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We study the influence of astrophysical formation scenarios on the precessional dynamics of spinning

black-hole binaries by the time they enter the observational window of second- and third-generation

gravitational-wave detectors, such as Advanced LIGO/Virgo, LIGO-India, KAGRA, and the Einstein

Telescope. Under the plausible assumption that tidal interactions are efficient at aligning the spins of few-

solar mass black-hole progenitors with the orbital angular momentum, we find that black-hole spins

should be expected to preferentially lie in a plane when they become detectable by gravitational-wave

interferometers. This ‘‘resonant plane’’ is identified by the conditions �� ¼ 0� or �� ¼ �180�, where
�� is the angle between the components of the black-hole spins in the plane orthogonal to the orbital

angular momentum. If the angles �� can be accurately measured for a large sample of gravitational-wave

detections, their distribution will constrain models of compact binary formation. In particular, it will tell

us whether tidal interactions are efficient and whether a mechanism such as mass transfer, stellar winds,

or supernovae can induce a mass-ratio reversal (so that the heavier black hole is produced by the

initially lighter stellar progenitor). Therefore, our model offers a concrete observational link between

gravitational-wave measurements and astrophysics. We also hope that it will stimulate further studies of

precessional dynamics, gravitational-wave template placement, and parameter estimation for binaries

locked in the resonant plane.

DOI: 10.1103/PhysRevD.87.104028 PACS numbers: 04.25.dg, 04.70.Bw, 04.30.�w

I. INTRODUCTION

The inspiral and merger of stellar-mass black-
hole (BH) binaries is one of the main targets of the future
network of second-generation gravitational-wave (GW)
interferometers—including Advanced LIGO/Virgo [1],
LIGO-India [2], and KAGRA (Kamioka Gravitational
Wave Detector) [3]—and of third-generation interferome-
ters, such as the proposed Einstein Telescope [4]. Typical
GW signals from these binaries are expected to have low
signal-to-noise ratios and must therefore be extracted by
matched filtering, which consists of computing the cross
correlation between the noisy detector output and a pre-
dicted theoretical waveform, or template (see e.g., [5]).
The number of observationally distinguishable merger sig-
nals should be extremely large, both because of the large

and strongly mass-dependent number of cycles in each
signal and because the emitted waveform depends sensi-
tively on as many as 17 different parameters, in the general
case where the BHs are spinning and in eccentric orbits.
The difficult task of exploring such a high-dimensional
space can be simplified if nature provides physical mecha-
nisms that cause astrophysical binaries to cluster in re-
stricted portions of the parameter space.
In this paper we consider one mechanism to preferen-

tially populate certain regions of parameter space: the post-
Newtonian (PN) spin-orbit resonances first discovered by
Schnittman [6]. Unfortunately, very few of the existing
population-synthesis models of compact-binary formation
(see e.g., [7,8]) include self-consistent predictions for BH
spins. To highlight the significance of spin-orbit misalign-
ment and resonances, we adopt a simplified model for BH
binary formation. We use this model to generate initial
conditions for our compact binaries, and then integrate the
PN equations of motion forward in time using an extension
of the code used by some of us in previous studies of
supermassive BH binaries [9–11]. Our analytically

*dgerosa@olemiss.edu
†mhk10@nyu.edu
‡berti@phy.olemiss.edu
§oshaughn@gravity.phys.uwm.edu
∥sperhake@tapir.caltech.edu

PHYSICAL REVIEW D 87, 104028 (2013)

1550-7998=2013=87(10)=104028(24) 104028-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.104028


tractable model captures (at least qualitatively) many of the
detailed physical effects influencing the evolution of BH
spins. Within this framework we carry out Monte Carlo
simulations to study the statistical distribution of BH spins
when they enter the GW-detection band of second- and
third-generation detectors.

Before summarizing our results, we first introduce some
notation. Consider a BH binary with component masses
m1 � m2, total mass M ¼ m1 þm2, and mass ratio
q ¼ m2=m1 � 1. The spin Si of each BH can be written as

S i ¼ �i

Gm2
i

c
Ŝi; (1)

where 0 � �i � 1 (i ¼ 1, 2) is the dimensionless spin
magnitude and a hat denotes a unit vector. Our goal is
not to rival the complexity of existing population-synthesis
models of compact-binary formation, but rather to inves-
tigate specifically those astrophysical ingredients which
affect the spin dynamics. We therefore focus on maximally
spinning BH binaries with mass ratio q ¼ 0:8, a typical
value predicted by population-synthesis studies (cf. e.g.,
Fig. 9 of [12]).

Let us define �i to be the angle between each spin
Si and the orbital angular momentum of the binary L,
�12 to be the angle between S1 and S2, and �� to be the
angle between the projection of the spins on the orbital
plane:

cos �1 ¼ Ŝ1 � L̂; cos �2 ¼ Ŝ2 � L̂; (2)

cos �12 ¼ Ŝ1 � Ŝ2; cos�� ¼ Ŝ1 � L̂

jŜ1 � L̂j �
Ŝ2 � L̂

jŜ2 � L̂j : (3)

As we will demonstrate below, the physical mechanisms
leading to the formation of the BH binary leave a charac-
teristic imprint on the angles �� and �12. This has impli-
cations for GW data analysis and, even more strikingly, for
GWastronomy: at least in principle, measurements of spin
orientation with future GW detections can constrain the
astrophysical evolutionary processes that lead the binary to
merger.

All BH binaries with misaligned spins (�i � 0) experi-
ence PN spin precession as they inspiral towards merger.
Although ensembles of BH binaries with isotropic spin
distributions retain their isotropic distributions as they
inspiral [13], anisotropic spin distributions can be substan-
tially affected by PN spin precession [6]. In particular,
binaries can be attracted towards PN spin-orbit resonances
in which the BH spins and orbital angular momentum
jointly precess in a common plane (‘‘resonant-plane lock-
ing’’). Binaries in which the two BH spins and the orbital
angular momentum do not share a common plane at the
end of the inspiral are said to precess freely. Binaries can
become locked into resonance if they satisfy the following
conditions at large separations:

(i) comparable but not equal masses (0:4 & q � 1),
(ii) sufficiently large spin magnitudes (�i * 0:5),
(iii) unequal spin misalignments (�1 � �2).
If these conditions are satisfied, the spin distribution of

an ensemble of binaries will be strongly influenced by the
PN resonances, although every individual member of the
ensemble will not necessarily become locked into reso-
nance. In ensembles of binaries for which �1 < �2 at large
separations, the two spins tend to align with each other, so
that �� ! 0�, �12 ! 0�. If instead �1 > �2, the projec-
tions of the BH spins on the orbital plane tend to antialign,
so that �� ! 180�, �12 ! �1 þ �2. The mass ratios for
which resonant-plane locking is effective, given by condi-
tion (i) above, are typical for the stellar-mass BH binaries
detectable by Advanced LIGO/Virgo (cf. Fig. 9 of [12]).
The spin magnitudes �i of newly formed BHs are highly
uncertain, but observations of accreting BHs in binary
systems indicate that their spins span the whole range
0 � �i � 1 allowed by general relativity [14,15]. Many
BH-BH systems may therefore satisfy condition (ii) above.
In contrast, we would not expect resonance locking in
binaries in which one or both members are neutron stars,
as they are expected to have small spins.1 Whether the spin
misalignments of the ensemble of BH binaries detectable
by Advanced LIGO/Virgo is asymmetric [satisfying con-
dition (iii) above] is a primary consideration of this paper.
Astrophysical formation channels determine the initial

conditions for PN evolutions in the late inspiral. As a result
they determine whether resonant locking can occur, and
which resonant configuration is favored. Here we introduce
a model for BH binary formation that allows us to establish
a link between binary-formation channels and the near-
merger spin configurations of precessing BH binaries.

A. Executive summary

Our main findings are summarized schematically in
Fig. 1. Supernova (SN) kicks tilt the orbit, producing a
misalignment between the orbital angular momentum and
the orientation of the spins of the binary members [25]. As
a result, the main factors determining the spin alignment of
a BH binary are the magnitude of SN kicks and the
possibility that other physical effects may realign the spins
with the orbital angular momentum in between SN events.
Dominant among these physical effects (aside from the SN

1Relativistic calculations of neutron star structure suggest that
�i & 0:7 for uniform rotation and physically motivated equa-
tions of state [16–18], but the spin magnitudes of neutron stars in
binaries observable by Advanced LIGO are likely to be much
smaller than this theoretical upper bound [19,20]. The spin
period of isolated neutron stars at birth should be in the range
10–40 ms [21], or �i & 0:04. Accretion from a binary compan-
ion can spin up neutron stars but is unlikely to produce periods
less than 1 ms, i.e., �i & 0:4 [22]. The fastest-spinning observed
pulsar has a period of 1.4 ms (�i � 0:3) [23]; the fastest known
pulsar in a neutron star-neutron star system, J0737-3039A, has a
period of 22.70 ms (�i � 0:02) [24].
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kick itself) are the efficiency of tidal interactions and the
possibility of a mass-ratio reversal due to mass transfer
from the initially more massive, faster evolving progenitor.

Tides affect the binary in two significant ways: they
align the spins of stellar BH progenitors with the orbital
angular momentum and they reduce the binary eccentric-
ity. Additionally, tides force stars to rotate synchronously
with the orbit, increasing the likelihood of a large BH spin
at collapse and implying that our results will depend only
mildly (if at all) on the initial stellar spin. Consider the
evolution of the system between the two SN events, when
the binary consists of a BH and a nondegenerate star. If
tidal interactions are efficient (a reasonable assumption, as
we argue in Appendix A 6), they tend to align the star (but
not the BH) with the orbital angular momentum. This
introduces an asymmetry in the angles ð�1; �2Þ which is
critical to determining the spin configuration at the end of
the inspiral.

Mass transfer can change the mass ratio of interacting
binaries. Since the main-sequence lifetime of a star is a
decreasing function of its mass, the initially more massive
star in a binary is expected to collapse first. If mass transfer
from this star to its less massive companion is insufficient,
which we will refer to as the standard mass ratio (SMR)
scenario, the initially more massive star will go on to form
the more massive member of the BH binary. We cannot,
however, rule out the possibility that prior to the first SN,
the initially more massive star overflows its Roche lobe and
donates mass to its initially lighter, longer-lived compan-
ion. This mass transfer may produce a mass-ratio reversal,
so that the heavier BH in the binary forms second: we
will call this the reversed mass ratio (RMR) scenario.
According to population-synthesis models, mass-ratio re-
versal happens for a sizable fraction (typically from�10%
to 50%) of the total number of BH binaries (cf. [12] and
Table III below).

Since BHs are relatively immune to the effects of tides,
the spin of the first BH to form will be more misaligned
than the spin of the second BH, as this misalignment will
have accumulated due to the kicks generated during both

SN events. Therefore, in the SMR scenario BH binaries
will have �1 > �2 at formation, and thus �� ’ �180� by
the time they enter the GW-detection band. On the other
hand, in the RMR scenario BH binaries initially have
�1 < �2, so that by late in the inspiral �� ’ �0�, and
furthermore the spins are nearly aligned with each other
(i.e., �12 ’ 0). In summary, whenever tidal interactions are
efficient, our model predicts that BH spins should prefer-
entially lie in a ‘‘resonant plane’’ (identified by the con-
ditions �� ¼ 0� in the RMR scenario, and �� ¼ �180�
in the SMR scenario) when they become detectable by GW
interferometers.
A third (more unlikely) possibility is that tidal interac-

tions are not efficient. In this case, binaries form with
�1 ’ �2 and will not become locked into resonant configu-
rations. Our simulations show that binaries will preferen-
tially have �� ’ �90�. Because the most likely values of
�� in the three scenarios (RMR, SMR, and no tides) are
mutually exclusive, GW measurements of a statistically
significant sample of values of �� will provide important
astrophysical information on compact-binary formation
scenarios. In particular, they will tell us whether tidal
interactions are efficient, and (if so) whether mass transfer
can produce mass-ratio reversals.
Figure 2 makes these conclusions more quantitative by

showing three histograms of �� (left) and �12 (right),
corresponding to snapshots taken at different times during
the inspiral. The distribution of �� is flat at large separa-
tions (dotted lines, corresponding to early times and small
orbital frequency) because spin-spin couplings are weak,
and the BH spins simply precess about the orbital angular
momentum. If tidal alignment is efficient, in the late in-
spiral the BH spins lock into equilibrium configurations
with either �� ¼ 0� or �� ¼ �180�. This effect is
clearly visible at GW frequencies fGW ¼ 1 Hz, roughly
corresponding to the lowest cutoff frequency of third-
generation detectors like Einstein Telescope, and it is
even more pronounced when the binaries enter the
Advanced LIGO/Virgo band at fGW ’ 20 Hz. If tides are
artificially removed, free precession during the late stages

FIG. 1. Schematic summary of our predictions for the spin orientation of BH binaries as they enter the LIGO/Virgo band. If tides
efficiently align the spin of the secondary with the orbital angular momentum prior to the second supernova, resonant-plane locking
will drive sin�� ! 0, while in the absence of tides the spins will precess freely, piling up around sin�� ! �1 near merger. When
tides are efficient, if the primary star evolves into the less massive BH (reversed mass ratio) the PN evolution will drive �� ! 0�,
�12 ! 0�. If instead the primary star evolves into the more massive BH (standard mass ratio) the PN evolution will drive
�� ! �180�, �12 ! �1 þ �2, generating a tail in the distribution of �12 to larger values. See Eqs. (2) and (3) for definitions of
these angles.
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of the inspiral slows down the evolution of �� when the
components of the spin orthogonal to the orbital angular
momentum are also orthogonal to each other, causing
binaries that are not locked into resonance to pile up at
�� ¼ �90�.

Let us stress again that the statistical effect of resonances
is clearly visible at fGW ¼ 20 Hz, i.e., when BH binaries
enter the Advanced LIGO/Virgo band. GW measurements
of �� can therefore be used to constrain uncertainties in
BH binary-formation scenarios. The inclusion of resonant
effects in population-synthesis models (combined with a
statistically significant sample of GW measurements of
��) has the potential to constrain various aspects of the
models, such as the efficiency of tides, stable mass transfer,
common-envelope (CE) evolution, SN kick velocities, and
the metallicity of BH progenitors.

B. Outline of the paper

The rest of the paper provides details of our astrophys-
ical model and a more detailed discussion of the results. In
Sec. II we introduce our fiducial BH binary-formation
channels, which are based on detailed population-synthesis
models, as described in much greater length in
Appendix A. In order to focus on spin effects, we fix the
component masses to two representative values. We assume

that SN kicks follow a Maxwellian distribution in
magnitude. We also assume that the kicks are distributed
in a double cone of opening angle �b about the spin of
the exploding star and, to bracket uncertainties, we consider
two extreme scenarios: isotropic (�b ¼ 90�) or polar
(�b ¼ 10�) kicks.
Section III summarizes the results of evolving these BH

binaries under the effect of gravitational radiation down to
a final separation of 10GM=c2. We demonstrate that spin-
orbit resonances have a significant impact on the observ-
able properties of our fiducial BH binaries. Although we
have only explored a handful of evolutionary channels and
component masses, in Sec. IV we argue that the scenarios
described in Fig. 1 are broadly applicable: kicks, tides, and
the mass-ratio distribution control spin alignment. We ex-
plore the sensitivity of these three features (and hence of
the observable distribution of resonantly locked binaries)
to several poorly constrained physical inputs to binary-
evolution models, and we argue that GW observations of
precession angles could provide significant constraints on
binary-formation channels. Finally, in Sec. V we describe
the implications of our results for future efforts in binary-
evolution modeling and GW detection.
To complement and justify the simple astrophysical

model proposed in Sec. II, in Appendix A we describe
in detail the rationale underlying the model and its
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FIG. 2 (color online). Left: probability distribution of the angle between the projections of the spins on the orbital plane ��. As the
binaries inspiral, the GW frequency fGW increases from 0.01 Hz (dotted blue lines) to 1 Hz (dashed red lines) and later 20 Hz (solid
black lines). Under the effect of tides the PN evolution brings the spins in the same plane (�� ! 0�,�180�), both in a reversed mass
ratio (top panel) and in a standard mass ratio (middle panel) scenario. When tidal effects are removed (bottom panel, where we show
both RMR and SMR binaries) the spins precess freely and pile up at �� ¼ �90�. Right: probability distribution of the angle between
the two spins �12. In the RMR scenario (top panel) the spins end up almost completely aligned with each other, i.e., most binaries have
�12 ’ 0�. In the SMR scenario (middle panel) and in the absence of tides (bottom panel, where again we show both RMR and SMR
binaries) a long tail at large values of �12 remains even in the late inspiral. All simulations shown in this figure assume that kick
directions are isotropically distributed. Error bars are computed assuming statistical Poisson noise.
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relationship to our current understanding of binary
evolution. Appendix A should provide a useful resource
to implement (and possibly improve) the Monte Carlo
algorithm described in the main text.

II. ASTROPHYSICAL MODEL OF THE INITIAL
CONDITIONS FOR SPIN EVOLUTION

Isolated BH binaries do not emit electromagnetically
and hence have yet to be observed. Despite this lack of
evidence, they are a likely outcome of the evolution of
massive stellar binaries. The rate at which they form can be
inferred from observations of their progenitors and systems
like binary neutron stars that have similar formation chan-
nels. Formation rates can also be calculated theoretically
using population-synthesis models such as STARTRACK

[12,26–28], which builds upon previous analytical studies
of single [29] and binary stellar evolution [30].

Most studies of compact-binary formation do not keep
track of the magnitude and orientation of BH spins, and
those that do (see e.g., [7,8,31]) neglect general relativistic
effects in the late-time evolution of the binary. One of the
goals of our study is to fill this gap. For example, the
version of the STARTRACK code used in [7] assumed that
both S1 and S2 remained aligned with the initial direction
of the orbital angular momentum L. The evolution of L
itself was performed by applying energy and angular-
momentum conservation when compact objects are formed
(and kicked) as a result of gravitational collapse. This
approach is suitable for binaries in nonrelativistic orbits,
like observed x-ray binaries [8,31], but it may not be
appropriate for merging binaries, that are interesting both
as GW sources and as progenitors of short gamma-ray
bursts [7]. Since existing BH binary-formation models
preserve the mutual alignment of the spins with the initial
direction of L, all BH-BH binaries are formed with
�1 ¼ �2. Later models of mixed BH x-ray binaries do
allow for the possibility of asymmetric spin configurations
via accretion [8], but to the best of our knowledge no such
studies have been published for the BH-BH case. Since
PN resonance locking only occurs when �1 � �2, its
effects are excluded by construction in the BH binary
models available in the literature.

Here we develop a slightly more complex (and presum-
ably more realistic) model for spin evolution, allowing for
the formation of ‘‘asymmetric’’ BH binaries with �1 � �2.
The model is not meant to rival the complexity of
population-synthesis codes like STARTRACK. Our goal is
rather to isolate the physical ingredients that are specifi-
cally relevant to BH spin alignment. The model builds,
when necessary (e.g., when computing the remnant masses
resulting from gravitational collapse as a function of the
progenitor masses, or in treating the CE phase) on results
from STARTRACK, and in Sec. IV we present a preliminary
comparison of our conclusions with publicly available
results from STARTRACK.

A. Length scales

Before describing our astrophysical model, we review
the length scales associated with the formation, inspiral,
and merger of BH binaries. The well-defined hierarchy in
these length scales demonstrates the necessity of our
joint analysis of astrophysics and PN evolution. GW emis-
sion [32,33] causes a binary with a semimajor axis less
than

aH � 45

�
q

ð1þ qÞ2
�

tGW
1010 yrs

��
M

10M	

�
3
�
1=4

R	 (4)

to merge on a time scale tGW less than the Hubble time
tH ’ 1010 yr. The astrophysical processes described in
this section, including mass transfer, SN explosions,2 and
CE evolution, are required to shrink the binary down to
separations smaller than aH. GW emission also circular-
izes the binary at separations comparable to aH. PN
spin-orbit couplings become important at much smaller
separations

aPNi � 103
GM

c2
’ 10�2

�
M

10M	

�
R	; (5)

below which they can lock binaries into resonant configu-
rations with well-defined spin directions [6]. Previous
studies of PN resonances for supermassive BHs [9–11]
found that the effectiveness of resonance locking strongly
depends on the orientation of the BH spins when the binary
reaches the separation aPNi. The spin orientation is set by
the binary’s astrophysical formation history. Resonance
locking can be important even at separations above

aLIGO ’ 10�3

�
M

10M	

�
1=3

�
fGW
20 Hz

��2=3
R	; (6)

at which the binary reaches the lower limit fGW ’
10–20 Hz of the Advanced LIGO/Virgo sensitivity band.
The third-generation Einstein Telescope is expected to
reach even lower frequencies of order fGW ’ 1 Hz. Since
these frequencies are well within the regime where PN
resonances are important, a unified treatment of the astro-
physical initial conditions and of the subsequent PN evo-
lution of the binary is essential to determining which spin
configurations are most relevant for GW detectors. Such a
treatment is the main goal of this work.

B. Fiducial scenarios for binary evolution

In this section we describe how massive main-sequence
binary stars evolve into BH binaries. Figure 3 summarizes
the critical stages of binary evolution in our model.

2Throughout the paper we will loosely use the term
‘‘supernova’’ to indicate the core collapse of massive stars,
even when such events are not luminous.
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To isolate the effects of spin orientation during the PN
inspiral of the BH binaries, we fix the final mass ratio to the
typical value q ¼ 0:8 [12]. To ensure that this final mass
ratio is obtained, the initial stellar masses of the binaries
must be fixed to ðM0

Si;M
00
SiÞ ¼ ð35M	; 16:75M	Þ in the

SMR scenario, or ð30M	; 24M	Þ in the RMR scenario.
Throughout the paper, we use a single prime to identify
the initially more massive stellar progenitor or ‘‘primary,’’
and a double prime to denote the initially less massive
progenitor or ‘‘secondary.’’ This choice of initial masses
also fixes the total mass of our BH binaries to M ¼
13:5M	, quite close to the expected peak of the distribution
for the total mass [12]. The mass of the stars is somewhat
smaller than expected for the progenitors of BHs of these
masses because we have neglected stellar winds, that lead
to considerable mass loss prior to BH formation. Table I
provides numerical values for the masses and radii of both
the primary and secondary throughout the evolution in both
the SMR and RMR scenarios. Appendix A 1 shows how
this choice of initial masses leads to BHs of the desired
final masses.

The initial main-sequence stage of the evolution is
shown as phase a in Fig. 3. Binaries are assumed to form

on circular3 orbits with initial semimajor axes a0 drawn
from the distribution described in Appendix A 2. We
assume that the spins of the primary S0 and secondary S00
are initially aligned4 with the orbital angular momentum
L. As the primary evolves, its envelope expands until it
fills its Roche lobe, initiating stable mass transfer to the
secondary (phase b in Fig. 3). The efficiency of mass
transfer is usually parametrized via a parameter
fa 2 ½0; 1
: cf. Eq. (A9) of Appendix A 3. We assume
this mass transfer continues until the primary has depleted
its hydrogen envelope, leaving behind a helium core of
mass M0

C ¼ 8:5M	 (M0
C ¼ 8M	) in the SMR (RMR)

scenario. Following [12], we assume semiconservative

FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars, filled
circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the secondary (b)
leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane (c). Tidal interactions
can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e). Gravitational radiation shrinks and
circularizes the binary before our explicit PN evolution begins (f).

3The initial eccentricity has minimal effect. In fact we have
repeated our calculations using an initially thermal distribution
of eccentricities of the form fðeÞ ¼ 2e, and we observed no
significant difference in the final distribution of �� and �12.

4The alignment of stellar spins in eclipsing binaries can be
measured through the Rossiter-McLaughlin effect [34,35].
Although many systems have aligned spins [36–38], there are
notable exceptions [39]. We expect efficient tidal alignment in
the progenitors of merging BH binaries, due to their small initial
separations.
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mass transfer: the secondary accretes a fraction fa ¼ 1=2
of the mass lost by the primary, growing to a mass M00

Sf ¼
30M	 (M00

Sf ¼ 35M	) in the SMR (RMR) scenario at the

end of the mass-transfer episode. In principle mass transfer
should also change the orbital separation, but we neglect
this change as it is smaller than the width of the distribution
of initial separations, as well as subsequent changes in the
separation during the CE phase.

Following the end of mass transfer, the primary explodes
in a SN (phase c in Fig. 3) producing a BH of mass
M0

BH ¼ 7:5M	 (M0
BH ¼ 6M	) in the SMR (RMR) sce-

nario. For simplicity, in our simulations the spin of
this newly born BH is assumed to be maximal (�i ¼ 1,
i ¼ 1, 2) and aligned with its stellar progenitor. The SN
ejecta are generally emitted asymmetrically, imparting a
recoil velocity to the BH which is a fraction of the
typical recoil velocities for protoneutron stars: vBH ’
ð1� ffbÞvpNS, where ffb 2 ½0; 1
 is a ‘‘fallback parameter’’

(cf. Appendix A 4). This recoil tilts the orbital plane by
an angle �1, and changes the semimajor axis and eccentric-
ity to a1 and e1, respectively. These orbital changes depend
on both the kick and the mass lost during the SN, as
described in Appendix A 5.

After the SN explosion of the primary, the secondary
evolves and expands. The primary raises tides on the
swollen secondary, and dissipation may allow these tides
to both circularize the orbit (so that the final eccentricity is
et ’ 0) and align the spin S00 of the secondary with the
orbital angular momentum L, as shown in phase d of
Fig. 3. This tidal alignment is described in much greater
detail in Appendix A 6. Given the uncertainty in the
efficiency of tidal alignment, we explore both extreme
possibilities: complete circularization and alignment of
S00 (‘‘Tides’’ in Fig. 2) and no circularization and alignment
at all (‘‘No Tides’’ in Fig. 2). As the secondary expands

further, it fills its Roche lobe initiating a second phase of
mass transfer. However, unlike the first mass-transfer
event, this second mass-transfer phase will be highly
unstable [40–42]. Instead of being accreted by the pri-
mary, most of this gas will expand into a CE about both
members of the binary. Energy will be transferred from
the binary’s orbit to the CE, ultimately unbinding it from
the system. This energy loss shrinks the semimajor axis
of the binary from a1 to a1CE, as shown in phase d of
Fig. 3. More details about CE evolution, including the
relationship between a1 and a1CE, are provided in
Appendix A 7. After the secondary loses its hydrogen
envelope, the remaining helium core has a mass M00

C ¼
8M	 (M00

C ¼ 8:5M	) in the SMR (RMR) scenario, as

listed in Table I.
After the end of CE evolution, the naked helium core of

the secondary rapidly completes its stellar evolution and
explodes as a SN, as shown in phase e of Fig. 3. This
explosion produces a BH of mass M00

BH ¼ 6M	 (M00
BH ¼

7:5M	) in the SMR (RMR) scenario, as listed in Table I.
We assume that this BH has a maximal spin that is aligned
with the spin S00 of its stellar progenitor, as we did for the
primary. The SN leads to mass loss and a hydrodynamical
recoil that change the semimajor axis and eccentricity of
the binary to a2 and e2, respectively. It also tilts the orbital
plane by an angle � that can be calculated using the same
procedure as given for the first SN in Appendix A 5. The
tilt resulting from the second SN is generally much
smaller than that from the first SN (� � �1) due to the
comparatively larger orbital velocity following CE evolu-
tion. This tilt changes the angles between L and the spins
S0 and S00 to �0

2 and �00
2 , respectively. If tides efficiently

align S00 with L prior to the second SN, these angles are
given by

cos�0
2 ¼ cos�1 cos�þ cos’0 sin�1 sin�; (7)

cos�00
2 ¼ cos� ðtidesÞ; (8)

where ’0 is the angle between the projection of S0 in the
orbital plane before the SN and the projection of the
change in L into this same initial orbital plane. If ’0 is
uniformly distributed (the direction of the SN kick of the
secondary is uncorrelated with the spin of the primary),
the second term on the right-hand side of Eq. (7) averages
to zero, implying that �0

2 > �00
2 for most binaries.5 This is

the mechanism for creating a binary BH population pref-
erentially attracted to the �� ¼ �180� family of spin-
orbit resonances in the SMR scenario and the �� ¼ 0�

TABLE I. Masses and length scales at various stages of the
binary evolution in our SMR and RMR scenarios, as shown in
Fig. 3. The only independent parameters are the main-sequence
masses M0

Si and M00
Si, which have been tuned to study final BH

binaries with mass ratio q ¼ 0:8. The other values are defined
in the main text, and they are obtained using the analytical
prescriptions presented in Appendix A.

SMR RMR SMR RMR

M0
Si 35M	 30M	 R0

Si 9:57R	 8:78R	
M00

Si 16:75M	 24M	 R00
Si 6:36R	 7:76R	

M00
Sf 30M	 35M	 R00

Sf 8:78R	 9:57R	
M0

C 8:5M	 8M	 R0
C 0:26R	 0:26R	

M00
C 8M	 8:5M	 R00

C 0:27R	 0:27R	
M0

BH 7:5M	 6M	 R0
G 3608R	 3500R	

M00
BH 6M	 7:5M	 R00

G 3500R	 3608R	
amin 17:9R	 18:8R	 anoCE 6981R	 6758R	
amax 8128R	 8787R	 amCE 0:69R	 0:63R	

5Well-separated distributions of �0
2 and �00

2 require SN kick
velocities that are comparable to the orbital velocity prior to the
first SN, but much smaller than the orbital velocity before the
second SN. Such kick velocities are well motivated, as described
in Appendix A 4.
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family of resonances in the RMR scenario, as shown in
Fig. 2.

If tides are inefficient, �00
2 is instead given by

cos�00
2 ¼ cos� ðno tidesÞ (9)

¼ cos�1 cos�� sin$ sin�1 sin�; (10)

where � is given by Eq. (A21), and $ is the angle between
the projection of S00 into the orbital plane before the second
SN and the separation vector between the members of the
binary. If$ is independent of’0 and uniformly distributed,6

the second term on the right-hand side of Eq. (10) also
averages to zero, implying that �0

2 ’ �00
2 . The small scatter

about this relation follows from the lesser influence of the
second SN kick (� � �1), which implies that the identical
first terms on the right-hand sides of Eqs. (7) and (10)
dominate over the differing second terms. This explains
the lack of preference for either family of resonances in
the ‘‘No Tides’’ scenario shown in Fig. 2.

After the second SN, the BH binary is left in a non-
relativistic orbit that gradually decays through the emission
of gravitational radiation, as shown in phase f of Fig. 3.
We calculate how this orbital decay reduces the semimajor
axis and eccentricity using the standard quadrupole
formula [32,43]:

dt

da
¼ � 5

64

c5a3

G3M3

ð1þ qÞ2
q

ð1� e2Þ7=2

�
�
1þ 73

24
e2 þ 37

96
e4
��1

; (11)

de

da
¼ 19

12

e

a
ð1� e2Þ

�
1þ 121

304
e2
��
1þ 73

24
e2 þ 37

96
e4
��1

:

(12)

To an excellent approximation, the BH spins simply pre-
cess about L during this stage of the evolution, leaving �0

2

and �00
2 fixed to their values after the second SN. Once the

semimajor axis reaches a value aPNi ¼ 1000M (in units
where G ¼ c ¼ 1), we integrate higher-order PN equa-
tions of motion as described in Sec. III to carefully model
how the orbit and spins evolve. We assume that radiation
reaction circularizes the orbit (ePN ¼ 0) by the time we
start integrating the higher-order PN equations describing
the precessional dynamics of the BHbinary. This assumption

is fully justified, as we will show by explicit integration in
Sec. III B below.

C. Synthetic black-hole binary populations

In the previous section, we presented fiducial scenarios
for the formation of BH binaries characterized by three
choices:
(i) stable mass transfer prior to the first SN can preserve

(SMR) or reverse (RMR) the mass ratio of the
binary;

(ii) hydrodynamic kicks generated by the SN can
have a polar (�b ¼ 10�) or isotropic (�b ¼ 90�)
distribution with respect to the exploding star’s
spin;

(iii) tides do or do not circularize the orbit and align the
spin S00 of the secondary with the orbital angular
momentum L prior to the second SN.

In this section, we construct synthetic populations of
BH binaries for the 8 different scenarios determined by the
three binary choices listed above. To generate members of
these synthetic populations, we perform Monte Carlo
simulations7 in which random values determine
(i) the initial semimajor axis a0 (Appendix A 2),
(ii) the magnitude and direction of the kick produced

in the first SN (Appendix A 4),
(iii) the magnitude and direction of the kick produced

in the second SN (Appendix A 4),
(iv) the angles ’0 and $ specifying the directions

of the spins S0 and S00 before the second SN
(Sec. II B),

(v) the angle �� between the projections of the BH
spins in the orbital plane at separation aPNi.

The angles ’0, $, and �� in items (iv) and (v) above are
uniformly distributed in the range ½0; 2�
. The synthetic
populations generated in this procedure determine the
initial conditions for the PN equations of motion described
in Sec. III.
A binary-star system can fail to produce a merging BH

binary for one of the following reasons:
(i) it is unbound by the first SN (e1 > 1);
(ii) it merges during the CE evolution between the two

SN (a1CE < amCE);
(iii) it is unbound by the second SN (e2 > 1);
(iv) the time t required for gravitational radiation to

shrink the semimajor axis from a2 to aPNi, found
by solving the coupled PN equations (11) and (12),
exceeds the Hubble time tH ’ 1010 Gyr.

Table II lists the fraction of simulated binaries �SN1, �mCE,
�SN2, and �H that fail to produce merging BH binaries for
reasons (i) through (iv) listed above, as well as the fraction

6This assumption is well justified because the primary and
secondary spins precess at different rates [�1 and �2 given by
Eqs. (14) and (15) below] and the precession time scale tpre �
��1

i is short compared to the time tSN � 106 yr between SN
events. At lowest PN order, tpre � tLCðv=cÞ�5, where tLC ¼
GM=c3 ’ 5� 10�5ðM=10M	Þ s is the light-crossing time. At
a separation a we have v=c� 5� 10�3ðM=10M	Þ1=2 �ða=R	Þ�1=2, so tpre � 0:5 yr � tSN.

7We generated 108 binary progenitors to calculate the rates
listed in Table II, which are therefore accurate to within�0:01%.
To avoid cluttering, we only show a subsample of 104 progen-
itors in the figures of this section.
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�BH ¼ 1� ð�SN1 þ �mCE þ �SN2 þ �HÞ that do evolve
into such binaries.

The failure fractions indicate the relative importance of
different physical phenomena. To emphasize the sensitivity
of our results to the highly uncertain SN kicks, we also
show how these fractions change when the BH kick vBH ¼
ð1� ffbÞvpNS fully equals that imparted to the protoneu-

tron star (ffb ¼ 0) rather than our canonical choice (ffb ¼
0:8); see Appendix A 4 for more details. Stronger kicks
unbind more binaries during the first SN, increasing �SN1

and thereby reducing the overall fraction �BH of binaries

that survive to form BH binaries. This qualitatively agrees

with results of detailed population-synthesis models; see

models S, V8, and V9 in [44]. We adopt ffb ¼ 0:8 in the

remainder of the paper.
Figure 4 shows how the choices that define our fiducial

scenarios affect whether SN kicks unbind the binaries. One
result apparent from this plot (and supported by the
failure fractions �SN listed in Table II) is that the probabil-
ity of unbinding the system depends only weakly on
whether the SN kicks are isotropic or polar. This is
consistent with the findings of [45], which suggest mild

TABLE II. Fraction of binaries � (in percentage) that satisfy the following conditions, each of which successively prevent the
formation of a merging BH binary: (i) are unbound by the first SN (�SN1), (ii) merge during the CE phase (�mCE), (iii) are unbound by
the second SN (�SN2), (iv) do not merge within a Hubble time due to gravitational-radiation reaction (�H). The final column is the
fraction �BH ¼ 1� ð�SN1 þ �mCE þ �SN2 þ �HÞ of all simulated binaries that form merging BH binaries. In parentheses we list the
corresponding fractions if SN kicks are not suppressed by fallback (i.e., if we set ffb ¼ 0 rather than ffb ¼ 0:8; see Appendix A 4).

Kicks Tides Mass transfer �SN1 ð%Þ �mCE ð%Þ �SN2 ð%Þ �H ð%Þ �BH ð%Þ
Isotropic On SMR 32.50 (80.50) 26.53 (12.24) 2.66 (0.51) 0.04 (0.00) 38.27 (6.74)

Isotropic On RMR 32.55 (80.28) 34.86 (14.91) 2.97 (0.30) 0.04 (0.00) 29.59 (4.50)

Isotropic Off SMR 32.50 (80.50) 26.53 (12.24) 2.93 (0.60) 0.04 (0.01) 38.01 (6.65)

Isotropic Off RMR 32.55 (80.28) 34.86 (14.91) 3.01 (0.35) 0.04 (0.00) 29.54 (4.46)

Polar On SMR 31.84 (83.14) 26.68 (9.40) 3.29 (0.24) 0.01 (0.01) 38.18 (7.21)

Polar On RMR 31.86 (82.97) 34.88 (12.10) 3.65 (0.24) 0.02 (0.00) 29.58 (4.70)

Polar Off SMR 31.81 (83.16) 26.65 (9.38) 3.35 (0.52) 0.03 (0.01) 38.15 (6.93)

Polar Off RMR 31.84 (82.98) 34.89 (12.09) 3.65 (0.33) 0.04 (0.00) 29.59 (4.60)

1

1

1

1

FIG. 4 (color online). Scatter plot showing the change in the semimajor axis due to the first (left panel: a0 ! a1) and second (right
panel: a1CE ! a2) SN. All plots refer to the SMR scenario, but the behavior in the RMR scenario is very similar. Darker (red) dots
represent binaries that remain bound after each explosion, while lighter (green) dots correspond to binaries that are unbound. Dashed
lines show the minimum post-SN semimajor axis af;Min given by Eq. (A23) and the critical semimajor axis amCE given by Eq. (A34)

below which binaries merge during CE evolution. Kicks are too small to saturate the isotropic limit af;Min for ai & 102R	.
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sensitivity to �b when the typical kick velocity
vBH � 50 km=s is small compared to the orbital velocity

v0 ’ 2:4� 103ðM=30M	Þ1=2ða=R	Þ�1=2 km=s. Figure 4
also shows the effect of tides on the fraction �BH of BH
binaries produced. In the absence of tidal dissipation (‘‘No
Tides’’), the binaries have nonzero eccentricity (ei � 0)
when the second SN occurs. Equation (A17) shows that the
final semimajor axis af has additional dependence on the

true anomaly c i in this limit, broadening the distribution
of af, as can be seen in the right panel of Fig. 4. The kicks

can add coherently to the large orbital velocities near the
pericenter of highly eccentric orbits, allowing binaries to
become unbound even after CE evolution has reduced the
semimajor axis [cf., the handful of light-gray (green)
points with a1CE & 10R	 in the right panel of Fig. 4].
This increases the fraction �SN2 of binaries unbound
in the second SN when tides are ‘‘off’’ in Table II.
The importance of CE evolution can be seen as well:
virtually all binaries that fail to form a CE (a1CE *
104R	) are unbound by the second SN. Binaries bound
tightly enough to survive the second SN almost always
manage to merge through GW emission in less than a
Hubble time (�H � 1).

III. POST-NEWTONIAN INSPIRAL

A. Post-Newtonian equations of motion

At large orbital separations, the dynamics of BH binaries
in vacuum can be approximated by expanding the Einstein
equations in a perturbative PN series, where the perturba-
tive parameter is the ratio v=c of the orbital velocity to the
speed of light. For historical reasons, one usually says that
a quantity is expanded up to kPN order if all terms up to
order ðv=cÞ2k are retained. Following common practice in
the general relativity literature, in this section we will use
geometrical units such that G ¼ c ¼ 1.

The PN approximation can describe the evolution of
stellar-mass binaries down to separations a� 10M (i.e.,
a� 10�4R	 for a BH binary with M ¼ 10M	), beyond
which fully nonlinear numerical simulations are needed
[46–49]. GW detection templates depend on the binary
parameters when the system enters the sensitivity band
of the detectors, which is well into the regime where PN
corrections are significant, but astrophysical models of BH
evolution (as implemented e.g., in population-synthesis
codes) have so far neglected all general relativistic effects.
The main goal of this section is to show that solving the PN
equations of motion is necessary to determine the orienta-
tion of BH spins when binaries enter the sensitivity band
of GW detectors such as Advanced LIGO/Virgo and the
Einstein Telescope.

The PN equations of motion and gravitational wave-
forms for spinning BH binaries were derived by several
authors (see e.g., [50–52]). Our previous investigations of

spin dynamics considered binaries on circular orbits; as
shown in Sec. III B below, this is an excellent approxima-
tion for most binaries in our sample. They also included
high-order PN terms such as the monopole-quadrupole
interaction and the spin-spin self-interactions [9–11], that
we report for completeness below.

For circular orbits with radius a and orbital velocity v ¼
ðGM=aÞ1=2, the ‘‘intrinsic’’ dynamics of a binary system
depends on 10 variables: the two masses ðm1; m2Þ, the spins
S1 and S2, and the direction of the orbital angular momen-

tum L̂. At the PN order we consider, the spin magnitudes
and the mass ratio q remain fixed during the inspiral. This
leaves 7 independent degrees of freedom. Because BHs are
vacuum solutions of the Einstein equations, there is only
one physical scale in the problem (the total mass of the
binary M). Rescaling all quantities relative to the mass M,
we are left with six intrinsic parameters.
It is convenient to analyze the precessional dynamics in

the frame where the direction of the orbital momentum L̂
lies along the z axis. If we take (say) the x axis to be
oriented along the projection of S1 on the orbital plane (see
Fig. 1 in [6]), we are effectively imposing three additional
constraints just by our choice of the reference frame (two

components of L̂ and one component of S1 are set equal to
zero). Then the only three variables describing preces-
sional dynamics are the angles �1, �2, and ��, as defined
in Eqs. (2) and (3). The angle between the two spins �12 is
related to the other independent variables as follows:

cos�12 ¼ sin �1 sin�2 cos��þ cos �1 cos�2: (13)

In summary, for any given binary with intrinsic parame-
ters ðq; �1; �2Þ, the precessional dynamics is encoded in
the variables ð�1; �2;��Þ as functions of the orbital veloc-
ity v or (equivalently) of the orbital frequency ! ¼ v3=M.
These variables can be evolved forward in time by inte-
grating the following PN equations of motion:

dS1

dt
¼ �1 � S1;

M�1 ¼ �v5

�
2þ 3q

2

�
L̂

þ v6

2M2
½S2 � 3ðL̂ � S2ÞL̂� 3qðL̂ � S1ÞL̂
; (14)

dS2

dt
¼ �2 � S2;

M�2 ¼ �v5

�
2þ 3

2q

�
L̂þ v6

2M2

�
S1 � 3ðL̂ � S1ÞL̂

� 3

q
ðL̂ � S2ÞL̂

�
; (15)

dL̂

dt
¼ � v

�M2

d

dt
ðS1 þ S2Þ; (16)
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dv

dt
¼ 32

5

�

M
v9

�
1� v2 743þ 924�

336
þ v3

�
4�� X

i¼1;2

�iðŜi � L̂Þ
�
113

12

m2
i

M2
þ 25

4
�

��
þ v4

�
34103

18144
þ 13661

2016
�þ 59

18
�2

þ ��1�2

48
ð721ðŜ1 � L̂ÞðŜ2 � L̂Þ � 247ðŜ1 � Ŝ2ÞÞ þ 1

96

X
i¼1;2

�
mi�i

M

�
2ð719ðŜi � L̂Þ2 � 233Þ

�
� v5�

4159þ 15876�

672

þ v6

�
16447322263

139708800
þ 16

3
�2 � 1712

105
ð�E þ ln 4vÞ þ

�
451

48
�2 � 56198689

217728

�
�þ 541

896
�2 � 5605

2592
�3

�

þ v7�

�
� 4415

4032
þ 358675

6048
�þ 91495

1512
�2

�
þOðv8Þ

�
; (17)

where � ¼ m1m2=M
2 and �E ’ 0:577 is Euler’s constant.

The leading terms in Eqs. (14) and (15), up to Oðv5Þ or
2.5PN order, describe precessional motion about the direc-

tion of the orbital angular momentum L̂. We assumed that
these terms dominated during the PN inspiral of the pre-
vious section, allowing �0

2 and �00
2 to remain fixed at

a > 1000M. Spin-orbit couplings appear at 3PN, and
they are the reason for the existence of the resonant con-
figurations [6]. From Eq. (16) we see that the direction of
the angular momentum evolves on a precessional time
scale, while Eq. (17) implies that its magnitude decreases
on the (longer) radiation-reaction time scale due to GW
emission. The leading (quadrupolar) order of Eq. (17) is
equivalent to the circular limit of Eq. (11) when we recall
that v2 ¼ M=a.

Higher-order PN terms in the equations of motion were
recently computed [53]. We modified Eqs. (14)–(17) to
include these new terms, finding that they affect the late-
time dynamics of individual binaries but have negligible
influence on the statistical behavior of our samples. The
robustness of these statistical properties under the inclu-
sion of higher-order PN terms was already noted in [9–11].
For completeness we retained the higher-order PN terms
that will be reported in [53] in our Monte Carlo simula-
tions, but we stress again that they have no observable
impact on our results.

At a given separation a, Schnittman’s resonant configu-
rations can be found by forcing the three vectors S1, S2,

and L̂ to lie in a plane (�� ¼ 0�,�180�) and by imposing
the constraint that the second time derivative of cos �12
vanishes [6]. A one-parameter family of configurations
with �� ¼ 0� and �1 < �2 satisfies this resonant con-
straint, as does a second one-parameter family with �� ¼
�180� and �1 > �2. As a decreases due to GW emission,
the curves determined by these one-parameter families
change, sweeping through a large region of the ð�1; �2Þ
parameter space. The resonant constraint evolves toward
the diagonal �1 ¼ �2 as a ! 0. Individual resonant bi-
naries move towards the diagonal in the ð�1; �2Þ plane

along trajectories over which the projection S0 � L̂ of the
spin combination S0 defined in the effective-one-body
model [54],

S0 ¼ ð1þ qÞS1 þ ð1þ q�1ÞS2; (18)

is approximately constant (cf. Figs. 1 and 2 of [9]).
Resonant configurations with �� ¼ 0 tend to align the
two spins with each other, so that �12 ! 0� near merger.
On the other hand, configurations with �� ¼ �180�

identified by their constant value of S0 � L̂ evolve towards

cos �12 ! 2

� ð1þ qÞS0 � L̂
ð�1 þ q�2ÞM2

�
2 � 1: (19)

B. Initial conditions for the PN evolution

By construction, all of the merging BH binaries pro-
duced in Sec. II have M ¼ 13:5M	, q ¼ 0:8, and �1 ¼
�2 ¼ 1. For this mass ratio and these spin magnitudes,
binaries become attracted towards resonances (‘‘resonant
locking’’) at separations a & 100M [6]. Previous studies
suggest that the spin-orbit resonances remain influential
provided q * 0:4 and �i * 0:5 [9–11]. To be safe, we
begin following binaries at an initial separation aPNi ¼
1000M large enough so that we can neglect spin-spin
coupling at greater separations [9]. Recall that the mass
ratio was defined such that q � m2=m1 � 1. In the SMR
scenario, the primary yields the larger BH (M0

BH >M00
BH),

so the angles are initialized to be

�1 ¼ �0
2; �2 ¼ �00

2 : (20)

In the RMR case, the primary transfers so much mass to the
secondary prior to the first SN that it actually produces the
smaller BH (M0

BH <M00
BH), implying that we must reverse

our initialization:

�1 ¼ �00
2 ; �2 ¼ �0

2: (21)

Although our decision to neglect spin-spin coupling for
a > aPNi allows us to initialize �i in this manner, the lower-
order spin-orbit coupling allows �� to evolve on the
precessional time scale, which is short compared to the
time it takes to inspiral from a2 to aPNi. We can therefore
choose �� at aPNi to be uniformly distributed in the range
½�180�;þ180�
. Finally, since gravitational radiation is
very efficient at circularizing the orbit [to leading order

e / a19=12; see Eq. (12)], we assume that all BH binaries
have circularized by the time they reach aPNi. We checked
this assumption by numerically integrating Eq. (12) from
a2 to aPNi after initializing it with the values e2 predicted
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following the second SN; the residual eccentricity at aPNi
was less than 10�4 for all BH binaries in our samples.

C. Results

We evolved 103 BH binaries for each of the eight differ-
ent fiducial astrophysical scenarios described in Sec. II C
from an initial separation8 aPNi ¼ 1000M to a final sepa-
ration aPNf ¼ 10M. This final separation roughly indicates
where the PN approximation breaks down and full numeri-
cal relativity becomes necessary [46–49]. To reduce the
Poisson noise in the histograms of Fig. 2, we used larger
samples of 104 BH binaries. We integrated the PN equa-
tions (14)–(17) using a STEPPERDOPR5 integrator in C++

[59], progressively refining the time steps at small separa-
tions (see [9] for further details).

In Fig. 5, we show the evolution of the dynamical

variables ð�1; �2;��Þ for both the SMR and RMR scenar-

ios with efficient tides and isotropic kicks. As already

anticipated in the Introduction, efficient tidal interactions

lead to spin orientations that are strongly affected by spin-

orbit resonances. When binaries are brought close enough

to resonant configurations by precessional motion and

gravitational-radiation reaction, they no longer precess

freely through all values of ��, but instead oscillate about

the resonant configurations [6,9]. In the SMR scenario, the

initial orientation of the spins is such that �1 > �2, and the
binaries lock into resonances with �� ¼ �180� [darker

(red) points in Fig. 5]. In contrast, in the RMR scenario the

initial spins have �1 < �2 and the binaries lock into reso-

nances with �� ¼ 0� [lighter (green) points in Fig. 5].

Once the binaries are trapped near resonances, they evolve

toward the diagonal in the ð�1; �2Þ plane, as seen in the left
panel of Fig. 5. This corresponds to �12 ! 0� for binaries

near the �� ¼ 0� family of resonances (RMR scenario).

As seen in the right panel of Fig. 5, there is a much broader

range of final values for �12 in the SMR scenario, because

these final values depend on the initial astrophysical dis-

tribution of S0 � L̂ according to Eq. (19).
Figure 6 shows that spin-orbit resonances can have

an even stronger effect on BH binaries when SN kicks are
polar (aligned within �b ¼ 10� of the stellar spin [60]). As
discussed in Appendix A 5, exactly polar kicks tilt the
orbital plane by an angle � given by Eq. (A24), which

can only attain a maximum value cos�1ð2�Þ�1=2 (where

FIG. 5 (color online). Scatter plots of the PN inspiral of maximally spinning BH binaries with mass ratio q ¼ 0:8 from an initial
separation aPNi just above 1000M to a final separation aPNf ¼ 10M. The left panel shows this evolution in the ð�1; �2Þ plane and the
right panel shows the evolution in the ð��; �12Þ plane. Darker (red) and lighter (green) dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from an astrophysical model with efficient
tides and isotropic kicks. An animated version of this plot is available online at [55].

8The a ¼ 1000M snapshots in the figures of this section are
taken shortly after the beginning of the PN evolution. The angle
�� varies on the precessional time scale and can therefore
change quite rapidly before the separation decreases appreciably
on the longer inspiral time scale. The initial clustering in ��
visible in the top-right panels of Figs. 5 and 6 is not a resonant
effect, as the binaries continue to sweep through all values of
�� at these large separations. It results instead from the differ-
ent rates at which binaries in the SMR and RMR populations
precess, segregating the groups from each other during the first
few precessional cycles. This behavior is better illustrated by the
animations available online at the URLs [55–58], which refer to
efficient tides with isotropic kicks, efficient tides with polar
kicks, inefficient tides with isotropic kicks, and inefficient tides
with polar kicks, respectively.
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� ¼ Mf=Mi is the ratio of the total binary mass before

and after the SN) without unbinding the binary. For � ’
0:9, as in our SMR and RMR scenarios,� & 40�, and kicks
are rarely large enough even to saturate this limit. This
explains the much narrower distribution of initial values of
�i in the left panel of Fig. 6 compared to Fig. 5. Binaries
with these smaller initial misalignments are more easily
captured into resonances, as can be seen from the near total
segregation of the SMR and RMR populations in�� by the

time the binaries reach aPNf ¼ 10M in the right panel of
Fig. 6.
In our model, two physical mechanisms are responsible

for changing BH spin orientations: SN kicks and tidal
alignment. Both mechanisms are critical: kicks generate
misalignments between the spins and the orbital angular
momentum, but only tides can introduce the asymmetry
between these misalignments that causes one family of
spin-orbit resonances (the �� ¼ �180� family in the

FIG. 6 (color online). Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with efficient tides and polar
kicks. For an animated version of this plot, see [56].

FIG. 7 (color online). Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with inefficient tides and
isotropic kicks. For an animated version of this plot, see [57].
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SMR scenario, the �� ¼ 0� family in the RMR scenario)
to be favored over the other. When tidal effects are re-
moved, as shown in Figs. 7 and 8, BH binaries are formed
with �1 ’ �2 on average. Being symmetric under exchange
of the two BHs, the evolution in the SMR and RMR
scenarios is almost identical. As expected, the binaries do
not lock into resonant configurations, instead precessing
freely during the whole inspiral. In the late stages of
inspiral, the binaries tend to pile up at �� ¼ �90�, i.e.,
they spend more time in configurations where the projec-
tions of the two spins on the orbital plane are orthogonal to
each other. Unlike the spin-orbit resonances, configura-
tions with �� ¼ �90� are not steady-state solutions to
the spin-evolution equations in the absence of radiation
reaction [6]. The pileup at these configurations however
is an essential complement to the spin-orbit resonances for
preserving the well-known result that initially isotropic
spin distributions remain isotropic (see e.g., [13]). The
physical origin of this phenomenon merits further
investigation.

IV. COMPARISON WITH
POPULATION SYNTHESIS

We have demonstrated that viable astrophysical forma-
tion channels can result in BH binaries that are strongly
affected by spin-orbit resonances during the late PN por-
tion of the inspiral but before the binary enters the GW
detection band. Therefore PN resonances can affect the
observed dynamics of precessing binaries. Even more
interestingly, the distribution of the angles �� and �12 is
a diagnostic tool to constrain some of the main physical
mechanisms responsible for BH binary formation (namely,

the efficiency of tides, and whether mass transfer can
produce mass-ratio reversal).
However, some caveats are in order. Even our limited

exploration of the parameter space of BH binary formation
models has shown that the influence of PN resonances
depends sensitively on highly uncertain factors, such
as the magnitude and direction of SN kicks, or the mass
ratio and semimajor axis of the binary at various stages
of its evolution. In this section, we argue that (i) our
fiducial scenarios are indeed representative of the predic-
tions of more sophisticated population-synthesis models
(Sec. IVA), and (ii) as a consequence, observations of spin-
orbit resonances through their GW signatures can provide
valuable insight into BH binary formation channels
(Sec. IVB).

A. Is our fiducial scenario representative?

In our study we chose to follow the evolution of two
binary progenitors in detail, using a specific formation
channel. The resulting BH binaries resemble at least quali-
tatively the low-mass BH binaries that can be formed
through a wide range of compact-object formation scenar-
ios at a range of metallicities; see e.g., [12].
An important assumption made in this study is that of

negligible mass loss. Current calculations suggest that the
progenitors of the most commonly detected BH binaries
will in fact have low metallicity and strongly suppressed
mass loss [12]. The advantage of our approach is that by
neglecting mass loss and focusing on a pair of fiducial
binaries we can perform a ‘‘controlled experiment’’ to
highlight how different physical phenomena influence the
efficiency of PN resonance locking. Variations in the range

FIG. 8 (color online). Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with inefficient tides and polar
kicks. For an animated version of this plot, see [58].
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of initial binary masses, wind mass loss, and other mass
transfer modes will affect the mass distribution of the
binaries and the initial distribution of the misalignment
angles ð�1; �2Þ, but not our main qualitative predictions,
that should be rather robust.

This study included what we believe to be the most
important physical mechanisms that could trap binaries
in resonant configurations, but it is certainly possible that
additional ingredients overlooked in our model could
complicate our simple interpretation of the results. For
example, our argument relies on a universal and determi-
nistic relationship between stellar masses and compact
remnants. By contrast, some studies suggest that the rela-
tionship between the initial and final mass may depend
sensitively on interior structure [61], rotation, or conceiv-
ably even stochastically on the specific turbulent realiza-
tion just prior to explosion. As a concrete example, recent
simulations of solar-metallicity SN explosions by Ugliano
et al. [61] (including fallback) and O’Connor and Ott [62]
(neglecting fallback) have produced nonmonotonic rela-
tionships between the progenitor and final BH masses.
Likewise, our argument makes the sensible assumption
that BH spins are aligned with the spin of their stellar
progenitor, but neutron star observations suggest that
the protoneutron star’s spin axis may be perturbed in a
SN [63].

Our case studies of binary evolution omit by construc-
tion many of the complexities present in more fully devel-
oped population-synthesis models. The inclusion of
additional physics presents interesting opportunities for a
more detailed understanding of the connection between
poorly constrained assumptions in population-synthesis
models and GW observations. Some of the limitations we
imposed on our model—and therefore, interesting oppor-
tunities for follow-up studies—are listed below: (1) we
follow the formation and evolution of only two progenitor
binaries, rather than monitoring a distribution of masses;
(2) we only consider maximally spinning BHs, while we
should consider astrophysically motivated spin magnitude
distributions; (3) we adopt very simple prescriptions for
mass transfer and evolution, which have minimal feedback
onto the structure and evolution of each star; (4) we employ
an extreme ‘‘all or nothing’’ limit for tidal interactions;
(5) we assume that BHs are kicked with a specific fraction
of the overall SN kick strength; (6) we neglect stellar mass
loss, magnetic braking, and other phenomena that can
occur in different formation scenarios.

In summary, while our fiducial scenario provides
a representative environment to explore the physics of
PN resonances, the specific mass distribution and the
quantitative distribution of the misalignment angles at
the beginning of the PN-driven inspiral will depend on
detailed binary-evolution physics which is neglected by
construction in our toy model. It will be interesting to
initialize our Monte Carlo simulations using more

comprehensive binary-evolution models that include a dis-
tribution of progenitor masses, track tidal backreaction on
the spins and orbit, and model in more detail mass transfer
and the modifications it introduces to core and stellar
evolution.

B. Observational payoff

Let us provide a specific example to illustrate these
uncertainties and their potential observational payoff.
Our fiducial model assumed relatively low-mass BHs.
These systems receive strong SN kicks (due to small
fallback) and are more significantly influenced by CE
contraction (because of the greater relative effect of the
envelope binding energy). By contrast, more massive BHs
in the STARTRACK sample will accrete a significantly higher
fraction of their pre-SN mass, which drastically suppresses
the typical kick magnitude. As a result, massive BH bi-
naries can be expected to have BH spins more aligned with
the orbital angular momentum.
This sort of qualitative difference between low- and

high-mass BH binaries presents an opportunity for GW
detectors. The most easily measurable quantity in GW

observations is the ‘‘chirp mass’’ Mchirp ¼ �3=5M, where

M ¼ m1 þm2 is the total binary mass and � ¼ m1m2=M
2

is the symmetric mass ratio (see e.g., [64,65]). Therefore,
even though current simulations suggest that the detected
sample will be dominated by high-mass, nearly aligned BH
binaries, observations can clearly identify the low-mass
sample, which should exhibit significant initial misalign-
ment and more interesting precessional dynamics. Given
the significant uncertainties in population-synthesis mod-
els, even upper limits on the spin-orbit misalignment for
high-mass BH binaries would be extremely valuable, either
to corroborate the expectation of strong alignment or to
demonstrate the significance of SN kicks for high-mass
BHs.
Based on our prototype study, let us assume that each PN

resonance is an unambiguous indicator of a specific for-
mation scenario: hypothetical GWmeasurements of angles
����180� mean efficient tides in the ‘‘standard mass
ratio’’ (SMR) scenario; measurements of ��� 0� mean
that mass reversal also occurred (RMR); finally, ���
�90� is an indication that tidal effects were inefficient
(cf. Fig. 1). Under these assumptions, statistically signifi-
cant measurements of �� could directly identify how
often each of the three formation channels (efficient tides,
SMR; efficient tides, RMR; inefficient tides) occurs, for
each binary mass.
To illustrate how informative these measurements might

be, Fig. 9 shows the relative number of merging binaries
that undergo mass-ratio reversal as a function of chirp
mass, as derived from the most recent STARTRACK

binary-evolution models [12]. The figure (which is meant
to be purely illustrative) refers to subvariation A of the
‘‘standard model’’ of Dominik et al. [12]. Each panel
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shows the chirp-mass distribution of binaries that either do
(RMR, dashed blue histograms) or do not (SMR, red solid
histograms) undergo mass-ratio reversal. This distribution
has characteristic ‘‘peaks’’ at specific values of the chirp

mass at any given Z and it depends very strongly on
composition, as we can see by comparing the two panels
(which refer to Z=Z	 ¼ 1 and Z=Z	 ¼ 0:1, respectively).
According to our model, measurements of �� for a large
enough sample of binaries would allow us to reconstruct
the shape of these histograms as a function of chirp mass,
potentially enabling new high-precision tests of binary
evolution, above and beyond the information provided by
the mass distribution alone.
A preliminary assessment of the main features of

population-synthesis models that could be probed by these
measurements can be inferred from Table III. There we list
the overall fraction of BH binary systems that undergo
mass-ratio reversal for several different binary-evolution
scenarios explored in [12]. The most dramatic difference
is due to composition: with few exceptions, models with
solar composition (Z=Z	 ¼ 1) almost exclusively produce
SMR binaries, while models with subsolar composition
(Z=Z	 ¼ 0:1) produce comparable proportions of SMR
and RMR binaries. Furthermore there are clear trends in
the ratio RMR/SMR as a function of the envelope-binding-
energy parameter 	 discussed in Appendix A 7 (compare
variations 1 to 4); the strength of SN kicks (variations 8 and
9); and the amount of mass loss through winds (variation
11). These parameters are also well known to significantly
influence the overall number and mass distribution of
merging binaries.
In conclusion, while our model needs further testing and

scrutiny against more complete population-synthesis cal-
culations, it strongly indicates that GW measurements of
�� and �12 will provide a useful diagnostic of compact
binary formation, complementary to the more familiar

TABLE III. BH binary rates predicted by STARTRACK. RMR (SMR) is the percentage of binaries that do (not) experience mass-ratio
reversal due to mass transfer; # indicates the total number of BH binaries in the sample. Each row refers to a different variation over the
‘‘standard model’’. The variations illustrate the effect of changing one parameter (CE binding energy 	, kick magnitude, etc.) with
respect to the ‘‘best guesses’’ of the standard model. Each row also shows the effect of changing the metallicity Z and the Hertzsprung-
gap donor prescription. In Subvariation A (B), binaries can (can not) survive a common-envelope event during the Hertzprung-gap
phase; see [12] for details).

Subvariation A

Z=Z	 ¼ 0:1
Subvariation B

Z=Z	 ¼ 0:1
Subvariation A

Z=Z	 ¼ 1
Subvariation B

Z=Z	 ¼ 1

Variation SMR RMR # SMR RMR # SMR RMR # SMR RMR #

0: Standard 63.2% 36.8% 32496 66.8% 33.2% 17038 91.9% 8.1% 10160 92.9% 7.1% 8795

1: 	 ¼ 0:01 67.9% 32.1% 12368 67.4% 32.6% 11401 93.6% 6.4% 8171 93.6% 6.4% 8171

2: 	 ¼ 0:1 62.7% 37.3% 27698 65.2% 34.8% 16885 88.9% 11.1% 11977 92.1% 7.9% 8577

3: 	 ¼ 1 54.2% 45.8% 51806 65.7% 34.3% 19415 79.1% 20.9% 15820 91.6% 8.4% 8442

4: 	 ¼ 10 50.1% 49.9% 50884 62.9% 37.1% 17939 73.2% 26.8% 14425 91.6% 8.4% 8321

5: MNS ¼ 3M	 62.5% 37.5% 32236 66.2% 33.8% 16868 91.6% 8.4% 9972 92.8% 7.2% 8589

6: MNS ¼ 2M	 62.3% 37.7% 32535 65.9% 34.1% 16804 91.5% 8.5% 9922 92.5% 7.5% 8590

7: 
 ¼ 132:5 km=s 58.2% 41.8% 36546 63.1% 36.9% 18935 88.9% 11.1% 11099 89.6% 10.4% 9334

8: vBH ¼ vpNS (BHs) 56.2% 43.8% 948 72.5% 27.5% 207 56.2% 43.8% 16 0% 100% 2

9: vBH ¼ 0 (BHs) 56.3% 43.7% 52832 58.8% 41.2% 34569 66.3% 33.7% 35267 65.2% 34.8% 32547

10: Delayed SN 61.4% 38.6% 27310 66.3% 33.7% 13841 81.5% 18.5% 1032 81.2% 18.8% 881

11: Weak winds 58.4% 41.6% 33872 63.6% 36.4% 17765 70.5% 29.5% 21786 64.2% 35.8% 16182

FIG. 9 (color online). Histograms of binaries that do (RMR) or
do not (SMR) undergo mass-ratio reversal as a function of chirp
mass according to the publicly available STARTRACK data from
[104]. For illustration, herewechoose subvariationAof the standard
model, in the terminology of [12]. A comparison of the upper and
lower panels shows the striking differences in the chirp-mass
distribution resulting from different choices for the metallicity Z.
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mass and spin measurements. In the next section we con-
clude the paper with an overview of the challenges and
rewards associated with these measurements.

V. DISCUSSION

Previous Monte Carlo studies of the spin-orbit reso-
nances discovered by Schnittman [6] showed that spins
tend to lock in a resonant plane if the binary has mass ratio
q * 0:4 and the dimensionless spin magnitudes �i * 0:5
as long as there is an initial asymmetry in the relative
orientation of the spins with respect to the orbital angular
momentum, i.e., �1 � �2 [9–11].

In this work we built a toy model for BH binary for-
mation focusing on the main physical ingredients that can
produce such an asymmetry: SN kicks (that tilt the orbital
plane every time a BH is formed), tidal interactions (that
tend to realign the spin of the star that collapses later with
the orbital angular momentum), and mass transfer (that can
produce mass-ratio reversal, so that the heaviest BH cor-
responds to the lighter stellar progenitor). We showed that
for stellar-mass compact objects formed at the endpoint of
isolated binary evolution the required conditions should
ubiquitously occur.

Perhaps more interestingly, we demonstrated that the
angle �� between the components of the BH spins in
the plane orthogonal to the orbital angular momentum is
in one-to-one correspondence with the BH formation chan-
nel that gave birth to the BH binary: if tides are efficient the
PN evolution attracts the spins to the resonant plane with
�� ’ 0� (�� ’ �180�) if mass reversal does (does not)
occur. When tidal effects are inefficient the spins precess
freely, and they pile up at �� ¼ �90� by the time the
binary enters the band of advanced GW detectors. A pre-
liminary comparison with detailed population-synthesis
calculations suggests that the fraction of binaries in each
family of resonant configurations, both overall and as a
function of (chirp) mass, should provide a highly informa-
tive diagnostic on some of the main uncertainties involved
in binary-evolution physics (metallicity, binding energy of
the CE, magnitude of BH kicks). Measuring this fraction
will require a large sample of BH mergers with sufficient
signal-to-noise ratio, but hopefully such a sample will be
obtainable by Advanced LIGO/Virgo after some years of
operation at design sensitivity.

Our initial study merits detailed followups to assess
(i) the potential accuracy of GW measurements of the
precessional parameters, and (ii) the information that can
be extracted by comparison with population-synthesis
models.

Detailed studies are required from the point of view of
GW data analysis. We have assumed for simplicity that
each PN resonance can be easily and unambigously dis-
tinguished. In practice, accurate matched-filtering mea-
surements of the angles �� and �12 will need more
work on the GW source-modeling front. Relevant issues

here include the construction of gravitational-waveform
templates adapted to resonant configurations, the develop-
ment of specialized parameter-estimation strategies, and
the understanding of systematic (as opposed to statistical)
errors for second- and third-generation detectors. Spin
modulations are known to influence both the amplitude
and phase of the emitted radiation, and while there are
several preliminary investigations of parameter estimation
from spinning, precessing binaries, the direct measurement
of parameters characterizing the spin-orbit resonances may
require the inclusion of higher-order spin terms and/or
higher harmonics in the waveform models.
From an astrophysical standpoint, the observable distri-

bution of binary systems as they enter the detector band
should be calculated (more realistically) by applying our
PN evolution to initial data derived from state-of-the-art
binary population-synthesis models. In addition to corrob-
orating our results, such a study will establish a compre-
hensive library of reference models that can be compared
to observational data using Bayesian or other model-
selection strategies; see e.g., [66–72] for previous efforts
in this direction. Such a study is necessary also to make
contact with other observables, such as the rate and mass
distribution of compact binaries. Only with a comprehen-
sive and self-consistent set of predictions can we quantify
how much the information provided by PN resonances
complements information available through other observ-
able quantities.
In conclusion, the direct observation of resonant locking

will be challenging from a GW data-analysis standpoint.
However the relatively transparent astrophysical interpre-
tation of PN resonances makes such an investigation
worthwhile. Even if only observationally accessible for
the loudest signals, these resonances will enable unique
insights into the evolutionary channels that produce merg-
ing compact binaries. In our opinion, more detailed studies
of resonant locking in connection with population-
synthesis models will offer a great observational opportu-
nity for GW astronomy.
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Or Graur, Michael Horbatsch, Giuseppe Lodato, and Sterl
Phinney for useful discussions and suggestions on various
aspects of this work. This research was supported in part by
NSF Grant No. PHY11-25915 and by the LIGO REU
program at the California Institute of Technology.
R.O. S. was supported by NSF Grant No. PHY-0970074.
E. B. and D.G. were supported by NSF CAREER Grant
No. PHY-1055103. E. B. and U. S. acknowledge support
from FP7-PEOPLE-2011-IRSES Grant No. NRHEP-
295189 and NSF-XSEDE Grant No. PHY-090003. U. S.
also acknowledges support from FP7-PEOPLE-2011-CIG
Grant No. CBHEO-293412, STFC GR Roller Grant

RESONANT-PLANE LOCKING AND SPIN ALIGNMENT IN . . . PHYSICAL REVIEW D 87, 104028 (2013)

104028-17



No. ST/I002006/1, CESGA Grant No. ICTS-234, BSC,
RES Grant No. AECT-2012-3-0011, ERC Starting Grant
No. DyBHo 256667 and the Cosmos system, part of
DiRAC, funded by STFC and BIS.

APPENDIX A: BINARY-EVOLUTION
PHENOMENOLOGY

Binary population synthesis relies on copious guidance
from both observations and theory [73]. Simulations of
binary evolution that self-consistently account for stellar
structure and mass transfer are computationally expensive
and depend on awide variety of parameters [73,74].Models
that hope to generate astrophysically realistic binary pop-
ulations must tabulate the results of these simulations
and calibrate them against observations [27,30,73]. Well-
developed algorithms exist to quickly generate large
synthetic compact-binary populations similar to those
produced in more expensive direct simulations [27,30]. In
this appendix, we use such population-synthesis models to
justify and put into context the simple procedure adopted in
this paper. To further validate our model, we have also
performed a handful of detailed binary-evolution calcula-
tions with the binary-stellar evolution BSE code by Hurley
et al. [30]. When adopting similar assumptions (i.e., low
stellar mass-loss rates and large envelope binding energies),
the BSE code produces qualitatively similar evolutionary
scenarios to the procedure outlined in the text. The simple
model and fiducial scenarios considered in this paper do not
account for a thorough exploration of the parameter space,
but they illustrate the essential physics and demonstrate that
PN resonance locking can be the preferred outcome of
astrophysically motivated BH binary formation channels.

1. Single stellar evolution

In this section, we provide relevant information about
the evolution of isolated stars. Main-sequence stars born
with a mass MS have a radius [75]

RS

R	
’ 1:33

�
MS

M	

�
0:555

: (A1)

Massive, metal-rich main-sequence stars lose a substantial
amount of mass via winds prior to going SN, but we
neglect this mass loss for simplicity. The inclusion of
wind mass loss in our model would reduce the mass of
the hydrogen envelope available to be transferred to the
secondary during the first mass-transfer event. While ne-
glecting this mass loss quantitatively changes the binary
evolution, we believe that it does not qualitatively alter our
conclusions. Larger (and appropriately chosen) initial stel-
lar masses would lead to final BH binaries with masses
comparable to those considered in our model even in the
presence of winds.

Stars with main-sequence masses in the range 25M	 �
MS � 40M	 evolve into supergiants with helium-core
masses well approximated by

MC ’ 0:1MS þ 5M	 (A2)

(cf., top panel of Fig. 14 of [27]) and radii [76]

RG

R	
’ 4950

ðMC=M	Þ4:5
1þ 4ðMC=M	Þ4

þ 0:5: (A3)

Once the hydrogen envelopes have been lost, the naked
helium cores have radii [77]

log
RC

R	
’ �0:699þ 0:0557

�
log

MC

M	
� 0:172

��2:5
: (A4)

We neglect further evolution of the naked helium star
before SN. For the large masses typical of BH progenitors,
the naked helium cores have radiative envelopes and do not
expand substantially during subsequent shell burning
[27,78]. After going SN, a main-sequence star leaves
behind a BH of mass (bottom panel of Fig. 14 of [27])

MBH ’ 0:3MS � 3M	: (A5)

2. Initial semimajor axis

The initial binary separation a0 is drawn from a
uniform logarithmic distribution in the range ½amin ; amax 

[27,79–81]. The upper limit amax is chosen to ensure that
the primary fills its Roche lobe during its supergiant phase,
while the lower limit amin is chosen so that the secondary
does not fill its Roche lobe after receiving mass from the
primary. The Roche-lobe radius RL of a star of mass m� in
an orbit of semimajor axis a about a companion of mass
m� is [30,82]

RLða;m�;m�Þ ’ 0:49Q2=3

0:6Q2=3 þ ln ð1þQ1=3Þa; (A6)

where Q � m�=m�, so the above limits are determined by

the constraints

RLðamax ;M
0
Si;M

00
SiÞ ¼ R0

G; (A7)

RLðamin ;M
00
Sf;M

0
CÞ ¼ R00

Sf: (A8)

These limits are somewhat arbitrary, but different choices
would not affect our main results. In fact, binaries that do
not go through mass transfer (a > amax ) are so widely
separated that they are easily unbound by the first SN,
while binaries where mass is transferred back to the pri-
mary prior to this SN (a < amin ) will merge in the CE
phase. These limits will therefore only affect the failure
fractions presented in Table II, not the spin alignments of
merging BH binaries.

3. Stable mass transfer

When a star fills its Roche lobe, gas will either be stably
transferred to its companion or form a CE about both
members of the binary. Stable mass transfer is discussed
in this section of the appendix, while CE evolution is
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discussed in Sec. A 7. In general, the stability of mass
transfer depends on the donor star, the accreting star, and
the mass ejected to infinity; as a first approximation,
stability criteria are usually implemented by simple thresh-
olds on the binary mass ratio, as summarized in [42] and
references therein. For our mass ratios, mass transfer from
the primary to the secondary prior to the first SN will be
stable, while mass transfer from the secondary to the
primary between the two SN events will lead to the for-
mation of a CE. A fraction fa of the mass lost by the
primary in the first mass-transfer event will be accreted by
the secondary, increasing its mass to

M00
Sf ¼ M00

Si þ faðM0
Si �M0

CÞ: (A9)

Fully conservative mass transfer (fa ¼ 1) preserves the
total mass of the system, while all of the mass lost by the
donor is ejected from the system in fully nonconservative
mass transfer (fa ¼ 0). We assume that stable mass trans-
fer is semiconservative (fa ¼ 1=2), in agreement with the
standard model of Dominik et al. [12]. Larger values of fa
during this first mass-transfer event will tend to favor the
RMR scenario over the SMR scenario. Since fa is directly
tied to the fraction of binaries that undergo mass-ratio
reversal in a given mass and mass-ratio range, our model
suggests that it is potentially measurable via GW observa-
tions. For simplicity, we assume that tides and the mass
transfer itself efficiently circularize the orbit (but see
[83,84] for recent investigations of mass transfer and
circularization in eccentric binaries).

4. Supernova kicks: magnitude and direction

Following [7], we assume that asymmetric SN events
impart hydrodynamical recoils to the newly formed proto-
neutron stars. We calibrate the magnitude of this primor-
dial kick using observed proper motions of young pulsars:
each protoneutron star is kicked with a velocity vpNS drawn

from a single Maxwellian with parameter 
 ¼ 265 km=s
[85]. A fraction ffb of this asymmetrically ejected material
falls back onto the protoneutron star and is accreted as it
collapses into a BH. This fallback suppresses the
magnitude of the final kick imparted to the BH to
vBH ’ ð1� ffbÞvpNS; for BHs with masses MBH ¼
ð6M	; 7:5M	Þ, as in our fiducial scenarios, simulations
suggest ffb ’ 0:8 [86,87]. This BH kick distribution is
consistent with the observed proper motions of galactic
X-ray binaries hosting BHs [88,89]. Although our results
are not extremely sensitive to the precise magnitude of the
BH kicks, the existence of such kicks is crucial to our
model, as they are the only observationally well-motivated
mechanism to introduce misalignment between the com-
pact binary spins and the orbital plane.

We assume that the BH kicks are distributed in a double
cone of opening angle �b about the BH spin and consider
two extreme scenarios: isotropic (�b ¼ 90�) or polar
(�b ¼ 10�) kicks. There is some observational [90,91]

and theoretical [92,93] support for the polar model.
However we examine both possibilities because this choice
has a significant effect on the resulting binary orbits, as
discussed in Appendix A 5 below. Our choice of �b ¼ 10�
in the polar model was partly motivated by a comparable
observed misalignment between the spin and proper
motion of the Crab pulsar [60].

5. Supernova kicks: influence on the orbit

In this section, we describe how SN kicks are imple-
mented in our Monte Carlo calculations. The expressions
provided below have been published previously either
under more restrictive assumptions [25] or using different
notation [30], but we rederive them here for clarity and
completeness. Each SN reduces the mass of the binary and
imparts a kick to the newly produced compact remnant. We
calculate how these effects change the Keplerian orbital
elements by applying energy and angular-momentum con-
servation to the binary before and after the SN. As the
duration of the SN explosion is short compared to the other
stages of binary evolution, we assume that this orbital
modification occurs instantaneously. The definitions of
the angles used in this appendix are illustrated in Fig. 10.
In the simulations reported in this paper we assume that

the binary is on a circular orbit (ei ¼ 0) and that the stellar
spins are aligned with the orbital angular momentum

FIG. 10. Definitions of the angles used in Appendix A 5 to
study SN kicks. Before the SN, the members of the binary have a
separation r and relative velocity v0. Mass loss and the SN kick
vk tilt the orbital angular momentum from Li to Lf while
leaving the spin S unchanged.
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(�i ¼ 0) when the first SN occurs (we have actually re-
laxed the circularity assumption in additional simulations
not presented here, and we verified that this has a negli-
gible impact on our conclusions). If tides are inefficient,
both of these simplifying assumptions will not hold, in
general, for the second SN. Therefore here we present
general expressions for the post-SN orbital elements.
These expressions were first derived (to our knowledge)
in [30], but here we use notation similar to that of
Kalogera [25].

The binary separation r for a Keplerian orbit with initial
semimajor axis ai and eccentricity ei can be expressed as

r ¼ aið1� e2i Þ
1þ ei cos c i

; (A10)

where c i is the true anomaly. Values for the true anomaly
at the time of the SN are chosen by assuming that the
explosion is equally likely to occur at any given time. The
time t after the binary reaches pericenter is given by

2�

P
t ¼ E� ei sinE; (A11)

where

P ¼ 2�

�
a3i
GMi

�
1=2

(A12)

is the period of a binary of total mass Mi. The eccentric
anomaly E is related to the true anomaly c i by

cos c i ¼ cosE� ei
1� ei cosE

: (A13)

We assume that t is uniformly distributed in the range
½0; P
 and derive the corresponding values of c i from these
relations.

The direction of the kick velocity vk is defined by a polar
angle ��k and an azimuthal angle ��k. Here ��k is the angle
between vk and the pre-SN orbital velocity v0, and the axis
defined by ��k ¼ 0 is chosen to be parallel to the orbital
angular momentum L (see Fig. 10). The direction of the
spin S of the collapsing star is specified by the angle �i

between S and L and the angle $ between the projection
of S in the orbital plane and the separation r̂ between the
members of the binary. In terms of these angles, the angle
�p between S and vk is given by

cos�p ¼ �ðsin ��k sin ��k sinþ cos ��k cosÞ cos$ sin�i

þ ðcos ��k sin� sin ��k sin ��k cosÞ sin$ sin�i

þ sin ��k cos ��k cos�i; (A14)

where the angle  between the orbital velocity and line of
separation is given in terms of the true anomaly by

cos ¼ ei sin c i

ð1þ 2ei cos c i þ e2i Þ1=2
: (A15)

In our Monte Carlo simulations, kick directions are drawn
from uniform distributions in ��k, cos ��k, and $. Kicks
confined to within an angle �b of the stellar spin S are
therefore implemented by repeated draws from this distri-
bution such that

�p � �b or �p � �� �b: (A16)

The SN reduces the total mass of the binary from Mi to
Mf and changes the velocity of the exploding star from v0
to v0 þ vk. Applying energy and angular-momentum
conservation to the binary before and after the SN, we
find that the final semimajor axis af and eccentricity ef
are given by [30]

af ¼ ai�

�
2ð�� 1Þ 1þ ei cos c i

1� e2i
þ 1� u2k

� 2uk

�
1þ 2ei cos c i þ e2i

1� e2i

�
1=2

cos ��k

��1
; (A17)

1� e2f ¼
1� e2i
�2

��
1þ uk

�
1� e2i

1þ 2ei cos c i þ e2i

�
1=2

�
�
cos ��k � ei sin c i sin ��k sin ��k

1þ ei cos c 0

��
2

þ ð1� e2i Þ
�
uk sin ��k cos ��k

1þ ei cos c i

�
2
�

�
�
2ð�� 1Þ 1þ ei cos c i

1� e2i
þ 1� u2k

� 2uk

�
1þ 2ei cos c i þ e2i

1� e2i

�
1=2

cos ��k

�
; (A18)

where � ¼ Mf=Mi and uk is the magnitude of the kick

velocity normalized to the circular orbital velocity before
the explosion, i.e.,

uk ¼ vk

ffiffiffiffiffiffiffiffiffiffi
ai

GMi

s
: (A19)

If the right-hand side of Eq. (A18) is negative, ef > 1 and

the SN has unbound the binary. For binaries that remain
bound, the orbital plane is tilted by an angle � such that
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cos� ¼
�
1þ uk

�
1� e2i

1þ 2ei cos c i þ e2i

�
1=2

�
cos ��k � ei sin c i sin ��k sin ��k

1þ ei cos c i

��

�
��
1þ uk

�
1� e2i

1þ 2ei cos c i þ e2i

�
1=2

�
cos ��k � ei sin c i sin ��k sin ��k

1þ ei cos c i

��
2

þ ð1� e2i Þ
�
uk sin ��k cos ��k

1þ ei cos c i

�
2
��1=2

; (A20)

and the angle between S and L is changed from �i to �, where

cos� ¼
��
1þ uk

�
1� e2i

1þ 2ei cos c i þ e2i

�
1=2

�
cos ��k � ei sin c i sin ��k sin ��k

1þ ei cos c i

��
cos�i

� uk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2i

q
1þ ei cos c i

sin ��k cos ��k sin�i sin$

���
1þ uk

�
1� e2i

1þ 2ei cos c i þ e2i

�
1=2

�
�
cos ��k � ei sin c i sin ��k sin ��k

1þ ei cos c i

��
2 þ ð1� e2i Þ

�
uk sin ��k cos ��k

1þ ei cos c i

�
2
��1=2

: (A21)

When S is aligned with L before the SN (�i ¼ 0), the tilt
of the orbital plane equals the misalignment of the explod-
ing star’s spin (� ¼ �).

The above expressions greatly simplify for initially
circular binaries. For example, the SN will disrupt the
binary if

u2k þ 2uk cos ��k þ 1� 2�> 0 ðei ¼ 0Þ: (A22)

The equations simplify even further if S and L are initially
aligned (�i ¼ 0), in which case exactly polar kicks are
given by ��k ¼ �=2, ��k ¼ 0. Exactly polar kicks larger
than uk >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p
always unbind the binary, while for

isotropic kicks a bound tail of the distribution remains
provided uk < 1þ ffiffiffiffiffiffiffi

2�
p

. If kicks are confined to cones
within an angle �b of L, the minimum final semimajor
axis is

af;Min ¼ ai�

2�� cos 2�b
ðei ¼ 0; �i ¼ 0Þ; (A23)

exactly polar kicks (�b ¼ 0) can only increase the semi-
major axis (af;Min > a1), while isotropic kicks (�b ¼ 90�)
can reduce the semimajor axis by at most a factor of 2
(af;Min ¼ a1=2).

Exactly polar kicks also add a significant component of
angular momentum perpendicular to the initial orbital
plane, leading to a strong spin tilt:

cos� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2k

q ðei ¼ 0; �i ¼ 0Þ: (A24)

However, the maximum tilt that polar kicks can produce
while the binary remains bound is

� ¼ cos�1ð2�Þ�1=2: (A25)

By contrast, isotropic kicks can make the binary more
tightly bound, allowing greater latitude for kicks to pro-
duce bound systems with large spin misalignments.
In the limit that the kick velocity is small compared to

the orbital velocity (uk � 1), as should be the case for the
second SN after CE evolution has reduced the binary
separation, the tilt of the orbital plane is given by

� ¼ uk sin ��kj cos ��kj þOðu3=2k Þ ðei ¼ 0; �i ¼ 0Þ:
(A26)

6. Tidal alignment

As discussed in Sec. II B, tidal dissipation can circular-
ize the orbit of the binary and align the spin of the second-
ary with the orbital angular momentum between the two
SN explosions [30,94,95]. A detailed treatment of the
theory of tidal damping in massive stars is far beyond the
scope of this paper, and relatively little data exists to
calibrate these theoretical models if we wished to do so.
We therefore only consider the two extreme possibilities:
tides can either fully circularize the binary and align the
spin of the secondary, or they are completely inefficient.
We provide order-of-magnitude estimates for tidal pro-
cesses below; those interested in more details should con-
sult one of the several excellent published reviews of tidal
processes [73,95,96].
Tides should generally act on both members of the

binary. However tidal effects on the BH can safely be
ignored, given its small size. We therefore focus on tidal
effects on the secondary between the two SN (phase d of
the evolutionary scenario presented in Fig. 3). If the sec-
ondary is fully convective, as expected for the core of a BH
progenitor, convection causes internal damping on the

viscous time scale tV ’ ��1ð3MSR
2
S=LSÞ1=3, where MS,

RS, and LS are the mass, radius, and luminosity of the
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secondary, and � is a prefactor that depends on details of
the stellar structure [96]. The orbit evolves on the tidal-
friction time scale

ttid ’ ~k
tV
9

M2
S

ðMBH þMSÞMBH

�
a

RS

�
8

’ 4� 10�3 ~k�
1

Qð1þQÞ
�

MS

10M	

�
1=3

�
RS

10R	

�
2=3

�
�

LS

104L	

��1=3
�
a

RS

�
8
yrs; (A27)

whereMBH is the mass of the primary,Q ¼ MBH=MS is the

mass ratio at this stage of the evolution, and ~k� is a
constant of order unity depending on the internal structure
of the star [95]. Though the details depend on the initial
stellar spin, tidal friction should synchronize and align the
spin of the secondary with the now circular orbit on this
same short time scale [96].

The most notable feature of the tidal-friction time scale
ttid given by Eq. (A27) is its extremely steep dependence on
the ratio a=RS. While the secondary remains on the main
sequence with a radius given by Eq. (A1), this ratio is
typically 100 or greater for binaries that avoid merging
during CE evolution. This implies that tidal alignment
occurs on time scales much longer than the Hubble time
tH ’ 1010 yrs. However, once the secondary evolves to fill
its Roche lobe, its radius is given by Eq. (A6) and the ratio
a=RS becomes of order unity. This reduces the tidal-
friction time scale well below typical stellar-evolution
time scales of a few million years (hydrogen-core burning)
or even the briefer time

tHG ’ 2:7� 104
�

MC

10M	

�
2
�

RC

10R	

��1
�

LS

104L	

��1
yr

(A28)

that the secondary spends on the Hertzsprung gap after
exhausting the hydrogen in its core (i.e., the Kelvin-
Helmholtz time scale of the core). Since our fiducial sce-
narios require the secondary to fill its Roche lobe prior to
the second SN, one might expect tidal alignment to always
be efficient. Substantial uncertainties remain in the model
however. Stars with partially radiative envelopes may have
longer tidal-friction time scales [27,73], and the stellar core
may not efficiently couple to its envelope, as suggested
by recent Kepler observations of core-rotation rates [97].
Therefore, for completeness, we also explore the
‘‘extreme’’ alternative scenario of completely inefficient
tidal alignment.

Being dissipative in nature, tidal interactions decrease
the semimajor axis in addition to circularizing the orbit.
This change is small compared to that induced by CE
evolution, as discussed in the next section, and can there-
fore be neglected along with the orbital changes produced

by other phenomena (e.g., magnetic braking and mass
transfer).

7. Common-envelope evolution

If the semimajor axis a1 of the binary following the first
SN is greater than anoCE, as determined from the constraint

RLðanoCE;M00
Sf;M

0
BHÞ ¼ R00

G (A29)

with R00
G given by Eq. (A3), the secondary does not fill its

Roche lobe and no CE evolution occurs. For smaller values
of a1, we use conservation of energy to determine how
much the binary’s orbit shrinks during CE evolution. The
gravitational binding energy of the CE can be expressed as

Eb ¼ �GM00
SfðM00

Sf �M00
CÞ

	R
; (A30)

where M00
Sf is the mass of the secondary at the onset of CE

evolution, M00
Sf �M00

C is the mass lost by the secondary

during this evolution, R ¼ RLða1;M00
Sf;M

0
BHÞ is the

Roche-lobe radius of the secondary at the onset of CE
evolution, and 	 is a dimensionless parameter of order
unity that depends on the mass and structure of the
secondary, notably the location of the core-envelope

FIG. 11. The semimajor axis a1CE at the end of CE evolution
as a function of its initial value a1 in both the SMR and RMR
scenarios. If a1 > anoCE, as given implicitly by Eq. (A29), the
secondary fails to fill its Roche lobe, no CE evolution occurs, and
a1CE ¼ a1. If a1CE < amCE, as given implicitly by Eq. (A34), the
helium core of the secondary fills its Roche lobe prior to the end
of CE and the binary merges, failing to eventually form a BH
binary. The nonlinear relationship between pre- and post-CE
semimajor axes when a1 < anoCE results from the nontrivial
dependence of the CE efficiency parameter 	 on a1, as given
by Eq. (A31).
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boundary. Full stellar-evolution codes can be used to
calculate the appropriate value of 	 for our BH progenitors
[98–100]. We adopt an analytic fit to Fig. 3 of [12], which
summarizes the results of these calculations:

	 ¼ ae�bR=R	 þ c; (A31)

where a ¼ 0:358, b ¼ 7:19� 10�3, and c ¼ 0:05.
Conservation of energy during CE evolution implies

�GM0
BHM

00
Sf

2a1
þ Eb ¼ �GM0

BHM
00
C

2a1CE
; (A32)

solving for a1CE yields

a1CE ¼ a1
M00

C

M00
Sf

�
1þ 2

	

a1
R

M00
Sf �M00

C

M0
BH

��1
: (A33)

If a1CE is less than amCE, as determined from the constraint

RLðamCE;M
00
C;M

0
BHÞ ¼ R00

C (A34)

with R00
C given by Eq. (A4), the helium core of the second-

ary itself fills its Roche lobe before the end of CE evolu-
tion. This leads to a prompt merger, preventing the
eventual formation of a BH binary. Our final prescription
for a1CE as a function of a1 is shown in Fig. 11. CE
evolution is crucial to our model, shrinking the semimajor
axis by a factor �103 and thereby allowing the eventual
BH binary to merge in less than a Hubble time.
Motivated by hydrodynamical simulations [101,102]

and previous work on binary evolution, we neglect accre-

tion onto the primary BH during CE evolution. These

studies suggest that the BH accretes at substantially less

than the Bondi-Hoyle rate during the evolution, accumu-

lating & 0:1M	 in mass. Given this small change in mass,

we are justified in ignoring any resulting changes in the BH

spin [103]. As noted in Appendix A 1, we also neglect the

expansion of naked helium stars, and therefore explicitly

forbid a helium-star CE phase [78].
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