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Abstract

Improvements in science and technology have enhanced our quality of life
with better healthcare services, comfortable living and transportation among
others. Human beings are now able to travel faster, communicate across the
globe in fraction of seconds, understand nature better than ever before and
generate and consume huge amount of information. The Internet played a
central role in this development by providing a vast network of networks.
Leveraging this global infrastructure, the World Wide Web is providing a
shared information space for such unprecedented amount of knowledge that
is mostly contributed and used by human beings. It has played such a
critical role in the adoption of the Internet, it is common to find people
referring specific web sites as Internet. This adoption coupled with advances
in manufacturing of computing elements that led to the reduction in size and
price has introduced a new wave of technology, called the Internet of Things.

A rudimentary description of the Internet of Things (IoT) is an Internet
that connects, not only traditional computing devices (with higher capacity
and provide user interface) but also everyday physical objects or "Things’
around us. These objects are augmented by small networked embedded
computing elements that interact with the host via sensors and actuators.
It is estimated that there will be Billions of such devices and Trillions of
dollars of market value distributed in multiple aspects of our lives; such
as healthcare, smart home, smart industries and smart cities. However,
there are many challenges that are hindering the wide adoption of IoT. One
of these challenges is heterogeneity of network interfaces, platforms, data
formats and many standards that led to vertical islands of systems that are
not interoperable at various levels.

To address the lack of interoperability, this thesis presents the author’s
contributions in three categories. The first part is a lightweight middleware
called LISA that address variations in protocols and platforms. It is designed
to work within the constrained resources of the networked embedded devices.
The overhead of the middleware is evaluated and compared with other re-
lated frameworks. The second set of contributions focus on higher level of
system integration and related challenges. It includes a domain specific IoT
language (DoS-IL) and a server implementation to support the proposed



code on demand approach. The scripting language enables re-configuration
of the behaviour of systems during integration or functional changes. The
related server provides abstraction of the physical object and its embedded
device to provide mobility services in addition to hosting the scripts. The
last set of contributions are focused on either generalized architectural style
design or a specific healthcare use case.

In summary, the overall thesis presents a highlevel architectural style
that provides ease of understanding and communication of IoT systems,
serves as a means for system level integration and provides the desired
quality attributes for IoT systems. The other contributions fit in the ar-
chitectural style to facilitate the adoption of the style or showcase specific
instances of the architecture’s use. The performance of the middleware, the
scripting language and the server including their resource utilization and
overhead have been analyzed and presented. In general, the combination
of the contributions enable inter-operation of networked embedded systems
that serve as building blocks for the Web of Things - a global system of IoT
systems.
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Tiivistelma

Kehitykset tieteessd ja teknologiassa ovat parantaneet eldméanlaatuamme
muun muassa paremmilla terveydenhuollon palveluilla, viihtyisalla asumisel-
la ja uusilla kuljetuspalveluilla. Thmiset voivat nyt matkustaa nopeammin,
kommunikoida ympéri maailmaa sekunnin murto-osassa, ymmartéa luontoa
paremmin kuin koskaan ennen, ja tuottaa sekd kuluttaa valtavan méaaran
tietoa. Internetilld on ollut keskeinen rooli téssd kehityksessd tarjoamalla
laajan verkostojen verkoston. World Wide Web (WWW) tarjoaa tamén
maailmanlaajuisen infrastruktuurin avulla yhteistd informaatiotilaa ennen-
nikemattomaélle méaaralle tietdmystd. WWW:1l4 on ollut niin kriittinen rooli
internetin kayttoonotossa, ettd on yleistd ndhda ihmisten viittaavan tiet-
tyihin verkkosivustoihin internettind. Tamé& muovautuminen, yhdistettyné
edistysaskeliin tietokonekomponenttien valmistuksessa, joka on johtanut nii-
den koon ja hinnan pienenemiseen, on tuonut esiin uuden teknologian aallon,
jota kutsutaan esineiden internetiksi.

Esineiden internetin (Internet of Things, IoT) alkeellinen kuvaus on In-
ternet, joka yhdistdd paitsi perinteiset tietokonelaitteet (tehokkaat laitteet
kayttoliittymalld), myds arjen fyysiset esineet ympérillimme. Niité laittei-
ta on laajennettu pienilld, verkkoon kytkeytyneilla, sulautetuilla tietojen-
kasittely-yksikailld, jotka ovat vuorovaikutuksessa ympériston kanssa an-
tureiden ja toimilaitteiden valitykselld. On arvioitu, ettd téllaisia laitteita
tulee olemaan miljardeja ja ne tuovat biljoonien dollarien markkina-arvon,
joka jakautuu eri puolille elam&dmme, kuten terveydenhuoltoon, alykkaisiin
koteihin, &lykk&aseen teollisuuteen ja alykkaisiin kaupunkeihin. On kui-
tenkin monia haasteita, jotka haittaavat IoT:n laajaa kayttoonottoa. Yksi
néistd haasteista on verkkoliitdntojen, alustojen, tietomuotojen ja monien
standardien heterogeenisyys. Heterogeenisyys on johtanut jérjestelmien ver-
tikaalisiin saariin, jotka eivét ole eri tasoilla yhteentoimivia.

Yhteentoimivuuden parantamiseksi tdméa opinnéytetyo esittelee tekijan
tyopanosta kolmessa kategoriassa. Ensimmaéisessd kategoriassa esitelldan
kevyt viliohjelmisto nimeltd LISA, joka mahdollistaa eri protokollien ja
alustojen yhteiselon. Se on suunniteltu toimimaan verkkoon kytkeytyneiden
sulautettujen laitteiden rajallisten resurssien puitteissa. LISA:n toteutuk-
sen kustannukset laitteistotasolla arvioidaan ja niitd verrataan muihin vas-
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taaviin véaliohjelmistoihin. Seuraavaksi keskitytaan jarjestelmien integroin-
nin korkeammale tasolle ja siihen liittyviin haasteisiin. Téssd kategoriassa
esitellddn sovellusaluekohtainen IoT-kieli (DoS-IL) ja sen tarvitseman palve-
limen toteutus. Skriptikieli mahdollistaa jarjestelmien uudelleen ohjelmoin-
nin niiden integroinnin ja péivitysten aikana. Siihen liittyvé palvelin tar-
joaa abstraktin version fyysisesta esineesté ja sen sulautetusta laitteesta liik-
kuvuuspalvelujen tarjoamiseksi seké skriptien ylldpitdmiseksi. Viimeisessa
kategoriassa keskitytaan seka yleistettyyn arkkitehtuurityyliin etta tiettyyn
terveydenhuollon kayttotarkoitukseen.

Yhteenvetona voidaan todeta, ettd opinniytetyossé esitelladn korkeata-
soinen arkkitehtoninen tyyli, joka helpottaa IoT-jarjestelmien ymmarrysté
janiiden valistd kommunikaatiota, toimii jarjestelméatason integraatiovélinee-
né ja tarjoaa halutut laatuominaisuudet IoT-jarjestelmille. Muut opinn&y-
tetyossa esitellyt asiat taydentidvit arkkitehtonista tyylid ja helpottavat
sen kéyttoonottoa sekd esitteleméédn tiettyja sovelluksia. Valiohjelmiston,
skriptikielen ja palvelimen suorituskyky, mukaan lukien resurssien kéytto ja
yleiskaytto, on analysoitu ja esitetty. Yleisesti ottaen niiden tySpanosten
yhdistdminen mahdollistaa verkkoon kytkeytyneiden sulautettujen jarjestel-
mien yhteentoimivuuden, joka toimii Web of Thingsin, maailmanlaajuisen
ToT-jarjestelmien jarjestelman perustana.
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Chapter 1

Introduction

The world has seen unprecedented amount of economic and technological
growth in the past few decades. This is mainly the result of the advance-
ments in information and communication technologies. A central element of
the progress is the Internet and the fast adoption of the World Wide Web.
It has shaped the way we communicate, work, and in general the way we
live. The overall benefits can be summarized as the advancement of the
quality of life. To keep the momentum and reach new heights, the Internet
is continuously evolving. Few years after its inception, the connected en-
tities to the Internet were mainly used by human beings to create content
or access an existing shared information. However, the last two decades
have introduced a range of embedded devices, which are built for specific
applications, to the Internet. The earliest of these devices was the coke
machine from the Carnegie Mellon University computer science department
[98]. As manufacturing technologies and processes improve, the cost and
size of computing devices dropped radically and increased the number of
devices that are connected to the Internet. These small computing devices
are mostly embedded in physical objects. In 1999, Kevin Ashton named
the Internet that includes everyday objects as the Internet of Things [9].
In the past decade, the phrase Internet of Things (IoT) has dominated the
industry and academia. This has resulted in a wide range of definitions
and the emergence of many related terms that refer to the same concept.
Regardless of the naming, IoT is expected to further enhance quality of life
and change the way we interact with the physical world. It has already
been adopted in a wide range of domains, such as smart healthcare, manu-
facturing industries, agriculture and city infrastructures. The advancement
of manufacturing techniques to produce cheaper and smaller computing ele-
ments has also another positive impact on the processing of the huge amount
of data generated by the Internet of Things. The parallel growth in Arti-
ficial Intelligence and machine learning algorithms added to the big data
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collected from IoT creates an enormous opportunity to push the frontiers
of technology; smart devices that understand the behaviour and intent of
their owners self-organized to provide quality services, smart cities that are
cleaner and more livable, smart transportation, and healthcare are only the
beginning. However, the transition from where we are now to the envisioned
utopia is not smooth. There are many challenges that hinder the progress
in adoption of the Internet of Things. Some of these are security, privacy,
heterogeneity of devices and networks, lack of standardization, and tight re-
source constraints. The main focus of this thesis is on the ways to overcome
the challenges and maximize the advantages of IoT to make the quality of
life better, more specifically the inter-operation of IoT systems. This chap-
ter provides the foundation of the work by framing a working definition of
IoT, its vision and challenges. It also gives an overview of the contributions
of this thesis and its overall structure.

1.1 Definition, Characteristics and Challenges

The Internet of Things is a widely used terms that gets easily misinterpreted.
Similarly, there are many terms that refer to the same concept. It is manda-
tory to clarify what the discussion is about, what it really is and its scope.
This provides the boundaries where the challenges can be gathered, ana-
lyzed and addressed. It also helps to characterize the technology to extract
key quality attributes of the systems it contains. Many standards organi-
zations, industrial alliances, academic research groups and public projects
define IoT in various ways. The IEEE IoT initiative has summarized defini-
tions to clarify the confusion [59]. It defines IoT by listing its characteristics
taking simple and complex use cases. A concise version of the definition
presents IoT as the interconnection of physical objects, augmented by com-
puting devices, that connect to the Internet to access information or provide
service for others. These objects are uniquely identifiable and have sensors
and (or) actuators and are capable of self-configuration. In addition, the
objects have intelligence and they are accessible from anywhere at anytime.
This description of IoT also makes its difference clear compared with other
related terms, such as Wireless Sensor Networks and Cyber-physical Sys-
tems. Such an elaborate characterization raises the question of the purpose
or vision that drives IoT development.

Atzori et al. [12] in their survey paper presented the vision of IoT as
the intersection of three perspectives: Things vision, Internet Vision and
Semantic Vision. The first view is focused on the physical objects that make
up the leaf nodes in IoT. It includes the connectivity and intelligence of these
devices. The Internet oriented vision mainly covers the global connectivity
infrastructure that allows access to information from anywhere in the world
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as extended by the introduction of these new types of devices. The last
vision of ToT concentrates on the information provided by these new physical
objects connected to the Internet and how it is structured and interpreted
by the recipient without ambiguity. Each of these vision statements map to
certain properties of IoT; for instance, the things oriented vision maps to the
self-configuration and intelligence of IoT devices, and the Internet oriented
vision encompasses the unique identification of the things on the Internet.
Based on the properties of IoT presented above and the vision set to
be achieved, the challenges of IoT have been identified. Some of these
challenges are interoperability, security, scalability and maintainability or
re-configuration [104]. Al-Fuqaha et al. [1] have compiled a more compre-
hensive list of the challenges and possible applications of IoT systems. Con-
sidering the current state of IoT deployments, interoperability stands out
as one of the most important challenges that hinders the adoption of IoT
(32]. In 2015 McKinsey [47] reported that enabling IoT interoperability has
the potential to unlock about 40% of the total economic value. In addition,
the lack of interoperability also hinders the creation of novel cross domain
solutions. This thesis is mainly oriented towards addressing interoperability
of IoT at different levels, such as platform variations, the format of data and
context of exchanged information. The main cause of this heterogeneity is
the lack of dominant standards in different categories. Chapter two provides
detailed analysis of the standards landscape the required interoperability.

1.2 Abstract representation

Working on domain specific areas of IoT and tackling the challenges of inde-
pendent systems leads to more fragmentation as each type of system becomes
more specialized. There is a clear functional distinction and non-functional
requirements that seem to demand addressing the issues separately. How-
ever, generalization and abstraction of IoT systems provides a more scalable
and futuristic design. To begin with the process of generalization, it is im-
portant to specify the distinction of the infrastructure or connectivity and
the software systems. In most cases, IoT is discussed combining the de-
vices, connectivity and the software components. However, in the context
of this thesis, IoT refers to only the connectivity of physical objects or de-
vices to the Internet where as IoT systems is used to specify the software
elements. This naming convention is used analogous to the Internet and
the World Wide Web as examples; IoT is for Internet as IoT systems is
for the Internet scale web applications. This similarity also supports the
argument that IoT as a connectivity layer should be agnostic to the appli-
cations that run over it and the abstract representation of IoT systems as
a big interconnected system as a Web application. Explaining the design of

5



| User |
Invokes Interacts

[ Digital Artifact

N

[ Human User ]

ﬁervice ;
-=XORgeesness XOR

Physical Entity
[y 3 [

Identifies

Virtual Entity

Has Info/Acts On

Expose:

Resource

Monitors

Device

rHosts
[ Network ] [ On-device ] [Actuator] [Tag HSensorJ

Figure 1.1: ToT domain model as presented by the IoT-A project [49]

the Internet, Vint Cerf, the father of the Internet, mentioned the openness
as the main source of its success [22]. Using this analogy in reference to
IoT, it will be considered as a connectivity layer with multiple alternatives
for various bandwidth, range and coverage requirements by IoT systems.
Similarly, generalizing IoT systems from variety of use cases facilitates in
identifying common non-functional requirements. These common features
are used for modeling purposes. One of the many EU projects that focuses
on IoT systems is IoT-A. It is a project that was aimed at defining a reference
architecture. It presents IoT as a generic system and develops a domain,
functional and communication model [49]. Building on the domain model,
the interoperability of IoT systems is explored.

In its simplest form, a typical computing device in IoT, which is inte-
grated with a physical object, is composed of at least one of the three types
of elements: a sensor, an actuator or a tag (such as RFID). This is pre-
sented by the IoT-A project in the domain model as shown in Figure 1.1.
The model shows how the resources in this devices are exposed as services,
how services are accessed by users and the interaction between the device
and a physical object. It also shows how a digital representation is formed
from the physical object and the computing device attached to it. Consid-
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Figure 1.2: Abstraction of an integrated device with sensors (S), actuators
(A) and a tag (T) in a IoT systems

ering the model from the computing devices perspective, a simplification of
the model is presented in Figure 1.2. It presents an abstract computing
device that is integrated in a physical object, with a network interface for
external communication, sensors (shown as S), actuators (A) and a tag (T).
This level of abstraction provides a simplified view of an IoT device and its
components to help identify generic challenges in IoT systems and forms a
virtual counter part of the device for application design. It also isolates the
device from the details of how on-board resources are accessed so that the
design process is not restricted to the form of communication shown in the
TIoT-A model. The next step is to abstract the interactions of the system
components based on the generic device model. Considering distinct appli-
cation domains that can cover almost all possible forms of inter-dependency
between abstract devices, a generalization of the overall interaction among
IoT system components will be identified. It also provides the system com-
ponents and quality attributes that are used in architectural style design to
enables interoperability at system level. Based on these findings, this thesis
compiled a set of contributions in the design of a pragmatic architectural
style and different utilities that assist in adopting the style. These contri-
butions are highlighted in the section following the main research questions
addressed by this work.

1.3 Research questions and methodology

In the preceding sections, the background of the research topic is presented
while also highlighting the area of focus, lack of interoperability, in Section
1.1 as challenges of the Internet of Things. These challenges in building a
secure and integrated IoT system that scales up to the level of the Inter-
net are too broad to cover in one thesis. Therefore, this work concentrates
on ways to provide interoperability among IoT systems while also touching
related topics on the way. To prove the relevance of the research questions
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and severity of the IoT challenge selected in the topic, the research starts
with qualitatively analysing literature, generalize the various domain specific
needs and evaluate previously proposed approaches. In addition, quantita-
tive measures, such as performance, latency and resource utilization, are
used in the papers to provide a comparative analysis of the individual so-
lutions proposed to answer the research questions presented. The research
begins with the hypothesis that “lack of interoperability is one of the critical
challenges in IoT” and identify its research questions. This assumption is
shown to be valid in the qualitative analysis of background materials pro-
vided in this and the next chapters and all the papers included in the thesis.
Hence, the first research question is “Why is IoT still suffering from lack of
interoperability with many standards and middleware out there, and what
are the shortcomings of these approaches and possible solutions?”. This re-
search questions has led to the work in Paper I and Paper II, which aim at
providing a lightweight middleware solution designed for IoT devices with
severe resource constraints. However, the lightweight middleware is just one
part of the solution to lack of interoperability. On the way of developing
the middleware, more research questions have been raised that potentially
hinder interoperability mainly due to the very large number of small IoT
devices with distinct behaviours that get connected to the Internet. The
follow-up question tries to find out optimal ways to organize these devices,
their internal components and the interaction among them. The thesis tries
to answer ”Is there a better way to arrange the elements of IoT systems for
a more interoperable IoT to realize the Web of Things?”. This question has
been the umbrella for subsequent papers that answer detailed questions, such
as “How to facilitate inter-operation of IoT systems that have dynamic IoT
devices that frequently change location with stationary ones?”, “Is it possi-
ble to have a generic architecture style that facilitate interoperability across
domain specific systems?”. These research questions view the problem of
lack of interoperability from different angles to provide a comprehensive so-
lution. In summary, the thesis and the included papers address the following
research questions:

e [s it feasible to build interoperable IoT systems that utilize multiple
options of platforms, network protocol and resource constrained de-
vices using existing middleware solution?

e Considering the large number of devices and global scale of IoT systems
that form the Web of Things, is there a better way to organizing the
elements of the system to enhance interoperability?

e Given the distinct nature of IoT devices, such as mobile and mostly
staying in sleep state, is it possible to integrate such dynamic IoT
systems?



e Is it possible to extract generalized IoT systems quality attributes
to provide architectural solution for its challenges across a range of
domain specific systems?

To address these research questions, this thesis has compiled seven publi-
cations that support each other and cover the over all topic envisioned. The
following section provides these contributions and how they are organized.

1.4 Contribution and organization

The main focus of this dissertation is on ways of facilitating the inter-
operation of the networked embedded devices integrated to physical ob-
jects in IoT systems. These embedded devices form the building blocks
needed to create a global system of IoT systems or Web of Things. To
put the contributions in the context of IoT, the degrees of interoperability
are discussed. There are different levels of interoperability of systems. The
European Telecommunications Standards Institute (ETSI) [99] covers four
different levels. The lower three levels are technical, syntactic and seman-
tic interoperability. At the technical level, a message sent by one machine
can be received by another one. This is related to the lowest level of the
communication infrastructure, such as the frequency of a wireless network
or number of wires. This is mostly related to the connectivity side of IoT
and this level is not covered by these contributions. Devices with syntactic
interoperability can parse the message exchanged in addition to simply ex-
changing; that is, the format of the message is known by the receiver. The
third level of integration is when the devices understand the message con-
text beyond parsing and exchanging. The fourth and highest level presented
in [99] as organizational interoperability, which is equivalent to system level
integration discussed in the context of this work.

The earliest contribution of this dissertation started by addressing syn-
tactic interoperability through a lightweight middleware (LISA) that is de-
signed for resource constrained devices, presented in Paper I. It has been
further extended to port the middleware from the original targeted real-time
operating system to another one and published in Paper II. In addition to
addressing the syntactic level, this work extends to semantics level and sys-
tem level interoperability. To provide this, the work contributed a pragmatic
IoT systems architectural style (PI), Paper VII, and different components
that assist in adopting the style. The first is a domain specific scripting lan-
guage (DoS-IL), published in Paper III. The second component is a server
component (WoVTS), which is presented in paper V, and designed for the
Fog layer to enable interoperability as shown in Paper IV. As a typical case
of the style and its components, a healthcare domain has been used in Pa-
per VI. The contributions of the thesis are organized as shown in Figure
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Figure 1.3: Contributions of the thesis organized by chapter and topics

1.3. The colored rectangles show the topics covered by the corresponding
chapter and the related contributions are listed under the specific topic.
Technical interoperability is not covered in the contribution of this thesis as
it involves the low level specifications, such as signal level and frequency of
communication, that is out of the scope of this work.

The thesis is organized in six main chapters that addresses the research
questions raised earlier followed by a seventh chapter with an overview of
the publications included in the thesis. The first chapter has given basics of
the research concept, the problem domain and motivation at a higher level.
The relation and topics of the next four chapters is shown in Figure 1.3.
Chapter two is dedicated to providing the state of the art in IoT, such as
standardization efforts, open source contributions, and architecture design.
The first and second chapters provide answer to the first research question
on the nature of IoT that distinguish it from existing technologies and its
critical challenges, focusing on interoperability. Chapter three builds on the
previous chapters to describe the middleware contribution of Paper I and II
that partially answer the first and second research questions. Chapter four
discusses architectural aspects of the thesis and the various components
developed, such as a scripting language and a server, that are published in
Papers 111 to VII. Chapter four addresses the last three research questions.
Chapter five presents analysis and evaluation of the overall contributions
made and how they fit in to the grand view of providing interoperability.
The sixth Chapter provides the summary of the thesis with ongoing and
future planed works related to the main topic of the thesis.
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Chapter 2

State of the art

It is almost two decades since the Internet of Things was first introduced.
There has been developments in different aspects since its inception. This
chapter provides an overview on the current state of IoT systems to show
the gaps and challenges that still exist, thereby highlighting the motivation
of the thesis and the individual contributions. It is common to see Internet
connected products in different domains such as healthcare and smart home
systems. Most of these products come with a smart prefix to their names,
making the domain also to be smart. Unfortunately, most of these devices
use various hardware and software platforms, network protocols, architec-
ture and data formats that form vertical system silos. In the following sec-
tions, an overview of standardization efforts for the IoT domain, middleware
options, architectural proposals and sample implementation approaches are
discussed.

2.1 Standards

The abstract device representation shown in Figure 1.2 is a standalone node
that has integrated communication, sensing, actuating and identification ca-
pabilities. If it functions in isolation, the need for standardization of any
part of the system would have been minimal. However, as part of a bigger
global interconnected system it has to interact with other objects. There-
fore, the devices should follow standards, for instance, at the level of the
physical medium, the format of data and its context beside their internal
composition. Without similar standards, these interacting objects cannot
function with synergy unless other alternative solutions are introduced to
bridge the differences. There are many levels of standardization efforts in
ToT systems; for example identification, network protocol, architecture, ap-
plication layer standards and semantic description of devices. Some of these
standards are only used as general technical guidelines while others are used

11



as a means of achieving domain specific legal or certification requirements.
For the sake of this thesis however, the focus is only on technical standards
related to or affecting interoperability of the communicating devices. A wide
range of standards organization and their contribution in different aspects
of IoT are well organized by the Alliance for IoT Innovation (AIOTI) in the
IoT standardization report [5]. The report catalogued these organizations
in two ways. First based on the type of IoT market it address (Business
to Business or Business to Consumer) and the layer the standard operates
(connectivity, application and services). The second categorization is based
on operating domain (horizontal or vertical domains) as shown in Figure
2.1. The existence of such a large number of (sometimes redundant) stan-
dards by itself is an indicator of heterogeneity in IoT. For example, in a
single application domain there are at least a couple of standards that try
to address similar challenge. In reference to the Internet, the existence of
common open standards played the biggest role in allowing the integration
of smaller networks forming such a global network [92]. From Figure 2.1, it
is evident that such a dominant standard is missing in the IoT landscape.To
get a closer look at the standards that are relevant for the main topic of this
thesis, selected ones that are not specific to an application domain, are dis-
cussed in layers starting from device to system level. The layers considered
relate to the five layered generic IoT framework discussed by Chou [23]. The
framework is composed of Things, Connect, Collect, Learn and Do layers.
A related classification method is used in [5] by mapping the standards into
classes or knowledge areas. The standards considered in this chapter are not
only those released as specification documents, but also specific implemen-
tations that serve as standards, such as open source frameworks, operating
systems and hardware platforms.

2.1.1 Hardware resources and integration

The first class of standards apply at the lowest level of interoperability while
connecting the basic elements of the abstract device shown in Figure 1.2.
Some of these are standards that prescribe the computing platform and
interfacing of sensors, actuators and unique identifiers. These standards
operate in the "Things’ layer of the IoT framework created by Chou [23]. One
of the standards organizations in this area is GS1, that promotes standards
used in tags and identification using Barcodes and RFID [44]. Another
prominent organization with many standards in IoT and other areas is the
IEEE [10], working in areas ranging from low level networking specifications
to interfacing specification for sensors and actuators. Some of the other
types of standard platforms that related to this class are hardware platforms
such as Arduino [8] and Particle [76] or real-time operating systems such as
Contiki [31] and RIOT [13]. The use of any of these hardware or software
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Figure 2.1: Standards organizations in vertical and horizontal domains

platforms restrict the development process in certain ways and serve as a
standard for what additional components can be integrated above it. There
are many such platforms and standards that constrain the available choices
for integration but there is no single dominant standard.

2.1.2 Network interface and protocols

This class of standards concentrate on communication interfaces at different
layers; physical, data link and network layers in the Open System Inter-
connect (OSI) model [103]. Referring the Iot framework [23] again, these
standards operate at the Connect’ layer. One of the earliest standards or-
ganizations working in the Internet domain, that also contributes to IoT
is the Internet Engineering Task Force(IETF). Sheng et al. [89] summa-
rized various open standards developed by IETF targeting the connectivity
of IoT devices at various layers. Some of these are on the use of IPv6 over
LoPWPAN (Low Power Wirelss Personal Area Network), and a routing algo-
rithm for low power networks (Routing Over Low power and Lossy network
-ROLL). Other types of wireless network standards for IoT are presented in
[60], which also overlaps with the next class of standards (application layer)
in Section 2.1.3. The paper highlights a wide selection of options such as
Bluetooth Low Energy (BLE) [90], Zigbee [4], LoRa [2], Sigfox [91] and other
cellular options like NB-IoT [45]. The selection of any of these standards
for communication in a device relies on the standards followed in Section
2.1.1 for integration and the system requirements. For instance, selecting
a specific model of an Arduino to address the requirement of monitoring
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the level of a fluid container, guides the available options for the network
interface standard. In general, the range of communication, the bit rate and
the operating cost filter the available options.

2.1.3 Message and Data formats

Once a network is formed and communication started, the receiver has to
understand the information contained within a message. These standards
mostly vary with the network interface used. Using the Open System In-
terconnect (OSI) model [103] as a reference, these standards work at the
application layer of the communication stack. There are many contribu-
tions in this category, of which majority of the protocols have been well
summarized in [86] and [101]. Some of these protocols include CoAP [88],
MQTT [73], XMPP [37] and DDS [43]. These standards specify the mode
of communication, such as request-response or publish-subscribe, and the
message format. Most of the examples given have been in use before IoT
and have been customized to support the new requirements of IoT. In addi-
tion, the sample protocols above have similarity in the underlying network
standard they require - that is IP. However, other set of standards in this
category work with a different setting, without a clear separation from the
previous standard. Some examples of these are BLE [90], Zigbee [4] and
LoRa [2].

2.1.4 Horizontal integration

The standards classified into this category are targeted to address horizontal
integration of variations at any of the previous three layers. There are many
industrial alliances and research institutes that operate in this category. One
of these organizations is the Open Connectivity Foundation (OCF) [74]. The
specification has been implemented as a framework called IoTivity, targeting
resource constrained devices. Similar concrete framework implementations
are covered with more details in the following section discussing middle-
ware. Focusing back on the OCF specification, it also covers the structured
description of device resources. Similar efforts are also contributed by the
World Wide Web Consortium (W3C) [28] and other contributors such as
Mozilla [29]. Other standards in this category are from OneM2M [58], Zibee
dotdot [3] and the OMA SpecWorks [94]. The IETF also has specification on
the format of representing sensor information [52]. In addition to providing
specification for methods of describing the physical objects, such as IPSO
smart objects from OMA SpecWorks, device management and overall inter-
operability between different protocols is the focus of these standards. For
instance, some of the specifications from OneM2M include different protocol
bindings for integration similar to the one proposed by the W3C [27].
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2.1.5 Cross-cutting and system level

The standards included in this category are those addressing common tasks
shared by the previous layers. These include security and privacy, configura-
tion, update and device management, and overall system architecture. Some
of these standards are results of public projects and industrial alliances in
addition to standards organizations. Many European Union projects have
contributions in this area. An early effort is the Internet of Things Architec-
ture (IoT-A) project [49]. A related contribution that is mentioned earlier is
also the AIOTI [6] High Level Architecture. In addition, W3C also partic-
ipates in the area of overall architecture of IoT [26]. Another alliance that
participates in the standardization of Fog computing is the Open Fog Con-
sortium. This reference architecture covers all the key components required
for proper Fog operation in eight categories referred as pillars [75]. The
IEEE standards association also covers architecture as part of its extensive
list of specifications [11].

The standards discussed so far in this section are just a small part of a
large pool of specifications that sometimes overlap and make the selection
of a specific one very challenging. It is also obvious that companies having
competing products that are based on different platforms try to enforce the
ones they use as the industry standard. In addition, alliances and standards
organizations that produce newer standards to bridge others also end up be-
coming just another entrant into the race. There are vendor specific Cloud
based platforms [82] [102] that did not fit in the classification discussed in
Section 2.1. These platforms also constrain the types of components that
should be used at lower layers to communicate with it. However, this dis-
sertation concentrates only on ways of generic integration methods of ToT
systems components that operate below the Cloud tier. Therefore, plat-
forms, standards, middleware and architecture proposals at the Cloud layer
are not discussed. In summary, the lack of dominant standards in each layer
added to the varying requirements of IoT systems has created a fragmented
ToT landscape. To enable interoperability across these fragments, different
alternatives are considered. The following sections provide the current state
of these options.

2.2 Middleware

Components built using a common standard will work by design. However,
the current state of IoT is that most standards are limited to only a certain
range of application domains or set of components. This has resulted in
heterogeneity of devices, platforms, protocols and formats. The need for a
middleware arises in such circumstances where two distinct standards need
to operate together. For instance, two devices using different application
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layer protocol or network interface require a middleware to bridge the two
sides. This has been a common approach for integrating traditional enter-
prise applications [46]. Similarly for IoT, various middleware options have
been developed by industrial alliances, research institutes and open source
organizations for different use cases. Part of these offerings are the im-
plementation of the standards specified in Section 2.1.4. For instance, the
specification of OCF [74] is implemented in IoTivitiy framework to provide
interoperability. A long list of open source components and middleware
from Eclipse IoT community [42] is organized and presented in three layers;
device, gateway and platforms. A more generalized and extensive list of
middleware options, classified based on the design approach, is compiled by
Razzaque et al. [83]. Tt also provides the functional and non-functional re-
quirements that are addressed by the middleware. There are many reasons
driving the development of a middleware [14]. For brevity, the middleware
discussion in this thesis is limited only to those addressing interoperability
at different levels.

2.2.1 Basic integration

Integration of systems involves achieving multiple degrees of compatibility.
The levels that can be attained through software components are covered in
this and the upcoming sections. The middleware or frameworks discussed in
here are those used for translation of message format as discussed in Section
2.1.3. These frameworks can be open sourced or as commercial offerings.
About seventeen commercial frameworks have been organized based on the
layer they operate in [30]. These include cloud based frameworks or those
used in gateway or during embedded device firmware development process.
In addition, most middleware in [83] are also addressing basic syntactic or
technical interoperability. A typical example is presented in [34] where such
a middleware is used to abstract a Zigbee and RFID message using protocol
translation. One of the limiting factors in such middleware is the number of
supported communication protocols. Each protocol requires a module that
is used as adapter for applications to connects to it and most middleware
support few protocols and exclude others. Moreover, the architecture used
by the middleware determine certain application behaviours, such the mode
of communication, scale and performance. These middleware also constrain
the choice of underlying platforms as they are ported to only a subset of
these platforms.

2.2.2 Semantic integration

More enhanced type of middleware, which are able to provide technical,
syntactic, and semantic interoperability are also widely available. However,
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the degree of support for semantic integration varies. One of the widely
known frameworks in this category is the implementation of the OCF [74]
specification, called IoTivity [50]. In contrast, the semantic interoperability
framework developed by Song et al. [93] in Fujitsu Laboratories tries to
bridge different standards at the application layer. Another EU project on
I0T is the INTER-IoT project that targets platform integration [48]. A de-
tailed analysis of the project on the support of semantic interoperability is
done by Ganzha et al. [39]. Most middleware that support semantic inter-
operability tend to incline to a specific application domain as the ontology
used by the systems is usually from a single domain, such as healthcare.
However, there are also generic approaches as well. For instance, to rep-
resent an abstract device in the context of IoT systems, a simplification of
the Semantic Sensor Network ontology [24], is proposed in [16]. In addition,
methods to dynamically translate a thing description to a Resource Descrip-
tion Framework (RDF) have also been proposed [80]. These efforts enable
cross-domain linking of devices descriptions belonging in different domains,
leading to a scalable integration.

The list of middleware covered here are just a small subset of a vast
pool of alternative solutions. These middleware also enforce certain specific
approaches and design philosophy on the overall IoT system. In cases where
the design approaches of the middleware used by two distinct systems is
different, it leads to more fragmentation. Therefore, some initiatives use a
more general approach of specifying generic system architecture in which
the components can be organized to enable system integration in addition
to other system qualities.

2.3 Architecture

The standardization efforts highlighted previously in Section 2.1.5 has touched
on the topic of architecture related standards. This separate section is dedi-
cated for architecture to serve as motivation for one of the main contributions
of this thesis; the architectural style in Chapter 4. The first architecture
surveyed is that of AIOTI. The alliance has developed a High Level Archi-
tecture (HLA) for the Internet of Things [6], which resembles the reference
architecture of IoT-A [49], providing domain and functional models. These
kind of generalized architecture proposals are designed to serve as a guide
to identify the main components of the system and proceed with a concrete
architecture design [49]. Some alliances, such as the Industrial Internet Con-
sortium (IIC) have also proposed domain specific reference architecture [25].
These and other architectural contributions from Europe are summarized in
[56]. Other specific types of architectures are also proposed for the Internet
of Things. Some of these proposals are simple layered styles with three,
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Figure 2.2: Comparison of layered IoT architecture proposals in [1]

five or six layers [1], [100], [54] as shown in Figure 2.2. In comparison to
reference architecture proposals, such recommendations are very limited in
representing generic attributes of IoT and do not provide much information
during detailed architecture design. Therefore, more generalized proposals
with more detailed specification are favored in this thesis. Another more
generalized architecture proposed by IETF [97] provides an overview of the
interactions modes of different smart object components over a network.
These interaction patterns are considered in the evolving architecture pro-
posal of the W3C [26]. In addition, the Open Fog Consortium also provides
a reference architecture for the organization of the major elements of the
Fog computing layer [75]. Even though there are good architectural refer-
ences that serve as a guide for IoT systems implementation, they are either
too open (abstract) leading to divergent systems or too closed to address
various domains. In addition, most of them are not simple enough for un-
derstanding and communication among developers. Therefore, IoT system
developers use different architecture styles and patterns that are inherited
from platforms, middleware or back-end system they rely on.

2.4 Implementation approach

The previous sections presented the current state of the Internet of Things
landscape. This section is a more practical and typical scenario, mostly the
author’s perspective and experience, of the implementation procedure of IoT
systems. It includes an overview of practical challenges of an IoT system.
Understanding the important properties of the overall system, especially the
perception layer (interaction with the physical object), provides the criteria
needed for selecting the hardware, software and communication components.
To extract these properties in application domain agnostic manner, a simple
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Table 2.1: ToT systems classification approach

Criteria ‘ Categories
1. Proximity to hub Short range communication
Long range communication
2. Network interface Wired network
Wireless network
3. Data generation Continuous (streaming) data

Intermittent (regular interval)
4. Size of data and speed of transfer | Low data rate requirement
High speed requirement

5. Source of power Battery operated device
Plugged to outlet device
6. Ownership Private (consumer device)

Industrial application
Public (open data) usage

7. Portability Mobile device
Stationary device

8. Operating mode Collection (monitoring) only
Control (dual)

9. Integration mode Embedded inside

Wearable device
Attached on object
10. Real-time needs Hard (strict) requirement

Soft (relaxed) requirement

set of criteria are listed in Table 2.1 with their corresponding possible
alternatives. Deciding the device’s categories for each criterion clarify the
decision points to be made later, during specification phase [69].

As a sample use case, the following scenario is assumed: a machine and
its operating environment are monitored to predict the next maintenance
time. Figure 2.3 shows the example scenario. The machine has an exter-
nal device with a magnetometer sensor and the room has a separate device
that monitors the room temperature and humidity of the operating environ-
ment. In this scenario, it is assumed that the machine of interest and the
environment sensing device are located few meters apart. Using Table 2.1
to identify the properties, the following attributes can describe the system:
short range between machine and room monitoring device (acting as hub),
wireless network (typical case), regular data interval, low data rate, battery
operated, industrial application, stationary device, for monitoring purpose,
attached to machine and has relaxed time constraints. These attributes
constrain the possible options suitable for the system implementation; for
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Figure 2.3: Sample IoT scenario to monitor a machine in a room

instance, the communication between the device attached to the machine
and the hub can be achieved over Bluetooth low energy (short range and
wireless). Using the functional specification of the system and the standards
in Section 2.1.1 and 2.1.2, the selection of hardware and software compo-
nents proceeds. The overall system architecture design is also a critical step
in identifying other architectural elements and their interaction.

There are a wide range of hardware and software components that require
early design decision to continue with the implementation of the two main
embedded systems components. The first is the device that has a magne-
tometer, a Bluetooth low energy (BLE) module and a small micro-controller.
A developer has to decide on the type and model of the processor based on
the available interfaces for the peripherals, while also considering the re-
quired performance, energy consumption and available software tools and
platforms for development and integration. In addition, one has to decide if
there is a need for a real-time operating system or work on bare-metal and
understand the sensors and communication protocol to collect the data. Un-
derstanding the communication protocol stack is also mandatory for proper
networking of the embedded systems. Once the integration is done, format-
ting the message in accordance with the specification of the receiving end is
mandatory. The second embedded system that collects the data sent over
BLE is the one acting as a hub or gateway. It has the responsibility of tem-
porarily storing the data, analyze the data and finally send it to the cloud.
Similarly, the gateway also requires careful consideration of the operating
system, database used for storage, analysis techniques, network interfaces
and drivers. The remaining parts of the system, the back-end to support the
system and the user interface component, are not discussed here for brevity,
besides the fact that these concerns are outside the scope the thesis. After
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the completion of the software development to achieve the above functional
and non-functional requirements and the devices are installed, updating a
simple feature in these embedded systems is a challenge - specially in the
case of the device attached to the machine that is under monitoring. As
the number of these devices increase, management becomes a nightmare.
In addition, extending the feature of the system with additional devices
involves re-imagining the overall system. In general, the finalized system
ultimately becomes a vertically isolated system that is difficult to integrate
with other Systems. This is a typical approach that resulted in fragmented,
heterogeneous IoT systems.

2.5 Summary

This chapter provided the current state of IoT systems from standardiza-
tion, middleware, architecture and implementation perspectives. In general,
considering the wide range of variability in selected hardware and software
platforms, network protocols, data format, overall system architecture, and
the lack of dominant standards in each category, the current state of IoT
systems requires a systematic approach to addressing the lack of interoper-
ability. The contributions of this thesis aim to address some of the challenges
in building an interoperable IoT system. In summary, the aim of this chapter
was not to provide a complete list of contributions and process of implement-
ing an IoT system, but it is dedicated to showcase the distinct features in
implementation of IoT systems in contrast to an Internet application, such
as e-commerce. The same is true for the dissertation; it concentrates on the
networked embedded systems side and their inter-operation, where the main
differences exist compared to traditional Web based applications.
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Chapter 3

Interoperating: Middleware
approach

A middleware is a component that resides between distinct components
to provide certain services that facilitate interaction. A classical approach
towards addressing systems integration in enterprise applications domain
is the use of middleware. Considering the interoperability needs of IoT
systems, there are different layers where a middleware can be used. A subset
of these alternatives for the Internet of Things is discussed in Chapter 2.
The focus of this chapter is specifically on one of the contributions of the
thesis in using a middleware to provide interoperability for IoT systems
components that reside in resource constrained embedded systems. In the
following sections, an overview of the resource constraints of IoT devices will
be presented along with the unique challenges the constraints bring to the
design of a middleware. It continues further highlighting the contributions
made in Paper I and Paper II to enable integration of IoT systems using a
middleware approach.

3.1 Resource constrained devices

The majority of IoT devices that are getting connected to the Internet differ
from traditional computing elements mainly in the limitation of the avail-
able resources. The IETF [21] categorizes those devices with severe resource
constraints into three classes based on the size of the available RAM and
Flash (storage). The best of these classes have a maximum of only 50KB of
RAM and 250KB of flash storage. Compared to a typical computing device
that is traditionally connected to the Internet, these devices require state of
the art methods to enable them get connected to the Internet. Identifying
these constraints provides a baseline in the possible approaches to integrate
them with others, in addition to providing the required functionality. For in-
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stance, the processing speed of a typical embedded device (less than 50MHz)
to read a sensor as compared to the processor speed of a traditional Internet
connected device (more than 1 GHZ) is very low. In addition to the pro-
cessing power, the amount of available storage (for instance a flash size of
250KB), and the data rate of the network interfaces attached to the embed-
ded device is small. Moreover, most of these devices reside far from a power
line and operate with a battery that has to last years. The variations in net-
work protocols, platforms and data formats make the integration of these
resource constrained devices even more difficult. Most of these variations
are the results of efforts to address the resource constraints of IoT devices
and networks. For instance, specialized application protocols, such as the
Constrained Application Protocol (CoAP) [88] and MQTT-SN [95], have
been designed to address such constraints. The following sections present
the design and implementation of a lightweight middleware that is targeted
to address interoperability of IoT systems within the above resource limi-
tations of its components. The details of the middleware and its extended
features are published in Paper I and Paper II.

3.2 A lightweight middleware

Enabling resource constrained embedded devices to inter-operate across sys-
tems, platform, protocol and standards boundary requires the introduction
of a middleware to the design. One of the earliest contributions of this thesis
is the introduction of a lightweight interoperability middleware, Lightweight
IoT Service bus Architecture (LISA) [65]. LISA is designed to facilitate the
inter-operation of IoT devices across network protocol and platform bound-
aries. It is inspired by an open framework designed by Nokia and an open
source reference implementation of the framework called Network on Ter-
minal Architecture (NoTA) [18]. It follows a Service Oriented Architecture
(SOA) to organize the different components of the system into application
nodes and service nodes. The original target of the specification was to
facilitate the integration of mobile device components during new product
development. This is accomplished by making any mobile device compo-
nent, such as camera, to act like an application (client) or service node,
and other elements to consume the service exposed. The interaction of ap-
plication and service nodes is handled through a custom developed stack
called Device Interconnect Protocol (DIP) [18]. A closely related specifi-
cation has been adopted in the development of LISA; it follows the SOA
approach in NoTA and organizes the interacting devices as application or
service nodes. In addition, it also assigns a manager node that serves a
gateway or central node to application and service nodes. Sub-networks
of manager, application and service nodes are hierarchically organized in
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Figure 3.1: Federated organization of nodes in LISA.

a federated architecture as shown in Figure 3.1. The manager node is a
device with relaxed resource constraints than the other two types of nodes
that interact with physical objects. The assignment of nodes thus far, as
application or service node, is a simplification. However, in reality a device
can host both types of nodes. For instance a device with one sensor and
an actuator - the sensor can behave as service node where as the actuator
component is an application node. In addition to the assignment of nodes,
LISA also implements a simplified protocol of NoTA. Service nodes first
send registration request to the manager node, which keeps a registry of all
available services with detailed information. An application node interested
to access a specific service first sends a service discovery request to the man-
ager specifying the name of the service. If the service is already registered
in the manager, the service information is sent to the application node as
a discovery response. If a service information is delivered to an application
node, it gets authenticated by the service and the two nodes communicate,
as depicted in Figure 3.2. This process is possible only if the two nodes
have similar network interfaces. However, if an application node and a ser-
vice node are using different protocols, all communications pass through the
manager node [65]. In general, the interaction of the application, service and
manager node use a broker pattern where the manager acts as a broker. In
addition to providing interoperability between application and service nodes
over different network protocols, the middleware simplifies the development
process by abstracting the details of the underlying network interface stack.

3.3 Topology and architecture

The federation of nodes as shown in Figure 3.1 is based on two factors:
the location of the manager node (MN) relative to other leaf nodes (Ap-
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Figure 3.2: Interaction between nodes and the LISA protocol

plication nodes - shown as AN and Service nodes - shown as SN) and the
available resources of the manager node. The dotted circles around a group
of application and service nodes attached to one manager node in Figure
3.1 indicates the locality of the nodes, for instance in a smart home as hub
and smart appliances. As briefly mentioned previously, two or more nodes
can also reside in a single device having multiple sensors and actuators. The
nodes form a star topology with the manager node at the center. In addition,
the interaction between manager nodes is also arranged in a star topology
where the center node is a manager node at a higher layer in the hierarchy.
The overall topology formed becomes star of stars with a manager node in
the cloud acts as the central node (the top most node in Figure 3.1). Top
level manager nodes connect to the cloud node forming the inner most star,
which is extended by next level stars formed around the top level manager
nodes. This topology evolves in the next chapter to form a mesh network of
the manager nodes that are represented as gateways in the Fog computing
layer [20].

The first contribution (Paper I) on LISA [65] also presents an overall
architecture of IoT systems based on the node oriented organization of the
resources available in physical objects. The node centric networking (NCN)
idea of LISA was inspired by content centric networking [51], a type of infor-
mation centric networking [77], [19]. The basic principle behind it advocates
the treatment of the main content transferred between devices to be at the
center of the design. In contrast to existing methods where the computing
devices (hosts) are the central elements, content centric networking uses ad-
dressed contents to be routed to nodes with interest of that specific content.
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Similarly, LISA uses nodes as main components of the communication net-
work by giving unique addresses for each node. Addressing of nodes follows
a specific pattern as:

NodeAddress : Domainl D|HomeM anager N ode|N odeType| N odel D

A typical example of an address constructed using this pattern is con-
catenation of 0x01 (Smart home domain) followed by 0x00(no manager node
for the device), 0x01(type of manager node) and finally the unique sequen-
tial number (0x01). Therefore the node address will be 0x01000101. Other
nodes will register to this manger node and inherit its node Id as their
home manager node [65]. These addresses are generated by manager nodes
for their child nodes during service registration or service discovery process
(see Figure 3.2). The federated arrangement of nodes and the hierarchi-
cal addresses help during the discovery of services that are not available in
the home manager of the requesting application. For example, consider an
application node with address 0x01010301 (home manager address is 0x01)
requesting to access a service node with 0x01020201 (home manager address
is 0x02). The manager node with node id 0x01, containing the application
node, contacts the other manager with address 0x02 to pass the discovery re-
quest for the service. Detailed description of the routing algorithm through
the manager nodes is given in [65].

3.4 Portability of LISA

The main purpose of the middleware is to enable interoperability of IoT
systems across platform, protocol and system boundaries on devices with
resource constraints. To allow this, the middleware is designed in such a
way that the core functionality and protocol is built as a generic layer over
an abstract interface that interacts with the underlying network protocol
stack and embedded real-time operating system. As a proof of concept, it
was originally developed on RIOT-Os [13] and a 6LoWPAN based network
stack. To extend and evaluate the portability of the middleware, LISA was
also adopted to Contiki-os [31]. A representation of two platforms with dif-
ferent network interfaces, with LISA middleware used for inter-operation
is shown in Figure 3.3. The figure also indicates the internal structure
of the middleware to accommodate different platforms and protocols. Ap-
plication and service nodes interact with a uniform interface exposed from
the core module of LISA. The core module initializes the required network
stack and passes requests to system level functions in the specific real-time
operating system implementation underneath it. The overall structure of
the middleware is organized in a strict layered style where upper layer com-
ponents can communicate only to a layer immediately below it. In Figure
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Figure 3.3: Interacting nodes in different platforms using different protocols

3.3 the manager node is represented as a service in the cloud, to simplify
the hierarchical structure of manager nodes passing requests made across
heterogeneous standards. It is mandatory for manager nodes to have sup-
port of multiple network interfaces to be able to function as bridges between
distinct protocols.

3.5 Scientific contribution of LISA

The overall features and advantages of the lightweight IoT middleware has
been covered in this chapter. This section covers the main contributions
of the papers related to the LISA. The original paper [66], not included in
this thesis, was initially published to show the concept of LISA and the re-
sult of simulation utilizing the middleware. This has been further extended
to include the idea of a Node Centric Networking (NCN) with LISA and
the routing of messages accross multiple manager nodes [65]. Due to the
potential of the middleware, a project was proposed to extend the middle-
ware further at the University of Turku and Abo Akademi University with
two years funding from the Academy of Finland. During the first phase of
the project, LISA was ported to Contiki OS and the results of the work
was published in [72]. During the project time line, there has been changes
in the state of IoT middleware landscape both in research and industrial
communities; for instance, the introduction of Iotivity [50] and merging of
Allseen alliance and Open Connectivity Foundation (OCF) [74]. This has
opened new opportunities for the project to pivot to exploring novel ap-
proaches that utilize these types of middleware, while addressing the same
ToT systems challenge - interoperbility. These approaches are explored in
the coming chapter in detail.
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Chapter 4

Interoperating: Architectural
approach

Architecture plays a significant role in the overall characteristics of a system.
A detailed architecture specifies the individual components that form a sys-
tem, the development patterns, programming abstractions, and interactions
among other things. It is a means by which the functional and non-functional
requirements of a system are brought to a usable system. In contrast, archi-
tectural styles are a set of constraints that are enforced on components of
a system and the possible interactions among them to achieve certain qual-
ity attributes. Styles allow understanding of complex systems and facilitate
communication among developers and stakeholders. In addition, architec-
tural styles provide interoperability of systems by design. In the following
sections, architectural concepts are discussed, architectural style for IoT sys-
tems is derived, and different enabler components contributed in this thesis
are presented.

4.1 Architectural concept

The significance of architecture design becomes obvious as the system com-
plexity increases. This discussion of architecture is simplified by taking ex-
amples from building construction. For instance, simpler application can be
developed with sequential flow of activities without the need for architecture
design as it is so for simple constructions, such as a dog house. Similarly,
bigger buildings require architectural design of the structural, electrical, san-
itary, the interior and exterior of the building among others. The same level
of detailed architectural design is required by systems of bigger sizes. IoT
systems, being one of these types of complex systems, require careful design
of the architecture. This section provides strict architecture terminology
that will be used in subsequent sections. Most of these terminologies are
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borrowed from Perry and Wolf [78] to be consistent with most architecture
related publications. Beginning with architecture, it is the identification of
the system components and their composition to provide the desired func-
tional and non-functional system requirements. Perry et al. [78] proposed
a model of software architecture as a collection of system components or
elements and their relation or form guided by certain requirements or ra-
tionale. It also identifies three main types of elements: processing, connect-
ing and data elements. In contrast, an architectural style is more abstract
and generalization of the relations in various architectures [78]. Fielding
[36] describes architectural style as a collection of constraints that apply
to the components of a system and their interaction. Revisiting the build-
ings analogy, while architecture specify detailed guides on the structural,
electrical and look and feel of the interior and exterior of a building, ar-
chitectural style describes the building architecture as Gothic, modern or
classical which provides ease of understanding at a higher level of abstrac-
tion. The last terminology used to describe architecture in this thesis is a
view’. An architectural view describes the design of a system from a specific
perspective, which represents a stakeholder of a system. As a system has
multiple stakeholders, it is described using multiple architectural views. For
instance, four views are presented by Kruchten [55] in the 441 view model
for architecture discussion, each addressing the corresponding concerns of
the system’s stakeholders. In the following sections, the architectural style
derived for IoT systems is discussed using the terminologies presented thus
far.

4.2 Pragmatic Architectural style

ToT systems are one of the most complex systems that require a wide range
of development tools, standards, techniques and professionals as described
in Chapter 2. In the simplest case, it requires embedded systems developers
to program the devices that are integrated to a physical object, front-end
developers to design user interface for the application and back-end devel-
opers for the storage and analysis of the data collected. In general, it is
inherently distributed over different types of networks and wide range of de-
vices. This complex system can be simplified and easily described if there is a
widely used set of architectural styles. This thesis contributes in this regard
towards the derivation of a pragmatic architectural style for IoT systems.
The process starts assuming the overall system as a standalone application
to provide a generic function that represent IoT systems. Fielding [36] refers
this model of the system, where no style is applied, as Null style. The com-
ponents of this initial abstract system will be identified and in trying to
fulfill the definition of an IoT system and address its challenges, architec-
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Table 4.1: Software architectural styles
Usage scenario Architectural styles

. Client-server

. Space based

. Peer-to-peer

. Broker

. Pipes and filters

. Layered

. Monolithic application
. Event-driven
Publish-subscribe
. Blackboard

. Rule-based

. Remote execution
. Code on demand
. Mobile agents
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tural styles will be applied to it in steps. The result of the final stage will be
the list of components (processing, connecting and data elements) and a set
of architectural styles that are given a collective name for simplicity and to
uniquely identify it from others. Garlan and Shaw [40] present two ways of
combining architectural styles to form derived heterogeneous ones. The first
approach is to follow from higher abstraction to lower, applying appropriate
styles for outer and each internal component. This approach is used here in
the beginning stages to identify the core elements of IoT systems and their
interaction. The second method is to use combination of styles in a single
component, identified in earlier stages, to achieve desired system properties.
To apply styles or combine them, it is necessary to provide an overview of
existing common styles, shown in Table 4.1, that are usable in subsequent
sections.

4.2.1 Origin: monolithic system

The initial stage in the derivation of an architectural style is to assume
the whole IoT system as a single program on a device, without any layers
internally. This is equivalent to an embedded systems software without any
style that reads sensors and based on the value of the reading instructs
an actuator on the same device. Figure 1.2 is an abstraction of such a
system on a single device. However, this is a hypothetical system that is
not inline with the definition of IoT systems; it is not even distributed over
a local network. Moreover, the majority of devices are resource constrained
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Figure 4.1: Applying client-server style to the origin

to store the collected data and process it. In addition, the model above is
generalization of at least two main purposes of such devices; monitoring and
control. With the monolithic model, it is not possible to achieve monitoring
function unless there is another component of the system closer to the user
to present the collected data. In the next step, this drawbacks of the model
will be addressed by applying a client server style to the original system
model.

4.2.2 Stage one: Client-server

Given the drawbacks of the system in Section 4.2.1, different architectural
styles will be applied on it to achieve the requirements. To provide access
to the user for monitoring and control of the device over a network, the
functions of the system are split in two concerns. Therefore, two processing
components will be identified in this step: first is the interaction with the
physical object and the second is the interaction with a user. This separation
of system concerns is achieved by applying Client-server architectural style
from Distributed systems usage scenario of Table 4.1. In a client-server
style, clients consume services provided by the server component using re-
mote procedure calls [40]. In this model of an abstract IoT system that is
partitioned into client and server, the server is the embedded systems device
interacting with the physical object, as shown in Figure 4.1. There are
some architecture proposals for IoT systems, which resemble this style in
their simplified forms, given the interaction of the client and server is done
through the Internet. For instance, the three layered architecture summa-
rized in Figure 2.2 or the basic IoT system presented by Khan et al. [53]
can be simplified to two layers excluding the infrastructure. This simplifica-
tion makes the architectures similar, except the partitioning of the functions
of the two layers. Even though applying the style enhanced the system in
allowing the remote access of the device and the system looks like an IoT
system, the resource constraints still remain unaddressed. In the next stage,
the constraints will be considered by applying more architectural styles.

4.2.3 Stage two: Client-server

One of the distinct features of most IoT devices is the limitation of the re-
sources compared to traditional Internet connected device, such as personal
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Figure 4.2: Applying client-server style again on the embedded systems side

computers and mobile phones. Some of these limited resources are the bat-
tery life, processing power and storage capacity of the devices, which are
also presented in detail in Chapter 3. Considering the model in Figure 4.1,
there are many limitations of the systems. First, the overall scaling of the
system is limited as the embedded system cannot handle lots of concurrent
user requests. The second restriction is in the amount of data stored and
processed in the embedded system. Another obvious problem is, for the
embedded device to provide a reliable and always available service, it has
to always be in listening mode. This results in consuming too much power,
resulting in shorter battery life-time for those devices running on batteries.
In addition, the embedded devices use a wide range of network protocols,
making it difficult for the client device to support all of these protocols.
Therefore, separating the processing, storage and handling of user requests
from the function of interacting with the physical world forms two separate
layers; a client and server. The role of the embedded system component in
this model is as a client, accessing the services provided by the back-end
system as shown in Figure 4.2. The model in this stage has better scalabil-
ity to handle as many users and large number of embedded systems. It also
takes the burden of storage and processing from the resource constrained de-
vices. However, this model is not generic enough to represent systems that
have low latency requirements and mobile devices, referring the Table 2.1.
In the next stage, these types of time critical IoT systems will be addressed.

4.2.4 Stage three: Layered Client-server

Bonomi et al. [20] proposed Fog computing to provide network, computing
and storage closer to the devices interacting with physical objects. This
novel approach enables low latency communication for time sensitive ap-
plications in Networked Embedded Systems (NES). In addition, Fog com-
puting layer provides services that are relevant to address the challenges in
the networked embedded system. For instance, to support various network
interfaces used by the NES and provide mobility services [81]. The intro-
duction of this computing tier forms a Layered Client-Server style where
the NES is a client of the Fog Computing System (FCS), which is in turn a
client for the Back-End System (BES). The architecture style at this stage
is complete enough to address most quality attributes required by IoT sys-
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tems. At least four processing components have also been identified during
the previous stages; a networked embedded system component (NES), Fog
component (FCS), Back-end component (BES) and finally the User Inter-
face Component (UIS) as shown in Figure 4.3. However, the connector
components have not been clearly characterized to assist in addressing the
requirements of IoT systems. For instance, the above model does not explain
how the resource constrained devices can be made visible over the Internet
and also the mode of interaction of two or more NES components. In the
following section, the model will be further elaborated adding constraints
on the connectors of the processing components.

4.2.5 Stage four: NES internals

The preceding stages enable IoT systems to operate with the resource con-
straints of devices containing the processing component labelled as NES by
migrating all those functions that can be executed remotely on advanced
hardware. One of the advantages of this separation is to enable the NES
component to operate only when necessary and remain in sleep state oth-
erwise for longer battery life. However, this solution brings the challenge
that the state of these devices will be unknown or inaccessible while they
are in sleep state. In addition, mobile devices can change location and
tracking last known position is necessary. A suitable component to retain
this state information is in the FCS, which is operating as a server to the
NES. In addition, the client-server communication between NES and FCS
is over heterogeneous protocols. As a solution to the syntactic interoper-
ability challenge of IoT systems, a uniform interface is proposed as part of
this thesis work in [67]. This is a connector component that introduces a
constraint on the interaction of NES and FCS. It effectively hides the details
of the underlying network protocol by utilizing a middleware, such as the
one contributed in this theis [66].

The implementation of a typical IoT system has been highlighted in
Chapter two, while presenting the state of the art in different aspects. It
presented the issues to be taken into consideration while developing the NES
component that is responsible for the interaction with a physical object.
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Considering the possible deployment environment of the NES component,
which might not be easily accessible, updates to the component have to be
done over the air. However, in comparison to the size of a typical NES com-
ponent with the bandwidth of most network interfaces used, it is not feasible
to make frequent updates. One of the contributions of this thesis is to use
a code on demand style to simplify reconfiguration and maintainability of
the NES component [68]. The details of the scripting language designed are
discussed in Section 4.3. Concentrating on the architectural style, a code on
demand approach (from a mobile code type in Table 4.1) enables scripts
stored in the server to be transported to the client where it can be inter-
preted and executed. However, mobile code approach introduces a security
risk. To overcome this vulnerability and get advantage of code on demand
style, the internal components of NES are organized in strictly layered ar-
chitectural style to restrict access to critical layers [69]. An Application
Programming Interface (API) is exposed to the Interpreter sub-component,
hiding the underlying details. The layers under the middleware can option-
ally be organized in other alternative ways as necessary. Figure 4.4 shows
the layered organization of the internals of NES component with typical
layers. The use of a middleware and uniform interface enable the NES to
inter-operate with other NES components using different network interface
via the FCS [81] [70]. In addition, the use of 'thing descriptions’ as part of
the IoT model, which is shown as Device Object Model layer in Figure 4.4,
enables the NES to understand basic semantic information when exchanging
information with other devices. More information on this topic is presented
in Section 4.4.

4.2.6 Stage five: FCS internals

The overall deployment tiers of the components of IoT systems have been
outlined and the details of the NES component and its connector with the
FCS have been completed. This stage analyzes the FCS internal structure
to provide the required services for its clients. A logical extension to the
previous stage is the uniform interface on the connector with NES. Devices
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in the Fog layer are usually composed of multiple network interfaces to
handle requests from their clients in the perception layer (interacting with
the physical world). The use of a uniform interface makes the variations in
the network interfaces fade out allowing a developer to focus on the main
function. Another required feature introduced during the design of the NES
is the retention of the state of its resources (introduced in Section 4.2.5).
One of the contributions of this thesis represent the state information of the
devices with a virtual counterpart in the FCS memory [70]. In addition to
retaining the state and providing interoperability over a uniform interface,
other benefits of using Fog computing layer include localized processing of
the data, support mobility and faster notification to events of interest [81].
Inside the FCS, the interactions among the virtual representation of the
states of devices, are made using an event-driven approach (from messaging
type in Table 4.1) in [70]. Moreover, to handle the data processing needs in
the FCS, a blackboard approach from the shared memory category in Table
4.1 is optionally used. Depending on the data processing requirements of
the application domain, other alternatives can be considered as well (such
as rule based or pipes and filters) [40]. Combining the above architectural
styles to address various challenges, the internal organization of the FCS is
shown in Figure 4.5 [69]. One of the missing function of the FCS is the
support of mobility of devices running the NES. To support that, replication
of the state information to the neighbours of the gateway is necessary. The
federated organization of the gateways in the Fog layer [75], as also used
in the federated case of LISA [65], helps to determine the possible number
of gateways to replicate the state information. This communication with
other gateways can be accomplished optionally using a peer-to-peer style.
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In one of the contributions of this paper [70], the replication of the state
information is done using REST style. At this stage, the inter-operation of
Networked Embedded Systems is possible and the challenges of most IoT
systems can be mitigated. In the final stage, the remaining parts of the
complete architectural style is discussed and combined with the results of
the previous steps.

4.2.7 Final stage: combining styles

The final stage of the derivation is to analyze the interaction of the BES
with FCS and BES with UIS. These interactions occur over existing Inter-
net infrastructure and mostly through the Web. Therefore, using an existing
style is preferred over trying to redesign a working system. The Represen-
tational State Transfer (REST) [36] architectural style is a dominant style
used for the World Wide Web. After the first introduction of the style and
its wide use in the Web for almost two decades, Fielding et al. [35] have
shown the impact REST has, its shortcomings (for instance in handling push
notifications) and other related styles inspired by it. Some of these styles
are Computational REST (CREST) [33] and Computational State Transfer
(COAST) [41] that address specific requirements. Similarly, this design of
an architectural style is also partly motivated by REST, to address specific
requirements of IoT systems. Using the REST style to complement the com-
bination of the styles identified in previous stages provides the full picture
of a more practical IoT systems architectural style. It is the combination of
REST with the previous styles that is referred in this thesis as Pragmatic
IoT systems architectural style or PI [69]. In general, it identifies six pro-
cessing components, four connectors and five data elements of the style as
presented in [69], excluding those elements covered by REST styles. The
constraints, topology and quality attributes of the overall style are covered
in Chapter 5. The final view of a generic IoT system that utilizes the PI
architectural style is shown in Figure 4.6 [69]. The figure shows the all the
simple styles picked on the way, such as the internal layered style in NES,
uniform connector between the NES and FCS, the combination of styles used
in the FCS, and the REST style on the right most side. In the remaining
sections of this chapter, the contributions of the thesis that facilitate the
adoption of the PI style are covered.

4.3 Domain specific scripting

To address the unique challenges of IoT systems and find a working archi-
tectural style, the Networked Embedded Systems (NES) layer has been at
the center of this thesis. One of the architectural styles proposed is the
use of code on demand approach to enable the reconfiguration and enhance
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Figure 4.6: Overall PI architectural style for IoT systems

maintainability of the NES. A code on demand approach is a style used
with a client-server approach where an executable code is sent to the client
from the server [38]. This approach was first proposed for IoT systems in
one of the contributions of this thesis [68]. At the center of this style is the
description of the resources available for manipulation by the code sent from
the server. This description of the device (or the physical object interact-
ing with the device) is referred as Thing Description by the W3C [28]. A
related description, extracted from IoT domain model of the IoT-A project
[49], called Device Object Model (DOM) is used in [68]. A simplified repre-
sentation of the resources in a device and the corresponding DOM model is
shown in Figure 4.7.

The DOM exposes the values of hardware resources (such as sensors and
actuators), events and metadata as API, to be manipulated in the interpreter
by the code sent from server (Figure 4.4). Traversing the tree from the root
to the leaf nodes, the device resources in the DOM are organized based on
the access level; private resources of the DOM have read-only API functions
while public resources can have read and write functions. In addition, the
DOM interface also exposes functions that are used for sending and receiving
messages to or from FCS layer. The implementation of the APT exposed by
the DOM are assumed to be shipped with the device by the manufacturer.
Updates to the DOM and the underlying implementation of the network
protocol or real-time operating system specifics can be done over the air.
However, the main argument in this approach is that updates to these layers
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Figure 4.7: A simple IoT device (left) and the corresponding Device Object
Model (right)

are not frequent compared to small functional specifications such as change
in the formatting of the data or unit of measurement. The scripting language
is designed to help in re-configuring the device behaviour using simple code
stored in the Fog layer, similar to web pages stored in a web server [67].
The DOM tree or the thing description files are stored in a shared server to
simplify writing scripts that consume resources exposed by other devices to
enable interoperability of devices from different vendors [69].

typedef struct{
int initialized;
status_t (xsync)();

status_t (xevery)(uintl6_t time);
status_t (xread)(char xproperty, void xbuffer);
status_t (sxwrite)(char sproperty, voidx* value);
status_t (xsend)(void xbuffer);
status_t (*receive)(void xbuffer);

tdom_t;

Listing 4.1: Simple DOM api interface

version 1 ! version of the script
! Optional comment

thermo : include ”thermostat.td”
dom : include "aircondition.td”

I Initialization block

init

{

dom. write (unit, "rpm”);
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dom. write (fanspeed , 0);

}

dom. every (12);

run{
temp = thermo.read (temperature);
dom. write (temperature , temp);
unt = thermo.read (unit);
if (unt = 7c¢”) ! Degree celecius
{

if (temp > 25)

dom. write (fanspeed , 10);
! Update the fanspeed value

}

lend of script

Listing 4.2: Sample DOS-IL script fragment

The instructions interpreted in the NES are written using a domain
specific language that is developed from the ground for IoT systems, called
Domain Specific IoT Language (DoS-IL) [68]. The design motivation of
the language is to simplify writing a set of commands that manipulate the
function of devices that interact with the physical world. In comparison
to other alternatives available, such as Node-RED [71] and DSL-4-IoT [85]
that provide graphical programming environment to generate code, DoS-IL
gives ease of re-configuration using code on demand style (Table 4.1). Tt
has simple construct to write conditional instructions and declaration of the
DOM of the device and others it interact with (see sample script in Listing
4.2). To elaborate on the relation of the scripting language and the DOM
API exposed (Listing 4.1), the model represented in Figure 4.7 is used
as an example. A simplified script portion that calls this API functions to
achieve the system features is shown in Listing 4.2 with the corresponding
simple DOM API. The sample script shown is written for an air conditioner
device and it is interacting with a thermostat to get the temperature value.
It also sets the unit of the speed of the local fan, which can be shared with
other devices. The original scripting language and monolithic interpreter
has been updated using a formal grammar and parser generator tools [69] to
optimize the memory and processing requirement. The upgrade also includes
the simplification of the interpreter required in NES by preprocessing the
script in the FCS to generate a list of DOM calls. The source code of the
scripting language is also made open source [61] to further enhance it and
increase the visibility.
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4.4 Virtual things server

A major part of the solutions proposed to address IoT systems challenges
is provided by the components of the Fog computing layer [64]. The PI
architectural style discussion in earlier sections has identified the process-
ing component running at the Fog layer and its internal composition using
multiple styles. This thesis also contributes an implementation of a Web
of Virtual Things Server (WoVTS) [70] that supports the PI architectural
style. One of the main purposes of the WoV'TS is in creating a virtual rep-
resentation of the physical objects in memory at the Fog layer. This virtual
counter-part of the physical object contains all the state information required
by applications and the thing description or DOM is used as a blueprint for
the creation of this abstraction. As an additional level of interoperability,
the server supports multiple formats or standards of thing descriptions to
create the in memory objects [70]. These virtual things interact with each
other to exchange event and data representing the change in state of the
physical object. For instance, a virtual representation of the DOM shown in
Figure 4.7 has properties representing the temperature and its units, and
events such as arrival of new temperature reading, or exceeding a maximum
temperature value. Subscriptions to events are managed by a central event
hub. The virtual objects are stored in a central registry that serves as a
state repository that can be replicated to neighboring gateways in the Fog
layer for reliability and facilitate mobility of devices. In addition, the server
also implements a uniform connector to interact with the physical objects,
hiding the details of the network protocols used. This uniform connector is
similar to the one used by the NES and it resembles the uniform interface
available in REST. Using this interface helps abstract the underlying net-
work interfaces and simplify the communication to four basic verbs: GET
(request a resource), POST (update a resource or create new one), DELETE
(remove existing resource) and NOTIFY (subscribe to event or state infor-
mation change). Moreover, it was mentioned in Section 4.3 that the server
also hosts scripts written in DoS-IL to manipulate the DOM of the physical
object. The storage and serving of these scripts is also one of the contribu-
tions made in this thesis [67]. The server also adopted IoT-lite ontology [16]
to annotate the client device and uses the device name as a unique identifier
for the script written for a specific device. The missing component out of
the FCS implementation in WoVTS is the blackboard style that is aimed
to address the data processing needs of IoT systems. However, the data
processing needed by IoT systems is mostly domain specific. Therefore, the
PI style derivation for the data processing sub-component is taken from a
healthcare case study presented in one of the contribution of this paper [81].
The implementation of the server is done in two versions that are both made
avaiable as open source. The first version is to support script hosting and
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uniform interface [62] and it is enhanced in the second version implementing
virtual object creation and their interactions [63].

4.5 Summary

In summary, this chapter provided the overall IoT systems architectural
style derivation process starting from a system with no style to an elaborate
four tier design. The PI architectural style is formed by detailed analysis of
generic [oT systems requirements focusing on networked embedded systems
and combining it with REST to provide the full picture. The chapter also
highlighted the contributions of the thesis in different papers containing
tools that allow the adoption of the architectural style. Some of these tools
include a domain specific scripting language designed for IoT systems, an
embedded interpreter that execute the script, a server designed for the Fog
layer that hosts the scripts and creates virtual images of the physical objects.
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Chapter 5

Analysis and Evaluation

The main elements of the proposed solutions to overcome lack of interoper-
ability has been covered in previous chapters. In this chapter, qualitative
and quantitative results of the measure of effectiveness and efficiency of the
proposals is presented. The overall contributions of the thesis are analyzed
from the perspective of enabling interoperability to IoT systems, with a focus
on networked embedded systems. It also considers any additional benefits
that can be achieved or system qualities compromised due to the introduc-
tion of either the middleware or the PI architectural style. The discussion
considers the resource utilization and effectiveness of the components intro-
duced by the individual contributions.

5.1 Analysis of contributions

The core target of the thesis is to address the lack of interoperability in IoT
systems at different levels of abstraction. This challenge is aggravated by the
resource limitations in most of the devices used at the perception layer (in-
teraction with the physical world). The analysis of the contributions of the
thesis mainly focuses on the resource efficiency of the solutions. Some of the
quantitatively studied attributes are the memory required for storage, pro-
cessing and the performance (time constraint) for LISA and WoV'T server.
The architectural style analysis however targets to identify details about the
style on how well it address the desired system quality attributes needed by
ToT systems and the constraints it enforces in a qualitative manner.

5.1.1 LISA middleware

The fundamental design target of the interopreability middleware is to make
it lightweight, as the name indicates. To meet this target, the original NoTA
framework has been studied to identify the crucial components that are
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needed for IoT systems. This step is followed by identifying what optimiza-
tion can be done to fit within the target environment. In the first step, it was
identified that the protocol (such as registration and discovery) and modular
organization of the network protocol specific implementations are critical to
provide interoperability. In addition, moving features that can be relocated
to the manager nodes provides relief to the resource constraints of devices
running the NES component. The LISA middleware has two types of mes-
sages: setup and user messages. Setup messages are used during build-up
stage, which includes service registration, deregistration, acknowledgement,
discovery or access request. In contrast, user messages carry the actual pay-
load exchanged between an application and service node. Setup messages
have a header size of 8 bytes and user messages have a header size of 9
bytes [65]. These headers contain the addresses given to nodes according to
the generation format described in Chapter three, Section 3.3, to uniquely
identify the device, its domain and the manager connected to it.

Another important measure of the middleware performance analyzed in
this work includes the time taken by nodes to handle each type of setup
message. This provides an indicator of the total time required to start
the actual user message exchange. The simulation is carried out using the
version of LISA working on RIOT [13] operating system by creating tap
interfaces representing each node. The complete setup is done on a virtual
machine running Ubuntu 14.04 that has 4GB of RAM and a speed of 3.16
GHz. The time taken to process discovery request by manager node and dis-
covery response by application node, registration request by manager node
and registration response by service node are shown in [65]. It was observed
that a service node requires an average of 17.5p1s to get ready to handle
requests. Similarly, an application node requires an average of less than
1ms to complete discovery and authentication. This delay vary depending
on the number of registered services. The performance of the middleware
was also analyzed for message routing from one sub-network controlled by
one manager node to a different sub-network. From the perspective of the
client discovering a service, the time required is comparable to the previous
discovery process as the manager node responds with its own address in
the discovery response. The details of the algorithm used to route messages
across a network of manager nodes is also presented in [65]. The routing fol-
lows the hierarchy of manager nodes and the performance also varies based
on the number of service nodes in each sub-network.

A crucial attribute considered in the analysis is the memory requirement
of the middleware. In a typical NES system, shown in Figure 4.4, identify-
ing the size of the middleware separately from the other layers is challenging
as the final binary is almost always combined in one file. To find the size of
the middleware, the size of the object files generated from the source code is
summed up. In contrast to the size of the NoTA, which was 260KB, the size
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of LISA was only 22KB [65]. In the sample binary, LISA took less than 20%
of the total file (130KB). The overall resource utilization, in comparison to
the benefits brought by LISA, was taken as a design compromise for inter-
operability, mobility and ease of programming. All of the analyses done so
far are based on the initial implementation on RIOT operating system. The
final analysis section of LISA was done after porting the middleware to Con-
tiki RTOS [31]. In addition to the above resource utilization analyses, the
new version includes the power consumption measurements for each setup
and user messages. One of the notable optimization made in this Contiki
based version is the decrease in memory footprint, which is inline with the
initial motivation of integrating resource constrained IoT devices. It only
used less than 15KB of memory, which is 7KB less than the RIOT based im-
plementation [72]. In addition, the power consumption and processor time
taken by LISA were compared with a reference UDP server implementation
included with the Contiki RTOS. In summary, the analyses of LISA has
shown the overall overhead introduced by the middleware in comparison to
the benefits shown in Chapter 3. Based on the analyses, it is demonstrated
that LISA is useful for resource constrained nodes with limited memory,
bandwidth and battery life. Referring the classes of constrained devices
listed in [21], LISA can also be used in Class 0 (having flash size of less
than 100KB) devices. However, it needs to be ported to multiple RTOS and
support multiple protocols with a possibility of running on a bare-metal to
enable interoperability of IoT systems.

5.1.2 DoS-IL script

To analyze the scripting language, it is mandatory to first identify the design
goals. The motivation for creating DoS-IL was to provide interoperability
for IoT systems using similar techniques used in the Web. The inventor of
the World Wide Web, Sir Timothy Berners-Lee, in his paper [17] covering
the history and future of the Web, summarizes the purpose and motivation
of the Web at the time. According to the paper, the Web provided an inter-
operability layer for various networks. Following this analogy, the various
network protocols used by devices in the perception layer can be integrated
using a client-server configuration with a code on demand approach as de-
scribed in the derivation of the PI style. To elaborate on the advantage of
the code on demand approach, consider a smart home system that contains
a smart bulb and smart lock components, as shown in Figure 5.1. The
current state of the art approach, discussed in Chapter 2, is to write the
complete code of the smart devices and program them to work according
to the initial specification; for instance, when the smart lock is opened turn
on the light. Assume the system needs integrating additional smart devices
in separate steps, first extend the system to consider the room tempera-
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Figure 5.1: A hypothetical system with two smart devices (left side shown
in blue) is extended to support two more smart devices (right side in green).

ture from the thermostat and next turn on the teapot. In each step, the
additional functional requirement introduced to the initial specification has
to be implemented and the update has to be sent to the devices already
installed. If the vendor of the devices is not the same, the options of in-
tegrating these distinct devices are limited or may not exist. In contrast,
code on demand approach allows the smart devices to be re-configured ac-
cording to the new specification without the need for update of the core
firmware by simply modifying the scripts. This approach facilitates system
level integration. However, there is no such a language that can be used to
address re-configurability of the feature of IoT systems. Hence, DoS-IL is
contributed as part of this thesis. The new domain specific language should
consider the resource limitations of the devices and bandwidth of the net-
work interface. These attributes determine the efficiency and conciseness of
the scripting language.

The first version of the scripting language and the interpreter published
in [68] presented the size of sample scripts and the interpreter. The scripts
considered are both less than 600 bytes and the size of the interpreter was
only 76KB [68]. The analyses of the script from the servers perspective are
given in [67]. The total time required from requesting the script to complete
transfer was shown in comparison with a two way communication with no
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Figure 5.2: Experimental client (left) and server (or gateway in the right
side) setup for analysis.

payload. Both scripts were completed in approximately 400ms, around four
times the one required by the reference two way communication. One of the
main time consuming part was the integration of an IoT-lite [16] ontology
to query the path of the script based on the name of the requesting device.
The experimental setup used for these measurements was built using an
nRF24L01 [87] radio based network. To fit within the maximum payload
limitations of the network, the script is fragmented into parts following
predefined protocol. Three bytes of header define the status code, remaining
packets and the checksum of the message [70]. The setup used for this
analysis is shown in Figure 5.2 [67]

The second version of the script was enhanced to include thing descrip-
tions as include files in the script to help during references to properties
and actions of devices. The interpreter is also built using standard tools,
Bison and Flex [57], that optimized the size of the binary. In addition, alter-
nate ways to the transported instructions have been defined. In contrast to
sending the complete script for the client device, DOM call instructions gen-
erated from the abstract syntax tree of the script parser can be sent. These
are very simple instructions that can be interpreted with smaller sized in-
terpreter [69] more efficiently.

5.1.3 WoVT Server

A small part of the Web of Virtual Things (WoVT) Server has been covered
as part of the script analysis. This section gives details of timing and memory
usage of the server in handling other types of requests. The location of this
server provides a wide range of opportunities to address the challenges of IoT
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Figure 5.3: WoVT Server latency graph over the simulation period.

systems. As mentioned in Chapter 4, one of these advantages is the storage
of state information of devices in the perception layer. The size of a state of
a device varies depending on the attributes of the thing description of the
object. However, the overall memory consumption of the server over 120s
of simulation time while creating 129 virtual objects has been maximum
of 45MB [70]. Considering a typical gateway device, such as Raspberry
Pi [79], with gigabytes of RAM and the number of devices simulated, the
memory consumption of WoVT server is bearable. This communication is
carried out over a uniform connector that forms a layer of interoperability
over any preferred middleware. It also provides a uniform message format
for requests and responses. A request has a four bytes header that indicate
attributes such as the version, type of request, payload length and resource
url. Similarly, a response header contains three bytes of response code,
remaining packets and checksum of the payload [70]. This provides the
server to receive or send messages that are understandable in the perception
layer of an IoT system.

The second important measure of the performance of the server is the
latency of processing a request or the time needed for the server to reply a
message. Throughput, a related term, on the other hand measures the total
number of requests handled per unit time. This analysis simulates three
network interfaces each sending an average of 4 requests per second over a
total period of 100 seconds. Based on the gathered data, the server had
a maximum throughput of 51 requests per second or an average of 19.6ms
processing time per request [70]. The simulated requests represented devices
in the perception layer. The other communication that requires analysis is
the REST service for replicating state information with other gateways or
for cloud interaction. For this test, a test tool called Apache JMeter [96] was
used. Similarly, a total of 500 nodes each sending 4 requests over a period
of 100 seconds is simulated. The average response time of the server was
reported to be 54.6ms, which is also shown as a throughput of 1201 requests
per minute [70]. The latency of the server over the whole simulation period
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is shown in Figure 5.3. Even though there are observations that had a
value of more than 300ms at times, more than 60% of the requests were
handled in less than the average time.

The last part of the analysis of the server targets the event handling
capacity. The implementation takes advantage of an open source database
that stores a key value pair in memory, called Redis [84], for device state
and event management. Using a built-in command line tool to extract its
performance measures, the two mostly used functions resulted in throughput
0f 90,000 for Set method and 86,500 requests per second for Get method [70].
Redis also has a feature for replication of the data to neighboring gateways,
which can be used for mobility services in the gateway. The throughput
values are also sufficient enough to handle the requests of devices in the
perception layer and as event hub for in-memory virtual things for sub-
networks of about 129 devices (virtual devices created). Replication of the
data using Redis is an optional way of sharing state information and the
alternative way is using the REST service discussed earlier.

5.1.4 PI style

Analyzing architectural styles qualitatively provides an understanding of
the behaviours of systems that follow the style [15]. There are structured
ways to do the analysis for comparison with other related styles and ease of
understanding the overall features of the style. One of these frameworks is
presented in [40]. It identifies the components, connectors and data elements
of the style, the topology of their interaction, including the constraints en-
forced and the benefits or drawbacks of the style. Some of the elements of
the PI style have been discussed inline with the derivation process, focus-
ing on the lower end of the overall style (left of the REST style in Figure
4.6). Similarly, the analysis focuses on the NES and FCS components, their
connectors and the data flowing through. The major elements of the style
categorized based on their function are presented in Table 5.1 [69]. There
are processing components that are listed as 'other’ to indicate the possi-
bility of adding components depending on the application domain specific
requirements. For instance, other NES components include the RTOS, mid-
dleware and drivers used by the firmware. In addition, there are elements
that can be categorized as both processing component and connector ele-
ment; for instance, resource browser and state manager (store).
Identification of the elements of the style simplifies the process of defining
the topology. These components are also shown in the general view of the
architectural style shown in Figure 4.6. Following the derivation process
in Chapter 4, the topology is discussed hierarchically starting from arrange-
ment of larger components that have multiple internal components, such
as NES and FCS, followed by their internal sub-components. In general,

49



Table 5.1: Main architectural elements of the PI style.

Processing Components ‘ Description

Interpreter (NES layer) For script execution

Event hub (FCS internal) Event manager for virtual things
Virtual things manager (FCS) Handling state of devices

Shared data store (FCS internal) | Central data store for processing
Other NES components NES firmware layers

Other Fog components Local storage and processing
BES and UI (included in REST) | Processing, storage and access
Connectors Description

Resource browser layer in NES Communication handler with FC
Uniform interface Uniform message interface

State and script store in FCS Communicate to NES
Replication interface FCS point-to-point connector
Data Description

Thing description Description of device resources
Device state State of device between FC
Scripts Instruction to device

Device command Command (feedback) to device
Identifier to thing description URL or unique ID

multiple NES components consume services hosted in one FCS component
forming a star topology (Figure 4.6). This has the drawback that it has a
single point of failure. However, the replication of state to other FCS com-
ponents provides redundancy during failure of any FCS element. This leads
to the hierarchical mesh type arrangement of the gateways hosting FCS to
provide the necessary system quality. One of the driving reasons for this
arrangement is the need for peer-to-peer communication of FCS gateways
to exchange state information of mobile devices. Moreover, sub-network of
gateway devices can be managed by a single higher layer gateway as recom-
mended by the OpenFog reference architecture [75]. Any layer that access
the back-end system (BES) acts as a client in a REST style as shown in
Figure 4.6. In this topology analysis, the part of the style left for REST
is considered as a black box. The overall topology of the architectural style
is shown in Figure 5.4. The main processing elements are labeled and the
different connectors are indicated by changing color and arrow type. For ex-
ample, thin blue arrows show uniform interface connector and green thicker
arrows show the state store connectors in a peer-to-peer fashion.

Internal structure of each processing element is composed of multiple
sub-components that have different arrangements. A strict layering is rec-
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Figure 5.4: Topology of the PI architectural style

ommended (top-down or linear topology) in the internal organization of the
NES component to limit the side effect of the code on demand approach
selected for re-configuration. In strictly layered organization, upper layers
can only access the layer just underneath. Therefore, the layer containing
the interpreter shall only access the API exposed by the DOM layer only.
To provide flexibility for implementation, the other layers can be optionally
made non-strict. The second major component is the FCS, which has three
main types of styles. The first type is the use of replicated repository that
makes the FCS server stateful (store state of its clients). This is part of
the connector that is located at the center of the star arrangement shown in
Figure 5.4. Inside the FCS, it is shared by the other two sub-components
arranged in blackboard and event hub styles (see Figure 4.5). The event
handler component of the FCS that uses the event oriented style forms a
star topology; the event hub sits at the center and virtual devices connecting
to it. Event publishers contact the hub, which manage and notify subscrip-
tions. If an event results in change of state, this will be pushed to the state
repository. The last part of the FCS is the data analysis [81] section that use
the blackboard style. This style inherently leads to a star topology where
the shared repository (the blackboard) is located at the center [40].

The final part of the architectural style analysis is to provide the advan-
tages and drawbacks of the style. An obvious advantage of using this style is
that it provides interoperability at different levels. First, systems developed
using this style can be integrated with minimal effort as both use similar
organization. Second, the use of thing descriptions enable the use of domain
specific ontologies for semantic interoperability at higher layers (Back-end).
Moreover, the use of middleware to abstract the underlying network proto-
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col and the uniform connectors provide syntactic interoperability. Another
advantage of using this style is ease of re-configuration of the perception
layer devices using domain specific scripts. Furthermore, storing the state
information of the devices and the virtual representation of a physical object
enables support of mobile nodes. In general, the overall advantages of using
this style are summarized in Table 5.2 [69].

Table 5.2: Advantages of PI architectural style for IoT systems

Advantages Style to address

Interoperability The PI style designed to address this
Re-configurability | Layered, code on demand and client-server
Mobility Replicated state repository

Scalability Code on demand and replication
Performance Hierarchy of FCS gateways

Portability Code on demand and layered approach
Reliability Replicated repository in FCS

Simplicity Functional separation and uniform interface
Security Strict Layered style in NES

The advantages listed above come at the cost of limitations introduced
by the style. One of these drawbacks is the restriction of peer-to-peer con-
nection of the NES components. There are circumstances where a point-
to-point communication of the perception layer nodes is needed. In such
scenarios, the PI style can only be achieved by allowing the sync node to
act as NES component representing all the other mesh nodes. In addition,
PI restricts the direct access of the NES component from the user interface
component [69]. As a final point, the PI architecture style is an initial at-
tempt to generalize IoT system qualities and derive a common style. This
generalization can easily fail to address specific types of IoT systems and
newer approaches. Hence, subsequent revisions are necessary.

5.2 Security analysis

In most of the discussions of the middleware and architectural style, security
and privacy have not been discussed. It is one of the main challenges that
constrain the adoption of IoT systems. Given the sensitivity of the informa-
tion gathered by IoT devices, ensuring the security and privacy of the data
and the overall integrity of the system is mandatory. Special care is required
when integrating systems of different domains. In the classification method
given in Table 2.1, security consideration is highlighted with ’Ownership’
criteria in three categories. This is introduced to indicate the need for iden-
tifying the different levels of security required by each IoT system. In most
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of the contributions of this thesis, security has been considered as a con-
straint. For instance, LISA protocol has an access request from the service
identified during discovery request (see Figure 3.2). The access token gen-
erated by the service node is used during subsequent interactions. Similarly,
the code on demand approach introduced has considered the security risks
associated with the style and strict layering is enforced to protect underlying
components [69]. Moreover, the FCS implementation of the state store and
event hub in [70] also has security considerations included. However, de-
tailed analysis of the security and privacy perspectives of the contributions,
such as in [7], are outside the scope of this thesis.

5.3 A Complete view

The contributions of the thesis have been analyzed for resource utilization
and suitability for the desired target. This section provides a holistic view of
the contributions in a typical IoT system. The first category of contributions
(Paper I and Paper II) [65] [72] provide a middleware layer to abstract the
underlying network interface and platform differences. These provide syntax
level inter-operation of Networked Embedded Systems. The middleware also
provides ease of programming. The second category of contributions (Paper
ITI, Paper IV, Paper V and Paper VII) are targeted to provide semantic
and system level integration. These are enabling code on demand style in
NES by scripting and an interpreter layer, an FCS component containing
state store, virtual representation of physical things and their interaction via
events. This category also contains a contribution discussing the architec-
tural style. The last category provides a healthcare domain as a use case for
the above components (Paper VI). The contributions of the thesis mapped
to architectural elements of an IoT system identified in PI are shown in
Table 5.3.

The preceding chapters provided the background of the thesis, the cur-
rent state and the main contributions of the dissertation including the anal-
ysis and evaluation of the efficiency. In the upcoming last chapter, conclud-
ing remarks are given including recommendations, future plans and ongoing
works to realize the web of things.
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Table 5.3: Contributions of the thesis relative to an IoT system

Architectural element

Contribution

NES middleware layer

Paper I [65] and Paper II [72]

NES interpreter layer

Paper III [68]

NES DOM API layer

Paper III [68]

NES connector

Paper III [68] and Paper IV [67]

FCS uniform connector

Paper IV and Paper V [70]

FCS State repository

Paper V [70]

FCS Event hub

Paper V [70]

NES - FCS code on demand

Paper 111, Paper IV and Paper VII

Overall style

Paper VII [69]

Healthcare use case

Paper VI [81]
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Chapter 6

Conclusions and
recommendations

The absence of interoperability is one of the critical challenges of IoT sys-
tems that prohibit the adoption and emergence of novel solutions that span
multiple application domains. It constrains the creative add-ons that can
potentially introduce new dimensions by forming mash-ups as in the Web
today. To address this challenge, the thesis has contributions in three main
levels of interoperability: syntactic (in Paper I and II), semantic (in Papers
III, IV and V) and system levels (in Paper VII). The contributions are or-
ganized in two categories. The first approach is using a middleware that is
discussed in Chapter 3 followed by an architectural style and enabling com-
ponents. These contributions and findings are summarized in the following
sections followed by the research works that will be continued in the future.

6.1 Summary

The first set of contributions address variations in protocol, platform and
data formats in IoT systems. In Paper I, LISA was proposed together with
a node oriented architecture. It has a core module that defines a custom
protocol to help organize the features of the system into application and
service nodes. These nodes are managed with a central manager node that
registers services and provide service information for application nodes. Pa-
per II extended LISA to port the middleware to a different operating system
that follows a different internal architecture. These contributions provide a
mechanism by which the underlying variations of platform and protocol are
abstracted and a uniform interface is exposed for applications. The main
motivation of the middleware was to integrate resource constrained nodes.
In this regard, the memory footprint, the latency and message header sizes
are analyzed to show the efficiency of LISA. The size of the middleware was
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22KB and 15KB in the first and second implementation respectively. In
addition, a message header of less than 10 bytes is used in both setup and
user messages. Considering the classification of resource constrained devices
in [21], it was shown that LISA can fit even in devices in the lower limits.
In addition, the node centered approach allowed LISA to uniquely iden-
tify services and applications as the central elements of communication in
IoT sub-networks. It follows a unique addressing technique that is tailored
for mobility support and routing of messages across protocol boundaries
through a federated organization of nodes.

Another major contribution of the thesis is the introduction of a prag-
matic IoT (PI) architectural style derived from a standalone cyber-physical
system. This allows the derivation of an architectural style that is specifi-
cally targeted for ToT systems. The derivation process focused on the Net-
worked embedded systems side and it is combined with REST style. The
Networked Embedded System side contains two of the major processing
elements that are closer to the physical world: the embedded component
running in the devices that interact with the object and another component
in the Fog layer. The internal organization of these components and special-
ized sub-components that enable the PI style are presented. One of these
sub-component of networked embedded system is an interpreter for a do-
main specific scripting language. This forms a code on demand style where
an executable code is sent from the Fog layer to re-configure the behaviour
of the perception layer devices. Paper III introduced the scripting language
and the organization of the resources of devices that are manipulated by
the script as Device Object Model. The concise syntax of the script and
the memory footprint of the interpreter are some of the evaluation points
used to analyze the contributions. The sample scripts presented had sizes
of less than 600 bytes and compared to a full firmware binary update, which
is typically few hundreds of KB, the script can be sent efficiently to client
devices.

Leveraging the proximity of the Fog computing layer, which is introduced
to address the challenges of resource constrained devices, the PI architec-
tural style addresses generic challenges of IoT systems. Some of the design
constraints in PI include a stateful Fog server that also replicates the state
information to neighboring gateways. Papers IV and V contribute in the im-
plementation of a server that follows the principles of PI. The server stores
the state information as virtual representation of a device and the physical
object it interacts with. The events of change of state of a virtual thing is
published to a central event hub that notify all subscribers as recommended
by the PI style. The performance of the server and its resource utilization
have been presented in Paper V. The use of ontology names to identify
the thing descriptions and scripts stored in this server forms the foundation
for semantic interoperability that can be extended to specific application do-
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mains. In addition, the uniform interfaces (connectors) used to interact with
its clients allow syntactic integration of multiple network protocols. Using
simulated requests, the server had a response time of 19.6ms and used 45MB
of memory to handle 129 virtual objects. Moreover, it had a REST service
for interacting with other gateways or the cloud. Similar analysis has shown
that it has an average response time of 54.6ms. Comparing the resources
of typical gateway devices, with hundreds of MB or even GB of memory,
and the size of typical sub-networks connected to a gateway, the server im-
plementation can efficiently provide the desired services. The replication of
the state information facilitates services for mobile devices and increase the
reliability of the overall system.

The analysis of the architectural style has followed a standard frame-
work to provide the major elements of the style categorized as processing
elements, connectors and data. It also provided the detailed topology and
constraints that restrict the arrangement of the components and their in-
ternal structure. In addition, it presented the advantages and drawbacks of
the PI style including the quality attributes promoted by it. The main tar-
get of the overall architectural style derivation is to provide interoperability
among systems that use the style. It also enables ease of communication
and deployment of IoT systems.

Lack of interoperability in IoT systems is prohibiting the next wave of
technology from unleashing its full potential. Standardization based efforts
for integration of IoT systems has so far led to creating additional silos. This
in turn led to the introduction of more standards that act like a bridge to
the different sides. In this regard, middleware or reference architecture con-
tributions also directly or indirectly set a standard that should be followed
by developers. In IoT systems, these variations range from the hardware
architecture and sensor or actuator interfacing standards to programming
languages and patterns. It also extends to the physical mode of commu-
nication, voltage level and frequency, data formats and the context of the
information exchanged. It is clear that the current state of IoT is shaping to
silos or intranet of domain specific vertical applications. The Web of Things
promises to provide the highest level of interoperability similar to the Web.
The contribution of the thesis can be summarized as forming interoperable
networked embedded systems that can be used to build the Web of Things.
It visualizes the full picture of the software system starting from those run-
ning in resource constrained embedded devices all the way to the cloud, but
focuses on the non-traditional Internet side which is more heterogeneous.
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6.2 Future works and recommendations

Most of the contributions in the thesis have been made available as open
source. This creates better chance of visibility by other interested researchers
and developers that can contribute to the repository. These open source
repositories include the middleware (LISA), the scripting language (DoS-IL)
and the interpreter, and the virtual things server (WoVTS). The develop-
ment of LISA has not been active for a while now. This is mainly due to the
start of similar middleware solutions (such as Iotivity) that are developed
by big industrial alliances. However, the scripting language and the virtual
things server are still under improvement and will also continue in the future
to enhance both solutions. In addition, there are many efforts by different
organizations and research groups that work towards the realization of the
Web of Things. In this regard, the author has been working with individuals
having similar interest, contributing open source code. One of these areas
is a different approach on the use of things description and the interaction
model of devices. This extends the work done in the WoVT server and
enhance the reach of the contributions made during the dissertation work.

As a final note, the involvement of big industry players in standards
organizations and also the contributions made by industrial alliances as
compared to open standards tend to incline to the interest of the involved
companies. Some of these contributed standards start from a clean slate
while others are more biased towards the products and services delivered by
specific companies. For IoT to deliver its promises, unbiased open standards
are crucial for ease of adoption. This leads to a more integrated IoT and a
global Web of Things.
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Chapter 7

Overview of Included
Publications

This chapter highlights the included original publications and the contribu-
tion of the author in each of these publications.

7.1 Paper I: LISA 2.0: Lightweight Internet of
Things Service Bus Architecture Using Node
Centric Networking

This publication introduces a lightweight middleware (LISA) that was de-
veloped to address the lack of interoperability in resource constrained IoT
devices. It also introduces a node-centric networking approach that works
with the middleware. This journal article tries to address the syntactic in-
teroperability challenge that exist when using multiple network protocols
and platforms in a single system. The middleware acts as a layer where
service and application nodes in a service oriented architecture (SOA) can
interact.

Author’s contribution: The author is the main person behind this pub-
lication, from the initial design and development to writing the majority of
the text. This publication is based on the previous work the author did as
a proof of concept to build a lightweight middleware. A proposal based on
this publication has been awarded an Academy of Finland project for two
years, through which some of the next publication have been done.
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7.2 Paper II: From Threads to Events: Adapting
a Lightweight Middleware for Contiki OS

This publication tries to address the syntactic interoperability challenge in
IoT focused on platform variations. Compared to the original version of
the middleware idea, this version works in Contiki operating system and
a different network stack. In addition, due to the availability of different
evaluation tools and simulators in Contiki platform, extensive evaluation of
implementation the specification is done in this work.

Author’s contribution: The author assisted and supervised the imple-
mentation of the work that extended his work in publication one. This has
been done as a masters thesis for the first author of the publication. In
addition, the author contributed in the overall development and vision of
the work, writing the publication and reviewing the results.

7.3 Paper I1I: DoS-IL: A Domain Specific Internet
of Things Language for Resource Constrained
Devices

This publication introduces an IoT domain specific scripting language that
can be used to enhance the interoperability of IoT systems. The scripting
language derives from an abstract representation of an IoT device that leads
to providing the basis for semantic interoperability of IoT where the ontology
in the domain can be reflected in the scripting language. The publication
introduces a lightweight interpreter that is embedded in resource constrained
devices that can execute the scripts that these devices fetch from the Fog
layer (gateway).

Author’s contribution: This publication is also the brain child of the
author from the concept, to implementation and writing. The author had
also the chance to present his work in the conference where it was published.
This publication has also served as a means to another funded proposal by
Academy of Finland and National Science Foundation.

7.4 Paper IV: Rethinking Things Fog Layer In-
terplay in IoT: a Mobile Code Approach

In this publication, the idea of providing semantic interoperability in a
generic way is further expanded from that of the third publication. The
focus is on how the perception layer (things) interact with the Fog layer.
In traditional approach, all the application logic is stored in the "Things’
or devices at the perception layer and this publication shows the roll of the
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Fog layer in the process of enabling a mobile code approach; that is to show
how the IoT domain scripts are stored and access at the Fog layer by the
devices in perception layer.

Author’s contribution: Similar to the previous publications, the author
is the main responsible for the concept, implementation and writing of the
publication. Another main component of the overall vision of the thesis
is included in this publication. It ties the previous work and subsequent
publications as a glue to form the bigger picture.

7.5 Paper V: Towards an interoperable Internet of
Things through a web of virtual things at the
Fog layer

In the process of providing a compelete means to provide interoperability for
IoT, this publication introduces a comprehensive server for the Fog layer that
creates and stores virtual things (a digital abstract counter part of devices in
the perception layer). It acts as a space where these virtual objects interact
by subscribing and publishing events of interest to the application. As in
the previous cases, this contribution is also generic in that it provides the
platform without any application domain specific focus (such as healthcare
or smart home).

Author’s contribution: The responsibility of the author in this publi-
cation is also from defining the concept and scope of the paper, to imple-
mentation and writing of the contents. It also defines the basis for the last
publication of the thesis.

7.6 Paper VI: Exploiting smart e-health gateways
at the edge of healthcare internet-of-things: A
fog computing approach

This paper is a healthcare specific impelementation of an IoT system which
utilizes a smart gateway at the Fog layer. It implements services that address
the requirements of a healthcare system to monitor patients. There are many
services that process the data collected and it also showcase the need for
interoperable IoT system. In addition to the need for interoperability, it also
serves to highlight the significance of architecture in building IoT systems
that are cable of interoperating with other IoT systems across application
domain boundary.

Author’s contribution: This journal article is an extension of the work
done previously by the author and other contributors during summer of 2014.
The main contribution of the author is specifically on the topics related to
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interoperability in the Smart gateways and the overall architecture of the
system. This publication serves only as a use case for the main topic covered
in the thesis.

7.7 Paper VII: A Pragmatic Architectural Style
for Interoperable and Scalable Internet of Things
Systems

This publication introduces an architectural style that is aggregated as best
practice from previous publication to build IoT systems thereby allowing
these 10T systems to finally collaborate in a standard way. It starts from
identifying the challenges in IoT systems that constrain the quality at-
tributes that must be satisfied via architecture. It then builds up starting
from a simple embedded system step by step to a global scale web of things
system. In doing so, it identifies and lists recommended architectral styles
for each of the components identified.

Author’s contribution: This last publication is like an umbrella to the
overall contributions made by the author in the thesis. It presents a novel
architectural style that helps in facilitating interoperability for IoT and the
author has been the main person responsible for the concept, implementation
and writing.
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