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Abstract

Abiotic ecosystem properties together with plant species interaction create dif-

ferences in structural and physiological traits among plant species. Certain plant

traits cause a spatial and temporal variation in canopy reflectance that enables

the differentiation of plant functional types, using earth observation data. How-

ever, it often remains unclear which traits drive the differences in reflectance

between plant functional types, since the spectral regions in which electromag-

netic radiation is influenced by certain plant traits are often overlapping. The

present study aims to assess the relative (statistical) contributions of plant traits

to the separability of plant functional groups using their reflectance. We apply

the radiative transfer model PROSAIL to simulate optical canopy reflectance of

38 herbaceous plant species based on field-measured traits such as leaf area

index, leaf inclination distribution, chlorophyll content, carotenoid content,

water and dry matter content. These traits of the selected grassland species were

measured in an outdoor plant experiment. The 38 species differed in growth

form and strategy types according to Grime0s CSR model and hence represented

a broad range of plant functioning. We determined the relative (statistical) con-

tribution of each plant trait for separating plant functional groups via reflec-

tance. Therein we used a separation into growth forms, that is graminoids and

herbs, and into CSR strategy types. Our results show that the relative contribu-

tion of plant traits to differentiate between the examined plant functional types

(PFT) groups using canopy reflectance depends on the PFT scheme applied.

Plant traits describing the canopy structure were more important in this regard

than leaf traits. Accordingly, leaf area index (LAI) and leaf inclination showed

consistently high importance for separating the examined PFT groups. This

indicates that the role of canopy structure for spectrally differentiating PFT

might have been underestimated.

Introduction

Structural, physiological and phenological characteristics of

a plant (hereafter traits) determine its performance in

terms of growth, reproduction and survival. Environmental

gradients of climate, topography or soil properties together

with species interaction drive the variation in traits among

plant species (Grime 1988; Wright et al. 2004; D�ıaz et al.,

2016). Species can thus be assigned to plant functional

types (PFT) that group species with common functional

traits (Lavorel et al. 1997).

Even coarse map products of PFT distributions can be

of high value as input for dynamic ecosystem models

(Smith et al. 2001; Sitch et al. 2003) and earth system

models (Poulter et al. 2011) as they provide a direct link

to physiological plant properties. The Group on Earth

Observation’s Biodiversity Observation Network (GEO

BON) regards functional types as essential for monitoring
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biodiversity from space (Paganini et al. 2016). Hyperspec-

tral earth observation (EO) data is ascribed a high poten-

tial to determine the spatial distribution of PFT and thus

ecosystem properties as multipleplant traits exhibit a

trackable this spectral response is driven by the relation-

ship of these plant traits and electromagnetic radiation,

i.e. absorption and scattering processes within the canopy.

Hyperspectral EO-sensors measure the reflected electro-

magnetic radiation and hence indirectly optically relevant

plant traits. On this basis, previous studies used hyper-

spectral EO-data and empirical models to produce con-

tinuous maps of the spatial distribution of PFT

(Schmidtlein et al. 2012; Feilhauer et al. 2016b). However,

it often remains unclear, why this actually works, i.e.

which traits help us to differentiate between PFT.

Several authors (Asner and Martin 2009; Ustin and

Gamon 2010; Jetz et al. 2016) list plant traits (e.g. pig-

ment, dry matter, nitrogen or phosphorus content),

which are supposedly important to optically differentiate

plant functioning. However, knowledge about the physical

contribution of these traits for differentiating PFT by

reflectance remains limited. One reason for this is that

most approaches using hyperspectral data are data-driven

and based on complex statistical algorithms to exhaust

the information content and to cope with the high data

dimensionality. However, the “black-box” nature of such

empirical approaches generally cannot show causal rela-

tionships between the remotely sensed signal, plant traits

and functioning.

Assessing the contribution of individual traits is chal-

lenging as the canopy reflectance represents the integrated

effects of various optical traits (Kokaly et al. 2009; Ollin-

ger 2011). Thus, the reflectance at a given wavelength is

driven by multiple plant traits. For instance, chlorophylls,

which are fundamental for light harvesting, are known to

absorb light in the spectral region between 400 and

700 nm. However, reflectance in these regions is also

influenced by other traits such as total leaf area, leaf ori-

entation or mesophyll structure (Jacquemoud et al. 2009).

Thus, the contribution of a trait to discriminate plant

functional types might be optically overshadowed by

other traits acting in the same spectral region. Accord-

ingly, relationships between multiple plant traits, plant

functioning and canopy reflectance might not be traceable

using statistical or machine learning models which do not

explicitly consider known interactions between individual

plant traits. In other words, a high importance of the

visual part of the spectrum for separating between two

plant functional types found by a data-driven model is

not automatically a consequence of differing plant pig-

ments compositions.

A possibility to improve our understanding of the spec-

tral response of different PFT is given by canopy radiative

transfer models. Canopy radiative transfer models inte-

grate established knowledge on how plant traits interact

with electromagnetic radiation into a process-based

model. They are hence suitable to describe in a mechanis-

tically oriented way how traits trigger reflectance. This

provides an alternative, disentangled view on the origins

of differences in reflectance between PFTs, with a better

chance to identify causal links between canopy reflectance,

plant traits and PFT.

The currently most established radiative transfer model

for vegetation canopies is PROSAIL (Jacquemoud et al.

2009), which couples two models addressing different ori-

gins of variability in reflectance: PROSPECT modelling

the optical properties of single leaf surfaces and 4SAIL

which accounts for variability in canopy reflectance

caused by differences in leaf orientation and foliage con-

tent of a plant canopy as well as its relation to sun and

sensor. PROSAIL can be used to simulate the hyperspec-

tral reflectance of plant canopies (e.g. as measured by an

airborne or spaceborne spectrometer) as a function of

defined plant traits. The incorporated plant traits are

restricted to those, which could be implemented with

acceptable accuracy during the development of 4SAIL and

PROSPECT and are hence likely to be the optically most

relevant traits.

The incorporated plant traits that can be linked to

plant functioning include two traits characterizing the

canopy architecture. First, the leaf area index (LAI) relat-

ing leaf area to the corresponding surface area on the

ground, which is a proxy for net primary productivity

(Bondeau et al. 1999; Asner et al. 2003). Second, the vari-

ation of leaf angles, characterized by the leaf inclination

distribution function (LIDF), controlling inter alia the

light harvesting efficiency, leaf temperature and transpira-

tion (Niinemets and Valladares 2004; Niinemets 2010).

The other traits define foliage properties, such as pig-

ments for photosynthesis and photoprotection, i.e.

chlorophyll a+b (Cab), carotenoid content (Car) and

brown pigment content (Cbrown) which relates to tan-

nins and woody debris. Dry matter content per area

(Cm) aggregates cellulose, lignin, and other structural car-

bohydrates and indicates leaf resource investments and

tissue properties. Dry matter content is a frequently used

proxy to characterize plant economics and strategies

(Grime et al. 1997; Wright et al. 2004). Water content

(Cw) per leaf area or equivalent water thickness can indi-

cate drought resistance and flammability (Lawlor and

Cornic 2002; Zarco-Tejada et al. 2003). The thickness of

the spongy mesophyll is characterized by a mesophyll

structure coefficient (N).

The knowledge on the optical properties of these traits

as formulated within PROSAIL thus allows us to link

plant canopy reflectance with plant traits and functioning

6 ª 2018 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd.

Plant Functional Types and Reflectance T. Kattenborn et al.



in order to address the question: Which traits mechanisti-

cally drive the difference in canopy reflectance among

PFT (we used types related to growth forms and plant

strategies)? That is, what is the relative (statistical) contri-

bution of plant traits included in PROSAIL for differenti-

ating these PFT using hyperspectral data?

Materials and Methods

The present study assesses how canopy structural and leaf

traits affect the differentiation of herbaceous PFT using

canopy reflectance. This reflectance was simulated in

order to understand in depth how traits contributed to

this reflectance. The simulation was accomplished using

the radiative transfer model PROSAIL parametrized, using

trait data acquired from outdoor cultivated plants.

Selection and cultivation of PFT

The trait data used to parameterize our models were

acquired within an outdoor cultivation in the botanical

garden of the Karlsruhe Institute of Technology (KIT). 38

herbaceous species belonging to different PFT were culti-

vated. As one scheme for allocating the PFT we used the

CSR scheme (Grime 1988), which is one of the most

established concepts of plant grouping by function

(Hodgson et al. 1999; Pierce et al. 2017). The CSR-model

posits the existence of three major dimensions in plant

strategies, namely competitiveness (C; characterized by

traits that facilitate outcompeting neighbors), stress-toler-

ance (S; characterized by traits supporting metabolism in

harsh abiotic conditions) and ruderality (R; traits facilitat-

ing regeneration of the population in habitats character-

ized by frequent destructive disturbance events). The CSR

model suggests that plants evolve strategies that optimize

allocation between resource capture, resource conserva-

tion, space occupancy, longevity and dispersal (Grime

et al. 1997). Our selection of species comprised competi-

tive, stress tolerant, ruderal and intermediate species of

both grasses and herbs that are indigenous to central Eur-

ope. Competitive species (C) are typically characterized

by higher canopies and large leaves to pre-empt light

resources. Stress tolerant (S) species often feature lower

canopy heights and fewer but more robust leaves with

low pigment concentrations. Ruderals (R) are fast grow-

ing species with a short lifespan and thus lower persistent

resource investments, i.e. in dry matter (Grime and Pierce

2012). Intermediate species (CSR) have no affinity to the

aforementioned strategies and hence feature intermediate

trait expressions. In addition to the CSR scheme we clas-

sified the species into growth forms, i.e. graminoids (g)

and forbs (f). Figure 1 displays the described PFT scheme

and the respective species of the experiment.

The discernibility of PFT was hence assessed for three

PFT schemes groupings (compare Fig. 1):

(1) growth forms, i.e. forbs and graminoids (f,g)

(2) CSR strategies among graminoids, i.e. competitive,

stress tolerant, ruderal and intermediate graminoids

(gC, gS, gR, gCSR)

(3) CSR strategies among forbs, i.e. competitive, stress

tolerant, ruderal and intermediate forbs (fC, fS, fR,

fCSR).

Propagation of the seedlings was performed indoor in

March. When the plants reached a sufficient size, they

were moved outdoor for a week of acclimatization. After-

wards they were planted out in four repetitions in sepa-

rate pots with a size of 0.4 m * 0.4 m and 30 l volume

filled with a standardized substrate. All pots were fertil-

ized, weeded and regularly irrigated.

Acquisition of trait data

To reproduce a representative temporal variability the

traits of all species were repeatedly measured on a weekly

basis from May to November following a standardized

procedure. Whenever leaves had to be sampled, a set of

sunlit leaves which best corresponded to the overall state

of the plant was selected. The acquisition of leaf samples

and leaf spectra was restricted to leaflets and thus did not

consider petioles or rachis. The traits and their retrieval

are listed in Table 1.

To measure dry matter content per area and water con-

tent per area approximately 10 g of whole leaves without

twig were plucked. To limit the destructive impact, these

measurements were performed on a species rather than a

pot basis, by extracting leaf material equally from the four

repetitions. The extracted leaf samples were immediately

weighted on site after extraction and sealed in plastic bags

containing a water saturated tissue. Within 24 h, the total

leaf area of the extracted samples was derived using a

flatbed scanner (Canon LiDE 70). Following the protocol

by Perez-Harguindeguy et al. 2013, the samples were oven-

dried at 70°C for at least 72 h and subsequently weighted

to derive the average leaf dry mass per area [g/cm²]. Water

content [g/cm²] was derived by subtracting Leaf dry mass

per area from Leaf fresh mass per area.

Chlorophyll content, carotenoid content, mesophyll

structure and brown pigment content were derived

using an inversion of leaf spectra and the PROSPECT-D

model (F�eret et al. 2017). Traditional measurement

approaches for chlorophyll and carotenoid contents,

such as the spectrophotometer method by Lichtenthaler

(1987), were not applicable considering the high number

of measurements per week (~500) and limited resources.

Leaf spectra were acquired using the ASD FieldSpec III

(ASD, Inc. Boulder, CO, USA) equipped with a plant
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probe and a leaf clip. Five measurements of independent

leaves were recorded for each individual pot and thus

20 measurements per species. A special treatment was

applied for species with leaves not wide enough for the

opening of the plant probe (2 cm diameter). The leaves

were seamlessly and without overlapping placed side by

side on an adhesive tape, covered with a microscope

slide and subsequently scanned. The inversion of PRO-

SPECT-D was performed using wavelet transformations

and a look-up-table approach (Blackburn 2007; Black-

burn and Ferwerda2008; Cheng et al. 2011; Ali et al.

2015; Li et al. 2018). Details on the inversion and its

validation are given in Appendix A.

Leaf inclination distributions were derived using

leveled digital photographs. For each species not less than

50 Individual leaf angles were measured using leaves ori-

ented parallel to the viewing direction using the public

domain processing software ImageJ (http://rsbweb.nih.

gov/ij/). For more details on the procedure see Ryu et al.

(2010). As this procedure is very time- and labor-con-

suming the leaf inclination distribution was only mea-

sured once (based on photographs of 2–3 different dates).

Leaf Area index was measured using an Accu-PAR LP-

80 ceptometer and an external reference sensor to account

for the current incoming irradiance. In order to ensure

that the LAI measurements are performed at ground level

the measurements were taken via 2 lateral holes, which

were put in each pot. For each pot 18 measurements were

recorded and subsequently averaged.

Trait data which correspond to the period of senes-

cence were subsequently excluded in the present study. A

statistical summary of the sampled trait data is available

in Appendix B.

To assess the contribution of each trait to differentiate

PFT under possibly varying environmental conditions we

aimed at a good coverage of possible combinations of trait

expressions. To achieve this, we inflated the number of

weekly trait expressions by picking random values around a

smoothed time series of measurements. The generated val-

ues for the different traits were then combined into 1000

random trait combinations per PFT that entered the simu-

lation of spectra. These random trait combinations are

likely to represent the full range of possible statuses within

the examined PFT across a full growing season. The details

of these pre-processing steps are given in Appendix C.

Simulation of species specific reflectance

The resulting combinations of trait expressions were used

as input for PROSAIL 5B (Verhoef et al. 2007; Feret et al.

2008) to simulate canopy spectra in the wavelength range

of 400–2500 nm. In order to assess the effect of a given

trait we compared the spectra calculated based on realistic

trait expressions with spectra calculated based on random

trait expressions sampled from the total ranges of values

covered by all species.

During all PROSAIL simulations the soil brightness

parameter (psoil), which determines the moisture content

Figure 1. PFT scheme and respective species cultivated to derive the trait data. PFT, plant functional types.
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of the soil, was kept constant at 0.5. The sun angle (tts)

was set to 35° and the observer angle (tto) was set to

nadir (0°), resulting in a negligible effect of the hotspot

size parameter, which was therefore kept constant at 0.01.

In order to comply with the quality of spectral acquisi-

tions under operational conditions power law noise (1/f

noise) was added (West and Shlesinger 1990) to simulate

radiometric uncertainties caused by effects such as band

anomalies, calibration errors or residuals of atmospheric

and topographic correction algorithms. The randomly

generated noise was added with a magnitude (0.2–2%
reflectance, details see Appendix D), which corresponds

to the standard radiometric uncertainty that is assumed

for the hyperspectral satellite EnMAP (Bachmann et al.

2015). This ensures a more realistic view on a spectral

separability of PFT as compared to perfectly clear PRO-

SAIL spectra, which are likely to be not fully representa-

tive for operational data acquisitions. In view of airborne

and spaceborne remote sensing data bands located in

water absorption regions were removed prior further

analysis (1400–1500, 1880–2000, 2450–2500 nm).

Comparing the contribution of plant traits
on the discernability of PFT using MRPP

The (statistical) contribution of each considered plant trait

for the separation of PFT (according to the three exam-

ined PFT schemes) was compared on the basis of the pre-

processed in-situ trait data as well as the simulated plant

canopy spectra. By this comparison it was possible to

assess to what extent the discernibility provided by a plant

trait measured in situ is actually preserved in the spectral

reflectance of a plant canopy. For both levels, i.e. in situ

traits and canopy spectra, the relative contribution of each

plant trait was measured using a Multi Response Permuta-

tion Procedure (MRPP, Mielke 1991; McCune and Grace

2002). The latter was chosen for its robustness and parsi-

mony. The MRPP is a multivariate non-parametric test of

whether there is a significant difference between groups.

The MRPP provides a change-corrected group agreement

(A) and a significance (P). Similar to a coefficient of

determination in a linear model, A ranges from 0 to 1 and

maximizes if the discrimination between groups is perfect.

Accordingly, a hypothetical A value of 1 would imply that

the expression of a trait differs completely among PFT,

whereas an A value of 0 implies that the trait does not dif-

fer between PFT. For the analysis based on in-situ mea-

sured traits, the MRPP was directly applied. That is, we

tested for each plant trait its differences among the classes

of a PFT scheme (e.g. differences in LAI between C, S, R

and CSR forbs).

For the analysis of the canopy reflectance level, A was

calculated for each band individually using the previ-

ously described simulated reflectances derived from

PROSAIL. Hence, for each simulated wavelength we

conducted two MRPP analyses to test for differences of

the reflectances between the PFT groups of a scheme.

The first MRPP was conducted based on canopy reflec-

tances that were simulated, using the in situ measured

traits of each species of the to be classified PFT groups

(true variation). In contrast, in the second MRPP we

replaced the in situ measurements of one individual trait

(e.g. LAI) with random values from the full range of

measurements taken across all examined species (ran-

domized trait expression). The values of A for a given

wavelength derived from the second MRPP applied to

the data set with randomized trait expressions were then

subtracted from A values obtained from the first MRPP

based on the true variation of all traits (ΔA, compare

Fig. 2). Resulting positive values for ΔA reveal that the

optical discrimination among PFT is enhanced if the

variance of that trait (e.g. LAI) was included in the sim-

ulation of the canopy spectra. This procedure was

repeated for each individual trait and wavelength. This

way the band-wise relative contribution of each trait to

separate PFT was determined.

As hyperspectral data contain spectrally continuous

information across the covered wavelength regions, rele-

vant information may be inherited by the reflectance of

individual bands as well as by the shape of a spectrum.

The MRPP-based analysis of the canopy spectra was

hence not only applied on the reflectance values for each

Table 1. Overview of the traits measured in situ and the method used for their retrieval.

Trait Unit Abbrev. Method

Chlorophyll content lg/cm² Cab Inversion of leaf spectra (PROSPECT-D)

Carotenoid content lg/cm² Car Inversion of leaf spectra (PROSPECT-D)

Leaf Area Index m²/m² LAI Leaf ceptometer (AccuPAR LP-80)

Dry matter content g/cm² Cm Dry weight/total leaf area

Water content g/cm² Cw (Fresh weight – Dry weight)/total leaf area

Leaf inclination distribution degree LIDF Horizontal photographs (Ryu et al. 2010)

Brown pigment content – Cbrown Inversion of leaf spectra (PROSPECT-D)

Mesophyll structure – N Inversion of leaf spectra (PROSPECT-D)
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band, but also to the first and second derivative thereof

as these depict the shape of a spectrum.

Comparing the contribution of plant traits
on the spectral discernability of PFT using
machine learning

An aspect which is not fully considered in the band-wise

MRPP-based analysis of the simulated canopy spectra are

potential synergies among multiple spectral features. Mul-

tiple bands in combination can thus potentially carry

more information than individual bands. Accordingly, we

complemented the MRPP analysis with an additional

analysis based on a machine learning algorithm to assess

whether the relative contribution of traits for the spectral

differentiation of PFT differs if the information content

of the whole spectrum is considered. This analysis was

performed using the partial least square (PLS) algorithm,

which is commonly used in Hyperspectral data analysis.

For parameter optimization, the PLS models were trained

in a model tuning environment (R-package‘caret0) using

the scaled and centered simulated reflectances and a 5-

fold cross validation. Analogously to the MRPP-based

analysis a PLS model was created for the reflectance data-

set with the variation of all traits and one-by-one, with

randomized traits. The contribution of each trait to dis-

cern the respective PFT scheme was determined by sub-

tracting the Kappa value (K) based on the data set with a

randomized trait from the Kappa obtained from the

original variation of traits (ΔK, compare Fig. 2). In order

to prevent a stochastic bias this procedure was performed

for 100 iterations. In each iteration, the input traits (true

and randomized variation of traits) were again sampled

prior to the simulation of the spectra. The analysis was

also carried out using a random forest and a support vec-

tor machines algorithm which did not result in notable

differences (results not shown).

Results

Relative contribution of in-situ measured
traits

For the separation of growth forms (graminoids vs. forbs)

based on in-situ traits, leaf inclination was by far the most

important trait, followed by carotenoid and brown pig-

ment content (Fig. 3A). Comparably poor differentiation

was provided by chlorophyll content, LAI, mesophyll struc-

ture, dry matter and water content. Regarding the differen-

tiation among graminoid strategies, the traits showed a

more diverse contribution, where leaf chlorophyll content,

carotenoid content, mesophyll structure coefficient and

LAI had a similarly high contribution (Fig. 3B). The by far

lowest contribution was given by water content. For the

separation of forb strategies the contribution of traits is rel-

atively balanced as water content and leaf inclination had

the highest contribution, whereas all other traits show a

similar modest contribution (Fig. 3C).

38 species planted in outdoor experiment
8 in-situ measured traits

Research objec�ve
Assess the contribu�on of traits to discern PFT via A) canopy reflectance and compare this 
contribu�on to the discernibility by B) actual trait values.
The PFT to be discerned:
• Forbs vs. Graminoids (growth forms)
• Compe�tors vs. Ruderals vs. Stress Tolerants (plant strategies), separately for forbs and 

graminoids

A B

MRPP analysis applied to each 
measured trait to test for its 
contribu�on to the discernability 
between PFT classes

Simulate canopy reflectance using
1. all measured traits (true trait expressions)
2. all measured traits but replace the expressions of 

one by one trait with random values

B) Rel. Contribu�on of plant 
traits to discern PFT based on 
processed in-situ trait traits

A) Rel. contribu�on of plant 
traits to discern PFT based on 
simulated canopy spectra

Measure contribu�on of individual traits to the 
discernabilty of PFT via reflectance using MRPP 

analysis and PLSR classifica�on:
Contribu�on per trait = discernability with true trait 

expression – discernability with random trait expression

Figure 2. Simplified workflow of this study.
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Contribution of traits to the differences
between PFT canopy reflectance

Overall, the relative contribution of plant traits to the dif-

ferentiation of PFT using canopy reflectance differed

notably among the PFT groupings, i.e. the discernibility

of growth forms, graminoids strategies and forb strategies.

For separating growth forms (Fig. 4), leaf inclination had

by far the highest contribution, especially in the red-edge

region, followed by LAI and a notably lower contribution

of dry matter and chlorophyll content and LAI. Very low

contributions for the spectral differentiation between gra-

minoids and herbs were found for mesophyll structure,

carotenoid, water and brown pigment content. Relative to

the other traits, LAI showed a clearly increased contribu-

tion compared to the analysis of the in-situ measured

trait data (Fig. 3A). Carotenoid content, brown pigment

content and mesophyll structure showed higher contribu-

tions than LAI when considering in situ traits and con-

trarily a lower contribution than LAI for a discrimination

when using canopy reflectance.

The spectral discrimination between graminoid strate-

gies (Fig. 5) was highest for LAI in the VIS and SWIR

followed by dry matter and water content and leaf incli-

nation in the SWIR. Moderate to low ΔA were found for

mesophyll structure, brown pigment, chlorophyll content,

and carotenoid content.

The spectral separation among forb strategies was dom-

inated by water content and LAI in the NIR and SWIR

region. Moderate contribution could be observed by dry

matter content and leaf inclination chlorophyll content.

Brown pigment content, mesophyll structure and carote-

noid content did not substantially contribute to separate

forb strategies.

The results based on the machine learning algorithm

PLS are shown in Figure 7. Overall the observed relative

contribution shows a high correspondence to the results

derived from the MRPP-based analysis.

In summary the results of the MRPP (based on indi-

vidual bands) and the PLS analysis (based on multiple

bands) show that, in contrast to the discrimination by

in situ trait data (Fig. 3) carotenoid content, brown pig-

ment content and mesophyll thickness did not contribute

much to the reflectance-based differentiation of PFT

(Figs. 4–7). The variation in chlorophyll content only

resulted in moderate contributions. Dry matter content

and water content generally showed a moderate to high

contribution for the separation of the considered PFT.

The variation of either leaf inclination or leaf area index,

which both describe aspects of canopy structure, con-

tributed a large part for the spectral differentiation of the

considered PFT schemes.

Discussion

As expected, different plant functions led to different trait

expressions which in turn resulted in different optical

properties. Depending on the PFT scheme at hand, i.e.

the differentiation of growth forms, forb strategies or gra-

minoid strategies, the relative discriminative power of the

traits changed considerably. Yet, we could observe some

clear trends:

Our results show that the contribution of in situ leaf

traits to the differentiation of PFT does not necessarily

correspond to their discriminative power if it comes to

differentiating herbaceous PFT through canopy reflec-

tance, which indicates that not all variation in plant traits

can be retrieved using canopy reflectance. Despite the

comparatively high contribution of in situ carotenoid

content for discriminating plant strategies and growth

forms (Fig. 3), the contribution observed at the canopy

reflectance level was comparably low (Figs. 4–7).

Figure 3. Relative contribution A of in situ traits to separate/classify three PFT schemes, i.e. (A) growth forms, (B) graminoid CSR-strategies and

(C) forbs CSR-strategies. A is the chance-corrected within group agreement as measured by a multi-response permutation procedure (MRPP).
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Mesophyll structure, which showed a comparably high

contribution to separate plant strategies on the in-situ

level (Fig. 3B and C), showed only a negligible discrimi-

native power at the spectral level (Figs. 4–7). The only

leaf traits which markedly contributed to the spectral sep-

aration of the PFT were water and dry matter content.

This is well in line with previous studies, which evidenced

that water and dry matter content or its inverse SLA is

strongly correlated with plant functioning and strategies

(Grime et al. 1997; Weiher et al. 1999; Wright et al.

2004).

Traits describing the canopy structure, i.e. LAI and leaf

inclination, showed for both the in-situ traits and the

simulated canopy spectra a strong discriminative power.

This is consistent with established knowledge in vegeta-

tion ecology regarding linkages between canopy architec-

ture and plant functioning (Givnish 1984; Craine et al.

2001; Poorter et al. 2006; Niinemets 2010). For the simu-

lated canopy spectra, the contribution of canopy structure

was more pronounced, while leaf traits (e.g. pigments)

were less important than expected based on earlier studies

from the remote sensing community. For instance, Jetz

et al. 2016 list six ‘key functional plant traits’ for remote

sensing of functional biodiversity, of which all are leaf

traits. Similarly, Asner and Martin (2009) state that the

optical reflectance of plant canopies is primarily driven by

the leaf biochemistry and propose to utilize EO-data and

spectrally derived ‘chemical fingerprints’ to map plant

Figure 4. Relative contribution (ΔA) of plant traits to the band-wise separation of growth forms. For guidance a common vegetation spectrum

was added to each panel (dashed line).
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functioning. The latter study is referring to tropical forest

ecosystems and may hence not be directly comparable to

our results obtained with herbaceous species. However, it

could be assumed that within forest ecosystems, structural

traits may play an even more pronounced role as the

structural diversity of forests canopies is higher than the

one of herbaceous plant canopies. One key-problem of

earlier studies conducted in forests may be that accurately

measuring structural traits in the field is very challenging

and hence earlier studies might have had limited capabili-

ties to adequately disentangle structural and biochemical

traits in their analysis (Homolov�a et al. 2013). Our results

suggest that for spectrally differentiating PFT the role of

traits describing the canopy architecture might be

underestimated in the community. The overall lower con-

tribution of leaf traits at the canopy reflectance level can

to a large extent be explained by the confounding effects

of canopy architecture (LAI, leaf inclination) affecting the

same wavelength regions. This is in line with Knyazikhin

et al. (2013), who physically deduce that canopy structure

largely affects the retrievability of leaf properties. These

authors evinced that canopy structure is the dominant

determinant of the plant spectral response. A direct mea-

surement of absorption through leaf constitutes by means

of canopy reflectance is elementarily hampered as a frac-

tion of the non-reflected light is scattered as a function of

various canopy structural attributes which hence blur

these absorption processes (Curran 1989).

Figure 5. Relative contribution (ΔA) of plant traits to the bandwise separation of CSR strategies among graminoids. For guidance a common

vegetation spectrum was added to each panel (dashed line).
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On the other hand, processes taking place at the leaf

level, such as photosynthesis or photoprotection are not

independent from the leaf arrangement but are tailored

concertedly to the overall structure of the canopy (Niine-

mets 2010). For instance, investments in pigment contents

per leaf area are adjusted to the exposure of foliage,

which is inter alia governed by the total amount of foliage

(LAI) and its inclination (leaf inclination distribution)

directed to the beam path of the solar radiation. Accord-

ingly, plant functional gradients of canopy physiology

such as fraction of absorbed photosynthetic active radia-

tion (fAPAR) or net primary productivity cannot solely

be explained by leaf properties but strongly depend on

canopy architecture (Middleton et al. 2009; Huemmrich

2013).

In view of our findings, future studies should include

the linkage between plant functioning and structural

canopy variables. For example, as LAI is a dimension-

less quantity it complies with the spatial constraints of

EO-data and can be mapped across a range of spatial

scales with relatively high accuracy (Garrigues et al.

2008; Zheng and Moskal 2009). The correlation of LAI

with plant strategies has already been indicated (Katten-

born et al. 2017) and LAI was observed to closely cor-

relate to primary production and thus strongly relates

to nutrient supply (Asner et al. 2003). With respect to

Figure 6. Relative contribution (ΔA) of plant traits to the bandwise separation of CSR strategies among forbs. For guidance a common

vegetation spectrum was added to each panel (dashed line).
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growth forms such as shrubs and trees the crown shape

and foliage clumping, which describes the aggregation

of foliage within a canopy, might be important addi-

tional structural canopy properties relating to plant

functioning (Niinemets 2010; Ollinger 2011). The pre-

sent study did not account for canopy structural attri-

butes such crown shape or arrangement, since

PROSAIL assumes a turbid medium and thus homoge-

neous vegetation canopies. These conditions match

fairly well with herbaceous canopies but do not apply

for complex forests canopies. Yet, the presented

approach can also be transferred to radiative transfer

models adapted to forest canopies; e.g. INFORM (Atz-

berger 2000) which is a modification of PROSAIL and

includes further structural traits such as stem density,

crown width or canopy height; or FLIGHT (North

1996) which is a more complex 3D radiative transfer

model based on Monte Carlo ray tracing.

The relative contribution of the traits derived from

the machine learning procedure (PLS) showed an over-

all high correspondence to the results of the MRPP-

based procedure. Minor divergences exist as the MRPP

analysis is based on single bands, whereas the PLS

approach accounts for interactions among bands, which

is more likely to compensate for effects as scattering by

the canopy structure or noise. The advantage of the

MRPP-based analysis is an increased parsimony and the

opportunity to identify the contributing spectral features

across the reflectance spectrum. As such the MRPP-

based analysis of the individual bands for separating

PFTs showed that all three spectral regions, i.e. VIS,

NIR and SWIR contribute for the differentiation of

PFT (Figs. 4–6). Although reflectance in the VIS region

is to a large extent shaped by the absorption properties

of leaf pigments (Ustin and Gamon 2010) we found

that a high proportion of the class separability in the

VIS region can be attributed to the canopy structural

traits LAI and LIDF (Figs. 4–6). This emphasizes that

the variation at certain wavelengths cannot be explicitly

linked to single traits, since the optical reflectance of

plant canopies is a product of both biochemical and

structural traits. Thus, caution should be used when

interpreting trait–reflectance relationship, such as feature

or band selection metrics.

Essential information is often confined in narrow spec-

tral segments across the simulated wavelength range

(Figs. 4–6, 400–2500 nm). The jagged pattern of the

bandwise relative contribution (ΔA) varies greatly accord-

ing to the PFT scheme at hand and shows several local

maxima across the spectrum. These findings indicate that

optical EO-sensors should ideally meet two criteria for

mapping plant functioning; firstly, cover the VIS, NIR

and SWIR regions and secondly, feature a high spectral

resolution. Future hyperspectral missions such as Hypsiri

(Roberts et al. 2012) and EnMAP (Stuffler et al. 2007)

meet these criteria and are therefore expected to be of

high value for mapping plant functioning.

The fact that canopy architecture features a high con-

tribution to differentiate plant functioning emphasizes the

potential of multi-angular remote sensing, which

enhances the retrieval of canopy structural characteristics

(Widlowski et al. 2004). Similarly, the results encourage a

combination of optical with LIDAR or RADAR (e.g. Sen-

tinel-1) data, as the latter two are suitable to retrieve

structural information of plant canopies (Disney et al.

2006; Latifi et al. 2012).

Our results largely depend on the functionality and

validity of PROSAIL. The latter is a simplification of

Figure 7. Relative contribution (ΔKappa) of plant traits to spectrally separate the three PFT schemes, i.e. (A) growth forms, (B) graminoid CSR-

strategies and (C) forbs CSR-strategies based on PLS models.
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radiative transfers in natural plant canopies and does not

account for all optically relevant plant properties, such as

flowers, which also have a substantial influence on the on

canopy reflectance (Feilhauer et al. 2016a). Some parame-

ters used in PROSAIL serve as proxies for traits with similar

optical response. For instance, dry matter content repre-

sents constituents as starch, sugar, cellulose or lignin,

whereas chlorophyll content combines chlorophyll a+b.
Yet, as these traits have very similar absorption features, it

may be unlikely that a separation of these aggregated traits

enhances the optical separation of PFT.

The leaf angle distribution was only assessed once, as the

applied procedure using digital photographs and manual

delineation of leaf angles was time- and labor-consuming.

A recently published methodology presented by M€uller-

Linow et al. (2015) allows for a more efficient estimation of

leaf angle distributions using a semi-automatic workflow

based on photogammetric 3D reconstruction and close-

range RGB images and could be applied in future studies.

The direct transferability of the results to other PFT

schemes or ecosystems may be limited. Yet, the presented

workflow can be transferred and as such might present a

useful blueprint for assessing the relevant optical traits of

other PFT schemes. The presented methodology can also

be transferred to assess relationships of the electromag-

netic spectrum and plant traits which are not strictly

related to PFT, but for instance to assess the relevance of

traits to map plant species or essential biodiversity vari-

ables (Pettorelli et al. 2016).

Conclusion and Outlook

So what makes the difference between the canopy reflec-

tance of growth forms and plant strategies? The contribu-

tion of a trait to spectrally separate PFT does not

necessarily correspond to the role that a trait could play

to differentiate PFT in the field. The reason is that canopy

reflectance is a complex response to multiple traits and

these responses are not easy to disentangle with statistical

methods. Instead, radiative transfer models (RTM) pro-

vide a possibility to untangle the reflectance of a PFT and

trace it back to individual traits. RTM provide a transfer-

able scheme to assess the mechanistic interrelationships

between optically relevant plant functional traits and their

spectral response. Clearly, the relative contributions of the

traits vary by PFT scheme. However, canopy structural

traits contribute a large part when it comes to spectrally

separating the herbaceous PFT addressed in our study.

This indicates that the role of canopy structure might

have been undervalued when differentiating PFT using

canopy reflectance. It can be assumed that in more com-

plex canopies additional structural traits, such as crown

shape or leaf clumping, further contribute to the

mappability of plant functioning. A better understanding

of these interrelationships requires a systematic assess-

ment of optically relevant plant functional traits across

environmental gradients and taxonomic lines.

Our results indicate that for mapping plant functioning

an optical sensor ideally covers the VIS, NIR and SWIR

regions having relatively narrow bands (hyperspectral).

Refining our knowledge about plant functioning and its

optical properties can improve our capabilities to config-

ure future EO-systems and harness EO-data.
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