A4l UNIVERSITY
=zt OF TURKU

Design & Verification of Bus
Monitor in Debug and Trace sub-
system in Event Socket

MASTER’S THESIS

AUTHOR: RUPESH BASNET

DEPARTMENT OF FUTURE TECHNOLOGIES
UNIVERSITY OF TURKU, TURKU, FINLAND
SUPERVISORS:

DR. TOMI WESTERLUND, UNIVERSITY OF TURKU
KIMMO LAAKSONEN, NOKIA-FI/ESPOO

JARI LAHTINEN, NOKIA-FI/ESPOO

ABSTRACT

University of Turku

Department of Future Technologies

Rupesh Basnet: Design and Verification of bus monitor in Debug and Trace
Subsystem in Event Socket

Master’s Thesis, 78 pages + 23 pages appendices

Master’s Degree in Technology

August 2018

Keywords: Event Socket, bus monitor, event, trace, bus monitor, CoreSight,
Design, Verification

This thesis introduces the concept behind the Event Socket (ES) HW and debug
and trace architecture in ES, a hardware accelerator targeted for a baseband SoC.
The SoC handles the baseband layer 1 processing for multi-RAT (radio access
technology), both 4G (LTE) and 5GNR (new radio). The motivation behind ES boils
down to the bottleneck that Amdahl’s law infers. ES is essentially used for
dynamic load balancing among heterogenous set of processing engines such as
processors, DSPs, microcontrollers, ASIPS and other hardware accelerators.

The work done for this thesis involves the register transfer level (RTL)
implementation of the bus monitor in DTSS architecture and its verification. Bus
monitor unit in DTSS is non-trivial. It is responsible for capturing the transaction
non-invasively on the interfaces it is connected to and produce a trace input data
for ARM CoreSight architecture. Verification of a system design is critical. Pre-
silicon verification of an SoC ensures that the design works as per the
requirement. The verification in this work is based on UVM. The hardware
description language used for the work is VHDL. DTSS architecture in ES has bus
monitors to monitor the interfaces along with the standard ARM CoreSight
components like System Trace Macrocell and Embedded Trace FIFO.

The requirements include the features such as data capture, extraction, filtering
and AXI translation for the bus monitor. These features were verified against the
output from a reference model. In addition, register access was also verified. VIP
from the scratch was developed for the bus monitor functional verification while
for the register access, existing Nokia AXI VIP was used.

The DTSS in the event socket allows non-intrusive trace of the hardware events
inside the event socket thereby ensuring the correctness of the SW. In the SoC
level, ES debug and trace architecture is instantiated in DTSS sub-system of the
entire SoC.

ACKNOWLEDGEMENTS

I would first like to thank Event Socket lead, Kimmo Laaksonen for pointing me the
potential topic for my master’s thesis. It was only after his pointer that | thought of doing
my master’s thesis in this topic. Kimmo not only pointed me to the potential thesis topic
but also “rescued” my thesis work from the “storm” that swept all the colleagues
working in the Event Socket project to Beamer project. | am also grateful to my line
manager Jani Lemberg who let me continue my thesis work even during the “beamer
storm”.

| would also like to thank Jari Lahtinen, Debug and Trace sub-system lead for his support
and guidance during the project. Jari has made the technical details in the design simple
enough for me to understand and implement. | really appreciate his efforts.

Furthermore, | would like to extend my sincere appreciation and thanks to my thesis
supervisor from the University of Turku, Embedded Computing department, Dr. Tomi
Westerlund for accepting to be my thesis supervisor and also for the opportunity that
he provided me during the study period to carry out the summer internship in the
department.

It would not have been possible without the support of my beloved wife, Bhawana
Adhikari who stayed home and looked after our newly born amazing little boy, Ryan
Basnet. | am grateful that Ryan has come to our lives (May 2017) and since has always
been our source of inspiration.

Table of Contents

1. INTRODUCGTION ...ituuiiiitneiiinneieiienesiienessiessssmsnsssiesssssmssssssrssssssmssssssrsssssstsssssstssssssssnssssssnsssssanssssssnnsss 1
2. THEORETICAL BACKGROUND......cittuiiiiennieiieneiciiensieiiensieiisssieimsssieissnssstsssssssssnssessssssssssnssssssnsssssnsssssanne 4
2.1 BASEBAND L1 SoC
2.2 EVENT SOCKET ...eettteeeeeiitett et e e e ettt et e e e s ettt e e e e e se bttt e e eeeseanabateeeeeaesunbebeeeeeeesaassbbeaeeeesannnnnbeaeeeesannnnneen
2.2.1 EVENE MONGAGENcccuuuiiiiiiiiiiieeeeet ettt ettt sttt et e st e s et e s sste e e saaseessstnee s e 7
2.2.2 EVENT MANGGEN EIMIA ..ottt sttt e et et e e e eeeesebesesennnnnnnnsenennns 8
IR 0] =T 1Y Lo T4 Lo o = SRS 9
2.2.4 BUFFEr MIANGAQGEN EMAooeeeeeeeeeeeee ettt ettt e e ettt e et tte e e ettt e e et e e e e aaeaeatsaaaessseseenseaeesasenann 11
2.3 DEBUG AND TRACE SUB-SYSTEM IN EVENT SOCKET ..eeeuuitiiteeeeeeseiiitteeeeeeseiieteeeeeeseiinteeeeesesesnnreeeeeessesnnnnnes 12
2.3, BUS IMONIEON ..ttt ettt e ettt e e e e e sttt e e e e e s e e asbs e e e e e e eesasssaneaaseesaannes 13
2.3.1.1 Data Capture UNITeieeiieiiieie ettt ettt e e e ettt e e e e s ettt e e e e e s anb b e e e e e e sennnsneeeeeeesannrbeeeeeeaannrneeaeens 14
2.3.1.2 Extraction Unit
2.3.1.3 Filtering Unit
2.3.1.4 AXI Writer Unit
2.3.1.5Trace CONTIOI BIOCK c...uuviiiiiiei ittt ettt e e s st e e s sabe e e sabeeeesteeesnbbeessabaeessteesnnsne 16
2.3.2 ARM COI@SIGRL ...ttt ettt ettt ettt sate e st e st e s e st e a e 16
2.3.2.1 SyStem Trace IMACIOCEI]coiiiiieeiiie ettt et et e et e e e bt e e e e aaa e e seabee e e sbeeeensseeesabaeesassnaennnns 18
P2 B A g oT=Te Lo F=To B I ol o T LSS 19
2.3.2.3Trigger Components
2.3.2.4 TiMestamp COMPONENTSoiiiiiiiiiiiiie ittt et b e s s b a e e e sebe e e s bt e s s bae e s e baeessreeesanneessnnne
2.3.3 NIC-400 CrosS-Bar INTEICONNECTueeeeeeeeeeeeee et e e etttee e e e et ttttee e s e e e ettseeeseaasetasaeesaaaens
R R N Lo o Vo L=l [1 (=T g o Lo =2 OSSR
B B O Y 141 - ol T OSSPSR
2.3.4.2 Valid-ready handshake INTerfaceoceoriiiieiiieiieeeee ettt e
2.3.4.3 Hardware Event Observation INtErface......oucuui ittt e e s ste e
2.3.5 SOftWare INterfacescocuueecuveeecveeesciieeeeiieeeeiiseaesasenn

2.3.5.1 Debug Advanced Peripheral Bus (APB) Interface
2.3.5.2 Advanced Trace Bus Interface
2.4 VERIFICATION ENVIRONMENTcccernnneee
2.4.1 Sequence Item
2.4.2 Sequence..............
J G I Y =Jo 111 =J ¢ Lol = PP PP P PO P PO PP P POPPPOPPPPPPPPPPPRPPPPPPRt
28 DEIVEL ...ttt et e+ e et e e e e ettt a e e e ettt e e e e ettt et e e e ee e atneneaaeeeaaanaes
245 MIONTOL ettt ettt e e ettt e e e e e ettt e e e e e e ettt et e e e ee ettt neaeeeeaannes
2.4.6 SCOTEDOAI ...ttt ettt ettt et e e e ettt e e st e e st e e e s ubeeeesbbesesssaaeenasenens
B N A (1 (=1 o [ol -2 OO USSR
3. RELATED WORKS ...oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiiiiiisississsnes
3.1 OPEN EVENT IMACHINE . uittiteeteeseeiiiiteeeeessesuettteeeeesesastaneeesesssasssssaaesesssasssnseeasesssnssssssnaeeesssnsssssneeessssnnnn
3.2 NEXUS S00T ...ttt ettt et s et sse e s st e s e sr e e sme e e e s sa b et e s e s r et e s nnn e e s e b et e s e nr et e s nnneeesanreeeeas
3.3 DEBUG SUPPORT ARCHITECTURE ...ccuutteeeureresaureeesansteessureresasseeesanseeessaneeesanssesesansneessnsesesannsesesannneessanseesans
4, IMPLEMENTATION ...iiiiiiiiiiiiiiiiiniiinsisssnnes
4.1 DESIGN IMPLEMENTATION ...ttteeeutetesurteeesureeeesnusteesssseessseeesssssseesssseessasssesssssseesssssesssssseessssseeessssseessssees
4.1.1 Register Bank Generation
4.1.2 Data Capture Unit Implementation
4.1.3 Extraction Unit IMPlemMeENntalioNcccueeeeeecieeeeeeieieeeceeeeesee e ettt e e st aeesttaaesssteaesanseaeessenens
4.1.4 Filtering Unit IMPIEmMeENtaLiONc..eeeeeeeeeeeeeiiieeeeee e eeeeeeeseeeesetta e e saeaeesttaaessstaaesanseaessnsenans
4.1.5 AXI Writer IMPIlemeENtALION.oeeeueeeeeeieeeeeeeeeee e eetee e e te e e tta e e eaeaesstteaeessteeesanseaessnsenans
4.1.6 Trace Control BIock IMPlementationuueeeeeeeeeieiiieeeeeeeeciiieeee e e eessteea e e e eeescsranaraaeeeseans
4.2 VERIFICATION IMPLEMENTATION ...ttttturteeerutteeeaueeeessunseessseeeessuteeessssseesssssesssssseessnssesssssseeessseeessssseesssses
4.2.1 UVM Environment IMpPlemeENtQLiON..............c...uueeeeieeeeieiiiieeeeeeeeciiteeaaeeeessitseaaaaaeeessssasasaaeesssnans
4.2.1.1 REQGISTOI ACCESS TSt ..uuuuvuueuueesiuiuiassasasesstsssnnnnnns
4.2.1.2 Trace Control Block Test
4.2.1.3 Data Capture Unit Test.......
4.2.1.4 Extraction Unit Test
4.2.1.5 Filt@riNG UNIt TEST ceveeeeeeeeee ettt e e e ettt a e e e e e ettt aaaeeeessustsaaaaaeeeasisssssasaseeaanees

4.2.1.6 AXI WIEEE UNIE TEST ..uuvvvvveieiiiiiiieaeiieetettissstussnrsnnns 58
4.2.2 BuILD ENVIRONMENT SETUP .
5 RESULTS AND DISCUSSIONcovuuiiiiiiiiiinneniiiiiiimesnsssssssiimsssnnnes
5.1 DIRECTED TEST RESULTS veveveeevirrreeeeeneenens
5.1.1 Data Capture Unit Test Result
5.1.2 EXEraction UNit TSt RESUIT........cceecuveeeeeeeeeeeeeeeetee ettt ettt e e et ee e et e e e e taeaeesttaseeatseaeenseaaesasenans
5.1.3 Filtering Unit TESt RESUILcccueeeeueeeiiieiiteeeteee ettt sttt s e s e snee e
5.1.4 AXI Master Writer Test Result
5.1.5 Trace Control BIOCK TESt RESUITueeeeeeeeeeieieeeeeeeeeeetteee e e ettt a e e e e e ttaaa e e e e eessasasaaaaeeeaeans
5.2 UV M TEST RESULTS.ceieiiiiieieieieieeeeeteeeeeeee e ee et et et et e e et e e e e et et et e e et et e eeeete e et et et eeeaaeetetatesee et et eeatereeerereeerererererarereearens
5.2.1 REQGISTEI ACCESS TEST c.evvveveveieeiieietitiettetetttttetattaata ettt et ettt ettt ettt ettt s st seesae s et e teeeeseassansesnnnnnnnnnnnns
5.2.2 TraCe CONLIOl BIOCK TStccceveeeeeeeie et eee ettt e e ettt e ettt e e ettt e e e sttt e e eaaaaeatsaaaessseaesnseaaeansenann
5.2.3 DAtA CAPTUIE UNIT TOST ..vvvvvvvveviiiiiiiiiiiiiiititetttttttattaeaaeaeaetat ettt etea e e et et et e s aasseeesaaesesesesssesesnsnsnnnnnnnns
5.2.4 EXTraction UNit TESt RESUILceoeeeeeeeeeeeee ettt eeeetctteee e e e e ettt e e e e e e e sssaaaaaeeeesisssssesaseeesnnes
5.2.5 Filtering Unit Test Result
5.2.6 AXI WIILEE UNIt TESLT ..vvvvvvvveeeeeieieeieeataestttaststsssaasssassasssssasasssssssssssssssssssssssssssssssssssssnsssssssssssssssnsnnnrnns
6 CONCLUSION AND FURTHER DEVELOPMENTS
6.1 FURTHER DEVELOPMENTS ..eeiituttteeeeeeieiuetneeeesesasnsssseeesssassnssssesessssssssssssssssssssssssssessesssasssssssssessssssnssssssessssnnns
REFERENCES.......coiteeeeiiiiiiiieitnnieiiiiieennnsssessiseennnssssssssesennssssssssssssnnnssssssssssssnnssssssssssssnnssssssssssssnnnssssssssssnnnnes
APPENDICEScee i ciiiiiieieeecieiiitenneesseessssennssssssessssesnnssssssssssssnsssssssssssssnnsssssssssassnnssssssssssssnnnssssssssssannansssssssanes 1
APPENDIX 1: SIMULATION RESULTS FOR THE BUS MONITOR ON THE INTERFACE BETWEEN RX QUEUE AND EM............cuveeeeee. 1
APPENDIX 2: SIMULATION RESULTS FOR THE BUS MONITOR ON APC INTERFACEuuuvririeeeeeeiirreeeeeeeeesirreeeeeeeeseensnsneseens 5
APPENDIX 3: SIMULATION RESULTS FOR THE BUS MONITOR ON EM CREDIT INTERFACE....eceeeeeeruurrereeeeeeninrrrreeeeeessennsseseens
APPENDIX 4: SIMULATION RESULTS FOR THE BUS MONITOR ON BIM CREDIT INTERFACE ...vvvveeeeeereirrreeeeeeesenrnrneeeeessensnnnes
APPENDIX 5: SIMULATION RESULTS FOR THE BUS MONITOR ON ALLOCATION INTERFACE ...vvveeeereieurrrrreeseeesesnrssneeeessssnnnnnnes
APPENDIX 6: SIMULATION RESULTS FOR THE BUS MONITOR ON THE COMMAND INTERFACE

List of Tables

Table 1: Trace data fields [11].cccueeeeiiiiieiiieieec e e e e e e e srabbae e e e e e e eeeaasraeees 14
Table 2: Trace Control REGISTEr [11]....ii i iiieeciiiie ettt ere e e e e e e ta e e e e st e e e eearaeeesannaeeeas 40
Table 3: Address MapPiNGILL]ceiic ettt e e s e e st e e e s sabae e e esaseeeesnsraeeesansseeess 44

R o (SN R D =YY= T =T o o 5 R 45

List of Figures

Figure 1: Speedup vs NUMDEr Of PrOCESSOISuiiiicuiiieeiiiiie et erre et e e et e s s saae e e e eaaeee s 1
Figure 2: High-level view of @ baseband L1 SOC............oeiiiiiiiieiiiieecciee et e e s svee e e saaee e 5
Figure 3: Event Socket block diagramuvii i e 6
Figure 4: Event Manager block diagramooouuiiiiiiii e 8
Figure 5: RX/TX QUEUE ENLIY [2] eeiuiiiiicieeie ettt sttt ettt e te e te e st eeabeete e teestaesaaesabesabeenseeseessnas 8
Figure 6: EM EMA block diagram [8].....cciucuiiiiiiiiieiiciiie s eitee s siiee e sttt e s siee e ssvaee e ssaae e e ssnsaeaessnneee s 9
Figure 7: Buffer Manager block diagramoocviiiiiiiiiiiiie et 10
Figure 8: BM EMA blOCK diagram ...c.c.uiiiiiciieiiciiie ettt ettt e s e s e s s sabee e e s sabee e s s e 11
Figure 9: DTSS block diagram [L1].....uuiieiiiieeiiiiie ettt ettt sree e s ree e s abee e s s eabee e e s sabee e e ssnnes 12
Figure 10: Bus Monitor block diagrami......cueeeiiiiiiiciiieeccee ettt 13
Figure 11: CoreSight sub-system block diagram [11]......cccccviiiiiiiiiiiiiiee e 17
Figure 12: STM Inputs and OULPULS [13]....uuiiiiiiiiiieiiiiieeeciiee et esree e ssree e e e e s s sabee e e e sabee e e e snees 18
Figure 13: ETF Configuration [14] ..ottt ee e s bee s s abee e s eabee e s e sabee e e s ennees 19
Figure 14: BUrst W i AX oottt ettt e e et e e e e s s s s trae e e e e e s s sssanbeaaeeeesssnnannns 23
FIgure 15: BUIrST REAM AXI.....oiiiiiiieeeieeee ettt ettt e ettt e e e tte e e e et e e e e e aba e e e ennbeeeeenbaeesennseeeeennsens 23
Figure 16:Valid-ready interface timing diagramcccceeciieiiciiiie e e e 24
Figure 17: APB WIit€ @nd REAMcccccuiiiieeiiii ettt ettt ettt e e e te e e e aae e e e e atee e s e abae e e e nbeeeeeennes 25
Figure 18: UVM TeSTDENCNocc ettt e e et e e et e e e et ae e e e aree e e e ennes 27
FIZUIE 19: UVIM PRASES .oeeiiieeciiiee e ecittee e ettt e ettt e e e ettte e e ettt e e e attee e e eaataeesenstaeesanstaeasenbaeesennreeeeennsens 30
Figure 20: Data capture UNit I/O INtEIACEcueecvieeieeeceee ettt ettt e s 40
Figure 21: Sampling and data output state in DCU........ccocciiiiiiiiiee et 41
Figure 22: EXtraction Unit 1/O iNTEITACEeeeeuvieeiee ettt ettt ettt e eaee s 41
Figure 23: Extraction process timing diagram..........coccciiiiiee i icciire e sarrrre e e e e e enees 42
Figure 24: Filtering Unit 1/O INtEITACEeicvi ettt ettt ettt et e bee s aeesare b eae 42
Figure 25: Filtering process timing diagram..........cooocuiiiiiiiieiiciiiee e e 43
Figure 26: AXI WIIter [/O INTEITACE c..ccveiiiiiii ettt ettt ettt e r e e beebeesbe e sbeesaeesaveeareene 44
Figure 27: Trace Control BIOCK I/O INtEITACE.........coveiiecieciecre ettt ettt e 46
Figure 28: Bus Monitor Testbench Archit@CtUre.......cc.ueviiciiiiiiiiee e 47
Figure 29: Data Capture Unit teST SETUP «ivvvcuiiiiiiiiiieeiiireeee et e s siere e e e e s s s 52
Figure 30: Extraction Unit TEStDENCN....ccicuiiiiice e 55
Figure 31: Filtering Unit TESTDENCN c....vviiiieeecce e e 57
Figure 32: ModularMake [29]ueeiiciiieiiiiiee ettt ettt e e e s aee e s sabe e e e s abae e e s nbaeeeeabeeeessnsees 60
Figure 33: Directed test result for data capture Unit.......ccceeeeiiiiiicciee e 61
Figure 34: Directed test result for extraction UNitcccoueiiiiiiiie e 62
Figure 35: Directed test result for filtering UNnit............coooeiiii i 63
Figure 36: Directed test result for axi Master WIterccceiecciiieeccieee e e 63
Figure 37: Directed test result for trace control blocK..........cooiiiiiiiciiii i 64
Figure 38: Directed test for the bus MONItOroccviii e 65
Figure 39: Register ACCESS UVM tEST...ccciiiiiiii i, 66
Figure 40: Trace control bloCk UVM LSt........uuviiiiiiii et e e e e e e eaees 67
Figure 41: Data capture Unit UvmM test ..., 67
Figure 42: Extraction unit Uvm test. ..., 69
Figure 43: Screenshot of the reference queue and output queue for extraction unit.................... 70
Figure 44: Filtering Unit UVM TEST...ccuiiiii ettt e e s e ae e e e abee e e e aees 70

Figure 45: Screenshot of the reference queue and output queue for filtering unit........................ 71

Figure 46: AXI SIaVe iINTEITACE........iii ettt e e et e e e st te e e s e nbae e e eareeeeeennees
Figure 47: Screenshot of the reference queue and output queue for AXI writer unit
Figure 48: DTSS iN SOC-IEVENuviiieiee ettt e et e et bee e e et ae e e e abe e e e e nnes

List of Abbreviations

ES - Event Socket

IP - Intellectual Property

SoC - System on Chip

LTE - Long Term Evolution

NR - New Radio

PCB - Printed Circuit Board

DTSS - Debug and Trace Sub-system
CPU-SS - CPU sub-system

DL/UL - Downlink/Uplink

PE- Processing Engine

L1/L2 - Layer 1 and 2 in 4G/5G protocol stack
EM - Event Manager

EMA - Event Machine Adapter

BM EMA - Buffer Manager EMA
AXI - Advanced Extensible Interface
RX - Receive

TX - Transmit(send)

HW - Hardware

SW - Software

STM - System Trace Macrocell

ETF - Embedded Trace Fifo

CTI- Cross Trigger Interface

DAP - Debug Access Port

TPIU - Trace Port Interface Unit
ETB- Embedded trace buffer

SWO- Serial Wire Output

TMC - Trace Memory Controller

FIFO - First in First Out

CTI - Cross Trigger Interface

CTM - Cross Trigger Matrix

AMBA - Advanced Microcontroller Bus Architecture
AHB - AMBA High Performance Bus

HEOI - Hardware Event Observation Interface
APB - Advanced Peripheral Bus

ATB - Advanced Trace Bus

UVM - Universal Verification Methodology
DPI - Direct Programming nterface

OpenEM - Open Event Machine

ODP - Open Data Plane

API - Application Programming Interface

OS - Operating System

NUMA - Non-uniform Memory Access

JTAG - Joint Test Action Group

10 - Input/Output

EDA - Electronic Design Automation

DUT - Design Under Test

RAL - Register Abstraction Layer

Chapter 1

1. Introduction

The speedup of any system is a relative measure of its performance. Performance is
generally based on either the latency or the throughput of the system. Speedup, to
certain extent, could be achieved by parallelizing the algorithm and increasing the
number of available cores. However, it does not hold true as the number of processing
cores keep increasing. In fact, it is such that the serial bottleneck in the algorithm

ultimately confines the overall speedup. Figure 1 below conveys the idea well.

20 T[T T o= e———— T —
—
///
18
e ars ti
Vs Parallel portion
16 7 50%
B Y A B B T ERELE 75%
14 / —— 90%

/ —— 959

12

10

Speedup

<) =) =)
=1 w; —
— o v,

3
64
024
2048
4096
8192

16384
32768
65536

Number of processors

Figure 1: Speedup vs Number of processors [1]

As shown in Figure 1, speedup scales well with the parallelized algorithm as the
number of processors increase but ultimately it is the serial nature of the algorithm
that is the bottleneck. The idea that the serial nature of the algorithm being critical in
determining the overall speedup of the system was put forth in 1967 by computer

scientist Gene Amdahl and it is popularly known as Amdahl’s law [1].

Chapter 1: Introduction

ES IP [2] tries to address the issue put forth by Amdahl’s law by extending the support
to offload the event processing and memory management to hardware thereby
reducing the software load. ES implements the hardware acceleration logic for event
processing which will be instantiated in SoC level. The job of the ES is to dynamically
distribute the loads among the PEs such that the speedup tends to be linear with the
number of available processing cores. The SoC that uses the ES IP is essentially L1 SoC

[4] that handles baseband processing for 4G LTE and 5G NR.

Unlike PCBs, the observability and visibility of communication paths and interfaces in
an SoC is internal to the device thereby making it impossible for external
instrumentation tools to probe the communication paths. Increasing clock frequency
and multi-core approach exacerbate the situation. The lack of monitoring mechanism
makes it difficult to track down the bugs and hence increase the development time
and consequently loose the consumer confidence as the system becomes less reliable.
In [3], it is mentioned that about 77 % of electronic failures in automobiles stem from
the software. Thus, a built-in debug and trace infrastructure is a must. Debug and
Trace architecture in any design allows the programmer to trace the program

execution thereby allowing them to debug their programs.

DTSS in ES makes it possible to keep track of data plane application program execution.
DTSS inside ES IP is an architecture that allows the non-intrusive tracing of hardware
events in the ES. DTSS in the ES is integrated to the Design and Trace sub-system on
the SoC level which is the architecture responsible of debug and trace of the entire
SoC. DTSS in ES is realized with ARM CoreSight. From onwards, it is advised to
understand that DTSS refers to debug and trace infrastructure used in ES unless

explicitly stated otherwise.

This thesis is structured such that chapter 2 presents the theoretical background of
the design and a general overview of the UVM based verification environment;

Chapter 3 presents the related works; chapter 4 describes the implementation;

Chapter 1: Introduction

chapter 5 presents the results and chapter 6 presents the conclusion and future
development. The appendix section contains the simulation result other than the one

presented in chapter 5.

Chapter 2

2. Theoretical Background

The debug and trace sub-system architecture in ES is miniscule in comparison to the
design complexity of an entire L1 SoC yet it proves its non-triviality because of the fact
that it is a fundamental block in allowing programmers to keep track of their program
execution. This section tries to lay down the foundation for the readers to ultimately
have a high-level picture of the entire baseband processing system and realize the

scope of ES in a baseband SoC and in turn the scope of DTSS in ES.

The approach taken in this section of thesis is top to down. This section is structured
such that section 2.1 presents a high-level view of a typical baseband L1 SoC, section
2.2 presents the theory behind ES and realize the scope of ES in a baseband L1 SoC
and section 2.3 presents the DTSS in ES.

2.1 Baseband L1 SoC

The baseband L1 SoC [4] is responsible for baseband processing. The ES IP is targeted
as hardware acceleration module for the Baseband L1 SoC. The transaction (data
packet) coming from L2 is translated into events and put into the dedicated queues.
ES operates on these events to achieve dynamic load balancing among various PEs.
Figure 2 shows the high-level view of a Baseband L1 SoC and potential use case of ES

IP in the SoC level.

Chapter 2.1: Baseband L1 SoC

The assumption made as per the following figure is that the higher layer protocols are
handled by the CPU-SS (ARM cores) and Layer 1 is handled in the Baseband L1 SoC
which typically has DSP cores for processing. The SoC has a dedicated downlink and
uplink processing chain which does the heavy lifting of baseband processing. Albeit
the Baseband L1 SoC, to which the ES IP is targeted for, support multi-RAT technology
(LTE and 5GNR), the figure only shows a single DL/UL processing chain. The
consideration of dedicated processing chains for 4G LTE and 5G NR is left to the

reader’s discretion.

Baseband L1 SoC

DL/UL Processing Chain

L2 Connectivity

CPRI/
onthaul

L2 ox

CPU-SS

core

System ICN

Interconnect

L

Hw Event
Accelerator 0 Socket
DSP Core

Hw
Accelerator_1

5
@
o]
=
S
S
L

|
System |
ICN 7

|

Figure 2: High-level view of a baseband L1 SoC

Chapter 2.2: Event Socket

2.2 Event Socket

Event Socket (ES) [2] is a hardware accelerator intended to accelerate quadrature data
[5] (1Q) processing. The primary idea behind ES is to implement the open event
machine [6] functionality in hardware such that it does the heavy lifting of event
processing in hardware to achieve a better performance. When the software requests
a service, it is translated as an event and sent to the event queues. ES then operates
on these events to achieve a dynamic load balancing among the processing engines
(PEs). No event is tied to a particular PE rather the scheduling is done on the fly based

on the availability of the core thereby achieving dynamic load balancing.

ES is an IP used in SoC level used to achieve dynamic load balancing. PEs process the
input data and produce some output. These outputs are translated into events prior
to sending to other PEs. The software (data plane applications) pushes the events to
the dedicated local queues in ES HW. The events do not carry data payload with them
but only the pointer to the data payload. The job of the ES is to dynamically distribute
these events among various processing engines. Figure 3 shows the top-level view of

the ES hardware architecture.

Event Socket

Event Manager Buffer Manager
Event Machine Event Machine
Adapter Adapter

AXI Interconnect

Event Machine Event Machine Event Machine
Adapter Adapter Adapter
PE PE PE

Figure 3: Event Socket block diagram

Chapter 2.2: Event Socket

ES is built around four primary blocks; Event Manager (EM), Event Machine Adapter
(EMA), Event Timer (ET) and Buffer Manager. Event Timer module is not shown in
Figure 3 as the DTSS in ES does not generate any trace input packet out of the
transaction in ET and hence is out of the scope of this work. Each of these building
blocks has their own dedicated job in the event socket. The job of the event manager
is to distribute events to the processing engines. Buffer Manager is responsible for
dynamic memory management while event timer is responsible for generating timer
events. EMA implements the adapter logic and makes it possible to connect different

processing engines with the EM and Buffer Manager.

ES implements various AXI4 (master/slave) interface via which the communication
between the PEs and ES is possible. As shown in Figure 3, there is an AXI interconnect
between the PEs and ES which is used to write and read the transaction to and from

ES.

2.2.1 Event Manager

Event Manager [7] block is responsible for distributing events to PEs. It performs
dynamic load balancing and manages complex queue types. It has classifier, queue
manager and scheduler as its primary building sub-blocks. Classifier receives the
events from PEs via its local receive queues and pushes them to queue manager.
Queue manager looks after queues. Queue manager pushes the event to the
designated queues based on the event parameters such as scheduler group and
priority values. Scheduler distributes events to local RX queues in PE EMAs. Figure 4

below shows the functional units in event manager.

Chapter 2.2: Event Socket

From EM

-

- ToEM

Event Manager EMA
- Config

Interrupt
Scheduler o

Classifier - Queue Manager

v
Interrupt Interrupt

Figure 4: Event Manager block diagram

Event Manager has its own dedicated queues for RX and TX entries in the EMA. Event
Manager receives the entries from EMA RX queue and send the TX entries to the EMA
TX queue. The data structure model for the RX and TX entries is shown in Figure 5.
Only the fields of interest that will be used in DTSS are shown in the figure. Other fields

from the data structure is hidden intentionally because of the confidentiality issue.

| 7 e | s |4 | 2 | 2 | 1 | o

RX/TX Queue entry

Scheduler
Group

Sched. | Queue

Byte N e e EM Queue ID

Byte 8+N
Byte 16+N

Byte 24+N

Byte 32+N Event Pointer

Byte 40+N

Byte 48+N

Byte 56+N

Figure 5: RX/TX Queue Entry [2]

2.2.2 Event Manager EMA

EM EMA [8] is hardware block that connects PEs with the event manager. The primary
job of EM EMA is to receive the entries from PEs and queue them up for EM. These
entries are then forwarded to dedicated queues in the EM. EM EMA is also responsible
for writing the entries back to PEs as output after the EM finishes its operation on the

entries. Figure 6 shows the block diagram of EM EMA.

Chapter 2.2: Event Socket

T4)
= = Conf
§ 8 gg § Interrupt ontia
@ @ &0 @ T ‘ ‘
Input queues
Output
E E E queues
‘ AXl4 slave ‘ AXI4 master

Figure 6: EM EMA block diagram [8]

2.2.3 Buffer Manager

Buffer Manager [9] provides accelerations for memory allocations. The primary job of
a buffer manager is to enable the fast allocation of memory such that the required
memory is available in time. It provides addresses for fixed size blocks of memory,
buffers from memory pool. A memory pool is software configurable entity and refers
simply to an unordered list of buffers. The software defines the size of a memory pool,
the number of buffers to be accommodated in a pool. The software also defines the

size of a buffer; however the buffer size is fixed for a pool.

The primary building blocks of a buffer manager are allocation control, deallocation
control, table control, pool table and reference count control. The allocation control
block is responsible for handling the credit entries. Credit entries are sent to request
a buffer from the buffer manager. It also handles the allocation entries. For each
allocation entry, this block also updates the reference count in the reference count

control block.

Reference count value infers whether or not a particular buffer in a pool is allocated.

If allocated, how many masters is it allocated to. Deallocation control block handles

Chapter 2.2: Event Socket

the command entries. Command entries are sent to free the buffer or to update the
reference count value if a PE wants to use an already allocated buffer. Deallocation
control updates the reference count value in the reference count control block based

on the command entry it received.

The job of the table control is to read the next free buffer id from the pool table and
return it to allocation control. Pool table has all the pools configured by SW. The buffer
id returned by the pool table is random as pool is an unordered list of buffers. The
reference count control block is responsible for updating the reference count value.

Figure 7 shows the block diagram of a buffer manager.

Buffer Manager
Config Deallocation Control [
A
Config
y
>
Confi
6 Table control Pool Table BefiCount
Control
J Config register bank
h Confi
Interrrupt ontig
Config
Allocation Control
Config
A
Config IF Credit IF Alloc IF Command IF

! ' T

Figure 7: Buffer Manager block diagram

As shown in Figure 7, there is a dedicated interface for credit, command and allocation
entries. PEs request buffers writing a credit via credit interface and gets an allocation

back via allocation interface. Command entries to update the reference count is sent

10

Chapter 2.2: Event Socket

via command interface. There are dedicated data structure for credit, allocation and

command entries which are not shown because of confidentiality issue.

2.2.4 Buffer Manager EMA

BM EMA [10] is used as an adaptation layer between the PEs and BM such that it allows
the communication between PEs and BM. BM EMA receives the entries from the PEs
and queue the entries to the dedicated queues. Credit queue and command queue
are two input queues which store credit entries and command entries respectively.
These entries are then sent to BM for processing. Allocation queue is the output
gueue. BM EMA receives allocation entries from BM and store them in allocation

gueue. These entries are then sent to PEs. Figure 8 shows the block diagram of the BM

EMA block.
Crd Cmd Alloc
T T h 4
| BM IF F
BN EM A l Y
Config
Config
Config Reg bank
£ Crd Sy Allc

queue p— —
Int queus queus

[
Config
Config

‘I Config IF ’—(AX14 Slave —_ AX14 Master }—

Figure 8: BM EMA block diagram

11

Chapter 2.3: Debug and Trace Sub-system

2.3 Debug and Trace Sub-System in Event Socket

ES Debug and Trace architecture [11] is responsible for generating trace packets. The
generated trace packets are based on the configuration setup. These configuration
parameters are written by the PEs (software) to the dedicated registers prior to the
process. The event socket DTSS provides Debug APB interface for software access.
DTSS is built around the fundamental components such as bus monitor, STM-500, ETF
and CTI. STM, ETF and CTI are standard ARM CoreSight components while the bus
monitor unit is the custom hardware implemented in RTL. Figure 9 shows the block

diagram of DTSS in event socket.

AXI Interconnect

Event Socket
BM EMA
EMEMA
P EM BM
EM_TXDATA EM|RXDATA ~ EM_ACPDATA EM|CRDATA BM_CRDATA BM_ALCDATA BM_COMDATA
S T config | config | config | config| config | | — "1
config
| l vy v v v ¥ <o v \
‘ Bus Monitor 0 Bus Monitor 1 Bus Monitor 2 Bus Monitor 3 Bus Monitor 4 Bus Monitor 5 Bus Monitor 6 ‘
| (Master ID = 0) (Master ID = 1) (Master ID = 2) (Master ID = 3) (Master ID = 4) (Master ID = 5) (Master ID = 6) ‘
\ v v v v v ‘
‘ AXI4 (S) A AXi4 (8) [ii AXI4 (S) AXI4 (S) AXI4 (S) AXi4 (S) AXI4 (S) |
\ \\ \ \ \ N [
| AXI4 (M) |
;777777777777777&usﬂoﬂ0rﬂn\L777 B
C o T sBN| HEOI —— | . Debug APB to CONFIG OBSERVATION PORT
[| Bus Monitors 0..6
| |
| Debug APB 3 3
+ ATB I Interface o 2
I | E 5= EXTRACTION
| cT ETF Z e 2
- = |8E
E T g |3
£ o S
(= =
2? AXI WRITER
'§
Iz AXi4
S g
| Y c It- Event Socket
ross-trigger vent Socke
TS_BIN ATB Debug APB i T ST

Figure 9: DTSS block diagram [11]

12

Chapter 2.3: Debug and Trace Sub-system

2.3.1 Bus Monitor

Bus monitor [11] is a custom HW that is built around the primary blocks data capture
unit, extraction unit, filtering unit, AXI writer and trace control block. Trace control
block is responsible for all the configurations related to bus monitor. Figure 10 shows
the block diagram of a bus monitor. The bus monitor module does not intrude the bus
transaction, meaning it does not change or modify the transaction in any way. It only
monitors the traffic in the interface in question. The bus monitor module has primarily
three configuration registers; trace control register, filter value register and filter mask
register. The purpose of each of these registers is explained in the implementation
chapterin section Register Bank Generation. The orange arrows in Figure 10 show the

configuration flow in the bus monitor while the blue arrows show the data flow.

Bus Monitor Block

Data Capture
Unit

Register Map
Vv Extraction

Unit

Filtering Unit

Trace Control
Block

AXI Writer

AXI Lite AXI14(M)
| S

Figure 10: Bus Monitor block diagram

The valid-ready interfaces to be monitored in the scope of this work are shown as
green arrows connecting ES to ES DTSS in Figure 9. There are seven interfaces that the
bus monitor will be used across to monitor the traffic; EM_RXDATA, EM_TXDATA,
EM_CRDATA, EM_APCDATA, BM_CRDATA, BM_ALCDATA and BM_COMDATA. These
are the interfaces between RX queue in EM EMA and EM, EM and TX queue in EM

EMA, Credit queue in EM EMA and EM, Atomic processing complete queue in EM EMA

13

Chapter 2.3: Debug and Trace Sub-system

to EM, Credit queue in BM EMA and BM, BM and allocation queue in BM EMA and

command queue in BM EMA and BM respectively.

2.3.1.1 Data Capture Unit

Data Capture unit [11] in the bus monitor is responsible for sampling the data in the
interface it is connected to. It has an observation port as an interface towards the
monitored interface. The data is captured by the data capture unit when a valid
transaction is observed in the interface. The implemented interface in data capture
unit is a simple ready-valid handshake interface. The implementation of bus monitor
and all other functional units used in bus monitor is described in the implementation

section.

2.3.1.2 Extraction Unit

Extraction unit [11] in bus monitor is responsible for extracting the field of interest
from the data signal. The field of interest is a configurable parameter which is written
to the trace control register by SW. The data fields of interest are listed in the table
below. All the data fields can be included or dropped off in the trace packet to be

generated based on the configuration written to trace control register.

Table 1: Trace data fields [11]

Trace Block Trace Entry Data fields from Entry
Event Manager RX Queue entry e 32-bit EM queue ID
(EM) e 40-bit event pointer

e 8-bit Scheduler Group

e 4-bit Scheduler Priority

e 4-bit queue type

e Time stamp (a relative
timestamp is added by STM)

TX Queue entry e 32-bit EM queue ID

e 40-bit event pointer

14

Chapter 2.3: Debug and Trace Sub-system

e 16-bit Local Queue ID

e Time stamp (a relative
timestamp is added by STM)

Credit entry e 8-bit number of credits

e 16-bit Local Queue ID

e Time stamp (a relative
timestamp is added by STM)

Atomic e 32-bit EM Queue ID
processing e 16-bit Atomic Group ID
complete entry e Time stamp (a relative
timestamp is added by STM)
Buffer Allocation e 16-bit Pool ID
Manager Queue entry e 16-bit Buffer ID
(BM) e 16-bit Local Queue ID
e Timestamp (a relative
timestamp is added by STM)
Command e 16-bit Pool ID
Queue entry e 16-bit Buffer ID
e 8-bit reference count delta
e Timestamp (a relative
timestamp is added by STM)
Credit entry e 8-bit number of credits

e 16-bit Pool ID

e 16-bit Local Queue ID

e Timestamp (a relative
timestamp is added by STM)

2.3.1.3 Filtering Unit

DTSS allows input filtering based on the configuration written to trace control register.
The motivation behind having a filtering unit [11] in bus monitor is such that it helps
to manage trace data bandwidth. With filtering enabled, trace packet is generated
only from a subset of the input entries. The filter value and filter mask value are used

to carry out the filtering which is described in section “Filtering Unit Implementation”.

15

Chapter 2.3: Debug and Trace Sub-system

2.3.1.4 AXI Writer Unit

As shown in Figure 9, the bus monitor writes to STM-500, standard ARM CoreSight
component, via AXI interconnect. The captured data in the bus monitor needs to be
translated to AXI transaction such that the input to STM complies with the standard
AXI interface. The AXI writer unit is responsible for translating captured data in bus
monitor into AXI transaction. The address and data mapping and how it is done is

described in the implementation chapter in section AXI Writer Implementation.

2.3.1.5 Trace Control Block

Trace control block [11] in bus monitor is an adaptation layer between bus monitor
register bank and other functional units. It reads the configuration parameter written
by a SW in the configuration register and provides the configuration data to the
designated block. The trace control block will have simple interface with dedicated
signals towards the other functional unit block and AXI Lite [18] interface towards the
register bank. The bus monitor does not capture the data without enabling the data
capture unit nor does it filter. These parameters should be first configured by SW by

writing an appropriate value to the configuration registers.

2.3.2 ARM CoreSight

ARM CoreSight [12] architecture allows real-time debug and collection of trace
information in complex heterogenous multi core environment. It provides a system
wide solution for debug and trace meaning that the scope is beyond the cores for
example buses. The CoreSight technology offers the system designers flexibility in

implementing the debug and trace logic into their design.

There are standard CoreSight components that can be used to implement the debug
and trace logic as per designer’s requirement. These components are not a fixed

component rather they offer flexibility in configuration and one can configure them to

16

Chapter 2.3: Debug and Trace Sub-system

match their own’s need. However, it should be taken into consideration that these
CoreSight components support dedicated interfaces for transaction and the system
designer should implement the corresponding compatible interfaces to communicate

with these CoreSight components to generate the trace packets.

There are primarily five different categories that CoreSight SoCs are classified into.
Control and Access components, Sources, Links, Sinks and Timestamp. Control and
Access components provide access to other debug components and control of debug
behavior. Debug Access Port (DAP) and Embedded Cross Trigger are the examples.
Sources are components like System Trace macrocell, Embedded Trace macrocell and

Program Trace macrocell that generate the trace data for output.

Links provide connection, triggering and flow of trace data. Replicator and funnel are
the examples of links. Sinks are the end points for trace data. Examples include Trace
Port Interface Unit (TPIU), Embedded Trace Buffer (ETB) and Serial Wire Output
(SWO). Timestamp components generate and transport timestamp across the SoC.
Timestamp generator, Timestamp encoder and Timestamp decoder are the examples.
The CoreSight sub-system to be used in ES DTSS is shown in Figure 11 and briefly

described in the following sections.

AX14 compliant
trace Input data
from bus monitor

HEIO
AXI4] HEétriT‘
trigoutsw, .
TS[63:0] trigouthete, el
STM-500 asyncout i5:2]
e l = Cross-trigger
pepuaATe " & + S channel
<
flushin, trigin
o[1:0]
EnE full, acqcomp | .
i[1:0]
ROM
VELED SRAM 8KB

ATB [63:0]

Figure 11: CoreSight sub-system block diagram [11]

17

Chapter 2.3: Debug and Trace Sub-system

2.3.2.1 System Trace Macrocell

System Trace Macrocell (STM) [13] is a standard ARM CoreSight component that
allows tracing of system activity from the sources like instrumented software and
hardware events. The STM captures the activity it observes in its input interface and
generates the trace packet based on the configuration written to it. The version of
STM to be used in ES DTSS (STM-500) generates trace stream that complies with MIPI
[17] system trace protocol version 2 (STPv2). MIPI stands for Mobile Industry

Processor Interface and they develop interface specifications for mobile ecosystem.

Figure 12 below shows the STM as a black box with inputs, configuration and output

interfaces.

Software instrumentation=——Jp
STM = Trace output

Hardware events ==

Configuration and control

Figure 12: STM Inputs and Outputs [13]

Programming STM requires consideration of two main parts:

Configuration registers:

There are various configuration registers that are accessible both by the software
running on the chip and by an external debugger. These registers are used to configure
the STM such that it generates the trace packet as per the requirement. These

registers occupy 4KB block.

Extended stimulus port registers:
These registers are accessible by the software running on the chip but may not be
accessible by external debugger. There are up to 65536 stimulus ports available. Each

extended stimulus port occupies 256 consecutive bytes in the memory map and each

18

Chapter 2.3: Debug and Trace Sub-system

of these ports provide multiple locations to allow the software to configure it to

generate the required trace stream.

The STM allows multiple software masters to write software instrumentation
independently. Each master can use multiple stimulus ports. STM has an ability to
timestamp the generated trace packet based on the request and the configuration

written to its configuration register.

2.3.2.2 Embedded Trace FIFO

TMC [14] is a standard ARM CoreSight component that enables the capturing of trace
information using a debug interface such as 2 pin serial wire debug. TMC has different
configuration options; Embedded trace buffer, embedded trace FIFO and embedded
trace router. TMC is configured as ETF [14] for the DTSS in ES. ETF enables trace to be
stored in a dedicated SRAM. It can either be used as a circular buffer or as a FIFO.

Figure 13 shows the ETF configuration.

Trace bus (ATB)

Debug bus (APB)}«—»| ETF [«—» SRAM

Trace bus (ATB)

Figure 13: ETF Configuration [14]

TMC can be configured to capture the trace information in one of the three modes:
circular buffer mode, hardware FIFO mode and software FIFO mode. As mentioned
previously, ETF supports both circular buffer and FIFO implementation. In circular

buffer mode, the trace information in the storage overwritten once the buffer is full.

19

Chapter 2.3: Debug and Trace Sub-system

In FIFO mode, the ETF uses its storage as a FIFO and acts as a link between a trace

source and a trace sink. No trace is lost or overwritten in this mode.

2.3.2.3Trigger Components

CoreSight SoC has CTl and CTM as trigger components to control the logging of debug
information [12]. CTI and CTM form Embedded Cross Trigger (ECT) subsystem that
connects many Cross-Trigger Interfaces (CTls) and Cross Trigger Matrix (CTM) [15] and
thereby enable CoreSight sources to interact with each other. The primary job of ECT
is to pass debug events from one processor to another for example debug state
information so that program execution in processors can be stopped simultaneously

if deemed required.

Trigger request is made when a processor wants to send a debug event to another.
CTl combines the trigger requests and broadcasts them to all other interfaces in the
ECT sub-system as channel events. CTl on receiving a trigger request, maps into a
trigger output. This enables the ETM subsystems to interact with each other. CTM
controls the distribution of trigger requests. It enables the connection between CTls

and other CTMs where required.

2.3.2.4 Timestamp Components

Timestamp components [12] are used to generate and distribute timestamp values to
multiple destinations in a SoC. The scope of narrow timestamp is only within the
CoreSight architecture while the wide timestamp is processor generic timestamp and
its scope is system wide. Timestamp components in CoreSight architecture is used to
distribute narrow timestamp. System wide timestamp distribution is not possible with

CoreSight timestamp components.

Timestamp components are timestamp generator, timestamp encoder and timestamp

decoder. Narrow timestamp replicator, narrow timestamp synchronous bridge,

20

Chapter 2.3: Debug and Trace Sub-system

narrow timestamp asynchronous bridge and timestamp interpolator are also

timestamp components but they are not in the scope of ES DTSS.

Timestamp generator generates a timestamp value that provides a uniform view of
time for various blocks in a SoC. It can generate either CoreSight timestamps or
processor generic timestamp. Timestamp encoder encodes the 64-bit timestamp
value into 7-bit encoded timestamp value. This encoded value is called narrow
timestamp. It also encodes and sends the timestamp value to a 2-bit synchronization
channel. The timestamp decoder decodes the encoded timestamp value, the data on
the narrow timestamp interface and synchronization interface and converts it back to

64-bit value.

2.3.3 NIC-400 Cross-Bar Interconnect

Cross-bar interconnect [16] is used to connect the multiple bus monitors with the ARM
CoreSight system. The cross-bar interconnect has 7 AXI4 slave input interface and one
AXI14 master interface. The trace input data is written using the AXI master interface in
each bus monitor to the AXI slave interface in the interconnect. The cross-bar
interconnect then maps the transaction to the AXI master interface output on the
interconnect. The STM macrocell is connected to the AXI master interface on the

interconnect.

The cross-bar interconnect has 7 slave inputs which is connected to a single master
interface. Each transaction coming into any of the slave input is forwarded to the
master interface. The cross-bar interconnect is a NIC-400 component. It is a
configurable, high performance, optimized AMBA compliant interconnect. It allows to
configure the number of slave interface ranging from 1 to 128 and master interface

ranging from 1 to 64. The interface protocol supported are AXI3, AXI4 and AHB-lite.

21

Chapter 2.3: Debug and Trace Sub-system

2.3.4 Hardware Interfaces

Hardware interfaces in a design are the medium through which the hardware modules
communicate with each other. The hardware interfaces used in ES DTSS is briefly

described in the following sections.

2.3.4.1 AXI Interface

AXl is the most common interface used in SoC design [18]. AXI interface implements
five different channels; write address channel, write data channel, write response
channel, read address channel and read data channel. Read response signals are
integrated in read data channel. AXI has different variants AXI3, AXI4, AXI lite etc. AXI4
is used for data transaction while AXI lite is used for configuration setup in this work.
The bus monitors in DTSS in ES implements AXI4 master interface that writes to AXI4
slave interface on the AXI interconnect. The interconnect then maps the transaction
and forward to the right AXI master interface on the interconnect. On the other side

of the interconnect is CoreSight architecture component.

Each channel in the AXI has their own ready-valid pair which should do a handshake
prior to the actual communication. The valid ready handshake mechanism in AXI is
similar to the valid ready handshake mechanism on the interfaces between EM and

EM EMA and BM and BM EMA.

AXI supports burst-based transaction to achieve a better throughput. There are three
different variants of burst based transaction in AXI. Fixed burst is used if the
transaction is intended to the same address location. In case of memory access,
incremental burst is used. The address offset increases based on the size of data
access. Wrap burst is not so common and little bit tricky to get around the head. The
increment burst and wrap burst is out of the scope of this work. Figure 14 and Figure

15 show the fixed burst based write and read transaction respectively.

22

Chapter 2.3: Debug and Trace Sub-system

AWVALID m
AWREADY | I \ 1 i] | 1 | i]
wOoATA I ooad) 0L oA oAy () DiAsy e
WLAST JF L._
wwawo, | T T | — | |
WHEADY) L I T T | V.
BRESP] t — t : |] I B G|
BVALID { I
BRE ADY - g ﬁ

Figure 14: Burst Write in AXI [18]

Figure 15: Burst Read AXI [18]

As shown in Figure 14 and Figure 15, the burst transaction follows a handshake

process. The communication starts with the handshake process in the address

channel. The master drives the destination address via AxADDR signal and asserts the

AxVALID signal high. The slave when ready asserts the AXREADY signal high. xDATA is

driven to the data signal and xVALID is asserted high for all the valid beats in the burst.

The slave receives the data asserting the ready signal high. xLAST signal is asserted

high to indicate the last beat of the burst. Response channel communication also starts

23

Chapter 2.3: Debug and Trace Sub-system

with valid ready handshake. The response is driven to the xRESP signal to indicate the

status of the transfer. [18]

2.3.4.2 Valid-ready handshake Interface

Valid-ready handshake interface implements three signals; valid, ready and data
signal. The handshake occurs prior to actual transfer. The master first asserts the valid
when it has the valid data to drive to the interface. The slave asserts the ready signal
indicating that it is ready to accept the transfer and then the master drives the data to
the data signal. Figure 16 shows the handshake process in valid-ready interface. In
Figure 9, all the seven interfaces shown as green arrows are the simple valid ready

handshake interface.

<L N 1 B B B O I
valid / \
ready /—\
data 7 _data_\

Figure 16:Valid-ready interface timing diagram

2.3.4.3 Hardware Event Observation Interface

HEOI [13] is an interface on STM that enables the monitoring and tracing of hardware
events. HEOI provides interface for 32 rising edge hardware events. The input to HEOI
could be interrupts, cross-triggers or other signals of interest in the system. When a
hardware event is asserted and HEOI signal connected to that particular hardware

event is enabled, the event is captured and a trace packet is generated.

24

Chapter 2.3: Debug and Trace Sub-system

2.3.5 Software Interfaces

Software interfaces in a system allow the software access. Typical example of software
access in a system is for configuration registers. Each hardware module having
configuration registers is generally meant to be configured by the software before
startup. This is typically achieved through software interface. The software interfaces

used in ES DTSS are following.

2.3.5.1 Debug Advanced Peripheral Bus (APB) Interface

APB [19] comes under AMBA3 protocol family and is optimized for minimal power
consumption. It is a low bandwidth protocol and is typically used in the scenarios
where timing is not critical for example writing the configuration. Debug APB is used
for debugging purpose. In ES DTSS, the software uses the debug APB interface to write
the configuration. However, the configuration registers in the bus monitors in DTSS
does not support APB access. The register file for the bus monitors is generated using
Nokia in-house tool called reg-gen which only supports Node protocol or AXI lite
protocol. It is thus a bridge between the Debug APB and AXIl lite (or Node) is necessary
when the bus monitor is instantiated in DTSS level. Figure 17 shows the write and read
transfer in APB bus. The PWRITE signal when asserted high indicates a write transfer

and when asserted low indicates a read transfer.

PADDR . | i PADOR et |
PWRITE 1) PWRITE AL ! !
'I-Ir - .-1._I |I|l I.'I
PSEL | [\ PSEL 1Y
PENABLE | ¥ | U PEMABLE I
PWDATA)i Dot 1 i PRDATA i 1) Daat [}

Figure 17: APB Write and Read [19]

25

Chapter 2.3: Debug and Trace Sub-system

2.3.5.2 Advanced Trace Bus Interface

ATB [20] interface in ES DTSS implements a 64-bit wide trace bus through which the
trace packet generated by macrocell is written as output. ATB also has hand shaking
signals. Valid signal is asserted when a valid trace data is present and the slave asserts
the ready signal to indicate that it is ready to accept the trace data. ATB also provides
signals to carry out the flushing of a FIFO in CoreSight. Like trace data transaction,
flushing also starts with a valid ready handshake. When a flushing request is made via

ATB, the macrocell must drain the FIFO.

2.4 Verification Environment

The term verification in this scope refers to the front-end functional verification. It is
advised to comprehend accordingly wherever the term is used. The main objective of
verification is to make sure that the design works as per the requirements listed in the
specification. It is critical in SoC design as it helps in tracking down the bug in time. An
SoC coming out of a foundry with a bug is not only a loss of the effort that was put in
to develop the chip but also a loss of substantial amount of money spent in the
engineering. It is therefore verification in SoC design is of utmost important. In fact, it
is widely accepted fact in the silicon industry that verification of a design takes much
more effort than the actual implementation of a design itself. It is a known fact that it
can never be assured that a design is 100% bug free. However, with the verification,

the goal is to ensure that a design is as much bug free as possible.

The state of the art SoC design ecosystem is getting more and more complex as our
technology is moving into the era of automation; from automated vehicles to smart
homes and to smart cities. This very fact ultimately ushers an absolute realm of
Internet of Things (loT) where everything around us will be connected to each other

through a network. This means that there will be billions of devices in the network and

26

Chapter 2.3: Debug and Trace Sub-system

one malicious device could cost quite a bit for the entire network. On the one hand
there is increasing complexity in design ecosystem and on the other hand, the state-

of-the-art verification technology is lagging in addressing all the verification needs. On
top of that short time-to-market requirement for industries exacerbate the situation.
The widely accepted industrial standard for verification is Universal Verification
Methodology popularly known as UVM [21]. It is based on System Verilog language.

UVM provides a framework to achieve coverage driven verification (CDV). CDV
includes automatic test generation, self-checking testbenches and coverage metrics
such that the time spent verifying a design is significantly reduced. In addition, UVM
allows to add randomization and constraints in the test that helps in locating not only

anticipated but also unanticipated bugs in a design.

UVM is a layered modular testbench architecture that exploits the re-usable
verification components. Typically, an UVM testbench consists of an environment,
agent, driver, monitor, sequencer, sequence and sequence item. A test object then
encapsulates these components to make a complete testbench. An interface is then
required for the testbench to communicate with the design under verification. Figure

18 shows a typical UVM based testbench architecture.

Reference

Sequence

=
S

Figure 18: UVM Testbench

27

Chapter 2.4: Verification Environment

2.4.1 Sequence Item

Sequence item [21] is the actual transaction item that is sent as stimuli to the DUT.
UVM provides a base class called uvm_sequence_item which is inherited while
creating user defined sequence item. Sequence item is an abstraction that abstracts

away the signal level information to form a transaction object.

2.4.2 Sequence

Sequence [21] starts the sequence item. A user defined sequence is created extending
uvm_sequence base class provided by UVM. It is the uvm_sequence that is responsible

in generating the transaction item.

2.4.3 Sequencer

Sequencer [21] is responsible for forwarding the sequence item to the driver. The
sequencer also serves as the arbiter to control the flow of transaction item from
various sequences. UVM provides the uvm_sequencer base class to create a user

defined sequencer.

2.4.4 Driver

Driver [21] is the component responsible for driving the test stimuli to the DUT via an
interface. The driver maps the transaction objects into signal level activities based on
the interface protocol. UVM has uvm_driver base class which is extended to create a

user defined driver.

2.4.5 Monitor

Monitor [21] is a passive uvm component that is responsible for monitoring the
transaction in an interface. It does not whatsoever invade the transaction in the

interface but only monitors. The protocol specific transaction is extracted by the

28

Chapter 2.4: Verification Environment

monitor and then it maps it to a corresponding transaction item. UVM provides

uvm_monitor base class which is extended to create a user defined monitor.

2.4.6 Scoreboard

Scoreboard [21] is responsible for evaluating the input and output transaction. The
scoreboard checks whether the result is correct or not. The mechanism of how a

scoreboard compares the input and output is user specific. The scoreboard is typically
fed in the reference input and output through some externals sources and compare
them with the actual input and output in the interface or it could read the input output
from a reference model directly exploiting the DPI provided by UVM. Scoreboard is

created by extending the uvm_scoreboard base class.

2.4.7 Interface

Interface [21] is created using a keyword Interface. Interface enables the
communication between the UVM testbench and the DUT. A virtual instance of
interface is created in the UVM testbench to allow the communication. The virtual
interface instance is required because a DUT is a static module and the UVM testbench
is dynamic and transient. UVM provides the concept of virtual interface that enables

the communication between a dynamic testbench and a static module.

In addition to these UVM objects and components, UVM also provides a factory
mechanism with which a component or an object could be registered to a factory and
could be accessed from anywhere in a testbench. The factory mechanism comes handy

if an instance or type of a component or an object need to be overridden.

UVM testbench is a phase based testbench architecture. There are defined phases that
each component goes through to set up the test environment and execute the test.
These phases are executed in order when a test is carried out. Figure 19 shows the

phases that a test undergoes through.

29

Chapter 2.4: Verification Environment

i

i =y (pre_reset)
Run

.) (_post_shutdown)
e
Phses

Figure 19: UVM Phases

Primarily there are three phases as shown in the figure above. When the simulation
starts, build phase is the first phase to execute. During this phase all the components
used in the testbench is constructed, configured and connected. This phase executes
in top-down fashion. After the completion of end of elaboration phase in the build
phase, run phase is executed. During this phase, stimuli are generated and executed.
Run phase is a concurrent process. Finally, the cleanup phase is executed to extract

the information from the scoreboard and coverage monitors.

30

Chapter 3

3. Related Works

The demand for a better performance of a computing engine is indispensable for the
evolution of technology. Consequently, deployment of multi-core processing system
is ubiquitous. However, the sheer deployment of multi-core processing system does
not yield performance boost. There are multitude aspects to take care of; the
capability of an algorithm to exploit available resources to the fullest is the
fundamental one. As Amdahl’s stated in his law, the serial nature of the algorithm
ultimately becomes the bottleneck for the cent percent utilization of computing
resources. However, a significant boost can be achieved provided that the serial

nature of the algorithm is accelerated in SW/HW.

No matter how efficient the algorithm is and how refined the HW to run that algorithm
onis, only the correctness of the outcome guarantees the usefulness. Debug and trace
infrastructure allows the opportunity to guarantee the correctness of the outcome.

It is also seen that many embedded processors have used scan-chains also for the
system level HW/SW debugging. However, it does not scale well with the complexity
of cutting-edge SoCs [22]. It is seen that most of the vendors follow either of the two
major specifications: ARM CoreSight and IEEE-ISTO 5001 (popularly known as Nexus
5001) [24]. ARM CoreSight is the target implementation of this work and hence Nexus

5001 based implementation is discussed here.

This section is structured such that section 3.1 describes the related implementation
of ES functionalities and section 3.2 and section 3.3 describe the related debug and

trace infrastructure implementation. Albeit the scope of this work is limited to the

Chapter 3.1: Open Event Machine

implementation of debug and trace infrastructure, related works carried out in the ES
level is presented in section 3.1 to lay the foundation for the better understanding of

ES concept.

3.1 Open Event Machine

OpenEM [23] is a lightweight, run-to-completion, event processing environment
targeted for multicore SoC for the data plane applications. It is optimized for multicore
system and tailored to yield high performance. It is essentially data plane processing
concept based on asynchronous queues and event scheduling. OpenEM applications
are built from execution objects, events and queues. The execution object is an entity
that gets called at each event receive. The scheduler picks an event with the highest
priority from a queue and calls the receive function of the execution objects for event
processing. Run-to-completion is the phenomenon that restricts the preemption of

the events processing. Only after an event returns, the scheduler picks another event.

OpenEM is used as software acceleration in a multi-core processing environment
mainly for the event scheduling. The related work in the ODP event processing
acceleration can be found in [23]. OpenEM provides services to manage events, event
gueues and execution objects. All the available cores share the objects but, yet multi-

core safety is guaranteed.

OpenEM implements the following fundamental entities for computation:
e Events
e Execution Objects
e Event Queues
e Process
e Dispatcher

e Scheduler

32

Chapter 3.1: Open Event Machine

Events carry data to processes. When a process has to communicate with other
processes, it translates the information to be sent into an event and send it to the
other processes. However, an event can also have no data payload but a pointer to
the payload. When an event has the pointer to the payload, the OpenEM also provides
services to access these payloads. Each event belongs to its own dedicated event pool.
All events in an event pool, in the beginning, are queued in a free queue and waits for

the allocation. OpenEM provides services for allocation and freeing of events.

Execution objects embeds the algorithm on how to process the received events. The
receive function executes the algorithm. The user implements the receive function
and register it with the execution object. Creating and deletion of execution objects

services are provided by OpenEM.

Event queues relates the queued events with the execution objects, alternately saying
connects the data with the algorithm. Each event queue is tied to one execution object
and all the events from that event queue is processed by this execution object. The
service for event queue creation and deletion and sending events to the event queues

are provided by OpenEM.

Process is a higher abstraction level entity that has its own event pools, event queues
and execution objects. When a process is initialized, the event pools are provided and
the event queues and execution objects are created at run time. A process in an
OpenEM is a unique entity and has its own device ID and a process ID. It maintains its
identity because of the following rules:
e No core sharing between processes
e A process has access to the native event pools tied to it but not to the ones in
foreign processes.
e A process has access to the native execution objects tied to it but not to the
ones in foreign processes.

e Sending of events to foreign event queues of foreign process is allowed.

33

Chapter 3.1: Open Event Machine

Dispatcher triggers the scheduling of events. Each process has one dispatcher. When
a dispatcher is called, it looks for the event to be scheduled. If no event is available,
the dispatcher returns immediately with a negative response. If an event is available,
the dispatcher calls the receive function from the execution object. The assurance of
no deadlock scenario is achieved by implementing the receive function such that it

never waits on a condition dependent on the execution of another receive function.

Scheduler is responsible for scheduling of event queues based on the algorithm
implemented. Each process has one scheduler that describes how scheduling of events
from event queues is carried out. Scheduler is triggered by the dispatcher running in
the same process. Scheduling may be based on priority, atomicity and order. Based on
priority, the event queue with a higher priority is scheduled first. However, OpenEM
is run-to-completion machine and hence no preemption of events is allowed in
scheduling. Atomicity ensures that an event queue is exclusively processed by a single
core/process at a time. This very feature excludes the need for semaphores and
mutex. Based on the order, the oldest event (that has spent most time waiting) gets

scheduled first.

Nokia’s OpenEM implementation on Intel’s platform can be found in [6].
Benchmarking results presented in [23] by Texas Instruments is depicted in Figure 20.
The result is based on three benchmarking parameters: execution time, input data
amount and output data amount. The simulation is run on KeyStone Architecure [25]

with eight processing cores.

34

Chapter 3.1: Open Event Machine

Multicore Speedup
(pre-load from DDR, post-store to DDR)

9

8

7

6
85
g —16 Kcycles - 4 Kbytes in - 2 Kbytes out
@
2, —8 Keycles - 2 Kbytes in - 1 Kbytes out
"

4 Kcycles - 1 Kbytesin - 512 bytes out

—ideal

cores

Figure 20: Multicore Speedup with OpenEM [23]

As shown in Figure 20, approximately 96% increase in speedup is achieved. The
speedup is clearly affected by the execution time, input data amount and output data
amount. The assumption for this simulation is that there are no memory access stalls
in the sequential execution while in case of parallel execution pre-load and post-store

is considered while realizing OpenEM overhead, NUMA overhead and memory stalls.

An OpenEM process is able to operate in heterogeneous environment. OpenEM
process can run on bare metal and also on top of an OS. The motivation behind having
it run on an OS is access to more services such as memory management, file systems,
device drivers etc. Having it run on bare metal suffers it from the services like memory
management while having it run on an OS incurs the overhead due to OS. It is thus the
hardware acceleration of ODP event processing and memory management with ES
pose the better performance. ES HW not only addresses event processing aspect but
also the memory management. The target of the ES HW is to allow ODP APIs and

OpenEM APIs to run on top of it.

35

Chapter 3.2: Nexus 5001

3.2 Nexus 5001

Debug initiative based on IEEE ISTO 5001 [24] debug specification is the Nexus 5001.
It allows the embedded processor vendors to have a unifying standard to implement
in their debug and trace infrastructure as such it provides consistent set of auxiliary
pins as the access interface. In addition, it provides message-based transfer protocols
and standard development features to facilitate debug implementations. Figure 21

shows a typical debug and trace blocks in Nexus based infrastructure.

TCODE & Message AUX In

> > —
Debug Data In +— Control/ Formatting «—{ FSM AUX In Port
Debug Data Out —»| Nexus > AUX Out

+—> : > >

Registers FSM | AUX Out Port

Debug Control

J JTAG (IR/DR) |, JTAG TAP

A Registers | FSM JTAG Port

Figure 21: Debug and Trace blocks in Nexus based infrastructure [24]

The Nexus standard defines the nexus-based debug support interface. The Nexus |10
signal is defined by leveraging IEEE 1149.1 standard [26] widely accepted as a test and
debug pin interface. The standard defines the signal |0 as an extensible auxiliary port
(AUX) that can either be used as JTAG port or as a stand-alone development port. The
primary purpose of AUX out port is to provide higher trace throughput. JTAG port on
the interface can also be used in Nexus-specific ways; for an instance, to embed the

nexus trace output into JTAG messages. [24]

The message format is also defined by the standard. The message consist of a 6-bit
transfer code and each value of transfer code corresponds to a different number of
packets as defined in the standard. The standard also defines several dedicated
registers which facilitate the integration of debug support to different cores. For an
instance, different Device Identification (DID) register for each core to identify the

control and debug operations associated with it. [24]

36

Chapter 3.3: Debug Support Architecture

The standard defines four implementation classes such that the designs can select the
important features as per their need. Class 1 provides features similar to standard
JTAG implementations. Complex debugging features with real-time monitoring is
provided by class 2. Class 3 provides data tracing services and includes the ability to
read and write memory and I/O during run-time and class 4 allows the features like

remapping the memory and 1/0 ports. [24]

The related work carried out based on Nexus standard is in [27]. R. Stence presents
real time calibration and debug techniques of embedded processors with the Nexus

5001 interface in this work.

3.3 Debug Support Architecture

Debug support architecture is defined in [28] where the proposition is the modular
breakdown of the architecture such that the architecture comprises of three
complementing parts: an extended JTAG module as the interface between the SoC and
debug host computer, modules that connect debug interface to processor and the
processor specific on-chip debug support modules. Figure 22 shows the system level
integration of debug support architecture. JTAG module is the first complementing
part from the modular breakdown, 10 client is the second part and OCDS module is
the third part. Processor 0 is connected to a specific 10 client as it has no FPI bus
connection while processor 1 and processor 2 has FPl bus connection and thus

connected to the JTAG module via 10 client 1.

35

Chapter 3.3: Debug Support Architecture

JTAG
“gnals

" JTAGs L .
EEESTAG | [* signais 0 Clent 0 Procssssr
1149 core Covs 0
iC1685_V2)
OCDS Moduils
JTAG Modul ~
10 Chent 1
Debug Bus
Interface
-
&
a
Processor =
Core 1 0CDS Module
(Tricora)
Processor
Cote 2 0OCDS Moduta
{Carmal)

\/

Figure 22: On-chip debug support architecture [28]

35

Chapter 4

4. Implementation

This chapter describes the design implementation and testbench setup for verification.
The implementation phase of this thesis work can be split into Design Implementation,
Verification Implementation and Build Environment setup. The verification of the top-
level module (DTSS) is carried out in the Event Socket top level. It is thus outside the

scope of this work.

4.1 Design Implementation

Design implementation involves register bank generation, bus monitor sub blocks

implementation and sub blocks instantiations on the bus monitor top-level.

4.1.1 Register Bank Generation

The RTL implementation of the bus monitor started off with the generation of the
register bank. Nokia has in-house EDA tool for register generation. The bus monitor
has three primary configuration registers: Trace Control Register, Filter Value Register
and Filter Mask Register. Filter value register and filter mask register are used only
when filtering is enabled in the bus monitor. Filter value register simply holds the value
to be filtered and filter mask register holds the value such that all the fields of interest
do not get masked. For example, if the filter mask value is FF, only the least significant
byte of the input data is not masked and if this value is equal to the value in the filter

value register, the filtered data is generated.

The trace control register is depicted in Table 2.

Chapter 5.1: Design Implementation

Table 2: Trace Control Register [11]

|Byte 1

Bits 7|6|5|4|3|2[1|0|7]|6|5|4]|3]2|1]0|7|6]|5|4a|3|2]1]|0]7|6]5]4]3]2]1]0
Reset |0|0|o0|0|0|0|0|0|0|O|O|O|O]OD|O|O|]O|OD|O]O|O|O|O|OD|O|OD]|O|O|O]O]|O]|OD
Name | o] & o R R R R R R R R R R R R R

4.1.2 Data Capture Unit Implementation

After the register bank was in place, the data capture unit was implemented. The data
capture unit is responsible for capturing the data in the interfaces. The data capture
unit has observation port implemented as “monitor” that samples the data on the

interface only when both the valid and ready signal are high.

> Clock

—»| Reset

Valid —

————» Ready Data Capture Unit Ready >

—_— Valid

D_output >
——» D_Input

—— | En_Trace

Figure 23: Data capture Unit I/O interface

Figure 23 shows the input and output interface of the data capture unit. The signal
En_Trace carries the trace enable information from the trace control register via trace
control block to the data capture unit. The timing diagram in Figure 24 shows when

data is sampled and output is written.

40

Chapter 4.1: Design Implementation

o[LU
state / sample X Write_output

vaid .
ready j
data_in ﬁ data \
valid_o /ﬁ
ready_| /ﬁ

data_out ﬁ data \

Figure 24: Sampling and data output state in DCU

4.1.3 Extraction Unit Implementation

The extraction unit is responsible for extracting the data field from the data input
based on the configuration. The instrumentation software configures the trace control
register’s “select” fields and the extraction unit performs the extraction task based on
this vector. Figure 25 shows the input and output interface implemented in the

extraction unit. The signal sel_field comes from the trace control register.

Figure 25: Extraction unit I/O interface

41

Chapter 4.1: Design Implementation

The extraction unit collects the complete data structure and based on the select
vector, performs the extraction. Figure 26 shows the timing diagram of the extraction

process.

3% [) [[sy

state /’ collection X extraction X write_out \

valid j
ready E

data_in j(data \
select_datafield ,/T\
extracted_data data
valid_o f—L
ready_I m
data_out %(data \

Figure 26: Extraction process timing diagram

4.1.4 Filtering Unit Implementation

Filtering unit performs filtering of the trace input data if filtering is enabled. Filter
enable information is read from the configuration register and the decision on
whether or not to perform the filtering is made. If filtering is not enabled, the filtering
unit simply propagates the input data to the AXI writer unit without filtering. The

implemented input and output interface in the filtering unit is depicted in Figure 27.

Figure 27: Filtering Unit I/0 interface

42

Chapter 4.1: Design Implementation

The three signals en_filter, fil_value and fil_mask come from the dedicated
configuration registers in the register bank. En_filter tells whether filtering is enabled
or not. Filter value and filter mask pattern are used for filtering. The mask value
determines which bits from the input data fields are compared with the filter value. A
filtered trace input data is generated only on a compare match. Figure 28 shows the

timing diagram of the filtering process in filtering unit.

L O O I
state / sample b filter W write_out %
valid . T
ready E

data_in 77777 data__\
en_filter E

fil_val S/ filter_value
fil_mask / filter_mask
filtered_data data
valid_o /1
ready_i /1
data_out %(data \

Figure 28: Filtering process timing diagram

4.1.5 AXI Writer Implementation

AXI writer module is responsible for translating the bus monitor transaction into AXI
transaction. The transaction in the bus monitor is a simple valid-ready transaction,
meaning the transaction object in the bus monitor encapsulates the valid-ready signal
pair and a data signal. The job of the AXI writer is to convert the valid-ready transaction
object into AXI transaction object. The motivation behind this translation is the
CoreSight components used in DTSS. The STM macrocell in the CoreSight architecture
is the entry point for the trace input data. It has a slave AXI interface through which
the input trace data is written. It is thus the transaction from the bus monitor is
translated into AXI protocol compatible transaction by the AXI writer unit. The

implemented input and output interface in AXI writer module is shown in Figure 29.

43

Chapter 4.1: Design Implementation

Y

Yy

Y

Figure 29: AXI writer /0 interface

The AXI writer module uses write burst if the trace input data cannot be
accommodated in a single 64-bit word. For an example, on the interface between
Event Manager and RX-queue in EMA, if the select datafield vector is “11111”, the
trace input data will have 32-bit ODP queue ID, 40-bit Event pointer, 4-bit scheduler
group, 8-bit scheduler priority and 4-bit queue type. In this case, the AXI writer has to

do the write burst of length 2.

The AXI translation primarily involves address mapping and data mapping. STM has
memory-mapped stimulus port where the trace input data is written. The 32-bit

address signal is mapped as shown in the table below:

Table 3: Address Mapping[11]

Address bits
31:30 29:24 23:20 19:8 7:0
0x00 <master ID> 0x0000 <stimulus port> <packet
type>

Table 3 shows that bit 7 downto 0 indicates the packet type. CoreSight defines various
packet types. However, only G_D (guaranteed, data-access) and G_DTS (guaranteed,
data-access with timestamp) are considered in the scope of DTSS in the ES. The
selection on whether G_D or G_DTS is considered is based on the timestamp field in

the trace control register. If timestamp enable field in the trace control register is set,

44

Chapter 4.1: Design Implementation

then G_DTS is selected. STM has extended stimulus port where not only trace input
data can be written but also can be augmented with metadata. This augmentation of
data enables the STM to know which kind of trace to generate. Bit 7 downto 0 in the
address signal provides the augmentation for the trace input data. Address offset for
G_D is 0x18 and that for G_DTS is 0x10. Bit 19 downto 8 indicate the stimulus port

address and bit 29 downto 24 indicate the master that is writing the trace input.

STM uses the write strobe signal to determine the size of the transfer and to locate
the valid data on the data bus. Strobe signal has one bit for every byte of data. For 64
bits data, strobe signal has 8 bits. The following table shows how data is aligned on the

data bus and the corresponding strobe vector for the data.

Table 4: Data alignment[11]

Beat WRSTRB Byte
7 | 6 [5] 4 3 J 2] 1T]o
1 11111111 Event Pointer LSB ODP Queue ID
2 00001111 QT SP SG EP
MSB

Table 4 shows the data alighment for EM-RX queue interface. Beat refers to the data
word transferred in a burst. The AXI writer does burst write of length 2. The first beat
has 32-bit ODP queue id and 32 LSB event pointer for which the write strobe vector is
FF. The second beat has 8 MSB from event pointer, 8-bit scheduler group, 8-bit
scheduler priority (padded 4-bit MSB) and 8-bit queue type (padded 4-bit MSB) for

which the strobe vector is F.

4.1.6 Trace Control Block Implementation

The trace control block is responsible for distributing the configuration and control
information to the various sub-modules in the bus monitor. The configuration and
control information for the bus monitor is written to the dedicated registers in the
register bank by the instrumentation software. The trace control block reads this

information from the register bank and distributes them to the dedicated sub-blocks

45

Chapter 4.1: Design Implementation

in the bus monitor. The implemented input and output interface in the trace control

block is shown in Figure 30.

Figure 30: Trace Control Block I/0 interface

The trace control block takes the input from the register bank via Bm_cfg signal.
Bm cfg is an abstracted signal that abstracts the control and configuration

information from the register bank.

4.2 Verification Implementation

After the RTL implementation of all the sub blocks in bus monitor, they were
instantiated in the bus monitor top-level. Figure 10 shows the structure of the bus
monitor after having all the sub-blocks instantiated. Once the design implementation
was done, verification implementation was carried out to verify the design. For the
scope of this work, bus monitor was verified in the module level. However, in the Event
Socket project, all the verification is carried out in the ES top-level. Figure 31 shows

the testbench architecture implemented for the verification of the bus monitor.

46

Chapter 4.2: Verification Implementation

UVM Environment

Ready Valid
Sequence
Item [Thmmmmmms

777

Data Capture

Extraction

AX14-Lite Register Bank
AXI Writer
[axi]
AXi slave Agent EAXI4 Master Interface ZJ{VII

Figure 31: Bus Monitor Testbench Architecture

Filtering

Trace Control Block

4.2.1 UVM Environment Implementation

The box with red border and labeled UVM Environment in Figure 31 represents the
UVM environment. AXI lite master agent, AXI slave agent and AXI adapter are the

verification component instantiated from in-house AXI VIP.

Ready-valid VIP was written from the scratch for this task so that the transactions on
the ready-valid interfaces could be verified. The register abstraction layer, RAL was
generated using the RAL generator tool called ralgen. The ralgen tool was provided
the bus monitor xml file. The bus monitor xml was generated using reg_gen tool during
the design implementation phase. Ralgen takes the xml file as input and produces ralf
file which abstracts the information of all the registers in the design. This ralf file was

used to generate the RAL model.

The arrow with label AXI-Lite in Figure 31 is the interface via which configuration and
control registers are written. The green ready-valid interface drives the input data
signals to the DUT. The AXI Master interface connected to AXI slave agent drives the
AXI transaction towards the testbench. The AXI slave agent in the testbench monitors

the received AXI transaction.

47

Chapter 4.2: Verification Implementation

All the blocks shown in Figure 31 were instantiated in the UVM environment.
Corresponding object creation was done in the build phase. The RAL model, the
sequencer and the adapter were connected in the connect phase. The final phase
implemented a uvm_report_server to extract the information and print the status of

the test. The code snippet below shows the implementation of the UVM environment.

//Component declaration

axi_master_agent u_axi_lite_agt;
axi_slave_agent u_axi_slave_agt;
rv_agent u_rv_agt;
ral_block_default_slv_.mmap_bus_monitor u_bus_mon_ral;
axi_adapter u_axi_adapter;
//object creation

function void bus_mon_top_env::build_phase(uvm_phase phase);
super.build_phase(phase);

u_axi_lite_agt=axi_master_agent::type_id::create("u_axi_lite_agt", this);
u_axi_slave_agt=axi_slave_agent::type_id::create("u_axi_slave_agt",this);
u_rv_agt=rv_agent::type_id::create("u_rv_agt",this);
u_axi_adapter=axi_adapter::type_id::create("u_axi_adapter",this);
u_axi_adapter.fix_tr_size=1;
u_axi_adapter.fixed_tr_size=4;

u_bus_mon_ral=ral_block _default_slv_mmap_bus_monitor::type_id::creat
e("u_bus_mon_ral");
u_bus_mon_ral.configure(null,"");
u_bus_mon_ral.build();
u_bus_mon_ral.lock_model();
endfunction: build_phase

//Connect phase

function void bus_mon_top_env::connect_phase(uvm_phase phase);
super.connect_phase(phase);
u_bus_mon_ral.default_map.set_sequencer(u_axi_lite_agt.sqr,
u_axi_adapter);
u_bus_mon_ral.default_map.set_auto_predict(1);
u_bus_mon_ral.reset();

endfunction: connect_phase

//final phase
function void bus_mon_top_env::final_phase(uvm_phase phase);

48

Chapter 4.2: Verification Implementation

uvm_report_server ReportServer;
string msg;
super.final_phase(phase);
ReportServer = uvm_report_server::get_server();

msg = Ssformatf("Simulation Ended: Errors = %0d; Warnings = %0d",
ReportServer.get_severity_count(UVM_ERROR),
ReportServer.get_severity _count(UVM_WARNING));

if(ReportServer.get_severity _count(UVM_FATAL) +
ReportServer.get_severity _count(UVM_ERROR) > 0)
msg = "*** FAILED ***";
else if(ReportServer.get_severity_count(UVM_WARNING) > 0)
msg = "*** PASSED WITH WARNINGS ***";
else
msg = "*** PASSED ***";
msg = {msg, "\n", Ssformatf("Simulation Ended: Errors = %0d; Warning =
%0d", ReportServer.get_severity _count(UVM_ERROR),
ReportServer.get_severity_count(UVM_WARNING))};
‘uvm_info("TEST_STATUS", msg, UVM_LOW)
endfunction: final_phase
After the testbench setup was completed, different test cases were developed. The
requirement specification lists primarily five features; trace control, data-capture,
extraction, filtering and AXI writer. Thus, for the scope of this work, five test cases
were developed. In addition to this, register access test was also run to verify the

register access in the design.

4.2.1.1 Register Access Test

After the testbench and the DUT were in place, the first test implemented was register
access test to verify if the registers in the design were accessible. The intention of this
test was to verify if the registers at a particular address offset are accessible by the
software. In addition, the test also verifies that OKAY access [18] to addresses not on

the address map is an error.

The register access test used RAL model and AXI master read and write sequences to

carry out the test. The RAL model would give all the registers in the DUT and their

49

Chapter 4.2: Verification Implementation

offset addresses. The AXI master write sequence was used to write to the registers in
the design and the corresponding write response was read. Similarly, AXI master read
sequence was used to read from the registers and corresponding read response was
read. The write and read response on the AX| bus indicates the status of the

transaction which is defined in AXI protocol specification.

Enumerated access mode was defined for the read and write transactions. The
enumerated access modes: empty_addr, ob_addr and valid_addr were used. Prior to
any transaction driving, the modes were randomized. The code snippet from the test

below shows the main part of the implementation.

//Enumerated access mode
typedef enum {empty_addr,ob_addr,valid_addr} mode;
mode addr_mode=valid_addr;

//get registers from RAL
bus_mon_env.u_bus_mon_ral.get_registers(regs, UVM_HIER);
//get register offset address
foreach(regs[k])begin
reg_addr_offset[k]=regs[k].get_offset(bus_mon_env.u_bus_mon_ral.default_map);
end
//Randomize the access mode
randomize(addr_mode) with {addr_mode inside {[empty addr:valid_addr]};};
//AXI master write sequence to write
wr_seq.write(seq_item.addr,seq_item.datali],'hF,bresp,bus_mon_env.u_axi_lite_agt.
sqr,1);
//Write response check
if(bresp==0 | | bresp==1) begin
‘uvm_error("EMPTY ADDRESS WRITE ERROR", Ssformatf("Address %0d is
empty but access is successful",seq_item.addr))

end

else begin
‘uvm_info("SLVERR/DECERR", Ssformatf("Access attempt to empty address
%0d", seq_item.addr), UVM_LOW)

End

//AXI Master read sequence to read

rd_seq.read(seq_item.addr, data, rresp, bus_mon_env.u_axi_lite_agt.sqr, 0, 0, 1);
//Read response check

if(rresp==0 [| rresp==1) begin

50

Chapter 4.2: Verification Implementation

‘uvm_error("EMPTY ADDRESS READ ERROR", Ssformatf("Address %0d is
empty but access is successful",seq_item.addr))

end

else begin
‘uvm_info("SLVERR/DECERR", Ssformatf("Access attempt to empty address
%0d", seq_item.addr), UVM_LOW)

end

4.2.1.2 Trace Control Block Test

After the register access was verified, the trace control block test was carried out. The
primary purpose of this test was to verify if the trace control block is distributing the
control and configuration parameters in the registers to the corresponding design
blocks. The trace control block gets the control and configuration data from the
register bank and distribute to the dedicated blocks in the design. For example,

enable_filter field read from the register bank was distributed to the filtering unit.

The test implementation was done using the AXI VIP. Inputs to the design were driven
using the AXI VIP. The output from the trace control block is a mix of std_logic and
std_logic_vector. No VIP was developed to monitor these outputs but simply the
waveforms of these output signals were manually monitored. This was possible as

there were only 3 primary registers in the design.

The code snippet below shows the main_phase implementation:

task bus_mon_top _tcb_test::main_phase(uvm_phase phase);

uvm_reg regs[S];
uvm_reg_addr_t reg_addr_offset[S];
logic [1:0] w_resp;

phase.raise_objection(this);
‘uvm_info("TCB TEST", "Starting Trace Control Block Test", UVM_LOW)
bus_mon_env.u_bus_mon_ral.get_registers(regs, UVM_HIER);

foreach(regs[k]) begin
reg_addr_offset[k]=regs[k].get_offset(bus_mon_env.u_bus_mon_ral.defau
It_map);

end

51

Chapter 4.2: Verification Implementation

foreach (reg_addr_offset[i]) begin
assert(randomize(seq_item))
else ‘uvm_warning("Randomization failed", "Failed to randomize seq item");

wr_seq.write(reg_addr_offset/[i], seq_item.data[0], 'hF, w_resp,
bus_mon_env.u_axi_lite_agt.sqr,4);
#5ns;

end

‘uvm_info("TCB TEST", "Ending Trace Control Block Test", UVM_LOW)
phase.drop_objection(this);
endtask: main_phase

4.2.1.3 Data Capture Unit Test

After the trace control block test was done, data capture test was implemented. The
register access test verified that the configuration and control parameters were
written to the dedicated registers. Only the trace control register in the register bank
was written with the suitable values for data capture unit test as this is the only
register responsible for the configuration and control of data capture unit in the

design. The test setup for the data capture unit test is shown in Figure 32.

UVM Environment |

Ready-valid

id interface o S :
Masiei Agent Ready-valid inte

Trace Control Block

Ready-valid
monitor Agent

Ready-valid interface Y [

Figure 32: Data Capture Unit test setup

Figure 32 shows one ready-valid master agent and one ready-valid monitor agent. The

master agent drives the ready-valid transaction to the DUT while the monitor agent

52

Chapter 4.2: Verification Implementation

only monitors the output from the data capture unit. A scoreboard was implemented
to compare the input and output to and from the data capture unit. The code snippet

below shows the main_phase implementation of the data capture unit test.

task bus_mon_top_dcu_test::main_phase(uvm_phase phase);
phase.raise_objection(this);
‘uvm_info("DCU TEST", "Starting Data Capture Unit Test", UVYM_LOW)
#5ns;
for(int i=0; i < 'NUM_OF_TRANSACTION; i++) begin
assert(randomize(data)) else ‘uvm_info("randomization failed" Ssformatf("Data
rondomization failed in %0d iteration",i), UVM_LOW)
rv_seq.write(1'b1,1'b1,data, bus_mon_env.u_rv_master_agt.r_sequencer);
#5ns;
end
#5us; //Grace for EOS
‘uvm_info("DCU TEST", "Ending Data Capture Unit Test", UVM_LOW)
phase.drop_objection(this);
endtask: main_phase

The scoreboard implementation primarily has two tim_analysis_fifo where the input
and output data are collected. Data retrieved from these FIFOs were put into the

uvm_queue prior to comparison. The code snippet below shows the implementation.

task bus_mon_scoreboard:: run_phase(uvm_phase phase);
rv_seq_item rv_input_data;
rv_seq_item rv_output data;
rv_input_data=new("rv_input_data");
rv_output_data=new("rv_output_data");
super.run_phase(phase);
get_items(rv_input_data, rv_output_data, in_q, out_q);
endtask : run_phase

task bus_mon_scoreboard::get_items(rv_seq_item item1, rv_seq_item item2, ref
uvm_queue #(logic [135:0]) q1, ref uvm_queue #(logic [135:0]) q2);
for(int i=0; i < tr_count; i++) begin
//forever begin
fork
begin
mas_fifo.get(item1);
gl.push_back(item1.data_in);
end

53

Chapter 4.2: Verification Implementation

begin
mon_fifo.get(item2);
q2.push_back(item2.data_in);
end
join
end
endtask:get_items

function void bus_mon_scoreboard:: extract_phase(uvm_phase phase);
rv_seq_item rv_item;
rv_item=new("rv_item");
super.extract_phase(phase);
compare_items(in_q, out_q);
endfunction : extract_phase

function void bus_mon_scoreboard:: compare_items(uvm_queue #(logic [135:0])
ref_item, uvm_queue #(logic [135:0]) comp_item);
logic [135:0] item1, item2;
int refq_size, compq_size;
refq_size=ref item.size();
compq_size=comp_item.size();
if(refq_size I== compq_size) begin
‘uvm_warning("Queue Size Mismatch", Ssformatf("Ref queue size is: %0d, Comp
queue size is: %0d", refq_size, compq_size))
end else begin
for (int i=0; i < refq_size; i++) begin
iteml=ref item.get(i);
item2=comp_item.get(i);
if(item1==item2) num_of match++;
else num_of mismatch++;
end
‘uvm_info("Comparison Result", Ssformatf("Matches: %0d \t Mismatches:
%0d",num_of_match, num_of_mismatch), UYM_LOW)
end
endfunction : compare_items

4.2.1.4 Extraction Unit Test

The purpose of extraction unit test was to verify the extraction process in the bus
monitor. The bus monitor should extract the data field based of the select field value
in the trace control register. Extraction unit test was implemented such that the test

class would start the sequencer to drive the sequence items to the DUT and

54

Chapter 4.2: Verification Implementation

scoreboard was implemented in the environment to evaluate the output. Figure 33

shows the extraction unit test implementation.

UVM Environment |

Ready Valid
Sequence

i
Ready-valid R R Data Capture
,,,,,,,, Ready-valid interface g
Item Master Agent S
Extraction Unit
Bus A A Wi ity AXl4-Lite Register Bank
AX Agent
F

Ready-valid
ScoreBoard monitor Agent

Trace Control Block

Config
parameters

Ready-valid interface o SR

for Bus
Monitor

Figure 33: Extraction Unit Testbench

The configuration setup for the extraction unit test was same as in the data capture
unit test. The ready-valid interface was connected to the ready-valid interface in
between the extraction unit and filtering unit. A dedicated FIFO was implemented in
the scoreboard to collect the extraction unit output. The reference model for this work
was not in the scope and hence the extraction logic was implemented in the
scoreboard itself to produce the extracted data. This extracted data is the reference

against which the extraction unit output is compared to.

The extraction for the reference output was implemented with a method which takes
a 5-bit vector sel field to determine which field to extract, a two-dimensional
unpacked array which stores a complete data structure in the interface in question
and a uvm queue which stores the extracted data for the reference. The code snippet

below shows the implementation of the extraction logic in system Verilog.

function void bus_mon_scoreboard:: extraction_logic(bit[4:0] sel_field, logic [3:0]
['DATA_WIDTH-1:0] in_data, ref uvm_queue #(logic[87:0]) ref_q);
logic [87:0] extracted_data;
case('DATA_WIDTH)
136:begin

55

Chapter 4.2: Verification Implementation

if(sel_field[0]==1'b1) extracted_data[31:0]=in_data[0][31:0];
if(sel_field[1]==1'b1) extracted_data[71:32]=in_data[2][39:0];
if(sel_field[2]==1'b1) extracted_data[87:72]=in_data[0][15:0];
ref_q.push_back(extracted_data);

end

endfunction;

A comparison method was implemented to compare the reference data and the

output data and hence the extraction logic functional correctness was verified.

4.2.1.5 Filtering Unit Test

Filtering unit performs filtering if enabled. With filtering enabled, only the data field
of interest could be filtered and accordingly the trace input can be provided based on
the filtered data. The filtering unit takes the control and configuration information
from the trace control block and performs the filtering. If filtering is not enabled, the

unit simply propagates the input data to the output interface.

The purpose of the filtering unit test was to verify the filtering logic implemented in
the bus monitor. The testbench setup for the filtering unit test is shown in the Figure
34. Similar to the extraction unit test, the reference to which the filtering unit output
was compared against, was computed in the scoreboard and collected in a queue. The
input to this computation in the scoreboard was extracted from input interface to the
filtering unit. The output from the filtering unit was also collected in a queue in the

scoreboard and a comparison method was implemented to compare the output.

56

Chapter 4.2: Verification Implementation

UVM Environment P GG LL L e P L L ELEs
i
i
i

Ready Valid

Sequence Ready-valid

i

i
. B Data Capture

Tlemmeeee - Ready-valid interface /uiat
ftem Master Agent U
Extraction Unit
FPARSIENESEEE AXia-Lite Register Bank
AXI Agent
Adapter
Config

Ready-valid
parameters eady-vali
for Bus ScoreBoard monitor Agent

Bus
Monitor
RAL

Filtering Unit

Trace Control Block

Ready-valid interface

Monitor

1

Ready-valid m
T A Ready-valid interface

Figure 34: Filtering Unit Testbench

DUT configuration setup for this test was carried out in the configure_phase. The value
written to the trace control register was the same as in previous tests. However, the
filtering unit also requires the filter value register and filter mask register setup to carry

out the filtering task. The code snippet below shows how it was implemented in the

configure_phase.

task bus_mon_top_fu_test::configure_phase(uvm_phase phase);
super.configure_phase(phase);
phase.raise_objection(phase);
fork
bus_mon_env.u_bus_mon_ral. TRACE_CONTROL.write(status,
'h0101_00FF, UVM_FRONTDOOR);
bus_mon_env.u_bus_mon_ral.FILTER VALUE_O.write(status,'h0000_17A6,
UVM_FRONTDOOR);
bus_mon_env.u_bus_mon_ral.FILTER _MASK_O.write(status,'h0000_FFFF,
UVM_FRONTDOOR);
join
phase.drop_objection(phase);
endtask: configure_phase

57

Chapter 4.2: Verification Implementation

The code snippet above shows that the filter value is 17A6 and filter mask is FFFF. This
means that the field of interest is 16-bit LSB from the extracted data. If that data is
equal to 17A6, the filtering unit outputs the filtered data to be 17A6 and hence trace

packet will be generated only for this data.

4.2.1.6 AXI Writer Unit Test

The bus monitor writes 64-bit AXI transaction item to the stimulus port in STM. If the
data to be written is wider than 64 bits, burst transaction is used. The purpose of AXI
Writer Unit test is to verify if the AXl writer module translated the valid-ready
transaction item into correct AXI transaction. No reference logic was implemented to
compare the translated AXI transaction. However, the AXI transaction were observed
manually on the interface and also received in the scoreboard for manual evaluation.
The AXI writer unit test setup was similar as in the case of filtering unit test. However,

the filtering is disabled for this test.

AXI Slave agent was added to the UVM environment to monitor the AXI transaction
on the AXl slave interface. As the agent was used as slave, it was responsible to assert
the ready signals to receive the transaction and also to produce the response for the

AXI master. The pictorial representation of AXI writer test setup is in Figure 31.

4.2.2 Build Environment Setup

All the design compilation and verification run in Nokia is typically launched in the grid
system. Nokia provides various tools for the design and testbench compilation and
simulation. Synopsis VCS was used for this project. VCS tool can be loaded to the
Nokia’s grid system by simply running the command module load vcsmx/<version>.
The bus monitor project was created using the tool called DVT. DVT is the eclipse-

based IDE. However, the real compilation and simulation was done using VCS based

on Nokia’s ModularMake [29] approach.

58

Chapter 4.3: Build Environment Setup

ModularMake is a makefile based framework for RTL simulation based verification in
Nokia. Modularity comes from the aspect that there are three distinct Makefiles, each
targeted for dedicated jobs. The Makefile system in ModularMake has three primary
Makefiles: Makefile, Makefile.mk and Makefile_proj.mk. The top-level wrapper is
called simply Makefile that routes the make commands to correct build directories. A
build-root directory is created inside each project where the make command is run.
Running the make command in the build-root creates build/img_directory. An
img_directory is simply a directory which has the image, the combination of specific

DUT and Testbench configuration.

The second Makefile called Makefile.mk is copied as Makefile into each image build
directory and maintained to be up to date. There is only one image for this project.
This Makefile also includes project specific Makefile_proj.mk. The third makefile called
Makefile_proj.mk is a project specific makefile and it defines the project specific
configuration, dut compilation rule, testbench compilation rule and simulation. Figure
35 shows the block diagram of ModularMake process. The project/image specific
makefile called Makefile_proj.mk was setup for this work such that it in turn calls one
makefile in the front end (fe) directory for DUT compilation and other makefiles in the
verification (verif) directory. The verif directory has dedicated makefiles for VIP
compilation, one in rv_vip directory and one in axi_vip directory. This approach

enhances the modularity and allows parallelism during compilation.

59

Chapter 4.3: Build Environment Setup

BUILD

BUILD_ROOT

Makefile

Makefile.mk

Makefile proj.mk

Makefile

Makefile proj.mk

Image 1

Makefile

Makefile_proj.mk

Image 2

Figure 35: ModularMake [29]

60

Chapter 5

5 Results and Discussion

This section describes the obtained result from the VHDL testbench (directed test) and
UVM testbench result. Section 5.1 includes the result obtained from the directed test

and 5.2 includes the result from UVM testbench.

5.1 Directed Test Results

The following simulation results are based on the standalone directed test for each
sub-module of the bus monitor. These simulations were run to see if the sub-modules
function the way they should to a minimum extent and if the implemented interfaces

were working. The simulations were run on Questasim.

5.1.1 Data Capture Unit Test Result

Data capture unit test was run to verify the data capturing feature of the bus monitor.
Figure 36 shows the simulation result for the data capture block. As shown in the
figure, the block has two pipeline stages: capture and write_out. Data is captured in
the capture stage and output is written in write_out stage. The signal data_input iis

the data input to the module and data_output_o is the data output.

* /data_capture_tb/clk
[data_capture_thirst
(data_capture thid v i
[data_capture_tb/d_in
fdata_capture_th/d rd |
(data_capture thien trace
fdata_capture_th/d rd o
fdata_capture_tb/d v o
[data_capture_th/d out
/data_capture_tb/Gl/data_input_i
‘. [data_capture_th/G1ivalid

“w {data_capture_tb/Gl/data_output_o
- /data_capture_tb/Gl/data_captured
“ /data_capture_tb/Gl/state_control

4

4
)
4
4
4

J
4

P

Figure 36: Directed test result for data capture unit

Chapter 5: Results and Discussion

5.1.2 Extraction Unit Test Result

Based on the values in the select0-5 field in the trace control register, the extraction
unit extracts the field of interest from the input data. Figure 37 shows the directed
test result for extraction unit. The signal sel datafield in the figure represents the
value in the select0-5 field in the trace control register. The extraction unit has three
pipeline stages: data_collection, extraction and write_out. In data_collection stage,
the unit samples the input data and collect in an array. Only when the complete data
structure is received, extraction is carried out and finally output is written in write_out
stage. The waveform in Figure 37 shows that sel _datafield is “100” and hence as per
the specification of bus monitor, only 8 bit scheduler group information is extracted
which is a hex value CE as indicated by signal d_out.

¢ fexraction thiclk L

* festraction tirst 1

¢ feitraction thGListate exrattion

* tracton thid v | i3 .

B fedraction i in 1281112340867 ABCDEFADABABCECESS AL 234

! fextraction tid rd o 0
{12612344567ABCDEFADABABCECEA50A1 234} {1.

&l

el
e’ @l 1261234086 7ABCDEFADIBABCECESS0A1 234
8 Jedraction thisel datafield 000100

Figure 37: Directed test result for extraction unit

5.1.3 Filtering Unit Test Result

Filtering unit test was run to verify the filtering logic of the bus monitor. Figure 38
shows the waveform of the directed test for filtering unit. Filtering is performed only
if the filtering unit is enabled in trace control register. Moreover, the filtering unit uses
the filter value from the filter value register and filter mask value from filter mask
register to carry out the filtering task. The signal en_filter in the figure indicates
whether or not the filtering is enabled. Signal fil_val and fil_mask indicates the value

in the filter value register and filter mask register.

62

Chapter 5: Results and Discussion

In Figure 38, signals entry_pre_mask and entry_post_mask represent the data prior to
masking and post masking respectively. If the value in entry_post_mask signal is equal
to the filter value, the filtered data is written to the output. The signal data_out

represents the filtered output data.

nmm mask mmnmmmmm
o g s st sk SEhO000000000000000001SE3
Lfitered BENOI000000000000000015E3

BEh0I0000L 234ACA001 01583

Figure 38: Directed test result for filtering unit

5.1.4 AXI Master Writer Test Result

The bus monitor captures the transaction in the interface it is connected to and
produce an AXI output that complies with the trace input for the ARM CoreSight. The
AXI translation is carried out by the AXI Master Writer module. Figure 39 shows the

output produced by the AXI writer module.

The signals shown in the figure with prefix M are the AXI write channel signals.
M_AWADDR_O represents the write address and M_WDATA_O represents the data
to be transferred over AXI interface. M_WSTRB_O represents the strobe signal to
indicate the valid byte lane. M_WLAST_O indicate that the beat being transferred is
the last beat. Note: Beat represents the amount of data transferred in a single transfer

in a burst transaction.

& laxi writer master th/UL/ACLK 1

& Iax writer_master th/UL/ARESETn b

& Jaxi_writer master tb/U1/M_AWVALD 0 1

& Jaxi_writer_master tb/U1M_AWREADY | 1
4 faxi_writer_master tb/U1/M_AWADDR 0 32'h00001810

& Jaxi_wiriter_master_tb/U1M_WALID_O 1

@ (axi_writer master tbjU1/M WREADY | 1

& faxi_writer_ master thjU1/M WLAST 0 0
(14 /ani_writer master th/UL/M_WDATA O 64'h0012008C12000055
ub/ axi_writer_master tb/U1/M_WSTRB_O ShFO

! laxi | writer master tb/Uljcurrent state de

F/gure 39: Directed test result for axi master writer

63

Chapter 5: Results and Discussion

5.1.5 Trace Control Block Test Result

Trace control block reads the control and configuration information from the register
bank and distributes the information to other sub blocks of the bus monitor. Figure 40
shows the directed test simulation result for the trace control block. The abstracted
signal t_cfg represents the control and configuration information read from the
register bank and the other signals (except clk and rest) represent the output from the
trace control block. For an example, select_datafield indicates the select0-5 field in the

trace control register.

fteb_test/elk 1

fteb _test/rst

Jteb_test/t_cfg

s enable_trace

CLELIERIE
enable_timestamp
select_datafield
master_id
stimulus_port

0
111 {6'h06} {8'h01} {8'h00} {BEL...
1

filtter_value
«* filter_mask
ftcb_test/t_select_datafield

0

1200EF001200BC12000055
88'h0000000000000000001111
6'h06

ftcb_testit filter value
ftch _testit filter mask
- fteb_testt master id
fteb _testit stimulus_port
fteb_test/Ul/select_datafield
‘- fteb_test/Ulfilter value
B . jtch_test/Ulffitter mask
e . ftcb_test/Ul/master id
. fteb_test/Ul/stimulus_port

88'h1200EF001200BC1 2000055

88'h1200EF001200BC1 2000055
88'h0000000000000000001111

Figure 40: Directed test result for trace control block

After running the directed test for each of the sub modules of the bus monitor, all
these sub modules were instantiated in the bus monitor top module and again a
directed test was run. Figure 41 shows the directed test simulation result for the bus

monitor top level.

4 lbus monitar th/UL) DCUACLK 1
& lbus monitor tb/UL) DCU/ARESET il
4 [bus monitor tb/UL) DCUjdata vald i 1
& lbus montar thIULI DCU/data ready | 11 |
% bus monitor th/ULJ DCU/data input | 136'h2212340000ABABE FACO00035641 2457894
& lbus monitor th/UL) DCUjenable trace 1
4 [bus monitor tb/ULJ DCUldata captured 1136h0000000000000000000000000000000000 |
& fhus monitor th/ULA DCUald 0
& Jbus monitor th/ULA DCUready 1
4 bus montor thUL DCUIdata output 0 135h0000000000000000000000000000000000 |
4 lbus monitor th/UL) DCUjstate contral capture

64

Chapter 5: Results and Discussion

4 Ious_monitor tb/UL/1_EU/ACLK 1 o T e I e | e N o S e R I) s [|
9 lbus_monitor tb/UL/| EU/ARESETn 1 B e I e O e S S I
4) 4 lbus_monitor_thiUL/| EU/select_datafield 5ho7
% lbus_monitor_tb/UL/1 EU/data valid i 1
4 /bus_monitor th/U1/| EU/data_ready o 0
+) 4% Jbus_monttor tb/U1/| EU/data input i 136'h2212340000ABABEFAC000035641 2457894 | I
/4 lbus_monitor tb/UL/| EU/data_array {136'2212340000ABABEFACOD0035641245789..,
'+ 4 bus_monitor tb/UL/ EV/data 88'h0000000000000000000000
/4 Jbus_monitor th/UL/ EUlextracted_data 88'h7894641245789412457894
4 /bus_monitor tb/U1/| EU/data valid o 0
9 Ibus_monitor_tbU1/| EU/data_ready i 1
=4 bus_monitor thUL/| EU/data output o 88'h0000000000000000000000
& tbus mo LY 1
& ibus mo RESETn 1

nable fiiter

0000000000000000000000
[0
[
9 003000
1
PP (1K
4 tbus monior_th/ULI TCBACIK 1 JUULUTU YU U UU WU
4 Ibus_monitor thjUL/l TCBARESETn 1 | |
49 bus montor_to/ULI TCBbm cfg 101 {5h07} {8h00} {8hoL 8800000000, |{AHGHY
9 Ibus_monitor th/UL/| TCBrenable trace 1
4 bus_monitor th/ULI TCB/select datafield 5h07
& bus_monitor thyUL/| TCBenable fiter 0
/4 lbus_montor th/UL/ TCBker value 88'h00000000000000000010L0
/4 bus_monitor thi/UL/| TCBker mask 83h000000000000000000111L
&/ fbus_monitor_thyUL/| TCB/master id 8h00
% lbus_monitor_thj/UL/| TCB/stimulus_port 8hoo
< Ibus monitor th/UL/ TCBlenable timestamp 1
& /bus_monitor_tb/UL/|_AWM/data_valid_i 0
4 /bus_monitor_th/U1/| AWM/data_ready o 1
4 [bus_monitor_th/Ul/|_AWM/data input i 88'h0000000000000000000000
+/4% [bus_moniter_th/UL/I_AWM/M_AWADDR_0 32'h0000000¢
4 [bus_monitor th/UL/l AWMM_AWLEN O 8'h00
-4 fbus_moniter_tb/UL/_AWMM_AWID_O 16h0000
=4 /bus_monitor th/U1/| AWM/M_AWBURST 0 2'h0
4 Jbus_monitor_thAUL/| AWM/M_AWVALID 0 0
& Ibus_monitor_th/UL/| AWM/M_AWREADY | 1
4 [bus_moniter_th/UL/_AWMM_AWSIZE_0 4h0 400 JATE
+/4% [bus_monitor_th/UL/I_AWM/M_AWLOCK O 2'ho
4 fbus_moniter_th/UL/|_AWMM_AWCACHE O 4'h0
-4 fbus_moniter_tb/UL/|_AWM/M_AWPROT O 3h0
=4 /bus_monitor th/UL/I AWMM_WID_0 16'h0000
4 Jbus_moniter_thAUL/|AWM/M WVALID O 0
4 Jbus_monitor th/UL/|_AWMM_WDATA 0 64'h0000000000000000
4 [bus_monitor_th/Ul/|_AWMM_WSTRB_O 8'h00
4 /bus_monitor_th/UL/| AWM/M_WLAST O 0

A& thiie manitar thil 11/ AWMIM WREANY |

7

Figure 41: Directed test for the bus monitor

65

Chapter 5: Results and Discussion

5.2 UVM Test Results

UVM methodology-based verification not only provides the automation in the test
stimuli generation but also allows to constrain and randomize the stimuli such that not
only the anticipated bugs are tracked but also the unanticipated ones. This section
discusses the simulation result achieved after running the UVM based test. The
simulation was run on DVT eclipse. For the scope of this work, the primary features
requirement outlined by the specification were verified which includes: register
access, trace control block features, data capture, extraction, filtering and AXI

translation.

5.2.1 Register Access Test

Register access test was run to verify if the registers in the design is accessible by the
software or not. The data to be written to these registers were randomized prior to
writing to the registers. The write response was checked. The response is OK if it is
2b00. A subsequent read was performed after the registers were written. Figure 42

shows the values written to the registers in the design.

i-rLHEG_TRACE_CONTROL_S(SW downto 0) 193a_0017"
+ rLREG_FILTER_YALUE_0_5{31 downto 0) 4744 _6iGf2"
5-rLREG_F\LTER_VALUE_W_S(SW downto 0) Tef_B15a"
+ rLREG_FILTER_VALUE_Z_S(23 downto 0 44 4wy
+ rLREG_FILTER_MASK_0_3(31 dawnto 0) 1730_5ha7"
i-‘J'LHEG_F\LTER_MASK_W_S(SW townto) 1000_ooop"
+ rLREG_FILTER_MASK _Z_3(23 dawnto 0) {"00_000o"

Figure 42: Register Access uvm test

5.2.2 Trace Control Block Test

Figure 43 shows the uvm based test result for the trace control block. The abstracted
signal BM_CFG reads the register information from the register bank and writes the

output on the corresponding output signals.

66

Chapter 5: Results and Discussion

= _TCB

& ENABLE_TRACE
»ENABLE_FILTER

& ENABLE_TIMESTAMP

-2 SELECT_DATAFIELD(4 downto 0)

-5 MASTER_ID(S downto 0)
45 FILTER_VALUE(S7 downto 0) _B5c1_eez2_c6a7_tfl
48 FILTER_MASK(E7 downto 0) 3000_0000_0000_0000
-8 STIMULUS_PORT(7 downto 1)
2-B-BM_CFG 000_0000_0000_0000")
- & ENABLE_TRACE
© ENAELE_FILTER
© ENABLE_TIMESTAMP
- © SELECT_DATAFIELD(4 downto 0)
- & MASTER_ID(S downto 0)
% @ STIMULUS_PORT(F downte 0)
- @ FILTER_VALUE(37 downta 0) _B5c1_ee22_c6a7_1fl
& FILTER_MASK(57 downto 0) 3000_0000_0000_0000"

Figure 43: Trace control block uvm test

5.2.3 Data capture unit test

Figure 44 shows the waveform of the input and output interfaces connected to the

data capture unit. rv_vif is the input interface and rv_dcu out_if is the output

interface.

&-v_deu_out if
-0l]
- [rst

- [l ready
- [valid
=-rv_if
0 clk I
0 rst
- 0 data[135.0] |

- [l ready

- 1 valid

Figure 44: Data capture unit uvm test

A scoreboard was implemented to compare the output from the data capture unit and
its input. There were two agents; one connected to rv_dcu_out _if and the other
connected to rv_if. Transactions on each of these interfaces were collected in the

scoreboard and compared.

The data collected in the reference queue is in the screenshot below. The reference

against which the data capture unit output was compared against is in_g. The number

67

Chapter 5: Results and Discussion

of transaction set for this test was 10 and hence the queue size. The data in in_q was

extracted from the input interface.

S @ in_g @M
- () super
- i@ m_global_gueue null
= . gyele size: 10
-0 [0 ‘hibfiedfed9d7d31e25593c4d2b1 c4d92cs
0[] ‘h3fiafadebad 9d54e 346451 a4 3206564 763
0 [F] ‘hb315e90d903a1 736h54hbc 783064 c2d3bg
O[3 ‘thoc0za7Zeedchd1bldaZEz64b01 644849239
0 [‘hilchez4053efb95b3320d 3765094 2661
- 0 [3] ‘hd5ghabeaald0as3b0cffZ0fhficeabecsa
O [A] ‘heedlathbefe7c689e3a5d94d5355af0176
0[] 'hZ1504acadifida7261 6d04065dd6bbed sy
O [d] 'hd653991febcche14a54hd 2394 1hdaalicy
09 ‘h3alcéochbabyoifd7 1theadb4d 5954 a034
- [type_name "Luvm_gueue"

The output data collected from the Data Capture Unit output interface is below.

2 i@ out_g @e

i (@ super

- B m_global_gueue null

—|- . jLELE size: 10
- 0 [0 ‘hibfiedfeddd7di1e25593c46201c4d92ch
- 0 (1] 'h3fiafadefad Idode 34648124 3a06564 763
- 0 [2] 'hb315e50d903a1736b54bboy33064c2d5hd
- 0 [3] ‘thel2572eedchd1h1daZa264001 644543233
- 0 [4] ‘hilche2403efMbIsh3320d376M03dI4 2661
- 0 [3] ‘h058baheaald0as3bicfz0fbficealbecsa
- [[6] ‘heed1afhbefe7cdE9e3abd34d3385af01 76
- 0 [7] 'hZ21504acadffB337 261 6d04065dd6hbcd 57
- [[8] 'hd6539591febicch214a54h4 2394 1h4aa03cs
-0 [9] 'haalcZcofal 7o a7 1headhdd 53314 a5 534

=[] type_name "uvm_gueue"

68

Chapter 5: Results and Discussion

5.2.4 Extraction Unit Test Result

Figure 45 shows the waveform view of the input and output from the extraction unit.

9 DATA_READY_0

-0~ DATA_INPUT_i(135 downto 0)

\ACTED_DATA(E dowrio 1)

WIDTH_EU

 OUTPUT_O{E7 dowrto 1)

- @
—
s
Y

Figure 45: Extraction unit uvm test

The reference data against which the extraction unit output was compared was
generated in the scoreboard. A simple system Verilog method was written for this. The

output from the extraction unit was collected in a FIFO in the scoreboard.

The following screenshot shows the data collected in the reference queue and the
output queue for the extraction unit test. The number of transaction was set to 20.
The test was run for the bus width 136 which is the EM2TX interface between the
event manager and the TX queue in the EMA. The complete data structure transfer
requires four transactions and hence 20 transactions make up 5 complete data
structure transfer on the interface in question. The items collected in the ref q_eu in
Figure 46 shows the item generated by the reference logic implemented in System
Verilog while the out_g_eu shows the item collected from the Extraction unit output

interface.

69

Chapter 5: Results and Discussion

S @ out_g_eu @z
- B super
- (G m_global_gueus null
—|- == eUe sizes &
-l [‘hbed1d04bGe03146a50bed
0[] ‘hb55fagdd3hedl adbe3haaf
o [2] 'h§0059fades1 3hd 2hE56005
0 [3] ‘hEBadleszbZie9edfbl G6aG
w0 4] 'hfzhac7 3961 aa95b4dafzha
- [type_name "Uym_gueue”
= G ref_g_eu i
- {8 super
- (G n_global_gueus riull
=] mm Juele gize: 9
~ 0[] 'hbed1504b5e09146a50he51
0[] ‘hb55faB4d3bedl adbe3hasf
0 [z] ‘hE0059fa3ed Shdz2bBESE005
o [3] 'hEBaG1ebz825e9edihl GEad
""" 0 [4] ‘hf2hacy3961 aa96b4ddfzba
- [type_name "UYm_gueue”

Figure 46: Screenshot of the reference queue and output queue for extraction unit

5.2.5 Filtering Unit Test Result

Figure 47 shows the waveform view of the input and output from the filtering unit.

SFU

~B-ACLK

- ARESETN
~B-DATA_VALID_|

- B DATA_READY_O
-B-DATA_INPUT_I(T downto)
-p-ENABLE_FILTER

E3

-B-FILTER_WALUE(ST downto 0)
-B-FILTER_MASK(GT downto 0)

T

-rLENTRY_PRE_MASK(ET downto 0)
-rLENTRY_POST_MASKET downto 0) "

+

-rLFILTERED_DATA(E? downta 0)
& DATA_YALID_O

--eDATA_OUTPUT_O(E7 downta 0)
- B-DATA_READY_|

- L CURRENT_STATE

Figure 47: Filtering unit uvm test

70

Chapter 5: Results and Discussion

The output from the filtering unit was collected in a FIFO in the scoreboard. In addition,
a function was implemented in the scoreboard to carry out the filtering which would
produce the reference data against which the output collected in the FIFO was
compared. The ref_q_eu and out_q_eu in Figure 48 show the reference item and the

output collected in the FIFO respectively.

- @ this &N
©
=N i out_g_fu (k)
+ i) super
i€ m_global_gueue |
— . LR LR size: 1
RN) 'h0000000000000000001 746
e] type_name "Lwrm_cueue"
= {8 ref_t_fu @3
+ i) super
i) m_global_gueue full
— . LR LR size: 1
RN) 'h0000000000000000001 746
e] type_name "Lwrm_cueue"

Figure 48: Screenshot of the reference queue and output queue for filtering unit

5.2.6 AXI Writer Unit Test

Figure 49 shows the transactions on the AXI slave interface. The transactions item on

the interface were manually observed and verified for this particular test.

- axl_slave_if
0 awvalid 1h0
- [awready 10
0 awaddr{31:0] *'h0000_0000 | [o} 0000_0110
- [walid 1'bi
- [wready 1'h1
G Owdatapsa] 0_oooo_oooo ||
[wstrb[7:0] &0
0 wiast 1h0
- [bvalid 'l
- [breacly 11
0 hresp(t:0] Z'hi

Figure 49: AXI Slave interface

71

Chapter 5: Results and Discussion

The AXI items were also collected in a FIFO in the scoreboard. Figure 50 shows the
item collected in the FIFO. For 20 sequence items, the generated corresponding AXI
transaction is 5 for the reason explained earlier. Only the data items are collected in
the queue shown in the figure as address is the same for the fixed burst which is

0000_0110 in this case.

- mm g _data_g size: G
. mm [(0] size: 2
- [[0] '‘hfezzcl coceneffel
- 1 1] ‘ho000000000fefa 66
—|- mm [11] size: £
=00 'hd235b12ch00adahd
-0] ‘hooooo00000dehdad
—|- w07 zize:; 2
- 0[O ‘hESdaZci7alsZ1dda
=0] 'ho00000000013daac
—|- w13 size: £
=00 'hd0cTITIATEIN 275k
-0] ‘hoooo0000000e?5hya
—|- [zize:; 2
- 0[O ‘had3Zalalal425924
=0] 'ho00000000059240a

Figure 50: Screenshot of the reference queue and output queue for AXI writer unit

72

Chapter 6

6 Conclusion and Further Developments

Debug and trace feature in any HW design is non-trivial as the SW intended to run on
the HW may not function the way it is supposed to. Tracing the data allows to have a
clear picture of what is working and what is not during the execution which is the most
effective way to fix the SW. The bus monitor in the DTSS non-invasively captures the
transaction on the interfaces and generates the trace input data to the CoreSight
architecture. The CoreSight architecture then produces the trace output packet

depending on the configuration written to the CoreSight.

Figure 51 shows the eventual trace data output in SoC level that a software
programmer can see. DTSS programming is done via JTAG interface and trace data

output is observed via PCle (peripheral Component Interconnect express).

DTSS SoC-level

IP3 Event Socket

Figure 51: DTSS in SoC-level

Chapter 6: Conclusion and Further Developments

The primary features listed in the feature requirement of the bus monitor; data
capture, extraction, filtering, AXI translation and glue logic in trace control block were
implemented and verified. The scope of this work involves the RTL implementation of
the bus monitor and its verification. The verification of the bus monitor was carried
out for all the interfaces shown in green arrows in Figure 9. However, the one
discussed in the results and discussion section is for the EM_TXDATA interface which
has a 136-bit wide data bus and a complete transfer of the data structure on this
interface requires four transactions. The simulation results for the other interfaces are

listed in the appendix section.

6.1 Further Developments

This thesis work is mainly concerned with the design implementation and verification
of the bus monitor IP used in DTSS in ES. It is thus the instrumentation (art of
measuring) of performance of the SW application running in the ES is outside the scope
of this work. However, the performance instrumentation can be carried as further task

to prove the legitimacy of the ES based HW acceleration.

The integration of the bus monitor with the standard ARM CoreSight components
(depicted as CoreSight sub-system in Figure 11) to make a complete DTSS in ES will be
carried out as further development. The goal of the DTSS in ES is to have a functioning
debug and trace sub-system design which can be integrated to the Debug and Trace
Sub-System in SoC level. Integrating the ES DTSS in Debug and Trace Sub-System in
SoC level will also be carried out as further development, a glance of which is depicted

in Figure 51.

74

References

1. Amdahl, G. M. (1967). Validity of the single processor approach to achieving large
scale computing capabilities. Retrieved from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4785615.

2. Nokia. (2018). Event Socket. Retrieved from
https://nokia.sharepoint.com/:w:/r/sites/EventSocketGeneral/ layouts/15/Doc.as
px?sourcedoc=%7B517D89DF-FC79-41D3-A846-
56A2C4655D11%7D&file=Event%20Socket%20HW%20Architecture%20Specificati
on.docx&action=default&mobileredirect=true

3. A.T.BHopkins, K.D. McDonald-Maer. Debug support strategy for systems-on-chips with
multiple processor cores. Retrieved from
https://ieeexplore.ieee.org/document/1566578

4. S.Zoran, H. Klaus, K. Milos, E. Victor and S. Ignacio.2011. MAC and baseband
processors for RF-MIMO WLAN. Retrieved from
https://www.researchgate.net/publication/228453031/download

5. National Instruments. What is I/Q Data? Retrieved from
http://www.ni.com/tutorial/4805/en/

6. Nokia. (2013). Open Event Machine. Sourceforge. Retrieved from
http://download2.nust.na/pub4/sourceforge/e/project/ev/eventmachine/Docum
ents/EM introduction 1 0.pdf

7. Nokia. (2018). Event Manager Design Specification. Retrieved from
https://nokia.sharepoint.com/:w:/r/sites/EventSocket20/ layouts/15/Doc.aspx?so
urcedoc=%7B1C17482B-0AE9-4BDA-AF15-
BBADE2729FAE%7D&action=edit&source=https%3A%2F%2Fnokia%2Esharepoint
%2Ecom%2Fsites%2FEventSocket20%2FSitePages%2FHome%2Easpx%3FRootFold
er%3D%25

75

References

10.

11.

12.

13.

14.

Nokia. (2018). Event Manager EMA Design Specification. Retrieved from
https://nokia.sharepoint.com/:w:/r/sites/EventSocket20/ layouts/15/Doc.aspx?so
urcedoc=%7B0B022752-5603-4F0B-89E7-
4674F331F5F8%7D&action=edit&source=https%3A%2F%2Fnokia%2Esharepoint%
2Ecom%2Fsites%2FEventSocket20%2FSitePages%2FHome%2Easpx%3FRootFolde
r%30%25

Nokia. (2018, June). Buffer Manager Design Specification. Retrieved from
https://nokia.sharepoint.com/:w:/r/sites/EventSocket20/ layouts/15/Doc.aspx?so
urcedoc=%7B3CA485D2-0C6A-4194-A6D5-
CC6DD1D1BE36%7D&file=Buffer%20Manager%20Design%20Specification.docx&a
ction=default&mobileredirect=true

Nokia. (2018). Buffer Manager EMA Design Specification. Retrieved from
https://nokia.sharepoint.com/:w:/r/sites/EventSocket20/ layouts/15/Doc.aspx?so
urcedoc=%7B33B72397-11D5-4027-9E9A-

B7EOF938A4DB%7D&file=Buffer%20Manager%20EMA%20Design%20Specificatio
n.docx&action=default&mobileredirect=true

Nokia. (2018). Debug and Trace Sub System Architecture in Event Socket.
Retrieved from

https://nokia.sharepoint.com/:w:/r/sites/EventSocket20/ layouts/15/Doc.aspx?so
urcedoc=%7B638DAB30-B181-4469-B530-

1C5DA4DD9484%7D&file=EM20 IP Debug and Trace.docx&action=default&mo
bileredirect=true

ARM CoreSight SoC-400-r3p2. (2015). Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0480g/DDI0480G coresig

ht soc trm.pdf

ARM. (2014). ARM CoreSight STM-500 System Trace Macrocell. Retrieved May 25,
2018, from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0528b/DDI0528B coresig
ht system trace macrocell rOpl trm.pdf

ARM. (2010). CoreSight Trace Memory Controller. Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0461b/DDI0461B tmc r0

pl trm.pdf

76

References

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

ARM. (2017, December). Cross Trigger Interface. Retrieved June 1, 2018, from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344b/DDI0344.pdf

ARM. (2013). ARM Corelink NIC-400 Network Interconnect. Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0475b/DDI0475B corelink
nic400 network interconnect rOpl trm.pdf

MIPI Alliance. (2018). Retrieved from
https://www.mipi.org/

ARM. (2011). AMBA AXI and ACE Protocol Specification. Retrieved June 1, 2018,
from

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022b/
index.html

ARM. (2004). AMBA 3, APB Protocol Specification. Retrieved June 1, 2018, from
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022b/index.ht
ml

ARM. (2008). AMBA 3 ATB Protocol Specification. Retrieved from
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022b/
index.html

Mentor. UVM Cookbook. Retrieved from
https://verificationacademy.com/cookbook

B. Vermeulen, T. Waayers, S. Bakker. IEEE 1149.1-compliant access architecture

for multiple core debug on digital system chips. Retrieved from
https://ieeexplore.ieee.org/document/1041745?ALU=LU1043072

F. Moerman. Open event machine: A multi-core run-time designed for

performance. Retrieved from
https://ieeexplore.ieee.org/document/6924355/authors#tauthors

N. Stollon, R. Collins. Nexus Based Multi Core Debug. Retrieved from
http://nexus5001.org/wp-
content/uploads/2015/02/DesignCon 2006 Nexus FS2 Freescale.pdf

77

References

25

26.

27.

28.

29.

. B. Schwaller, B. Ramesh, A.D. George. Investigating Tl KeyStone Il and quad-core

ARM Cortex-A53 architectures for on-board space processing. Retrieved from
https://ieeexplore.ieee.org/document/8091094

IEEE. IEEE 1149.1 Standard. Retrived from
https://standards.ieee.org/standard/1149 1-2013.html

R. Stence. Real Time Calibration and Debug Techniques of Embedded
Processors with the Nexus 5001Interface. Retrieved from

https://www.researchgate.net/publication/296664139 Real Time Calibration
and Debug Techniques of Embedded Processors with the Nexus 5001 Interface

K.D Maier. On-chip debug support for embedded systems-on-chip. Retrieved from
https://ieeexplore.ieee.org/document/1206375/authors#authors

Nokia. Modular Make and VMT System. Retrieved from
https://nokia.sharepoint.com/sites/soc-
dftp/verification/SitePages/Modular%20Make%20and%20VMT%20System.aspx

78

Appendices

Appendices

There are seven interfaces in ES to which a bus monitor is connected to non-invasively extract the transaction on the
interfaces and generate a trace input data for the ARM CoreSight. The simulation results for six other interfaces (except

the one mentioned in result and discussion section for bus width 136) are listed here in the appendix section.

Appendix 1: Simulation results for the bus monitor on the interface between RX queue and EM

This section includes the simulation result for the bus monitor on the interface between RX queue and EM with bus
width of 128 bit. The following screenshot shows the waveform view of the data capture unit interface.

&-1_DCU

- @ BURSTLENGTH_DCU

- & DATAWIDTH_DCU
B-ENABLE_TRACE

B-ACLK

~B-ARESETN
~B-DATA_VALID_|
~B-DATA_READY_|

- 2= DATA_INPUT_I{127 downto 0)
-r-DATA_CARTURED(1Z7 downto 0) (g

|
:

- YALID
~B-READY
-2 DATA_OUTPUT_O{127 downto 0)

The following screenshot shows the data collected in the reference queue (in_g) and output queue(out_q) in the
UVM Scoreboard for the data capture unit.

Appendices

2 @in_qg

i--@super

- () m_global_gueue

- mm UeLe
o
0 (2
0 (3]
oM
0 3]
0 [6]
0 [7
0 (A
09

- 0 [10]
0
0[1e
014
0 [14]
019
0 [16]
017
0 [18]
0[19)

- [l type_name

@

null

size: 20
‘hd0ced17Z2e73bchdelfezacileseffefa
'h43549655822690495a9095c115d21a2a2
‘hfed550dalhac bZIF5d4BRZ 2201 Ce
'hid7dbdbd3a057ah523eba7 366171456k
'hShb&f3045ccd9ebadd3affabb00edehd
‘h719566fGcfaaff7faldaciebocear06af
'h0d6da22fa9G6d1 edf1 Se7cSaddz3ab1 2
'h1EagZféfadcd 954 2hE975abedh?472Ca
'h34.3a956672c4a13421161710a0521 Gda
'h03933239a7ca33e08605031b7db7edZ0a
'"hb 731 73299ec94ab7E67hiG2acE4a2c 77
‘hc03hdafad0efohA140541 37AMB0BLAGD
'h4cezedlsa766d705he590290630b1e78h
‘hb0Bh7cdfZhbb5f3Z72ebZb33a1711cda
'h3457476312c2fc29M659c1 7940079797
'hd1chAdebddel adfZdia7ab 74063476 R
‘hedab7i9acad1thzcallsbeT7aldzngzd
'hb3afedh3dd326d0casd h3afddcfl142
'h127117ebb5d4 29035974 0aad32a9a9
'h400f1 96eab 764 75h221d1 54 2C0ffffz9
"Uwm_gueue”

5. {8 out_g

- @) super
- (B m_global_gueue
<) mm gLELE
(1]
2]
(4]
]
(5]
L]
7]
(8]
]
(o]
(1]
ne]
(1]
(14]
(5]
[1E]
(17
(1]
(19
- [l type_name

| R s s s [s N s Y s [s Y s [s [s N s s [s N s [o [e B s [o |

@z

null

size: 20
‘hddced17z2e73becsdedezactieSeffal
'h4G5496552a690495a9095c115d21a2a2
'hfed850dalbac1b2975d466f2220 1 oo
‘hd7dbdbd3a057ab523eb57 56617104560
‘hbhEf3045ccd9ebadd3afabbiledebd
'h719566f8cfaafifaldociebeceaT06al
'h0GA4a22H95d1edf1 5e7cSadd235h1 2
‘h1Z2ag2fefadcd 9542h6975abedh?472cE
'h343295667 204213421161 710a05218da
'h0339239a7c533e08605031 b74bT7ad20a
'hb73173299ec94ab767h352ack84a2c77
*he03bdafod0efohE04bE41 374606hEGH
'hdceze5055766d70502590230630h1 780
‘hb0Bh7cdfZbbhSf5272ehzh98a1 71 1cEa
'h94574763f2c2fc29fEE9c1 7940079797
'hi1cE8ebddel adf2dfa7ab 7406347628
‘heGah7?39acad1fbecall56e?7al425924
‘hbhdazedh3idd3Z6d0casd hiafddcf1142
'h1271f7ehbdddea0ff389740aa432a3a3
'h400f1 96eak 764 75h221d1 54 2c0ffffz9
"uym_gueue”

Extraction unit interface waveform view.

= I_EU

@ DATAWIDTH_EU

B-ACLK

B~ ARESETN

B MASTER_ID(S downta 0)

B SELECT_DATAFIELD(dowinto 0)
B-DATA_VALID_|
5DATA_READY_O

B DATA_INPUT_I 27 downto 0)
n STATE

. COLLECTION_START

. COLLECTION_COMPLETE
nDATA_ARRAY(D to 3)
nEXTRACTION_START

AL EXTRACTION_COMPLETE

L DATA_LAST(127 downto 0

L DATA(ST dowinta 0)

& DATA_VALID_O

B DATA_READY_|

5 DATA_OUTPUT_O(87 downto 0)

+-LEXTRACTED_DATA(GE? downto O)

Appendices

Extraction unit reference item and output collected in a queue for comparison in the scoreboard.

= i€ ref_g_eu
+- () super
- gy m_global_gueue
= mm UElE

- [l type_name

i

null

zize: 9

'‘hacdnEEfZZZc] cocedeffefd
'hffabagd235b12chiledebd
'h1710acEs4a2c77alaz16da
'hb2307940c7979763h1e78h
'hEc770aad32adala1425924
"LUym_gueue”

Filtering unit interface waveform is below.

£ 1L FU
B-ACLK

-D- ARESETN

B-ENABLE_FILTER

- FILTER_VALUE(E7 downto 0)
-B-FILTER_MASK(87 downto 0)
-rCURRENT_STATE
B-DATA_VALID_|

- DATA_READY_O
-B-DATA_INPUT_I{87 downto 0)
rLENTRY_PRE_MASK(B7 downto 0)

- ENTRY_POST_MASK(87 downto 0)

FILTERED_I

& DATA_VALID_O
B DATA_READY_|
--» DATA_OUTPUT_O(87 downto 0)

- i out_g_eu
1 {8 super
- (B m_global_gueue
= mm gUeLE

- [type_name

@z

null

zize: 4

'‘hacBl66f22Z2c1 coceseffefs
'hifaiafd235b1 Zch0ledebd
'h1710acEadazc77alsz168da
'hh2307340c7373763b1e7dh
'hBcT70aad32a9a9a1425924
"Lvm_fueue”

00_0000_0000_0000_0000_fefs

The following screenshot shows the item collected in reference queue and the output queue in the scoreboard for the
filtering unit. The filter value in filter value register is FEF5 and hence only the data field with value equal to FEF5 is

filtered out.

S {8 out_g_fu @4
J}--@super
& m_global_gueue null
— = L2 size: 1
| [0 'h000o000000000000000fefs
0 type_name "Uvm_gueue"

=l (G ref_g_fu @3
J}--@super
& m_global_gueue null
— = L2 size: 1
| [0 'h000o000000000000000fefs
0 type_name "Uvm_gueue"

Appendices

AXI writer module interface output is below.

L AWM

B AW ALID_OD
+- -2 M_AWADDR_0(31 downto O) nooo_ooon :u: 0100_o010
B MWW ALID_O

-2 M_WDATA_C(B3 downto 0

- W _WLAST_O
+-B-M_BRESF_I(1 downto 0)

fp-h_BVALID |

AXI output collected in a uvm queue is below.

- mm 5 lata_q size: 9
<. wm [00] size: 2
- [0] '‘hfzzcl1coceneffeld
- 0 1] 'hO0000000ac080066
|- mm 1] size: 2
- 0 [0 'hd235h12chl0edebd
-0 1] ‘ho0oooo0offlanGad
|- mm 2] size: 2
- 0 [0] 'hE3daZcTralszlGda
-0 1] 'hO00o00o0o01 701 00ac
=] mm 3] size: £
- 0 [0] 'ha0c7979763b1e75b
-0 1] 'ho00o00o000bz090079
- mm [[14] size: 2
- 0 [0] 'had32a9a9a14 25924
-0 1] 'hO00000006C07070a

Appendices

Appendix 2: Simulation results for the bus monitor on APC interface

This section includes the simulation result for the bus monitor on the atomic processing complete interface and bus
width is 40 bits. The following screenshot shows the waveform view of the data capture unit interface.

5. 1.DCU
& DATAWIDTH_DCU
® BURSTLENGTH_DCU
B-ACLK
B~ ARESETN
- ENABLE_TRACE
..B-DATA_VALID_|
..5-DATA_READY_|
B-DATA_INPUT_I(38 downta 0)

e 7]

o CAPTURE_VWALID

-rLDATA_CAPTURED(3S dowmio 0)
= VaLID
--B-READY

-2 DATA_OUTPUT_O{39 downto 0)

- Mew Group

The following screenshot shows the data collected in the reference queue (in_g) and output queue(out_q) in the
UVM Scoreboard for the data capture unit.

@ in_g @1 S (8 Out_g @2
- i@ super +1- () super
-~ (@ m_global_gueue null - (G m_global_gueue null
SR VTN size: 20 —|- . gueue size: 20
-0 [9] ‘hE0eseffels - 0[] ‘hileseffers
-0 '‘h11odz1agas - (1] 'h115dZ1aZas
0 [g] ‘hBEfZZZC1Ce - 0 [2] 'hBBfZZ2c1ce
0 ['hBE171e4560 - 0[] 'hB6171e4560
0 M ‘hagh00edebd - [[4] 'haBh00edebd
0 [9] ‘hebcea706af -][9] ‘hebcea706af
0 [g] 'had4z3ahlze - 1 [6] 'hagdz3sbl 2c
017 ‘hhedh7472cE - [[7] 'hhedh7472cE
0 [d] 'h10a05218da - 0 [8] 'h10a05216da
0[M '‘hh74h7edzia - 0 [9] ‘hh74h7edzla
-0 [10] ‘hachS4azcy7 - 0 [10] ‘hacB54aZe?y
0 [11] '"h74TE06RESR - 0 [11] ‘h74TE0ERETh
0z 'h3063h1e7dh - 0 [12] 'h9063k1e7 8k
013 'h3da1711cda - 0 [14] 'h3da1711cha
0 [14] 'h7940c73737 - [[14] 'h7340c79737
0 [19] '"hd0BC34 762 - [[19] 'h40BC34 TR e
0 [1g] 'h7Tal4z23924 - [[16] 'h77a1425924
I ‘hafddcfl142 - [[17] ‘hafddcfi14z
0 [18] 'h0aad3Zadal - 0 18] 'h0aad3Zadal
IE] *hd 2cOffffzg -0 [19] *hd 2cOfffzg
- [type_natme "Luvm_gueLe” - [type_name "L m_guele”

Appendices

Extraction unit interface waveform is shown in the screenshot below:

- LEU
- & DATAWIDTH_EU
B-ACLK
B-ARESETN
nSTATE
B-MASTER_ID(S downta 0)

#

- SELECT_DATAFIELD{4 downto 0)

B-DATA_VALID_|

B DATA_READY_O

B-DATA_INPUT_I(3S deownto 0

rLCOLLECTION_START

L COLLECTION_COMPLETE

. LEXTRACTION_START

- rLEXTRACTION_COMPLETE
rLEXTRACTED_DATA(ET downta 0
rLDATA(E? downto 0

B DATA_VALID_O

- B-DATA_READY_|

4

= DATA_OUTPUT_O(E7 downto 0)

Iltems collected in the reference queue and output queue for the extraction unit is below:

JLLECTION

COLLECTI

101

LLECTION

i~(]retq_eu

- i) super
- 5y m_global_gueue
= e
-0
(1
[
(3]
[
(]
(]
7]
]
L]
[
1]
2]
(4]
(4]
[19]
(1]
17
(14
9]
- [1 type_name

s IO e R s R e o Y e O s Y e O s Y e R e Y e O e Y e R e D e R e Y e Y =

@

null

size: 20
'h00000000000050e5effafs
'h000000000000115d21a2as
'h000000000000B6f2220 &
'h0000000000006E1 71 ed56h
'h000000000000a6h00edebd
'h000000000000e6cesT06arl
'h000000000000a53423501 20
'h000000000000be8hT4T2CE
'h00000000000010a05218da
'h000000000000b74b7edz20a
'h000000000000acEsdazeTr
'h00000000000074f506hESR
'h000000000000306301e78h
'h000000000000958a1711cda
'h0000000000007540c73747
'h000000000000406034F62e
'h00000000000077 21425984
'h000000000000af4cf1142
'h0000000000000a84 322929
'h0000000000004 2 c0fff23
"uwm_gueue"

o e O e Y s Y s Y s s s [e R s o Y s Y s O s [s s e R s e

Filtering unit interface waveform view is in the screenshot below.

2o) out_g_eu
- {6 super
- {8 m_global_gueus
= m= guEyE

o
[l
[l
&
@
=l
(]
7]
(8
&
(o]
)
(el
(1]
(4]
[14]
(18]
(7]
(18]
(9]

-] type_name

@z

null

size: 20
'h00000000000050e5effefa
'h0000000000001 15218242
'h0000000000006GRZZ22e1 e
'h00000000000066RT 71ed 560
'h000000000000aGb00edebd
'h000000000000eGceatOGaf
'h000000000000a84 235012
'h000000000000besk747208
'h0000000000007 Da0521 Gda
'h000000000000bT4bFedzZ0a
'h000000000000ackSdaic??
'h00000000000074f606bESH
'h0000000000009063k1 e7E0
'h00000000000095a1 711 cha
'h0000000000007 94079757
'h000000000000406C347EZe
'h0000000000007 7al425924
'h000000000000af4 e 142
'h00000000000009ad32a9a9
'h0000000000004 2e0fff29
"uvn_gueus”

OLLECTION

OLLECTION

Appendices

= I_FU
B-ACLK

- B- ARESETH

- B-ENABLE_FILTER

+B-FILTER_YALUE(S7 dowmto 0)

¥

B-FILTER_MASK(BT downta 0)

- CURRENT_STATE
p-DATA_VALID |

-~ B DATA_READY_O

- B-DATA_INPUT_I(ET downto 0)

- ENTRY_PRE_MASK(S7 downto 0)

¥

o

FLENTRY_POST_MASK{AT downtn 0)
A FILTERED_DATA(S7 dawnto 0)

2 DATA_VALID_O
B-DATA_READY_|

£ DATA_OUTPUT_O(G7 downta 0)

=

Filtering unit items collected in the reference queue and output queue in the scoreboard is in the screenshot below.

S @ out_g_fu @4
1 @ super
i m_global_gueus null
_ mm Lele size: 1
Lol 0] '"h000000000000000000fefS
L [l type_name "uvm_gueus"
- (i) ref_g_fu @3
1 @ super
i m_global_gueus null
_ mm Lele size: 1
Lol 0] '"h000000000000000000fefS
L [l type_name "uvm_gueus"

AXI writer module interface waveform view shown in the screenshot below.

L AWM

B M_AWVALID_O
f---DM_P.WP.DDR_O(S'I downto 0) : nz00_no1o
L BM_WVALID_O

4 M_WDATA_O(63 downto)
- BM_WSTRE_O(7 downto 0)
LB M_WLAST_O

- B-M_BVALID_|

5 B-M_BRESP_I(1 downta 0)

AXl items collected in a queue in the scoreboard is below.

Appendices

2} mm axi_data_qg
. mm [0

size: 20

size; 2

'h00000050e 5effefs
PV
size; 2
‘h000000115d21a2a2
PV
size; 2
'h0000006GEfZZ2C e
PV
size; 2

'h00000066E1 71ed56h
PV
size; 2
'h000000a6b00edebd
PV
size; 2
'h000000eGcee? DEaf
PV
size; 2
‘h000000ag4235h1 2
PV
size; 2
'h000000bedh7472cE
PV
size; 2

'h00000071 020521 8da
PV
size; 2
'h000000b74b7edZ0a
PV
size; 2
‘h000000acESd4aze 77
PV

5. mm [011]
5 mm[01g]
5. mm[013]
5. mm[014]
5. mm[015]
5. mm[016]
5 mm[017]
5. mm[015]
5. mm[019]

size: 2
'h00000074fE06RESh
PV D D D,
size: 2
'h0000009063h1e78h
" Voo o,
size: 2

‘h0o0o009gal 711cia
" Voo o,
size: 2
‘hO000007340c79797
" Voo o,
size: 2

‘000000406 34762 e
" Voo o,
size: 2

‘0000007 7al425924
" Voo o,
size: 2
‘hoo0o00af44cf142
" Voo o,
size: 2

‘h0000000aad 32a9a9
" Voo o,
size: 2
‘h0o0o0004 2 cofffza

" Voo o,

Appendices

Appendix 3: Simulation results for the bus monitor on EM credit interface

This section includes the simulation result for the bus monitor on the EM credit interface and bus width is 16 bits.
The following screenshot shows the waveform view of the data capture unit interface.

. 1_DCU
® DATAWIDTH_DCU
. ® BURSTLENGTH_DCU
B ACLK
b ARESETH
. p-ENABLE_TRACE
B-DATA_VALID_|
. b-DATA_READY_|

7

-B-DATA_INPUT_I(15 downta 0)
L DATA_CAPTURED(IS downto 0)
. L CAPTURE_VALID

B YALID

- B-READY

- DATA_OUTPUT 015 downio 0) 0000 | fefS

Items collected in the reference queue and output queue for the data capture unit is below.

S @) in_y @1 e (i out_g @z

- () super - (B super

- @ m_global_gueue null - @ m_global_gueue null

—- = e le size: 20 —I- mm gueue size: 20
- 0 0] "hfefS - 0[] "hfefS
- 0 [1] ‘haZaz 0[] ‘hazad
- 0 [2] ‘hciec 0 [4] ‘heice
- 0 [3] 'hda6h 0 [3] 'h4a6h
-~ 0[] ‘hdebd 0 [4] ‘hdebd
-~ [[5] 'h0Gaf 0[5 ‘hiBaf
-~ [[6] 'hir1 Zc 0 [6] Wil 2
- 0 [7] ‘h7Zcd 07 ‘h7Zca
- 0[] ' Gda 0 [d] 'h1dda
- 0 [9] ‘hdZ0a IE] ‘hd20a
- 0 [10] ‘hec77? - [[10] 'hecT7
- 0 [11] ‘hhE&dh - 0 [11] ‘hh&EEh
- 0 [12] ‘he7dh 02 'he7sb
- [[13] ‘h1cGa | ‘hi1cga
- 0 [14] 'h9797 04 ‘97587
- [[13] ‘h7GZe 0 [13] ‘h7GZe
- 1 [16] 'h5924 0 (6] ‘ha3z4
-1 [17] 'hi142 0 Q7] ‘h114z2
- 1 [1§] 'hadad 0 [‘hada3
ik hifz29 IR ‘hifz3

- [type_name "y m_ojU el - 0 type_name U n_tueue”

Appendices

Extraction unit interface waveform view is in the screenshot below.

2 1_EU

® DATAWIDTH_EU
B ACLK
B~ SBRESETN

)

-B-MASTER_ID(S dawnto 0)
-B-SELECT_DATAFIELD(downto 0)
- p-DATA_YALID_|

& DATA_READY_O

)

-B-DATA_INPUT_I{15 downto 0
S DATA_VALID_O
. p-DATA_READY_|
--&DATA_OUTPUT_O(87 downto 0)
L STATE
- EXTRACTED_DATA[ST downto)
. L COLLECTION_START

- COLLECTION_COMPLETE
- e EXTRACTION_START

L EXTRACTION_COMPLETE

Reference items and output items collected in a queue in the scoreboard for comparison for the extraction unit is
shown below.

S i ref_g_eu @1 &N i@ out_g_eu @z

i (B super - (8 super

- 8 m_global_gueue null : @ m_global_gueus null

= mm guale size: 20 = mm fuUELE size: 20
- 0 (0] 'h000000000000000000fefS -0 ['h000000000000000000fef5
- 0 1] 'h000000000000000000a282 - 0] 'h000000000000000000a2382
- [[2] 'h000000000000000000c1 e - 0 [2] *h000000000000000000c1Ce
- 0 [3] "h000000000000000000456k - 03] 'h000000000000000000456h
- 0 [4] "h000000000000000000dehd - 0 ['h000000000000000000dehd
- 1 [5] "h00000000000000000006af - 0 [9] 'h00000000000000000006af
- 1 [6] "h00000000000000000001 28 -0 (6] 'h000000000000000000k1 28
- 1 [7] 'h00000000000000000072C5 - 0[] 'h00000000000000000072cE
- 1 [8] 'h0000000000000000001 Sda - 0 (8] 'h0000000000000000001 Gda
- 1 [9] 'h000000000000000000dz20a - 09 'h000000000000000000d20a
- 0 [10] 'h0000000000000000002C77 - 0 [10] 'h0000000000000000002C77
- 0 [11] 'h000000000000000000868k - 0[] 'h000000000000000000b6Sh0
- 0 [12] 'h000000000000000000:758k - 0 [1g] 'h000000000000000000e75h
- [[13] 'h0000000000000000001 c8a - 0 [13] 'h0000000000000000001c8a
- 0 [14] 'h0000000000000000009797 -0 [14] 'h0000000000000000003737
- 1 [15] 'h0000000000000000007628 - 0 [19] 'h000000000000000000762e
- 1 [18] 'h0000000000000000005924 - 0 [16] 'h0000000000000000005924
- 0 [17] 'h0000000000000000001142 -0 [17] 'h0000000000000000001142
= [1 ﬁ] 'hOO0000000000000000a929 -] [13] ‘h000000000000000000asas
- 0 [19] 'hO00000000000000000f29 - 0 [19] ‘hO00000000000000000f29

- 1 type name "uvm ouede” - 0 type_name "uwm_gueusa”

Filtering unit interface waveform view is shown below.

10

Appendices

LR

~B-ACLK

B~ ARESETN

- CURRENT_STATE
B EMABLE_FILTER

-B-FILTER_VALUE(87 downto 0)
B-FILTER_MASK(ET downto 0)
p-DATA_VALID_|

& DATA_READY_O

5

-B=0ATA_INPUT_IET downto 0y
mENTRY_PRE_MASK(ET downto O)
- L EMTRY_POST_MASKET downta 0y

5

£

- FILTERED_DATA(BY downto 0}
- DATA_VALID_O
= DATA_READY_I

£

-2 DATA_OUTPUT_O(G7 downto 0}

Filtering unit reference item and output item collected in a queue in the scoreboard is below.

S 8 out_g_fu @4
4 (@ super
i m_global_gueus null
_ == jELE size: 1
I [0] '"h000000000000000000fefS
0 type_name "Uvm_gueue"
- (i) ref_n_fu @3
4 (@ super
@ m_global_gueue null
_ == jELE size: 1
I [0] 'h000000000000000000fefS
0 type_name "Uvm_gueue"

AXI Writer module interface waveform is below.

5 1_AWM
LB M_AWVALID_O

;---—DM_."J'.WF'.DDH_CI(S'I downto 0) “ooo | 0300_0010 !

B M_WYALID_O
+--BM_WDATA_O(53 downto 0) “0000 | |

S

|

4B M_WSTRE_O(7 downto 0) oo | 03

_—

B WLAST O

- M_BYALID_|

+-B-M_BRESP_I(1 dawnta D)

11

Appendices

AXl items collected in a queue is below.

- mm gxj_data_g
- mm [00]
o
- 0]
5. mm [01]
- 00
- 00
- = [02]
- 00
- 0]
- mm (03]
o
ol
<. mm (4]
-0
- 00
- == (03]
- 00
- 0]
= mm (1]
o
ol
= mm [07]
-0
- 00
5. mm (0]
- 00
- 0]
- mm [19]
o
ol
= mm [010]
-0
- 00

size: 20

size: 2
‘h000000000000fefs
RGO
size: 2
'h000a00000000azaz
e
size: &
‘h000000000000c ce
"ROOHE000RN
size: 2
‘ho0o0o0000000456k
"ROOHE000RN
size: 2
'h0oooo0000000dehd
e
size: &
‘h00000000000006af
"ROOHE000RN
size: 2
'hooooooo0o000Ll 2e
"ROOHE000RN
size: 2
'h0oooooooo0n0y ;s
Qe
size: 2
‘h0000000000001 §da
flnrene e
size: 2
*ho0oooooo0o00odzoa
"ROOHE000RN
size: 2
'h0oooooo0o0n0zZey7
Qe

. mm[11]

e [l [

- mm[(12]

-0

- [113]

|
-0 [1]

- mm[14]

Lo

- mm [[115]

U
0]

- 16]

0

- mm[117]

-0 [0

size: 2
'haaaoooo00000bEs0
Ao
size: 2
'hoaaooooooo00e? éo
* P
size: 2
'hooooooooooon céa
flaireedes ey
size: 2
'hoaaooooo0000aray
* P
size: 2
‘hogaoooooooon7eze
GO0
size: 2
‘hagaoooooooonsaz4
* P
size: 2
‘haaaoooooooonii14z
 AGCRG0K
size: 2
‘hogaooooooonnadas
* P
size: 2
'ha0naoaonooang2a
 AGCRG0K

12

Appendices

Appendix 4: Simulation results for the bus monitor on BM credit interface

This section includes the simulation results for the bus monitor connected on the BM credit interface which has a
data bus width of 40 bits.

The following screenshot shows the data capture unit interface waveform view.

- 1_DCU

@ DATAWIDTH_DCU

® EURSTLENGTH_DCU
B-ACLE

B~ ARESETN
B-ENABLE_TRACE
B-DATA_VALID_|
B-DATA_READY_|
B-DATA_IMPUT_I(3S dowrto 0)
. DATA_CAPTURED(39 downto 0)
A CAPTURE_VALID

B YaLID

B-READY

2 DATA_DUTPUT_O(39 downto 0)

Reference item and output item for data capture unit collected in a queue in the scoreboard for comparison is
below.

S @ in_g @ 2 @ out_g @z

- () super - () supet

- @ m_global_queue null - {§ m_global_gueue null

—|- . eLE size: 20 . mm jUEUe size: 20
- 0 [0] ‘hiDeSeffefd - 1[0 "hE0eSefiefs
- 0[] 'h115dz1a2a2 -0 'h115d21a2a2
-0 [2] ‘hBBf2z2ctce [NE| ‘heBf222cce
- 0 [3] 'hBE171e456h NE| "hE617 124560
- 1 [4] ‘haBb00edebd -0 ‘haBb00edebd
- 1 [3] ‘hefcea?06ar - 0[] ‘hefcee?0barl
- 1 [8] ‘hag4235h12¢c - 1 [8] 'had4235012c
- 0 [7] ‘hhesh7472cE - 007 'hbedbT472ca

] 'h10a05218da -1 [8] 'h10a0521 dda
- 0[] ‘hh74hTedz0a - 1[4 ‘hb74bTed20a
o['hacB54aze?? - 010 ‘hacE5dazc??

- [11] 'h74fB0BhEGD - 0[] "h74ME0EbEEL
-] [12] 'ha063kh1 78k - 01 'h3063h1e7ah
- [[13] 'h95a1711c8a -0 'haga1711cha
- [14] 'h7340c79797 - 0014 ‘h7340c79797
- 1 [15] 'h40Bc34762e - 0a ‘hd06c34762e
- 1 [18] hTTal4z5924 - 0 [1§] ‘h7raldzsazd
- 1 [17] ‘hafddcfl14z2 007 ‘hatddefi 14z
- 18] ‘hiaad 322929 - 0 [1d] ‘hOaad 32adad
- 0 [19] "h42cOfff23 LR “hazclfies

- 1 type_name "uvm_gueus” - [type_name "uym_nueue"

Extraction unit interface waveform is below.

13

Appendices

5 I_EU
© DATAWIDTH_EU
B ACLK

B ARESETN

+

-B-MASTER_ID(S downto 0)
B-SELECT_DATAFIELD(4 downto 0)
B-DATA_WALID_|

--pDATA_READY_O

-B-DATA_INPUT_I(38 downla 0)

- DATA_VALID_O
B-DATA_READY_|

--»DATA_OUTPUT_O(G7 downto 0y

-rLSTATE

+

~-nEXTRACTED_DATA(ST downlo 0
-~ COLLECTION_START

L COLLECTION_COMPLETE
-~ EXTRACTION_START

o EXTRACTION_COMPLETE

Items collected in the reference queue and the

output queue for the comparison is shown below.

= @ rel_g_eu @1 = @ out_g_eu

+1- {8 super - (@ super
~ @ m_global_gueue null ©® m_glohal_gueue

- == queus size: 20 = mm gueue

- 0 [0 'h000000000000G0fefSeSer o1

- 0[] 'h00000000000011a2a25dz21 -0

o['h000000000000BRC T cofZZ22 ilE|

- 0 [3] 'h00000000000066456h171e - 03

oM 'h000000000000akdehdbile o H

o9 'h000000000000eR0Bafcee? -1 [5]

-~ 0 [8] 'h000000000000a8h1 24235 N

o['h000000000000he? 2eBEh74 -~ 107

NG 'h000000000000107 8daalsz NG|

- 0 [9] 'h000000000000bhTd20adhTe -0 [9

oo 'h000000000000acscy7h54a oo

-0 [11] 'h00000000000074h68hMG06 - 0[]

-~ 0 [1g] 'h00000000000030e78hE63h1 -~ 02

['h0000000000003&1 céaal?l [E!

- 0 [14] 'h00000000000079979740c7 -0 [14]

- 0 [15] 'h000000000000407 62ehc3d s

o [1g] 'h000000000000775324a142 -0 [16]

-0 017 'h000000000000af1 142441 o7

og 'h0000000000000aa3adad 32 -0 [18]

o9 'h0000000000004 2ffZ3c0ff E)

- [type_name "uvm_guede” 0 type_name

@2

null

size: 20
'h000000000000&NfefSeSal
'h00000000000011 a2a25d21
'h0000000000006RST cofz22
'h00000000000066456h171e
'h000000000000akdehdh00e
'h000000000000e606afcee?
'h000000000000agh12c4235
'h000000000000beT2CB8hT74
'h0000000000001018daans2
'h000000000000bTd20adbTe
'h000000000000acZc 7ESda
'h00000000000074h6G0E0G
'h00000000000090e76hES01
'h000000000000951 cGaal?l
'h00000000000079979740c7
'h00000000000040762ekc3d
'h000000000000775924a142
'h000000000000af1 14244 ¢t
'h0000000000000aa9a92432
'h0000000000004 2290
"uvm_gueue”

Filtering unit interface waveform view is below.

S 1_FU

- B-ACLK

B~ ARESETN
-B-FILTER_W4LUE(S7 downto 0)

]

e-FILTER_MASK(DY downto D)
--B-EMABLE_FILTER

-~ L CURRENT_STATE

- B-DATA_VALID_I

-2 DATA_READY_Q
~B-DATA_INPUT_IET downto 0)

L ENTRY_PRE_MASK(GY downto 0)
- L ENTRY_POST_MASK(ET downto 0)

b]

o

ALFILTERED_DATA(S7 downto 0)
B DATA_VALID_O

-2 DATA_OUTPUT_O(ET downto 0)

Appendices

Filtering unit reference item and output item collected in a queue in the scoreboard is shown below.

- (@ out_g_fu i@
+ i) super

..... i m_global_gueue null

_ = jUELE size: 1
ol [0] ‘h00o0o00000000000ccfZzs
el type_name "Lym_gueue"

3~ @i ref_g_fu @3
+ i) super

..... i m_global_gueue null

= mm jUELE size: 1
ol [0] ‘h0000000000000000ccf2z2:
el type_name "Lym_gueue"

AXI writer module interface waveform view is shown below.

S 1_AWM
om A= o

-2 M_AWADDR_O(31 downto 0)

= hM_WYaLID_O

- M_WDATA_O(B3 downto 0)

i M_WSTRE_O(7 downto 0)
B M_WLAST_O
Lp-M_BVALID_|
+-B-M_BRESP_I(1 downta 0)

AXl items collected in a queue in the scoreboard is below.

- = axi_data_g size: 20 - mm [011] size: 2
- = [00] size: 2 o [0) 'h00000074hGEbE06
Fnm *h0D00DDAel5eSef 0] POt
o i o mm [017] size: 7
Fem e 2 0 hD0DD00S0e7BHEIDT
o[*hD000001122325021)
: ' GRIRGOIEEI =0 i
= wm[02] size: 2 = —[[HS] size: 2
-1 [0] *hO000006EL 1 cefezz 0o 'h000000367 cdaal 71
- 0[] RO O00TR00N = 0] Qb e b e
- = [013] size: 2 - mm [014] size: 2
o *hODO0DDBE4 56T 71e 0[] 'hO0D0DD79973740¢c7
; o *eeRTeoRTeonN e n [T
7= size: 2 - wm [015] size: 2
E ::? ':UUUUUUS‘B“WWUE 0[] 'hD000D04076286c34
; = 5] size: 2 =0 Qi
-0 *hO00000eE0BATCEET - m=018] size: 2
e [rS— e 0 'hO00000775924a142
L. wm 0] size: 7 0] M OOOOTTeeReT
oo *h0D00D0aAL1 204235 - mm[017] size: 2
o L] | 'h000000aM 142441
7 =7 size: 2 1] eReeeTTITeeRR
o[*hD00000ke?2e86074 & wm[0718] size: 2
o hreoaeererTe enm 'hO000000aaYadad32
- . 0] size: € 0 h
- 0[] *h0D00001 01 Bdaal52 e
[[T —--7[019] size: 2
Ep—— size 2 SR hO0DON04 2FE 30
oo *hODD000bTdZ0adbTe 0] 'heee0e0ceoseseen
H oM *IpeeRearReean
<. mm010] size: 2
i o[*hD0000Dac2C7 7654
-0 M *eeIReOITeERTRt

15

Appendices

Appendix 5: Simulation results for the bus monitor on allocation interface

This section includes the simulation result for the bus monitor connected on the allocation interface between BM
and BM EMA. The data bus width in this interface is 88 bits. The following screenshot shows the waveform view of

the data capture unit interface.

. 1_DCU

- @ DATAWIDTH_DCU
@ BURSTLENGTH_DCU

-B-ACLK
B ARESETN

- B-ENABLE_TRACE

- B-DATA_READY_|

- B-DATA_VALID_|

. CAPTURE_VALID

-

- DATA_CAPTURED(EY downta 0)
= VAaLID
B-READY
#- -2 DATA_OUTPUT_OET downto 0)

Reference items and output items collected in a queue in the scoreboard for comparison is below.

2@ in_g @l
- (8 super
(@ m_global_queue null
- = gueye size: 20

om ‘hihchbelfezaciledefel
o *h63043539095¢0115d21a2a2

= 0[2] *h3c1bZa7M5Sa466f222e1ce
0@ *h57ah523eh57 36617184560
INE)] ‘hedJebaddiafashiledebd

= 0[5 ‘haaff7faldsciebcee T 06al
o ‘hiid1e4t1 Ge7c5afd235h1 2o

- 07 *hc49G42h6970abebhT47208
0@ ‘he4a13421161710a05218da
oM@ ‘h533e08605031h74hTed20a

= 0 [10] ‘hc34ab767h3GzacksdazcT?
o *hefShB04had 1 374fB0BbATH
o[e] ‘hBEA7 050253029065k 1e78h

=0 [13] 'hbh5fB272eb2h88a1711c8a
o4 *he2fc29BEc1 7940079797

- 0[19] ‘h1 aBfZdfafafr406c34762e
o 18] ‘hd1th2cal036c77al425324
op7 ‘h3Z6d0casdib3amdch 142

= 0 [18] ‘hdde30fa89740aa432a9a9
o9 *h764750221d154Zc0ff23

0 type_name “uvm_gueue”

- @ out_y
4 @) super
i) m_global_gueus
- - e
oo
o
-0 [
o
01
- 0[5
o
o
-0 [0
LNE)]
o[
- 0[]
-0 [12)
o3
-0 [14]
-0 [15)
0 [1g]
-0 [17]
-0 [18]
o9
0 type_name

@z

null

size: 20
‘h3bchBe8ezaciiesefer
‘hB30495a3095c115d21a2a2
‘h9c1h2a7MSd4B6fZZ2CT o
*h57ah525eh57566171e456h
‘hodJedadd3afaéh00edebd
‘haaffffaldScIefcee0Bal
‘hiid1edr1 Be7ciadid255hizZe
‘hod 38420697 5abeBh74720h
‘hc4al13421161710a0521 Gda
'h533e08605031b74b7edz20a
‘heS4aB767h382acE54a2077
‘hefibB04hE41374f606bESk
'hB6dT05h253h28063h1e78h
‘hbb5fB272ebZh8Ea1711cla
‘heefc2afBagc] 7940079797
‘h1aBf2dfa7afi7406c34762e
‘h41fhZcall3kcy 7ald2h9z4
‘h3z6d0caddib3amdctli4z
‘hd4e30f3ag740aad32a029
*h76475h221d1542c0fZa
“uvin_gueue”

Below is the waveform view of the extraction unit interface.

16

Appendices

SLEU

& DATAWIDTH_EU

B ACLK
B BRESETN
-B-MASTER_ID(S downto 0)
-B- SELECT_DATAFIELD(4 downto 0)
B DATA_VALID |
-2 DATA_READY_O

L COLLECTION_START

-rLCOLLECTION_COMPLETE
~EXTRACTION_START

AL EXTRACTION_COMPLETE

L EXTRACTED_DATA(BT downto 0)
-2 DATA_VALID_O
p-DATA_READY_

L STATE JLLECTION c CTION OLLECTIC JLLECTION

- DATA_OUTPUT_O(ET downto 0)

Filtering unit interface waveform is shown below.

ZFU

-B-ACLK

-B- ARESETN
o-ENABLE_FILTER

+

~B-FILTER_YALUE(S7 downto 0

B-FILTER_MASK{EY downto 0)

L CURRENT_STATE
~B-DATA_WALID_|
~-2DATA_READY_O
~B-DATA_INPUT_I(E? downto 0

L ENTRY_PRE_MASK(E? downto 0)

- L ENTRY _POST_MASK(E? downto 0)

]

_—

FILTERED_D

B DATA_WALID_O
p-DATA_READY_

-2 DATA_QUTPUT_O(E7 downto 0)

Below is the screenshot view of the filtered item collected in reference queue and output queue.

- i out_g_fu e
£ {8 super
- (@ m_glohal_gueue null
- mm felE size: 1
e [0 ‘h000000000000005d214a2a2
-] type_name "uym_gueue"
=~ (&) ref_g_fu @5
£ {8 super
- (@ m_glohal_gueue null
- mm felE size: 1
e [0 ‘h000000000000005d214a2a2
-] type_name "uym_gueue"

AX| writer module interface waveform view is shown below.

17

Appendices

2 AWM
- M_AWYALID_O

- B MWW ALID_O

- b_WLAST_O

+- B M_AWADDR_D(3T dovwnta 0)

- M_WDATA_O(B3 downta D)
- M_WSTRE_O(7 downto 0)

nooa | 0s00_0o1o

T

—_—
u
gooo I gooo

=) - _glata_g size: 20
- mm [0D)] size: 2
i oo 'h00003bESe5efers

o fl et
2 [01] size: 2

o 'h000069045d21a2a2
fleaer e o
size: 2
'h00009e1hfZ222cice
PO
size: Z
'h000057ab171e456b
"NRC0R0OEEEENN
size: 2
'h0000cdIeh00edebd
Rt
size: 2
‘hogofaaficee 7 0Gal
PO
size: Z
'h00008d1e4235b12c
Thie000RRRRRRN
size: 2
'h0000c4388b747266
"NeEeeeeeeeerottn
size: 2
'h0000c4a1a05218da
fleaer e o
size: 2
'h0000533edb7ed2a
PO

L wm [010]
-0
o
5w o11]
P
-

2. mm[012]
o (o
U
2 mm[013]
; o (o
Lo
2 mm[014]
Lo
H o
% =015
Loa
H o
5 [016]
-0
o

= [017]
-0
R |
5w [015]
= 0 [0]
sl B!
= [019]
o (o
-

sizen 2

*h0000c34a654a2c77
' Meeee0oereeere

size: 2

*h0000efShiB0BhESH

*GO00000TORoTeRt

size: 2

*h00D0BBATAG &7k
RN

size: 2

*h0000bbSfal 711 cha
R0

size: 2

*h0000cZ2fcd0c7a7a7
R0

size: 2

*h00007 affBc34762e
*MCoRR0RReeRaes

size: 2

*h000041haldzo9z4
*MCoRR0RReeRaes

sizen 2

*h00003z6044cr 142
' Meeee0oereeere

size: 2

*h000Dg4e3a4 323329
*MER0000eTOReReRe

size: 2

'h00007647c0ff2a
RN

18

Appendices

Appendix 6: Simulation results for the bus monitor on the command interface

This section includes the simulation result for the bus monitor with bus width of 56 bit. The following screenshot
shows the waveform view of the data capture unit interface.

. 1_DCU
. ® BURSTLENGTH_DCU 1
. ® DATAWIDTH_DCU 56
- B-ACLK 0->1
B~ ARESETN 1
- B-ENABLE_TRACE 1
- B-DATA_VALID_| 1
- B-DATA_READY_| 1

¥

-E-DATA_INPUT_I(SS downto 0) i619_07dh"
- DATA_CAPTURED(SS downto 0) 3619_07dh"
- L CAFTURE_VALID 1
- Y ALID 1
- B-READY 1

-2 DATA_OUTPUT_O(55 downto 0) i619_07dh"

e Blanie Srmnn

The following screenshot shows the data collected in the reference queue (in_q) and output queue(out_q) in the
UVM Scoreboard for the data capture unit.

- @in_g @1 L @ out_g @2

H- (B super +- (@ super

- B m_global_gueue null - B m_global_gueue null

—|- . UeUe size: 20 —- mm jleLle size: 20
- 0 [0 'hzzzEahEas0bed - 0 [0] 'hzzzhibGaS0bed
0 1] 'h7691924804099¢0 -0 [1] 'h7E91 924804099
- 0[] ‘heh3GE04bae09] 4 - 0 [2] ‘hdeb3g04bden314
- 1 [3] ‘hdcOc7dd4chhizoe - 0 [3 ‘hdcoc7ddchb3Zee
- 0[] '"h7fi0eAd4be3bSaf -0 4 ‘h7fileBdhednaaf
-~ 0 [5] 'hebezSfaZbl cedd E {z} ':9255255232?:?3
-~ 0 [B 'hcBfSaddd3hest a ‘hchfaa efla
1 H ‘h39Bade3s 7 ChEE - 0 [7] :h3983d93226b881
-1 [8] 'he3h08d2hE55005 E E} I::fzb?':';deSbg’aaEEazu;;
SN "hdf2 79305928266 .
e e
-~ [[17] 'h3d5c03beadd Gad . 17500441 1 668
-~ [[12] 'h1758044 1 GBas .

- 0 [13] hE97e9af0cOf c7

- B0 hag7esamenm e7 -1 4 'hEz281 eS2E25ede
~ [[14] 'hBZ2E1e5282809e -85 "
- 0l ha3718er 27b7ot - 0 [16] 'hal DBh3kddatzha
~ 08 hallibihddateha -0 (7 'hB21407dB0hTdT4T
- ol hBZ21407d8b7d747 -0 18] 'hf43ec7 39612298
- 0 [18] '"hf43ecy 39612395 - 0 [19] ‘md1 0226361907 db
-0 19 'hd 10226361 307dh - B type_name "Li_guens”

- [type_name "uwm_gueue”

19

Appendices

The following screenshot shows the waveform view of the extraction unit interface.

=-1_EU

- & DATAWIDTH_EU
B-ACLK

B~ ARESETH

5

B-SELECT DATAFIELD@ downta 0)
B-DATA_VALID_|

- -&DATA_READY_O
-B-DATA_INPUT_I(S5 dawnto 0
--BDATA_VALID_O
B-DATA_READY_|

B

-2 DATA_QOUTPUT_O(37 downto)
STATE
- EXTRACTED_DATAGT downto O)

Fo

- rDATA(S7 downta 0)

L COLLECTION_START
ALCOLLECTION_COMPLETE

L EXTRACTION_START

- L EXTRACTION_COMPLETE

4 DATA_LAST(SS downto 0)

COLLECTION

_COLLECTION

#_COLLECTION

COLLECTION

The screenshot below shows the data collected in the reference queue (ref_q_eu) and output queue (out_q_eu) for

extraction unit.

e (B ret_g_eu
i+ B super

- (B m_global_gueue

= mm jUELE

S0
0
0 (2]
03
0 [
0[]
0[]
0 [7
0 (4]
09
0[]
0 [17]
0 [13]
04
0 [19]
0 [16]
0[17]
0 [18]
0 [19]

= [type_name

@1

null

size: 20
'h000000000000266a50bed
'h0000000000003914804d99¢
'h000000000000b94bEe0914
'h0000000000000c4chb3zee
'h000000000000304be3ha5f
'h000000000000e2a2bl cedd
'h000000000000f54dsbedla
'h0000000000005a3z2chag]
'h000000000000b0ZbESE005
'h00000000000027h59ae 255
'h0000000000004 23331 3hd
'h0000000000005cheadd Gad
'h000000000000584fh1 GGaf
‘hooooooooaonn7efcific?
'h0000000000002552625e9e
'h00000000000071f1 27h7af
'h00000000000005h4 dEf2ha
'h00000000000014d8h7d747
'h0000000000003e3961 2298
'h00000000000002361307 db
"uym_gueue”

-iu[)nqu_eu

- {E) super

- {8 m_global_queue
- mmgueLE
- 0000
1]
2]
[4]
[4]
]
[6]
[7]
]
[
(o
[11]
[z]
[14]
[14]
[14]
[16]
[17]
[1d]
19
- [type_name

R s Y e Y e Y s Y s Y e [e I s Y e Y e [e Y s Y e [e [O s Y e [e |

e

null

size: 20
'h000000000000266a500be61
'h000000000000914504493¢
‘ho0o00a00o0000h34hde0al4
‘hoooooooo00o00cdchbizee
'h000000000000304bhe3h55f
‘hooooaoooooddezazhl ceds
'ho000o00a0000fa4dibedia
'h0000000000005a322chEE1
‘h0000a0000000h0ZhESE005
'hO0o00o000000027kh59ae266
'h00o00o00o00004z2a3e31 3hd
'h0000000000005cheaddbad
'ha00000000000554th1 6626
'h0000000000007ef0coficy
'h0000000000002552525e3e
'hO000000000a071f1 27407 5f
'h00000000000005k4 difzba
'h00000000000014d8h7d747
'hO000000000003e3967 2236
'h0000o000000002361307db
"LUym_gueue”

20

Appendices

The following screenshot shows the waveform view of the filtering unit interface.

LLFU

B ACLK

B~ ARESETN

. B-ENABLE_FILTER

p-DATA_VALID_]
. DATA_READY_O

-E-DATA_INPUT_I{ET downto 0
- ENTRY_PRE_MASK(B7 downto 0}

]

B-FILTER_MASK(G7 downio)
FLENTRY_POST_MASK(ET downta 0)
4B~ FILTER_YALUE(S? downto 0)

2 FILTERED_DATA(S7 downto D)

SDATA_WALID_D

B-DATA_READY_|

+

--2DATA_QOUTPUT_Q{EY downto 0)

The following screenshot shows the item collected in reference queue and the output queue in the scoreboard for the

filtering unit. The filter value in filter value register is 17a6 and hence only the data field with value equal to 17a6 is
filtered out.

2 @ out_g_fu @4
+- (@) super
- 8 m_global_gueue null
= mm LeLle zize: 1
e 0] ‘h0000000000000000007 728
- [l type_name "uvmn_gueue”
=+ {8 ref_y_fu @3
1 (8 super
- 8 m_global_gueue null
= mm LeLle zize: 1
e 0] ‘h0000000000000000007 728
- [type_name "uvmn_gueue”

21

Appendices

The following screenshot shows the waveform view of the AXI writer module where two transactions are shown.

1AM

- -BM_AWVALID_O

B M_AWADDR_O(downta 1)
- BM_WYALID_O

2B M_WDATA_O(ES downto)
- M_WSTRE_O(downto 1)

- BM_WLAST_O
p-M_BVALID_|

-B=M_BRESP_I(T downto 0)

The following screenshot shows the AXI items collected in a queue in uvm scoreboard. The address signal value in
this case is as shown in the screenshot above is 0600_0010.

22

2 mm axi_data_g
2 mm [0
-0
- mm (1]
-0
= mm 017]
-0
L I [
. mm [03]
-0
. mm [4]
-0
= mm 015]
-0
L I [
2. mm [(16]
-0
. mm [7]
-0
= mm [01]
-0
L I [
. mm 9]
-0
5. mm [010]
-0

size: 20

size 2
'h000000Aaceseffels
P
sizen 2
'h0000005c5dz1a2az
" P D e,
size: 2
‘h000000ddfZezelce
P s
size 2
'hO0000073171ed56h0
P
sizen 2
‘hO00000fb00edekd

" P D e,
size: 2
‘h000000c3ceey06al
P s
size 2
'hO00000cS42350h1 20
P
sizen 2
'h0000005a5h7472cE
" P D e,
size: 2

'h00000071 7a05215da
P s
size 2
'hO00000314b7edz20a
P
sizen 2
'h00000052654a2C77
" P D e,

e mm [071]
2. mm [017]
2. mm [0 3]
2. mm [014]
2. mm [115]
= mm [016]
2. wm [117]
2. mm [0]
. mm [019]

szl 2

'h00000071 3fE06bESD
P o,
size: 2
'hO00000bz6Sk1 e7ab
U D D,
size: 2

‘hoo00o00Ebhal 711caa
P o,
size: 2
'hO00000c140c79797
P o,
size: 2
'hO00000GTECI4T7EZe
jEreesanrnrnrrres
szl 2
'hO00000GCcald425924
P o,
size: 2
'hO00000b344cf1 142
U D D,
size: 2
'ho000o0074ad32a9a9
P o,
size: 2

'hO000001 5cOffff29
P o,

23

