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Abstract

Many surface reconstruction algorithms have been developed to process point data orig-

inating from laser scans. Because laser scanning is a very expensive technique and not

available to everyone, 3D reconstruction from images (using, e.g., multi-view stereo) is a

promising alternative. In recent years a lot of progress has been made in the computer

vision domain and nowadays algorithms are capable of reconstructing large 3D scenes

from consumer photographs. Whereas laser scans are very controlled and typically only

a few scans are taken, images may be subject to more uncontrolled variations. Standard

multi-view stereo algorithms give rise to multi-scale data points due to different cam-

era resolutions, focal lengths, or various distances to the object. When reconstructing

a surface from this data, the multi-scale property has to be taken into account because

the assumption that the points are samples from the true surface might be violated.

This thesis presents two surface reconstruction algorithms that take resolution and

scale differences into account. In the first approach we model the uncertainty of each

sample point according to its footprint, the surface area that was taken into account

during multi-view stereo. With an adaptive volumetric resolution, also steered by the

footprints of the sample points, we achieve detailed reconstructions even for large-scale

scenes. Then, a general wavelet-based surface reconstruction framework is presented.

The multi-scale sample points are characterized by a convolution kernel and the points

are fused in frequency space while preserving locality. We suggest a specific implemen-

tation for 2.5D surfaces that incorporates our theoretic findings about sample points

originating from multi-view stereo and shows promising results on real-world data sets.

The other part of the thesis analyzes the scale characteristics of patch-based depth re-

construction as used in many (multi-view) stereo techniques. It is driven by the question

how the reconstruction preserves surface details or high frequencies. We introduce an

intuitive model for the reconstruction process, prove that it yields a linear system and

determine the modulation transfer function. This allows us to predict the amplitude loss

of high frequencies in connection with the used patch-size and the internal and external

camera parameters. Experiments on synthetic and real-world data demonstrate the ac-

iii



curacy of our model but also show the limitations. Finally, we propose a generalization

of the model allowing for weighted patch fitting. The reconstructed points can then be

described by a convolution of the original surface and we show how weighting the pixels

during photo-consistency optimization affects the smoothing kernel. In this way we are

able to connect a standard notion of smoothing to multi-view stereo reconstruction.

In summary, this thesis provides a profound analysis of patch-based (multi-view)

stereo reconstruction and introduces new concepts for surface reconstruction from the

resulting multi-scale sample points.
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Zusammenfassung

Viele Oberflächenrekonstruktions-Algorithmen wurden für Punktdaten entwickelt, die

bei der Verwendung von Laserscannern entstehen. Da die Technik des Laserscannings

sehr teuer und nicht für jedermann verfügbar ist, erscheint die 3D-Rekonstruktion aus

Bildern als eine vielversprechende Alternative. In den letzten Jahren konnten auf dem

Gebiet der Computer Vision viele Fortschritte erzielt werden und heutige Algorithmen

sind in der Lage, große Szenen aus Fotos von Normalverbrauchern zu rekonstruieren.

Während Laserscans sehr gezielt durchgeführt werden und typischerweise nur wenige

Aufnahmen notwendig sind, können Bilder sehr viel unterschiedlicher sein. Verschiede-

ne Bildauflösungen, Brennweiten oder Entfernungen zum Objekt führen mit üblichen

Multi-view Stereo Methoden zu Punkten mit multiplen Skalen. Ein Algorithmus zur

Oberflächenrekonstruktion aus diesen Daten sollte die verschiedenen Skalen berück-

sichtigen, denn die übliche Annahme, dass die Punkte von der unbekannten Oberfläche

gesampelt sind, könnte verletzt sein.

In dieser Arbeit werden zwei neue Algorithmen zur Oberflächenrekonstruktion vor-

gestellt, die Unterschiede in der Auflösung und verschiedene Skalen mit einbeziehen.

Der erste Ansatz modelliert die Ungenauigkeit der Punkte in Abhängigkeit von ihrem

Footprint, das ist der Teil der Oberfläche der zur Rekonstruktion dieses Punktes durch

Multi-view Stereo in Betracht gezogen wurde. Durch eine adaptive räumliche Auflösung,

die ebenfalls durch den Footprint gesteuert wird, erzielen wir auch für große Szenen

detaillierte Rekonstruktionen. Als Zweites wird ein Wavelet-basiertes Framework zur

Oberflächenrekonstruktion vorgestellt. Die Punkte auf multiplen Skalen werden durch

Faltungskernel charakterisiert und im Frequenzraum vereinigt, wobei die Lokalität be-

achtet wird. Wir stellen eine konkrete Implementierung für 2,5D Oberflächen vor, die

unsere theoretischen Erkenntnisse über Multi-view Stereo Punkte einbezieht und viel-

versprechende Ergebnisse auf realen Daten erzielt.

Der andere Teil dieser Dissertation analysiert die Skalen-Charakteristik von Patch-

basierter Tiefenrekonstruktion, wie sie von Multi-view Stereo Verfahren verwendet wird.

Wir gehen dabei der Frage nach, inwieweit Oberflächendetails oder hohe Frequenzen
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durch die Multi-view Stereo Rekonstruktion erhalten bleiben. Wir verwenden dazu ein

intuitives Modell, das den Rekonstruktionsprozess abbildet, weisen nach, dass es sich

um ein lineares System handelt und bestimmen die Modulationsübertragungsfunktion.

Diese erlaubt uns vorherzusagen, wie sich die Amplitude von hohen Frequenzen in Ab-

hängigkeit von der verwendeten Patchgröße und den externen und internen Kamerapa-

rametern verringert. Experimente auf synthetischen und realen Daten demonstrieren die

Genauigkeit unseres Modells, zeigen aber auch die Grenzen auf. Wir erweitern anschlie-

ßend das Modell, um auch gewichtetes Patch Fitting abbilden zu können. Die rekonstru-

ierten Punkte können mithilfe einer Faltung der ursprünglichen Oberfläche beschrieben

werden und wir zeigen den Zusammenhang zwischen der gewichteten Photokonsistenz-

Optimierung und dem Filterkern. Damit verknüpfen wir die Multi-Skalen Rekonstrukti-

on mit der üblichen Vorstellung einer Glättung.

Die vorgelegte Arbeit enthält damit eine fundierte Analyse von Patch-basierten (Multi-

View) Stereo Rekonstruktionsverfahren und offeriert neue Konzepte zur Oberflächenre-

konstruktion aus den resultierenden Multi-Skalen Punktdaten.
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1 Introduction

Contents

1.1 Multi-View Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Multi-Scale Sample Points . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Contributions to Surface Reconstruction . . . . . . . . . . . . . . 4

1.3.2 Contributions to Multi-View Stereo . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Overview and Structure . . . . . . . . . . . . . . . . . . . . . . . 5

THE need for 3D models of real-world objects or scenes arises in various fields such

as games or movies, medical applications, natural sciences such as geology, or

in the context of cultural heritage. For a long time only active technologies such as

laser scanning or structured light scanning allowed to reliably capture the 3D geometry

of an object. These techniques were primarily used to digitize tools or prototypes in

the computer-aided design process (reverse engineering). Active scanning technology is

still further developed and yields very accurate point clouds. It is widely used, e.g., to

digitize cultural heritage sculptures and architecture such as in the Digital Michelangelo

Project1. Active scanning devices have some drawbacks, too, mainly that the devices

are still expensive and not widespread. Passive scanning technology just relying on

photographs is a promising alternative and allows also non-expert users to capture 3D

objects or even larger scenes. It is very easy to capture a set of images from a certain

object or scene since many people own a camera (or nowadays a mobile phone with

an integrated camera). Additionally, there are a lot of images available on the Internet

where users upload their photographs to sharing platforms such as flickr2.

The next section shortly describes the development of multi-view stereo methods in

recent years building the bridge to multi-scale sample points. Section 1.3 then summa-

rizes the main thesis contributions.

1http://graphics.stanford.edu/data/mich/
2http://flickr.com
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1 INTRODUCTION

1.1 Multi-View Stereo

The introduction of robust feature matching (e.g., SIFT [Lowe 2004]) lead to structure-

from-motion algorithms that are able to register images even if the data is uncontrolled

such as downloaded images from community photo collections [Snavely et al. 2006,

Snavely et al. 2008]. So far, multi-view stereo algorithms were mainly applied to images

taken under controlled, laboratory conditions but now the application on real-world

scenes came into focus [Goesele et al. 2007, Furukawa and Ponce 2010]. At the same

time growing capabilities in computation, post-processing, and rendering, led to the de-

sire to capture all kinds of objects such as statues, buildings, places, or even entire cities

(not only in 3D but with changes over time, e.g., in the the 4D cities project3). Thus

the focus of newly developed algorithms shifted towards scalability to allow reconstruc-

tions of large scenes [Labatut et al. 2007,Jancosek et al. 2009,Hiep et al. 2009,Furukawa

et al. 2010]. A famous example is the “Building rome in a day” project [Agarwal et al.

2009, Frahm et al. 2010]. Of course these techniques typically work fully automatic

and are even robust enough to provide a web service4 where non-professional users can

upload images and obtain a 3D reconstruction within at most a few hours.

Ideally, even when reconstructing large scenes the 3D model still reflects a high level

of detail reproducing small surface variations, edges, and corners. It has been shown in

the famous Middlebury benchmark5 that multi-view stereo reconstructions on controlled

data have the potential to very accurately recover surface details [Seitz et al. 2006].
Another benchmark took this further to outdoor scenes and also here reconstructions

show a remarkable accuracy [Strecha et al. 2008]. Looking at the result of Goesele et

al. [2007] where they compared the reconstruction of the Pisa model with a laser scan

it is even indicated that multi-view stereo methods achieve as accurate reconstruction

results as classical laser scanners. We therefore think it is worth to further investigate

the topic of 3D surface reconstruction from images and push the technology to the next

level.

When looking at multi-view stereo algorithms that have proven to scale to large scenes

basically all reconstruct a point cloud, at least as an intermediate step. If a closed surface

is desired, such as a triangle mesh, an implicit function or an explicit parameterization,

a surface reconstruction algorithm is applied that takes the reconstructed point cloud

as input. Reconstructing a surface from a point cloud is a well-researched topic but still

far from being solved. These algorithms were originally developed to process points

3http://www.cc.gatech.edu/4d-cities/dhtml/index.html
4http://www.arc3d.be
5http://vision.middlebury.edu/mview/
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1.2 MULTI-SCALE SAMPLE POINTS

originating from laser scanners, typically taking a few scans to cover the entire object.

Although some of these methods were successfully applied to multi-view stereo points,

this input data has quite different characteristics. Sample points from multi-view stereo

are typically less complete and accurate, vary spatially in resolution but most impor-

tantly, samples might emerge from multiple scales.

1.2 Multi-Scale Sample Points

The basis of practically all multi-view stereo algorithms is to find corresponding image

positions in several views. Correspondences are often determined using a patch-based

photo-consistency measure. Popular choices are the normalized cross-correlation (NCC)

or the sum of squared distances (SSD). In order to compute these photo-consistency

measures a small planar patch in 3D is projected into the images and sampled at a pre-

defined number of positions. The size of the patch is usually defined by the projected

size in the images or in one particular image, often called reference image, in order

to obtain meaningful sampling distances of approximately the size of the pixel spac-

ing. Consequently, the real world patch size depends on the image resolution, focal

length of the camera, and its distance to object. If the orientation of the patch is varied

throughout the matching process then the patch size also depends on the surface nor-

mals. Throughout this thesis we use the term fine scale sample to refer to sample points

that were reconstructed using a small patch in contrast to coarse scale samples where

the underlying patch is of larger size.

The main focus of this thesis is how coarse and fine scale should be handled in a

surface reconstruction algorithm. The insight that fine scale sample points have the

potential to capture surface details whereas coarse scale points reflect more the base

structure guides one of the presented approaches to surface reconstruction in this thesis.

We continue by deeper analyzing the difference between coarse and fine scale samples

and model the fitting process of standard patch-based multi-view stereo algorithms. In

particular, we will show that the reconstructed sample points do not necessarily lie on

the true surface but on smoothed versions of the true surface. This contradicts the widely

used paradigm in surface reconstruction that the input are real point samples with mean

position on the true surface and emphasizes even more that it is necessary to consider the

multi-scale property of the sample points in a surface reconstruction approach. In order

to do so properly the smoothing has to be characterized in a mathematical way providing

a generative model. Among others we will show that the commonly used convolution

operator can appropriately describe the smoothing that occurs in a multi-view stereo

3



1 INTRODUCTION

reconstruction.

1.3 Contributions of the Thesis

The contributions of this thesis affect two major research areas. The first is surface re-

construction from sample points. Algorithms exist that cope with multi-resolution sam-

ple points, i.e., spatially varying sampling distributions, and using multi-resolution data

structures to support different reconstruction resolutions. However, to our knowledge

we are the first to specifically model and handle multi-scale input data. The second area

is multi-view stereo where we present an analysis of patch-based depth reconstruction

with the focus on how surface details are preserved depending on the patch size. We

model the systematic error in the reconstruction and provide the means to achieve better

frequency behavior using a weighted matching scheme.

1.3.1 Contributions to Surface Reconstruction

This thesis presents two new algorithms with different ways to handle multi-scale input

data. In the first algorithm we argue that many measurement techniques actually take

a small surface area into account to acquire a sample point. We refer to that area as the

footprint of a sample and take it, or an estimate, into account during the reconstruction

process. The intuition is that sample points with a small footprint can capture surface

details far better than sample points with a large footprint. We integrate this intuition

into an existing robust surface reconstruction algorithm that creates a confidence map in

3D space. Each sample point adds a confidence distribution that depends on its footprint.

Additionally, we extend the existing method to be applicable to a very general class of

input data with arbitrary surface shape and genus. The footprints of the sample points

also influence the local volumetric resolution we use for building the confidence volume

and thus for surface reconstruction. This allows us to reconstruct fine details exactly

and only at locations where fine scale input samples are available.

The second proposed algorithm reconstructs a 2.5D height field surface by fusing the

multi-scale sample points in frequency space. A wavelet decomposition allows for opera-

tion in only those space-frequency windows that are influenced by the individual sample

points. The associated scales of the sample points, in terms of the convolution kernels,

also steer the detail level in the final reconstruction. The algorithmic framework is ap-

plicable to all multi-scale data that can be characterized by (an estimated) convolution

kernel. To our knowledge, this is the first approach to combine coarse- and fine-scale

point data taking into account that the sample points do not lie on the true surface.
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1.4 THESIS OVERVIEW AND STRUCTURE

1.3.2 Contributions to Multi-View Stereo

Multi-view stereo methods often use patch-based matching in order to determine the

3D position of a point or the depth of a pixel. In choosing the size of the patch common

knowledge is that there is a trade-off between accuracy and robustness. This thesis ex-

plores the influence of the matching window giving new insight into a broad range of

multi-view stereo algorithms. We propose to model the patch-based depth reconstruc-

tion by fitting a planar patch in the least squares sense to the (unknown) true surface.

This corresponds to a widely spread intuition of patch-based depth reconstruction using

photo-consistency measures. Under this assumption we prove that the reconstruction

process fulfills the linear system requirements and determine the modulation transfer

function. Experiments on synthetic as well as real-world data sets show that our model

convincingly captures the behavior of a popular multi-view stereo algorithm. As a re-

sult, there is a significant amplitude loss in the multi-view stereo depth reconstruction

depending on the details in the unknown surface (frequencies) and the reconstruction

resolution. With our theoretical model we can predict this reconstruction error. Further-

more, we can correct the amplitude of fine scale details in the reconstruction accordingly

within the limits of the imperfect reconstruction.

In a second step we the turn the theoretical analysis from Fourier space to geometry

space. This allows us to express the reconstructed surface in terms of a convolution of the

original surface with some kernel. Thus, recovering the original surface is similar to a de-

convolution problem and not well-posed. Using standard matching the pixels in a patch

are weighted equally and the convolution kernel is a box filter. The thesis then estab-

lishes the connection between weighted (multi-view) stereo depth reconstruction and

the resulting geometry. We show that under certain assumptions the convolution kernel

is a dilated version of the weighting function. For example, using Gaussian weighting re-

sults in nicely low-pass filtered reconstructions instead of the occurring high-frequency

artifacts when using uniform weights. This is again experimentally validated on syn-

thetic and real-world data.

1.4 Thesis Overview and Structure

In the following we give an overview over the structure of the thesis and a short sum-

mary of each chapter. The ordering of the chapters follows the line of the development

with increasing insight. At the same time, this reflects the chronological order of the

individual research projects and the corresponding publications.

Chapter 2 gives a very general overview of work that is related to this thesis. It cov-
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ers multi-view stereo methods and surface reconstruction from images as well surface

reconstruction from point clouds in general. Each following chapter provides an addi-

tional, more specific view on related work closely related to the presented research.

Before going into detail, Chapter 3 introduces the general pipeline used through-

out this thesis to reconstruct a surface from images. The individual steps are shortly

described and linked to the content of the thesis.

Chapter 4 presents a new hierarchical surface reconstruction approach exploiting

the footprint information which is inherent to each sample point. This work started

with the Masters thesis by Patrick Mücke under the supervision of the thesis author. The

corresponding publication “Surface reconstruction from multi-resolution sample points”

[Mücke et al. 2011] won the best paper award at VMV. The further development of the

method was published under the title “Hierarchical Surface Reconstruction from Multi-

resolution Point Samples” [Klowsky et al. 2012b] in the Springer LNCS series which

corresponds to the content of the chapter. The source code is solely written by Patrick

Mücke and available on the project website [Mücke et al. 2012].
In Chapter 5 we analyze patch-based depth reconstruction theoretically and show

that it can be modeled as a linear system. We determine the modulation transfer func-

tion to be a sinc which corresponds to a convolution with a box filter. We validate this

experimentally on synthetic as well as real-world data. This chapter corresponds to

the paper “Modulation transfer function of patch-based stereo systems” [Klowsky et al.

2012a] presented at CVPR.

Using a weighted patch-based stereo we show a generalization of the model in Chap-

ter 6. A broad range of convolution filters can be realized. We determine necessary crite-

ria that the weighting function has to fulfill. As a special case, using Gaussian weighting

with different standard deviations reconstructs a scale-space representation of the origi-

nal surface. This work was published at SSVM as “Weighted patch-based reconstruction:

linking (multi-view) stereo to scale space” [Klowsky et al. 2013].
Chapter 7 presents a reconstruction framework for 2.5D height field surfaces where

the sample points are fused in frequency space. This algorithm is ideally suited to pro-

cess data created with the weighted patch-based depth reconstruction from the previous

chapter. This content of this chapter has been published as a technical report [Klowsky

and Goesele 2013].
Finally, Chapter 8 summarizes the contributions of the thesis and concludes with an

outlook on future work.
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THIS chapter gives a broad overview of prior work covering research areas touched

on by this thesis. Each following chapter of the thesis provides a more detailed

discussion of particularly relevant related work and discusses the distinction compared

to our work. In the following we distinguish between geometry reconstruction from im-

ages and surface reconstruction from sample points. There is no tight boundary though

because quite a few methods from the first category create sample points in the first

place and then apply standard surface reconstruction algorithms. On the other hand,

classical surface reconstruction algorithms have initially been designed to process accu-

rate, densely sampled data points, e.g., from laser scanners.

2.1 Geometry Reconstruction from Images

2.1.1 Volumetric Representation

Using a volumetric representation is probably pioneered by Seitz and Dyer [1999]. They

propose voxel coloring where they compute the visibility and color for each voxel using

a multi-view photo-consistency measure assuming that corresponding pixels have the

same color. Besides this restrictive brightness constancy assumption the method works

only for camera configurations where all scene points lie outside the convex hull of the

camera centers. This configuration constraint was relaxed in a generalization of the

voxel coloring by Kutulakos and Seitz [2000]. They introduce the photo hull which

encloses the set of all photo-consistent shapes and compute it by space carving which

means they prune away empty voxels from the volume.

2.1.2 Surface from Images

A popular approach in surface reconstruction from sample points is surface evolution

which starting from an initial surface S0 aims to find the surface S that minimizes an

energy E(S). Hernandez et al. [2004] apply this concept to surface reconstruction from
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images. They use silhouette information in the images to compute a 3D convex hull.

Then they apply an octree-based carving method followed by a marching tetrahedron

meshing algorithm and a mesh simplification to find the initial surface. The external

forces that drive the surface evolution fuse texture and silhouette information. The

internal force implements a regularization on the surface.

Gargallo et al. [2005] use a Bayesian approach that also leads to an energy minimiza-

tion problem. They introduce a visibility prior and a multiple depth map prior that takes

into account the different view points and aims for generally smooth depth maps still

allowing for sharp discontinuities. The posterior probability is then maximized with the

generalized Expectation Maximization algorithm where the maximum is approached by

gradient descent. Later on, they compute the exact gradient of the reprojection error

function and use this error function for gradient descent surface evolution [Gargallo

et al. 2007].

Graph cut [Boykov et al. 2001] based methods aim to find the surface with min-

imal energy as well. After the development of fast energy minimization algorithms

based on graph cuts, this concept was first successfully applied to the original two-

view stereo. Kolmogorov and Zabih generalized it to multi-camera scene reconstruc-

tion [2002]. They formulate an energy minimization consisting of a data term that im-

poses photo-consistency, a smoothness term, and a visibility term. The resulting energy

minimization problem is NP-hard to minimize exactly but with a graph cut an approxi-

mate solution can be computed. A year later, Boykov and Kolmogorov [2003] showed

how a minimum surface under an arbitrary Riemannian metric can be found using graph

cut algorithms. This work inspired numerous graph cut based multi-view stereo algo-

rithms including [Hornung and Kobbelt 2006a,Hornung and Kobbelt 2006b,Lempitsky

and Boykov 2007,Sinha et al. 2007,Sormann et al. 2007,Vogiatzis et al. 2007].

Pons et al. [2007] propose a variational model for multi-view stereo reconstruction

from video sequences using a global image-based matching score. They simultaneously

estimate the shape of the object and the 3D scene flow solving the image registration

task. The method inherently requires a small baseline between the images which makes

it unsuitable for standard multi-view stereo data sets.

For urban outdoor and indoor scenes piecewise planar models have become popular

as well. The common intuition is that man-made scenes mainly consist of piecewise

planar surfaces, often perpendicular to each other. Existing methods either fit planes to

the reconstructed multi-view stereo points [Furukawa et al. 2009] or directly estimate

piecewise planar depth maps using a Markov Random Field optimization [Sinha et al.

2009]. Gallup et al. [2010] take a similar approach but additionally segment the images
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into planar and non-planar regions. From an initial set of depth maps they create plane

hypotheses using a RANSAC method and use graph cut labeling to assign each pixel to

a plane that is consistent between different views. Hereby they allow for a non-plane

label preserving the original depth values.

2.1.3 Sample Points from Images

Several multi-view stereo methods compute 3D points, either as depth maps with con-

nectivity information or as an unordered point cloud. If a triangle mesh is desired they

often apply a standard surface reconstruction algorithm and discard the potentially ex-

isting connectivity information. Goesele et al. [2007] apply multi-view stereo on images

from community photo collections using a two-stage view selection. A surface growing

approach with varying disc size dependent on image texture is proposed by Habbecke

and Kobbelt [2007]. Bradley et al. [2008] start with scaled window matching and ap-

ply a filtering to obtain a noise-reduced point cloud. The widely used technique by Fu-

rukawa and Ponce [2010] reconstructs a dense set of patches that represents the surface.

A clustering approach allows for applicability on extremely large photo collections [Fu-

rukawa et al. 2010]. They create overlapping clusters, process them in parallel, and

finally merge the individual reconstructions.

Labatut et al. [2007] first create a quasi-dense feature point cloud. Then they apply

a 3D Delaunay triangulation and extract the final surface as a subset of faces that min-

imizes an energy taking into account visibility, photo-consistency and smoothness. The

minimum is found using a graph cut. This method has been extended using a different

energy term [Labatut et al. 2009] and to work on high-resolution images and large-

scale scenes adding Difference of Gaussians (DoG) features and Harris points [Harris and

Stephens 1988] to obtain a denser point cloud [Hiep et al. 2009]. Bailer et al. [2012] use

the same Delaunay based optimization [Labatut et al. 2009] but create the point cloud

differently. They first compute depth maps, filter them to remove erroneous points, and

then project the points into 3D space, and improve the point cloud using a moving-

least squares variant. Jancosek et al. [2009] create filtered meshes from grown patches

and detect overlapping areas. Their final representation is not a closed surface but is

composed of locally consistent meshes with minimum overlap.

2.2 Surface Reconstruction from Sample Points

In the beginning, sample points were the result of a range scanning process from a single

or multiple viewpoints. In recent times, however, sample points also originate from
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multi-view stereo methods, either directly in 3D space or as transformed depth maps.

Many methods do, however, assume that 3D sample points with only their positions

are given. Some assume that normal information (oriented points) or the direction to

the sensor is additionally given. Finally, there are methods specifically tailored to a

particular application setting such as merging depth maps that originate from multi-

view stereo matching between images. Since we think the underlying concept is a vital

difference between the methods we decided to loosely sort the related work by this

criterium.

There is also a brand-new benchmark by Berger et al. [2013] that compares popular

methods on several data sets using different error metrics. The generation of the point

clouds they provide is designed to mimic laser scans, so the points are more or less

regularly sampled and single-scale.

2.2.1 Delaunay-based Methods

The idea of using a Delaunay triangulation for surface reconstruction was introduced by

Boissonnat [1984]. The Delaunay triangulation subdivides the convex hull of the sam-

ple points and is unique under certain sampling conditions. The dual of the Delaunay

triangulation is the Voronoi diagram which subdivides the space into convex cells. Each

cell can be associated with exactly one sample point.

Among the various Delaunay-based methods the most popular are perhaps the Crust

[Amenta and Bern 1999, Amenta et al. 2001] and its successor the Cocone [Amenta

et al. 2002,Dey and Goswami 2003]. Both exploit the structure of the Voronoi diagram

of the input points to remove triangles that do not belong to the surface. These meth-

ods work well for densely sampled point clouds but fail if sampling is sparse. A greedy

method was presented by Cohen-Steiner and Da [2004]. Starting from a seed triangle

they grow a surface by adding always the most plausible Delaunay triangles under the

assumption that normals vary smoothly over the surface. In this way they prevent topo-

logical singularities and can even handle non-closed surfaces with boundaries. Dey et

al. [2009] present an algorithm that guarantees an isotopic reconstruction of surfaces

with boundaries if the sampling is noise-free. Alliez et al. [2007] combine a Delaunay-

based approach with an implicit surface representation using a spectral method. Labatut

et al. [2009] define an energy that consists of a visibility term, taking the direction to the

sensor into account, and a surface quality cost. The energy can be interpreted as costs

of removing edges in a graph, that correspond to faces of the Delaunay triangulation,

and a minimum cut yields the reconstructed surface.

The main advantage of Delaunay- or Voronoi-based reconstruction techniques is that
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they allow for a theoretical analysis proving the reconstruction quality, e.g., guaranteed

geometric features. It is, however, only suited if the sampling is noise-free and dense

enough. More details about Delaunay-based surface reconstruction can be found in the

survey by Cazals and Giesen [2006].

2.2.2 Surface Evolution

Level set-based surface reconstruction uses deformable models. Starting from an initial

shape they iteratively alter the shape to minimize an energy. One can separate the meth-

ods into ballooning techniques that grow the surface from the inside [Cohen and Cohen

1993, Zhao et al. 2001, Sharf et al. 2006], and shrinking techniques growing from the

outside [Esteve et al. 2005]. Tagliasacchi et al. [2011] set up a surface evolution frame-

work based on a level set formulation that incorporates weak volumetric priors in order

to better reconstruct objects with many concavities. Level set-based formulations are

also used for surface reconstruction from range images. For example, Whitaker [1998]
uses a statistical formulation of the 3D reconstruction problem and represents the sur-

face as the level set of a discretely sampled scalar function. This function is altered,

which mimics deforming the surface, in order to maximize a posterior probability in-

cluding a noise model and a surface prior.

2.2.3 Implicit Surface Representation

Many methods compute an implicit surface representation where the zero level set repre-

sents the unknown surface. This can be extracted using marchings cubes [Lorensen and

Cline 1987] or other contouring algorithms [Schaefer et al. 2007, Manson and Schae-

fer 2010]. An implicit representation of the surface is given by the signed distance

field. Hoppe et al. [1992] approximate the signed distance for a point by computing

the distance to the least squares plane of its k-nearest neighbors. Carr et al. [2001] use

polyharmonic radial basis functions (RBFs) as implicit surface representation. They also

construct a signed distance function but subsequently fit a radial basis function to the

distance field. Ohtake et al. [2003b] introduce a hierarchical reconstruction approach

where they use globally and locally supported radial basis functions to implicitly rep-

resent the surface. On the given point cloud they first apply a spatial downsampling

to construct a coarse-to-fine point set hierarchy. They then successively interpolate the

sets starting from the coarsest level. For each finer level they only interpolate the offset

of the interpolating function computed at the previous level. Another implicit surface

representation is the characteristic function of the object defined, e.g., as being 1 out-
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side and −1 inside the object. Kazhdan [2005] computes the Fourier coefficients of

the characteristic function. In a follow-up paper he and his colleagues turn the prob-

lem of recovering the characteristic function into a spatial Poisson problem [Kazhdan

et al. 2006]. Poisson surface reconstruction is still widely used and serves as a refer-

ence not least because of the publicly available implementation. Bolitho et al. [2007]
present an out-of-core solution for huge Poisson systems based on a multi-level stream-

ing representation that increases reconstruction speed for large 3D scans. Very recently,

Kazhdan and Hoppe [2013] extended the original algorithm by adding an interpola-

tion constraint. This leads to surfaces that better follow the input data and thus better

model sharp details. Very similar to [Kazhdan 2005] Manson et al. [2008] model a

smoothed version of the characteristic function using wavelets. This is much faster be-

cause wavelets typically have local support in contrast to the Fourier basis functions.

Additionally, the hierarchical structure of wavelets can be exploited in a streaming sur-

face reconstruction implementation. Calakli and Taubin [2011] provide a generalized

framework where they represent the signed distance field using any linearly parame-

terized family of smooth basis functions. They turn the surface reconstruction task into

an energy minimization problem and show how this can be transformed into a linear

system of equations. Taylor [2003] effectively computes the characteristic function of

the object but in a different way. The underlying idea is to infer information about free

space from each sample point and afterwards triangulate its boundary.

Dong et al. [2011] first define a general variational model for surface reconstruction

similar to models used for image restoration. The final surface is hereby represented

using an unsigned distance field. They then propose a wavelet frame-based model that

can be interpreted as a certain discretization to the variational model. The projection-

based moving least squares technique [Levin 2004] defines the surface as the invariant

of a parametric fit procedure. Alexa et al. [2003] introduced this concept to computer

graphics computing the point-based representation of the moving least squares surface

for rendering purposes. In the meantime several variants of this technique have been

proposed [Shen et al. 2004, Fleishman et al. 2005]. Based on mean curvature motion

Digne et al. [2011] define a smoothing operator on raw point clouds. Successive ap-

plications on the input points lead to a scale space representation of the surface. They

triangulate the coarsest scale using a standard meshing algorithm and transport the

vertices back to their original positions. The multi-level partition of unity [Ohtake et al.

2003a] is a local implicit surface representation. Piecewise quadratic functions that de-

scribe the local surface shape are blended together using weighting functions resulting

in an approximation of the true signed distance function. Nagai et al. [2009] define
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gradient operators on partition of unity implicits and apply Laplacian smoothing on the

gradient field in order to cope with noisy data.

The surface reconstruction algorithm VRIP [Curless and Levoy 1996] was the first

to incorporate visibility information using space carving. Like many methods Curless

and Levoy reconstruct the signed distance field. However, for each point they take the

direction to the sensor into account to better model the positional uncertainty in the

acquisition process. In an energy minimization framework Zach et al. [2007] incorpo-

rate a total variation regularization on the distance field and use the L1−norm for data

fidelity to gain robustness against outliers. The input to their method are truncated

distance fields generated from the depth maps similar to Curless and Levoy [1996].
Taking the visibility information into account is also the key concept in the cone carving

method [Shalom et al. 2010]. They compute an improved signed distance by associat-

ing each point with an estimated visibility cone that carves outside space of the object.

Fuhrmann and Goesele [2011] introduce a hierarchical signed distance field on a voxel

grid where the hierarchies map different surface scales. Starting from triangulated depth

maps they construct the hierarchical signed distance field similar to VRIP but each tri-

angle only affects a certain hierarchy level depending on an estimated scale. During a

regularization step coarse scale information is discarded when reliable fine scale infor-

mation is available. To extract the isosurface they apply a Delaunay triangulation of the

adaptive voxel grid and use a variant of Marching Tetrahedra [Doi and Koide 1991].

2.2.4 Other Methods

In the early mesh zippering approach [Turk and Levoy 1994] range scans are triangu-

lated, redundant triangles removed, and the meshes pairwise zippered together at the

boundaries. Finally, vertex positions are refined according to the original range scans.

Scattered data reconstruction is also continuously researched in the field of approx-

imation theory. The objective here is mostly to reconstruct one- or two-dimensional

functions which corresponds to height fields. A common approach is the approxima-

tion in B-spline and wavelet spaces [Pastor and Rodríguez 1999, Johnson et al. 2009].
Recently, Ji et al. [2010] proposed a method where they use tight wavelet frames to re-

construct the surface given range data of a single view. This allows for the reconstruction

of sharp edges and increases robustness to noise and outliers. These and other methods

in scattered data interpolation are related to one of our proposed surface reconstruc-

tion algorithms. In contrast to our work, however, they do not tackle the problem of

multi-scale input data.

Using a Bayesian approach Jenke et al. [2006] reconstruct a noise-free and well sam-
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pled point cloud that is most likely to be a subsampled version of the true surface. For

meshing they use a variant of moving least squares combined with a standard implicit

surface reconstruction method [Hoppe et al. 1992]. Gal et al. [2007] take the concept of

recovering a clean point cloud one step further and incorporate local shape priors from

a data base of example shapes. The main drawback of these Bayesian approaches is that

they are computationally very expensive and thus not applicable on large data sets.
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THIS chapter gives an overview of the general surface reconstruction pipeline used

in this thesis (similar to Goesele et al. [2007], see Figure 3.1). The input is an

unordered set of images. The photos can be taken with a consumer camera or even

downloaded from the Internet, e.g., by choosing images on photo sharing sites such as

flickr that match a particular tag. The images are registered first to recover the internal

and external camera parameters and to create a sparse point cloud representing the

scene. In the next step, we compute a depth map for each registered image where we

try to assign a depth value for each pixel. Finally, the depth maps are fused to a global

consistent model such as a triangle mesh. Note that some multi-view stereo methods

directly reconstruct a global model instead of computing a local representation first.

The following sections elaborate on the separate steps, provide details about the specific

algorithms used in this thesis, and describe how the contributions fit into the pipeline.

3.1 Structure-from-Motion

In the first step the images are registered, i.e., a spatial relationship between the images

is established. We use the structure-from-motion technique introduced by Snavely et

al. [2006, 2008]. They detect keypoints (e.g., using SIFT [Lowe 2004]) in all images

and match the keypoint descriptors in order to connect two images. In a RANSAC pro-

cess they estimate a fundamental matrix on the basis of eight matching key points. The

matches are then organized into tracks to connect multiple images. Starting from two

very well matching images, more images along the tracks are added to build a scene.

During this process a bundle adjustment [Triggs et al. 2000] optimizes for consistent
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Figure 3.1: Reconstructing a closed surface from images: Starting from a set of images (left) a sparse scene

representation together with the camera parameters is recovered using a structure-from-motion technique.

Then for each view a dense depth map is computed using multi-view stereo. Finally, a dense triangle mesh

is reconstructed by fusing the depth maps (right).

camera parameters. The triangulated feature points already provide a sparse scene rep-

resentation (see Figure 3.1 (middle left)).

The computed 3D feature points and their projections in the images are input to the

multi-view stereo in the next step. The computed camera positions are naturally not

perfect but most of the time good enough and rarely contain outliers. We therefore take

the information as is and did not try to model or even correct the potential errors.

3.2 Multi-View Stereo

Starting from the 3D feature point cloud created in the previous step the multi-view

stereo algorithm [Goesele et al. 2007] determines a depth value for each reconstructable

pixel in every image of the scene. For a given reference image the algorithm first deter-

mines neighbor images in a global view selection that are suited for reconstruction. In

a region growing fashion a photo-consistency minimization recovers optimal depth and

normal of a small 3D patch centered around the corresponding 3D point of the current

pixel. If the optimization terminates and a threshold in photo-consistency with four

neighboring views (chosen from the local view selection) is met, the values are accepted.

Otherwise the depth of that pixel is declared as unknown (see Figure 3.1 (middle right)).

In contrast to structure-from-motion the reconstructed points from multi-view stereo

contain a lot of noise and outliers. On the other hand, these points have the capability to

capture fine surface details and provide a considerably denser scene representation. In

Chapter 5, we propose a theoretical model for the multi-view stereo reconstruction pro-

cess that allows us to predict the systematic error concerning fine scale details. The sub-

sequent chapter proposes a weighted photo-consistency optimization in order to achieve
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a better frequency behavior.

3.3 Surface Reconstruction

In the previous step a set of depth maps has been computed which provide local scene

representations that are not necessarily consistent with each other. The final step is to

compute a global and consistent scene representation (see Figure 3.1 (right)). Popular

methods that proved suitable for this task and with source code available online are

VRIP [Curless and Levoy 1996], Poisson surface reconstruction [Kazhdan et al. 2006],
and the recent Depth Map Fusion algorithm [Fuhrmann and Goesele 2011].

This thesis introduces two distinct approaches that both take the combined set of 3D

points from all depth maps as input. The first method presented in Chapter 4 estimates

the size of the 3D patch used during photo-consistency optimization. This serves as a

measure of confidence of that sample and allows for fine scale samples to steer the recon-

struction of fine details. The second method proposed in Chapter 7 assumes weighted

photo-consistency optimization and takes as additional input the (estimated) weighting

function.

17





4 Hierarchical Surface Reconstruction

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Crust Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Global Confidence Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Graph Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Multi-Resolution Surface Reconstruction . . . . . . . . . . . . . . . . . 32

4.7.1 Final Surface Extraction . . . . . . . . . . . . . . . . . . . . . . . . 34

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ROBUST surface reconstruction from sample points is a challenging problem, espe-

cially for real-world input data. We present a new hierarchical surface reconstruc-

tion based on volumetric graph cuts that incorporates significant improvements over

existing methods. One key aspect of our method is, that we exploit the footprint in-

formation which is inherent to each sample point and describes the underlying surface

region represented by that sample. We interpret each sample as a vote for a region

in space where the size of the region depends on the footprint size. In our method,

sample points with large footprints do not destroy the fine detail captured by sample

points with small footprints. The footprints also steer the inhomogeneous volumetric

resolution used locally in order to capture fine detail even in large-scale scenes. Similar

to other methods our algorithm initially creates a crust around the unknown surface.

We propose a crust computation capable of handling data from objects that were only

partially sampled, a common case for data generated by multi-view stereo algorithms.

Finally, we show the effectiveness of our method on challenging outdoor data sets with

samples spanning orders of magnitude in scale.
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Figure 4.1: Left: An input image to multi-view stereo reconstruction. Middle: The reconstructed depth

map visualized in gray values (white: far, black: near). Right: The triangulated depth map rendered from

a slightly different view point.

4.1 Introduction

Reconstructing a surface mesh from sample points is a problem that occurs in many

applications, including surface reconstruction from images as well as scene capture

with triangulation or time-of-flight scanners. Our work is motivated by the growing

capabilities of multi-view stereo (MVS) techniques [Seitz et al. 2006, Goesele et al.

2007, Habbecke and Kobbelt 2007, Furukawa et al. 2010] that achieve remarkable re-

sults on various data sets.

Traditionally, surface reconstruction techniques are designed for fairly high-quality in-

put data. Measured sample points, in particular samples generated by MVS algorithms,

are, however, noisy and contain outliers. Figure 4.1 shows an example reconstructed

depth map that we use as input data in our method. Furthermore, sample points are

often non-uniformly distributed over the surface and entire regions might not be rep-

resented at all. Recently, Hornung and Kobbelt presented a robust method well suited

for noisy data [2006b]. This method generates optimal low-genus watertight surfaces

within a crust around the object using a volumetric graph cut. Still, their algorithm

has some major limitations regarding crust generation, sample footprint, and missing

multi-resolution reconstruction which we address in this chapter.

Hornung and Kobbelt create a surface confidence function based on unsigned distance

values extracted from the sample points. The final surface S is obtained by optimizing

for maximum confidence and minimal surface area. As in many surface reconstruction

algorithms, the footprint of a sample point is completely ignored when computing the

confidence. Every sample point, regardless of how it was obtained, inherently has a

footprint, the underlying surface area taken into account during the measurement (see

Figure 4.2). The size of the footprint indicates the sample point’s capability to capture

surface details. A method that outputs sample points with different footprints was pro-

posed by Habbecke and Kobbelt [2007]. They represent the surface with surfels (surface
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Figure 4.2: Visualization of the footprint of a sample point: A certain pixel in the left image covers a

significantly larger area than a corresponding pixel in the right image.

elements) of varying size depending on the image texture. Furukawa et al. [2010] con-

sider footprints to estimate reconstruction accuracy and Fuhrmann and Goesele [2011]
build a hierarchical signed distance field where they insert samples on different scales

depending on their footprint. However, both methods effectively discard samples with

large footprints prior to final surface extraction. In this chapter, we propose a different

way to model the sample footprint during the reconstruction process. In particular, we

create a modified confidence map where samples contribute differently depending on

their footprints.

The confidence map is only evaluated inside a crust, a volumetric region around the

sample points. In [Hornung and Kobbelt 2006b], the crust computation implicitly seg-

ments the boundary of the crust into interior and exterior. The final surface separates

interior from exterior. This crust computation basically works only for completely sam-

pled objects. Even with their proposed workaround (estimating the medial axis), the

resulting crust is still not applicable to many data sets. Such a case is illustrated in Fig-

ure 4.3, where no proper interior component can be computed. This severely restricts

the applicability of the entire algorithm. We propose a different crust computation that

separates the crust generation from the crust segmentation process, extending the ap-

plicability to a very general class of input data.

Finally, as Hiep et al. [2009] pointed out, volumetric methods such as [Hornung and

Kobbelt 2006b] relying on regular volume decomposition are not able to handle large-

scale scenes. To overcome this problem our algorithm reconstructs on a locally adap-

tive volumetric resolution and finally extracts a watertight surface. This allows us to
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reconstruct fine details even in large-scale scenes such as the Citywall data set (see Fig-

ure 4.11).

The remainder of this chapter is organized as follows: First, we review previous work

(Section 4.2) and give an overview of our reconstruction pipeline (Section 4.3). Details

of the individual steps are explained in Sections 4.4–4.7. Finally, we present results of

our method on standard benchmark data as well as challenging outdoor scenes (Sec-

tion 4.8) and wrap up with a conclusion and an outlook on future work (Section 4.9).

4.2 Related Work

Surface reconstruction from (unorganized) points

Surface reconstruction from unorganized points is a large and active research area. One

of the earliest methods was proposed by Hoppe et al. [1992]. Given a set of sample

points, they estimate local tangent planes and create a signed distance field. The zero-

level set of this signed distance field, which is guaranteed to be a manifold, is extracted

using a variant of the marching cubes algorithm [Lorensen and Cline 1987].
If the sample points originate from multiple range scans, additional information is

available. VRIP [Curless and Levoy 1996] uses the connectivity between neighboring

samples as well as the direction to the sensor when creating the signed distance field.

Additionally, it employs a cumulative weighted signed distance function allowing it to

incrementally add more data. The final surface is again the zero-level set of the signed

distance field. A general problem of signed distance fields is that local inconsistencies

of the data lead to surfaces with undesirably high genus and topological artifacts. Zach

et al. [2007] mitigate this effect. They first create a signed distance field for each range

image and then compute a regularized field u approximating all input fields while min-

imizing the total variation of u. The final surface is the zero-level set of u. Their results

are of good quality, but the resolution of both, the volume and the input images, is very

limited. In their very recent paper, Fuhrmann and Goesele [2011] introduce a depth

map fusion algorithm that takes sample footprints into account. They merge triangu-

lated depth maps into a hierarchical signed distance field similar to VRIP. After a regular-

ization step, basically pruning low-resolution data where reliable higher-resolution data

is available, the final surface is extracted using marching tetrahedra. Our method does

not rely on triangulated depth maps and tries to merge all data samples while never

discarding information from low-resolution samples. Another recent work taking unor-

ganized points as input is called cone carving and is presented by Shalom et al. [2010].
They associate each point with a cone around the estimated normal to carve free space
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and obtain a better approximation of the signed distance field. This method is in a way

characteristic for many surface reconstruction algorithms in the sense that it is designed

to work on raw scans from a commercial 3D laser scanner with rather good quality.

Such methods are often not able to deal with the lower quality data generated by MVS

methods from outdoor scenes containing a significant amount of noise and outliers.

Kazhdan et al. [2006] reformulate the surface reconstruction problem as a standard

Poisson problem. They reconstruct an indicator function marking regions inside and

outside the object. Oriented points are interpreted as samples of the gradient of the

indicator function, requiring accurate normals at each sample point’s position which

are usually not present in MVS data. The divergence of the smoothed vector field, rep-

resented by these oriented points, equals the Laplacian of the indicator function. The

final surface is extracted as an iso-surface of the indicator function using a variant of

the marching cubes algorithm. Along these lines, Alliez et al. [2007] use the normals to

derive a tensor field and compute an implicit function whose gradients best approximate

that tensor field. Additionally, they present a technique, called Voronoi-PCA, to estimate

unoriented normals using the Voronoi diagram of the point set.

Graph cut based surface reconstruction

Boykov and Kolmogorov [2003] introduce the idea of reconstructing surfaces by com-

puting a cut on a graph embedded in continuous space. They also show how to build

a graph and set the edge weights such that the resulting surface is minimal for any

anisotropic Riemannian metric. Hornung and Kobbelt [2006a] use the volumetric graph

cut to reconstruct a surface given a photo-consistency measure defined at each point of

a predefined volume space. They propose to embed an octahedral graph structure into

the volume and show how to extract a mesh from the set of cut edges. In a follow-up

paper [Hornung and Kobbelt 2006b], they present a way to compute confidence values

from a non-uniformly sampled point cloud and improve the mesh extraction procedure.

An example of using graph cuts in multi-view stereo is the work of Sinha et al. [2007].
They build an adaptive multi-resolution tetrahedral mesh where an estimated photo-

consistency guides the subdivision. The final graph cut is performed on the dual of the

tetrahedral mesh followed by a photo-consistency driven mesh refinement. Labatut et

al. [2009] build a tetrahedral mesh around points merged from multiple range images.

They introduce a surface quality term and a surface visibility term that takes the direc-

tion to the sensor into account. From an optimal cut, which minimizes the sum of the

two terms, a labeling of each tetrahedra as inside or outside can be inferred. The final

mesh consists of the set of triangles separating the tetrahedra according to their labels.
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Hiep et al. [2009] replace the point cloud obtained from multiple range images with

a set of 3D features extracted from the images. The mesh obtained from the tetrahe-

dral graph cut is refined mixing photo-consistency in the images and a regularization

force. However, none of the existing graph cut based surface reconstruction algorithms

properly incorporates the footprint of a sample.

4.3 Overview

The input of our algorithm is a set of surface samples representing the scene (Figure 4.3a).

Each surface sample consists of its position, footprint size, a scene surface normal ap-

proximation, and an optional confidence value. A cubic bounding box is computed from

the input points or given by the user.

First, we determine the crust, a subset of the bounding volume containing the un-

known surface. All subsequent computations will be performed inside this crust only.

Furthermore, the boundary of the crust is partitioned into interior and exterior, defining

interior and exterior of the scene (Figure 4.3b). Inside the crust we compute a global

confidence map, such that points with high confidence values are likely to lie on the un-

known surface. Each sample point adds confidence to a certain region of the volume.

The size of the region and the confidence peak depend on the sample point’s footprint

size. Effectively, every sample point adds the same total amount of confidence to the vol-

ume but spread out differently. A volumetric graph is embedded inside the crust where

graph nodes correspond to voxels and graph edges map the 26-neighborhood. A min-

imal cut on this graph separates the voxels into interior and exterior representing the

optimal surface at this voxel resolution (Figure 4.3c). The edge weights of the graph are

chosen such that the final surface minimizes surface area while maximizing confidence.

We then identify surface regions with sampled details too fine to be adequately rep-

resented on the current resolution. Only these regions are subdivided, the global con-

fidence map is resampled, and the graph cut is computed on a higher resolution (Fig-

ure 4.3d+e). We repeat this process iteratively until eventually all fine details were

captured. Finally, we extract the surface in the irregular voxel grid using a combination

of marching cubes and marching tetrahedra. This results in a multi-resolution surface

representation of the scene, the output of our algorithm (Figure 4.3f).
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a) b) c)

d) e) f)

Figure 4.3: Overview of our reconstruction pipeline. a) We compute a crust around the input samples of

different footprints and varying sampling density. b) We segment the crust into interior (red) and exterior

(green) and compute the global confidence map (GCM) to which each input sample contributes. c) A

minimal cut on the embedded graph segments the voxel corners representing the surface with maximum

confidence while minimizing surface area. We mark the areas with high-resolution samples (dashed black

box) and iteratively increase resolution therein. d+e) In the increased resolution area we re-evaluate the

GCM and perform the graph cut optimization. f) Finally, an adaptive triangle mesh is extracted from the

multi-resolution voxel corner labeling.
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4.4 Crust Computation

We subdivide the cubic bounding box into a regular voxel grid. For memory efficiency

and to easily increase the voxel resolution, this voxel grid is represented by an octree

data structure. Our algorithm iteratively treats increasing octree levels (finer resolution)

starting with a user-defined low octree level `0, i.e., with a coarse resolution.

The crust Vcrust ⊂ V is a subset of voxels that contains the unknown surface. The crust

computation is an important step in the algorithm for several reasons: The shape of the

crust constrains the shape of the reconstructed surface. Furthermore, the crust has to

be sufficiently large to contain the optimal surface and on the other hand as narrow as

possible to reduce computation time and memory cost. We split the crust computation

into two parts. First, the crust is generated, then the boundary of this crust is segmented

to define interior and exterior of the scene (see Figure 4.4 for an overview).

Crust Generation We initialize the crust on level `0 with the set of voxels on the parent

octree level `0−1 containing surface samples. We dilate this sparse set of voxels several

times over the 6-neighborhood of voxels, followed by a morphological closing operation

(Figure 4.4a). The number of dilation steps is currently set by the user, but the resulting

crust shape can be immediately inspected, as the crust generation is fast on the low

initial resolution. Subsequently, these voxels v ∈ V `0−1
crust are once regularly subdivided to

obtain the initial crust V `0
crust for further computations on level `0.

Crust Segmentation In this step our goal is to assign labels interior and exterior to all

boundary voxel corners on level `0 to define the interior and exterior of the scene. In

the following, we define ∂ V `crust to be the set of boundary voxels on level `. We start

by determining labels for voxel corners v f that lie on the midpoints of boundary faces

of parent crust voxels v ∈ ∂ V `0−1
crust . The labels are determined by comparing a surface

normal estimate ~nsur f
v for parent voxel v with the normals of the boundary faces ~ncrust

v f
.

The surface normal is computed for each crust voxel by averaging the normals of all

sample points inside the crust voxel. Crust voxels that do not contain surface samples

obtain their normal estimate through propagation during crust dilatation (Figure 4.4b).

We determine the initial labels on the crust boundary by

label(v f ) =















ex terior, if ~ncrust
v f
· ~nsur f

v ≥ τ

interior, if ~ncrust
v f
· ~nsur f

v ≤ −τ

unknown, otherwise

(4.1)
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a) b)

c) d)

Figure 4.4: Initial crust computation for lowest resolution: a) We initialize the crust with voxels containing

sample points and dilate several times. b) Surface normals are computed for each voxel. c) The comparison

of surface normals with the face normals of the crust voxels defines an initial labeling into interior (red),

exterior (green), and unknown (blue). d) An optimization yields a homogenous crust surface segmentation.
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4 HIERARCHICAL SURFACE RECONSTRUCTION

Figure 4.5: Visualization of the crust surface for the Temple (cut off perpendicular to the viewing direction).

The color is similar to Figure 4.4. Light shaded surfaces are seen from the front, dark shaded ones are seen

from the back.

with τ ∈ (0, 1) (Figure 4.4c). We used τ= 0.75 in all experiments.

By now we have just labeled a subset of all voxel corners on level `0 (Figure 4.4c).

Furthermore, since surface normal information of the samples may only be a crude ap-

proximation, this initial labeling is noisy and has to be regularized. We cast the problem

of obtaining a homogenous labeling of the crust surface into a 2D binary image de-

noising problem solved using graph cut optimization as described by Boykov and Vek-

sler [Boykov and Veksler 2006]. We build a graph with a node per voxel corner in ∂ V `0
crust

and a graph edge connecting two nodes if the corresponding voxel corners share a voxel

edge. Additionally, ‘diagonal’ edges are inserted that connect the initially labeled cor-

ners in the middle of parent voxel faces with the four parent voxel corners. We also add

two terminal nodes source and sink together with further graph edges connecting each

node to these terminals. Note that this graph is used for the segmentation of the crust

on the lowest resolution level `0 only and should not be confused with the graphs used

for surface reconstruction on the different resolutions.

All edges connecting two non-terminal nodes receive the same edge weight w. Edges

connecting a node n with a terminal node receive a weight depending on the label-

ing of the corresponding voxel corner vc , where unlabeled voxel corners are treated as
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unknown:

wsource
n =















µ if vc is labeled interior

1−µ if vc is labeled ex terior
1
2 if vc is unknown

(4.2)

wsink
n = 1−wsource

n (4.3)

for a constant µ ∈ (0, 1
2). With these edge weights the exterior is associated with source,

interior with sink. A cut on this graph assigns each node either to the source or to the sink

component and therefore yields a homogeneous segmentation of the boundary voxel

corners of ∂ V `0
crust (Figure 4.4d and Figure 4.5 right). We used w= 0.5 and µ= 0.25 in

all experiments.

If two neighboring crust voxel corners obtained different labels, the reconstructed

surface is forced to pass between them, as it has to separate interior from exterior. The

denoising minimizes the number of such occurrences and therefore prevents unwanted

surfaces from being formed. In the case of entirely sampled surfaces and a correctly

computed crust, two neighboring voxel corners never have different labels. However,

if the scene surface is not sampled entirely, such segment borders occur even for cor-

rect segmentations (see Figure 4.4d). This forces the surface to pass through the two

involved voxel corners which, unlike the rest of the surface reconstruction, does not

depend on the confidence values. This fixation does not affect the surface in sampled

regions, though. We exploit this constraint on the reconstructed surface in our refine-

ment step where we reconstruct particular areas on higher resolution (see Section 4.7).

4.5 Global Confidence Map

The global confidence map (GCM) is a mapping Γ : R3 → R that assigns a confidence

value to each point in the volume. Our intuition is that each sample point spreads its

confidence over a region in space whose extent depends on the sample footprint. Thus,

sample points with a small footprint create a focused spot whereas sample points with

a large footprint create a blurry blob (see Figure 4.3b). We model the spatial uncer-

tainty of a sample point as a Gaussian γs centered at the sample point’s position with

standard deviation equal to half the footprint size. If the sample points are associated

with confidence values we scale the Gaussian accordingly. The local confidence map

(LCM) γs determines the amount of confidence added by a particular sample point s.
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Figure 4.6: Visualization of an intermediate state of the binning approach used for the parallelization of the

GCM computation. Starting with two bins (left), the right bin is subdivided into eight new bins (middle).

One of the new bins is subdivided again (right) resulting in a total number of 16 bins.

Consequently, the GCM is the sum over all LCMs:

Γ (x) =
∑

s

γs(x). (4.4)

Implementation Let ` be the octree level at which we want to compute the graph cut.

In all crust voxels {xv}v∈V `crust
we evluate the GCM Γ at 27 positions: at the 8 corners of

the voxel, at the middle of each face and edge, and at the center of the voxel. When

adding up the LCMs of each sample point s we clamp the value of γs to zero for points

for which the distance to s is larger than three times the footprint size of sample point

s. Also, we sample each γs only at a fixed number of positions (≈ 53) within its spatial

support and exploit the octree data structure by accumulating each γs to nodes at the

appropriate octree level depending on the footprint size. After all samples have been

processed, the accumulated values in the octree are propagated to the nodes at level `

by adding the values at a node to the children’s nodes using linear interpolation for in-

between positions. The support of LCMs of sample points with small footprints might be

too narrow to be adequately sampled on octree level `. For those samples we temporarily

increase the footprint for the computation of the LCM γs and mark the corresponding

voxel for later processing at higher resolution.

4.5.1 Parallelization

In order to speed-up the sample insertion into the octree which is costly since each input

point creates≈ 125 samples, we parallelize the insertion at each octree level ˆ̀≤ ` using

a binning approach. In our implementation, bins correspond to voxels. In each bin we

sort the samples into eight lists representing the eight child voxels in a predefined order.

We process the first list of all bins in parallel, then the second list, and so on. For this

purpose samples in list x of two different bins should not interfere with each other,

i.e., affect the same nodes in the octree. We start with the bounding cube as root bin
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containing all samples to be processed on level ˆ̀. We subdivide a bin if the following

two criteria are satisfied:

1. the bin contains more than nmax samples, and

2. subdividing the bin maintains the property that samples out of the same list but

different bins do not interfere with each other given their footprint.

When subdividing a bin the lists are effectively turned into bins and the samples are

partitioned into eight smaller lists according to the same predefined order as before.

The subdivision stops if a maximum number of bins has been reached or no more bins

can be subdivided. Figure 4.6 shows the main principle of the subdivision process where

the color coded voxels represent the individual lists. Note that two voxels with the same

color never touch so that the LCM of samples do not interfere with each other.

4.6 Graph Cut

As done by Hornung and Kobbelt [2006b] we apply a graph cut to find the optimal sur-

face. The layout of the graph cut is however more similar to Boykov and Kolmogorov

[2003] since we define a graph node per voxel and edges representing the 26-neighborhood

(inside the set of crust voxels Vcrust). Note that at this stage we compute the graph cut

on a certain resolution only and do not extract the surface explicitly. The edge weights

wi in the graph are derived from the GCM values Γ (x i) in the center of the voxel, edge,

or face, respectively. Since the optimal surface should maximize the global confidence

Γ we want to set small edge weights for regions with high confidence and vice versa. A

straightforward way to implement this would be

wi = 1−
Γ (x i)
Γmax

+ a with Γmax =max
x∈R3

Γ (x) (4.5)

such that all edge weights lie in [a, 1+ a], where a controls the surface tension. Note,

that scaling all edge weights with a constant factor does not change the resulting set of

cut edges. As the global maximum Γmax can be arbitrarily large, local fluctuation of the

GCM might be vanishingly small in relation to Γmax (see Figure 4.7 left). Since the graph

cut also minimizes the surface area while maximizing for confidence, the edge weights

need to have sufficient local variation to avoid that the graph cut only minimizes the

number of cut edges and thus the surface area (shrinking bias). In order to cope with

that, we apply a technique similar to an adaptive histogram equalization which we call

local GCM balancing. Instead of using the global maximum in Equation 4.5 we replace
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Figure 4.7: The GCM values can be arbitrarily large leading to near-constant edge weights in large regions

of the volume (left). Our local GCM balancing compensates for that allowing the final graph cut to find the

correct surface (right).

it with the weighted local maximum (LM) of the GCM at point x . We compute ΓLM (x)
by

ΓLM (x) =max
y∈R3

�

W

�

‖x − y‖
2−` · Bed ge

�

· Γ (y)
�

(4.6)

whereBed ge is the edge length of the bounding cube. We employ a weighting function

W to define the scope in which the maximum is computed. We define W as

W (d) =







1−
�

d
1
2D

�c
if d ≤ 1

2D

0 if d > 1
2D

(4.7)

where D is the filter diameter in voxels. We used D = 11 and c = 4 in all our experi-

ments. W is continuous in order to ensure continuity of the GCM. See Figure 4.7 (right)

to see the effect of local GCM balancing.

After the graph cut, each voxel corner on octree level ` is either labeled interior or

exterior which we can think of as binary signed distance values. In particular, since the

subdivision from level ` − 1 is regular we have labels for all voxel corners, the voxel

center, the center of each face and edge. This will be exploited during final surface

extraction in the next Section.

4.7 Multi-Resolution Surface Reconstruction

Due to memory limitations, it is often impossible to reconstruct the whole scene on a

resolution high enough to capture all sampled details. An adaptive multi-resolution
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a) b)

c) d) e)

Figure 4.8: Tetrahedralization of the multi-resolution grid. We connect a vertex (a) with the dual vertex of

an edge (b), add a face vertex (c), and form a tetrahedron by adding the dual vertex of a cell (d). Adaptive

triangulation of the multi-resolution grid (e). Tetrahedralization scheme and figures similar to Manson and

Schaefer [2010].

approach which reconstructs different scene regions on adaptive resolutions depending

on the sample footprints is therefore desirable. During the GCM sampling on octree

level ` we marked voxels that need to be processed on higher resolution. After the

graph cut we dilate this set of voxels several times and regularly subdivide the resulting

voxel set to obtain a new crust V `+1
crust . The crust segmentation can be obtained from

the graph cut on level `, as this cut effectively assigns each voxel corner a label interior

or exterior. For boundary voxel corners in V `+1
crust that coincide with voxel corners on

level ` we simply transfer the label. This ensures a continuous reconstruction across

level boundaries. For voxel corners that lie on a parent voxel edge or face, i.e., between

two or four voxel corners on level `, we obtain the conform label of the surrounding

voxel corners or we leave it unknown. The new crust V `+1
crust is now ready for graph cut

optimization on level ` + 1 (see Figure 4.3d+e). For voxel corners that coincide with

voxel corners on the lower resolution the resulting labeling on level `+1 overwrites the

labeling obtained before.

The recursive refinement stops if the maximum level `max is reached or no voxels are

marked for further processing. Due to our refinement scheme the last subdivision in the

octree is always regular, i.e., all eight octants are present. The graph cuts define the

voxel corners of the finest voxels as interior or exterior.
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4.7.1 Final Surface Extraction

To extract the final surface we apply a combination of marching cubes and marching

tetrahedra. The decision is made voxel-by-voxel one level above the finest level. Note

that the last subdivision step is always regular. If the voxel is single-resolution containing

27 labeled voxel corners, we apply classical marching cubes to all eight child voxels. We

interpret the voxel corner labels as binary signed distance values. If the voxel is multi-

resolution, i.e., there is a change in resolution present affecting at least one of the cube

edges or faces, we apply the tetrahedralization scheme by Manson and Schaefer [2010]
(see Figure 4.8). We hereby place dual vertices at voxel corners and at the centers

of edges, faces, and voxels. These positions coincide with voxel corners of the finest

levels providing the binary signed distance values needed for the subsequent marching

tetrahedra. Now, we only need to take care of voxel faces where triangles produced

by marching cubes and triangles produced by marching tetrahedra meet. It is possible

that T-vertices were created here but this can be easily fixed using an edge flip or vertex

collapse. The final multi-resolution surface mesh is watertight and has different sized

triangles depending on the details present in the corresponding areas.

4.8 Results

We will now present results of our method on different data sets (see Table 4.1). The

source code is publicly available on the project page1. Our experiments were performed

on a 2.7 GHz AMD Opteron with eight quad-core processors and 256GB RAM. All input

data was generated from images using a robust structure-from-motion system [Snavely

et al. 2008] and an implementation of a recent MVS algorithm [Goesele et al. 2007]
applied to down-scaled images. We used all reconstructed points from all depth maps

as input samples for our method. The footprint size of a sample is computed as the

diameter of a sphere around the sample’s 3D position whose projected diameter in the

image equals the pixel spacing. For all graph cuts involved we used the publicly available

library2 by Boykov and Kolmogorov [2004].
The Temple is a standard data set provided by the Middlebury Multi-View Stereo Eval-

uation Project [Seitz et al. 2013] and consists of 312 images showing a temple figurine.

This data set can be considered to be single-resolution since all input images have the

same resolution and distance to the object, resulting in the complete temple surface to

be reconstructed on the same octree level in our algorithm. The reconstruction qual-

1http://www.gris.tu-darmstadt.de/projects/multires-surface-recon/
2http://vision.csd.uwo.ca/code/
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data set
sample vertices octree comp. rel. variation

points level time in footprint

Temple 22 M 0.5M 9 1 h 1.5

Kopernikus 32 M 3.3M 10–12 1.5 h 38

Stone 43 M 4.3M 8–14 4.5 h 75

Citywall 80 M 8.6M 11–16 6 h 209

Table 4.1: The data sets we used and the number of sample points, the number of vertices in the resulting

meshes, octree levels used for surface extraction, computation time and relative variation in footprint size.

Figure 4.9: An input image of the Temple data set (left) and a rendered view of our reconstructed model

(right).
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ity (Figure 4.9) is comparable to other state-of-the-art methods. We submitted recon-

structed models created for the VMV paper [Mücke et al. 2011] for the TempleFull and

the TempleRing variant (using only a subset of 47 images as input to the pipeline) to

the evaluation. For TempleFull we achieved the best accuracy (0.36 mm, 99.7 % com-

pleteness), for the TempleRing we achieved 0.46 mm at 99.1 % completeness.

The stone data set consists of 117 views showing a region around a portal where

one characteristic stone in the wall is photographed from a close distance leading to

high-resolution sample points in this region. Overall we have a factor of 75 of variation

in footprint sizes. In Figure 4.10 we compare our reconstruction with Poisson surface

reconstruction [Kazhdan et al. 2006]. In the overall view our reconstruction looks sig-

nificantly better, especially on the ground where our method results in less noise. In the

close-up view also Poisson surface reconstruction shows the fine details. Due to the fact

that the sampling density is much higher around the particular stone Poisson surface

reconstruction used smaller triangles for the reconstruction.

The Citywall data set consists of 487 images showing a large area around a city wall.

The wall is sampled with medium resolution, two regions though are sampled with very

high resolution: the fountain in the middle and a small sculpture of a city to the left

(Figure 4.11 top). Our multi-resolution method is able to reconstruct even fine details

in the large scene where sample footprints differ up to a factor of 209. In consequence,

the reconstruction spans six octree levels and detailed regions are triangulated about

32 times finer than low-resolution regions. The middle image of Figure 4.11 shows the

entire mesh whereas the bottom images show close-ups of the highly detailed surface re-

gions. One can even recognize some windows of the small buildings in the reconstructed

geometry.

The Kopernikus data set (Figure 4.12) consists of 334 images showing a statue with

a man and a women. The underlying surface geometry is particularly challenging due

to its high genus. The data set is also multi-resolution in the sense that we took close-

up views of the area around the hands. We compare our reconstruction against VRIP

[Curless and Levoy 1996] and the depth map fusion by Fuhrmann and Goesele [2011]
(Figure 4.13). It is clearly visible that our model contains significantly less noise and

shows no clutter around the real surface. Also, the complex topology of the object is

captured very well in comparison to the other methods. However, in regions with low-

resolution geometry staircase artifacts are visible due to the surface extraction from a

binary signed distance field. This is also visible in the wireframe rendering in Figure 4.12

(bottom right) showing the dense triangulation of the women’s face versus the coarse

triangulation of the men’s upper body.
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Our results Poisson surface reconstruction

Figure 4.10: Top: Example input images of the stone data set. Middle + Bottom: Comparison of our

reconstruction (left) with Poisson surface reconstruction [Kazhdan et al. 2006] (right). Although Poisson

surface reconstruction does not take footprints into account the reconstruction shows fine details due to

the higher sampling density. However, our surface shows significantly less noise and clutter.

37



4 HIERARCHICAL SURFACE RECONSTRUCTION

Figure 4.11: Top: Two input images of the Citywall data set. Middle: Entire model (color indicates the

octree level, red is highest). Bottom: Close-ups of the two detailed regions.
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Figure 4.12: Two input images of the Kopernikus data set, the complete reconstructed model from two

perspectives and a close-up of the wireframe showing the adaptively triangulated mesh.
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Our results Depth map fusion VRIP

Figure 4.13: Comparison of our reconstruction (left) with depth map fusion [Fuhrmann and Goesele 2011]
(middle) and VRIP [Curless and Levoy 1996] (right).

4.9 Discussion

We presented a robust surface reconstruction algorithm that works on general input

data. To our knowledge, except for the concurrent work of Fuhrmann and Goesele

[2011], we are the first to take the footprint of a sample point into account during re-

construction. Together with a robust crust computation and an adaptive multi-resolution

reconstruction approach we are able to reconstruct fine detail in large-scale scenes. We

presented results comparable to state-of-the-art techniques on a benchmark data set

and proved our superiority on challenging large-scale outdoor data sets and objects

with complex topology. The triangle meshes are manifold and watertight and show an

adaptive triangulation with smaller triangles in regions with higher details.

Future work includes to explore other ways to distribute a sample point’s confidence

over the volume, e.g., taking the direction to the sensor into account. This allows for

better modeling the generally anisotropic error present in reconstructed depth maps.
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A widely used technique to recover a 3D surface from photographs is patch-based

(multi-view) stereo reconstruction. Current methods are able to reproduce fine

surface details. They are however limited by the sampling density and the patch size

used for reconstruction. We show that there is a systematic error in the reconstruction

depending on the details in the unknown surface (frequencies) and the reconstruction

resolution. For this purpose we present a theoretical analysis of patch-based depth re-

construction. We prove that our model of the reconstruction process yields a linear

system, allowing us to apply the transfer (or system) function concept. We derive the

modulation transfer function theoretically and validate it experimentally on synthetic

examples using rendered images as well as on photographs of a 3D test target. Our
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5 MODULATION TRANSFER FUNCTION OF PATCH-BASED STEREO SYSTEMS

analysis proves that there is a significant but predictable amplitude loss in reconstruc-

tions of fine scale details. In a first experiment on real-world data we show how this can

be compensated for within the limits of noise and reconstruction accuracy by an inverse

transfer function in frequency space.

5.1 Introduction

Patch-based (multi-view) stereo reconstruction [Bradley et al. 2008,Furukawa and Ponce

2010,Goesele et al. 2007,Habbecke and Kobbelt 2007,Jancosek et al. 2009] is a widely

used technique to recover a 3D surface from photographs. Current methods achieve

remarkable accuracy and are able to capture even fine geometric details [Seitz et al.

2006]. Their ability to faithfully reconstruct details is obviously limited by two facts:

the sampling density of the algorithm and the size of the patch used for reconstruction

(both of these are typically coupled to the resolution of the input images). To give a

concrete example: a planar surface modulated with fine scale detail will eventually be

reconstructed as a plane as image resolution decreases and patch size increases. This is

illustrated in Figure 5.1 for a 1D signal.

We are interested in the geometry reconstructed by a patch-based algorithm for details

that are roughly at the scale of the patch size. As also illustrated in Figure 5.1, such

details are reconstructed with much lower amplitude and can even be inverted, so that

valleys are reconstructed as peaks and vice versa. This behavior is not only contradicting

our standard (or naïve) intuition about the properties of patch-based reconstruction, it

is also in stark contrast to the assumptions made by most fusion techniques used to

reconstruct a single surface from a set of reconstructed points or depth maps. These

algorithms typically assume that the reconstructed points are samples of the true surface

disturbed by zero-mean Gaussian noise [Curless and Levoy 1996, Kazhdan et al. 2006,

Zach et al. 2007]. Different scales or sampling densities are sometimes represented

by lower confidences (or large variances in the noise model) and often enough just

ignored. This implies that a reliable measurement of the true surface can be obtained

by just averaging enough surface samples as this will cancel out noise.

In this chapter, we show that there is a systematic error in the reconstruction de-

pending on the details in the unknown surface (frequencies) and the reconstruction

resolution. We show that even a “perfect” patch-based reconstruction algorithm will

result in different reconstructed geometry of the same scene if used at different scales

(e.g., varying resolution of input images or changing patch size). To our knowledge this

fact is not modeled in any existing patch-based reconstruction algorithm. We provide
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original surface reconstruction

wavelength
5 2 3

2 1
2
3

1
2unit: patch width

relative amplitude
0.94 0.64 0.41 0 -0.21 0

of reconstruction

Figure 5.1: Predicted reconstruction of a sinusoidal surface with different patch widths. Top: The amplitude

of the reconstruction varies drastically with the width of the patch used for reconstruction. In some cases,

the signal is even inverted. The bold line marks the optimal patch position and orientation. Bottom: Table

with predicted amplitude loss depending on patch width relative to signal wave length. Bold columns mark

the cases drawn above.

a model that predicts how amplitudes of different frequencies in the incoming signal

are reproduced. The model is motivated by the concept of optical transfer functions

(OTF) [Szeliski 2010, Williams 1999] typically applied in the context of 2D image pro-

cessing. It allows us theoretically to invert this process, in practice however only within

the limits of noise and reconstruction accuracy.

The remainder of this chapter is organized as follows: We first review related work

(Section 5.2) before we derive and validate our model in 2D using synthetic examples

and a real-world test target (Section 5.3). We then extend our theory to 3D (Section 5.4)

and show its relevance on a real life application. Finally, we discuss our results (Sec-

tion 5.5).

5.2 Related Work

The analysis of different scale geometry reconstruction using patch-based stereo tech-

niques has been neglected so far. For an overview and classification of multi-view

stereo we refer to the recent survey [Seitz et al. 2006] and constantly updated bench-

mark [Seitz et al. 2013]. Key elements in our work build upon signal processing, optical

transfer functions, and multi-scale surface representation. Existing work of the latter
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5 MODULATION TRANSFER FUNCTION OF PATCH-BASED STEREO SYSTEMS

two areas will be discussed in the following.

The optical transfer function (OTF) is a well known concept to describe how details are

reproduced by an imaging system [Williams 1999]. It relies on the assumption of a lin-

ear system and describes how amplitude and phase change for different frequencies in

the image using modulation and phase transfer functions, respectively. In our work, we

validate that the linearity assumption holds and estimate the modulation transfer func-

tion of a patch-based stereo system. The OTF can be estimated in various ways [Williams

1999]. For sampled imaging systems, Reichenbach et al. [1991] introduced the knife-

edge technique. Multiple scan lines are first registered to create a super-resolution edge

profile and to suppress noise before the frequency space behavior is analyzed. Goesele

et al. [2003] applied this technique to estimate the modulation transfer function of a

3D range scanner. They capture a slanted edge and fit two planes to the measurements

to create a super-resolution edge profile. The Fourier transform of the profile is then

compared to that of an ideal edge.

Kobbelt et al. [1998] define multi-scale surface representations and encode changes

between levels using normal displacements. They use fairing operators to iteratively

smooth a mesh and apply the results in the context of multi-scale surface editing. In-

spired by Lindeberg’s scale-space theory [Lindeberg 1994], Pauly et al. [2006] present

a point-based multi-scale representation scheme using approximate geometric low-pass

filtering and a projection operator to encode the different levels of detail. They dis-

cuss two approximate low-pass filters based on diffusion and least squares filtering, re-

spectively. Both can lead to deformations such as surface shrinkage. They identify the

problem that no global, distortion-free parameterization exists for manifolds in general.

In this chapter, we draw the connection between multi-scale surface representations

and patch-based stereo reconstruction. We rely on the transfer function concept and the

analysis techniques presented above, allowing us to demonstrate the effects in theory

and practice. Using the simplifying assumption that the geometry can be represented as

a height field, we are able to apply Fourier analysis to the reconstructed geometry.

5.3 Modeling the Reconstruction Process

The common strategy in patch-based stereo methods is to locally fit a planar patch

to the unknown geometry that is photo-consistent with one or more other views. A

typical example for measuring photo-consistency is the normalized cross-correlation

(NCC) of points on the patch projected in other views. The final surface is represented

by the (triangulated) central patch points [Bradley et al. 2008, Furukawa and Ponce
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f(x)

x∗x∗− δ x∗+ δ

Figure 5.2: Fitting a planar patch (line segment) to the geometry for each point x∗.

2010,Habbecke and Kobbelt 2007] or the points are merged into a distance field [Cur-

less and Levoy 1996, Fuhrmann and Goesele 2011, Zach et al. 2007]. In the following,

we will develop a theoretical model for fitting a planar patch to the geometry, first in 2D

and later in 3D (Section 5.4).

We assume that the geometry can be described as a height field z = f (x) (i.e., the

whole surface is visible from an orthographic camera aimed perpendicular to the height

field plane). In order to obtain the reconstruction ẑ = f̂ (x) at position x∗ we fit a patch

(line segment) with an extent of 2δ centered around x∗ to the geometry. Figure 5.2

visualizes the idea for a 2D geometry. We represent the line segment by two parameters

m, n and model the fitting process as optimizing for least squares distance to the true

geometry by minimizing the following energy

E(m, n, x∗) =

∫ x∗+δ

x∗−δ
(mx + n− f (x))2d x . (5.1)

The reconstructed surface height at x∗ is then given through the optimal parameters

m, n by ẑ = mx∗ + n. Note that we measure the patch extent along the x-axis in world

coordinates and not in pixels as typically done in stereo. In the remainder of the chapter

we will use the term patch width for describing a patch of extent 2δ. The parameter δ

also depends on image resolution, surface distance to the camera, and the camera’s

focal length. The actual patch size depends however on the slope (or orientation) of the

patch. Intuitively, a smaller δ allows to capture fine details whereas a larger δ yields

a smoothed surface. Image resolution often defines the sampling frequency equal to

the distance between two consecutive points x∗1 and x∗2 where we fit a patch. In the
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5 MODULATION TRANSFER FUNCTION OF PATCH-BASED STEREO SYSTEMS

following, we will deliberately disregard image resolution and think of reconstructing

the geometry as fitting a patch continuously at every point x∗.

5.3.1 Theoretical Results for a Sine Wave

We start by analyzing the simplest geometry in the sense of frequency behavior, a sine

wave f (x) = a sin(ωx) with amplitude a and frequency ω. To determine the recon-

structed signal according to our model, we need to minimize E by finding the roots of

the partial derivatives

∂mE = 2

∫ x∗+δ

x∗−δ
x(mx + n− a sin(ωx))d x

!
= 0 (5.2)

∂nE = 2

∫ x∗+δ

x∗−δ
(mx + n− a sin(ωx))d x

!
= 0. (5.3)

Solving the equations for m and n results in

m=
3a cos(ωx∗)(sin(ωδ)−ωδ cos(ωδ))

ω2δ3
(5.4)

n=
aδ2ω sin(ωx∗) sin(ωδ)

ω2δ3

+
3ax∗ cos(ωx∗)(ωδ cos(ωδ)− sin(ωδ))

ω2δ3
(5.5)

Inserting this in ẑ = mx∗ + n, the reconstruction is

f̂ (x∗) =
a sin(ωδ) sin(ωx∗)

ωδ
= a sinc(ωδ) sin(ωx∗). (5.6)

This is an interesting result because frequency and phase of the sine are preserved for

arbitrary patch width and frequency; only the amplitude is scaled by sinc(ωδ) confirm-

ing one part of our linear system assumption. Note that for certain combinationsωδ the

signal can even be inverted so that valleys become peaks and vice versa. In the following

we will corroborate this result experimentally.

5.3.2 Experimental Results for a Sine Wave

We first validate our results on synthetic data sets, rendered using the PBRT system1.

This has the advantage that registration is perfect and all observed effects are due to

photo-consistency optimization alone. As test target, we create a mesh representing a

sine wave in the x , y−plane with z(x , y) = a sin(ωx). The mesh is observed by five

1http://www.pbrt.org
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Figure 5.3: Left: Screenshot of the textured meshes used for our synthetic experiments. Right: Sample

multi-view stereo reconstructions.

perspective cameras: One central camera points orthogonal to the x , y−plane and the

other cameras are equally distributed around it with 15° parallax. A random texture with

structure on all scales is mapped onto the geometry (see Figure 5.3(left)). We render

views of the geometry using a variety of image resolutions. For the highest resolution we

also create a ground truth depth map. For reconstruction, we run a patch optimization

taken from an existing multi-view stereo system [Goesele et al. 2007, Sect. 6.2] using

the central camera as reference view and the surrounding cameras as neighbor views.

For each pixel in the central camera the optimization is initialized with a fronto-parallel

patch at depth values associated with that pixel in the highest-resolution ground truth

depth map. The optimized patch with highest confidence (based on NCC) determines

the depth at the current pixel. See Figure 5.3(right) for example reconstructions for

images of resolution 256 × 256 with image patch size 5 × 5 pixel. Note the regular

structure introduced by the strong texture gradients most notably in the zigzag shape.

For data analysis, we fit the parameters amplitude â, frequency ω̂, phase p̂ and off-

set ô of the sine function z = â sin(ω̂x + p̂) + ô to all reconstructed 3D points using
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Levenberg-Marquardt optimization2. To obtain a super-resolution sampling of the sine

wave along the x-axis the camera’s up-vector is slightly tilted against the y-axis (about

5°) similar to the knife edge technique [Reichenbach et al. 1991]. In our experiments

we use two sine waves of different frequency (ω = 32 and ω = 64). We vary the patch

width parameter δ by using various image resolution as well as image patch sizes of

5×5 and 7×7 pixels. Figure 5.4 shows that the reconstructed relative amplitudes, rel-

ative frequencies, phases, and offsets match very well with the predicted values. The

observed differences are primarily caused by imperfections in the reconstruction pro-

cess, in particular the interaction between the model texture and the photo-consistency

of the patch.

5.3.3 Stereo Transfer Function

Ideally, we can express the reconstruction process using a transfer (or system) function

representing the relation between input and output in terms of spatial frequencies. This

concept is common in the imaging domain (optical transfer function) [Szeliski 2010,

Williams 1999] for describing the capability of showing fine details and the trade-off

between blurred structure and aliasing. The optical transfer function is actually the

Fourier transform of the point spread function. However, the transfer function concept is

only applicable to linear systems featuring the principle of superposition and stationarity.

The latter is given for our model since the reconstruction is lateral shift invariant. What

remains to check is the principle of superposition or additivity. We show that if the

geometry is the sum of different frequency components the reconstruction is the sum of

its separate contributions. For this purpose we represent f by a complete Fourier series

f (x) =
a0

2
+
∞
∑

k=1

(ak cos(kx) + bk sin(kx)) . (5.7)

Again, we need to find m and n, so that on the interval I = [x∗ − δ, x∗ + δ] the energy

E(m, n, x∗) is minimized:

E(m, n, x∗) =

∫

I
(mx + n− f (x))2 d x . (5.8)

2http://www.ics.forth.gr/~lourakis/levmar/
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Figure 5.4: Resulting relative amplitude, relative frequency, phase, and offset of the reconstructed sine

wave for different wavelengths and patch widths.
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This implies taking partial derivatives with respect to m and n and finding the roots of

these equations:

∂mE(m, n, x∗) =

∫

I
2x (mx + n− f (x)) d x

!
= 0

∂nE(m, n, x∗) =

∫

I
2 (mx + n− f (x)) d x

!
= 0. (5.9)

This yields the following solution for Equation 5.9:

Em = nx2 +
2
3

mx3 −
1
2

a0 x2 +
∞
∑

k=1

2
k2
(−ak cos(kx)

−bk sin(kx)− k yak sin(kx) + k y bk cos(kx))

En = 2nx +mx2 − xa0

−
∞
∑

k=1

2
k
(ak sin(kx)− bk cos(kx)) . (5.10)

Inserting the boundaries of the interval I (ignoring the superscript ∗ for typographic

reasons) in Equation 5.10 yields

0= 4nxδ+ 4mx2δ+
4
3

mδ3 − 2xδa0 +
∞
∑

k=1

4
k2
(

−xkak cos(kx) sin(kδ)−δkak sin(kx) cos(kδ)

+ ak sin(kx) sin(kδ)− xkbk sin(kx) sin(kδ)

+δkbk cos(kx) cos(kδ) −bk cos(kx) sin(kδ))

0=
�

− 4δmx − 4δn+ 2δa0+
∞
∑

k=1

4
k

sin(kδ) (ak cos(kx) + bk sin(kx))
�

(5.11)

These two equations are linear in m and n and can be easily solved. Moreover, from

Equation 5.11 one obtains the expression for the solution mx + n (the reconstructed

geometry) directly as

f̂ (x) =
a0

2
+
∞
∑

k=1

sinc(kδ) (ak cos(kx) + bk sin(kx)) . (5.12)

Thus, the principle of superposition is fulfilled and our model of patch-based stereo

reconstruction is a linear system. This allows us to formulate the relationship between

reconstructed and real geometry as

F̂δ(ω) =MTFδ(ω) · F(ω) = sinc(ωδ) · F(ω) (5.13)
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where F̂δ and F are the Fourier transforms of the reconstructed (using patch width 2δ)

and real geometry. MTFδ(ω) is the modulation transfer function. Note that there is a

difference to the traditional OTF. In our case the MTF can also be negative, modeling

an inversion of amplitudes and the geometry, respectively. This allows us to completely

remove the phase transfer function. In the next section, we will validate this result

experimentally.

5.3.4 Experiments on a Slanted Edge

To experimentally validate Equation 5.13 we reconstruct a zigzag shape whose Fourier

transform contains frequencies on all scales due to its sharp edges. Apart from the

underlying geometry which is a zigzag shape (constant along y-axis) with edges of about

126° we use the same setup as in Section 5.3.2. Again, we just look at the (x , z) pairs

of all reconstructed points. The slanted edge (implemented by the slightly tilted up-

vector) gives us a fine sampling of the edge along the x-axis. We chose an interval

[xmin, xmax] such that it captures exactly one period of the zigzag shape and sample all

points therein into 2n bins so that the Discrete Fourier Transform (DFT) can be applied.

In the Fourier transform of the ground truth profile every second coefficient is zero so we

only use every second coefficient to compute the MTF, where the different resolutions

lead to various patch widths 2δ (see Figure 5.5 top, middle). We can also measure how

the amplitude is altered according to the product of frequency ω and δ (see Figure 5.5

bottom). Up to ωδ ≈ 1.5 the measured data matches very well with the theoretically

predicted result. Beyond that point, the MTF still follows the theoretical prediction

sinc(ωδ) but is masked by noise introduced by the reconstruction process.

5.3.5 Results on Real-World Data

Our goal is to analyze an object of simple and known 1D geometry to validate our theory

with real world data. We therefore created a test target using 3D printing technology

(see Figure 5.6). It consists of two periods of a sine wave with wavelength 62.8 mm

and amplitude 10.0 mm and an edge with an angle of about 126°. Both are spread over

188.5 mm in width. To provide structure, we mapped the same texture as used in our

synthetic experiments on the entire surface. This model was printed using a ZPrinter®

650 which has a printing accuracy of about 0.1 mm according to manufacturer speci-

fications. For our experiments, we took photos with a digital SLR (one central photo

looking orthogonal onto the object and several surrounding photos) with three differ-

ent average camera distances to the object (near: 95 cm, middle: 145 cm, far: 280 cm).
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Figure 5.5: Top: Imaginary part of DFT coefficients for the zigzag profile. Middle: MTF samples for different

patch widths 2δ as a function of ω. Bottom: MTF as a function of the product ωδ.
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For each set of photos we perform a calibration using structure-from-motion [Snavely

et al. 2008]. We then apply a multi-view stereo algorithm [Goesele et al. 2007] with

patch-based optimization to compute a depth value for each pixel in the central views.

Hereby, we repetitively rescale the images in order to get depth maps of different resolu-

tions and additionally run the reconstruction algorithm with two different image patch

sizes (5×5 and 7×7 pixel).

To analyze the amplitude loss on the sine wave, we first determine an optimal trans-

form aligning the reconstruction with the x , y-plane. This optimal transformation is

applied to all the different resolution depth maps to which we then fit in a second step

a sine with amplitude, frequency, phase, and offset as in our synthetic experiments. Fig-

ure 5.7 (top) shows the amplitude loss with growing ωδ. The results closely match the

theoretical prediction. In the second experiment, we analyze the reconstructed edge of

the test target using an approach very similar to Goesele et al. [Goesele et al. 2003].
We first fit two least squares planes to the (highest resolution) reconstructed points on

both sides of the edge and rotate the scan such that the intersection line coincides with

the y-axis and the edge profile is symmetric to the y, z−plane. We then bin the recon-

structed points ((x , z)-pairs) into 257 bins along the x-axis, move the ends to z = 0 and

multiply with a Blackman window. Then each profile is rotated around one end point

to continue it periodically, dropping the first and last bin and thus resulting in 512 bins.

We apply the Fourier transform to each profile and compare it to the Fourier transform

of a perfect edge profile. Figure 5.7 (bottom) shows the sampled MTF values for differ-

ent δ. The result shows significantly more noise and outliers than on the synthetic data

reflecting errors in the registration, wrongly matched patches due to far-off start points

and summed up errors during region growing.

5.4 Moving from 1D to 2D Functions

So far, we described the theory for one-dimensional functions and validated it using

geometry that is constant in one dimension. Naturally, real-world geometry rarely con-

forms to such a constrained model. We therefore show how our theory extends to height

fields parameterized over a 2D plane, i.e., surfaces that can be described by z = f (x , y).

5.4.1 Theory for a Height Field over a 2D Plane

Clearly, the same procedure can be applied in 2D. Let

P = mx x +my y + n (5.14)
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Figure 5.6: Left: Rendering of the test target. Middle/Right: Side and top view of the manufactured test

target.
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Figure 5.7: Results using the manufactured test target. Top: Amplitude loss on the sine wave. Bottom:

MTF samples using the edge.
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be the solution to the patch that we want to compute around a point (x , y) spanned by

I = [x−δ, x+δ]×[y−ε, y+ε]. Note that this covers the general case of a rectangular

patch instead of the usual square patch. The signal f (x , y) can be expressed in terms

of a sine and cosine series or, alternatively, using complex numbers by

f (x , y) =
∞
∑

j=0

∞
∑

k=0

α j,kei( j x+k y) (5.15)

Again we want to find the minimum of

E =
∫

y

∫

x(P − f )2 d x d y (5.16)

for the parameters mx , my , and n. Taking derivatives with respect to these parameters

and solving yields

Emx
= nx2 y +

2
3

mx x3 y +
1
2

my x2 y2 +
∑

j,k

α j,kei( j x+k y)
�

2i
j2k
+

2x
jk

�

(5.17)

Emy
= nx y2 +

1
2

mx x2 y2 +
2
3

my x y3 +
∑

j,k

α j,kei( j x+k y)
�

2i
jk2
+

2y
jk

�

(5.18)

En = 2nx y +mx x2 y +my x y2 +
∑

j,k

α j,kei( j x+k y) 2
jk

. (5.19)

On the given patch I we get

Emx
= nx +mx x2 +my x y +

1
3

mxδ
2

+
∑

j,k

α j,kei( j x+k y) sin(kε) ·
�

i
jkε

cos( jδ)− sin( jδ)(
i

j2kδε
+

x
jkδε

)
�

(5.20)

Emy
= ny +mx x y +my y2 +

1
3

myε
2

+
∑

j,k

α j,kei( j x+k y) sin( jδ) ·
�

i
jkδ

cos(kε)− sin(kε)(
i

jk2δε
+

y
jkδε

)
�

(5.21)

En = n+mx x +my y

−
∑

j,k

α j,kei( j x+k y) 1
jkδε

sin( jδ) sin(kε) (5.22)
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Figure 5.8: Left: Screenshot of the textured mesh showing the 2D sine. Right: Example reconstruction.

We can solve these linear equations in mx , my , and n. From En = 0 one can directly

derive the solution for our patch:

P = mx x +my y + n

=
∑

j,k

α j,kei( j x+k y) 1
jkδε

sin( jδ) sin(kε)

=
∑

j,k

α j,kei( j x+k y) sinc( jδ) sinc(kε). (5.23)

We see that the amplitude loss is a product of two sinc functions which is the Fourier

transform of a box filter.

5.4.2 Results on Synthetic 2D Sine

We will substantiate the theoretical result on geometry containing only one frequency

along each dimension and construct a height field with z = 1
ω sin(ωx) sin(ωy). Fig-

ure 5.8 shows a rendering of the textured mesh (left) as well as an example multi-view

stereo reconstruction for an image of resolution 256× 256 pixel with image patch size

5× 5 pixel.

Apart from this geometry, the setup is equivalent to that in Sections 5.3.2 and 5.3.4.

We optimize for the six parameters amplitude â, frequencies ω̂x , ω̂y , phases p̂x , p̂y , and

offset ô such that z = â sin(ω̂x x + p̂x) sin(ω̂y y + p̂y) + ô holds for the reconstructed

3D points. According to the theoretical result from Equation ??, the reconstructed am-

plitude should be scaled by sinc2(ωδ) compared to the original amplitude. Figure 5.9

shows that the experimentally obtained scaling factors match the expected values very

well. The estimated frequencies, phase shifts, and offsets are comparable to the 1D

experiments (similar to Figure 5.4).
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diction in 2D. Middle: Relative frequencies. Bottom: Relative phase and offset.
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Figure 5.10: Left: Sample image of the lion head sculpture. Right: Low-resolution VRIP reconstruction.

5.4.3 Application to Real-World Example

After presenting all the theoretical results and experiments validating the results in prac-

tice, we want to exploit the new insights within a real-world application. In the follow-

ing we enhance a single-scale multi-view stereo reconstruction. For that purpose we

create a 3D model of a lion head sculpture using the following pipeline. We register

225 photographs [Snavely et al. 2008] of a lion head sculpture, reconstruct a depth

map for a subsets of 41 views with image patch size of 7×7 pixels [Goesele et al. 2007],
and merge the depth maps into a global model using VRIP [Curless and Levoy 1996]
(see Figure 5.10). Hereby, we create two different versions, a low-resolution model us-

ing downscaled photos (halved image dimensions) for depth map reconstruction and a

high-resolution model using full image resolution. We convert a cut-out of the models

into a height field and smoothly interpolate to a constant value and zero gradient at the

borders minimizing second order derivatives. This leads to a periodical signal which is

the input to a 2D Fourier transform. For all frequencies, we compute the inverse MTF

using our model and scale up the frequencies accordingly to invert the amplitude loss

during reconstruction. Since our experiments showed significant noise and thus devia-

tion from the ideal MTF for the real-world test target, we clamp the inverse MTF. We use

M T Fδ(ω)−1 =min(0.6−1, sinc(ωδ)−1) (Figure 5.11). We also apply a smooth low-pass

filter that suppresses high-frequencies where the patch size is smaller than the wave-

length. Finally, the inverse Fourier transform is performed. Figures 5.12 and 5.13 show

how details are emphasized through the inversion of our stereo transfer function. Dif-

ference images in Figure 5.14 show a quantitative comparison where some regions are
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Figure 5.11: Slice of the 2D inverse MTF and of the low-pass filter used for the lion head experiment.

improved whereas others become worse.

5.5 Discussion

We introduce a theoretical model of patch-based stereo, modeling the reconstruction

process as a linear system, and validate it on synthetic and real input using an exist-

ing multi-view stereo system. We demonstrate that there is a significant amplitude loss

and even an inversion of amplitudes which has not been modeled before in any of the

existing reconstruction pipelines. The real-world application example gives a first clue

of how this could improve the reconstruction quality in a practical system. Inevitably,

the experiments show some limitations. First, modeling the reconstruction process as

finding the depth and orientation of a patch that minimizes the least squares distance to

the true surface leaves out the complex interaction between the surface texture and the

reconstruction. This may yield artifacts when the MTF is inverted. Second, the noise

introduced in the reconstructions may of course limit the ability to invert the ampli-

tude loss. Finally, practical applicability is limited because of the nature of the global

Fourier method causing problems with depth discontinuities (occlusion), finite image

size (periodicity assumption), and incomplete reconstructions. The lion head example

is therefore only a starting point of how geometry can be reconstructed faithfully using

our amplitude loss compensation.
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a) b) c) d) e)

Figure 5.12: Results on a height field created from the lion head VRIP model. a) Low-resolution recon-

struction. b) Removed high-frequency noise. c) Inverted amplitude loss up to a certain scale. d) Smoothed

high-resolution reconstruction. e) High-resolution reconstruction.

Figure 5.13: From left to right: Magnification of a region around the left eye in Figure 5.12 b), c), and d),

clearly showing how our proposed method improves the details, e.g., of the eyelid. See Figure 5.14 for a

quantitative visualization of the differences.

Figure 5.14: Absolute depth differences of results shown in Figure 5.13 left/middle compared to Figure

5.13 right. Note the changes around the eyelid and the nose.
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SURFACE reconstruction using patch-based multi-view stereo commonly assumes that

the underlying surface is locally planar. This is typically not true so that least

squares fitting of a planar patch leads to systematic errors which are of particular impor-

tance for multi-scale surface reconstruction. In the previous chapter we determined the

modulation transfer function of a classical patch-based stereo system. Our key insight

was that the reconstructed surface is a box-filtered version of the original surface. Since

the box filter is not a true low-pass filter this causes high-frequency artifacts. In this

chapter, we propose an extended reconstruction model by weighting the least squares

fit of the 3D patch. We show that if the weighting function meets specified criteria the

reconstructed surface is the convolution of the original surface with that weighting func-

tion. A choice of particular interest is the Gaussian which is commonly used in image

and signal processing but left unexploited by many multi-view stereo algorithms. Finally,

we demonstrate the effects of our theoretic findings using experiments on synthetic and

real-world data sets.
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6.1 Introduction

The basis of virtually all multi-view stereo algorithms are correspondences found be-

tween images. Hereby, the de facto standard is to find a planar patch in 3D whose

projected region in (some of) the images is photo-consistent, i.e., looks similar. There

are many ways to measure photo-consistency including normalized cross-correlation

(NCC) or the sum of squared differences (SSD, see Hu and Mordohai [Hu and Mordohai

2012] for an overview and evaluation of different measures). Whatever measurement

used, the underlying assumption is that the original surface is locally planar or even

has constant depth in the patch area. This leads to a systematic error in reconstruc-

tion which becomes especially important when combining multi-scale data [Bellocchio

et al. 2013, Fuhrmann and Goesele 2011]. In the previous chapter we analyzed this

systematic error and proposed a reconstruction model where the 3D patch is fitted to

the original surface in a least squares sense. In the resulting linear system we identified

the modulation transfer function to be a sinc. In other words, the reconstructed surface

is equal to a convolution of the original surface with a box filter. Since this is no true

low-pass filter it causes high-frequency artifacts such as amplitude inversion for some

frequencies.

In this chapter, we develop an extended reconstruction model by weighting the fit-

ting of the 3D patch. We derive constraints on the weighting function to ensure that

the reconstructed surface is a convolution of the original surface with that weighting

function. As a particular result, we will see that uniform weighting used in the previous

chapter causes the box filter effect. A much better choice for the weighting function ful-

filling the derived constraints and allowing for true low-pass filtered reconstructions is

the Gaussian, which is widely used in the imaging domain. When using different patch

sizes (e.g., due to different image resolution or camera-object distances) the reconstruc-

tions reflect different levels of the scale space representation of the true surface. We

show for one popular multi-view stereo algorithm [Goesele et al. 2007] how to imple-

ment the weighting and discuss results on synthetic as well as real-world data sets. Our

findings may influence a broad range of algorithms in multi-view stereo but also in the

field of multi-scale surface reconstruction [Fuhrmann and Goesele 2011,Furukawa et al.

2010,Gargallo and Sturm 2005,Mücke et al. 2011] or geometry super-resolution [Gold-

luecke and Cremers 2009, Yang et al. 2007]. In chapter 7 we present a surface recon-

struction framework that handles input data originating from a weighted multi-view

stereo algorithm and exploit the results presented below.

In summary the contributions of this chapter are
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• the generalization of a previously presented reconstruction model for (multi-view)

stereo by introducing weights,

• the theoretical derivation of the (predicted) reconstructed surface without the de-

tour in frequency space, and

• we show how a weighting, e.g., a Gaussian, can be implemented for a common

multi-view stereo algorithm which expectably improves the frequency behavior of

the reconstruction.

6.2 Related Work

While there is a large body of work on multi-view stereo (see, e.g., the survey paper and

the constantly updated benchmark by Seitz at al. [Seitz et al. 2006, Seitz et al. 2013]),
the study of multi-scale depth reconstruction has long been neglected. In the previous

chapter we introduced a theoretical reconstruction model and determined the modu-

lation transfer function of patch-based stereo systems. We also discussed the (loosely)

related work on multi-scale analysis of (multi-view) stereo to which we refer the reader

for a more extensive discussion. Our current work builds upon this reconstruction model

and demonstrates how more freedom in the reconstruction outcome is possible. As one

particular result, we demonstrate that multi-view stereo can yield a scale space represen-

tation of the underlying geometry. In contrast to the previous chapter, we now derive

our results directly in geometry space without operation (at least in an intermediate

step) in frequency space.

Our work is also related to existing work on patch-based photo-consistency measures.

An overview and evaluation of confidence measures used in (multi-view) stereo is given

by Hu and Mordohai [2012]. In all their cost computations, however, a square patch of

N × N pixels is used and all pixels are weighted uniformly. If we assume all measures

aim at fitting a patch in 3D space, they all result in a box filter. Kanade and Okutomi

[1994] already tried to find optimal size and shape of the patch but still only used

rectangular shapes. Habbecke and Kobbelt [2007] propose a multi-view stereo system

where matching is performed on circular disks in object space. The size of the disks is

selected to achieve a minimum intensity variance on each disk. Totally different shapes

are achieved by Micusik and Koseka [Micusik and Kosecka 2008] whose approach is

suited for man-made environments with many planar surfaces. Here, the reference view

is first segmented into superpixels, that are assumed to be planar in object space, and

matching is then performed using those superpixels. Thus the shape of the matching
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window is adapted to the local scene structure and texture. Yoon and Kweon [2005]
were probably the first to compute weights for each pixel in the patch that steer the

influence of that pixel in the matching process. Their weights are dependent on the color

similarity and the spatial distance from the center pixel. Hosni et al. [2009] improve

on that by computing weights using the geodesic distance transform. In contrast to all

these efforts, we investigate the influence of a specific weighting on the reconstructed

geometry and derive the resulting (multi-scale) behavior of the resulting surface.

6.3 Theoretical Considerations

6.3.1 Extension of the Reconstruction Model

In this chapter, we build upon the reconstruction model introduced in Section 5.3 of

the previous chapter. We describe the process of photometric consistency optimization

between images (e.g. using normalized cross-correlation (NCC), or sum of squared

differences (SSD)) as a geometric least squares fitting of a planar patch to the unknown

geometry. To obtain the reconstruction at some point x , a line segment (parameterized

by slope m and offset n) with extent 2δ is fitted to the geometry in a least squares sense

minimizing the energy

E(m, n, x) =

∫ x+δ

x−δ
(mt + n− f (t))2d t. (6.1)

The reconstructed surface is then represented by the central patch points. For this model

we determined the modulation transfer function which turned out to be a sinc which

is equivalent to a convolution with a box filter. In the following we will show that the

reason for this result is the uniform weighting of pixels during optimization. We suggest

the following extension of the reconstruction model: Instead of considering each point

in [x − δ, x + δ] uniformly we introduce a weighting function g allowing for different

areas of influence. Consequently, we alter the energy function to

E(m, n, x) =

∫ ∞

−∞
g(x − t)(mt + n− f (t))2 d t (6.2)

where g(t) is a weighting function. Note that with g(t) = 1[−δ,δ] this is equal to the

former energy in Eq. 6.1. This weighting function could be implemented as a weighting

of the pixels during photo-consistency optimization. In Section 6.4 we will demonstrate

this using a specific multi-view stereo algorithm. In the following subsection, we derive

theoretically how this weighting function affects the reconstructed surface.
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6.3.2 Reconstruction in 2D

For the sake of simplicity, we first look at a surface in 2D (a line) as illustrated in Fig-

ure 5.2. For now, we put no further constraints on g(t) except for integrability. Later

on, we will discuss further desirable properties. Minimizing E in Equation 6.2 requires

taking the partial derivatives with respect to m and n:

∂mE = 2

∫ ∞

−∞
g(x − t)t(mt + n− f (t)) d t (6.3)

= 2m

∫ ∞

−∞
g(x − t)t2 d t + 2n

∫ ∞

−∞
g(x − t)t d t − 2

∫ ∞

−∞
g(x − t)t f (t) d t

∂nE = 2

∫ ∞

−∞
g(x − t)(mt + n− f (t)) d t (6.4)

= 2m

∫ ∞

−∞
g(x − t)t d t + 2n

∫ ∞

−∞
g(x − t) d t − 2

∫ ∞

−∞
g(x − t) f (t) d t

We introduce a short notation for the zeroth, first and second moment of g

µ0 =

∫ ∞

−∞
g(t) d t µ1(x) =

∫ ∞

−∞
g(x− t)t d t µ2(x) =

∫ ∞

−∞
g(x− t)t2 d t (6.5)

and abbreviate the other convolution integrals using

(g ∗ · f )(x) =
∫ ∞

−∞
g(x − t)t f (t) d t (6.6)

(g ∗ f )(x) =

∫ ∞

−∞
g(x − t) f (t) d t. (6.7)

W.l.o.g. we can assume that µ0 = 1 which corresponds to normalizing the weighting

function g. Under the condition that µ2(x) 6= 0 we set the partial derivatives to zero

and transpose the equations:

m=
(g ∗ · f )(x)− nµ1(x)

µ2(x)
(6.8)

n= (g ∗ f )(x)−mµ1(x) (6.9)
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We can now solve for m and n which leads to

m=
(g ∗ · f )(x)− ((g ∗ f )(x)−mµ1(x))µ1(x)

µ2(x)

⇔ m=

�

1−
µ1(x)2

µ2(x)

�−1�(g ∗ · f )(x)
µ2(x)

−
(g ∗ f )(x)µ1(x)

µ2(x)

�

=
(g ∗ · f )(x)− (g ∗ f )(x)µ1(x)

µ2(x)−µ1(x)2
(6.10)

n= (g ∗ f )(x)−
(g ∗ · f )(x)− (g ∗ f )(x)µ1(x)

µ2(x)−µ1(x)2
µ1(x)

=
(g ∗ f )(x)µ2(x)− (g ∗ · f )(x)µ1(x)

µ2(x)−µ1(x)2
(6.11)

Since the final surface is represented by the central patch points it can be written as

mx + n=
(g ∗ · f )(x)(x −µ1(x)) + (g ∗ f )(x)(µ2(x)− xµ1(x))

µ2(x)−µ1(x)2
. (6.12)

Though valid for very general weighting functions g this result is not very satisfactory.

On closer inspection we see that when µ1(x) = x , which is true for all normalized

symmetric functions g, it can be easily simplified to

mx + n= (g ∗ f )(x). (6.13)

In other words, every function g with µ0 = 1, µ1(x) = x , µ2(x) 6= 0, and µ2(x) 6= x2,

used to weight the least squares fitting results in a reconstruction that is the convolu-

tion of the true surface with g. Note, that a uniform weighting naturally leads to the

convolution with a box filter (cf. Chapter 5) in this framework.

6.3.3 Building a Scale Space Representation

The derived constraints for the weighting function obviously allow for many different

choices. One of particular interest is the Gaussian since convolutions with Gaussians

are well studied and widely applied, e.g., in the image domain. If we set g to be a

normalized Gaussian with standard deviation σ

g(t) =
1

p
2πσ

exp

�

−t2

2σ2

�

. (6.14)

we obtain the following moments

µ0 = 1 µ1(x) = x µ2(x) = σ
2 + x2. (6.15)
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That is, the normalized Gaussian fulfills our constraints and we can determine the slope

m and offset n of the fitted patch at each point x by

m=
(g ∗ · f )(x)− (g ∗ f )(x)x

σ2
(6.16)

n=
(g ∗ f )(x)(σ2 + x2)− (g ∗ · f )(x)x

σ2
. (6.17)

In order to create a scale space representation of the underlying surface we need to use

Gaussians with varying standard deviations σ. However, during reconstruction we can

influence σ only to a limited extent because it depends on the scene depth, image res-

olution and focal length of the camera. In that sense, if we reconstruct depth maps of

the same geometry using a variety of images results in a natural variation of the stan-

dard deviation σ in real-world space. The only parameter one can actively steer is the

standard deviation σi (linked with the window size due to approximation and clamping

of the Gaussian) in image space used for patch-based optimization. When selecting σi

one often has a rough depth estimate and also the camera parameters are known from

registration. With that it is possible to indirectly steer the standard deviation σ in world

space at least to a limited extent, e.g., for parts of the scene with different depths. In

Section 6.4 we will conduct some experiments with varying the standard deviation σi

but we first transfer our results into 3D.

6.3.4 Reconstruction in 3D

For the reconstruction in 3D we assume the 2D geometry is described as a height field

z = f (x , y). To obtain the reconstruction at some point (x , y), we fit a patch (surface

segment) that is parameterized by 2 slopes m1 and m2 and an offset n. Again, the

weighting function g allows for different areas of influence. As a result we now have

the following energy

E(m1, m2, n, x) =

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s)(m1 t +m2s+ n− f (t, s))2 d t ds. (6.18)

Minimizing E requires taking the partial derivatives with respect to m1, m2, and n:

∂m1
E =

∫ ∞

−∞

∫ ∞

−∞
2t g(x − t, y − s)(m1 t +m2s+ n− f (t, s)) d t ds

!
= 0 (6.19)

∂m2
E =

∫ ∞

−∞

∫ ∞

−∞
2sg(x − t, y − s)(m1 t +m2s+ n− f (t, s)) d t ds

!
= 0 (6.20)

∂nE =

∫ ∞

−∞

∫ ∞

−∞
2g(x − t, y − s)(m1 t +m2s+ n− f (t, s)) d t ds

!
= 0 (6.21)
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Similar to the reconstruction in 2D, we introduce the short notation µ00, µ10, µ01, µ20,

µ11, and µ02 for the moments of g with respect to x and y , respectively.

µ00 =

∫ ∞

−∞

∫ ∞

−∞
g(t, s) d t ds, µ10 =

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s)t d t ds (6.22)

µ01 =

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s)s d t ds, µ20 =

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s)t2 d t ds

(6.23)

µ11 =

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s)st d t ds, µ02 =

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s)s2 d t ds

(6.24)

For the sake of clarity we chose an even shorter abbreviation for the other convolution

integrals:

gtf=

∫ ∞

−∞

∫ ∞

−∞
t g(x − t, y − s) f (t, s) d t ds (6.25)

gsf=

∫ ∞

−∞

∫ ∞

−∞
sg(x − t, y − s) f (t, s) d t ds (6.26)

gf=

∫ ∞

−∞

∫ ∞

−∞
g(x − t, y − s) f (t, s) d t ds. (6.27)

Again, we can normalize g such that µ00 = 1. With this notation we can rewrite

Eqs. (6.19)-(6.21) as

∂m1
E = 2(m1µ20 +m2µ11 + nµ10 − gtf)

!
= 0 (6.28)

∂m2
E = 2(m1µ11 +m2µ02 + nµ01 − gsf)

!
= 0 (6.29)

∂nE = 2(m1µ10 +m2µ01 + n− gf)
!
= 0 (6.30)

Solving these equations for m1, m2, and n yields

αm1 = gf (µ02µ10 −µ01µ11) + gsf (µ11 −µ01µ10) + gtf
�

µ2
01 −µ02

�

(6.31)

αm2 = gf (µ01µ20 −µ10µ11) + gsf
�

µ2
10 −µ20

�

+ gtf (µ11 −µ01µ10) (6.32)

αn= gf
�

µ2
11 −µ02µ20

�

+ gsf (µ01µ20 −µ10µ11) + gtf (µ02µ10 −µ01µ11) (6.33)

where α= µ20µ
2
01−2µ10µ11µ01+µ02µ

2
10+µ

2
11−µ02µ20. Plugging in these expressions

in the patch P = m1 x +m2 y + n, we obtain

P =
1
α

�

gf
�

µ2
11 −µ02µ20 −µ01µ11 x +µ02µ10 x −µ10µ11 y +µ01µ20 y

�

+ (6.34)

gsf
�

−µ11µ10 +µ01µ20 −µ01µ10 x +µ11 x +µ2
10 y −µ20 y

�

+ (6.35)

gtf
�

−µ11µ1 +µ02µ10 +µ
2
01 x −µ02 x −µ10µ01 y +µ11 y

��

. (6.36)
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Taking symmetric filters yields µ10 = x and µ01 = y . Then immediately one gets

P = gf (6.37)

Of course we can use a classical anisotropic Gaussian characterized by σ and τ

g(t, s) =
1

2πστ
exp

�

−t2

2τ2
+
−s2

2σ2

�

(6.38)

because the moments are µ00 = 1, µ10 = x , µ01 = y , µ02 = x2 + τ2 , µ11 = x y ,

µ02 = y2 +σ2.

6.4 Experiments

In order to verify our theoretic findings in practice we now conduct some experiments.

We hereby chose the depth map reconstruction method of Goesele et al. [2007] be-

cause it does a pure photo-consistency optimization (going back to Gruen and Balt-

savias [1988]) to find depth and normal for a certain pixel and has no regularization

force. For a small region around a pixel i, j in a reference view IR the method aims to find

depth d and normal ~n of the associated 3D patch such that it is photo-consistent with

a set of neighboring views Ik. The algorithm minimizes (see [Goesele et al. 2007, Sec.

6.2] ignoring the color scale)

∑

k,i, j

[IR(s+ i, t + j)− Ik(P
d,~n
k (s+ i, t + j))]2 (6.39)

where Pk describes the projection of a pixel from the reference view in the neighbor

view Ik according to some depth d and normal ~n. We implement the weighting on the

least squares patch fit by weighting the pixels, i.e., we compute a weighted SSD:

∑

k,i, j

g(i, j)[IR(s+ i, t + j)− Ik(P
d,~n
k (s+ i, t + j))]2. (6.40)

The remaining question is whether this weighted photo-consistency optimization still

reflects the process of weighted least squares fitting as described by Eq. 6.2. We test this

using a synthetic data set because of two reasons: First, we can assure that our results

are not affected by registration errors but solely reflect the photometric consistency op-

timization, and second, we know the ground truth surface and are able to compute the

predicted reconstruction according to our model. Our ground truth surface is created

as a random sum of one-dimensional B-Splines extruded into the third dimension. We
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Figure 6.1: Left: The central view of our synthetic data set. Right: The underlying mesh (shaded) used to

render the views.

then render five different views (one central view looking perpendicular onto the sur-

face and four views distributed uniformly around it with a parallax of 35◦) of this scene

using the PBRT system [Pharr and Humphreys 2012] while a random texture is mapped

onto the surface to guarantee matching success at all pixels (see Fig. 6.1). For the cen-

tral view we now reconstruct a depth map by using the other four views as neighbors

and minimizing the weighted SSD from Eq. 6.40. We start the optimization for each

pixel with the depth value obtained from PBRT and the normal representing a fronto-

parallel patch. To reduce noise we average the reconstructed values along the constant

dimension. Fig. 6.2 shows the reconstructions using a uniform weighting function. The

quadratic windows in image space are 11 (blue), 21 (green), 41 (red), and 61 (cyan)

pixels wide which corresponds to a patch size (2δ) of 0.06,0.12,0.24, and 0.36 in world

coordinates, respectively. We also plotted the predicted reconstructions, i.e., convolu-

tions of the original surface with box filters of the corresponding width. Overall, the

reconstruction is close to the prediction although there is some local deviation. The

best conformity is achieved for the small patch size which can also be seen in Table 6.1

where we computed the mean deviation. Note the occasional amplitude inversion vis-

ible in the prediction as well as the reconstruction, in particular for the largest filter at

around −1.4.

In Fig. 6.3 we used Gaussian weighting with increasing standard deviation which leads

to a scale space representation of the underlying surface. The window sizes are the same

used for the uniform weighting and we always chose the standard deviation σ such that

δ = 2.5σ. That is, in world coordinates we used σ = 0.012,0.024, 0.048,0.072. We

can see from the figure and also by studying the numbers in Table 6.1 that the deviation

from the prediction again increases for larger σ.

Finally, we show reconstruction results on real world data. Figure 6.4 (top left) shows
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Figure 6.2: Multi-view stereo reconstruction using a uniform weighting with increasing patch size. The

black line denotes the original surface. The colored solid lines are the computed predictions while the

corresponding dots are the reconstructed values.
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Figure 6.3: Reconstructing a scale space representation using a Gaussian weighting with increasing stan-

dard deviation (see text). The black line denotes the original surface. The colored solid lines are the

computed predictions while the according dots are the reconstructed values.

an input image of the Notre Dame data set consisting of 715 images downloaded from

the Internet. We use Snavely et al. [2008] to register them and compute depth maps

for the shown image using different weightings and window sizes. The middle and

bottom row show reconstructions obtained using uniform and Gaussian weighting, re-

spectively. Although hard to jugde, the Gaussian weighting seems to produce slightly

more noise and less complete reconstructions. On the other hand it better preserves the

low frequencies. One must consider though, that the algorithm [Goesele et al. 2007]
was tuned to work well with the uniform weighting and on a broad range of data sets.

That is, playing with the parameters in the optimization or view selection might result

in more favorable results for the Gaussian weighting.
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6 WEIGHTED PATCH-BASED RECONSTRUCTION

Patch size mean deviation (L1-norm)

in pixels uniform weighting Gaussian weighting

11× 11 1.9 · 10−4 1.3 · 10−4

21× 21 4.1 · 10−4 2.8 · 10−4

41× 41 6.9 · 10−4 5.8 · 10−4

61× 61 6.3 · 10−4 7.0 · 10−4

Table 6.1: Mean deviation of the reconstruction from the theoretical predicted surface (see Figs. 6.2&6.3).

6.5 Discussion

This chapter extends a recently introduced model for patch-based depth reconstruction

by adding a weighting function. We derive criteria on the weighting function such that

we can predict the reconstructed surface as the convolution of the true surface with

the applied weighting function. This includes using a Gaussian instead of a uniform

weighting during reconstruction which corresponds to a Gaussian instead of a box filter

in geometry space. In contrast to previous methods, we achieve a true low-pass filter

avoiding the introduction of systematic high-frequency artifacts. Future work definitely

includes to further investigate the correlation between weighted photo-consistency op-

timization and weighted least squares fitting of a planar patch to the geometry.

Our findings are applicable in a broad range of applications. In contrast to the re-

sults of the previous chapter, we now give a local characterization of the reconstruction

outcome at the same time offering more flexibility caused by the weighting. Multi-

scale surface reconstruction methods such as [Fuhrmann and Goesele 2011, Furukawa

et al. 2010, Gargallo and Sturm 2005, Mücke et al. 2011] could take that knowledge

into account when combining data from multiple depth maps. But also geometry super-

resolution methods [Goldluecke and Cremers 2009, Yang et al. 2007] can benefit from

our findings. Since we provide evidence for a generative model it is now possible to

adapt well established methods from imaging, e.g., Bayesian super-resolution [Pickup

et al. 2007], to the geometry reconstruction context.
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Figure 6.4: Top left: Input image of the Notre Dame data set. The red box is roughly the area seen in the

bottom rows. Top middle,right: Full rendered view of reconstructed depth map using uniform (middle) and

Gaussian weighting (right) and a window size in images space of 7×7 pixels. Middle+Bottom: Enlarged area

roughly corresponding to red box (top left) of the reconstructed depth map. We applied uniform (middle)

and Gaussian weighting (bottom) using window sizes of 7× 7, 11× 11, and 21× 21 pixels (from left to

right) for reconstruction where the standard deviation of the Gaussian in image space is σi = 1.2, 2.0,4.0.
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Multi-view stereo reconstruction techniques yield inherently multi-scale point data

typically fed into surface reconstruction algorithms. Following the intuition of scale

space we assume that sample points originate from smoothed versions of the original

surface. The smoothing can be characterized by a smoothing kernel that suppresses fine-

scale structures. In this chapter, we propose a surface reconstruction framework that

correctly handles this multi-scale input data. We represent the surface using a multi-

resolution analysis allowing us to reconstruct scales separately and to merge the sample

points in frequency space. With an underlying wavelet basis we are able to locally model

surface detail according to the surface properties or sample distribution. We first demon-

strate the effectiveness of our method on a synthetic data set with known smoothing.

For real-world data obtained by multi-view stereo we estimate the smoothing kernel and

present reconstruction results with enhanced detail.
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Figure 7.1: True surface (black) and multi-scale sample points (red–coarse, green–medium, blue–fine).

Top: Input data. Middle: Reconstruction (magenta) treating all sample points equally. Bottom: Our recon-

struction which takes scale into account and follows the true surface more clearly.

7.1 Introduction

Surface reconstruction from (unorganized) sample points is a well-researched area but

also a continuous challenge. Popular methods include the pioneering work of Hoppe

et al. [1992], range image integration (VRIP) proposed by Curless and Levoy [1996],
and Poisson surface reconstruction by Kazhdan et al. [2006]. Recent papers [Fuhrmann

and Goesele 2011, Manson et al. 2008, Shalom et al. 2010] give a detailed overview

of the various methods available today. The focus of this chapter lies on the multi-scale

component inherent to many reconstruction techniques such as multi-view stereo. These

approaches are able to deal with large scenes, for example comprising entire cities [Agar-

wal et al. 2009], and a mixture of various cameras ranging from mobile phones to digi-

tal SLRs. Drastically different object-to-camera distances and varying image resolutions

automatically yield multi-scale sample points. When talking about scales of a surface

we typically think of gradually removing detail structures of the original surface with a
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low-pass filter, which we model using a smoothing kernel. The main characteristic of

multi-scale input data is that the samples are taken from successively smoothed versions

(i.e., scales) in contrast to the simple case where all samples originate from the same

scale (see the reconstruction in Fig. 7.1 top). In fact, it is commonly assumed that the

input points are real point samples of the original surface implying that no or very lit-

tle smoothing is involved (Fig. 7.1 middle). The first, and to our knowledge the only,

to consider the multi-scale properties of sample points in a surface reconstruction al-

gorithm are Fuhrmann and Goesele [2011]. They essentially remove coarse-scale data

points (originating from strongly smoothed versions of the original surface) in areas

where fine-scale points (less smoothed) with high confidence are available. Using this

heuristic they are able to achieve impressive results on real world data sets. However,

they rely on the correlation of resolution and scale suggesting that fine-scale sample

points are usually present in higher resolution than coarse-scale samples. Also, discard-

ing samples is a binary decision and information might be thrown away that could have

been useful to close holes or even improve the fine-scale reconstruction. In summary, the

fundamental problem of how to correctly merge multi-scale data points, i.e., combine

the coarse- and fine-scale data instead of discarding the former, is still not convincingly

solved.

In this chapter we propose a reconstruction framework for 2.5D height field repre-

sentations (Sec. 7.3) that explicitly models and incorporates the multi-scale properties

of the input data (Fig. 7.1 bottom). We use the concept of multi-resolution analysis

(multi-scale approximation) of the original surface. With the generating scaling func-

tions and wavelets we are able to simultaneously decompose the surface in space and

frequency domain. Given sample points with known or approximated smoothing kernel

we show how the original surface can be recovered correctly. Hereby, our surface rep-

resentation allows for locally varying degree of detail according to surfaces shape and

sample point distribution. For practical application (Sec. 7.4) we add a regularization

term to the surface recovery and formulate an optimization problem. We further pro-

pose a specific wavelet representation and discuss the scale estimation in the context

of multi-view stereo. Finally, we show results demonstrating the effectiveness of our

method (Sec. 7.5) and conclude the chapter with an outlook on future work (Sec. 7.6).

7.2 Related Work

Classic surface reconstruction methods work on regularly sampled, some also on multi-

resolution data points [Hoppe et al. 1992,Curless and Levoy 1996,Kazhdan et al. 2006,
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Shalom et al. 2010]. The data is assumed to be single-scale which means that all points

share the same noise model with the true surface as mean. A few recent approaches de-

viate from this paradigm. Mücke et al. [2011] use a Gaussian noise model but assign to

each sample point a different standard deviation. They build a confidence volume rep-

resented in an octree and compute a minimum cut to reconstruct the surface (similar to

other graph cut based methods [Boykov and Kolmogorov 2003, Hornung and Kobbelt

2006b,Sinha et al. 2007]). Fuhrmann and Goesele [2011] integrate depth maps, similar

to VRIP [Curless and Levoy 1996], into a hierarchical signed distance field (hSDF). They

subsequently prune the hSDF removing coarse-scale data in regions where fine-scale

data is available. The final surface is then extracted using a variant of the marching

tetrahedra algorithm. Bailer et al. [2012] handle the scale problem in a similar manner

and also select locally the highest scale reconstruction available. Zach et al. [2007] in-

tegrate range images into a global signed distance field and add a regularization term

that minimizes the total variation (L1-regularization) of the SDF. Some of these methods

support multi-resolution representations with locally varying level-of-detail and are ca-

pable of producing impressive results even on uncontrolled multi-view stereo data sets.

However, none of them combines data from different scales while modeling the different

degree of smoothing.

Pauly et al. [2006] clarify the difference between multi-scale and multi-resolution

surface representation. They use approximate low-pass filters to create a point-based

multi-scale surface representation for the context of surface editing. Kazhdan [2005]
incorporates Fourier theory for surface reconstruction. The method aims at recovering

the characteristic function of the solid by reconstructing its Fourier coefficients. While

theoretically well founded the method requires summing over all input points to com-

pute each single Fourier coefficient. This is computationally extremely expensive and

implies that a single point influences the entire model which is counterintuitive. It also

requires some heuristics to process non-uniformly sampled data. In a recent paper, Digne

et al. [2011] propose a scale space meshing method that implements the mean curva-

ture motion (MCM) on the raw point set. They reconstruct a smooth mesh first and then

revert the MCM. It would be interesting to investigate handling of multi-scale data with

this approach.

Several authors proposed surface reconstruction methods using smooth basis func-

tions possibly integrated in a wavelet space. In the early work of Pastor and Rodríguez [1999]
spherical wavelets are used which naturally limits the application to objects that are

topologically equivalent to a sphere. Carr et al. [2001] reconstruct smooth surfaces on

the basis of smooth radial basis functions from noisy data. By computing the Fourier co-
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efficients Kazhdan [2005] actually represents the indicator function using dilations and

translations of the sine function. Manson et al. [2008] improve on this idea and apply

wavelets instead, exploiting the local support to decrease complexity. A direct surface

representation in Monge’s form, as used in this chapter, was proposed by Johnson et

al. [2009]. They use B-Splines and associated wavelets for scattered data reconstruc-

tion and give a theoretical error analysis. For better preserving depth discontinuities Ji

et al. [2010] seek for a piecewise smooth approximation in tight wavelet frames. All

of these and other related methods in scattered data interpolation do not tackle the

problem of multi-scale input data as we do in this chapter. Also, the multi-scale struc-

ture of the basis functions is not exploited in order to adjust the granularity of the final

reconstruction according to the input data.

7.3 Reconstruction Framework

The basis of our reconstruction framework is a surface representation that allows us to

operate on different scales of the surface. With that we can model surfaces with locally

varying detail, either due to the surface itself or due to the distribution of the sample

points. The classic Fourier transform is unsuited due to boundary handling issues and

the missing locality. The latter also implies a constant frequency resolution over the

entire space without taking into account the actual sample distribution. This involves

the risk to hallucinate high frequency details in regions that are not sampled at all. In

the following we first introduce our surface representation and describe afterwards how

the surface can be recovered correctly from multi-scale sample points.

7.3.1 Surface Representation

We use an explicit surface representation assuming that the surface can be parameterized

as a height field f (x). For simplicity the following derivation is for the 1D case x ∈
R but it can be easily extended to higher dimensions by applying the standard multi-

dimensional wavelet construction described by Mallat [2008, Ch. 7.7]. We embed the

surface in a multi-resolution analysis, written according to the notation of Stollnitz et

al. [1996, Ch. 7] as

V0 ⊂ V1 ⊂ V2 . . . ⊂ L2(R) (7.1)

where V0 can be thought of containing very smooth surfaces and with increasing index j

in Vj more detail can be added (see Fig. 7.2). Eventually all possible surfaces f ∈ L2(R)
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Figure 7.2: Multi-resolution analysis of a 1D surface. The detail level j increases from top to bottom and

local surface details become visible.

are included. The complements of V j in V j+1 are denoted by W j such that

V j+1 = V j +W j , j > 0. (7.2)

The V j are spanned by shifted and dilated versions φ j,l = φ(2 j x − l) of the father

wavelet (or scaling function) φ and the W j by shifted and dilated versions ψ j,l of the

mother waveletψ, respectively. With that the surface f can be represented by its wavelet

decomposition

f (x) =
∑

l

c0,lφ0,l(x) +
∞
∑

j=0

∑

l

d j,lψ j,l(x) (7.3)

where the c0,l denote the scaling function and the d j,l the wavelet coefficients. One can

think of modeling the rough shape through the c0,l and then adding more and more

details with increasing j by activating the d j,l . Typically, the (effective) support of the

ψ j,l decreases with increasing j so that surface details can be modeled locally. Since

V j = V0+W0+. . .+W j−1 one could also start with scaling functions of higher level. Also,
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in practice one has to cut off somewhere resulting in the more general representation:

f (x)≈
∑

l

c j0,lφ j0,l(x) +
jmax
∑

j= j0

∑

l

d j,lψ j,l(x). (7.4)

Without loss of generality we will in the following assume j0 = 0 and for convenience

we will use the equal sign although we refer to the approximation.

7.3.2 Surface Recovery from Samples

Given ideal point samples (x i , yi)i=1,...,N from the surface with yi = f (x i) we have a

linear system of equations

yi =
∑

l

c0,lφ0,l(x i) +
jmax
∑

j=0

∑

l

d j,lψ j,l(x i) (7.5)

and the coefficients c0,l , d j,l , 0≤ j ≤ jmax as unknown variables. We can rewrite Eq. (7.5)

in matrix form







φ0,l(x1) ψ0,l(x1) . . . ψ jmax,l(x1)
...

...

φ0,l(xN ) ψ0,l(xN ) . . . ψ jmax,l(xN )



















c0,l

d0,l
...

d jmax,l













=







y1
...

yN






. (7.6)

When we introduce multi-scale samples, i.e., sample points from the gradually smoothed

surface, we assume that for each sample (x i , yi) the convolution kernel gi is known such

that

yi = (gi ∗ f )(x i). (7.7)

This is a very general setup since we do not commit ourselves to a particular smoothing

kernel. In standard scale-space, with a Gaussian convolution, it is just the standard

deviation σi that varies among the samples but here we allow for other kernels (e.g.,

Laplacians, splines, or box filters) as well. Note that ideal point samples are also covered

by simply using the Dirac delta function gi(t) = δ(t − x i). With Eq. (7.7) the linear

system changes to

yi = (gi ∗ f )(x i) (7.8)

=
�

g ∗
�∑

l

c0,lφ0,l +
jmax
∑

j=0

∑

l

d j,lψ j,l

�

�

(x i)

=
∑

l

c0,l(gi ∗φ0,l)(x i) +
jmax
∑

j=0

∑

l

d j,l(gi ∗ψ j,l)(x i). (7.9)
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Again, we write Eq. (7.9) in matrix form







φ̂1
0,l ψ̂1

0,l . . . ψ̂1
jmax,l

...
...

φ̂N
0,l ψ̂N

0,l . . . ψ̂N
jmax,l



















c0,l

d0,l
...

d jmax,l













=







y1
...

yN






(7.10)

with φ̂ i
0,l = (gi∗φ0,l)(x i) and ψ̂i

j,l = (gi∗ψ j,l)(x i). We write Eq. (7.10) using the shorter

notation

Ψd= y. (7.11)

with d covering scaling function and wavelet coefficients.

By definition wavelets fulfill
∫

ψ j,l = 0 and with increasing scale j the ψ j,l become

narrower. As a consequence, the convolution with the smoothing kernel (g ∗ψ j,l) will

diminish towards zero as j increases. In other words, a sample point’s significance on

the wavelet coefficients d j,l decreases. At the same time, a coarse scale sample point

has less influence on coefficient d j,l than a fine scale sample point at the same position

because the convolution kernel g is broader. In this way, we respect all given samples

but prevent coarse scale samples from interfering with fine scale surface structures.

7.4 Surface Reconstruction

Samples given in a real application are disturbed by noise. Regions are irregularly sam-

pled regarding not only density but also their scale. The consequence is that the linear

system (7.11) cannot be solved exactly and we have to formulate an optimization prob-

lem. We introduce and discuss a regularization to avoid over-fitting and show how the

problem can be solved efficiently. Thereafter we discuss how the smoothing kernel gi

can be estimated or even influenced in the context of multi-view stereo sample points

and examine whether an optimal kernel exists. At the end of this section we review a

particular wavelet family which we use in our experiments.

7.4.1 Optimization

The main problem we face when fitting a function to sample points is to reconstruct a

smooth surface while still modeling the details. Besides the presence of noise and sparse

sampling our model has a more inherent problem of over-fitting. When trying to recover

fine scale details that are not sufficiently supported by the data, the entries of an entire

row of the matrix Ψ vanish, and there is almost no control on the corresponding wavelet
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coefficients d j,l . One way to counteract this is to decrease the maximum scale jmax but

this effect might just be local and we do not want to decrease the overall detail level

according to the worst represented region. Consequently, a regularization is necessary

that prevents all kinds of over-fitting. We add a penalty on the second order derivatives

similar to Calakli and Taubin [2011] and solve the following optimization problem

minimize
d

1
N
‖Ψd− y‖2 +λ

∫

‖H f (x)‖2 d x (7.12)

where f denotes the final surface represented as in Eq. 7.4. H f (x) is the Hessian con-

taining the second-order partial derivatives of f and ‖H f (x)‖ is the Frobenius norm

of the matrix H f (x). Note that the smoothing term automatically affects regions with

low-scale samples more than regions where high-scale samples are present because the

corresponding coefficients are less restricted. We can reformulate the problem into a

quadratic program

minimize
d

dT[
1
N
ΨTΨ +λQs]d−

2
N

yTΨd (7.13)

where the matrix Qs is the contribution of the second order derivative term. It consists

of

Qs
α,β =

∫

< Hχα(x), Hχβ(x)> d x . (7.14)

where we used the indices α and β to consecutively number the basis functions χα which

are either scaling functions or wavelets. The matrix Q = 1
NΨ

TΨ + λQs is symmetric

and positive definite, so the problem can be solved using a standard quadratic program

solver.

7.4.2 Scale Estimation

Until now we assumed that the convolution kernels gi are known. However, it is not

clear how to determine the kernel for given sample points in a real-world application.

In the context of patch-based depth reconstruction we provided an approximation of the

smoothing kernel in the previous two chapters. We first showed that the window based

photo-consistency optimization between images leads to sample points that lie on a box

filtered version of the original surface. The width of the box filter can be computed from

the pixels footprint, i.e., the projected size of the pixel spacing in world space, multiplied

with the window size in pixels.

In the previous chapter, we applied a weighted photo-consistency optimization for

depth reconstruction and showed that the convolution kernel is equal to the applied
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7 WAVELET-BASED SURFACE RECONSTRUCTION

weighting function (accordingly scaled to match the world-coordinate system). This

not only allows us to estimate the convolution kernel gi for the samples but to actively

influence it during creation of the sample points. We will exploit this in our experiments

in Sec. 7.5.

7.4.3 Optimal Smoothing Kernel

Before presenting the results of our method we want to spend some extra thought on

choosing the optimal smoothing kernel. Ideally, the way the samples are generated

matches the multi-resolution analysis used for the surface representation. In other words

the significance of a sample point vanishes completely for all wavelet coefficients d j,l

with j larger than the sample’s scale. How can this be modeled? In the case of (semi-)

orthogonal wavelets we have

< φ0,k,ψ j,l >= 0, for all j ≥ 0. (7.15)

If we further assume symmetric scaling functions we can establish the following rela-

tionship between the inner product and the convolution

< φ0,k,ψ j,l >=

∫

φ(t − k)ψ j,l(t) d t (7.16)

= (φ ∗ψ j,l)(k) = 0. (7.17)

That is, if we had gi(t) = φ(t) as the convolution kernel and samples at the integer

positions x i ∈ Z we would get

yi = (φ ∗ f )(x i) =
∑

l

c0,l(φ ∗φ)(x i + l). (7.18)

Having this kind of sample points we could solely solve for the scaling function co-

efficients c0,l . Following this path, with gi(t) = φ(2 j t) and sampling positions x i ∈
{2− jk, k ∈ Z} one could obtain the wavelet coefficients up to d j−1,l . Note that in such a

scenario the inherent over-fitting discussed in Sec. 7.4.1 is removed to a large extent.

Unfortunately, due to obvious reasons this is not achievable in practice: Firstly, we

are very likely to not exactly hit the desired sampling positions and secondly we are

incapable to (exactly) control the dilation of the smoothing kernel. In addition, we

lose the possibility to exploit redundancy by sampling more positions than actually re-

quired. Therefore it remains a thought experiment and in practice we prefer to choose

a smoothing kernel that behaves well and simplifies computations.
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7.4.4 Spline Wavelets on the Interval

We now further specify the surface representation. Because the observed surface will

always be of finite extent we can only identify corresponding coefficients. Consequently,

there is no point in describing the surface using wavelets on the entire R2 (or R) which

would lead to border handling problems. Therefore we employ wavelets on bounded

intervals, w.l.o.g. on [0, 1].
For our implementation we decided to use spline wavelets. From a variety of good

reasons to do so (see Unser [1997]) we out point two: First, closed form solutions

exist, not only for the basis functions but also for the convolution with, e.g., a Gaus-

sian. Second, the basis functions are smooth allowing us to easily represent smooth

surfaces. In the following we will shortly review the semi-orthogonal spline wavelets on

L2([0,1]) which were initially introduced by Chui and Quak [1992] (see also Stollnitz

et al. [1996]). They are a natural extension of the semi-orthogonal spline wavelets on

L2(R) developed by Chui and Wang [1992].
A basis for Vj is given by the B-splines Bi,m, j with i = −m + 1, . . . , 2 j − 1 which are

defined as follows:

Bi,m, j = (t
( j)
i+m − t( j)i )[t

( j)
i , . . . , t( j)i+m]t(t − x)m−1

+ (7.19)

t( j)k =















0, k = −m+ 1, . . . , 0

k2− j , k = 1, . . . , 2 j − 1

1, k = 2 j , . . . , 2 j +m− 1

(7.20)

where m denotes the spline order and the term [·, . . . , ·]t refers to the m-th divided

difference of (t − x)m−1
+ with respect to t. The inner scaling functions Bi,m, j , for i =

0, . . . , 2 j −m, are equal to the scaling functions for L2(R) which are just dilations and

translations of the cardinal B-spline Nm(x) = m[0,1, . . . , m]t(t − x)m−1
+ :

φ j,i(x) = Bi,m, j(x) = Nm(2
j x − i), i = 0, . . . , 2 j −m. (7.21)

The inner wavelets are equal to the Chui–Wang wavelets of order m:

ψ j,i(x) =
1

22m−1

2m−2
∑

k=0

(−1)kN2m(k+ 1)B(m)
2i+k,2m,t( j+1)

m

(x). (7.22)

We refer to Chui and Quak [1992] on how to construct the border wavelets in the general

case. For cubic splines (m = 4) the coefficients of the refinement equation are given

in [Stollnitz et al. 1996, App. B]). Figure 7.3 shows the scaling functions and wavelets

for j = 2.
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Figure 7.3: The seven scaling functions (left) and four wavelets (right) on the interval spanning V3 ( j = 2).

7.5 Results

For the implementation we use the large-scale optimization software Mosek [Mosek ApS

2012] to solve the optimization problem. In all experiments we assume that the final

surface can be described as a height field z = f (x , y) with (x , y) ∈ [0,1]2. This is

realized using a rigid transformation plus an additional scaling, thus easily invertible

after reconstruction.

7.5.1 Synthetic Data

We start with a synthetic data set where we know both the ground truth surface (see

Fig. 7.4 (left)) and its wavelet decomposition. The input to our method are sample

points from the convolved version of this surface using a Gaussian with known standard
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Figure 7.4: Left: Ground truth surface from which we generate low- and high-scale samples. Middle: Our

reconstruction taking scale into account. Right: Treating all samples as real point samples neglecting the

scale.
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Figure 7.5: A segment of the central horizontal scanline through the geometry in Fig. 7.4 showing that our

scale-aware reconstruction accurately follows the ground truth.
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deviation σ. We generate 20,000 sample points from which 4
5 are uniformly sampled

over [0,1]2 withσ = 0.01 (low-scale), and 1
5 are uniformly sampled on a centered circle

with radius 0.25 with σ = 0.002 (high-scale). For the reconstruction we use j0 = 4 and

jmax = 6, i.e., using scaling functions φ4,· and wavelets ψ4,·,ψ5,·,ψ6,·. The smoothness

weight is λ = 10−12. The result of our method can be seen in Fig. 7.4 (middle). In

Fig. 7.4 (right) we assumed all input samples are real point samples which means that g

is the Dirac delta function. The benefit of taking the scale into account, even in the areas

with only low-scale sample points, is clearly visible. Fig. 7.5 shows a segment from the

center horizontal scanline that confirms this impression.

In Fig. 7.6 we demonstrate the effect of the smoothness weight. We reconstruct effec-

tively on the same scale, that is in V7, but using scaling functions φ6,· and waveletsψ6,·.

Now, the smoothing kernel is roughly as big as the basis function and there is only very

small or no data force on the basis function coefficients leading to “ripple” artifacts. The

same effect can be caused by under-sampling. Then the smoothness weight λ has to be

chosen accordingly to prevent introducing high-frequency artifacts.

7.5.2 Real-World Data

To test our algorithm on real-world data we took 174 images of a relief on a stone wall

(see Fig. 7.7). We registered the images using structure-from-motion [Snavely et al.

2008] and reconstructed depth maps per view using a multi-view stereo implementation

similar to Goesele et al. [2007]. In contrast to them we use a weighted photo-consistency

optimization. More precisely we use a patch of size 21× 21 pixels in image space and

apply a Gaussian with σ = 4. We use such a big patch to get less noise in the reconstruc-

tion and to achieve a reasonably sized smoothing kernel to better visualize the effect of

our method. The input images have a resolution of about 1000×666 pixels. According

to our results in the previous chapter we can then estimate the smoothing kernel g to

be a Gaussian as well, with a scaled standard deviation depending on the internal cam-

era parameters and the estimated depth. In order to meet the height field assumption

we fit a plane to the feature points obtained by structure-from-motion and compute a

transformation that maps it on the x , y−plane. As input to our method we merge the

reconstructed points from 6 depth maps covering a range of about factor 3 in scale, i.e.,

σmax ≈ 3σmin. This yields a total of about 1.6 million points.

We reconstruct a surface using j0 = 5 and jmax = 6, i.e., using 352 = 1, 225 scaling

functions φ5,· spanning V5, 3, 264 wavelets ψ5,· spanning W5, and 12,672 wavelets ψ6,·

spanning W6. In total we optimize for 17, 161 basis function coefficients. Fig. 7.8 shows

the comparison between our scale-aware (left) reconstruction and using the same setup
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(a) (b)

(c) (d)

Figure 7.6: The starting scale j0 = 6 is chosen higher than in Fig. 7.4 resulting in less supported coefficients

of the scaling function. (a) A small smoothness weight (λ = 10−12) can lead to artifacts. (b) Choosing a

larger weight (λ = 10−10) fixes this problem. (c)+(d) Using the same smoothness weights (λ = 10−12 and

λ = 10−10, respectively) but assuming all samples are real point samples. This variant is naturally less

sensitive to the smoothness weight but also preserves less detail.
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Figure 7.7: Example input images of the Relief data set.
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(a) (b) (c)

Figure 7.8: Reconstruction using j0 = 5 and jmax = 6. (a) Taking scale into account preserves more detail

compared to treating all samples as real point samples in (b). The colored mesh (c) has vertex positions

identical to (b) and the vertex colors encode the differences in height compared to (a). Changes mainly

affect the edges since we amplify high frequencies.
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Figure 7.9: A profile of the Relief reconstruction (see Fig. 7.8) showing that our scale-aware reconstruction

preserves more detail than treating all samples as real point samples.

but ignoring scale (center), i.e., treating all samples as real point samples. Detail in

the middle and lower part of the rendering is emphasized while some artifacts from

multi-view stereo become more visible.

7.6 Discussion

We present a general surface reconstruction framework that incorporates the (multi-)

scale property of the samples points. To our knowledge we are the first to dissolve the

paradigm of point samples that lie on the true surface but still incorporate all data in

the reconstruction process. Using the concept of multi-resolution analysis we can merge

the sample points in frequency space while still maintaining locality due to the wavelet
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basis. On synthetic data we demonstrate clearly that our method correctly integrates

the multi-scale input data. The real-world example indicates the improvement of our

method as well, however, we have to struggle with registration errors and multi-view

stereo artifacts. As already pointed out in previous chapters the modeling of the multi-

view stereo reconstruction is imperfect and thus the estimated smoothing kernel is not

accurate. Experience from the image domain (e.g. [Levin et al. 2011]) suggests that a

better kernel estimate will likely improve reconstruction quality.

The biggest limitation of our method is probably the current restriction to height fields.

Using an implicit surface representation, e.g., the signed distance field, would allow to

extend the method to a more general class of surfaces. We do, however, face the problem

that it is still unclear how reconstruction techniques affect the signed distance field.
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SURFACE reconstruction from sample points has to face new challenges. The applica-

tion has shifted from the reconstruction of single objects to entire scenes, regions

are represented with varying sampling density and sample points even represent differ-

ent scales. Naively fusing these points can suppress details or introduce high-frequency

artifacts at regions where fine- and coarse-scale samples meet. This thesis presented

two new surface reconstruction algorithms that handle multi-scale input data in dis-

tinct ways. We also answer the question to what extent sample points originating from

patch-based matching between images can preserve details or smoothe the surface, re-

spectively. Understanding the characteristics of the multi-scale input points is a vital

ingredient in order to develop accurate surface reconstruction algorithms. The next sec-

tion summarizes the main contributions of the thesis and is followed by a high-level

discussion with an outlook to possible future research directions.

8.1 Summarizing Contributions

The work presented in this thesis contributes to both the field of multi-view stereo and

surface reconstruction. At this point we review the contributions listed in Section 1.3 of

the introduction with a focus on usability and benefit for the research community.
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In Chapter 4 we presented a robust surface reconstruction method that proved to be

applicable on a wide range of data sets. It achieves top results on a benchmark data

set but includes the notion of the footprint of a sample to improve the performance

on multi-scale data sets. We model the intuition that fine-scale samples better capture

surface details than coarse-scale samples and spread the uncertainty in space accord-

ingly. Together with the hierarchical structure we are able to process large-scale data

sets with drastically different sampling rates and level of detail. The resulting triangle

meshes are manifold and watertight. Additionally, they feature an adaptive triangula-

tion with smaller triangles in high-detailed regions. The proposed method supersedes

the traditionally used methods such as Poisson surface reconstruction at the end of our

reconstruction pipeline (see Figure 3.1). The source code is available online [Mücke

et al. 2012] and can easily be used by others as well.

In order to better understand the multi-scale characteristics of our input points we

proposed a geometrical model that describes the patch-based multi-view stereo recon-

struction process (Chapter 5). This model allows us to theoretically analyze the re-

construction accuracy using standard mathematical tools from signal processing. We

prove that our model fulfills the linear system properties and determine the modulation

transfer function which describes how details are recovered in relation to the patch size.

Experiments on synthetic and real-world data sets using a popular multi-view stereo al-

gorithm validate the credibility of our theoretic geometrical model. Our results clearly

show a significant amplitude loss of high frequencies in accordance to our model within

the limitations of registration errors and inaccuracies of the photo-consistency optimiza-

tion. This loss of detail has not been modeled or described before and consequently

not been considered by any surface reconstruction algorithm. Based on our results we

question the common assumption that samples from multi-view stereo are true surface

samples that are just disturbed by zero-mean noise and think that our insights have the

potential to steer future research in the area of multi-scale surface reconstruction.

Our analysis of patch-based multi-view stereo revealed systematic high-frequency ar-

tifacts, basically caused by amplitude inversion. Motivated by this bad frequency behav-

ior we proposed a weighted patch fitting which maps to a generalized reconstruction

model. We proved that under common criteria for the weighting function the recon-

structed surface is a convolution of the original surface with a dilated version of the

weighting function. At the same time, we hereby shifted the earlier formulation in fre-

quency space to a locally evaluable convolution in geometry space. The derived criteria

for the weighting function allow for choosing a wide range of filters for patch-based re-

construction and thus for various convolution kernels. In particular, true low-pass filters,
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e.g. a Gaussian, can be realized removing the high-frequency artifacts. As we showed

for a particular multi-view stereo algorithm it is easy to implement the weighted patch

fitting, so already existing methods (e.g. [Furukawa and Ponce 2010]) can benefit from

our insights. In analogy to super-resolution methods in the image domain one can think

of our results as providing the generative model of patch-based depth reconstruction.

This could be used to apply the various methods and the broad knowledge from the

image domain to depth map recovery, e.g., from multiple weighted reconstructions.

Finally, we presented a general surface reconstruction framework for 2.5D surfaces

that incorporates our insights about multi-scale sample points. To our knowledge, this

is the first approach that abandons the paradigm that the input points are samples from

the true surface disturbed by zero-mean noise while still taking all available data into ac-

count. By representing the final surface in a wavelet domain we obtain a space-frequency

decomposition and can compute the influence of a sample point to each space-frequency

window. Our framework works for various kinds of multi-scale input data and allows to

characterize each sample point with a different convolution kernel. The entire surface

reconstruction problem boils down to a quadratic program that can be minimized by

solving the corresponding linear system. The benefit of our method is clearly visible

on synthetic data where it is clearly indispensable to take the scale information into

account. Regarding real-world data the positive effects are attenuated by registration

errors and artifacts introduced by the photo-consistency optimization. To overcome the

limitation to 2.5D surfaces an implicit surface representation such as a signed distance

field could be used along with our framework. The missing ingredient is to determine a

model for the smoothed variants of the surface that maps the multi-scale sample points.

8.2 Discussion and Future Work

Present multi-view stereo algorithms already achieve very accurate results [Seitz et al.

2006] and have been successfully applied to reconstruct real-world objects or even large

scenes [Furukawa et al. 2010]. There are also methods that generate a closed surface in

the form of a triangle mesh, e.g. the depth map fusion by Fuhrmann and Goesele [2011]
or the algorithm presented in Chapter 4. Geometry reconstruction from images is con-

sequently already a good alternative to active capture devices and works in practice. In

the following, we suggest future research directions inspired by the content of this thesis

and point out the main paradigm shift we infer from the presented research results.

95



8 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

8.2.1 Analysis of Multi-View Stereo

In order to develop tailored surface reconstruction algorithms we are convinced that

a better understanding of the reconstruction (or registration) errors is necessary. This

includes studying the impact of the surface texture, parallax between the views, and

angle between the epipolar lines on the reconstruction accuracy. It is also worth to

investigate how far photo-consistency optimization is correctly modeled by the least

squares planar patch fit as we proposed in this thesis. Does this model still hold for

object boundaries or depth discontinuities? How robust is it against different photo-

consistency measures [Hu and Mordohai 2012]? As our surface reconstruction results

indicated it is highly beneficial to correctly model the sample points’ systematic error and

uncertainty distribution. Additional insight might also influence and improve multi-view

stereo reconstruction techniques. We have seen such an example regarding the proposed

weighted patch fit demanding for a weighted photo-consistency optimization.

8.2.2 Surface Reconstruction

Despite a huge amount of existing work feature-preserving surface reconstruction is an

ongoing research topic [Berger et al. 2013, Kazhdan and Hoppe 2013]. In this thesis

we showed that it is important to take the scale characteristics of the sample points into

account. This can be interpreted as modeling a systematic error present in the input

data. Along these lines it is worth to model and investigate other potential multi-view

stereo reconstruction errors or noise characteristics. In both presented surface recon-

struction algorithms, as in many other methods, it is easily possible to consider confi-

dence values. In the case of multi-view stereo, however, meaningful confidence values

are hard to assign. Especially in the surface reconstruction from depth maps there is

a lot of redundant data where error characteristics and meaningful confidence values

can be exploited to correctly recover the original surface. Besides better modeling the

error characteristics of the sample points a sensible regularization term has proven to be

extremely beneficial. In fact, without a regularization term the surface reconstruction

problem is effectively intractable. In analogy to the image domain, where natural im-

age priors have been developed and successfully applied, surface reconstruction might

benefit from more sophisticated or even application specific priors.

8.2.3 Paradigm Shift

Geometry reconstruction from images can clearly benefit from advancement in the ar-

eas of multi-view stereo or in the area of surface reconstruction from sample points.
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However, the results presented in this thesis revealed that additionally a widely and

maybe unconsciously used paradigm has to be reconsidered. This paradigm can be es-

sentially phrased as follows: Increasing the number of images and thus the number of

reconstructed multi-view stereo points (e.g., by reconstructing depth maps) will even-

tually result in the perfect surface. The underlying assumption is that the sample points

obtained by multi-view stereo are point samples from the true surface disturbed by zero-

mean noise and some outliers. Surface reconstruction algorithms (e.g., VRIP [Curless

and Levoy 1996]) can remove these errors and the reconstruction quality improves with

an increasing number of sample points. The results of Chapter 5 and 6 show that there

is an additional systematic error mainly effecting the fine details. The consequence is

that with an increasing number of images and depth maps the reconstruction quality

does not improve automatically, instead it can even deteriorate if this systematic error

is not considered.

The thesis also introduced means to model the systematic error using a modulation

transfer function (Chapter 5) and in terms of a convolution (Chapter 6), respectively. It

is still not obvious how to correct for this error. Since the modulation transfer function

has multiple zeros it is not invertible and the deconvolution is not uniquely solvable for

general filters. In practice, however, we can try to compute meaningful approximations.

For example, the geometry can be recovered up to a certain frequency supported by the

reconstructed sample points or one can apply surface priors. The topic of deconvolution

is well researched in signal and image processing and can probably inspire future surface

reconstruction algorithms. In our opinion, the crucial point is how to incorporate the

knowledge gained about depth maps in order to obtain the perfect 3D reconstruction.

The algorithm presented in Chapter 7, despite its current limitation to 2.5D surfaces,

constitutes a starting point and abandons the aforementioned paradigm.
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