the instance of vowel holds
formants. If the flag unfold is set to the default value false, For-
mants returns a BinaryOpUGen as the sum of all the Formant
Ugens. Additive synthesis of a soprano [o:] vowel sound with
a 200 Hz fundamental becomes hence as easy as:
{Formants(200, Vowel(\o, \soprano))}.play.

In order to make the sound more lively and dynamic, there
are the arguments freqMods, ampMods, widthMods, which are by
default set to 1. Each of these arguments can be either a single
modulator such as a SinOsc.kr with an appropriate offset, which is
then uniformly applied to all 5 formants, or it can be an array of
modulators thereby modulating each formant individually.

The last in the argument list is the flag unfold, which is as al-
ready mentioned by default set to false. This flag controls whether
the stack of Formant Ugens is summed up or returned as an array.
In those cases where the programmer wants to keep the vowel as
one auditory perceptual unit, it might be preferable to keep it false.
If set to true each Formant occupies its own synthesis channel and

further options to manipulate each Formant such as individual spa-
tialization are available.

3.2. BPFStack - pseudo UGen for substrative Synthesis

Whilst additive synthesis of a vowel sound leads already to rec-
ognizable sounds, even more natural results are usually achieved
with an independent source filter model. Here the source is typi-
cally modeling the larynx and the filters mimic the resonance of the
vocal tract assuming that the centre frequencies of the resonators
coincide with the formants. This formant synthesis is described in
Klatt [13].

Such a simple synthesis model can be realized with BPFStack
which is in its structure analog to Formants. As the name suggests
the basic Ugen of BPFStack is a band pass filter. The argument list
[in, vowel, freqMods, ampMods, widthMods, unfold] differs only
in the first argument. Unlike Formants where the first argument
baseFreq is a scalar base frequency, here in is the sound source
which is sent through the band pass filter stack.

BPFStack allows users to synthesize both, voiced and un-
voiced vowels, which depends on the sonic characteristic of the
in signal being either a pitched or unpitched source. An example
of a subtractive vowel synthesis with a pronounce fundamental at
200 Hz would be:
{BPFStack(Impulse.ar(200), Vowel(\a, \soprano))}.play.
Unvoiced vowel sounds can be realized as:
{BPFStack(WhiteNoise.ar(), Vowel(\a, \soprano))}.play.
The variation between these two sound features has already been
used as a salient parameter mapping dimension in vowel based
sonification in [6].

4. FURTHER WAYS TO USE THE SPECTRAL
ENVELOPE OF VOWELS

The additive and subtractive synthesis schemes from above are ef-
ficient options to generate sounds that are rich in their spectral dy-
namics. Using the method ampAt in combination with the Ugens
Klang / Klank and their time varying equivalents DynKlang / Dyn-
Klank gives even more flexible synthesis options, which are how-
ever computationally more expensive. In the sequel we will give
two examples, one for additive and one for subtractive synthesis.

4.1. ampAt with DynKlang: additive synthesis

DynKlang is a bank of sine oscillators, which is basically a wrap-
per around SinOsc UGens. The parameters of this oscillator-bank
can be dynamically set after launching the sound synthesis pro-
cess. The method ampAt allows to extract arrays of amplitudes for
arbitrary selections of frequencies. In Figure 6 for instance, we
show how two different effects can be dynamically changed: One
is the alternation of even and odd harmonics. The second effect is
the increasingly lowered transition steepness of the formants. The
convenience of using DynKlang is that the sum of the gain of all
oscillators can be easily limited by applying the method normal-
izeSum onto the amplitude array. The effect of this limitation in
gain can be also seen in Figure 6.

4.2. ampAt with DynKlank: substractive synthesis

When using a source filter model for vowel synthesis, the per-
ceived pitch is determined through the base frequency of the ex-

The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

Figure 6: spectrogram showing the alternation for even and odd
harmonics in the formants for [a :] tenor at 70 Hz together with a
decrease in the transition steepness of the formants

citatory signal. In sonic interaction design a new trend of aug-
mented auditory objects is currently emerging. In this recent ap-
proach naturally occurring interaction sounds with objects are used
as sound sources and additional information is imprinted into the
sound through filtering. A recent example by Bovermann et al. can
be found in [14]. As a result the pitch is already fixed through the
nature of the interaction sounds. Here the Ugen DynKlank comes
in handy, which is a resonator bank that can simulate the resonant
modes of an object. Similar to its additive equivalent DynKlang,
DynKlank takes an array of frequencies, amplitudes and ring-times
in order to configure its resonators. The frequency array gives the
possibility to influence the perceived pitch although the excitatory
signal has no pronounced pitch itself, such as in attack or friction
sounds. The spectrogram of the prototype of an auditory augmen-
tation using surface friction as sound source is shown in Figure
7.

Figure 7: spectrogram for the auditory augmentation of interaction
sounds [a :]bass, [i :]bass, [o :]counter tenor at 50 − 150 Hz.
The slow transition between the frequencies leads to the glissando
like structures in the spectrogram

5. USING THE PSEUDO UGENS AS SYNTHESIS NODES
ON THE SERVER

Often in sonification applications, the SC server is used without
sclang. This is of particular interest for the port of the SC server
to mobile platforms. Hence it is desirable to be able to include
many vowel related parameters and methods to manipulate them
in a SynthDef. This means that the sound design can be conve-
niently made in SC, but the actual application only requires the
compiled SynthDef to be invoked on the server. One or several
vowels can for instance be instantiated by the constructor or the
compose method within a SynthDef without problems. Also the
methods for blending Vowels, as well as the methods that brighten
Vowels can be used within SynthDef, i.e. they do not contain any

flow control statements that would not be properly executed after
compilation.

However, if the programmers wishes to take advantage of
sclang there is the convenient method addControls that allows to
create control busses within the SynthDef. These buses can later be
conveniently set by sending to a Vowel the asKeyValuePair mes-
sage in order to correctly distribute the data structure of a Vowel to
the created control busses.

6. SAMPLE SONIFICATION APPLICATIONS

6.1. One to many mapping

The following example shows a prototype of a one to many map-
ping approach [8]. We chose as dataset for sonification the z time
series of the Roessler system.[15] This prototype of a nonlinear
dynamical system exhibits chaotic behavior i.e. small deviations
grow into exponentially deviating trajectories. Hence it is of inter-
est to make even small variations noticeable on the display at any
range they occur.

The z variable of this system gives a spiking time-series,
which poses a particular challenge for the parameter mapping. One
solution is to chose a logarithmic scale. Additionally a one to many
mapping can be used to make deviations stand out in different am-
plitude ranges. This saliency over a wide range is particularly im-
portant for the given dataset when looking at the distribution of
this spiking time series:
10 % of the data-points are found in the lower 0.015% range of
the amplitude.
50 % are in the lower 0.037% of the amplitude range.
90% of the data points are within the lower 2.5 % range of the
amplitude.

We applied the following mapping scheme on the logarithmic
data in order to control synthesis of a Vowel using the BPFStack:

• the 0 to 30 percentile is mapped to an ∆ gain of 90 dB.
• the 20 to 50 percentile fades between unvoiced and voiced.
• the 40 to 70 percentile blends between the vowels a and i.
• the 60 to 90 percentile change the pitch from 82 to 116 Hz.
• the 80 to 100 percentile brightens the vowel.

All ranges overlap so that the evolution of the different sound
parameters build a single sound stream. The spectrogram in Figure
8, shows the mapping strategy: The transition between unvoiced
and voiced is visible as repeatedly emerging partials. The tran-
sition between the vowels can be best seen in the changing first
formant. The pitch variation corresponds to the changing location
of the partials and the brightening of the sound lifts the gain of the
higher partials.

The realization of this mapping was straight forward using the
methods of the Vowel class. One interesting aspect of this mapping
strategy is that the mapping range of of all parameters in the sound
domain can be kept small but the perceived sum of all effects yields
a highly differentiable result.

6.2. Vocagram, A sonogram with Vowels

The second sonification which we developed based on vowel syn-
thesis is a data-sonogram. Data-sonograms belong to the category
of model based sonifications, but apart from the data preparation
step it can be implemented as a parameter mapping scheme. This is

The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

Figure 8: spectrogram showing the described one to many map-
ping, on top there is the logarithmic time series of the z variable
scaled between 0 and 1.

why data sonograms offer the possibility to combine model based
sonification with perceptual based mapping by using the vowel
timbre space. In Figure 9 you find a screenshot of the GUI from
the data-sonogram,

On the left you see the data
vocagram as implemented with
vowel synthesis. A 2D Slider
allows to chose any position
within the dataset. Triggering
the mouse button releases the
virtual shock-wave and plays
the sounds of each data point,
when they are ”hit” by the
wave. The different colors
indicate the categories of the
data-points.

Figure 9: GUI from the data-vocagram.

The three categories from the dataset correspond to the vowels
[a :] blue, [o :] black, [i :] red. The position of each datapoint
relative to the position of the virtual shock-wave was played back
in the stereo panorama.

Figure 10: Combined spectrogram of the stereo channels show-
ing the sounds of different triggered shockwaves triggered in the
vocagram.

In Figure 10 there is a spectrogram of the sounds of several
subsequent explorations of the dataset. The spectrogram shows the
different sonic characteristics that correspond to the different data
clusters. Distance is additionally mapped to pitch, as the glissandi
like movement of the harmonics shows. In most positions within

the the dataset where the shockwave is triggered all three data-
clusters and their position relative to the epicenter of the shock-
wave can be well identified.

7. CONCLUSION

We have presented building blocks for vowel synthesis in the
sound synthesis environment SC. As several synthesis examples
and two sonification applications have demonstrated, these build-
ing blocks allow for an efficient and yet flexible sound design
of complex evolutions of timbre by manipulating the spectral en-
velops. These building-blocks for vowel synthesis are released as
SC quarks. We believe that this work provides a flexible interface
for the manipulation of the commonly shared sonic experience of
a vowel sound and hope it helps to increase interchangeability and
collaborative improvements of vowel based sonifications.

8. ACKNOWLEDGMENT

Special thanks to Alberto DeCampo and Julian Rohrhuber for
stimulating discussions and ideas.

9. REFERENCES

[1] M. Rath and D. Rocchesso, “Continuous sonic feedback
from a rolling ball,” IEEE Interactive Sonification, 2005.

[2] M. Rath and R. Schleicher, “On the relevance of auditory
feedback for quality of control in a balancing task,” ACTA
ACUSTICA UNITED WITH ACUSTICA, vol. 94, pp. 12 –
20, 2008.

[3] M. Lagrange, G. Scavone, and P. Depalle, “Time-domain
analysis / synthesis of the excitation signal in a source
/ filter model of contact sounds,” in Proceedings of the
14th International Conference on Auditory Display, Paris,
France, 2008, inproceedings. [Online]. Available: http://
www.icad.org/Proceedings/2008/LagrangeScavone2008.pdf

[4] O. Ben-Tal, J. Berger, B. Cook, M. Daniels, and G. Scavone,
“Sonart: The sonification application research toolbox,” in
Proceedings of the 8th International Conference on Auditory
Display (ICAD2002), R. Nakatsu and H. Kawahara,
Eds. Kyoto, Japan: Advanced Telecommunications
Research Institute (ATR), Kyoto, Japan, July 2-5 2002.
[Online]. Available: http://www.icad.org/Proceedings/2002/
BenTalBerger2002.pdf

[5] R. J. Cassidy, J. Berger, K. Lee, M. Maggioni, and R. R.
Coifman, “Auditory display of hyperspectral colon tissue
images using vocal synthesis models,” in Proceedings of
the 10th International Conference on Auditory Display
(ICAD2004), S. Barrass and P. Vickers, Eds., Sydney,
Australia, 2004. [Online]. Available: http://www.icad.org/
Proceedings/2004/CassidyBerger2004.pdf

[6] T. Hermann, G. Baier, U. Stephani, and H. Ritter, “Vo-
cal sonification of pathologic EEG features,” in Proceedings
of the 12th International Conference on Auditory Display,
T. Stockman, Ed., International Community for Auditory
Display (ICAD). London, UK: Department of Computer
Science, Queen Mary, University of London UK, 06 2006,
pp. 158–163.

http: //www.icad.org/Proceedings/2008/LagrangeScavone2008.pdf
http: //www.icad.org/Proceedings/2008/LagrangeScavone2008.pdf
http://www.icad.org/Proceedings/2002/BenTalBerger2002.pdf
http://www.icad.org/Proceedings/2002/BenTalBerger2002.pdf
http: //www.icad.org/Proceedings/2004/CassidyBerger2004.pdf
http: //www.icad.org/Proceedings/2004/CassidyBerger2004.pdf

The 17th International Conference on Auditory Display (ICAD-2011) June 20-24, 2011, Budapest, Hungary

[7] M. Kleiman-Weiner and J. Berger, “The sound of one arm
swinging: A model for multidimensional auditory display of
physical motion,” in Proceedings of the 12th International
Conference on Auditory Display (ICAD2006), T. Stockman,
L. Valgerur Nickerson, C. Frauenberger, A. D. N. Edwards,
and D. Brock, Eds. London, UK: Department of Computer
Science, Queen Mary, University of London, UK, 2006,
pp. 278–280. [Online]. Available: http://www.icad.org/
Proceedings/2006/KleimanWeinerBerger2006.pdf

[8] G. Kramer, Auditory Display: Sonification, Audification, and
Auditory Interfaces. Perseus Publishing, 1993.

[9] T. Hermann and H. Ritter, “Listen to your data: Model-
based sonification for data analysis,” in Advances in intel-
ligent computing and multimedia systems, G. E. Lasker, Ed.
Baden-Baden, Germany: Int. Inst. for Advanced Studies in
System research and cybernetics, 08 1999, pp. 189–194.

[10] T. Hermann, G. Baier, U. Stephani, and H. Ritter, “Kernel
regression mapping for vocal eeg sonification,” in Pro-
ceedings of the 14th International Conference on Auditory
Display. Paris, France: International Conference on Audi-
tory Display, 2008, inproceedings. [Online]. Available: http:
//www.icad.org/Proceedings/2008/HermannBaier2008.pdf

[11] A. deCampo, C. Frauenberger, and R. Höldrich, “Designing
a generalized sonification environment,” in Proceedings of
10th Meeting of the International Conference on Auditory
Display. ICAD, 2004.

[12] G. Fant, Acoustic Theory of Speech Production. Mouton:
The Hague, 1960.

[13] D. Klatt, “Software for a cascade/parallel formant synthe-
sizer,” Journal of the Acoustical Society of America, vol. 67,
no. 3, pp. 971–995, March 1980.

[14] T. Bovermann, R. Tünnermann, and T. Hermann, “Auditory
augmentation,” International Journal of Ambient Computing
and Intelligence (IJACI), vol. 2, no. 2, pp. 27–41, 2010.

[15] O. E. Roessler, “An equation for continuous chaos,” Physics
Letters A, vol. 57, no. 5, pp. 397–398, 1976.

http: //www.icad.org/Proceedings/2006/KleimanWeinerBerger2006.pdf
http: //www.icad.org/Proceedings/2006/KleimanWeinerBerger2006.pdf
http://www.icad.org/Proceedings/2008/HermannBaier2008.pdf
http://www.icad.org/Proceedings/2008/HermannBaier2008.pdf

	 Introduction
	 Why do we need a new tool?

	 The Class Vowel
	 The Formant Library
	 The Instance of a Vowel
	 Controlling the Sound of a Vowel
	 Methods that Return the Formant Data

	 The auxiliary Pseudo UGens
	 Formants: pseudo UGen for additive Synthesis
	 BPFStack - pseudo UGen for substrative Synthesis

	 Further Ways to Use the Spectral envelope of Vowels
	 ampAt with DynKlang: additive synthesis
	 ampAt with DynKlank: substractive synthesis

	 Using the Pseudo Ugens as Synthesis Nodes on the Server
	 Sample Sonification Applications
	 One to many mapping
	 Vocagram, A sonogram with Vowels

	 CONCLUSION
	 ACKNOWLEDGMENT
	 References

