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Information processing and storage underpins many biological processes of

vital importance to organism survival. Like animals, plants also acquire,

store and process environmental information relevant to their fitness, and

this is particularly evident in their decision-making. The control of plant

organ growth and timing of their developmental transitions are carefully

orchestrated by the collective action of many connected computing agents,

the cells, in what could be addressed as distributed computation. Here,

we discuss some examples of biological information processing in plants,

with special interest in the connection to formal computational models

drawn from theoretical frameworks. Research into biological processes

with a computational perspective may yield new insights and provide a

general framework for information processing across different substrates.

This article is part of the theme issue ‘Liquid brains, solid brains: How

distributed cognitive architectures process information’.
1. Introduction
(a) Information processing in biological systems
Biological entities face complex and challenging environments, where success-

fully making use of past experiences or being able to make accurate predictions

about the future can make a difference in their survival and reproduction.

Drawing from man-made archetypes of information processing, organisms

are said to contain a non-explicit model of the environment they exist in [1].

This provides organisms with a mechanism to transform sensed environmental

variables into a usable prediction that informs decision-making. Thus, biologi-

cal systems compute: they acquire, store, process and act on information that

surrounds them [2,3]. This is obviously not exclusive to higher order organisms

but observed at multiple scales: from homeostasis maintenance at the physio-

logical level to developmental transitions at the cellular level [4,5] and

complex goal-oriented decision-making at the organism level [6,7].

There are several key differences with man-made computational devices

that prevent us from fully mapping analogies between biological and machine

computation. Both are embedded in a physical reality but only cells face the

constraints imposed by homeostasis (the tendency towards a fixed point equi-

librium of system components, maintained by physiological processes) and the

ability to replicate oneself (autopoiesis). This requires an extra set of ‘processes’

to be executed in the background, which can interfere with or override other

information processes.

Secondly, in striking difference from digital electric pulses running through

logic gates, biological information is encoded in many different forms, which

need to be translated between formats [8,9]. The range of information transdu-

cing formats goes from proteins, ions or mRNAs moving from cell to cell, to

organism-wide signals like mechanical stresses and hormones that organize

major developmental events. These transitions in the nature of communicated
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environmental cues
(light, temperature, nutrients)

information processing

behaviour
(organogenesis, developmental transitions)

Figure 1. Information processing loop in multicellular plants. Environmental
cues are integrated and prompt changes in plant behaviour in the form of
developmental transitions and organogenesis. The creation of new organs,
the substrates of computation in plants, in turn feed back onto system-
level information processing. An indeterminate loop forms by information
processing, leading to the creation of new organs, which in turn process
information themselves.
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information create boundaries as to how and where infor-

mation can be appropriately interpreted. Additionally, this

means that information travels at different speeds depending

on the substrate and mechanisms for transport, from passive

diffusion to the rapid ion channel de-polarization.

Plants are no exception to the constraints and character-

istics that we have just introduced [10]. Plants are made of

immobilized cells, creating as solid-state substrate in which

information flows from cell to cell. They are subjected to

highly fluctuating environments, and must process complex

environmental cues in order to optimize the timing of the

key transitions of their life cycle. In this manuscript, we

will review a series of examples of biological processes

found in plants, analysed from the perspective of information

processing, highlighting the benefits and pitfalls of taking

such a point of view.

(b) Biological information processing in non-neuronal
systems

Similar to computation in engineered systems, information

processing in biological systems requires storage, transfer

and processing of information so that it can be converted

into a usable form [2]. The most used example for these pro-

cesses is the animal nervous system, which can harbour up to

billions of dedicated cells to perform such tasks. However,

these processes not only happen in neurons, but at diverging

scales through organisms. In this section, we include some

examples of information processing at very different biologi-

cal scales; these provide the underlying ideas and methods to

better understand information processing in plants.

At the cellular scale, gene regulatory networks (GRNs)

can also compute [11]. The dynamical system composed of

protein concentrations, DNA sequences and their interactions

can simulate computations best described as memory

bounded Turing machines [12]. These are equivalent to a lim-

ited version of Turing’s proposed scheme of universal

computation [13] and are capable of simulating any other

computing device.

Other clues into the universality of biological computing

designs come from research into biological motifs [14,15].

Taking a network perspective of organization of regulatory

elements, collections of devices can be classified by architec-

tural or behavioural properties. This provides us with a

general framework with which we can compare dynamical

behaviours without the minutiae of the particular substrate

used to implement it. Interestingly, when freed from such

constraints, we can compare families of devices and provide

a solid rationale for the designs observed in nature [15]. The

driving pressure behind particular motifs can be robustness

to signal noise, evolvability or simplicity in the number

of operating components. We can use these universal

constraints to better understand what can be expected from

evolved architectures as well as inform our own engineering

endeavours.

Developmental processes can also be regarded as

information processing [16,17]. They require gathering

information about both the internal state of the organism

and external physical cues that can trigger these developmen-

tal events, and they produce an output that is a

transformation of the computational substrate through a

feedback loop (figure 1). This means that the ‘hardware’ is

not constant; instead, new physical computing units are
produced as a result of information processing. The new bio-

logical form might be able to perform new operations and

has its internal state changed, so it perceives different infor-

mation. The perspective of development as a computational

scheme has been explored extensively [16–21], with direct

translation to real computational problems that are not trivial

to solve. A recent perspective on the causal loop comprising

genetic programmes, developmental induction and tissue

geometry can be found in [21], which challenges the view

of organisms or the physical embodiment of biological enti-

ties as a mere epiphenomenon of genetic programmes.

Another well-studied class of organism that performs non-

neuronal information processing is the slime mould

Physarum polycephalum. Experiments have been performed

using this creature to investigate its ability to execute compu-

tational tasks, such as navigating a maze, and finding the

shortest path between food sources [22]. The slime mould will

often find a ‘good-enough’ solution to this problem, and not

necessarily that which is optimal. The output is sufficient to sup-

port the growth of the individual in the absence of additional

selective forces. This illustrates an important aspect of compu-

tational outputs in biology, which may not always be optimal.

(c) Centralized versus distributed computation
Artificial computation in our personal computers (PCs) relies,

for the most part, in a central processing unit (CPU)-based

architecture. This means that there is a main computational

device through which information flows and where global

processes are run. This generates the so-called bus bottleneck:

a limiting factor for computation can be the bandwidth or

amount of information that can be fed into the CPU. A differ-

ent architectural organization was proposed to overcome the

bus bottleneck and CPU design constraints: distributed com-

puting [23,24]. In this form of information processing, several

processing units (PUs) exist, acting in parallel and performing

lower-level tasks that are allocated to them instead of global

functions. Then, the results of lower-level calculations have

to be aggregated, leading to a solution to the global problem

from these smaller problems. This ensures that some bottle-

necks and CPU complexity constraints can be avoided but

also generates new challenges to be faced: allocation and

coordination of the PUs become core issues to be resolved.

There are other advantages to using a distributed

architecture. Operating with redundant components means
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single cell information processing
(isolated molecular dynamics)

multicellular information processing
(distributed, coordinated dynamics)

network template of computation

(c)

Figure 2. (a) Single cells are able to perform computations using their intracellular dynamics. These are integrated at the higher scale in the context of a tissue (b)
by means of aggregation. The aggregation process makes use of the network structural template in which transport takes place. (c) Network structural template
depiction of the tissue in (b). (Online version in colour.)
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the system is more resilient to the random failure of parts

[25–27], as no single PU is responsible nor necessary for

the operation of the system as a whole. Computational

power can also be increased without the need to increase

the complexity of the PUs [28,29]. Adding new compu-

tational elements or rearranging the connections among

them enables new tasks to be performed, providing

adaptability and evolvability [23].

Distributed architectures are found in many complex bio-

logical systems, from bacterial colonies [30–32] to social

insects and other animal groups [33–35]. In order to under-

stand a distributed system operation, special focus needs to

be placed on the mechanism(s) employed to aggregate,

coordinate action and communicate internal states. This

includes sensory apparatus in animals [31], pheromone

trails in social insects [35] and diffusible chemicals for bac-

terial colonies [32]. It has been shown that isolated systems

can be pushed into collective dynamics by tampering with

their communicating and sensory mechanisms [36,37]. In

turn, better understanding of behaviour and operation of

natural distributed computing systems has inspired the

development of faster, more robust algorithms for computer

science [34], providing also the basis for deep insights and

a more fundamental theory of computational systems.

Organs in general, including those from plants, operate

under similar conditions to distributed computing. They do

not rely on a single CPU/cell to govern action, instead

goal-oriented behaviour is broken down into smaller tasks

and allocated into the many constituent cells [38]

(figure 2a,b). A consensus such as determining organ size

or timing for a developmental transition is then reconstructed

from the small-scale cellular contributions by aggregation.

This happens in parallel, with many processes and cells

contributing to the final outcome of the computation. It is

at this level that we often lack knowledge of how thousands

of asynchronous cellular internal dynamics coalesce into

collective decision-making that pervades organ function.

With multiple cells coming together and connecting to form

a computing tissue, topology and organization of major

information routes provide an additional set of constraints

to consider. This creates the major differences between a

GRN operating in a single cell and several GRNs embedded

in a complex tissue.

A useful perspective to analyse the distributed and

self-organized nature of organ behaviour is Smith’s [39]

view of developmental processes. Similar to the CPU

versus distributed architecture dichotomy, developmental
processes can be classified into two opposing types, stamp-

like and self-organized mechanisms, depending on the

nature of the flow of information within a system. Stamp-

like mechanisms rely on hierarchical relations among the

lower-level components, with some cells organizing and

providing information for the rest of the tissue to follow

(i.e. gradient-based positional information specification of

development [40]). More closely related to distributed archi-

tectures, self-organized developmental processes rely on

collective action by a set of similar agents, with horizontal

information transfer among the computing agents. A comp-

lementary perspective of developmental processes can also

be found in [41].

The horizontal nature of distributed architectures poses

additional challenges to the design and operation of organs;

namely, the additional costs of coordinating and communi-

cating results to other cells through diffusible molecules

[42]. This is especially true of the cellular arrangement in

plant tissues, which is lattice-like. Owing to the mechanical

interactions between adjacent cells and their immobility rela-

tive to one another, the diversity of cell shapes is limited,

leading to this constraint in the way in which the cells are

arranged. As a consequence, there are a limited number of

shortcuts for information transfer, and molecules need to tra-

verse a vast array of cells to reach their potential destination

[43] (see figure 2b for an example of a lattice-like tissue). This

constraint is reduced in heterogeneous cellular networks of

some plant organs where enlarged cells connect physically

vastly separated regions and provide a backbone for centra-

lized information flow, bringing together cells and tissues

that can be far apart. Thus, topological arrangement of the

computing elements as well as the establishment of shortcuts

that enable fast transfer of information become important

constraints in organ design and function. Below we discuss

several examples of centralized and distributed computation

in plant organs, with special interest in their relation to

standard computational models and theory.
2. Discussion
(a) Examples of distributed computation in plants
(i) Distributed control of gas exchange in leaves through stomata
Leaves regulate gas exchange across their surfaces by opening

and closing pairs of guard cells and pore (stoma) aperture

[44]. When stomata are open, gas exchange can occur. This
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Figure 3. Multicellular information processing in plants. (a) Stomata (dark cells) are dynamically open and closed in order to capture CO2 and avoid excessive loss of
water. (b) Thermal images of leaf surfaces showing the current state of stomata aperture within sectors. Patches of coordinated stomata activity are seen, indicating
that collective dynamics of stomata are present in the form of excitable media-like waves that propagate through the leaf surface. (c) The hormone metabolic
network underpinning the regulation of abscisic acid (ABA) and gibberellic acid (GA) levels in dormant Arabidopsis seeds. (d ) Distribution of ABA and GA synthesis
and response within distinct cell types of the dormant embryo radicle. (e) Spatial sites of ABA and GA responses within the dormant Arabidopsis embryo. ( f )
Attractor dynamics of the hormone metabolic interaction network in dormant Arabidopsis seeds when the distinct spatial embedding of hormone responses is
taken into account. (a,b) taken from [45] and ( f ) from [46].
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however comes at the expense of accelerated water loss from

the tissue. Opening stomata imposes an important trade-off

between gas and water relations that needs to be successfully

manage in order to optimize plant fitness.

It has been shown that the stomata of cocklebur

(Xanthium strumarium) do not operate separately, but in

patches of the same state (open or closed) [45]. It was

suggested that local interactions among stomata could propa-

gate in a coordinated fashion and create a higher order

phenomenon similar to travelling waves of stomatal state

across a leaf surface [45] (figure 3a,b). The collective dynamics

of stomata in leaf surfaces were likened to cellular automaton

(CA) theory. CAs are space-embedded models with collec-

tions of interconnected cells, each with a discrete internal

state [47]. Using the CA’s rules, the internal state is dynami-

cally updated, using only the current cellular state and that of

the cell’s immediate neighbours [47].

Peak and coauthors showed that a CA density

Gács–Kurdyumov–Levin classifier [45,48] can be used to

model the establishment and spatial propagation of same-

state domains in leaf surfaces. This proposes that stomata

can sense the open–closed state of their neighbours and

switch to match theirs, and is statistically similar to the

random accumulation of grains of sand in a lattice [49]: gas

accumulation provides the instability for stomata to open,

driving the critical propagation of open domains through

the leaf surface. Such avalanches of activation can be mod-

elled as a product of a self-organized critical system [49,50],

and show some characteristic distributions for avalanche

sizes and waiting times between events closely matching

the experimental results. Self-organized criticality is typically
found in driven systems, which experience a constant input

of energy, and from a dynamic systems perspective have a

critical point as an attractor [49].
(ii) Fluctuating temperatures are integrated with distributed
computation and control seed dormancy

Plant seeds remain dormant awaiting the opportune con-

ditions for germination [51]. The GRNs underpinning this

process are regulated by the two antagonistically acting hor-

mones: abscisic acid (ABA) and gibberellic acid (GA),

promoting dormancy and germination, respectively [51,52]

(figure 3c). A ratio threshold of hormone abundance is used

to take the irreversible decision to commence germination.

It has been recently shown that the response to these mol-

ecules is spatially segregated within a dormant Arabidopsis
embryo [46]. Both centres control the metabolism of ABA,

but response feedbacks remain separated in distinct cell

types (figure 3d–f ).

This control logic of two separated control centres that

mutually inhibit each other by mobile agents is also found

in the human brain. The ganglia–cerebellum–cortex loop

[53,54] is involved in the control of motor centres, playing

an important part in movement decision-making. In human

brains, this motif of mutually inhibiting centres is thought

to filter out noise by introducing a time delay. In Arabidopsis,

this spatial separation was shown to perform an opposite

function in harnessing variable inputs [46], promoting germi-

nation when the daily temperature fluctuations increase [55].

As such, the system displays alternate states that can be

viewed as attractors on a larger variable space (figure 3f ).
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Attractor dynamics and ODE formulations can be used

to better understand the behaviour of the system as well

as offer interesting opportunities for intervention and

engineering [46].

This example provides an interesting perspective on

conserved computation motifs [15,16] that might be found

across domains and species. From computers to synthetic

biology to real biology [16], similar designs can be found

that are either very robust to signal noise or highly evolvable.

Such pervasiveness suggests that interdisciplinary research

might be able to translate knowledge obtained from other

substrates, as well as design principles and limitations.

A further parallel in the control of this system with

distributed computation is observed by altering the rate at

which the distinct hormone response centres communicate

in a dormant seed. Increasing the expression of the NFP3
transporter, which moves both ABA and GA, increases the

sensitivity of seeds to alternating temperatures in the break-

ing of seed dormancy [46]. The altering of this aggregation

rate therefore impacts the outputs of the system, as observed

in computational systems.

(iii) Distributed control of flowering in response to cold
temperatures

Similar to seed germination control, the timing of the induc-

tion of flowering is a crucial decision in the plant life cycle

[56]. A plant needs to make a prediction on when is the opti-

mal timing to create reproductive organs; this includes

integrating environmental information like future resource

availability, as well as flowering when other plants of the

same species undergo this transition.

In many species, flowering is initiated by exposure to cold

temperatures in a process called vernalization. In the case of

Arabidopsis, the repressor gene FLOWERING LOCUS C (FLC)

mediates this response through epigenetic silencing [57,58].

The average expression of FLC follows a very predictable

continuous decline in response to cold. Upon closer inspec-

tion, individual cells were found to be either silenced or

non-silenced, leading to the proposal that cold is being

digitally registered in individual cells of the plant [59].

Collectively, the individual binary state of each cell needs

to be aggregated in a global response, providing a robust

estimation of environmental temperature. The molecular

mechanisms by which this aggregation takes place are still

unknown, although some mobile genetic elements control-

ling flowering have been described, such as FLOWERING
LOCUS T [60]. At the theoretical level, we can assume that

this mechanism probably involves a message passing algor-

ithm, where each cell tries to communicate its state to the

neighbouring ones and a majority-rule is applied to decide

when a critical fraction of cells have transitioned [61].

Recent work has demonstrated the FLC-based cold regis-

tration silencing mechanism to take into account alternating

temperatures in the control of flowering time [62], as demon-

strated in the control of seed dormancy. This suggests this

complex transformation of temperature inputs is conserved

across diverse transitions in plant development.

(iv) Dynamic topological rearrangement of shoot apical meristem
domains affects distributed computation

In a seminal paper in birch (Betula pubescence) [63], it was

shown that the shoot apical meristem (SAM) of this species
undergoes a ‘fragmentation’ process that is dependent on

seasonal biological activity. During the winter, when apical

growth is arrested, cells in the SAM are isolated in terms of

their communication with other parts of this plant. This is

achieved by modifying the aperture of cytoplasmic channels

located at the interface between cells called plasmodesmata

(PD) [64]. Doing this in a coordinated manner leads to the

creation of small connected collections of cells, termed

symplastic domains [65,66]. The presence of symplastic

domains in the birch SAM during the winter was shown by

injecting a freely moving dye in different locations and track-

ing its movement (figure 4a). By contrast, the cells in the SAM

during active growth in the summer are communicating

readily, with the dye propagating from any starting point

to any other cell given enough time.

An interesting computational architecture that shares

some properties with the system described by Rinne & van

der Schoot [63] is that of field programmable gate arrays

(FPGAs). FPGAs are electronic circuits capable of changing

the computation being carried out by altering the connections

between logic blocks inside of them (see figure 4c for a rendi-

tion of an FPGA) [68]. This allows FPGAs to be adaptable and

to implement newly developed algorithms. In the case of the

birch SAM, the dynamic rearrangement of the symplastic

domains provides the same multicellular template with

distinct connectivity states, each running separate develop-

mental programmes: a resting state where only autopoietic

functions are implemented and an active state where

growth and new organs are created. This is supported by

recent work in hybrid aspen which showed season-

dependent cellular connectivity in the SAM of this species

to regulate the release from bud dormancy [67].

Rinne & van der Schoot [63] suggested the symplastic

domains might provide cues to the establishment of new

above-ground organs, dynamically setting the boundary con-

ditions of the template, as well as controlling the size of the

computing agent population (figure 4b). The critical contri-

bution of size and/or density thresholds to behavioural

changes has been thoroughly explored in other distributed

systems, from bacteria [69] to animal communities [33,34],

and may also be acting in this context.
(b) Speed versus robustness in multicellular information
processing

Plant tissues are solid masses made of rigid, space-filling cells

[43]. This severely constrains the design space in terms of net-

work topologies that is available to tissue formation [38].

Isotropy and lattice-like organs (figure 2b) are frequently

found in plants; this constitutes a limiting factor in how fast

information can be transmitted through plant organs [70].

Network theory can help us better understand distances

in plant tissues by considering average walks taken to

travel between two random nodes [70]. At the other end of

the spectrum, tissue architectures with elongated cells that

connect with many other cells give rise to heterogeneous net-

works, which are known to reduce average distances between

two random nodes in the network. This is achieved at the cost

of robustness; when random or targeted failure of com-

ponents is applied to heterogeneous networks they break

down more quickly than lattice-like ones [71]. Heterogeneous

designs include vascular systems, which create shortcuts
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in the network that facilitate long-distance transport of

molecules.

This intrinsic trade-off between speed of information

transfer and robustness to random noise provides us with a

coherent framework from which we can understand optimiz-

ation in tissue architecture. Plant organs do not need to

adhere to a single principle of design: some parts of the

plant might include lattices while others show clear signs of

long-range transportation optimization.
(c) Long-range rapid information transfer in plants
It has been recently shown [72–74] that plants also possess a

rapid information distribution mechanism that uses small

molecules and a vast network of highly connected cells to com-

municate cellular state. In an example experimental condition,

this communication was triggered when one leaf of the plant

was damaged by a caterpillar, and a signal was transmitted

through the vascular system [72–74] (figure 4d). The reported

rate of transmission was roughly 1 mm s21, orders of

magnitude slower than the speed of information transfer in

animal nervous systems.

These findings provide a mechanism for the central

integration of information across a plant. But what are the

computational consequences of such a design? A global net-

work of information transfer allows synchronization of states

in the whole organism. In a matter of seconds, collective

responses can be orchestrated to environmental challenges,
and coupling in temporal dynamics becomes easily attainable.

In terms of fitness impacts, this means that the whole plant can

adequately respond to the caterpillar aggression and better its

chances of survival. This mechanism of burst information

transfer in plants challenges the common view of plants as

temporally slow and computationally basic organisms.
(d) Connectionist approaches to understanding
multicellular information processing in plants

Topology and communication are the major constraints in the

operation of distributed systems. Accordingly, fully charac-

terizing the template in which information processing takes

place can provide us with defining information on organ be-

haviour. The presence of shortcuts for information transfer

and the global connectivity of the system are signatures of

information processing events inside tissues. Structural cellu-

lar interaction mapping is especially relevant in plants

because plant cells are immobilized and limited in the

shapes they can attain compared with animal organs,

especially neuronal systems (figure 4e), where interactions

are dynamic. PD, however, slightly alter this picture. Even

though the template cannot be changed through cell

migration, the ‘channel bandwidth’ of communication

between cells can be tuned, providing extra functionality

and adding a dynamic component to an otherwise static

design, following the principle of an FPGA.
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This structural mapping should be complemented when

possible with functional information about the network

[71]. This means both node (cells) and edge (interfaces) anno-

tation. With cell types and relevant molecule concentrations

included in the model, we can better understand how an

organ was constructed and generated through development,

as well as the inherent complexity present in the tissue. Anno-

tation allows us to bridge scales between molecular networks

and cellular networks by stimulating growth dynamics and

multiscale phenomena, providing us with extended predic-

tive capabilities in terms of dynamics and thus computation.
l/rstb
Phil.Trans.R.Soc.B
3. Conclusion
In this paper, we have discussed how collection of cells pro-

cess information in plants, with special interest in distributed

computation and their connection to computing theory.

Taking such a perspective provides us with a framework to

close a knowledge gap between the lower-level molecular
interactions and higher order adaptive behaviours. Addition-

ally, it has been shown that research into naturally occurring

information processing drives the creation of faster more

robust algorithms [34,75,76] useful for the computer sciences.

Also, understanding information processing on natural

substrates can provide computer scientists with new insights

into efficient, constrained computational systems. Finally,

comparing how information processing works in non-

neuronal systems may also provide cross-fertilization for

brain connectionists, helping build a general theory of multi-

cellular information processing in diverse biological systems.
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