
 
 

Core-Shell NaHoF4@TiO2 NPs
Cui, Xianjin; Fryer, Benjamin; Zhou, Diwei; Lodge, Rhys W; Khlobystov, Andrei N; Valsami-
Jones, Eugenia; Lynch, Iseult
DOI:
10.1021/acsami.9b03062

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Cui, X, Fryer, B, Zhou, D, Lodge, RW, Khlobystov, AN, Valsami-Jones, E & Lynch, I 2019, 'Core-Shell
NaHoF4@TiO2 NPs: a labeling method to trace engineered nanomaterials of ubiquitous elements in the
environment' ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.9b03062

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 22/05/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. May. 2019

https://doi.org/10.1021/acsami.9b03062
https://research.birmingham.ac.uk/portal/en/publications/coreshell-nahof4tio2-nps(5e12726e-6dee-4bec-81b8-7841715fa36f).html


Core−Shell NaHoF4@TiO2 NPs: A Labeling Method to Trace
Engineered Nanomaterials of Ubiquitous Elements in the
Environment
Xianjin Cui,*,† Benjamin Fryer,† Diwei Zhou,§ Rhys W. Lodge,‡ Andrei N. Khlobystov,‡

Eugenia Valsami-Jones,† and Iseult Lynch†

†School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
§Department of Mathematical Sciences, University of Loughborough, Loughborough, LE11 3TU, United Kingdom
‡Nanoscale and Microscale Research Centre, Cripps South Building, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom

*S Supporting Information

ABSTRACT: Understanding the fate and behavior of nanoparticles (NPs) in the natural environment is important to assess
their potential risk. Single particle inductively coupled plasma mass spectrometry (spICP-MS) allows for the detection of NPs at
extremely low concentrations, but the high natural background of the constituents of many of the most widely utilized nanoscale
materials makes accurate quantification of engineered particles challenging. Chemical doping, with a less naturally abundant
element, is one approach to address this; however, certain materials with high natural abundance, such as TiO2 NPs, are
notoriously difficult to label and differentiate from natural NPs. Using the low abundance rare earth element Ho as a marker,
Ho-bearing core -TiO2 shell (NaHoF4@TiO2) NPs were designed to enable the quantification of engineered TiO2 NPs in real
environmental samples. The NaHoF4@TiO2 NPs were synthesized on a large scale (gram), at relatively low temperatures, using
a sacrificial Al(OH)3 template that confines the hydrolysis of TiF4 within the space surrounding the NaHoF4 NPs. The resulting
NPs consist of a 60 nm NaHoF4 core and a 5 nm anatase TiO2 shell, as determined by TEM, STEM-EDX mapping, and spICP-
MS. The NPs exhibit excellent detectability by spICP-MS at extremely low concentrations (down to 1 × 10−3 ng/L) even in
complex natural environments with high Ti background.

KEYWORDS: spICP-MS, core−shell nanoparticles, large-scale synthesis, exposure and risk assessment, quantification

■ INTRODUCTION

The past few decades have witnessed significant advances in
nanotechnology, from the controlled synthesis of nanomateri-
als to their applications in nanomedicine,1,2 energy harvesting
and storage,3,4 and soil and water remediation.5,6 Nanosafety
and nanotoxicology have emerged as new research topics in
response to increasing concerns regarding the potential adverse
effects on humans and the environment exposed to nanoma-
terials intentionally, or inadvertently.7,8 As one of the few
nanoparticles (NPs) that have already been widely used in
industry for decades, TiO2 NPs have been heavily produced for
a wide range of applications, such as pigments, sunscreens,

cosmetics, medical implants, self-cleaning surfaces, photo-
voltaics, photocatalysts, antifogging surfaces, and wastewater
treatment.9,10 Because of this prevalence, it is crucial to
understand the fate of engineered TiO2 NPs in the
environment to assess their risk and control pollution. Indeed,
TiO2 NPs have been predicted to have the highest environ-
mental occurrence of all engineered NPs, and have been found
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in treated wastewater, sewage sludge, surface waters, sludge-
treated soils, and sediments.11

Environmental concentrations of Ti are strongly influenced
by geogenic sources. In rivers with high concentrations of
suspended matter (6.0−140.6 mg/L), the fraction of
suspended Ti reached 62.3−88.6% (1.0−7.5 mg/g in terms
of dry mass) with a strong correlation between the mass of
suspended matter and the concentration of suspended Ti.12 X-
ray fluorescence spectrometry determined the Ti content of
soil samples from Ti mining sites to range from 0.47 to 2.80%,
but the Ti was found to be of geogenic origin with no
anthropogenic input.5 Though some efforts have been devoted
very recently to discrimination of engineered TiO2 from
natural Ti-bearing NPs by a multielement detection
approach,13 this high natural background makes quantification
of released and bioaccumulated concentrations of engineered
TiO2 NPs extremely challenging in the absence of some
functionalization of the NPs to facilitate their discrimination.
Labeling approaches proposed to date, for a range of NP
compositions, have included radiolabeling,14 stable isotope
enrichment,15 chemical doping with a low-abundance
element,16 or barcoding with DNA fragments.17,18 Each of
these potential approaches has advantages and challenges, with
cost and the scale at which the NPs can be produced being the
major drawback of all. For TiO2 NPs, stable isotope labeling
with 47Ti has been successfully applied for detection of the
bioaccumulation of NPs in zebra mussels (Dreissena poly-
morpha) exposed for 1 h at environmental concentrations via
water (7−120 μg/L of 47TiO2 NPs) and via their food (4−830
μg/L of 47TiO2 NPs mixed with 1 × 106 cells/mL of
cyanobacteria).15 Chemical doping is a promising approach to
achieve a large amount (grams compared to milligrams for
radiolabeling) of labeled NPs at an affordable cost. However,
introducing new cations into the lattice of host materials may
alter their physical and chemical properties, even if the
concentration of the dopant is low enough that the crystal
structure remains unchanged.19 It was reported that strong
structural inhomogeneity, and even a phase transition, can be
induced when there is a large difference in size between the
substituted cations and the host cations.20,21 A mixed-phase
material, rather than a homogeneous solid solution, could be

obtained because of unsuccessful doping. An alternative
approach is to make a core of the tracer element surrounded
by a shell of the material of interest. This core−shell approach
is preferred for toxicological and environmental fate studies,
because the material that comes into contact with the
environment or living organisms will be the surface material
and should be a close analogue of the undoped material,
assuming that factors such as NP density are not significantly
altered and appropriate crystal phase/morphology can be
obtained.
ICP-MS was recently adopted as a means to detect NPs at

ultra low concentration,22 thanks to the capacity for element-
specific analysis and the low detection limits (down to ng/L).
However, ICP-MS fails to differentiate between engineered
NPs composed of high abundance elements (e.g., Ti) and their
natural counterparts.23,24 To ensure that only engineered TiO2
NPs are identified in complex media, Ho core−TiO2 shell
(NaHoF4@TiO2) NPs were synthesized with the low-
abundance element Ho used as a chemical marker. The
core−shell design was proposed to achieve a high dopant
concentration for better detection while retaining the structural
integrity of the NPs being investigated via the shell. NaYF4 has
been intensively investigated as a host for up-converting
fluorescent materials with tunable particle sizes being
demonstrated through the use of small NPs acting as
nucleating seeds.25 As an analogue of NaYF4, it was expected
that the size of NaHoF4 NPs could be similarly controlled, to
achieve particles above the size limit for spICP-MS detection
(i.e., >20 nm).24 For this reason, NaHoF4 was selected as the
marker core, although it is dissimilar from the TiO2 shell both
in structure and in composition.
TiO2-coated NPs can be synthesized via a hydrothermal

process,26−29 or a sol−gel reaction on the NP surface,30 and
Caruso et al. even proposed a layer-by-layer method for
coating TiO2 onto polymer NPs.31 Unfortunately, the
hydrothermal conditions, or ultralow concentrations, make
these approaches unfavorable for large-scale synthesis, a
prerequisite for NPs for environmental studies. A sol−gel
approach derived from the Stöber method has also been
reported recently for TiO2 coating;32 however, this method
was less effective for the coating of TiO2 onto dissimilar

Figure 1. (A) A schematic illustration of the synthetic route to produce NaHoF4@TiO2NPs; and (B) X-ray powder diffraction pattern of
NaHoF4@TiO2 NPs produced using an Al(OH)3 template. NaHoF4, JCPDS no. 00−049−1896; TiO2, JCPDS no. 01−075−2545.
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nanostructures33 and a post-thermal treatment was needed to
achieve a crystalline TiO2 layer.
In this work, we developed a templating method for the

large-scale synthesis of NaHoF4@TiO2 core−shell NPs, in
which a sacrificial Al(OH)3 layer was deposited onto the
NaHoF4 NP surface and then etched by HF or other
fluorinated species via the hydrolysis of TiF4.

■ RESULT AND DISCUSSION

The synthesis of NaHoF4@TiO2 NPs involved four steps (see
the Experimental Section for further details). A typical
procedure can be described briefly as follows. First, NaHoF4
core NPs were obtained by thermolysis of Ho(CF3COO)3 and
NaCF3COO in a mixed solvent consisting of a high boiling
point solvent, 1-octadecene, and a coordinative solvent,
oleylamine (Figure 1A), adapted from the approach published
for NaYF4 NPs and its analogues.25 Al(OH)3 was then
deposited onto the NaHoF4 NP surfaces to improve colloidal
stability in polar solvents such as ethanol or water.34 An
aqueous solution of TiF4 was introduced to the NaHoF4@
Al(OH)3 NPs dispersion along with polyvinylpyrrolidone
(PVP, Mw = 360 000) before the ethanol/water solvent system
was heated to 60 °C with stirring and maintained at this
temperature for 24 h. A subsquent addition of ammonia−water
was followed by reflux at 100 °C for 2 h. Finally, the white
product was isolated by centrifugation, washed with ethanol
and water, and kept in ultrapure water.
The X-ray powder diffraction (XRD) pattern shown in

Figure 1B confirmed the presence of hexagonal phase NaHoF4
and tetragonal phase (anatase) TiO2. Compared to the
NaHoF4 core NPs, however, an obvious broadening effect
was observed for the TiO2 phase, indicating a very small crystal
size. Transmission electron microscopy (TEM) images in
Figure 2 revealed a rough NP surface after coating with TiO2,
as well as an increase in the mean particle size from 61.4 to
68.6 nm. It was also noted that the size distribution of the NPs
broadened, reflected by the fact that the standard deviation

increased to 16.8 nm from 6.4 nm. Energy-dispersive X-ray
(EDX) spectroscopy was utilized to further confirm the
coexsitence of Ti and Ho (Figure S1, Supporting Information),
as well as the core−shell structure of the NPs. Scanning
transmission electron microscopy EDX (STEM-EDX) map-
ping allowed for the elemental distribution of the NPs to be
determined. The elements from the NaHoF4 core particle (F,
Ho and Na) were observed to be encompassed by the Ti and
O from the external TiO2 shell (Figure 3A−F). In addition,
more Ti was detected at the edges of the NP than in the core.
Elemental line profiling was also done using STEM-EDX
across a single core−shell NP to map its cross-sectional
distibution of elements (Na, Ho, F, Ti and O). As observed in
the elemental mapping, higher counts for Ti and O were
detected at the periphery of the NPs (approximately 5 nm in
thickness), while stronger signals from F and Ho from the
NaHoF4 core were evident in the middle of the NP, clearly
demonstrating that the NaHoF4 NPs were coated with a layer
of TiO2 (Figure 3G−L). A thickness of ca. 5 nm for the TiO2
shell layer was consistent with the 9 nm increase in average
particle size observed by TEM (Figure 2). Note that despite
the use of an Al(OH)3 template in this work, no Al was
detected for the product of NaHoF4@TiO2 by EDX, as is
evident from Figure 3.
NaHoF4 NPs obtained in organic solvents could not be used

directly for TiO2 coating via a hydrolytic approach in ethanol,
because they were inevitably covered by oleyamine and were
thus dispersible only in nonpolar solvents; therefore, surface
modification was required to make them dispersible in polar
solvents. Additionally, there is a lack of interaction between the
hydrophobic organic layer of the NaHoF4NPs and the TiO2
crystallite, which is unfavorable for the heterogeneous
nucleation of TiO2 on the NaHoF4 surface.

35,36 The deposition
of an Al(OH)3 layer not only removes the surface bound
oleylamine, but also imposes a highly positive surface charge
onto the NaHoF4 NPs,

34 providing a stable colloid in ethanol
with a concentration up to 2 mg/mL. Once the TiF4 solution
was added into the NPs suspension, an external Al(OH)3 layer

Figure 2. (A) TEM image and (B) size distribution of NaHoF4 core NPs, (C) TEM image and (D) size distribution of NaHoF4@TiO2NPs. 331
NaHoF4 NPs were counted for size analysis, yielding a median size and average size of 61.4 nm. 214 NaHoF4@TiO2 NPs were counted for size
analysis, yielding a median size of 69.7 nm and an average size of 68.6 nm.
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moves the equilibrium of hydrolysis toward the formation of
Ti(OH)4 by reacting with the consequential HF or through
anion exchange with TiF6

2−, TiF5
− or other fluorinated

species.37 As a result, the Al(OH)3 layer was etched and a
Ti gel formed around the NaHoF4NPs. Ammonia−water was
subsequently introduced to catalyze the condensation of the Ti
gel to form a TiO2 layer on the NP surface. PVP was then used
to protect the newly formed NaHoF4@TiO2 core−shell NPs
from potential aggregation. A decrease in the hydrodynamic
size was observed by dynamic light scattering (DLS) after the
condensation triggered by addition of ammonia−water (Figure
S2), thus confirming the loss of the Al(OH)3 layer.
Some of the NaHoF4@TiO2 NPs showed a significantly

different morphology and smaller size in comparison to the
NaHoF4 core NPs before coating (Figure S3), and particle size
analysis by TEM also showed a broader size distribution after
coating with TiO2 (Figure 2). These results led to a hypothesis

that NaHoF4 NPs were not stable in the presence of H
+ or Al3+

since these ions could break Ho−F bonds, resulting in the
formation of H−F or Al−F bonds.37 This is supported by their
bond dissociation energies (Al−F 675 kJ/mol, H−F 569 kJ/
mol and Ho−F 540 kJ/mol). Increasing the temperature or
polarity of the solvent would encourage the dissolution of
NaHoF4. Indeed, NaHoF4 NPs appeared to be less stable in
dimethyl sulfoxide (DMSO) than in ethanol. Only TiO2 NPs
were observed by TEM and a weak NaHoF4 signal was
detected by XRD for the product when using DMSO instead
of ethanol as the solvent during the shell formation stage and
on increasing the synthesis temperature to 160 °C (Figures S4
and S5).
Because of the intrinsic mismatch of the NaHoF4 and TiO2

lattices, TiO2 tends to grow on the NaHoF4 NP surface via a
granule mode to form a rough layer consisting of small
particles, minizing the free energy of system. As shown in the

Figure 3. (A−F) STEM-EDX spectroscopy maps of an ∼69 nm NaHoF4@TiO2 core−shell NP, confirming the coexistence of the Ho core and the
TiO2 shell, and (G−L) STEM-EDXline profiles of a NaHoF4@TiO2 NP highlighting the elemental distribution of the Ho and F core with the TiO2
shell.
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TEM images (Figures 2C and 4), the NaHoF4@TiO2 core−
shell NPs exhibited a rough surface after coating with TiO2.
High-resolution TEM images revealed that the outer TiO2
layer is formed from small TiO2 NPs with a size less than 5 nm.
This is also reflected by the broadening of the diffraction peaks
in the XRD pattern (Figure 1B). The (011) facets of TiO2,
with a d-spacing of 3.52 Å, were observed in HRTEM, and its
corresponding diffraction peak at 25.3° appeared as the
strongest peak in the XRD pattern, confirming the presence
of anatase TiO2. The bandgap of NaHoF4@TiO2 was
determined as 3.7 eV (Figure S6), slightly larger than the
typical value of 3.20 eV for anatase TiO2, although this likely
reflects the influence from the ultrasmall particle size of TiO2.
The formation of a core−shell configuration is not only

thermodynamically dependent on the interfacial energy
between the core and shell materials but also sensitive to
kinetic factors including the reaction rate, temperature and the

amount of NPs serving as crystal seeds. Because of a lower
critical free energy, heterogeneous nucleation requires a lower
chemical potential than homogeneous nucleation.35,38 In other
words, a higher concentration (supersaturation) of the soluble
crystallite is needed for homogeneous nucleation. Therefore,
there is a concentration window to form the hybrid material,
above the critical level for hetergeneous but below the level for
homogeneous nucleation. As one specfic example of a hybrid
material, NaHoF4@TiO2 NPs are more likely to form if the
concentration of TiO2 crystallite falls within this concentration
window during the condensation process. Excess ammonia−
water would lead to a fast condensation process, and a high
concentration of TiO2 crystallite if there are not enough
NaHoF4 NP seeds to consume them from the solution phase.
Pure TiO2 NPs, instead of core−shell structures, would form
as a result of an homogeneous nucleation. However, an
insufficient amount of ammonia could not trigger the

Figure 4. HRTEM images of NaHoF4@TiO2 core−shell NPs, showing the anatase phase of TiO2 at the surface of the core−shell NPs.

Table 1. Summary of Synthetic Conditions and Scales for the Different Approaches Investigated for TiO2 Coating of the
NaHoF4 Core NPs

entry
amount of core

NPs amount of ti precursor conditions ref

1 8.9 mg of Au 90 mL of 2.7 mmol/L TiF4 aqueous solution hydrothermal at 180 °C for 48 h 26

2 30 mg of α-
Fe2O3

30 mL of 5.4 mmol/L TiF4 aqueous solution hydrothermal at 180 °C for 3 h 27

3 100 mg of
NaYF4(Yb,
Tm)

28 mL of 5.7 mmol/L TiF4 aqueous solution hydrothermal at 180 °C for 3 h 28

4 10 mg of Cu2O 25 mL of 0.3 mmol/L TiF4 aqueous solution hydrothermal at 180 °C for 0.5 h 29,41

5 2.7 mg of Ag 46 mL of 0.5 mmol/L Titanium tetraisopropoxide
(TTIP) solution in ethanol

hydrolysis of TTIP in a mixture of H2O and ethanol at room
temperature for few minutes

29,30

6 1.9 mg of
polystyrene

2 mL of 0.125 wt %Titanium bis (ammonium
lactato) di- hydroxide solution

multisteps involved for coating TiO2 on PS NPs, followed by
calcining at 900 °C on N2 for 4 h then on O2 for 8 h

30,31

7 α- Fe2O3 100 mL of 40 mmol/L titanium butoxide solution
in ethanol

stirring in ethanol for 18−24 h, followed by drying at 100 °C
overnight and calcining at 500 °C for 2 h

32

8 SiO2

9 graphene oxide
10 Fe3O4

11 NaYF4(Yb,
Tm)/ Fe3O4

20 mL of 7.7 mmol/L titanium diisopropoxide
bis(acetylacetonate) solution in ethanol

Stirring at 25 °C for 24 h, followed by drying at 60 °C and calcining
at 500 °C for 3 h

33

12 1600 mg of
NaHoF4

800 mL of 31.3 mmol/L TiF4 aqueous solution in ethanol/water (740:60) at 60 °C for 2 h, then at 100 °C for 18 h this work
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condensation or ensure a reasonable time scale for the
reaction. Our results indicated that NaHoF4@TiO2 core−
shell NPs can be obtained when the relative amounts of
ammonia, ethanol and water are 2 mL:740 mL:60 mL,
respectively. A mixture of NaHoF4 NPs and ultrasmall TiO2
particles was achieved if more than 2.5 mL of 35% ammonia−
water was used (Figure S7). A colorless gel covered product
was obtained if no or less than 1 mL of ammonia−water was
added.
The challenges for synthesizing core−shell NPs on the scale

required for field environmental fate experiments were thus to
avoid the heterogeneous nucleation at a high concentration
and the fact that a hybrid structure is thermodynamically less
favorable than the formation of two separate homogeneous
NPs. Unlike reactive Ti precursors, such as alkoxides, an
elevated temperature or a high pH value is required to speed
up the hydrolysis of TiF4

39 or to facilitate the crystallization of
TiO2.. Currently, TiO2-coated materials with improved

crystallinity are typically synthesized by a hydrothermal
approach with an extremely low concentration to avoid the
formation of unwanted pure TiO2 NPs at elevated temper-
atures28,40 (Table 1). In this study, the Al(OH)3 layer plays an
important role when synthesizing NaHoF4@TiO2 NPs on a
large scale. In addition to providing the NPs with excellent
colloidal stability, it also serves as a sacrificial template to
confine the hydrolysis and condensation process of TiF4 to
within the space surrounding the NaHoF4NPs (Figure 1A),
thereby helping to preclude the formation of pure TiO2 NPs.
The rate of TiF4 hydrolysis was accelerated at a relatively low
temperature (60 °C), without altering the pH value, because of
the presence of the Al(OH)3 layer preventing the condensation
process. No product was isolated after the reaction was held at
reflux for 24 h, in the absence of ammonia−water, and a gel-
like product was recovered by centrifugation at 6000g for 20
min after stirring at 60 °C for 24 h following adjustment to a

Figure 5. spICP-MS results of NaHoF4@TiO2 NP dispersions in ultrapure (UP) water and river water. (A) Real-time Ho signal from NaHoF4@
TiO2 suspension in river water; (B) real-time Ti signal from NaHoF4@TiO2 suspension in river water; (C) real-time Ho signal from NaHoF4@
TiO2 suspension in ultrapure water; (D) real-time Ti signal from NaHoF4@TiO2 suspension in ultrapure water; (E) size distribution of NaHoF4
component detected by spICP-MS; and (F) size distribution of TiO2 component detected by spICP-MS. Stock suspensions of NPs were diluted
100 million times with ultrapure water and river water, respectively, from ca. 1.5 mg/mL to ca. 15 ng/L for spICP-MS measurements. River water
was collected from the Worcester and Birmingham Canal, near the University of Birmingham, and was used without filtration.
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pH of 4 (Figure S8), confirming the mechanism and the useful
window for optimal core−shell NP synthesis.
Large-scale synthesis of TiO2-coated NPs could be

potentially achieved via a sol−gel approach,32 despite the
fact that a calcination process up to 500 °C is required to
obtain a crystallized TiO2 phase, with the consequent risk that
larger particle aggregates may form because of the sintering
effect. This approach requires preliminary NP seeds to be
colloidally stable in a basic environment, which makes it
inapplicable for positively charged or polymer-coated NPs.
Positively charged NPs would lose their stability with addition
of the ammonia−water catalyst, whereas NPs stabilized by
functional polymer could remain colloidally stable in a basic
environment, but the polymer layer being tightly bonded to the
surface may hinder the coating with TiO2 (Figure S9). PVP
was used in this work, and it was expected to interact with NPs
via weak van der Waals forces. Our results suggested that this
losely bound polymer layer did not affect the TiO2 coating.
Because of the weak interaction between PVP polymer and the
NPs, PVP can be readily removed by washing with water or
replaced by other coatings (especially under highly alkaline
conditions), allowing the surface to be made more
representative of the TiO2 particles used in food, commestics
and other applications.42,43

As expected, the NaHoF4@TiO2 core−shell NPs indeed
showed superior detectability on spICP-MS even in the
presence of a high background of Ti up to the μg/L regime
(Figure 5). Our results indicated that the ionic Ti levels in river
(canal) water is up to 300 ppb, 100 times higher than the
amount present in ultrapure water. In addition, Ti-containing
particles were also observed in blank river water using spICP-
MS. However, no Ho-containing particles, and very limited
ionic Ho (<0.5 ppb), were detected either in river water or
ultrapure water (Figure S10). To simulate the measurement
conditions in an environmental study (e.g, quantification of
release, accumulation, environmental transformations, or
presence in effluent (or sludge) following treatment in a
wastewater treatment plant, for example), we diluted the
NaHoF4@TiO2 NP suspension (stock concentration, ca. 1.5
mg/mL) 100 million times with ultrapure water or river
(canal) water, yielding a particle concentration of ca. 20 471
NPs/mL or a mass concentration of Ho of 4.5 ng/L as
measured by spICP-MS. With the low background of Ti and
Ho in ultrapure water, spICP-MS exhibited an excellent
capacity to detect both the Ti and Ho components of the
NaHoF4@TiO2 NPs, and mathematically provided an
equivalent mean size (from the equivalent spherical volumes)
of 68.0 and 54.8 nm for the NaHoF4 core and TiO2 shell,
respectively (Figure 5E, F) using the density of anatase TiO2
bulk material (3.9 g/cm3) and a calculated density for NaHoF4
(3.99 g/cm3, see calculation in the Supporting Information).
As the number of Ho- and Ti-containing particles detected
were comparable, we can assume that the Ho and Ti
components detected by spICP-MS come from the same
core−shell NPs. This leads to an overall NP size of 78.2 nm for
the NaHoF4@TiO2 NPs (Figure S11, see calculation in the
Supporting Information), and subsequently a thickness of 5.1
nm for TiO2 shell, which is very close to the value given by the
size analysis of TEM images (4.2 nm) and by the element
mapping by EDX (5 nm). Despite the slightly larger diameter
achieved by spICP-MS than by TEM both for NaHoF4 (68.0
nm vs 61.4 nm) and for NaHoF4@TiO2 (78.2 nm vs 69.7 nm),
the results obtained by these two methods are convergent, if

taking into account the fact that an underestimated value could
be given by size analysis on TEM due to the low contrast
(electron density) of TiO2 and the nonspherical shape of
particles, while an overestimated size could be yielded by
spICP-MS if the actual density of the NaHoF4 core is higher
than the calculated value.
Not unexpectedly, spICP-MS was no longer able to detect

the Ti component of the NaHoF4@TiO2 NPs in river water,
because of the much higher abundance of background Ti than
in ultrapure water (Figure 5A and B); however, the Ho
component of NaHoF4@TiO2 NPs was easily detectable in the
river water. Real signal intensity did not show much difference
in river water or in ultrapure water, in terms of the frequency
(particle number) and the intensity of the Ho peak (particle
size) (Figure 5C, D). More importantly, the size of the Ho
component (in the form of the NaHoF4 core NP) detected
under the different conditions (ultrapure water and river
water) are the same, 68.0 nm (Figure 5E). A similar result was
obtained across a wide NaHoF4@TiO2 NP concentration
range both in ultrapure water and in river water (data now
shown). In addition to the low abundance of the marker
element (Ho), the long-term physical and chemical stability of
the marker NP (NaHoF4) is also crucial, because the leaching
of Ho would result in an underestimated value for TiO2 in the
environmental samples. Only negligible ionic Ho (0.015 mg/
mL) was detected in the suspension of NaHoF4@TiO2 NPs
(ca 60−100 mg/mL), even after storage for over 14 months,
which could be partially attributed to the core−shell structure,
wherein the TiO2 shell provides a barrier to the release of Ho.
These results demonstrated that spICP-MS is a sensitive and

reliable technique to monitor Ti-containing NPs in complex
environmental samples using Ho as a marker. This strategy
could be extended to spICP-MS detection of NPs containing
other nanomaterials containing elements of high natural
abundance such as iron or zinc.

■ CONCLUSION
A novel approach to gram-scale synthesis of NaHoF4@TiO2
core−shell NPs was achieved, as a new strategy to detect NPs
containing elements of high natural abundance such as Ti in
complex environmental samples by spICP-MS. The deposition
of an Al(OH)3 layer around the Ho core was crucial for the
synthesis of NaHoF4@TiO2 NPs, not only because of the
excellent colloidal stability it provided in ethanol or water, but
also because of the hydrophilic surface necessary for the
effective TiO2 deposition and coating. More importantly, the
Al(OH)3 layer acted as a sacrificial template which facilitated
the separation of the hydrolysis and condensation of TiF4 and
confined these processes to the immediate vicinity of the
NaHoF4 NP surface, allowing for the deposition of the TiO2
shell onto the NaHoF4 NP surface. Even when using these
approaches, the TiO2 grew in a particular mode to form a
noncontinuous phase on the NaHoF4 NPs, which minimized
the surface energy at the interface because of their mis-
matching lattice energies, resulting in NaHoF4@TiO2 NPs
with rough surfaces. Although they were dissimilar in structure,
the affinity of Ti to F is very high such that strong chemical
interaction between TiO2 and NaHoF4 was expected and
observed.
Due to the Al(OH)3 layer, this approach allowed for the

large scale synthesis of NaHoF4@TiO2 NPs, enabling their
application in environmental studies of TiO2 NP fate and
behavior. The core−shell structure was confirmed by high-
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resolution TEM and STEM-EDX mapping, as well as by
spICP-MS. We demonstrated that these core−shell NPs
remain detectable by spICP-MS in the presence of a high
background of Ti despite the NPs being present at an
extremely low concentration. The introduction of a low
abundance element (Ho) as a tracer, without altering the
structure of the particles, provided an effective solution for the
detection of engineered TiO2 NPs in the environment. This
methodology will benefit research in nanotoxicology and
ecotoxicology, and could also be a potential solution to the
challenges of detecting other engineered NPs of high
abundance elements such as Zn and Fe in the environment.

■ EXPERIMENTAL SECTION
Materials. All chemicals and solvents were purchased from Sigma

Aldrich and used without further purification. Ultrapure water (18.2
MΩ cm at 25 °C) was obtained from a MiliQ purification system.
River water was collected from the Worcester and Birmingham Canal
near the University of Birmingham (UoB), and used immediately
after collection without filtration.
Characterization and Synthesis of the NPs. Unless stated

otherwise, all characterization was performed at UoB. X-ray powder
diffraction data was collected on a Bruker D8 advance diffractometer
with a copper target (λ = 1.5406 Å, 40 kV, 30 mA). All samples were
prepared by drying 0.5 mL of aqueous solution onto an Si zero
background holder in air. The parameters for a typical experiment are
as follows: starting angle (2θ), 20°; stop angle, 80; step size, 0.02026°;
time/step, 0.8 s; no. of scans, 3030; time of scanning, 42 min and 25 s.
Hydrodynamic size and zeta potential were measured on a Zetasizer
Nano ZS ZEN 3600 from Malvern. Single-particle ICP-MS (spICP-
MS) data were obtained on a PerkinElmer NexION 350X.
Transmission electron micropscopy (TEM), energy-dispersive X-ray
(EDX) spectroscopy and elemental mapping were carried out at the
Nanoscale and Microscale Research Centre, University of Notting-
ham on a JEOL2100F transmission electron microscope operating at
200 kV (field emission electron gun source, information limit 0.19
nm). EDX mapping was perfomed using an Oxford instruments XMax
80 T silicon drift detector with INCA Energy 250 Microanalysis
system in conjunction with the JEOL digital STEM system.
Step 1: Synthesis of NaHoF4 NPs. Ho(CF3COO)3 was obtained

by dissolving Ho2O3 in trifluoroacetic acid (ca. 30% w/w) at 90 °C
followed by removal of solvent on a rotary evaporator to obtain a pink
powder. Ho(CF3COO)3 (8 mmol, 4.0 g) and NaCF3COO (11.8
mmol, 1.6 g) were dissolved in a 250 mL round-bottom flask
containing oleayamine (40 mL) and 1-octadecene (40 mL) before
being heated to 120 °C for 30 min in vacuo. After flushing with N2
three times, 70 mL of the solution was removed by syringe and the
rest of the solution in the flask was put on a preheated metal bath with
stirring at 310 °C under an atmosphere of N2. The 70 mL aliquot was
slowly injected back into the system over a 30 min period with
continuous stirring under N2. Once all of the solution had been
transferred, the temperature was lowered to 300 °C and the reaction
system held at this temperature for 1 h before being cooled to room
temperature. NaHoF4 NPs precipitated from the solution by the
addition of ethanol (200 mL), and were isolated by centrifugation
prior to their redispersion in hexane (300 mL).
Step 2: Synthesis of NaHoF4@Al(OH)3 NPs. To the NaHoF4

NP dispersion in hexane (300 mL), was added oleylamine (2 mL)
with stirring at room temperature. The dispersion remained clear
afterthe addition of a diethyl ether solution containing AlCl3(5 mL, 1
g/mL). After stirring for 10 min, water (5 mL) was added dropwise,
and the clear dispersion became more and more opaque to form a
white cloudy but stable colloid. NPs were precipitated out by addition
of acetone (300 mL), and collected by centrifugation.
Step 3: Synthesis of NaHoF4@TiO2 NPs. The NaHoF4@

Al(OH)3 NPs were dispersed in ethanol (740 mL) in the presence of
PVP (4 g, Mw = 360 000). An aqueous solution of TiF4 (60 mL, 25
mmol) was quickly added into the ethanol dispersion of NaHoF4@

Al(OH)3 NPs under stirring at 60 °C, resulting in a gradual color
change from pink to a yellow-green within 5 min. After stirring at 60
°C overnight, the dispersion became slighly milky, indicating the
formation of the Ti gel. The system was brought to reflux by heating
to 100 °C. After the quick addition of ammonia−water (2 mL, 35%
w/w), the solution became cloudy. A white product was achieved by
centrifugation at 6000g for 30 min, which was subsequently washed
with ethanol and water, and finally stored in water. The yield of
NaHoF4@TiO2 NPs was calculated to be approximately 70% in terms
of Ti.

spICP-MS Analysis of NaHoF4@TiO2 NPs. The NPs were
diluted 100 million-fold using Milli-Q or canal water to obtain the
final concentration for analysis. The dilution was chosen from a
preliminary dilution test with dilution ranging from 10 000 to
10 000 000 000, from which it was found that 100 million-fold
dilution brought the NP concentration to within 5000−200 000
particles mL−1 (this being the desired range for spICP-MS analysis).
The elements within the NPs were analyzed sequentially, and the river
(canal) water samples were run last in order to avoid any carryover
effects that may occur due to the high background of Ti in the river
water. The instrument was calibrated using PerkinElmer Setup
Solution. Ti and Ho were calibrated using ionic solutions obtained
from Aristar and PerkinElmer, prepared as a dilution series to form a
calibration curve. Finally, the transport effiency was calculated using
20 and 40 nm gold NPs obtained from Nanocomposix and gold ionic
solution from Aristar.
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