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In this thesis, ROS (Robot Operating System) is used as the software platform and a 

simple unmanned ground vehicle that is designed and constructed by myself is used as 

the hardware platform. The most critical issues in the navigation technology of unmanned 

ground vehicles in unknown environments -SLAM (Simultaneous Localization and 

Mapping) and autonomous navigation technology are studied. Through the analysis of 

the principle and structure of visual SLAM, a visual simultaneous localization and 

mapping algorithm is build. Moreover, accelerate the visual SLAM algorithm through 

hardware replacement and software algorithm optimization. RealSense D435 is used as 

the camera of the VSLAM sensor. The algorithm extracts the features from the data of 

depth camera and calculates the odometry information of the unmanned vehicle through 

the features matching of the adjacent image. Then update the vehicle’s location and map 

data using the odometry information.  
Under the condition that the visual SLAM algorithm works normally, this thesis also uses 

the 3D map generated to derive the real-time 2D projection map. So as to apply it to the 

navigation algorithm. Then this thesis realize autonomous navigation and avoids the 

obstacle function of unmanned vehicle by controlling the driving speed and direction of 

the vehicle through the navigation algorithm using the 2D projection map. Unmanned 

ground vehicle path planning is mainly two parts: local path planning and global path 

planning. Global path planning is mainly used to plan the optimal path to the destination. 

Local path planning is mainly used to control the speed and direction of the UGV. This 

thesis analyzes and compares Dijkstra’s algorithm and A* algorithm. Considering the 

compatible to ROS, Dijkstra’s algorithm is finally used as the global path-planning 

algorithm. DWA (Dynamic Window Approach) algorithm is used as Local path planning. 

Under the control of the Dijkstra’s algorithm and the DWA algorithm, unmanned ground 

vehicles can automatically plan the optimal path to the target point and avoid obstacles. 

This thesis also designed and constructed a simple unmanned ground vehicle as an 

experimental platform and design a simple control method basing on differential wheeled 

unmanned ground vehicle and finally realized the autonomous navigation of unmanned 

ground vehicles and the function of avoiding obstacles through visual SLAM algorithm 

and autonomous navigation algorithm. 
Finally, the main work and deficiencies of this thesis are summarized. And the prospects 

and difficulties of the research field of unmanned ground vehicles are presented.  
Keywords: Unmanned Ground Vehicle, Simultaneous Localization and Mapping, Visual 

SLAM, Depth camera, Navigation  
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Chapter One Introduction 
1.1 Background 

Since the 21st century, with the rapid economic and social development and the ever-

changing science and technology, some problems in military transport, traffic safety, 

industrial production and cruise protection need to be solved and optimized urgently. The 

research of Unmanned Ground Vehicle (UGV) originated in the late 1960s [1]. With the 

rapid development of artificial intelligence, machine vision, automatic control and other 

disciplines, Unmanned Ground Vehicle (UGV) system was born. All countries in the world 

are closely following the trend of science and technology. The enthusiasm for researching 

and developing unmanned ground vehicles is rapidly increasing, making unmanned ground 

vehicles technology one of the most popular research directions [2] [3]. 
For unmanned ground vehicles, autonomous localization and navigation in a variety of 

complex environments is a prerequisite for accomplishing tasks. In the process of 

completing the task, UGV need to realize the perception of their own location and external 

environment information, i.e. localization and mapping rely on various types of sensors. 

Only by accurately knowing the information of itself and the environment can robots 

accomplish tasks effectively and safely. The SLAM technology of unmanned ground 

vehicles has very important theoretical significance and application value. The SLAM 

method can improve the autonomous capabilities and environmental adaptability of 

unmanned ground vehicles to achieve autonomous localization and navigation in an 

unknown environment. It can  
For unmanned ground vehicles, navigation method on SLAM does not require any 

trajectory to be laid in advance, which facilitates the change of navigation routes and the 

transformation of production lines. It can realize obstacle avoidance in real time and has 

strong adaptability to the environment. In the navigation control theory and research 

methods of ground unmanned vehicles, the navigation control methods in deterministic 

environments have achieved a great deal of research and application results. Some 

researches on the navigation control of unmanned ground vehicles in an unknown 

environment have also been carried out, and several methods have been proposed. However, 

in the visual SLAM navigation system based on the actual environment, there are still many 

key theoretical and technical issues that need to be solved and improved. These issues 
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include dynamic environment modeling, localization, obstacle avoidance, and path 

planning. Therefore, the visual SLAM and navigation technology of UGV have attracted 

widespread attention from scholars both in domestic and abroad. 
1.2 SLAM Introduction 

Assume we have made an unmanned ground vehicle; we hope it to be autonomous. We 

hope it can move freely in the room. It can go to the destination wherever it is. In order to 

make it can explore unknown environment autonomously, it need to know at least three 

things: 
1. Where I am?  --Localization. 
2. What is the surrounding environment?  --Mapping 
3. How can I go to the destination? --Navigation 

The first two things are the main mission of Simultaneously Localization and Mapping 

(SLAM). As an unmanned ground vehicle, on the one hand, it need to know its own status, 

i.e. location, on the other hand, it need to know its external environment, i.e. map. SLAM 

algorithms build an environment map based on the location and posture of the unmanned 

vehicle and determines the location and posture of the unmanned vehicle in turn from 

known maps. It can be described as a problem of using the sensor information to solve the 

problem of establishing an environmental map and determining its own position and 

orientation. In an unknown environment, UGV uses its own sensors to get environmental 

information and uses it to create and continuously update the environmental map. Based on 

Fig.1.1 Relationship of the Three Things 
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the sensor information and the created environment map, UGV can determine its own 

position and posture. The output of SLAM algorithm is the location of the UGV in a 

generated map. The map could be metrical, topological, hybrid or semantic [4]. After getting 

the environment map, the UGV can driving to the destination by itself by path planning and 

sport controlling and then carry out its task. Fig.1.1 shows the relationship between the 

three things.  
Of course, there are many methods to solve these two problems. For example, we can 

lay a guide line on the room floor, put a two-dimensional code on the wall, put radio 

localization equipment on the table. In the outdoors, we can also install localization devices 

in unmanned vehicles (like cell phones or cars). With these sensors, localization problem 

can be solved. We can divide these sensors into two categories. Fig.1.2 shows the different 

type of sensors that are used in SLAM.  
One kind of sensor is installed in the environment, such as the lead rails and two-

dimensional code that are already mentioned before. The sensor installed in the 

environment can usually directly measure the location information of the unmanned vehicle 

and solve the localization problem simply and effectively. However, since they must be 

installed in the environment, the use of unmanned vehicle is limited to some extent. For 

example, some places do not have GPS signals, and some places can’t lay lead rails. How 

to do localization? 

We can see that these sensors have certain requirements on the external environment. 

Only when these requirements are satisfied, the localization scheme based on them can 

works. Or, when these requirement can’t be satisfied, we can’t localization with them. 

(a) Two-dimension 

(b) GPS Localization (c) Lead rails 

(d) LIDAR (e) IMU 

(f) Stereo camera 

Fig.1.2 Sensors Used in SLAM 
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Which means, although these sensors are simple and reliable, they can’t provide a universal 

solution of localization. 
Another kind of sensor is installed on the unmanned vehicle, such as wheeled encoders, 

cameras, laser sensors, Inertial Measurement Unit (IMU) and so on. They measure usually 

indirect physical quantities rather than direct location data. For example, wheeled encoders 

measure the angle at which the wheel rotates, the IMU measures the angular velocity and 

acceleration of the motion, and the laser sensor and the camera obtain some observational 

data of the external environment. We can only infer our position from these data through 

some indirect methods. The obvious benefits are that it doesn’t place any requirement on 

the external environment, making this localization solution suitable for unknown 

environments. 
In retrospect of the SLAM definition discussed earlier, we place great emphasis on the 

unknown environment in SLAM. In theory, we can’t limit the environment of UGV, which 

means we can’t assume that external sensors like GPS work well. 
Therefore, the use of portable sensors to complete the SLAM is our main concern. In 

particular, when discussing visual SLAM (VSLAM), we mainly refer to how to solve the 

localization and mapping problems with camera. 
1.3 Visual SLAM Introduction 

According to the sensor, SLAM is mainly divided into two major categories: laser 

SLAM and visual SLAM. With the rapid development of computer vision, visual SLAM 

has received wide attention because of its large amount of information and wide application 

range.  
Fig.1.3 Different Type of Camera 

(a) Monocular camera 

(b) Stereo camera 

(c) Depth camera 
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We will mainly talk about VSLAM in this thesis, so we are particularly concerned about 

what the camera can do on UGV. VSLAM camera is different with the SLR camera. Instead 

of carrying expensive lenses, it tends to take a picture of the surrounding environment at a 

rate, which will create a continuous stream of video. Ordinary camera can capture images 

at a rate of 30 images per second, high-speed camera is faster. According to the different 

working methods, the camera can be divided into monocular camera, stereo camera and 

depth camera that called RGB-D camera. Intuitively, the monocular camera has only one 

camera and stereo cameras have two or more. The principle of the RGB-D camera is more 

complicated. In addition to being able to get color images, it also reads out the distance 

between each pixel and the camera itself. Fig.1.3 shows the appearance of Cameras.  
In addition, there are special or emerging type cameras such as panorama cameras, 

Event Cameras in VSLAM. Although they can occasionally be seen in VSLAM application, 

but so far have not become mainstream. The photo is essentially a projection of the scene 

on the imaging plane of the camera at the time the photo was taken. It reflects the three-

dimensional world in two dimensions. Obviously, this process lost a dimension of the scene, 

which is called depth (or distance). In monocular cameras, we can’t calculate the direct 

distance between objects in the scene and us through a single picture. This distance is a very 

crucial piece of information in SLAM. Since we human beings have seen a large number 

of images, we have formed a natural intuition that gives us an intuitive sense of distance 

(space) for most scenes and helps us to determine the distances of objects in the image. For 

example, we can recognize objects in an image and know the approximate size; objects in 

the immediate vicinity block objects in the distance; celestial objects such as the sun and 

the moon are generally farther away; object will be shadowed by light, and so on. This 

information can help us determine the object's distance, but there are also some situations 

Fig.1.4 People on the Palm are Real Person or Models? 
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that may invalidate sense of distance. Fig.1.4 is an example of this situation. In this image, 

we can’t judge whether those small people on the palm are real people or small models only 

through it. Unless we change the perspective and observe the three-dimensional structure 

of the scene, we can get the answer. In other words, you can’t determine the true size of an 

object in a single image. It can be a large but distant object or it can be a close but small 

object. They may become the same size in the image due to their different distance. 
1.4 Related Works 

In China, unmanned ground vehicle is a research hotspot in universities and enterprises. 

The National 863 Intelligent Robot Group regards the research of intelligent mobile vehicle 

as the main direction for future development. The CASIA-I, a smart mobile robot developed 

by the Institute of Automation of the Chinese Academy of Sciences in 2003, can be widely 

used in hospitals, libraries, exhibition halls and other public places for services, display, 

homework, and personal home services. On July 14, 2011, the Hongqi HQ unmanned 

vehicle independently developed by the National University of Defense Technology 

completed the high-speed unmanned driving experiment from Changsha to Wuhan 

kilometers for the first time and achieved a complete success. It has created a new record 

of autonomous driving of autonomous ground vehicles developed by our country under 

complex traffic conditions, which indicates that China has made new breakthroughs in the 

identification of groundless environments, behavioral decision-making and control 

technologies. In October 2012, it was learned from the conference held by the National 

Natural Science Foundation of China that the self-developed unmanned ground vehicle in 

China will conduct a test from Beijing to Tianjin in 2014 and will test it from Beijing to 

Shenzhen in 2015. 
The national college students' smart vehicles competition free scale cup started in 2006 

and has pushed the research of unmanned vehicles to a climax. More and more colleges 

have invested in the research of unmanned vehicles, such as laser vehicles, infrared vehicles, 

and electromagnetic vehicles, camera vehicles and two-wheeled self-balancing vehicles. 

The number of unmanned ground vehicles that can truly achieve autonomous localization 

and navigation is still relatively small. In the navigation of UGV, the industry mainly 

focuses on autonomous patrol lines. There are UGV based on electromagnetic or laser, this 

navigation method is simple and stable. 
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In the past ten years after the SLAM theory was proposed, the research was mainly 

based on the Kalman filter algorithm framework. There are researches based on vision-

based simultaneous localization and mapping algorithm of unmanned vehicles. There are 

also researches on vehicle localization and mapping algorithm based on laser radar ranging 

sensors. However, most of them are based on theoretical research. Practical applications are 

also limited to indoor or small-scale outdoor environments. When the vehicle is in a large-

scale, irregular environment, the general SLAM algorithm is difficult to meet the 

requirements, which puts higher requirements on the performance and practicality of the 

SLAM algorithm. 
Research abroad has been on mobile unmanned vehicles for many years. Their 

application has been infiltrated into all fields from the initial aerospace industry. In 1969, 

Nilsson and his colleagues at SRI (Stanford Robotics Institute) developed the first 

intelligent mobile robot, Shakey, equipped with rangefinders, contact sensors, and cameras, 

through wireless connected to the DEC.PDP 10 computer and its task is to achieve 

autonomous obstacle avoidance and tracking of moving targets. In the late 1970s, Hans 

Moravec developed the CART mobile robot at SRI. It can use cameras to avoid obstacles, 

and can use continuous images to construct a 2D environment model and achieve path 

planning.  
Industrial mobile robots abroad have been used in many industries. In 2003 Kiva 

developed a mobile robot for logistics warehousing or large-scale automated production 

lines. It can move racks filled with goods back and forth between arbitrary points, put the 

best-selling goods to the forefront through centralized control of warehouses, and plan out 

the optimal path for mobile robots. Kiva's technology helps retailers speed up the execution 

of orders and can reduce the handling time of goods, thus greatly improving the efficiency 

of logistics warehousing. On July 25, 2013, KUKA Robots (Shanghai) unveiled its 

comprehensive and efficient automation solution at the 2013 China International Robot 

Exhibition (CIROS 2013). Its mobile robot platform you Bot has an omnidirectional mobile 

platform and a five-degrees-of-freedom arm. It also has a two-finger mechanical jaw at the 

end of the arm. In addition, its robotic arm and mobile platform can be used independently 

and can be assembled into a modern flexible production line. 
Google’s autonomously-developed unmanned vehicles use sensors such as laser radar, 

cameras, and position estimators to observe the surrounding traffic conditions. Computers 

can use Lidar sensors to obtain 3-dimensional environmental maps within a 230-foot (about 
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70-meter) radius of the vehicle body. Computers can use Lidar sensors to obtain 3-

dimensional environmental maps within a 230-foot (about 70-meter) radius of the vehicle 

body. It uses SLAM technology to provide maps for cars, allowing it to travel anywhere in 

the world and even find destinations for cars. 
Dyson has published its 360 Heurist™ Intelligent vacuum cleaner in 2017. It use 

panoramic camera to run visual SLAM algorithm to get the map of the room and then plan 

the route of the cleaner as shown in Fig.1.5. 

1.5 Outline of Thesis 
This thesis mainly designed and made a VSLAM and navigation system of unmanned 

ground vehicle based on RGB-D camera. Firstly, the principle and framework of VSLAM 

algorithm and the difference between different SLAM methods are introduced. RealSense 

D435 is used as a sensor to implement VSLAM algorithm. Then the location and map 

information obtained by the VSLAM algorithm is used to achieve autonomous navigation, 

path planning, and obstacle avoiding of UGV. Finally, a simple UGV system is built to run 

the VSLAM algorithm and navigation algorithm in real environment. During the project, 

the NVIDIA Jetson TX2 is used as the main processor of the whole system. ROS (Robot 

Operating System) building on TX2 is used as a software platform to implement VSLAM 

and navigation algorithms. For the vehicle, Raspberry Pi and L298N dual H-bridge are used 

to control the wheels. The communication between TX2 and Raspberry Pi is using TCP 

protocol. The data from camera is sent to VSLAM algorithm to get the position and map, 

which will be used by the navigation algorithm. Then, the navigation algorithm will plan 

Fig.1.5 Dyson Intelligent Vacuum Cleaner 
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the path of the UGV to get to the goal. It will generated the control command of UGV and 

send it to the raspberry pi using TCP protocol. Raspberry pi will use these commands to 

control L298N dual H-bridge to control the wheels. 
The main structure of the system is shown as Fig.1.6. 
The content of the thesis is arranged as follows: 

Chapter one is the introduction. It mainly describes the background, purpose and 

significance of the thesis and analyzes the oversea and domestic research status. Then 

briefly introduced the content of whole thesis. 
Chapter two is visual SLAM algorithm. This chapter first introduced and analyzed the 

different types of visual SLAM and then briefly introduced how to use RealSense RGB-D 

camera and connect it to ROS. Then analyzed the general framework of visual SLAM and 

achieved VSLAM algorithm using RealSense RGB-D camera. Finally optimized VSLAM 

algorithm in both hardware and software. 
Chapter three is navigation of UGV. The UGV navigation problem is modeled. Analyze 

and configure the conditions and data needed for navigation. Introduced several algorithms 

for path planning and obstacle avoiding. In addition, based on the second chapter, we 

achieved the navigation algorithm using Dijkstra’s and DWA algorithm. 
 Chapter four is system design and implementation. The whole system of this project is 

implemented. Introduced the construction of the car and the wheel PID adjustment control 

method. And add the VSLAM and navigation algorithm to the system, and use the results 

obtained by the navigation algorithm to control the direction and speed of the UGV. Finally 

show the result of running our UGV in real environment.  
 Chapter five is conclusion. Summarized the work and results of the entire project. 

Fig.1.6 Main Structure of Whole System 
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Pointed out the inadequacies of this project. Moreover, the prospects and difficulties of the 

research field of unmanned ground vehicles are presented. 



Chapter Two Visual SLAM Algorithm 
 

11 
 

Chapter Two Visual SLAM Algorithm 
2.1 Depth Camera 

Depth cameras, also called RGB-D cameras are a kind of camera that was boom at 

around 2010. It is a new type of optical sensor, equipped with an optical RGB camera and 

depth camera. Therefore, the RGB-D camera can simultaneously obtain the optical texture 

information in the scene as well as the depth information of each pixel. Depth cameras 

generally use active imaging methods, consisting of an infrared projector and an infrared 

receiver. The basic structure is shown in Fig.2.1 (Kinect Generation 1 as example) [5]. 

Compared to monocular cameras and stereo cameras, which use the algorithm to 

calculate the three-dimensional coordinates of the spatial point, RGB-D cameras are more 

direct and convenient for acquiring 3D information of spatial points. The depth information 

is obtained through Structured Light or Time-of-flight(TOF) principle. It is similar to the 

principle of laser. Therefore, sometimes RGB-D cameras are also called Fake Lasers. 

IR Projector RGB camera IR Camera 

Fig.2.1 Structure of RGB-D Camera [5] 
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2.1.1 Time-of-Flight 
Time-of-flight (ToF) is a relatively popular depth information acquisition method that 

has emerged in recent years. The time-of-flight method usually transmits a signal, and uses 

the time difference between signal transmission and reception to complete depth 

information acquisition. The time difference is different, the distance that the pulse signal 

walks is different, i.e. the depth information is different, it is relatively simple to operate, 

only need to record two times, i.e. launch time and receiving time. Fig.2.2 shows the 

fundamental principle of Time-of-flight [6].  

The internal module of the TOF depth camera is mainly composed of a TOF area array 

sensor module, lighting module, control and data processing module. The lighting module 

is composed of infrared diode or laser diode, driving circuit, and filter circuit. It emits 

modulated infrared signal with infrared diode and uses a TOF area array sensor to capture 

the modulated signal reflected from the object. Then, the signal is converted into a digital 

signal by the analog-to-digital converter ADC module inside the TOF area array sensor. The 

converted phase data is transmitted to the control and data processing module, and the 

distance between the surface of the measured object and the TOF area array sensor is 

calculated[6][7].  
According to the different modulation methods, the TOF method can generally be 

divided into two types: Pulsed Modulation and Continuous Wave Modulation. 

Fig.2.2 Fundamental Principle of TOF [6]  
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The principle of the pulse modulation method is relatively simple, as shown in the 

Fig.2.3. It measures distance directly based on the time difference between pulse 

transmission and reception.  

 The measurement principle of continuous wave modulation is more complex than 

pulsed modulation. In practice, sine wave modulation is usually used. Since the phase shift 

of the sine wave at the receiving end and the transmitting end is proportional to the distance 

of the object from the camera, the distance can be measured by using the phase offset. 

As shown in Fig.2.4, the controller in the TOF depth camera uses an infrared emitting 

diode to emit the modulated light signal. Blue represents the emitted light signal and red 

represents the reflected light signal. The area array PD sensor array receives the reflected 

light signal. Each pixel on the sensor array is sampled to obtain the phase difference 

between the emitted light and the reflected light signal to calculate the distance information. 

For each sampling of the TOF depth camera, four modulated light images with different 

receiving phases (0°, 90°, 180°, and 270°) are obtained to calculate the phase difference 

between the incident light and the reflected light, thereby obtaining the distance between 

the object and the camera [6][7][8]. 

Fig.2.3 Pulse Modulation Working Principle [7] 

Fig.2.4 Continuous Wave Modulation Working Principle [8] 
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2.1.2 Structured Light 
Structured light method is the most popular method among the active depth acquisition 

methods. Structured light method firstly projects the coding template actively, and at the 

same time use the camera to capture the deformed image after the coding template is 

projected into the scene [9]. The unevenness of the scene is different; the deformation of the 

deformed image is different from that of the coding template. The deformation variable 

contains the depth information we need, which is similar to the modulation and 

demodulation in the communication principle. When designing a coding template, a two-

dimensional coding template designed usually has a certain relationship between pixels in 

a certain row or a certain column. Here is the pixel value information of the pixel, of course, 

you can also use the shape information of the pixel block, such as some encoding is a shape 

encoding, and some use the color information of the pixel, but the scene of the light method 

which using color information is usually limited in color. Otherwise, the original color in 

the natural scene will interfere with the color of the template itself, resulting in errors in 

decoding [10] [11]. Due to the fact that structured light uses specific coding information, that 

is, prior information available at the time of depth calculation increases. Therefore, 

compared to the passive method, the structured light reduces the complexity in pixel 

matching [10] [11] [12]. 

For the structured light method, first we need a device to project an encoding template. 

This device is usually a digital projector. Furthermore, we need to record the deformed 

image that occurs after the template is projected into the scene. This device is usually a 

camera. With the coded template image and deformed image, we also need to deal with the 

correspondence between a point in the coded template image and a point in the natural scene 

Fig.2.5 Structured Light System [11] 
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and a point in the deformed image. That is, we often say that the match, which requires the 

use of computers. In summary, the structural light system consisting of a camera and a 

projector is shown in Fig.2.5. 
In recent years, the structured light method has attracted people's attention and has also 

had some practical applications. In the daily life of people, we can see the related products 

of structured light method, such as Microsoft's somatosensory game Kinect Xbox. The 

appearance of Microsoft's Kinect has brought profound changes to human-computer 

interaction. In a word, the structured light method is a promising depth information 

acquisition method. According to the development of the structured light method, the 

structured light first starts with the point structure light method, and then gradually develops 

into the line structure light method. Until now, the development of surface structure light 

method has made great progress in efficiency [12] [13]. 
Since depth camera is an active sensor, the quality of its three-dimensional data is 

almost independent of the external environment, and even in a dim environment, better 

quality data can be obtained due to the weakening of external light interference. Such 

features of RGB-D cameras make it possible to locate, map and reconstruct 3D data even 

in the absence of two-dimensional gray-scale features under the limited environment such 

as underground or in space[4][5]. 

Fig.2.6 Different Types of RGB-D Cameras 
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Up to now, there are many kinds of RGB-D sensor devices on the market. More 

commonly used are Kinect Generation 1 and Generation 2 from Microsoft, RealSense 

SR300, R200, D415, D435 from Intel, Prime Sense Sensor from Prime Sense, Leap Motion 

from Leap and so on. Fig.2.6 shows these products. 
2.2 RealSense Depth Camera 

RealSense Depth camera is a RGB-D camera that composed of one color camera, two 

infrared receivers and one infrared emitter. Real Sense technology is Intel’s technology 

introduced at CES 2014 and dedicated to natural human-computer interaction. In addition 

to color images, it can also produce depth and infrared images information. The value of 

each pixel in the depth image is the distance from the camera. The depth information is 

derived from the binocular vision technology based on two infrared receivers and one 

infrared emitter. The RealSense RGB-D camera’s color camera can provides color 

information that can be used for reconstruction of 3D model and creating 3D color point 

clouds by superimposing on the depth image. In short, RealSense technology is equivalent 

to configuring a pair of eyes for computer equipment. The Intel Real Sense3D camera is 

the world's first device that integrates a 3D depth and 2D lens module and will give the 

device a visual depth similar to the human eye [14]. 

The two infrared receivers on the RealSense camera are same components and have 

the same settings. As shown in Fig.2.7, the imagers are marked “right” and “left” from the 

view of the RealSense camera module [14]. 

Fig.2.7 RealSense Depth Camera Module [14] 
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The depth information of RealSense RGB-D camera is get by binocular visual 

technology which is composed of an infrared emitter and two infrared receivers. The ASIC 

get the depth data from two sensors and then calculates each pixel’s depth information. 

Fig.2.8 shown how to reconstruct the 3D model. The following steps shows how to use 

RealSense RGB-D camera on Ubuntu (use RealSense R200 as example).  

2.2.1 Install Librealsense 
First, we should install librealsense on Ubuntu. Librealsense is a cross-platform library 

published by Intel. We can use it to get the raw data form RealSense RGB-D camera. This 

effort was initiated to better support researchers, creative coders, and app developers in 

domains such as robotics, virtual reality, and the internet of things.  
We can download the librealsense package from GitHub. The address is 

https://github.com/IntelRealSense/librealsense. 
The project requires two external dependencies, glfw and libusb-1.0. The Cmake build 

environment additionally requires pkg-config. 
 To build librealsense, we should update Ubuntu distribution first. We should promote 

both kernel and front end. Make sure the kernel version is later than 4.4.0. Then we should 

install the required packages including libusb and pkg-config. After all these, we can then 

build the librealsense with cmake. The demos, tutorials and tests will locate in /usr/local/bin. 

The headers are in /usr/local/include. Moreover, the libraries are in /usr/local/lib. 
Running RealSense Depth Cameras on Linux requires applying patches to kernel 

Fig.2.8 Active Stereo Technology Overview [14]  
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modules. Ensure no Intel RealSense cameras are presently plugged into the system. Then 

install Udev rules located in librealsense source directory. Then, build the patched module 

for the desired machine configuration. 
We can Check installation by examining the latest entries in kernel log. The log should 

indicate that a new uvcvideo driver has been registered. If any errors have been noted, first 

attempt the patching process again, and then file an issue if not successful on the second 

attempt (and make sure to copy the specific error in dmesg). 
After installing librealsense, we can run the demos provided located in /usr/local/bin. 

With the demos (RealSense R200 as example), we can see the four signals images (the left 

image in Fig.2.8). As you can see from the picture, the position of the mouse is different. 

We can run another tutorial to get alignment images (the right image in Fig. 2.9).  

2.2.2 Using RealSense Camera on ROS 
 Since ROS is the software system in this project, so we should connect RealSense 

RGB-D to ROS. The following steps shows how to use RealSense RGB-D camera on ROS.  
After we installed librealsense, we can install realsense-camera package to connect 

RealSense camera to ROS. We can build it from source for easy changing.   
First, we can cloning sources into catkin space form https://github.com/intel-

ros/realsense.git.  Then build it with catkin_make. After building the realsense_camera we 

can run the launch file to run the RealSense file on ROS, for example: roslaunch 

realsense_camera r200_nodelet_default.launch 
After runing the launch file, we can see the topics published by realsense_camera and 

the data of these topics with some command lines. Actually, there is a 3D visualization tool 

for ROS-rviz. We can use rviz to see the image of the camera as shown in Fig.2.10. 

Fig. 2.9 RealSense R200 Data 
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As you see from the left image, there is nothing in the rviz. If you want to see the 

camera image you should change the Fixed Frame to “camera_link” first. Then you can add 

the topic you want to show by click the “add” button on the lower-left corner of the window.  

Also, you can just use the rviz file given in the rviz folder of realsense_camera. 
2.2.3 Troubleshooting 

During the installation of the librealsense, at the last step, when I run: 
$ make && sudo make install 

There are two errors, see in Fig. 2.11:  

Form the error information, we can find that it is because of the problem of the libusb. 

Use apt-get to re-install it. 
It shows it is already the newest version. See as Fig.2.12. 
Then we use Google to search this error, it shows this error is because we have install 

libusb before, and when we install a new version of libusb, the head file didn’t update. But 

Fig. 2.10 Using Rviz 

Fig.2.11 Two Errors While Installing Librealsense 

Fig. 2.12 Re-install Libusb 



Chapter Two Visual SLAM Algorithm 
 

20 
 

when I try to change the head files to the newest head files, then run $ make && sudo make 

install. It still reports the same error. Replace doesn’t work, so I just delete the old head 

files. Predictably, Fig. 2.13 shows errors:  

According to this information, use vim to open the file /home/zp/librealsense-

master/src/uvc-v4l2.cpp 
Replace the head file libusb.h with libusb-1.0/libusb.h. The Fig.2.14 shows the replaced 

file.  

Do the same replaced on the file /home/zp/librealsense-master/src/libuvc/libuvc.h.  
Then run $ make && sudo make install again. Complied successfully. 

2.3 Visual SLAM Algorithm 
Different teams and individuals propose different VSLAM algorithms. These 

algorithms can be mainly divided into two parts: front-end and back-end. The front-end 

algorithm performs feature detection and descriptor extraction on RGB-D images, performs 

feature matching on the extracted descriptors, according to the matching results, the motion 

transformation is estimated and optimized. The back-end algorithm constructs a pose map 

according to the results of the front-end algorithm, then performs closed-loop detection and 

optimization of the pose map. Finally, the camera orientation and 3D map environment 

reconstruction. 

Fig.2.15 VSLAM Frame 

Fig. 2.13 Error after replace the head file 

Fig. 2.14 Replaced file 
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Fig.2.15 shows a classic visual SLAM frame.  
The entire visual SLAM process includes the following steps: 
a) Sensor data processing. It mainly is RGB-D camera image information reading and 

preprocessing. The sensors here include a camera, an inertial measurement unit 

(IMU) and so on, involving sensor selection, calibration, multi-sensor data 

synchronization and other technologies. It mainly is RGB-D camera image 

information reading and preprocessing in VSLAM. 
b) Visual odometry (VO). The mission of visual odometry is to estimate the camera's 

motion between adjacent images, as well as the appearance of a partial map. VO is 

also called Front End. 
c) Optimization. The back end accepts information of the camera position and attitude 

measured by the visual odometry at different times and the loop closure detection 

to optimize them, and finally get a globally consistent trajectory and map. 
d) Loop closing. Loop closing detection will determine whether the robot has reached 

the previous position. And the information will be provided to the back end for 

processing and optimization. 
e) Mapping. It builds a map that corresponds to the mission requirements based on 

the estimated trajectory. 
The classic visual slam framework is the result of more than a decade of research. The 

framework itself and the algorithms it contains have been basically formalized and are 

already available in many visual and robotic program libraries. With these algorithms, we 

were able to build a visual slam system that allowed it to locate and map in real time under 

normal conditions. 
The following will detail the specific tasks and principles of each module. 
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2.3.1 Visual Odometry  
The visual odometry is concerned with camera motion between adjacent images. The 

simplest case is of course the motion relationship between the two images. For example, 

when we see Fig.2.16, we will naturally reflect that the right figure should be the result of 

left image that rotated to left by a certain angle.  

 But, our intuition is not sensitive to these specific value. However, in the computer, this 

movement information must be accurately measured. So, how does the computer determine 

the motion of the camera through the image? The answer is visual odometry. 
VO can estimate camera motion through the image between adjacent frames and restore 

the spatial structure of the scene. It is called an odometry because it is the same as the actual 

odometer. It only calculates the movements of the neighboring moments and is not related 

to the past information. At this point, VO is like a species that has only a short memory.   
2.3.1.1 Feature Point 

The main problem with VO is how to estimate camera motion based on the image. 

However, the image itself is a matrix of brightness and color, and it would be very difficult 

to consider the motion estimation directly from the matrix level. Therefore, we are 

accustomed to adopt such an approach: First, select some representative points from the 

image. These points will remain unchanged after a small change of camera’s perspective, 

so we will find same feature point in each image. Then, based on these points, the problem 

of camera’s posture estimation and the localization of these points can be solved. In 

classical SLAM frame, they are called landmarks. In the visual SLAM, the landmarks are 

image features. According to Wikipedia's definition, image features are a set of information 

related to computing tasks, and the task of computing depends on the specific application. 

In short, features are another digital representation of image information. A good set of 

features is critical to the final performance of a given task, so researchers have spent a lot 

Fig.2.16 Pictures Taken by Camera and Direction of Motion [15] 

Direction of motion 
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of time investigating features. Digital images are stored in the computer as grayscale 

matrices, so the simplest, single image pixels are always features. However, in the visual 

odometer, we hope that the feature point will remain stable after the camera moves, and the 

gray value will be affected by the light and object material seriously. In different images, 

the change will be very large and unstable. Ideally, when there are small changes in the 

scene and the camera's perspective, we can also determine from the image which places are 

the same point, so the gray value alone is not enough, we need to advance the feature points 

on the image.  
Feature points are some special places in the image. As shown in Fig.2.17, we can use 

the corners, edges and blocks in the image as representative areas in the image. 

It is easier to point out precisely that the same corner appears in two images; the same 

edge is slightly more difficult, as the image is partially similar along the edge; the same 

block is the most difficult. We found that the corners and edges in the image are more special 

than those in the pixel block and their recognition between different images is stronger. 

Therefore, an intuitive way to extract feature points is to identify corner points between 

different images and confirm their correspondence. In this practice, corner points are 

features.  
However, in most applications, the simple corners still cannot meet our needs. For this 

reason, researchers in the field of computer vision have designed many more stable local 

image features such as SIFT, ORB, etc. during their long years of research. 
To extract features in an image, the first step is to calculate the "features", and then 

calculate the "descriptor" for the pixels surrounding those features. In OpenCV, they are 

calculated by cv::FeatureDetector and cv::DescriptorExtractor, respectively as shown in the 

Fig.2.17 The Representative Places in the Image 
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following program statement. 
1 cv::Ptr<cv::FeatureDetector> _detector = cv::FeatureDetector::create( "ORB" );  

2 cv::Ptr<cv::DescriptorExtractor> _descriptor = cv::DescriptorExtractor::create( "ORB" ); 

 Then, use the _detector->detect() function to extract the features. It is worth 

mentioning that the string can specify the type of _detector and _descriptor. If you want to 

build features such as FAST, SURF, just change the following string. The key point is a 

type of cv::KeyPoint. KeyPoint structure with Point2f pt this member variable, refers to 

the pixel coordinates of this feature. In addition, some features have parameters such as 

radius and angle, which will be drawn like a circle in the Fig.2.18. 
2.3.1.2 Feature Matching 

 Next, we need to match the features we get from above method in adjacent images. In 

OpenCV, we need to choose a matching algorithm, such as bruteforce, Fast Library for 

Approximate Nearest Neighbour(FLANN), and so on. Here we build a FLANN matching 

algorithm with the following states: 
1 vector< cv::DMatch > matches; 
2 cv::FlannBasedMatcher matcher; 
3 matcher.match( desp1, desp2, matches ); 

After the match is complete, the algorithm returns some DMatch structures. The 

structure contains the following members: 
i. QueryIdx: the index of the source feature descriptor 
ii. TrainIdx: the index of the target feature descriptor 

Fig.2.18 Features in Graph [15] 
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iii. Distance: matching distance。 
We can use the drawMatch function to draw the matching resulta after matching as 

shown in Fig.2.19： 

The matching of features alone seems to be too much, it match many dissimilar 

features. Due to the two images only have horizontal rotation, the horizontal matching 

line is correct, and the others are mismatching. Therefore, you need to filter these 

matches, for example, to remove too large distances. 
The selected goodmatch is probably like Fig.2.20. 

After filtering, matching is much less, and the image looks cleaner. 
After getting the match, we need to determine whether the match is successful and 

discard the failed data. In the previous algorithm, one result can be get for any two 

images. For unrelated images, it is obviously wrong. Therefore, we need to remove the 

matching failure. We used three methods in this project.  
i. Remove frames with too few good match. 

Fig.2.19 Matching of All Features [15] 

Fig.2.20 Good Match of Features [15] 
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ii. Remove frames with too few inliers in solve PnP RASNAC.  
iii. Remove the case where the derived transform matrix is too large. Because the 

movement is coherent, the interval between two adjacent frames will not be too 

large.  
The visual odometry is indeed the key to SLAM. However, the estimation of the 

trajectory through the visual odometry alone will inevitably lead to accumulating drift. This 

is because the visual odometer (in the simplest case) only estimates the motion between two 

images. 
2.3.2 Loop Closure Detection 

Loop closure detection mainly solves the problem of position estimation drift over time. 

Assume that the UGV actually returns to its origin after a period of actual movement. 

However, due to drift, its position estimate does not return to the original point as shown in 

Fig.2.21. If there is a way to let the vehicle know that it has returned to the origin, or to 

identify the origin, we can eliminate the drift by changing the position estimate back. This 

is the so-called loop closure detection. 
There is a close relationship between loop closure detection and positioning and 

construction. In fact, we believe that the main significance of the existence of the map is to 

let the car know where they have been. In order to implement loop closure detection, we 

need to let unmanned ground vehicles have the ability to recognize the scene. There are 

many ways to achieve it. In the visual SLAM, we hope that the unmanned ground vehicles 

can use images to accomplish this task. For example, loop closure detection can be 

performed by judging the similarity between images. This is similar to humans. When we 

Fig.2.21 Position Estimation Drift Fig.2.22 Calculate the Similarity of Images 
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see two similar pictures, it is easy to recognize that they are from the same place. Therefore, 

visual loop closure detection is essentially an algorithm for calculating the similarity of 

image data. Since the information of the image is very abundant, the difficulty of correctly 

detecting is reduced as shown in Fig.2.22. After the loop closure is detected, we will tell the 

back-end optimization algorithm the information that "A and B are the same point." Then, 

based on this new information, the back end adjusts the trajectory and map to match the 

loopback detection results. In this way, if we have sufficient and correct loop closure 

detection, we can reduce the cumulative error and get globally consistent trajectories and 

maps as shown in Fig.2.23.  

2.3.3 Back End Optimization 
We see that the visual odometry can give a short time trajectory and map, but due to 

the inevitable accumulation of errors, this map is inaccurate for a long time. Therefore, 

based on the visual odometry, we also hope to build a larger optimization problem to 

consider the optimal trajectory and map over a long period of time. However, considering 

the balance between accuracy and performance, there are many different practices in 

practice.  
The back end accepts information of the camera position and attitude measured by the 

visual odometry at different times and the loop closure detection to optimize them, and 

finally get a globally consistent trajectory and map. The backend accepts loopback detection 

information and optimizes the trajectory using graph optimization. The back end is also 

responsible for the noise during the SLAM process. Although we all hope that all the data 

are accurate, in reality, the accurate sensors also have some noise. Cheaper sensors have 

larger measurement errors and expensive sensors may have less error. Some sensors are 

Fig.2.23 Trajectories after Loop Closure 
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also affected by magnetic fields and temperature. So in addition to solving "how to estimate 

the camera motion from the image," we also have to care about how much noise the estimate 

carries, how the noise is passed from the last moment to the next moment. The problem to 

be considered in back-end optimization is how to estimate the state of the entire system 

from these noisy data, and how large the uncertainty of this state estimation is, which is 

called the maximum posterior probability. The state here includes both the trajectory of the 

vehicle itself and the map. 
2.3.4 Mapping 

In visual odometry, we use the feature points in the image to estimate the camera's 

motion. Finally, we get a rotation vector and a translation vector. Then, we can use these 

two vectors to stitch together the two image point clouds to form a larger point cloud.  
The stitching of point clouds is essentially the process of transforming point clouds. 

This transformation is often described using a transform matrix: 
𝑻 = [

𝑹3x3 𝒕3x1

𝑶1x3 1
]        [

𝑦1

𝑦2

𝑦3

1

] = 𝑻 ∗  [

𝑥1

𝑥2

𝑥3

1

]            (2-1) 

The upper left portion of the matrix is a 3x3-rotation matrix, which is a quadrature array. 

The upper right part is a 3×1 displacement vector. The lower left is a 1×3 zoom vector, 

which is usually taken as 0 in SLAM because things in the environment are unlikely to 

suddenly become larger or smaller. The lower right corner is 1. This matrix can be 

transformed homogeneously on points or other things: 
The process of stitch point cloud is mapping a process of building a map. The map is a 

description of the environment, but this description is not fixed and needs to be based on 

the application of SLAM.  
For the unmanned ground vehicle, it mainly moves in the ground plane. Only a two-

dimensional map is needed, which told UGV where it could pass, and where obstacles exist, 

it is enough to navigate within a certain range. 
2.4 Algorithm Optimization  

After all the above process, we can get a complete visual slam algorithm, but while 

real running the algorithm, we find it still have many problem. 
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2.4.1 Using RealSense D435 
The camera that we first used is the RealSense R200, which can only get depth 

information within three meter due to limited power of infrared emitter. Effective depth 

information is not available in an environment that is too empty. When the front of the 

camera is relatively empty, the number of feature points extracted is insufficient only using 

the image and depth information on the both sides. When the car rotating, the image changes 

too fast, it may not be possible to get enough matched feature point pairs. Therefore, we 

use RealSense D435 instead. RealSense D435 camera is a new depth camera published by 

Intel in early 2018. It has a compact shape and is suitable for close-range depth image 

acquisition. It has high image resolution and sampling frame rate, and is suitable for 

application development of various depth information. It can get effective depth 

information within 10 meters, which is enough for indoor environment. 

Fig.2.24 shows the data of RealSense D435, the upper left picture is the color data ,the 

right two pictures is the infrared data, and the lower left picture is the depth data, 

Fig.2.24 Data of RealSense D435 



Chapter Two Visual SLAM Algorithm 
 

30 
 

2.4.2 Using Motion Graph and G2O Optimization 
In addition, another problem is that once there is a wrong match, the entire program 

will crash. The deviation will always accumulate. Especially when the UGV are rotating, 

the sight of the camera changing very fast, it may can’t get enough feature point pairs to get 

accuracy motion of camera. 
The cumulative deviation is unavoidable in the visual odometry. The subsequent 

camera’s motion is dependent on the previous motion. To ensure the accuracy of the map, 

we must ensure that each match is accurate which is hardly to achieve. One way is using 

motion graph. 
The motion graph is a graph composed of camera motions. The graph here is in the 

sense of graph theory. A graph consists of nodes and edges G = {V, E}. In the simplest case, 

the nodes represent the camera's various poses, which is expressed in quaternion or matrix 

form:  
𝒗𝑖 = [𝑥, 𝑦, 𝑧, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 , 𝑞𝑤] = 𝑻𝑖 = [

𝑹3x3 𝒕3x1

𝑶1x3 1
]

𝑖

     (2-2) 
The edge refers to the transformation between the two nodes： 

𝑬𝑖𝑗 = 𝑻𝑖𝑗 = [
𝑹3x3 𝒕3x1

𝑶1x3 1
]

𝑖𝑗

                  (2-3) 
  Then, we can put every result we previously got into a map like Fig.2.25.  

Therefore, we can do VSLAM in a better way. Not only consider the information of 

two adjacent frames, but also consider all the information and then become a full slam 

problem. 

Since we only compare the images of adjacent frames, it is easy to miss the match, 

especially when the car are turning. 
Therefore, I have made an optimization. We can compare the motion changes of 

Fig.2.25 Single Motion Graph Fig.2.26 Motion Graph Compare Multi Graph 
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previous multi-frame images to fix this problem. Then we will get an oriented graph as 

shown in Fig.2.26. The camera’s motion C3 is not only depend on motion C2 and motion 

change T23 but also depend on the previous multi motion and motion changes. Then the 

motion estimate become a graph optimization problem. Then we can use g2o (General 

Graph Optimization) to get the motion of the camera.  
G2o (General Graph Optimization) is an open-source project written in C++, built with 

cmake. It is using for optimizing nonlinear error functions based on graph. g2o has been 

designed to be easily extensible to a wide range of problems and a new problem typically 

can be specified in a few lines of code.  
The g2o core has a variety of solvers, and its vertices and edges are of various types. 

By customizing vertices and edges, in fact, as long as an optimization problem can be 

expressed as a graph, you can use g2o to solve it. Bundle adjustment, ICP, data fitting all 

can be done with g2o. Its GitHub address is https://github.com/RainerKuemmerle/g2o. 
2.4.3 Accelerate VSLAM algorithm 

Since we are comparing multi precious image for every coming image, so it need more 

time and computer sources. Since at the first time, we are using Intel NUC i3 as our main 

processor, which is may not powerful enough. Therefore, the efficiency is not satisfactory 

enough. Online point cloud matching is more time-consuming. So we finally use NVIDIA 

Jetson TX2 instead of Intel NUC I3 as VSLAM processor, using GPU to accelerate visual 

odometry process.  
NVIDIA Jetson TX2 is an embedded system-on-module (SoM) with dual-core 

NVIDIA Denver2 + quad-core ARM Cortex-A57, 8GB 128-bit LPDDR4 and integrated 

256-core Pascal GPU. Useful for deploying computer vision and deep learning, Jetson TX2 

runs Linux and provides greater than 1TFLOPS of FP16 compute performance in less than 

7.5 watts of power. NVIDIA Jetson TX2 is available as the module, developer kit, and in 

compatible ecosystem products. 
Since NVIDIA Jetson TX2 is based on arm kernel, so it may be incompatible with 

librealsense the driver of RealSense camera. In order for librealsense to work properly, the 

kernel image must be rebuilt and patches applied to the UVC module and some other 

support modules. The Jetsons have the v4l2 module built into the kernel image. The module 

should not be built as an external module, due to needed support for the carrier board camera. 
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Because of this, a separate kernel Image should be generated, as well as any needed modules 

(such as the patched UVC module). 
In order to support Intel RealSense cameras with built in accelerometers and 

gyroscopes, modules need to be enabled. These modules are in the Industrial I/O ( IIO ) 
device tree. The Jetson already has IIO support enabled in the kernel image to support the 

INA3321x power monitors. To support these other HID IIO devices, IIO_BUFFER must 

be enabled; it must be built into the kernel Image as well. Therefore, we need to do the 

following steps. Downloads the kernel sources for L4T from the NVIDIA website, 

decompresses them and opens a graphical editor on the .config file. Compiles the kernel 

and modules using make. The script commands make the kernel Image file, makes the 

module files, and installs the module files. Installing the Image file on to the system is a 

separate step. Note that the make is limited to the Image and modules; the rest of the kernel 

build (such as compiling the dts files) must be done separately.  
Doing "sudo make" in the kernel source directory will build the entirety. Copies the 

Image file created by compiling the kernel to the /boot directory. Note that while developing 

you will want to be more conservative than this: You will probably want to copy the new 

kernel Image to a different name in the boot directory, and modify 

/boot/extlinux/extlinux.conf to have entry points at the old image, or the new image. This 

way, if things go sideways you can still boot the machine using the serial console. Removes 

all of the kernel sources and compressed source files. You may want to make a backup of 

the files before deletion. 
Then after reboot TX2, we need to build librealsense 2.0 library on the TX2 to use 

RealSense D435.  It can be described to the following steps.  
 Install dependencies 
 Applies Jetson specific patches 
 Sets up udev rules so the camera may be used in user space 
 Builds librealsense, tools and demos 
 Installs libraries and executables 
After building librealsense 2.0 library, what we need to do is to install librealsense and 

realsense as ROS packages, which is similar to RealSense R200. We can Cloning Intel ROS 

realsense package from GitHub. The address is https://github.com/intel-ros/realsense.git. 

Then build it under the tutorial.  
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Since we want to use the GPU on TX2 to accelerate visual odometry process, we need 

to rebuild OpenCV with CUDA. The version of CUDA on our TX2 is CUDA9.0, and 

OpenCV 3.3 incompatible with Cuda9.0. Therefore, we need to build OpenCV 3.4. After 

rebuilding OpenCV, we need to add OpenCV_DIR parameter to catkinConfig.cmake in our 

VSLAM algorithm or it will show the error: Can’t find OpencvConfig.cmake.  
However, only feature point extraction supports GPU acceleration, feature point 

matching does not support GPU acceleration. Therefore, we still need some solution to 

accelerate the feature point matching algorithm.  

Since TX2 is a 6-core CPU, and because of the graph optimization of the g2o, the 

dependency of adjacent frames is solved. Therefore, the multi-thread method can be used 

to simultaneously calculate the motion relationship of multiple frames and previous key 

frames to accelerate feature point matching as shown in Fig.2.27. For example, we can 

calculate the motion of C2 and C3 at the same time. We don’t need to wait until the motion 

of C2 is calculated. 
Moreover, there still some methods to accelerate the VSLAM algorithm. For example, 

since our UGV is always running in a two-dimensional ground, so we can only calculate 

the motion change in two dimension which only include x, y and rotation angle in this plane 

instead of normal SLAM motion change in three dimension.  
In addition, we can use the visual odometry result of the last frame as the initial value 

of visual odometry of the frame. This will be useful is the speed of the UGV doesn’t change 

quickly. 

Fig.2.27 Motion Graph Using Multi-thread 
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Fig.2.28 shows the performance after hardware and software optimizations. As we can 

see from the form, while we are using Intel NUC I3, each frame need more than 300 

milliseconds, we can only calculate only three frames per second. After we use NVIDIA 

Jetson TX2, the time consuming drop to 150ms. After we implement the software 

optimization, the time consuming drop to 40ms to 60ms, so we can handle 15-20 frames 

per second.  

Fig.2.29 shows how the visual SLAM algorithm works. The upper left is the image that 

the camera produced. The 3D map generated by VSLAM algorithm is shown in the right. 

We can just move and rotate the camera by hand and we will get the 3D point cloud map. 

We can clearly see the wall, bookcase and books in it.  

Fig.2.29 Running VSLAM Algorithm 

Fig.2.28 Performance Comparing  
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Chapter Three Navigation of UGV  
However, since the 3D map generated by VSLAM is too big and bulky for navigation 

on the ground. Moreover, it is not necessary for us to use 3D map to navigate our UGV. 2D 

map is enough for navigation of UGV on the ground. For the point cloud getting from RGB-

D camera, a simple way to get a 2D map is to convert the point cloud data into laser data, 

and then using some laser SLAM algorithm like gmapping to generate 2D map. But this 

way has waste many information provided by RGB-D camera, and it will has worse effect 

than a real laser. Another method is to use 3D map generated by VSLAM algorithm. We 

can project the 3D map onto a 2D plane, then we can use this projected map to do the 

navigation on the ground. In this way, not only are obstacles in one plane detected, but 

obstacles in a range of heights can be detected. The most problem of this method is the 

ground. There will be many problem if we just consider the height less than zero to be the 

ground since the ground may be not flat. One solution of this problem is to set a maximum 

angle between point's normal to ground's normal to label it as ground. Points with higher 

angle difference are considered as obstacles. 
After fix up the 2D map, we can now run our navigation algorithm. 

3.1 Configuring and Using the Navigation Stack 
ROS provided a move_base package with which users can specify the position and 

orientation of UGV in a map that has already been established. Based on the sensor 

information, move_base package sends controls commands to controls the UGV to get to 

the target position we set. Its main features include: path planning based on odometry 

Fig.3.1 Content of move_base Package 
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information, outputting forward velocity and steering velocity. And you can set the 

maximum velocity and minimum velocity in the configuration files which will be used to 

make acceleration or deceleration decisions automatically. Fig.3.1 shown the content of 

move_base package: 
The move_base package assumes that the UGV can run in a specific way. The white 

units are essential parts that have been done, the gray ones are optional parts, and we should 

implement the blue units for different UGV module. As we can see from Fig.3.1, the 

move_base package need a map server to provide the whole map of the environment. And 

it need two cost maps to preserve obstacle information in the world, which are global cost 

map and local cost map. Global cost map is used for path planning, creating long-term path 

planning throughout the environment, and local cost map is used for local path planning 

and obstacle avoidance. 
Since we are using the map that generated by the Rtabmap algorithm in real-time, so 

we should change the move_base package system to the followings:  

The visual odometry information is generated by Rtabmap algorithm. The map that 

generated by Rtabmap algorithm will be using as global map and local map. And the 

Rtabmap algorithm will provide a TF transform form map to odom coordinate fram which 

will be used to get the camera_link coordinate frame. Then we can set the goal for the UGV. 

And then the global planner with find a reasonable path using global map, the local planner 

will get the speed of the UGV. For Differential wheel car, it including forward speed and 

rotation speed.  
3.1.1 Transform Configuration 

The move_base package need to know the real-time relationship of different coordinate 

Fig.3.2 Move_base Package System Using Rtabmap 
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frames. Therefore, the UGV should publish coordinate frames information using TF. 
Before configuring transform, we should firstly clear the coordinate system of the UGV. 

As shown in Fig.3.3. Note that the two coordinate systems are established in the right-hand 

coordinate system, the right hand in the left figure is the car itself, the x-axis is the forward 

direction, and perpendicular to the axis connection between the two wheels, the y-axis is 

the axis between the two wheels Connection. The figure on the right shows the car's 

rotational coordinate system, with the thumb pointing at the z-axis and the anticlockwise 

direction being positive. 

Many ROS stacks need UGV platform publish a UGV transform tree based on 

the TF software library. A TF tree set offsets between coordinate frames according to the 

different translation and rotation at the level of abstraction. To make it more specific, give 

an example of a simple UGV with a moving base on which a simple camera is installed. 

When referring to UGV we can set two frames: one related to moving base center and the 

other corresponds to the camera. We can call the frame that related to the moving base’s 

center "base_link". This coordinate frame is very important for navigation which will be 

rotational center of the UGV. And the coordinate frame corresponding to the camera can be 

named "camera_link". 
Assuming that we get some distance data from the center point of camera. Which means, 

we get some distance information based on "camera_link" frame. Then we need to make 

the UGV platform to avoid obstacles while running use this kind of data. We should to 

change the distance data we’ve gotten from the "camera_link" coordinate frame to 

"base_link" to achieve this. Essentially, we can set a hypotaxis of the "base_link" and 

"camera_link" frames. 

Fig.3.3 Coordinate System 
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While setting the transform, assuming camera is installed 0.1m front and 0.2m up the 

moving base center. We can get a transform offset between the two frame from this 

information. More concretely, we can set a transform of (x: 10cm, y: 0cm, z: 20cm) to 

transform depth information from the "base_link" frame to the "camera_link" frame, and 

set the contrary transform (x: -10cm, y: 0cm, z: -20cm) to transform distance information 

from the "camera_link" to the "base_link".  

It will be very complicated if we want to manage this relationship by ourselves when 

the coordinate frames increase. Fortunately, transform tree can do this work for us. We can 

us transform tree to define the relationship between different coordinate frames. And then, 

transform tree will manage the transformation between different coordinate frames 

automatically. If we want to use transform tree to manage the relationship between 

"camera_link" coordinate frame and "base_link" coordinate frames, we should add the 

relationship to the transform tree first, see in Fig.3.5.  

In order to make sure that there is only one route between different two frames, 

transform tree uses a tree structure. Moreover, all slides in the tree are from parent 

coordinate frame to its children frames. In general, each coordinate frame should have a 

corresponding node in the TF tree and each transform between different frames should have 

a corresponding edge that is from the current coordinate frame to its child frame.  

Fig.3.4 an Example of a Simple UGV  

Fig.3.5 Relationship Between “base_link” and “camera_link”  
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We can set two nodes to create a TF tree for the example we made. Each coordinate 

frame corresponds for one node. The relationship of the two node should be decided first 

to create the edge. Since all transform are from parent to child, so make sure who is parent 

is important. We can set "camera_link" frame to be parent node since we can get the 

relationship between “camera_link” coordinate frame and “map” coordinate frame from 

VSLAM algorithm. So the relationship of the edge between the two frames is (x: 10cm, y: 

0cm, z: 20cm). We can convert the distance data that based on "camera_link" frame to 

"base_link", by calling the transform library after the tf setting the tf tree.  
We can run “$rosrun tf view_frames” to see the TF tree in ROS. 
In our UGV platform, after setting all the coordinate frame, the TF tree is shown in 

Fig.3.6.  

Fig.3.6 TF Tree in Our UGV Platform 
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3.1.2 Odometry Information 
Since the VSLAM algorithm can get the odometry information of the UGV with VO, 

so we can just use it. The resulting format of VO is like the following: 
1512631925.023707 0.003939 -0.006699 0.021376 0.009454 0.015106 0.001148 0.999841 

The respective data are time, location (x, y, z), attitude quaternion (qx, qy, qz, qw). 

Compared to Euler angles, Quaternion is a compact, easy-to-iterate method that does not 

exhibit singular values. Quaternion is an extended complex number that Hamilton finds. It 

has three imaginary parts and one real part: 
𝒒 = 𝑞𝑤 + 𝑞𝑥𝑖 + 𝑞𝑦𝑗 + 𝑞𝑧𝑘      (3-1) 

In which i, j, k are the three imaginary parts of the quaternion. Fig.3.7 shows the 

relationship of them.  

Quaternions can represent any rotation in three-dimensional space. We assume that a 

rotation is rotated at an angle 𝜃 around the unit vector 𝒏 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]𝑇 , and then the 

quaternion form of this rotation is: 
𝒒 = [cos

𝜃

2
, 𝑛𝑥sin

𝜃

2
, 𝑛𝑦sin

𝜃

2
, 𝑛𝑧sin

𝜃

2
]𝑇     (3-2) 

In fact, this is a quaternion with a length of one, called the unit quaternion. On the 

contrary, we can calculate the corresponding rotation axis and rotation angle by using any 

quaternion of length 1: 

Fig.3.7 Quaternion 



Chapter Three Navigation of UGV 
 

41 
 

{
𝜃 = 2 arccos 𝑞𝑤

[𝑛𝑥, 𝑛𝑦, 𝑛𝑧]𝑇 = [𝑞𝑥, 𝑞𝑦, 𝑞𝑧]𝑇/sin
𝜃

2

     (3-3) 

3.2 Path Planning 
The path planning of the UGV is to plan the speed and direction of the UGV at the next 

moment based on the information of the current environmental and target points. In the case 

of pre-setting environmental information, an optimal path can be planned for the UGV in 

advance, and it is convenient to autonomously navigate the robot back and forth. Which 

means, in a given environment, the start place and goal are specified. UGV plans a shortest 

path without collision from the start point to goal as required. UGV need to plan their path 

in the known environmental information. In addition, in the course of continuous 

advancement, he can clearly perceive the surrounding environmental information through 

various sensors, make adjustments for special situations in a timely manner, and ultimately 

reach the target position without collision. Path planning mainly involves two aspects of 

environmental information expression and path search methods. Path search is based on the 

expression of environmental information, and it is a search strategy for identifying and 

processing environmental information, so as to quickly find the target information and 

obtain an optimal path. 
3.2.1 Global Planner 

The global path planning of the UGV is essentially to find the minimum cost path 

between the two points on the environment map, so that the UGV can avoid obstacles and 

dynamically plan a best path. For example, from one point in a room to another room. 

Therefore, we must choose a suitable graph search algorithm to improve the search 

efficiency. There are many research results for the path planning of the global environment 

of UGV. The main path search algorithms are Dijkstra's algorithm and A* algorithm. 
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3.2.1.1 Dijkstra’s algorithm 

The Dijkstra’s algorithm does not need to search all connected nodes. It only needs to 

search the local nodes rather than press to get the shortest path, and it takes less time than 

the depth-first algorithm. The Dijkstra’s algorithm does not need to search all connected 

nodes. It only needs to search the local nodes rather than press to get the shortest path, and 

it takes less time than the depth-first algorithm. The algorithm is widely used in the fields 

of intelligent vehicle guidance, path planning, GPS navigation, etc. It is considered as one 

of the suitable algorithms for solving the shortest path problem between two nodes with 

non-negative weights [16] [17]. 
Electronic maps are generally expressed with 𝐆 = (𝐕, 𝐄), in which V corresponds a 

nodes set in the map, E represents a connection between nodes, is a collection of edges. 

Moreover, there is a corresponding weight 𝐖(𝐔, 𝐕) for each edge. In the path planning 

process of the Dijkstra’s algorithm, it is mainly to divide all link nodes into two sets. 
In the course of the algorithm, the first set is denoted by S including the item points, 

which have already determined the best path. Initially, the first set only have one point. The 

point will be included to S after obtaining the shortest path. The algorithm is finished until 

Fig.3.8 Result of Dijkstra’s Algorithm[20] 
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all the vertices are added to S.  
The second set is donated by U including the points which have not determined the 

best paths. The points in second set will add to the first set order by the best path’s length.  

The best path length between the point in S and point in V is always shorter than the lenftg 

of best path between any of the points U and V. The distance of points in the second set is 

between first set and this point, which includes the current best path where the points in the 

first set are intermediate points [15] [17] [18]. Fig.3.8 shows an example of Dijkstra’s algorithm 

result. 
3.2.1.2 A* algorithm 
 Heuristic search algorithm is to evaluate a search position in the state space of the graph 

to obtain the best search position, and then search from this position, and continue until the 

target point is found. The heuristic search algorithm is to evaluate a search position in the 

state space of the graph to obtain the best search position, and then search from this position, 

and continue until the target point is found. This method can eliminate a large number of 

search paths and improve search efficiency. In heuristic search, the assessment of location 

is very important. Using different assessments can produce completely different results. 

The valuation of heuristic search is expressed by the valuation function. The following 

expressed the valuation function mathematically [15] [19] 
𝒇(𝒂) = 𝒈(𝒂) + 𝒉(𝒂)             (3-4) 

Where 𝒇(𝒂) is the evaluation function of node 𝒂, 𝒈(𝒂) shows actual cost between 

a node and start node in the state space. And 𝒉(𝒂) is evaluation function of the shortest 

path between a and target node. 
Commonly used heuristic search algorithms are A* algorithm, ant colony optimization 

algorithm, genetic algorithm, simulated annealing algorithm and so on. Among them, the 

convergence speed of the genetic algorithm is too slow, it is easy to fall into a local optimum, 

and it is easily affected by the parameters. The simulated annealing algorithm has poor local 

search capability and is susceptible to parameters. Ant colony algorithm convergence speed 

is not ideal, mostly used for dynamic network computing, for the static network of UGV 

path network, the effect is not good [18] [20] [21]. 
To synthesize the shortcomings of the above several algorithms, the shortest global 

path planning problem of my project is using the A* algorithm. 
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A* algorithm is a heuristic search algorithm. Like the Dijkstra’s algorithm, it does not 

have to search all nodes. Unlike depth-first search and breadth-first search, the search 

efficiency of the algorithm is improved. However, the search path cannot be guaranteed to 

be the optimal path. A* algorithm uses a certain evaluation function to estimate the 

evaluation value of the extensible node relative to the initial node, takes the node with the 

smallest evaluation value as a new extension point, and uses the evaluation value of this 

extension point to represent the cost of walking, and determines the direction of the search 

path. The algorithm is based on the Dijkstra’s algorithm and the BFS algorithm [18] [20] [22]. 
Fig.3.9 shows an example of A* algorithm. 
The A* algorithm is one of the most effective algorithms for find the best path in road 

map. Compared with traditional shortest path algorithm, the core of the A* algorithm is also 

an evaluation function. Its expression is shown in Equation 4-3 above. For h(a) in the 

formula, if h(a) is less than h*(a) (indicating the actual value of the path cost from node a 

to the target node), then A* The algorithm is complete and can obtain the optimal path 

solution. If h(a) is not less than h*(a), the path obtained by the A* algorithm is not the 

optimal solution. Because when planning the path, some nodes of the optimal path are 

omitted [23] [24]. 

Fig.3.9 Result of A* Algorithm [20] 
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3.2.2 Local Planner 
The Dynamic Window Approach (DWA) algorithm is derived from robot kinematics 

and dynamics. It limits the speed selection problem of the robot in motion to a speed vector 

space composed of the robot's translational speed ν and rotation speed ω, and applies the 

robot's dynamic and non-holonomic constraints to the speed vector space. It can directly 

calculate the ν and ω control commands in the robot's velocity vector space, thereby 

transforming the robot's local path planning problem into the constrained optimization 

problem in the velocity vector space. 
A kinematic trajectory is designed by the algorithm to get to the destination. The 

algorithm made a function of value near the robot.  The value means the cost with the 

rotation velocity ω and translational velocity ν. The algorithm will determine the rotation 

velocity ω and translational velocity ν using the function. The robot’s rotation velocity ω 

and translational velocity ν is represented as dθ, dy, dx.  

The DWA algorithms working principle can be short in follows (shown in Fig.3.10) 

[25] [26] [27]: 
1.  In the velocity vector space, discretely velocity sampling (dθ, dy, dx) 
2. A forward simulation is performed for each sampled velocity. 
3. Using metric which include the following features: approaching global path and 

velocity, approaching target point, approaching obstacles to grade trajectory 

generated by the forward simulation.  

Fig.3.10 DWA Working Principle[25] 
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4. Choose velocity that get the highest score after remove velocities that will have 

collision with other objects and transfer the velocity to control mode.  
5. Reset & repeat. 

3.3 Setting Goal and Navigation 
After fix up the 2D map and navigation algorithm. We can use rviz remotely to see how 

the SLAM algorithm and navigation algorithm works. The configuration of rviz has been 

introduce in chapter two. We can add any topic we want to see to the rviz windows. TF 

frame, global and local costmap and planned path are recommending. Fig.4.16 shows an 

example of it.  
Map and base_link coordinate frames are shown on it. The gray area is the area of the 

whole map. The purple area means the obstacle. Since UGV has its own size, we need to 

set an expansion radius of the obstacle which is shown as the blue bound of the obstacles 

in Fig.3.11. And the white area in the front of the frames are the ground points with lower 

angle between point's normal to ground's normal. 

Fig.3.11 Rviz to Show the Map 
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In addition, we can set a goal with position and pose we want in rviz by click the 2D 

Navigation Goal button, as shown in Fig.3.12. The navigation package will find the best 

path with Dijstra’s algorithm and DWA algorithm. The red arrow is the position and pose 

of the goal, the green route is the path that navigation algorithm find. 

In addition, we can send a goal with command to public the goal topic shown in Fig. 

3.13: 

Fig.3.12 Planned Path after Sending a Goal 

Fig.3.13 Command to Send a Goal  
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Chapter Four System Design and 
Implementation 
4.1 Vehicle Structure 
4.1.1 Preparation 

1. Raspberry PI (Raspberry PI 3 MODEL B is used in this project) 
2. 8G or more TF card 
3. Double driver car chassis (including the motor, DC gear motors are used in the car 

of this project) 
4. Various DuPont lines 
5. L298N dual H-bridge motor driving plate (see as Fig.4.1). 
6. Rechargeable battery pack  

Fig.4.1 L298N Dual H-bridge Motor Driving Plate 
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4.1.2 Raspberry System Installation and Car Chassis Assembly 
Raspberry installed ubuntumate16.14 in this project. 
Assembling battery box, car and motor according on the tutorials on the official website. 

4.1.3 Module Connection 
3.1.3.1 Connect L298N driving plate to the car 

1. Connect VMS port and GND port of the Motor Supply interface to the positive 

and negative electrode of the battery box respectively. 
2. Connect DC Motor A/B interface to the two DC gear motor terminals 

respectively. There are four motor direction indicators used to adjust the rotation 

direction of the motor. 
3.1.3.2 Connect control port Sense A and Sense B to the Raspberry PI. 

1. EA/EB is the enable pin for the two motor A/B, the motor speed also can be 

controlled by the PWM of this pin. I1/2/3/4 is the pin for the motor control. Motor B is 

same as Motor A. Fig.4.2 are the pins and truth table of the Motor A. 
2. Connect EA/B, I1/2/3/4 to the PWM pin and GPIO pin of the Raspberry PI 

respectively. In this project EA, EB are connected to the GPIO 23(PWM 1) and GPIO 

26(PWM 0) of Raspberry Pi pins respectively. I1, I2, I3, I4 are connected to the GPIO 

25, 24, 28, 27 of Raspberry Pi pins.  
3. Make sure L298N driving plate and Raspberry Pi have common ground. 

4.1.4 Control the Car Using Raspberry PI. 
First, we should install the Python GPIO module. We can use pip to install it or install 

it by downloading the source code.  

Fig.4.2 Controller of Motors of Car 
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After the installation is complete, we can write a small test program using python 

shown in Fig.4.3. 

Then we can execute the file after save and exit to see whether the car run as we 

supposed. 
There is still a problem that we should make sure that the double wheels have the same 

speed. So that the car can run on a straight route. We can use the PID to set the PWM in 

order to get the same speed. 

Fig.4.3 Test Program of the Car 
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4.2 Photoelectric Encoder 
As we need to get the position and pose of the car to get more precise map with higher 

efficiency, we need to use photoelectric encoders which are connecting to the wheels of the 

car.  

Photoelectric encoder is a sensor that use photoelectric conversion to transfer 

translocation of an axis to a digital or pulse signal which is composed of photoelectric 

measuring unit and grating disk. This sensor is used in amount field. Grating disc is divided 

and opened multiple oblong orifice in certain diameter disc. The grating disc has a same 

rotation speed with motor due to the connect between motor axis and photoelectric encoder. 

The detection device can export pulse signal. It can show the speed of motor by calculating 

the quantity of pulse signal of photoelectric encoder per second. Fig.4.5 shown how 

photoelectric encoder looks like. 
4.2.1 Get the Output Signal 

As shown in the left image, there are 3 pins on per photoelectric encoder. The ‘+’ pin 

and ‘-’ pin are connected to the ‘+5V’ and GND pins on raspberry pi respectively. The ‘S’ 

pins is the output signal of the photoelectric encoder, we can connected it the the GPIO pins 

to get the output.  

Fig.4.4 Photoelectric Working Principle 

Fig.4.5 Photoelectric Encoder 
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Then we can use two photoelectric encoders to calculate the speed of the two wheels. 

We can use interrupt to count the pulses. The count add one while there is a rising edge. We 

can count pulses on GPIO pins every 60 seconds. 
4.2.2 Output Testing 

Since we can use the PWM pins on raspberry pi to control the duty ration, so that we 

can control the speed of the two wheels. We have test the relationship of the duty ration and 

the speeds.  

Fig.4.6 shows the result of the testing. The left data is the duty ration, and the right data 

is the speed of the wheels (the number of the pulses per minutes). As we can see from the 

picture, the two wheels have different speed even whit the same duty ration. We need to 

make sure the two wheels have the same speed when it was running forward or backward. 

Therefore, we need to use PID to adjust the duty ration. 
4.3 PID Adjusting 

PID controller including three parts Differential, Integral and Proportional. It has many 

advantages such as, high reliability, good robustness and simple algorithm. It mainly 

contains the PID controller and the target of control. Although PID control has a long history, 

it is still widely used in the industry today. 
Due to its versatility and flexibility for use, it has serialized products and three 

Fig.4.6 Testing Result 
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coefficients (Kd, Kp and Ki) need adjust while using. Sometimes, only one or two of them 

may be taken. The applications of PID is very widely. Some project may be time-varying 

or nonlinear, the PID controller can be used if we simplify it to a system in which the 

dynamic characteristics and basic linear is constant over time. 
In fact, PID controller can provide precise response adjust to the control model.  
The control of the speed of a car can be a simple application of PID controller. The PID 

controller can controls the power of the car's motor to optimally resume the actual velocity 

to the set velocity without delay or overshoot. 
Mathematically, the following function shows the overall control function of PID 

controller: 
𝑢(𝑡) = 𝐾𝑑 ∗ 𝑑𝑒(𝑡)/𝑑𝑡 + 𝐾𝑖 ∗ ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑝 ∗ 𝑒(𝑡)           (4-1) 

In which Kd, Ki and Kp respectively represent the coefficients of the derivative, integral, 

and proportional terms. All of them are non-negative 
The flow chart of PID controller can be expressed as Fig.4.7 

It shows how to generate and apply these three coefficients. The error 𝑒(𝑡) which is 

the difference of the real value 𝑦(𝑡) and set value 𝑟(𝑡) is calculated by the PID controller. 

And then an adjustment is get according to the Kd, Ki and Kp terms. The controller tries to 

use a variable 𝑢(𝑡) to decrease the error 𝑒(𝑡) to a control terms determined value [28] [29]. 
The proportional, differential and integral terms of the PID control algorithm 

correspond to the following control functions: 
Kp is the proportion reaction to deviation signal of the control system 𝑟(𝑡) - 𝑦(𝑡) 

error 𝑒(𝑡). The proportion uint works once a deviation appears to decrease deviation. In the 

PID control system, the internally transmitted signal can satisfy a certain relationship. If 

this ratio causes a certain deviation and a new signal e(t) is formed, the PID controller will 

control the system in time and the system will return to the normal signal. 

Fig.4.7 PID Flow Chart 
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Ki is the integral reaction to past values of the 𝑟(𝑡) -  𝑦(𝑡)  error 𝑒(𝑡) . In the PID 

control system, the system signal will be deviated due to the transmission of multiple links. 

In order to clean up the deviation, the integral participation control is needed to improve 

the system accuracy. It can improve the performance of controller by reducing static error. 

Among them, the integration time constant T determines the cleaning bias force of the 

integral control in the entire system. The larger the T, the worse the capability. 
 Ki are not only related to errors, but also related to the duration. Therefore, if the force 

applied is not sufficient to make the error zero, it will increase over time.  
Kd is an estimate of tendency of the 𝑟(𝑡)- 𝑦(𝑡) error 𝑒(𝑡), account of its changing 

speed now. It reflects the changing trend of deviation value, and can produce a valid earlier 

modification value in system ahead of the deviation signal changing too much. In the PID 

control system, the signal deviation generated during the proportional control will become 

larger and larger. In order to prevent this kind of deviation signal from becoming too large 

and affect the system accuracy, differential control is needed to correct it. And it is needed 

to act in the early stage to achieve rapid correction. 
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4.3.1 Parameter Adjusting 
In this project, we use PID controller to make sure that the two wheels have same speed. 

Firstly, we can set the duty ration of right wheel to 20%. And then using PID controller to 

adjust the duty ration of left wheel. We can set the speed of right wheel as set point r(t). The 

output y(t) is the speed of left wheel. And e(t) is the difference of the speed of the two 

wheels. And the u(t) is the changing of the duty ration of left wheels.  

Firstly, we can set the Ki and Kp values to zero. And then increase the Kp to see the 

changing of output and error. As is shown in Fig.4.8, we can find that when Kp=5.0, the 

adjustment is too slow. Moreover, when the Kp=10.0, it may have oscillation. In addition, 

when the Kp=8.5, the figure line is fine. It almost meets our requirements.  

Fig.4.8 Adjusting Kp 
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Fig.4.9 Adjusting Ki 

 

Fig.4.10 Adjusting Kd 
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Then we can adjust Ki to make the output more accurate. We can increase the Ki value 

from 0 to 0.1 to see the changing of output and error. As is shown in Fig.4.9. When the Ki 

is 0.05, it may have some oscillation. And when the Ki is 0.09, it may overshoot. Finally, 

when we set the Kp to 8.5, the result is fine. It almost meets all of our requirements. 
Finally, we are going to adjusting Kd to make is more stable. We can increase the Kd 

value from 0.1 to 1 to see the changing of output and error. As is shown in Fig.4.10. When 

the Kd is 0.4 and 0.7, the outputs are not so perfect. And when we change the Kd to 0.5, the 

output is almost perfect. 
4.3.2 Exponential Smoothing 
 Since the feedback is the count of Photoelectric Encoder, so the feedback is maybe very 

slow, once per second is almost the fastest. If we just decrease the time of each feedback, it 

will cause bigger errors. For this problem, we can may use exponential smoothing window 

to solve this problem. 
 Exponential smoothing is a special kind of weighted moving average method. Its 

characteristics are: First, the exponential smoothing method further strengthens the effect 

of recent observations on the predicted value during the observation period, and gives 

different weights to the observed values at different times, thereby increasing the weights 

of the recent observations. The forecast value can quickly reflect the actual market changes. 

The number of weights decreases by the number of equal steps.  
 Second, the exponential smoothing method has scalability for the weights given to the 

observation values, and different α values can be taken to modify the rate of the weights 

changing. If α value is taken as a small value, the weight changes more rapidly, and the 

recent change trend of the observed value can be more quickly reflected in the moving 

average of the index. Therefore, using the exponential smoothing method, different α 

values can be selected to adjust the degree of uniformity of the time series observations (i.e. 

how smooth the trend changes) [30]. 
The original sequence data starting at t = 0  is usually expressed as{x𝑡} . And the 

exponential smoothing output is usually expressed as {s𝑡}. It is regarded as an optimal 

value of the following x. If observation sequence starts at time t = 0, the flowing formulas 

shows the exponential smoothing form: 
𝑠0 = 𝑥0            (4-2) 
𝑠𝑡 =  (1 − 𝛼)𝑠𝑡−1 + 𝛼𝑥𝑡 , 𝑡 > 0      (4-3) 
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In which 0 < α < 1  and it is called smoothing factor. It shows that the smoothed 

value s𝑡  is a weighted average of the previous smoothed value s𝑡−1  and the current 

observation x𝑡. The exponential smoothing method is a time series analysis and prediction 

method developed on the basis of the moving average method. It calculates the exponential 

smoothing value and predicts the future of the phenomenon with a certain time series 

prediction model. The principle is that the exponential smoothing value of any period is the 

weighted average of the observed value of the current period and the smoothed value of the 

previous period. Once two observations are got, exponential smoothing can get a smoothed 

value. It is very easy to use exponential smoothing. It will has less effect of smoothing if α 

Fig.4.11 Exponential Smoothing 

 

Fig.4.12 Final Testing Result 
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is near one by giving bigger weight to recent value [31] [32]. 
In the final, after adjusting parameter, we choose Kp=15, Ki=0.1, Kd=0.025, α=0.8. 

The testing image is shown as Fig.4.12, as we can see from the image, once an error 

occurred, the 𝑢(𝑡) can return to 0 less than 1 second, which means the auto-car can stay 

straight.  
4.3.3 Troubleshooting 

1. In the function, the u(t) is not the value of duty ration of PWM, but the change of the 

value of value of duty ration. Which means it should be: 
𝑢(𝑡) = 𝑝(𝑡) − 𝑝(𝑡 − 1) = 𝐾𝑝 ∗ 𝑒(𝑡) + 𝐾𝑖 ∗ ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑 ∗ 𝑑𝑒(𝑡)/𝑑𝑡  (4-4) 

2. Since our car system won’t change too much while running, so we don’t need to 

adjusting Kp, Ki, Kd for real-time. We can adjust them before running, and then, no need to 

change them. 
4.4 System Connection and Running Unmanned Ground Vehicle 

After connection of UGV, the whole hardware of the UGV system is shown as Fig4.13 

and Fig4.14. The RGB-D camera is installed on the top of the vehicle to get sparse field. 

The main processor, raspberry pi, L298N dual H-bridge are installed under the camera. The 

battery is under the processors. At first time, we use RealSense R200 as our RGB-D camera, 

Fig.4.13 UGV Hardware System 
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Intel NUC I3 as our main processor. Fig.4.13 shows the whole UGV hardware system. The 

left image is the front view, the right image is the side view.  
After optimization, we use RealSense D435 as our RGB-D camera, NVIDIA Jetson 

TX2 as the main processor of our UGV. Fig 4.14 shows the hardware system of UGV after 

optimization.  

Fig.4.15 shows the main stucture of the system. The NVIDIA Jetson TX2 processor is 

used as the main controller. ROS (Robot Operating System) on TX2 is used as a software 

platform to implement VSLAM and navigation algorithms. For the vehicle, Raspberry Pi 

and L298N dual H-bridge are used to control the wheels. The communication between TX2 

Fig.4.15 Main Structure of UGV System 

Fig.4.14 UGV Hardware System after Optimization 
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and Raspberry Pi is using TCP protocol. The data from camera is sent to VSLAM algorithm 

to get the position and map, which will be used by the navigation algorithm. Then, the 

navigation algorithm will plan the path of the UGV to get to the goal. It will generated the 

control command of UGV and send it to the raspberry pi using TCP protocol. Raspberry pi 

will use these commands to control L298N dual H-bridge to control the wheels.  
By using a message with format geometry_msgs/Twist, the navigation package will 

public "cmd_vel" topic with speed of the vehicle. The speed is basing on the vehicle’s base 

coordinate frame. Therefore, we need a write a node to get the speed from the "cmd_vel" 

topic. Then using this speed to control the motors of vehicle. Since it will be hard for the 

raspberry to run ROS system. We could write a node in the TX2 computer to subscribe to 

the “cmd_vel” topic and send it to the raspberry with TCP. Since the VSLAM and 

Navigation algorithm are running on the TX2 processor and the vehicle is controlled by 

raspberry. So we should connect them together using TCP protocol. Then we can only run 

a TCP receiver on the raspberry that can get the velocities and use them to control the motors 

of the UGV. 
Since the UGV platform in this project is relative too simple. The motor and the 

photoelectric encoder is not sensitive enough for the PID controller even we have used 

exponential smoothing as the feedback. Therefore, it is unwise to use the real velocities as 

the goal of the two wheels. A simple way is to set the UGV platform only four modes: 

Fig.4.16 Real Environment for Testing 
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forward, back, left, right. We can use PID controller to make the two wheels have the same 

velocity that is easier to realize. Then, use the velocities of the two wheel that the algorithm 

given to define which mode should the UGV do. It is suitable for most situation since the 

algorithm is adjusting the velocities all the time.  
After setting up the car with the above steps, we can now use the Rtabmap SLAM 

algorithm and navigation algorithm.  
Then we can running our UGV at real environment, we choose our laboratory as the 

testing area. The start point is my desk, and we can set the goal as the door of the laboratory. 

Fig.4.16 shows the real environment.  

After setting the goal, the VSLAM algorithm and navigation algorithm will control the 

Fig.4.17 3D Map Building with RealSense R200 
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UGV to go to the goal while building the 3D map of the laboratory, as shown in Fig.4.17 

and Fig 4.18.  
Fig.4.17 is the different perspectives of the 3D map that build using RealSense R200. 

As we can see from the 3D map, the wall, chair, carton, red bags and other things can be 

easily find in the map. The black bookcase can’t be find due to it has absorb much infrared 

ray, therefore the camera can’t get its depth information. The ground points are discrete due 

to the familiar reason.  
The quality of 3D map generated by VSLAM algorithm using RealSense R200 is not 

bad, but due to the short use range of RealSense R200, it will easily crash down when the 

Fig.4.18 3D Map Building with RealSense D435 
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UGV is running in an empty area. Therefore, we use RealSense D435 as our RGB-D camera 

at last. Fig.4.18 shows the 3D map building with RealSense D435 with different 

perspectives. 
As we can see form the 3D map. The points are much more than the 3D map building 

with RealSense R200. And the black bookcase, ground, ceil can also be seen in the map. 

However, since there are much more points, there are also more noise points in the map 

especially around the boundary of the objects and ceil. In totally, the 3D map is much better 

than before, and we can easily recognized the objects such as chairs, cartons, red bags and 

so on. Since the use range of RealSense D435 is much bigger than RealSense R200, the 

UGV is also much stable. 
  After building the 3D map, we can also get the 2D map from the VSLAM algorithm, 

which we are using for navigation algorithm.  Fig.4.19 shows the 2D map generated by 

VSLAM algorithm and the real environment. The black are is the obstacles, and the white 

area is the empty area while the gray area is unknown area. In the upper left core of the 2D 

map is the are outside the room since the door of our laboratory is open. The effect of the 

2D map is good. The UGV can easily find where is the obstacles and where is empty. So 

the navigation algorithm also works well.  

Fig.4.19 2D Map Generated by VSLAM Algorithm 
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Chapter Five Conclusion and Prospect 
5.1 Conclusion 

Unmanned ground vehicles are an important part of the automation field. New 

technologies are continuously proposed in this field. In this project, I mainly aim at the 

simultaneous and localization based on RGB-D camera and the navigation of unmanned 

ground vehicles in room. I have used a RealSense D435 depth camera as the sensor of visual 

simultaneous localization and mapping algorithm to establish an unmanned ground vehicle 

and then use the generated map to realize the real-time navigation of the unmanned ground 

vehicle.  
I have researched algorithms of VSLAM for depth camera and navigation algorithm 

for UGV using 2D map generated by VSLAM algorithm. The main research and work of 

this thesis is summarized as follows: 
1. Use RGBDSLAM and Rtabmap visual SLAM algorithms based on RealSense D435 

depth camera. Analyze and compare the advantages and disadvantages of the two 

algorithms. Finally use the Rtabmap algorithm as the VSLAM algorithm of this project 

and optimize the feature extraction method of it to get more sensitive map. 
2. Point out the main application scenarios and difficulties of visual SLAM algorithm. 

Building a VSLAM algorithm and optimize it both in hardware and software. Point out 

the difficulties and potential solutions for 3D maps in navigation. Then project the 3D 

map generate by VSLAM algorithm to ground plane to get 2D map that we want. Then 

using this 2D map as the map of navigation algorithm. 
3. Study in depth of the navigation algorithm. Study and compare the Dijkstra’s algorithm 

and A* algorithm, and finally use Dijkstra’s algorithm as our global path planning 

method and DWA algorithm as our local path planning method. Optimize the path 

planning algorithm with more complicated situation, such as the goals in unknown area 

and goals in obstacle.  
4. Set up an unmanned ground vehicle platform with raspberry pi and L298N dual H-

bridge motor driving plate. Using VSLAM algorithm and navigation algorithm build 

in the previous work to achieve auto-navigation of unmanned ground vehicle using 

this differential wheeled UGV. In addition, find a simple method to control UGV with 

less sensitivity.  
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5.2 Prospect 
VSLAM-based unmanned ground vehicle technology has a very wide range of 

applications in practice. At present, although the research of various methods based on 

VSLAM is possible in theory. But in practice, due to the complex and changing 

environment, there are still many problem that need to be solved in the use of VSLAM in 

unmanned ground vehicles. The technical requirements make the requirements of 

technology higher and higher, the technical fields more and more, and its complexity is also 

getting larger and bigger. I am limited to time and energy and can’t be perfect, and the 

contents that still need to be researched are summarized as follows: 
1. The experimental conditions are indoor environment. The corridors outside the 

laboratory and outside the laboratory are relatively simple compared to the actual 

environment. Even in the laboratory, the environment is relative to the rules. The road 

in the real environment is not smooth. The high-speed moving objects that the mobile 

robot encounters during the movement and the process in which the mobile robot needs 

to move at a high speed are not considered yet. The use of VSLAM for mapping and 

navigation in complex environments is the direction of depth research 
2. The obstacle avoidance and path planning designed in this thesis are based on the 

situation that there are no dynamic obstacles in the environment, and can only deal with 

static obstacles. It is still necessary to further study the identification and tracking of 

dynamic obstacles. Moreover, the long-distance noise of the point cloud image obtained 

by the D435 camera is serious, resulting in a serious three-dimensional map noise. This 

will cause the navigation algorithm to misjudge the target point and it is necessary to 

reset the target point. 
3. Since our unmanned ground vehicle is relatively simple. It is also necessary to set up a 

more sensitive platform so that we can control the vehicle with more accurate method. 
In summary, through the research of unmanned ground vehicle systems, depth camera 

hardware, slam and navigation algorithms, this thesis extends the known environmental 

tracking navigation of previous studies to the mapping and navigation of unknown 

environments. I has get a certain understanding of the SLAM and navigation field. The 

previous algorithm can be implemented in our experimental platform, but there are many 

things that still worth improving. Feature detection and matching algorithms and real-time 

path planning algorithms are all needed to be improved and innovated.  
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The use of depth camera as the sensor of visual SLAM to develop an unmanned ground 

vehicle system is a popular technology field. This field is very valuable, and it is also very 

promising. 
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