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Abstract
Dynamic substructuring is a technique to simplify the analysis of complex structures. The vibrational problems of the
constituent substructures are analysed and solved individually and their solutions are then assembled to form the global
solution. In experimental dynamic substructuring, at least one of the constituent substructures is identified experimentally.
The coupling interfaces are commonly simplified in such syntheses, which can result in poor prediction quality in many
applications. The transmission simulator was introduced to address this problem. Transmission simulators are well-modelled
parts attached to the interface of the substructures to be coupled. This allows for distributed interfaces and a relaxation
of the coupling conditions by using the transmission simulator’s analytical modes as a basis for the coupling equations,
at the cost of adding a decoupling step to the substructuring problem. In this paper, the transmission simulator method is
translated to the state-space substructuring domain. The methodology is applied to the Society for Experimental Mechanics’
substructuring focus group’s Ampair A600 test bed in form of experimental-analytical substructuring. The Ampair wind
turbine’s hub is used as the transmission simulator and is modelled with finite elements while the three blades, individually
attached to the real hub, are experimentally identified. The three experimental blade hub systems are then coupled and two
finite element hubs decoupled from the system, using the derived method. Finally, this system is compared to a directly
measured hub with three blades by means of frequency response functions and modal properties.

Keywords Dynamic substructuring · Transmission simulator · State-space coupling · Experimental dynamics ·
Ampair wind turbine

Introduction

During the development of many complex products, such as
those found in the automotive, aerospace and energy indus-
tries, dynamical properties must be assessed to prevent user
discomfort or dangerous operation conditions. The finite
element (FE) method [5] is commonly used to perform the
necessary analyses. In many situations the full system under
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consideration is too complex to be analysed as a single
component. In such situations dynamic substructuring tech-
niques can be used. Many benefits follow from this strat-
egy, such as simple parallelisation and efficient modelling
of identical parts [16, 43]. Further, it allows combining
experimentally identified models with models derived from
first principles (such as FE models, also referred to as
analytical models in this paper), which is especially use-
ful when some parts are hard to model or when no model
exists.

Dynamic substructuring has been mostly applied to
FE models, while successful results of experimental
substructuring are scarce in literature, see [16]. The most
commonly used experimental substructuring techniques to
date are the component mode synthesis (CMS) (see e.g.
[16]) and frequency based substructuring (FBS) methods.
The most common FBS method is the admittance coupling
method proposed by Jetmundsen et al. [13]. Su and Juang
[41] introduced a different approach using first-order state-
space systems. A similar approach was also taken by
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Sjövall and Abrahamsson [39], later used and elaborated by
Liljerehn, see [18].

The advantage of coupling state-space models manifests
for experimental-analytical substructuring. Identifying a
model of the assembled structure, e.g from data after
performing FBS, is often more difficult as the dynamics
of larger structures can be more complex. An easier
approach to obtain a model of the assembled structure is to
identify models frommeasured data of the substructures and
apply state-space substructuring. One wide-spread method
to identify a model from experimental data is subspace
state-space system identification [20, 28, 42], e.g. N4SID
[26]. Therefore, a substructuring technique for this model
structure exploits the advantage of not having to transform
the identified model to an appropriate model form, i.e.
second order form for the CMS method.

It should be stressed that for the state-space synthesis
method introduced in [39] to succeed the identified state-
space systems must fulfil some physical constraints [39].
Therefore, due to noise and other imperfections in the exper-
imental data the system identification procedure must be
constrained in most situations, which is usually performed
in a post-processing procedure [17, 40]. Particularly, non-
passive state-space systems or systems that do not fulfil
Newton’s second law may cause unphysical coupling results
[19].

The synthesis of substructures in experimental or
experimental-analytical dynamic substructuring is problem-
atic since in general not all degrees of freedom (DOFs)
at the coupling interface can be measured as would be
necessary to enforce strict compatibility. For some struc-
tures the connection points might not be accessible at all.
This results in approximate coupling conditions, which can
sometimes be very crude. The experimentally obtained data
as well as the identified models must be of very high qual-
ity if successful synthesis is to be achieved. Furthermore,
in experimental-analytical substructuring the experimen-
tally identified structures mode shape basis can be inad-
equate for coupling, as generally experimental modes are
obtained with free-free boundary conditions. To overcome
these drawbacks, the transmission simulator was introduced
for CMS by Allen et al. [4] and for FBS by Mayes et
al. [25]. The method works by attaching a well-modelled
additional structure, the transmission simulator, to the inter-
face region of the structure of interest. The coupled system
is then measured and an experimental model is identi-
fied from the acquired data. Thus, the interface region is
mass-loaded and excited such that a more suitable mode
shape basis can be obtained. This is because mass-loading
the interfaces causes the interface region to be excited in
a lower frequency region which (ideally) closely resem-
bles the coupling conditions for the true coupling. Hence,
the difficulty of measuring the rotations and forces at all

connection points is avoided [24], which is generally nec-
essary for coupling. The transmission simulator further-
more allows for joint properties to be included in the model
if the joints of the transmission simulator resemble the joints
of the system to be coupled. It is therefore advised to use
a part of the actual assembled system as a transmission sim-
ulator if possible [4]. A model of the system of interest is
obtained using an analytical model of the transmission sim-
ulator and removing its effect from the measured system
[4]. To this end, dynamic substructuring is used, but here the
measurement points on the transmission simulator are cou-
pled to exactly the same points of the negative, analytical
transmission simulator model. Thus, measuring the actual
connection points is avoided. The compatibility conditions
are fulfilled in a least-squares sense by the use of the modal
constraints for fixture and subsystem (MCFS) method sug-
gested by Allen et al. [4], and hence, MCFS is further also
capable to compensate for measurement errors. An alterna-
tive constraint formulation is the connection point (CPT)
method. CPT is not considered in this paper but has been
applied to state-space substructuring in [34].

One hindrance of the transmission simulator is the
occurrence of indefinite mass or stiffness matrices after
decoupling, which yields non-physical results [3]. Tech-
niques to overcome this problem were suggested by Mayes
et al. [23], namely the modal scale factor method and
added mass method. A new extension of the transmis-
sion simulator approach is the Craig-Bampton transmis-
sion simulator introduced by Kammer et al. [15], where
fixed interface modes are used instead of free-free mode
shapes. Alternative ideas to overcome the difficulties in
experimental-analytical substructuring without the use of a
transmission simulator have been proposed. One of them is
the virtual coupling point and equivalentmulti-point connec-
tion [36, 37] where translational measurements close to the
actual connection point are used. D’Ambrogio and Fregolent
suggested the extended and mixed interfaces for coupling
[7]. These methods have not been considered in this paper.

The transmission simulator approach to dynamic sub-
structuring has been used on the Society for Experimental
Mechanics’ (SEM) substructuring focus group’s benchmark
test-bed structure, the Ampair A600 wind turbine [22], in
previous studies. In [31] Roettgen and Mayes coupled one
blade to the hub three times to obtain a full rotor model
using the hub as transmission simulator, whereas in [32]
Rohe and Mayes coupled the rotor to the tower of the wind
turbine, again using the hub as transmission simulator. The
hub is a convenient transmission simulator since it is stiff
compared to the blades and can be modelled fairly easily.
Furthermore, the actual joints are used for connecting the
interfaces yielding a realistic interface excitation.

In this paper, which is based on the work found in [9–11,
34, 35], the transmission simulator approach is integrated
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into state-space substructuring to exploit their individual
advantages listed above for experimental substructuring.
The method is applied to state-space substructuring on
the Ampair A600 test-bed. First, the MCFS transmission
simulator method is translated into state-space. Thereafter
the substructuring task of Roettgen and Mayes [31] is
repeated. However, three different blades are measured in
order to account for spread of dynamic properties found
in the blades [11]. In Fig. 1 an overview of the coupling
methodology is shown. First, the blades labelled 852, 828
and 790 are attached to the hub one at a time. These one-
bladed hub configurations are measured and experimental
models identified using system identification. In assembling
the models, the FE representation of the hub transmission
simulator model is subtracted twice. Thus, the three-bladed
hub dubbed ”Assembly” (coupled) structure is obtained. For
validation the same three blades are assembled to the hub
simultaneously and measured. By comparing the frequency
response functions (FRFs) and modal properties the quality
of the assembled structure is evaluated. Furthermore, FRFs
obtained with state-space substructuring, CMS as well as FE
modelling will be compared.

The paper is structured as follows. In Section “Transmission
Simulator in the State-Space Domain” the theory of the
transmission simulator method in state-space is deri-
ved. In Section “Models” the experimental and finite ele-
ment models are presented. The results of the substructuring
are shown in Section “Substructuring Results” followed by a
discussion of the results in Section “Discussion”. The paper
is concluded in Section “Conclusion”. In Appendix A the
classical state-space synthesis theory is presented to clarify
some steps in the transmission simulator state-space method
and in Appendix B the theory behind the MCFS in the
modal domain from the paper of Allen et al. [4] is reiterated.

Transmission Simulator in the State-Space
Domain

The equations of motion of a linear time-invariant system of
some component (s) can be written on first order form as

ẋ(s)(t) = A(s)x(s)(t) + B(s)u(s)(t) (1a)

y(s)(t) = C(s)x(s)(t) (1b)

where A(s) ∈ R
n(s)×n(s)

, B(s) ∈ R
n(s)×n

(s)
u and C(s) ∈

R
n

(s)
y ×n(s)

represent the state, input and displacement output
matrices, respectively. Explicit time dependence will be
dropped for brevity from here on. Here x(s) ∈ R

n(s)×1 is

the state vector, u(s) ∈ R
n

(s)
u ×1 the system input vector

and y(s) ∈ R
n

(s)
y ×1 the system output vector. Note that for

both displacement and velocity outputs, the relation for the
feedthrough matrix D(s) = 0 holds since forces have a
direct influence on acceleration only, according to Newton’s
second law.

For a mechanical system modelled with FE, and with
q(s) ∈ R

m(s)×1 the physical DOF vector, the second order
differential equation can be rewritten to first order form with
the state vector

x(s) =
[

q(s)

q̇(s)

]
. (2)

It follows that n(s) = 2m(s). Then the state, input and output
matrices are

A(s) �
[

0(s) I (s)

−M−1(s)
K(s) −M−1(s)

V (s)

]
(3a)

B(s) �
[

0(s)

M−1(s)
P

(s)
u

]
(3b)

C(s) �
[

P
(s)
y 0(s)

]
(3c)

where M(s) ∈ R
m(s)×m(s)

, V (s) ∈ R
m(s)×m(s)

and
K(s) ∈ R

m(s)×m(s)
represent the mass, damping and stiffness

matrices, respectively. Furthermore, P (s)
u ∈ R

m(s)×nu
(s)

and
P

(s)
y ∈ R

ny
(s)×m(s)

indicate the input and output location

matrices, respectively, and I (s) ∈ R
m(s)×m(s)

is the identity
matrix.

Here the state-space synthesis method developed by
Sjövall and Abrahamsson [39] will be used. The method
is briefly restated in Appendix A. For reference the
transmission simulator for CMS is outlined in Appendix B.
In this section we will first show how to define a negative
state-space system. Then the MCFS transmission simulator
technique will be developed for the state-space synthesis. In
the subsequent, removing one structure from another will be
denoted subtraction or decoupling of a system.

Fig. 1 Three one-bladed hubs
are measured and coupled with
two negative FE transmission
simulators (TS)
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Negative State-Space System

To substract a known substructure with the given realisation
as in equation (3) from a known system it is possible to
use existing substructuring methods. A negative mechanical
system can be introduced through the negative mass −M(s),
damping −V (s) and stiffness −K(s) matrices, as shown in
[4]. A negative state-space system of the same form as in
equation (3) is then simply obtained as

A(s) =
[

0(s) I (s)

−(−M(s)
)−1

(
−K(s)−1

)
−(−M(s)

)−1
(
−V (s)−1

)
]
(4a)

=
[

0(s) I (s)

−M(s)−1
K(s)−1 −M(s)−1

V (s)−1

]
(4b)

B(s) =
[

0(s)

−M(s)−1
P

(s)
u

]
= −

[
0(s)

M(s)−1
P

(s)
u

]
(4c)

C(s) =
[

P
(s)
y 0(s)

]
. (4d)

It can be seen that only the input matrix B(s) is affected, i.e.
need to be made negative to make a system negative.

Modal Constraints for Fixture and Subsystem in
State-Space Domain

In the MCFS method the coupling is enforced by con-
straining the displacement of all points on the transmission
simulator of the total system to be equal to the motion of
the analytical transmission simulator model. The motion of
the transmission simulator of the total system is described
by y

(tot)
a ∈ R

na×1. The subscript a denotes the points on the
transmission simulator that have been measured. By trans-
forming the analytical, i.e. FE model, of the transmission
simulator to state-space form, one can identify the motion
of the same points, y(ts)

a ∈ R
na×1.

Direct coupling of the measurement points on the
transmission simulator is described by

ūa = u(tot)
a + u(ts)

a and ȳa = y(tot)
a = y(ts)

a . (5)

With MCFS, these constraints are fulfilled in a least-square
sense using the transmission simulator modal matrix �

(ts)
a ∈

R
na×mts , with mts the number of modes selected from the

transmission simulator model,

ūmod = �(ts)T
a u(tot)

a + �(ts)T
a u(ts)

a � u
(tot)
mod + u

(ts)
mod (6a)

ȳmod = y
(tot)
mod = y

(ts)
mod (6b)

y
(tot)
mod � �(ts)+

a y(tot)
a (6c)

y
(ts)
mod � �(ts)+

a y(ts)
a . (6d)

Here + denotes the Moore-Penrose pseudoinverse, and the
subscript mod indicates modal coordinates. It is assumed
that an FE model of the transmission simulator is available

and therefore the whole modal matrix �(ts) is easily obtai-
ned and �

(ts)
a is the subset of the modal matrix associated

with the measurement points on the transmission simulator.
Note that �(ts)

a must be full column rank.
The measured input and output vectors for the total and

transmission simulator systems, with (s) either (tot) or (ts),
are partitioned as

u(s) =
[

u
(s)
a

u
(s)
b

]
and y(s) =

[
y

(s)
a

y
(s)
b

]
. (7)

Here the subscript b denotes the body coordinates not used
in coupling. The partitioned input and output matrices are
then

B(s) =
[

B
(s)
a B

(s)
b

]
(8a)

C(s) =
[

C
(s)
a

C
(s)
b

]
. (8b)

Note also that the subscript a inC
(s)
a is here used specifically

to represent displacement outputs at the transmission
simulator DOFs a. Introducing the modal coordinates
from equation (6), the system inputs and outputs in
equation (7) are expressed as

u(s) =
[

�
(ts)+
a 0(s)

0(s) I (s)

]T [
u

(s)
mod

u
(s)
b

]
� R(s)Tû

(s) (9a)

y(s) =
[

�
(ts)+
a 0(s)

0(s) I (s)

]+ [
y

(s)
mod

y
(s)
b

]
� R(s)+ŷ

(s). (9b)

Decoupling in the State-Space Domain

With the transformed inputs and outputs, the model (s) is

ẋ(s) = A(s)x(s) + B(s)R(s)Tû
(s) (10a)

� A(s)x(s) + B̂
(s)

û
(s)

ŷ
(s) = R(s)C(s)x(s) (10b)

� Ĉx(s).

Note that for the (ts) system B̂
(ts)

is negative, see
Section “Negative State-Space System”. The system in
equation (10) is then transformed to coupling form using the
transformation

x̃(s) = T (s)x(s) =
⎡
⎢⎣

ẏ
(s)
mod

y
(s)
mod

x
(s)
b

⎤
⎥⎦ (11)

where T (s) is defined in Appendix A. Thereafter, by
coupling the negative system of the transmission simulator
model (ts) to the total system (tot) the influence of the
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transmission simulator is removed and the system of interest
is obtained. The final state-space system can be written

˙̄x = Āx̄ + B̄ū (12a)

ȳ = C̄x̄ (12b)

with the coupled state, input and output matrices and
vectors

Ā �

⎡
⎢⎢⎢⎣

Āvv Āvd Ā
(tot)
vb Ā

(ts)
vb

I 0 0 0
0 A

(tot)
bd A

(tot)
bb 0

0 A
(ts)
bd 0 A

(ts)
bb

⎤
⎥⎥⎥⎦ (13a)

B̄ �

⎡
⎢⎢⎢⎣

B̄vv B̄
(tot)
vb B̄

(ts)
vb

0 0 0
0 B

(tot)
bb 0

0 0 B
(ts)
bb

⎤
⎥⎥⎥⎦ (13b)

C̄ �

⎡
⎢⎣

0 I 0 0
C

(tot)
bv C

(tot)
bd C

(tot)
bb 0

C
(ts)
bv C

(ts)
bd 0 C

(ts)
bb

⎤
⎥⎦ (13c)

x̄ �
[

˙̄yT
mod ȳT

mod x
(tot)T

b x
(ts)T

b

]T
(13d)

ū �
[

ūT
mod ū

(tot)T

b ū
(ts)T

b

]T
(13e)

ȳ �
[

ȳT
mod y

(tot)T

b y
(ts)T

b

]T
. (13f)

The matrix partitions above are obtained as

K =
(
B(tot)

vv − B(ts)
vv

)−1
(14a)

Āvv = B(tot)
vv KA(ts)

vv − B(ts)
vv KA(tot)

vv (14b)

Āvd = B(tot)
vv KA

(ts)
vd − B(ts)

vv KA
(tot)
vd (14c)

Ā
(tot)
vb = −B(ts)

vv KA
(tot)
vb (14d)

Ā
(ts)
vb = B(tot)

vv KA
(ts)
vb (14e)

B̄vv = −B(tot)
vv KB(ts)

vv (14f)

B̄
(tot)
vb = −B(ts)

vv KB
(tot)
vb (14g)

B̄
(ts)
vb = −B(tot)

vv KB
(ts)
vb . (14h)

The subscripts d and v denote displacement and velocity,
respectively. This is further explained in more detail
in Appendix A, where the original state-space synthesis
algorithm from [39] is outlined. The non-coupling form

input matrix B̂
(ts)

and hence also the partitions B
(ts)
vv and

B
(ts)
vb are here considered positive and the minus sign is

therefore explicitly shown for clarity.
In cases when several copies of one substructure are

coupled, special care must be taken for the term B̄vv. In
general, state-space synthesis of two systems (tot), (ts)
can be shown to be equal to extracting the second-order
differential equation of each model and adding them [38].

If the total system will be coupled to kts copies of the
transmission simulator, this sum is

B(tot)−1

vv ÿ(tot)
c + ktsB

(ts)−1

vv ÿ(ts)
c

= B(tot)−1

vv

(
A(tot)

vv ẏ(tot)
c + A

(tot)
vd y(tot)

c + A
(tot)
vb y

(tot)
b

+ B(tot)
vv u(tot)

c + B
(tot)
vb u

(tot)
b

)

+ktsB
(ts)−1

vv

(
A(ts)

vv ẏ(ts)
c + A

(ts)
vd y(ts)

c + A
(ts)
vb y

(ts)
b

+B(ts)
vv u(ts)

c + B
(ts)
vb u

(ts)
b

)
. (15)

This is equal to dividing B
(ts)
vv by kts in equation (14). Yet,

as shown in equation (27) in Appendix B, several copies
of one system are expressed by only multiplying the mass,
stiffness, and damping parameters. The input matrix for the
forces remains equal. Therefore, the coupling conditions for
input and output (cf. Equation (19) in Appendix A) remain
also unmodified. To account for this, the definition of B̄vv

must change if one system is to be coupled multiple times

B̄vv = 1 + kts

kts
B(tot)

vv KB(ts)
vv . (16)

Models

In this section the FE models of the blade, bracket and hub
of an Ampair A600 wind turbine are presented. Further, the
models derived from vibration experiments are described
along with the system identification procedure used to
derive them.

Finite Element Models

In this paper three FE models are used for three different
components; hub, bracket and blade. Siemens FEMAP
v11.1.0 with NX Nastran has been used to model and solve
the FE models, respectively. The brackets attached to the
hub can be seen in Fig. 2. This is also the transmission
simulator used in this paper, in accordance with [31]. Details
on the FE models are given in Table 1. The density of
the hub and bracket FE models are chosen to represent
the mass of the weighted components to ensure that the
total mass of the models corresponds to that measured, see
Table 2. In cases with mounted bolts the density of the
bracket FE model is increased to ρ = 5000 kg/m3. The
FE models of the hub and brackets are further described in
Scheel [34] and Gibanica [9]. In Fig. 3 the FE model of
the blade is shown attached to the transmission simulator.
The outer composite layer of the blade was predominately
modelled using rectangular, with a few triangular elements.
The blade FE model was calibrated to a blade later subject
to destructive material testing by Johansson et al. [14],
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Fig. 2 FE model of the hub and
brackets (a) front view and (b)
rear view. The hub and brackets
system was also used as
transmission simulator in this
study. The marked positions
indicate sensor positions as
mounted in the experiments for
triaxial sensors on positions 1 to
9, marked with grey circles, and
uniaxial sensors on positions 11
to 19, marked with white circles

which also describes the material model in detail. The blade
model is not recalibrated towards any of the blades used
in this paper. It should be noted that Gibanica et al. [11]
showed that there exists a considerable spread between
the blades. The interfaces between the bracket and blade,
bracket and shaft, and shaft and hub are modelled as flexible
connections using the CWELD element.

In Fig. 3 the FE model of the blade attached to the
transmission simulator is shown. This model’s rigid body
modes are later used in the system identification step further
described in Section “System Identification Methodology”.
In Fig. 4 the fully assembled system is shown, i.e. the
assembly with hub, brackets and three blades.

Experimental Set-up

Four set-ups were measured. Each of the three blades was
measured with the hub attached (acting as transmission sim-
ulator) to gather data for identification of the experimentally
derived models to be coupled. Thereafter all three blades
were connected to the hub to acquire a true or reference
model to which the substructuring results are compared.
The hub was filled with epoxy to remove auxiliary system
dynamics from internal parts and the brackets were fixed
to the hub, see Gibanica [9] for further details. In the one-
bladed hub measurements each blade was assembled to its
specific bracket to replicate the full system configuration as

close as possible. The blades were assembled to the brack-
ets by bolts with a tightening torque of 21.69 Nm (16 lbf-ft)
according to the SEM focus group’s specifications [33].

The measurements were performed in a free-free
boundary configuration with the structures hung in long,
thin, high strength polyester lines. The lines were attached
to a supporting steel structure. The rigid body modes in each
experiment were thus well below the first flexible system
mode. The experimental configurations are shown in Fig. 5.

Triaxial PCB Piezotronic type 356A03 accelerometers
weighting 1 g and uniaxial PCB Piezotronic type PCB
352C22/NC accelerometers weighting 0.5 g were used in all
experiments. The fully assembled true systemwas measured
with 9 triaxial and 24 uniaxial accelerometers while the
three one-bladed hubs were measured with 10 triaxial and
25 uniaxial accelerometers. The total additional mass added
to the systems was 21 and 22.5 g, respectively, which
was considered negligible. The accelerometer positions for
the one-bladed hub are shown in Fig. 3 and for the fully
assembled system in Fig. 4.

Mayes and Arviso [24] show that the conditioning
of the transmission simulator mode shape matrix �

(ts)
a

is greatly influenced by the accelerometer locations on
the transmission simulator. Therefore, numerical models
were used to devise the best placement from the available
locations with respect to the mode shape matrix condition
number. Three triaxial accelerometers were placed on the

Table 1 Details of the FE model. For each component the element and material type is given as well as the number of elements, Young’s modulus
E in GPa and density ρ in kg/m3

Component Element # elements Material E ρ

Bracket, shaft with bolts 10-noded solid parabolic CTETRA 20126 linear elastic isotropic 200 5000

Bracket, shaft (without bolts) 10-noded solid parabolic CTETRA 20126 linear elastic isotropic 200 4050

Hub 10-noded solid parabolic CTETRA 11036 linear elastic isotropic 200 2095

Blade core 4-noded solid linear CTETRA 82577 linear elastic isotropic 1.67 818

Blade outer layer rectangular and triangular shell CQUAD4 and CTRIA 13320 linear elastic orthotropic 1.67 818
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Table 2 Measured masses, masses of the FE model and mass error
(%). The measurements were performed using a scale with a precision
of 0.1 g and the densities in the FE model calculated such that they
resemble the measured weights

Component Mass in kg FE mass in kg error

Hub [9, 34] 2.365 2.413 2.0

Bracket, shaft, averaged [9] 0.447 0.422 −5.7

Bracket, shaft, bolts [9] 0.513 0.521 1.6

front side of the bracket near the bolts, and three uniaxial
accelerometers at the same locations on the opposite side of
the bracket, as seen in Fig. 2. The accelerometer locations
on the blade for the one-bladed hub were chosen among
the locations used by Harvie and Avitabile [12], while the
accelerometer locations on the fully assembled system were
selected such that symmetry was preserved. Further details
regarding the accelerometer location selection can be found
in Scheel [34].

Shaker excitation was used as input for the experimen-
tal models used in this paper. The shaker was a The Modal
Shop Inc., type K2007E01 with a nylon stinger approxi-
mately 85 mm in length. The excitation force was measured
with a Brüel & Kjær force sensor type 8203 weighting 3.2 g
with an IEPE converter 2647B attached to the components
through a stinger attachment plate that was glued to the test
object. Impact testing was used to find the best input loca-
tions and assess the system’s reciprocity. For the fully
assembled system, locations 3, 6 and 9 were found to the
give best results, while for the one-bladed hub locations 1,
4 and 7 for systems 790, 828 and 852, respectively, were
found to produce the best results. Periodic chirp excitation
was used with different amplitude levels to determine the
linear range of the system. The data used in system iden-
tification was gathered with a stepped multisine excitation
using AbraDAQ [1] to minimise noise and hence obtain
good estimates of the antiresonances. Further details regard-
ing the measurement campaign can be found in Scheel [34].

System IdentificationMethodology

The state-space substructuring method relies on identified
first order models from experimental data. Here, system
identification is used to this end, see Ljung [19]. Specifi-
cally, in this paper a subspace state-space method has been
used, implemented in the MATLAB System Identification
Toolbox under the name N4SID and described in literature
by McKelvey et al. [26].

The identification procedure requires only the number
of system states to be provided by the user. This however
requires that great care is taken in understanding the exper-
imental system at hand. FE models can be used to guess an
initial system order, e.g. [17]. It must be stressed that the
correct model order is decisive for a successful substructur-
ing procedure. Furthermore, because only one input location
is used for each one-bladed hub the other connection points’
input must be estimated as coupling requires the input out-
put relation be known for all connection DOFs. From the
identified state-space model the input matrix B can be
populated for the missing inputs using modal data under
the assumption of reciprocity, through Maxwell-Betti’s
reciprocal theorem [8, 21, 29].

A drawback with the system identification procedure
(for substructuring that requires physical systems) is that
it does not necessarily estimate physically consistent
models. Stability can easily be enforced using MATLAB’s
System Identification Toolbox, but passivity and Newton’s
second law can be, and many times are, violated, in that
implementation. Synthesis of two non-passive state-space
systems can yield an unstable synthesised system [39],
shown in Gibanica [9]. A passive system is a system with
non-negative energy dissipation, indicating a non-negative
real part of the drive point FRF for linear reciprocal
systems, see Sjövall and Abrahamsson [39]. This implies
a phase between [−90◦, 90◦] for mobility data. Recently,
an approach to enforce passivity has been proposed by
Liljerehn and Abrahamsson [19] using the fact that the
receptance condition ensures the response at the drive
point to be in the direction of the excitation force. This

Fig. 3 FE model of the
one-bladed hub. The marked
positions indicate sensors as
mounted in the experiments for
triaxial sensors on positions 1 to
10, marked with grey circles,
and uniaxial sensors on
positions 11 to 35, marked with
white circles, of which 11 to 19
are located on the back side of
the brackets, see Fig. 2
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Fig. 4 FE model of the fully
assembled system. The marked
positions indicate sensors as
mounted in the experiments for
triaxial sensors on positions 1 to
9, marked with grey circles,
uniaxial sensors on positions 11
to 19 which are on the back side
of the brackets, see Fig. 2, and
uniaxial sensors on positions 20
to 34, marked with white circles

method is used in this paper. To ensure full physical
consistency of the identified models from experimental data
it is necessary to verify that Newton’s second law holds,
which need not be true due to measurement and truncation
errors. From Newton’s second law it is known that the
force is proportional to acceleration. No such relation exists
between force and velocity or displacement. Therefore, Dd

and Dv = CdB = 0 must hold, where subscripts d and v
denote displacements and velocities, respectively.

The three one-bladed hubs were identified in an identical
manner. First the influence from rigid body modes was

removed using an FE model of the one-bladed hub, seen
in Fig. 3. Then a model was identified from the stepped
multisine data with 7 modes in the frequency range 10
to 400 Hz for accelerance data. An additional mode was
included, located outside the 400 Hz range, to account for
high frequency residuals. Accelerometers 24, 27 and 31
for structure 790 and accelerometers 24, 26, 28 and 31 for
structure 828 and 852 were discarded from the identified
models due to unresolved deficiencies in the measurement
signals. Omitting the data from these sensors improved the
quality of the identified model. Reciprocity and passivity

Fig. 5 Experimental set-up
showing a the one-bladed hub
assembly (figure from [35]) and
b the fully assembled system
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Table 3 Identified modal
parameters, frequency f (Hz)
and modal damping ratio ξ

(%), for the first seven modes
of the one-bladed hubs used in
substructuring compared to the
parameters of the FE model.
Further, the frequency errors
�f (%) between the identified
models and the FE model are
shown

FE One-bladed hub 790 One-bladed hub 828 One-bladed hub 852

# f f �f ξ f �f ξ f �f ξ

1 30.32 33.11 9.2 1.34 31.38 3.6 1.33 31.51 4.0 1.50

2 89.72 87.57 −2.4 1.24 89.75 0.3 1.32 90.42 1.0 1.22

3 180.90 165.27 −8.6 1.71 164.89 −8.0 1.69 165.40 −7.8 1.59

4 191.46 190.72 −0.4 2.30 176.01 −8.0 4.84 178.87 −6.4 3.24

5 234.06 208.83 −10.8 1.68 199.36 −11.2 1.52 201.68 −10.2 1.48

6 330.78 300.84 −9.1 1.79 301.15 −8.1 2.35 302.01 −7.8 2.21

7 341.88 316.97 −7.3 1.89 318.16 −6.4 1.77 314.53 −7.4 1.48

was then enforced on mobility data. Newton’s second
law was verified on receptance data where it was found
that CdB was of order 10−4 m/N which was considered
good enough for the application at hand. Finally, rigid
body modes from the FE model of the one-bladed hub
were included in the identified state-space models. The
modal damping ratios for all rigid body modes were set to
ξ = 0.1% to prevent numerical issues.

Experimental Models

In Table 3 the resonance frequency f is shown for the first
seven modes of the three one-bladed hub structures along
with the modal damping ratio ξ and relative frequency error
�f between the FE model and the identified models. It can
be seen that the identified models differ considerably, and
that their difference to the FE model is also considerable.
The largest deviation is found for flexible mode five. It
should be repeated that the FE model of the blade was
calibrated towards another blade and that it is known that the
blades show a considerable spread in modal properties [11].

A representative FRF comparison from the system
identification of one-bladed hub 852 is presented in
Fig. 6(a). It can be seen that the identified model fit is good.
The other two one-bladed hubs produced similar results and
are not shown here, but can be found in Scheel [34]. To the

right of the same figure a modal assurance criterion (MAC)
[2] comparison between the identified model and the FE
model of the blade and hub system is shown. It can be seen
that the MAC value of the first four modes is above 0.9
which is considered good. The fifth mode is a combination
of a bending and an in-plane motion mode resulting in a
lower MAC value. From Table 3 it was also noted that this
mode’s resonance frequency deviated the most from the FE
model. Mode six and seven are fairly close in frequency
and show a cross correlation. For the two other blades
these modes were identified as a linear combination of the
FE modes. The last mode is not physical, but was added
to account for a high frequency residual, as mentioned
above.

A model of the fully assembled system was identified
for use as reference or true model. The identified model
can be seen in Fig. 7, and is seen to correspond well to
the experimental data. The MAC values are also shown
between the identified and the corresponding FE model. It
can be seen that they are fairly low for many modes. This
can be explained by the symmetry of the structure. Due to
the symmetry, the flexible modes can be sorted in groups
of three with at least two of them close in frequency (see
Table 4). If modes are close in frequency, the calculated
eigenvectors of the identified system span the subspace
associated with these modes, they can be arbitrarily rotated.

Fig. 6 FRF from the
measurement and the identified
model of the one-bladed hub
852 (a). Input at location 7 and
output at location 10, both in
out-of-plane direction as
visualized in the figure. The
MAC plot (b) compares the
identified flexible mode shapes
with the FE mode shapes
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Fig. 7 FRF from the
measurements and the identified
model of the three-bladed hub
(a). Input at location 3 in
out-of-plane direction and
output location 28 as visualized
in the figure. The MAC plot (b)
compares the identified flexible
mode shapes with the FE mode
shapes. The coloured frames are
connected to the angles between
the subspaces spanned by mode
shape groups

Thus, the identified mode shapes are approximately (close
to) a linear combination of the associated FE mode shape
vectors yielding low MAC values. To account for that,
the angle between the subspaces spanned by the identified
eigenvectors and the FE mode shapes is calculated for
modes close in frequency [6]. If the angle is close to
zero, the subspaces align well, and the corresponding mode
shapes replicate the same motion. In the subsequent MAC
plots, the squared cosine of the angle between the subspaces
is illustrated by a coloured frame. Note that the squared
cosine of the angle between subspaces spanned by only
one vector each is equal to the MAC value. Applying this
metric, it can be seen that the first 9 flexible modes correlate
well with the FE model. The identified parameters can be
found in Table 4. Note also that the FE modes in the table
are sorted, taking into account mode mix-up. Curiously,
the first FE resonance frequency match the measured

resonance perfectly even though the first resonance
frequency of all measured one-bladed hubs is higher than
in their corresponding FE model.

Substructuring Results

The presented method is applied to the Ampair A600 wind
turbine. It is of interest to know whether an experimental-
analytical modelling of the blade and hub system yields
better results compared to a complete FE model of the same
system where large uncertainties are associated with the
blade FE models.

The resulting FRF from the substructuring procedure
for one output channel can be seen in Fig. 8. The chosen
channel is representative for the substructuring results. The
experimentally identified model of the full assembly is

Table 4 Modal parameters,
frequency f (Hz) and modal
damping ratio ξ (%), of the
truth and the coupled systems
(substr) for the first five
flexible mode groups for the
three-bladed hub compared to
the FE model. The resonance
frequency and modal damping
errors �f (%) and �ξ (%),
respectively, between the
systems are also shown. The
FE modes are sorted to obtain
the highest MAC correlation
with the identified modes

FE true substr �f �ξ

f f ξ f ξ FE-true true-substr true-substr

22.91 22.91 0.80 24.57 1.05 0.0 7.24 31.02

30.34 30.69 0.85 30.96 1.37 1.2 0.89 62.21

30.34 31.57 0.89 31.94 1.35 4.1 1.17 50.78

83.01 71.34 1.23 75.62 1.05 −14.1 6.01 −14.36

83.02 72.71 1.10 78.04 1.14 −12.4 7.32 3.50

79.12 76.19 0.86 82.40 1.09 −3.7 8.15 26.70

134.52 110.62 1.39 118.57 1.43 −17.8 7.18 2.90

134.49 114.93 1.27 120.44 1.29 −14.5 4.80 1.32

176.45 163.46 1.03 168.23 1.52 −7.4 2.92 47.30

189.63 179.78 1.90 174.01 4.26 −5.2 −3.21 124.34

188.85 181.36 1.89 176.18 2.93 −4.0 −2.86 55.17

189.63 185.50 2.43 185.33 2.00 −2.2 −0.09 −17.59

205.45 198.12 1.24 195.41 1.80 −3.6 −1.36 44.93

205.45 200.24 1.42 199.40 1.75 −2.5 −0.42 23.11

246.91 221.58 1.37 212.91 2.33 −10.3 −3.91 69.69



Exp Tech (2019) 43:325–340 335

Fig. 8 FRF of the three-bladed
hub. Input/output location at 34
(cf. Fig. 4) as visualized in the
sketch

the reference, denoted true model. To compute the FRF
of the FE model, the modal damping ratios from the true
model are mapped in the FE model in this figure. Note
that substructuring results are shown both for state-space
coupling and CMS and that both methods yield the same
results. In Fig. 9 the MAC values are shown between
the true system and the substructured model. According
to the angle between the subspaces in the MAC plot, the
first nine flexible modes are well captured. In Table 4

the resonance frequencies and damping values are shown
as well as the associated errors. It can be seen that the
overall behaviour of the system is captured well. The first
nine resonance frequencies of the substructured system are
higher than for the the true system, and the damping is
clearly overestimated (up to 124% for mode 10). For the last
six modes the resonance frequencies of the substructured
system are lower compared to the true system. In general
however, the substructured model represents the true system

Fig. 9 The MAC plot shows a
comparison between the first
flexible mode shapes of the true
system and the state-space
substructuring results. The
coloured frames are connected
to the angles between the
subspaces spanned by mode
shape groups
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better than the nominal FE model for most modes, except
for modes 1 and 6. The same conclusion can be drawn
from investigating the FRFs in Fig. 8. Therefore, using
experimental models to build up the model of the assembled
structure produces better results compared to the FE model
in this case.

Discussion

In this section, possible sources of errors are identified and
potential improvements are suggested. As mentioned above,
passivity of the identified state-space models is crucial for
successful coupling. In this work the method of Liljerehn
and Abrahamsson [19] was used which enforces passivity
for each mode individually. This requirement is potentially
unnecessarily strict. Another method to constrain the
passivity has been proposed by McKelvey and Moheimani
[27] but was not considered here.

The first flexible mode of the transmission simulator is
above 1700 Hz. This is well above the frequency range of
interest in this paper. Therefore, the transmission simulator
is treated as rigid, yielding the condition number 1.9 of the
mode shape matrix �

(ts)
a used. An attempt was made using

also flexible modes of the transmission simulator but that
resulted in higher errors in the modal parameters. Adding
more modes to the transmission simulator representation
increased the condition number. In order to lower the con-
dition number, more sensors have to be included along with
more modes. However, this approach is limited by the num-
ber of sensors available. The condition number is believed
to be a possible, if difficult to evaluate, metric for the
applicability of the transmission simulator technique [24].
However, other effects may also have influenced the results
since the increase in the number was not substantial. Judg-
ing the quality of the transmission simulator modal matrix
is still an open question. Here we used the condition num-
ber as metric and the results obtained with this transmission
simulator model are promising. These results stem, how-
ever, from one application only and might not be universally
valid.

A visual inspection of the motion of the hub of the three
substructures and the hub itself (transmission simulator)
can give valuable information about the fulfilment of the
constraint equations, see [32]. If the constraint equations
are completely fulfilled, no difference in motion should be
present between the models. In the CMS method it was
found that for low frequency flexible modes the motion
of some sensors differed, which can stem either from the
modal relaxation of the constraints or from measurement
errors. This inspection is possible in CMS since the modal
coordinates used for coupling can be transformed back to
physical coordinates. Thus far, the same inspection cannot

be performed with the state-space synthesis technique as in
the transformation to modal coordinates, it is assumed that
all modal coordinates are exactly equal. After coupling, the
physical motion can no longer be deduced in a direct way.

Other possible sources of errors include the measurement
set-up. The sensor locations on the hub were mounted on the
brackets as this enables excitation and measurement in the
same direction due to the plane surface. This choice entails
measuring closer to the joints even though it is known that
the bolted joints introduce nonlinearities [30]. Hence, such
effects might become more apparent in the chosen experi-
mental set-up. It was found that the stinger resonance has no
influence in the frequency range of interest. Above 400 Hz,
pronounced differences in the measurements were found
which could be due to resonances in the suspension or
slight misalignments of the stinger, see [34, 35] for more
details. In total eleven sensors, listed in Section “System
Identification Methodology”, turned out to be defective and
were removed from the system identification procedure.
Repeating the measurement to achieve a full set of measured
points could possibly improve the substructuring results.

The identified models in this work are believed to
replicate the measurements well enough, as indicated by
the results. However, the absolute value of the error for
the first mode in the receptance FRF (used for coupling) is
larger than for the other modes due to larger displacements.
The rather high error in the substructuring results for the
first mode might be explained by this error since Liljerehn
and Abrahamsson [18] found that the peak height of the
identified FRF has a large influence on the substructuring
results. The high damping errors could be a sign of
an inappropriate damping model. The main source of
dissipation is likely to be in the joints, which is not
necessarily well represented by modal damping [31].

Conclusion

In this paper, the transmission simulator technique is
developed for use with the state-space substructuring
method. The interface is coupled using the MCFS
technique. The method is applied to the SEM substructuring
focus group’s Ampair A600 wind turbine test-bed. Three
blades are individually attached to the same hub and
measured, resulting in data from which models are
identified using system identification. These models are
then coupled with two negative transmission simulators, that
is negative representation of the FE model of the hub, to
arrive at a system with one hub and three blades. Results
from the coupled system are then compared to the measured
fully assembled three bladed hub system by comparing
FRFs and modal properties. Physical properties of the
identified models used for substructuring, such as passivity
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and adherence to Newton’s second law, are checked and
enforced where necessary. The overall substructuring results
correlate well with the true system, but the damping has
been overestimated. Moreover, the experimental-analytical
substructured model predicts the system’s behaviour better
than a nominal FE model of the full system.

The transmission simulator has successfully been applied
to the state-space synthesis method, and it has been shown
that CMS and state-space coupling produce the same
results. The results may be improved further with better
measurements, as the measurements are believed to be a
source of errors.
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Appendix A: State-space Synthesis

The derivation starts from a general state-space system.
For a derivation of the state-space synthesis in the general
formulation laid out by de Klerk et al. [16] see Gibanica [9]
and Gibanica et al. [10], which also allows for synthesis of
multiple substructures simultaneously. Here the states x(s)

are no longer directly related to physical coordinates but are
arbitrary, linear combinations of the physical coordinates.
However, the inputs and outputs are known and the input
and output vectors can be partitioned in coupling c and body
b inputs and outputs as

y(s) =
[

y
(s)
c

y
(s)
b

]
and u(s) =

[
u

(s)
c

u
(s)
b

]
. (17)

Then the state-space system can be written as

ẋ(s) = A(s)x(s) + B(s)u(s)

= A(s)x(s) +
[

B
(s)
c B

(s)
b

]
u(s) (18a)

y(s) =
[

C
(s)
d

C
(s)
b

]
x(s). (18b)

The subscript d in Cd stands for displacement at the
coupling DOFs. For synthesis of two substructures,
compatibility and force equilibrium must be enforced at the
coupling DOFs. For DOFs co-oriented and numbered in the
same order, the relation for input and response between the

uncoupled substructures, (1) and (2), and coupled system
can be written as

ūc = [
I I

] [
u

(1)
c

u
(2)
c

]
and

[
y

(1)
c

y
(2)
c

]
=

[
I

I

]
ȳc. (19)

Here ūc ∈ R
nc×1 and ȳc ∈ R

nc×1 denote the coupled input
and response, respectively, with nc indicating the number
of coupling DOFs. Before the systems can be coupled, the
state vector x is transformed such that the coupling DOFs
are represented by the displacement and velocity at the
interface, y(s)

c and ẏ
(s)
c . This transformation is defined as

x̃(s) = T (s)x(s) =
⎡
⎢⎣

ẏ
(s)
c

y
(s)
c

x
(s)
b

⎤
⎥⎦ (20)

and the new state-space representation, known as the
coupling form, is defined as

Ã
(s) � T (s)A(s)T (s)−1 =

⎡
⎢⎣

A(s)
vv A

(s)
vd A

(s)
vb

I (s) 0(s) 0(s)

0(s) A
(s)
bd A

(s)
bb

⎤
⎥⎦ (21a)

B̃
(s) � T (s)B(s) =

⎡
⎢⎣

B
(s)
vv B

(s)
vb

0(s) 0(s)

0(s) B
(s)
bb

⎤
⎥⎦ (21b)

C̃
(s) � C(s)T (s)−1 =

[
0(s) I (s) 0(s)

C
(s)
bv C

(s)
bd C

(s)
bb

]
, (21c)

where the subscript v stands for velocity at the coupling
DOFs. To couple two state-space models, equation (19) and
equation (21) is used to arrive at the synthesised system
⎡
⎢⎢⎣

¨̄yc˙̄yc

ẋ
(1)
b

ẋ
(2)
b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Āvv Āvd Ā
(1)
vb Ā

(2)
vb

I 0 0 0
0 A

(1)
bd A

(1)
bb 0

0 A
(2)
bd 0 A

(2)
bb

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

˙̄yc
ȳc

x
(1)
b

x
(2)
b

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

B̄vv B̄
(1)
vb B̄

(2)
vb

0 0 0
0 B

(1)
bb 0

0 0 B
(2)
bb

⎤
⎥⎥⎥⎦

⎡
⎢⎣

ūc

u
(1)
b

u
(2)
b

⎤
⎥⎦ (22a)

⎡
⎢⎣

ȳc

y
(1)
b

y
(2)
b

⎤
⎥⎦ =

⎡
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0 I 0 0
C

(1)
bv C

(1)
bd C

(1)
bb 0

C
(2)
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(2)
bd 0 C

(2)
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⎤
⎥⎦

⎡
⎢⎢⎣

˙̄yc˙̄yc

x
(1)
b

x
(2)
b

⎤
⎥⎥⎦ (22b)

with

K =
(
B(1)

vv + B(2)
vv

)−1
(23a)

Āvv = B(1)
vv KA(2)

vv + B(2)
vv KA(1)

vv (23b)

Āvd = B(1)
vv KA

(2)
vd + B(2)

vv KA
(1)
vd (23c)

Ā
(1)
vb = B(2)

vv KA
(1)
vb (23d)
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Ā
(2)
vb = B(1)

vv KA
(2)
vb (23e)

B̄vv = B(1)
vv KB(2)

vv (23f)

B̄
(1)
vb = B(2)

vv KB
(1)
vb (23g)

B̄
(2)
vb = B(1)

vv KB
(2)
vb . (23h)

The transformation matrix T (s) is found as follows. First,
the matrix

T
(s)
0 =

⎡
⎢⎣

C
(s)
d A(s)

C
(s)
d

T
(s)
0,3

⎤
⎥⎦ (24)

is defined, with T
(s)
0,3 being an arbitrary nullspace of B

(s)
c ,

T
(s)
0,3B

(s)
c = 0, such that T

(s)
0 is non-singular. The final

transformation is given by

T (s) =
⎡
⎢⎣

C
(s)
d A(s)

C
(s)
d

T
(s)
0,3

(
I (s) − A(s)Z

(s)
0,1C

(s)
d

)
⎤
⎥⎦ (25)

where

Z
(s)
0 = T

(s)
0

−1 �
[

Z
(s)
0,1 Z

(s)
0,2 Z

(s)
0,3

]
. (26)

Here the identity matrix I (s) ∈ R
n(s)×n(s)

, the transformation
matrix T (s) ∈ R

n(s)×n(s)
, partition T

(s)
0,3 ∈ R

n(s)−2nc×n(s)
and

Z
(s)
0,1 ∈ R

n(s)×nc .
Note that important prerequisites exist for using this

method. The systems used for the synthesis need to be
passive and physically consistent which must be ensured
during the system identification process. In addition, B

(s)
c

and C
(s)
d must have full row rank and full column rank,

respectively. The matrix B
(s)
vv = C

(s)
d A(s)B

(s)
c must be

full rank to compute its inverse which corresponds to the
interface inertia [38]. In [9, 10] Gibanica revealed numerical
difficulties of the state-space approach applied to a complex
structure, e.g. wind turbines, that stem from the choice of
the null space in the coupling form transformation. As a
remedy, all state-space systems will be diagonalised in this
paper before the transformation is performed.

Appendix B: Transmission Simulator

In this section, the concept of the transmission simulator
will be explained and decoupling of structures will be
derived for the CMS method following the paper of Allen
et al. [4]. The coupling constraint, modal constraints for
fixture and subsystem (MCFS), will also be explained.

In the modal domain, decoupling is achieved by adding
a system with negative modal mass, damping, and stiffness.
If the structure to be subtracted is denoted transmission

simulator (ts) and decoupled from the total system (tot),
the uncoupled block-diagonal form of both systems with kts
transmission simulator systems is[

M
(tot)
mod 0
0 −ktsM

(ts)
mod

][
η̈(tot)

η̈(ts)

]

+
[

V
(tot)
mod 0
0 −ktsV

(ts)
mod

][
η̇(tot)

η̇(ts)

]

+
[

K
(tot)
mod 0
0 −ktsK

(ts)
modd

][
η(tot)

η(ts)

]

=
[

f
(tot)
mod

f
(ts)
mod

]
. (27)

To circumvent the problem where the observation of
the connection points’ motion based on the measurement
points is insufficient, the MCFS method can be used. In the
MCFS method the coupling is enforced by constraining the
displacement of all points on the transmission simulator of
the total system q

(tot)
a ∈ R

na×1 to be equal to the motion of
the analytical transmission simulator model q

(ts)
a ∈ R

na×1

which is expressed as

q(ts)
a = q(tot)

a . (28)

Again, the subscript a denotes the points on the transmission
simulator that have been measured (na in number)
in the total system, i.e. q

(tot)
a . If more measurement

points than modes exist, some coupling conditions will
be redundant and may cause problems like lock-down
behaviour. Therefore, it is necessary to relax the constraints
and fulfil them in a least squares sense. This is done in terms
of the transmission simulator modal matrix �

(ts)
a ∈ R

na×mts ,
where mts denote the number of modes selected from the
transmission simulator model. The pseudo-inverse of the
modal matrix is multiplied to equation (28) such that

�(ts)+
a q(ts)

a = �(ts)+
a q(tot)

a . (29)

Note that the number of constraints equals the number of
modes in the representation of the transmission simulator and
that the mode shapes in �

(ts)
a must be linearly independent.

References

1. AbraDAQ: https://github.com/mgcth/abraDAQ. (visited on 2018-
05-24)

2. Allemang RJ, Brown DL (1982) A correlation coefficient for
modal vector analysis. In: Proceedings of the 1st IMAC

3. Allen MS, Kammer DC, Mayes RL (2012) Metrics for diagnosing
negative mass and stiffness when uncoupling experimental and
analytical substructures. J Sound Vib 331(25):5435–5448

4. Allen MS, Mayes RL, Bergman EJ (2010) Experimental modal
substructuring to couple and uncouple substructures with flexible
fixtures and multi-point connections. J Sound Vib 329(23):4891–
4906

https://github.com/mgcth/abraDAQ


Exp Tech (2019) 43:325–340 339

5. Bathe KJ (1982) Finite element procedures in engineering
analysis. Prentice Hall, Englewood Cliffs

6. Brincker R, Ventura C (2015) Introduction to operational modal
analysis. Wiley, Chichester

7. D’Ambrogio W, Fregolent A (2012) Direct hybrid formulation
for substructure decoupling. In: Topics in experimental dynamics
substructuring and wind turbine dynamics, volume 2, conference
proceedings of the society for experimental mechanics series.
Springer, New York, pp 89–107

8. Ewins DJ (2000) Modal testing: theory, practice and application,
2nd. Wiley-Blackwell, Philadelphia

9. Gibanica M (2013) Experimental-analytical dynamic substructur-
ing: a state-space approach. Master’s Thesis, Chalmers University
of Technology

10. Gibanica M, Johansson AT, Liljerehn A, Sjövall P, Abrahamsson
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