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Advanced LIGO detectors at Hanford and Livingston made two confirmed and one marginal detection of
binary black holes during their first observing run. The first event, GW150914, was from the merger of two
black holes much heavier that those whose masses have been estimated so far, indicating a formation
scenario that might differ from “ordinary” stellar evolution. One possibility is that these heavy black holes
resulted from a previous merger. When the progenitors of a black hole binary merger result from previous
mergers, they should (on average) merge later, be more massive, and have spin magnitudes clustered
around a dimensionless spin ∼0.7. Here we ask the following question: can gravitational-wave
observations determine whether merging black holes were born from the collapse of massive stars (“first
generation”), rather than being the end product of earlier mergers (“second generation”)? We construct
simple, observationally motivated populations of black hole binaries, and we use Bayesian model selection
to show that measurements of the masses, luminosity distance (or redshift), and “effective spin” of black
hole binaries can indeed distinguish between these different formation scenarios.

DOI: 10.1103/PhysRevD.95.124046

I. INTRODUCTION

The observation of gravitational waves (GWs) from
merging black hole (BH) binaries was a milestone in
physics and astronomy [1–3]. During their first observing
run (O1), the Advanced LIGO detectors detected two GW
events (GW150914 and GW151226) and a marginal
candidate LVT151012, which is also likely to be of
astrophysical origin. The second observing run (O2) is
currently ongoing, and Advanced Virgo is expected to join
the detector network soon. Dozens of BH mergers may be
detected by the end of O2 or in the third run (O3), allowing
for statistical studies of their populations.
These events can further our understanding of the

formation channels of binary BHs [4], because different
astrophysical scenarios predict different binary properties.
As the number of detections grows, a statistical analysis of
the observed binary parameters should eventually allow us
to identify or constrain the physical processes responsible
for the formation and merger of compact binaries.
Currently favored scenarios include stellar evolution of
field binaries [5] and the dynamical capture of BHs in
globular clusters [6]. Recent work showed that both field
formation [7–14] and cluster formation [15–18] are broadly
compatible with current Advanced LIGO observations [4].
It is quite likely that both field and cluster formation

channels are at work in nature. The first event, GW150914,

was the most surprising, because the merging BHs are
much heavier that those whose masses have been estimated
so far in x-ray binaries [19,20], indicating a formation
scenario that might differ from “ordinary” stellar evolution.
Alternative theoretical scenarios which could explain the
unexpected properties of GW150914 include formation via
hierarchical triples [21–23], a Population III origin for the
binary members [24–26], chemically homogeneous evolu-
tion in short-period binaries [27–29], and a primordial
origin for the merging BHs [30,31].
One possibility to explain the high mass of the merging

BHs in GW150914 is that these BHs did not form following
stellar collapse, but rather from previous BH mergers. Field
formation scenarios typically predict long delay times
between the formation and merger of a BH binary [9], so
repeated mergers seem unlikely. However, gravitational
encounters are more common in dense stellar environments,
and some scenarios suggest that repeated mergers may be
possible [32–34]. The most likely environment to host
multiple mergers are nuclear clusters [32], which present
larger escape speeds compared to globular and open clusters
and can, therefore, more easily retain merger remnants with
substantial recoils [35]. Stellar-mass BH binaries may also
form in AGN gaseous discs [36], where migration traps can
be invoked to assemblemultiple generations ofmergers [37].
Primordial BHs are also expected to merge very quickly
[30,31], so the possibility of repeatedmergers in this scenario
should not be excluded [38].
In this paper, we ask the following question: can GW

observations determine whether merging BHs such as those
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in GW150914 were born directly from the collapse of
massive stars (“first-generation” BHs, henceforth 1g) rather
than being the end product of previous mergers (“second-
generation” BHs, henceforth 2g)?
Roughly speaking, one can expect mergers to leave

several statistically observable imprints in 2g BHs, namely,
(i) 2g BHs should be more massive than BHs born from

stellar collapse;
(ii) quite independently of the distribution of spin

magnitudes following core collapse (which is highly
uncertain [39]), the spin magnitudes of 2g BHs
should cluster (on average) around the dimension-
less spin ∼0.7 resulting from the merger of non-
spinning BHs [40];

(iii) statistically, the merger of BH binaries including 2g
components should occur later (i.e., at smaller red-
shift or luminosity distance from GW detectors)
because of the delay time between BH formation and
merger.

In this paper, we make these arguments more quantita-
tive and rigorous by developing a simple but physically
motivated model to describe the bulk theoretical properties
of 1g and 2g binary BHmergers (Sec. II). Then we consider
a set of present and future GW detectors, and we simulate
observable distributions by selecting detectable binaries
and estimating the expected measurement errors on their
parameters (Sec. III). Finally, we set up a Bayesian model
selection framework (Sec. IV) to address what can be done
with current observations, and to quantify the capabilities
of future detectors to distinguish between different models
(Sec. V). We conclude by summarizing our results and
pointing out possible extensions (Sec. VI).

II. THEORETICAL DISTRIBUTIONS

Our goal in this section is to develop a simple prescrip-
tion to build populations of binary BHs. Our greatly
oversimplified model is not meant to capture the complex-
ity of binary evolution in an astrophysical setting, but just
the main features distinguishing 1g and 2g BHs.
As illustrated by the cartoon in Fig. 1, we construct three

theoretical distributions, labeled by “1gþ 1g,” “1gþ 2g,”
and “2gþ 2g”. In this context, “1g” means that one of the
binary components is a first-generation BH produced by
stellar collapse, whereas “2g” means that it is a second-
generation BH produced by a previous merger.

A. The 1g+ 1g population

Following the LIGO-Virgo Scientific Collaboration [3],
for the 1gþ 1g population, we adopt three different
prescriptions for the distribution of source-frame masses:

(i) Model “flat”: we assume uniformly distributed
source-frame masses m1 and m2 in the range
mi ∈ ½5 M⊙; 50 M⊙� (i ¼ 1, 2), where hereafter
m1 > m2.

(ii) Model “log”: we take the logarithm of the source-
frame masses to be uniformly distributed in
the same range, so that the probability distribution
pðm1; m2Þ ∝ 1=m1m2.

(iii) Model “power law”: we adopt a power-law distri-
bution with spectral index α ¼ −2.5 for the primary
BH (i.e., pðm1Þ ∝ mα), while the secondary mass is
uniformly distributed in m2 ∈ ½5 M⊙; m1�.

The upper limit of 50 M⊙ was chosen to be consistent with
current LIGO compact binary coalescence searches,
and it excludes “by construction” intermediate-mass BH
searches, discussed e.g. in [41]. Moreover, pair instability
and pulsation pair instability in massive helium cores
[42,43] may inhibit the formation of 1g BHs with masses
larger than ∼50 M⊙ [44]. If multiple mergers occur
through mass segregation in stellar clusters, the more
massive objects will tend to form binaries, thus increasing
the component masses of 1gþ 2g and 2gþ 2g popula-
tions. Our 50 M⊙ upper mass limit is therefore con-
servative, because physical mechanisms such as pair
instabilities and mass segregation would further separate
the mass distributions of populations involving multiple
mergers and make them more easily distinguishable.
Given the great uncertainties on the spin magnitude and

orientation of binary BHs [45–48], in all three cases we
assume the dimensionless spin magnitudes χ1;2 to be
uniformly distributed in [0, 1], and their directions to be
isotropically distributed.1 We are only interested in the
global statistical properties of the population. Since iso-
tropic spin distributions stay isotropic under precession and
gravitational radiation reaction [51,52], the assumption of
isotropy will hold also at the small separations relevant for
GW observations. For this reason there is no need to carry
out post-Newtonian evolutions of the spin distributions for
individual binaries of the kind discussed in [52–54].

B. The 2g+ 2g population

In order to construct the 2gþ 2g population, we use the
following procedure.We randomly extract two binaries from
a given 1gþ 1g population. For these binaries, we estimate
the finalmassMf and spin χf of themerger remnant using the
numerical relativity fitting formulas of Refs. [55,56]2 as

1Rodriguez et al. [48] argued that massive field binaries should
typically have aligned spins because “heavy” BHs receive small
supernova kicks that are unable to tilt the orbit [49,50], while the
spins of massive binaries produced in dense stellar environments
should be isotropically distributed. A more detailed investiga-
tion of the correlation between spin alignment and binary BH
formation requires astrophysical modeling that is beyond
the scope of this paper (see e.g. [45,50]).

2There are several alternative fitting formulas for the final
masses and spins [57–63]. The difference between different
prescriptions is smaller than measurement errors in GW obser-
vations, and therefore the choice of a particular fitting formula is
of no consequence for our present purpose.
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implemented in [54]. These masses and spins are used as
input for the second round of binary mergers.
To perform meaningful comparison with the 1gþ 1g

model described above, we again restrict our population to
binaries with component masses in the range ½5; 50�M⊙,
because this is the mass range targeted by LIGO compact
binary coalescence searches.

C. The 1g+ 2g population

The 1gþ 2g distribution is the obvious mixture of the
two: we draw one binary from the 1gþ 1g distribution,
merge it to obtain a 2g BH, and then consider the merger of
this 2g BH with a 1g BH.

D. Redshift distribution

The redshift distribution of BH mergers in the three
different populations should be different, because on average
2g mergers are expected to happen later than 1g mergers. We
can estimate the delay times between the formation and
merger of a BH binary using the quadrupole formula

da
dt

¼ −
64

5

q
ð1þ qÞ2

M3

a3
G3

c5
; ð1Þ

with the result

t ¼
Z

0

a

dt
da0

da0 ¼ 5

256

ð1þ qÞ2
q

a4

M3

c5

G3
: ð2Þ

If the binary initial separations a are drawn from a log-flat
distribution (i.e., dn=da ∝ 1=a), the distribution of the
merger times is also log-flat (cf. [26]):

dn
dt

¼ dn
da

da
dt

∝
1

a4
∝
1

t
: ð3Þ

The “lookback time” tL is given by [64]

tL ¼ 1

H0

Z
z

0

dz

ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

p ; ð4Þ

where we assume Ωk ¼ 0, ΩM ¼ 0.307, ΩΛ ¼ 0.693 and
H0 ¼ 67.7 km s−1 Mpc−1 [65]. From the lookback time we
can compute the time tLðz1Þ − tLðz2Þ necessary for the
Universe to evolve from redshift z1 to redshift z2.
We distribute the 1gþ 1g sources uniformly in comov-

ing volume with redshifts z < 2. For the 1gþ 2g popula-
tion, we assume that 2g BHs formed at some redshift ~z
drawn from the same distribution used for 1gþ 1g binaries.
We then extract a delay time tD from a flat distribution in
logðtDÞ in the range tD ∈ ½10−4 Gyrs; tLð~zÞ�. The lower
limit is very conservative, and it roughly corresponds to the
merger time for a 10 M⊙ BH binary evolving from an
initial orbital separation a ¼ 10R⊙. The redshift z of a 1gþ
2g merger is then given by the numerical solution of the
equation

tLð~zÞ − tLðzÞ ¼ tD: ð5Þ

FIG. 1. Cartoon sketch of the three possible scenarios for the merger of two BHs. First generation (1g) BHs resulting from stellar
collapse can form second generation (2g) BHs via mergers. Imprints of these formation channels are left in the statistical distribution of
masses, spins and redshift of the detected events.
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Finally, for the 2gþ 2g population we extract two values
~z1, ~z2 from the 1gþ 1g distribution. The redshift z of a
2gþ 2g merger follows again from a numerical solution of
Eq. (5), with the difference that now we set ~z ¼ minð~z1; ~z2Þ.
In Sec. V D we will discuss how time delay prescriptions

affect our results.

E. Measurable parameters

For concreteness and simplicity, we will characterize
each binary by its total mass M ¼ m1 þm2, mass ratio
q ¼ m2=m1 ≤ 1, redshift z and “effective spin” [66]

χeff ¼
1

M

�
S1

m1

þ S2

m2

�
· L̂: ð6Þ

The effective spin (a mass-weighted sum of the projection
of the spins Si ¼ m2

i χiŜi along the orbital angular momen-
tum L) is a constant of the motion in post-Newtonian
evolutions, at least at 2PN order [52,67]. It is also the
easiest spin parameter to measure [66,68].
Let us introduce a vector u whose components are the

observable variables to use in our statistical analysis, i.e.,

u ¼ fM; q; z; χeffg: ð7Þ

The components of this vector will be labeled by an index
j ¼ 1;…; J such that u1 ¼ M, u2 ¼ q, etcetera; a capital
Latin index J will denote the dimensionality of the vector
u, i.e., the number of observables considered in the
analysis. Each binary in our catalog is characterized by
a specific set of observable properties ūðiÞ, where the
superscript index ði ¼ 1;…; IÞ labels entries in our syn-
thetic catalog.
The theoretical distributions of measurable source

parameters u ¼ fM; q; z; χeffg for 1gþ 1g, 1gþ 2g and
2gþ 2g events are compared in Fig. 2. Each row corre-
sponds to one of the three mass distributions described in
Sec. II A.
The mass distributions have some noteworthy features.

First of all, and quite obviously, 2g BHs have higher
component masses. Therefore the total mass is higher when
2g BHs are present (for any given assumption on the mass
distribution), and this effect is most notable for the 2gþ 2g
distributions. Mergers also tend to increase the number of
comparable-mass binaries, in part because of the fixed mass
range for the component masses (mi ∈ ½5; 50�M⊙). For the
“power law” mass function, the mass ratio of the 1gþ 2g
population peaks at q ¼ 0.5. This is because the mass
distribution of the primary BH is strongly peaked at the low

FIG. 2. Theoretical distribution of the observable parameters u ¼ fM;q; z; χeffg for 1gþ 1g (blue), 1gþ 2g (green) and 2gþ 2g (red)
populations, assuming the “flat” (top), “log” (middle), and “power law” (bottom) mass distributions.
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end of the range (i.e., at ∼5 M⊙), so many 2g binaries are
nearly equal mass, with component masses close to 5 M⊙.
Redshift distributions also follow the expected trend: most

1gþ 1g events occur at large redshift, whereas mergers
involving one or two 2g BHs occur (on average) at smaller
redshift, because there is a time delay between the formation
of 1g BHs via core collapse and their subsequent merger.
The most striking differences are found in the distribu-

tions of individual spins. To better illustrate this point, in
Fig. 3, we show the distribution of the individual BH spins
ðχ1; χ2Þ, as well as the distribution of the spin of the
remnant χf . As discussed in [40], from a statistical point of
view the effect of mergers is to “cluster” BH spins around
χf ∼ 0.7, quite independently of the progenitor parameters.
While the 1gþ 1g spin magnitudes are uniform in the
range [0, 1] by construction, spin distributions become
peaked at ∼0.7 when 2g BHs are involved. This clustering
is evident in the distribution of primary spins χ1 for the
1gþ 2g and 2gþ 2g cases, and in the distribution of
secondary spins χ2 for the 2gþ 2g case. For the 1gþ 2g

population, the peak at χ2 ∼ 0.7 is less pronounced. This is
because the lower-mass BH is most likely 1g, and the spin
distribution of 1g BHs is by construction uniform in [0, 1].
Unfortunately low-SNR GW observations of merger

events are not very sensitive to χ1 and χ2, but rather to
the effective spin χeff defined in Eq. (6). The right column
of Fig. 2 shows that the effect of mergers is considerably
smeared out in χeff , but more binaries with χeff ∼ 0 are
expected if all sources are 1g BHs. Measurements of χeff
may still be sufficient to distinguish between different
populations, especially when comparing 1gþ 1g against
either 1gþ 2g or 2gþ 2g. Discriminating between BH
progenitors should be considerably easier with future
detectors, when high-SNR events will allow for more
precise measurements of χ1, χ2 and χf [69–71].

F. Single detections

In the rest of this paper we will study how statistical
inference from several detections can be used to constrain

FIG. 3. Spin magnitude distributions for primary (χ1), secondary (χ2), and postmerger (χf ) BH spins in each of the various models used
in this paper. On average, mergers tend to produce BH spins clustered around ∼0.7, quite independently of the progenitor parameters
(cf. Fig. 3 and the left panels in Figs. 4 and 5 of Ref. [40]).
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the underlying BH population. However, it is possible that
single detections with specific parameters can already
provide smoking gun evidence for the occurrence of
multiple mergers.
One possibility, as mentioned in Sec. II A, is that pair

instabilities may prevent the formation of 1g BHs with
masses sensibly above ∼50 M⊙ [42–44]. If this is indeed
the case, a single detection of a merging BH binary where
one of the components has mass larger than 50 M⊙ would
indicate the occurrence of multiple mergers. This argument,
however, relies on two crucial assumptions: (i) that 1g BHs
always form from stellar collapse, while more exotic
formation channels (e.g., involving primordial BHs) may
produce massive BHs without invoking multiple mergers;
(ii) that pair instabilities in core collapse do indeed prevent
the formation of massive BHs. Pair instabilities, pair
instability pulsations and the exact value of the maximum
BH mass that can be produced via core collapse are all
topics of current research [44].
Another possibility involves accurate measurements of

the component spins through the detection of a single
nearby, non face-on binary merger with comparable, low
masses and many precession cycles in the LIGO band.
Unfortunately, parameter estimation studies suggest that
current-generation detectors could allow dimensionless
spin measurement errors ∼0.3 in best-case scenarios
[72]. Errors of this magnitude are comparable to the width
of the peaks in the spins distributions shown in Fig. 3 and
there is significant uncertainty in the spin magnitude
distribution of astrophysical BHs, so it seems unlikely that
single spin measurements may allow us to tell apart 1g BHs
from 2g BHs, at least in the near future.

III. OBSERVABLE DISTRIBUTIONS

From the theoretical distributions described in Sec. II, we
construct observable distributions by (i) selecting detect-
able binaries according to a detection statistic, such as a
threshold in the signal-to-noise ratio (SNR), and (ii) folding
in measurement errors.

A. Detection probability

We first assign a detection probability κðiÞ < 1 to each
binary in our catalogs. This number takes into account the
detector sensitivity and antenna pattern, as well as the
(random) sky position of the source. We compute κðiÞ

following the procedure outlined in Ref. [12], where an
astrophysical catalog of binaries produced using the
STARTRACK population synthesis code was filtered to
produce similar catalogs of observable binaries for a
specific set of GW detectors. This procedure is briefly
reviewed below.
Each binary produces a GW strain hðtÞ and an expect-

ation value for the SNR

ρ2 ¼ 4

Z
∞

0

j ~hðfÞj
SnðfÞ

df; ð8Þ

where SnðfÞ is the noise power spectral density of the
detector and ~hðfÞ is the Fourier transform of the strain hðtÞ.
The strain is computed using the IMRPhenomC waveform
model [73]. In this paper we consider noise power spectral
densities for the first AdLIGO observing run (O1), the
Advanced LIGO design sensitivity [74], Aþ (Advanced
LIGO with squeezing) and Voyager (the most advanced
instrument that can be hosted in facilities similar to
LIGO) [75].
For any binary in our catalog we can compute ρopt, i.e.,

the single-detector SNR for a binary that is optimally
located and oriented in the sky. We then select those
binaries in the catalog that are above a detection threshold
ρopt ≥ ρthr ¼ 8. This criterion has often been used as a
simple, reasonable proxy for a more realistic calculation of
GW detection rates in multi-detector networks [12,76].
Then we compute the detection probability as

κðiÞ ¼ PðwðiÞÞ; ð9Þ

where the function PðwðiÞÞ is the cumulative distribution

function for the projection parameter wðiÞ ≡ ρthr=ρ
ðiÞ
opt. This

cumulative distribution function takes into account the
geometrical “peanut factor” that characterizes the sensi-
tivity of the detector to the source sky location, inclination
and polarization (see [12] and references therein). Roughly
speaking, wðiÞ ¼ 1means that the source is in a “blind spot”
of the detector, while wðiÞ ¼ 0 in the high-SNR limit. A
tabulated version of PðwðiÞÞ is publicly available.3 We use
standard spline interpolation to compute this function for
generic values of wðiÞ.

B. Measurement errors

Ideally we should compute measurement errors for each
binary in the catalog using Markov-Chain Monte Carlo
methods, and use the obtained posteriors to perform model
selection. This is computationally expensive, and unnec-
essary from the point of view of our proof-of-principle
analysis. For our present purpose we adopt a much simpler
prescription, described below.
We build on a study by Ghosh et al. [77], who computed

BH binary measurement errors using the LALINFERENCE

code [78] (see also [79–82] for more work on the subject).
In particular, we use their results for aligned-spin BH
binaries detected by a network of 3 advanced detectors.
Their data set provides 1σ errors on several quantities,
including the total mass M, mass ratio q and redshift z.
These are shown in blue in Fig. 4.

3www.phy.olemiss.edu/∼berti/research
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The data set is too sparse to perform an efficient binning
and interpolation in three dimensions (M, q, z). In order to
partially account for the expected degeneracies (e.g., close
binaries will generally have smaller errors on the masses),
we adopt the following procedure. Consider a binary in our
catalog with parameters (M̄, q̄, z̄). To estimate measure-
ment errors on the parameters of this binary, we consider
the 5 “closest” binaries in the data set of Ref. [77], and
compute the average and standard deviation of their
measurement errors. Here “closest” is defined in the
following sense: given the maximum and minimum value
of each of the three parameters (M, q, z), we rescale their
actual values so that these parameters are distributed in a
cube of size one; then we compute the Euclidean distance
between binaries in this cube. The average and standard
deviation from the 5 closest binaries are then used to extract
the measurement errors σM̄, σq̄, σz̄ from a normal distri-
bution. The red dots and histograms in Fig. 4 show the
measurement errors obtained from this resampling. The
obtained distributions look remarkably close to the original
data. Errors on the redshift are slightly overestimated, so (if
anything) our resampling procedure seems to yield
conservative predictions. Estimates for the errors on χeff
were not computed in Ref. [77], so we assume σχeff ¼ 0.1

for all binaries measured by LIGO at design sensitivity. This
rough estimate is quite conservative, and it is consistent with
measurement errors in the first GW detections [3].
Ref. [77] computed parameter estimation errors for the

LIGO-Virgo network at design sensitivity. Fisher matrix
arguments [83] suggest that the capabilities of other
detectors can be estimated rescaling the errors on the total
mass, mass ratio, luminosity distance and χeff by the ratio of
SNRs, i.e.,

σDetector ¼ σLIGO
ρLIGO
ρDetector

: ð10Þ

Luminosity distance and redshift are related by

DL ¼ 1þ z
H0

Z
z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þΩΛ

p ; ð11Þ

(where we use units such that c ¼ 1), so that

dDL

dz
¼ DL

1þ z
þ 1þ z

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

p : ð12Þ

The error on the redshift σz is related to the error on DL by

FIG. 4. Blue: relative errors on the total mass M (left), mass ratio q (middle) and redshift z (right) as computed in Ref. [77]. Red:
resampling of these data, obtained as described in Sec. III B. The top panels show scatter plots of the relative error on each parameter as a
function of the value of that parameter for the source. The bottom panels show the same information as a histogram.
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�
σz
DL

dDL

dz

�
2

¼
�
σDL

DL

�
2

þ
�
σH0

H0

�
2

ð13Þ

where we assumed σΩΛ
≃ 0 (see e.g., [84,85]). Given recent

discrepancies in the determination of H0, we assume
σH0

=H0 ¼ 0.1 [86–88].

C. Binning

Recall that each binary is characterized by a vector of
observable parameters u ¼ fu1;…; uJg. If (for simplicity)
we momentarily neglect measurement errors, the observable
distribution is just a sum of Dirac deltas centered at ūðiÞ, and
each delta is weighted by the detection probability κðiÞ:

~rðu; λÞ ¼
P

I
i¼1 κ

ðiÞ QJ
j¼1 δðuj − ūðiÞj ÞP
I
i¼1 κ

ðiÞ ; ð14Þ

where λ labels the model (cf. Sec. IV) and the denominator
ensures normalization. Using the procedure described in
Sec. III B, we can obtain estimates of the 1σ errors on the
measurement of each parameter. The ith binary in the catalog
now has estimated parameters ūðiÞ with errors σðiÞ ¼ σðūðiÞÞ.
Assuming that errors are normally distributed and neglecting
degeneracies, we can substitute the Dirac deltas of Eq. (14)
with Gaussian distributions:

~rðu; λÞ ¼
P

I
i¼1 κ

ðiÞ QJ
j¼1N ðuj; ūðiÞj ; σðiÞÞP
I
i¼1 κ

ðiÞ ; ð15Þ

where

N ðuj; ūðiÞj ; σðiÞÞ ¼ 1
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2π

p exp

�
−
uj − ūðiÞj
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Next, we need to bin the distributions ~rðu; λÞ. In each
direction j, we construct bins kj with extrema bkj and Bkj ,
i.e., uj ∈ ðbkj ; BkjÞ. The function ~rðu; λÞ in each multi-
dimensional bin fk1;…; kJg is given by the integral

~rk1;…;kJðλÞ ¼
Z

Bk1

bk1

du1…
Z

BkJ

bkJ

duJ ~rðu; λÞ

¼
P

I
i¼1 κ

ðiÞ QJ
j¼1

R Bkj

bkj
N ðuj; ūðiÞj ; σðiÞÞdujP

I
i¼1 κ

ðiÞ :

ð17Þ

In practice, we spread each source over multiple bins
because of measurement errors (see [89,90] for a similar
approach in the LISA context). Eq. (17) is correctly
normalized to 1 only if the bins kj span the entire support
of ~rðu; λÞ. When substituting Dirac deltas with Gaussian
distributions we are adding support in the whole range

½−∞;þ∞� for each of the uj’s, and inevitably we end up
using a finite range. For simplicity, we just renormalize
~rk1;…;kJðλÞ such that

X
k1

…
X
kJ

~rk1;…;kJ ¼ 1: ð18Þ

From now on we will identify the bins by a multi-index
variable k ¼ fk1;…; kJg, so (for example) we can writeP

kfk ≡P
k1…

P
kJfk1;…;kJ for any binned quantity f.

D. Putting the pieces together

Examples of observable distributions are given in Fig. 5
for Advanced LIGO at design sensitivity (top) and Voyager
(bottom) assuming the “flat” mass function. In each panel,
dashed lines show the theoretical distribution for the
1gþ 1g, 1gþ 2g and 2gþ 2g populations, as already
presented in Fig. 2. The histograms show the observable
population, i.e., the distribution of detectable binaries,
where the measured parameters take into account also
measurement errors. Some trends are visible.
Let us first focus on the top row, which refers to

observations with Advanced LIGO at design sensitivity.
It is clear that binaries with larger total mass and lower
redshift produce stronger signals, and therefore they are
more likely to be detected. In particular, Advanced LIGO
can hardly detect any binaries at redshift z≳ 1. The
distribution of χeff also shows a mild excess of observable
events with χeff ≃ 0 for the 1gþ 1g population with respect
to the 1gþ 2g and 2gþ 2g populations, suggesting that
measurements of χeff can indeed help to discriminate
between populations.
The bottom row of Fig. 5 shows that the increased

sensitivity of a Voyager-like detector has two main effects:
it makes observable distributions in each of the parameters
much closer to the corresponding theoretical distributions,
and (quite importantly) it extends the reach of the detector
to high-z binaries. We obviously expect that more sensitive
detectors will allow better discrimination between the
different populations.
The 2gþ 2g population presents a peak at M ∼ 80 M⊙

and q ∼ 1. Equal-mass binaries of ∼40 M⊙ þ 40 M⊙ can
only be detected by Advanced LIGO at design sensitivity if
they are located at very small redshift (cf. e.g., [4]). This
explains the significant drop in the number of observed
events as q → 1. The effect is strongly mitigated in
Voyager, because the instrument is more sensitive at low
frequency.

IV. STATISTICAL TOOLS

In this section, we briefly introduce statistical tools to
perform Bayesian model selection. We label models by a
parameter λ that can be either discrete (if we want to
distinguish two competing models A and B) or continuous
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(if want to measure the “mixing fraction” between com-
peting models that best describes the data).

A. Number of observations

Our goal is to infer which model λ best describes a set of
data. As explained above, our binned distributions ~rkðλÞ are
normalized. To compare our models with the data we need
an extra parameter NðλÞ, the total number of observations
predicted by model λ. We write

rkðλÞ ¼ NðλÞ~rkðλÞ: ð19Þ

As for the individual binary parameters, we introduce an
array d whose elements are the single observations dðiÞ,
which in turn are J-dimensional arrays. We bin the array d
on the same grid used for the catalogs to obtain binned
values dk.
The likelihood of obtaining a data set dk from model λ is

given by

pðdjλÞ ¼
Y
k

ðrkðλÞÞdke−rkðλÞ
dk!

: ð20Þ

In our analysis the total number of observation does not
contain information about the given model (this may not be

the case for more realistic scenarios, where different models
predict different merging rates: see e.g., [91]). We therefore
marginalize the likelihood over NðλÞ. Plugging Eq. (19)
into Eq. (20) one obtains [90]

pðdjλÞ ¼
�Y

k

ð~rkðλÞÞdke−~rkðλÞ
dk!

��
NðλÞ

P
k
dke−NðλÞ

�
; ð21Þ

and consequently the marginalized likelihood is

~pðdjλÞ ¼
�Y

k

ð~rkðλÞÞdke−~rkðλÞ
dk!

�X
N

�
N
P

k
dke−N

�
: ð22Þ

Note that the term
P

NðN
P

k
nke−NÞ is a multiplicative

coefficient that only depends on the data d, and not on the
model λ. This term can be ignored because, as we will see
below, we are only interested in likelihood ratios, not in the
likelihoods themselves.
From now on, to simplify notation, we will drop the tilde

on p and assume that likelihoods are always marginalized
over the total number of events.

FIG. 5. Observable distributions for Advanced LIGO at design sensitivity (top) and Voyager (bottom). All plots refer to the “flat”mass
distribution. In each panel, dashed lines show the theoretical distribution for the 1gþ 1g (blue), 1gþ 2g (green) and 2gþ 2g (red)
populations; these are the same curves shown in Fig. 2. Following the same color scheme, solid shaded histograms show the “observed”
population, consisting of events that pass the SNR threshold and that include measurement errors.
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B. Model selection

Let us first look at model comparison between pure
models, so that λ is a discrete variable. Given models λ ¼ A
and λ ¼ B, their odds ratio is defined as

OAB ¼ pðdjAÞπðAÞ
pðdjBÞπðBÞ ; ð23Þ

where π is the prior probability assigned to each of the two
models. The simplest assumption on the priors is
πðAÞ ¼ πðBÞ ¼ 1=2, such that the odds ratio reduces to
the likelihood ratio. If OAB ≫ 1 (OAB ≪ 1) the data favors
model A (B). The probability of model A is

pA ¼ OAB

1þOAB
¼ pðdjAÞ

pðdjAÞ þ pðdjBÞ ; ð24Þ

and the probability of model B is pB ¼ 1 − pA. Sometimes
σ-levels are used to quantify the significance of a
discrete model comparison, in analogy with Gaussian
measurements. The expression relating the odds ratio O
and σ is

O ¼ 1

1 − 2erfðσÞ : ð25Þ

We can also assume that the data are represented by a
mixture of two or more models, and assess whether the data
themselves are informative about the underlying model
mixing fractions. Each pure model m enters the mixed
model with a weight fm, such that

P
fm ¼ 1. Model

comparison is equivalent to Bayesian inference on the
parameters λ ¼ ff1; f2;…g, as described by the posterior
distribution

pðλjdÞ ¼ pðdjλÞπðλÞR
pðdjλÞπðλÞdλ : ð26Þ

As before, πðλÞ is the prior assigned to each mixed model.
We choose πðλÞ to be uniformly distributed on the surface

P
fm ¼ 1.4 From a computational point of view, we first

draw values of λ from the uniform prior, and then we
produce a statistical sample distributed according to pðdjλÞ
using a standard Monte Carlo hit-or-miss algorithm.

V. RESULTS

So far we have outlined a procedure to build a set of
“synthetic” GW observations of merging BH binaries
(along with their associated errors) from simple astrophysi-
cal considerations. We now wish to understand whether
these observations can be used to distinguish between
different populations using Bayesian model selection (see
e.g. [89–93] for previous studies of this problem in different
contexts).

A. LIGO O1 data

We first apply our model comparison tool to the three
LIGO O1 observations. The data set d consists of the
maximum likelihood values provided in Ref. [3]:

(i) GW150914:
M¼ 65.3M⊙, q¼ 0.81, z ¼ 0.090, χeff ¼ −0.06.

(ii) GW151226:
M ¼ 21.8 M⊙, q ¼ 0.52, z ¼ 0.094, χeff ¼ 0.21.

(iii) LVT151012:
M ¼ 37 M⊙, q ¼ 0.57, z ¼ 0.201, χeff ¼ 0.03.

As stressed above, measurements errors are included in this
analysis at the level of the catalogs, by spreading each source
over multiple bins. A more in-depth study should make
use of the posterior distribution of the observed parameters
obtained through dedicated parameter-estimation pipelines.
Performing model selection as described in the previous

sections and using the O1 sensitivity curve, we obtain the
odds ratio reported in Table I. We also repeat the same
exercise assuming the anticipated noise power spectral
density of Advanced LIGO at design sensitivity. This

TABLE I. Odds ratios from the three O1 observations (GW150914, GW151226 and LVT151012) and from
hypothetical observations of the same events at Advanced LIGO design sensitivity. Odds ratios in parentheses were
computed omitting all redshift information, i.e., considering the 3-dimensional vector of observables
u ¼ fM; q; χeffg.

1gþ 1g vs. 2gþ 2g 1gþ 1g vs. 1gþ 2g 1gþ 2g vs. 2gþ 2g

O1 LIGO flat 12.7 (15.8) 2.0 (2.0) 6.4 (7.6)
log 3.3 (3.5) 0.9 (0.9) 3.5 (3.8)

power law 0.7 (1.0) 1.3 (1.6) 0.6 (0.6)
Ad. LIGO (design) flat 30.2 (37.8) 1.4 (3.7) 21.9 (10.11)

log 4.3 (7.0) 0.6 (1.4) 6.9 (5.1)
power law 0.6 (1.7) 1.0 (3.8) 0.6 (0.5)

4For instance, for a mixture of three models λ ¼ ff1; f2; f3g
the equation

P
fm ¼ 1 describes a 2-dimensional surface

S of area
ffiffiffi
3

p
=2. The uniform prior on S is given by

πðf1; f2; f3Þ ¼ 2=
ffiffiffi
3

p
, so that ∬SπdS ¼ 1.
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basically answers the question: “what if the O1 observa-
tions had been carried out with a better detector?”
As shown in Table I, most of the odds ratios are in the

range 0.3≲O≲ 3, corresponding to 1σ. This simply
indicates that three observations are not enough to perform
a meaningful statistical analysis. However, some of the
comparisons return odds ratios O ∼ 10, approaching 2σ
evidence. When this happens (i) the 1gþ 1g population
seems to be preferred, and (ii) the odds become higher for a
more sensitive detector like Voyager. In these cases the
algorithm seems to capture real statistical differences
between the catalogs, that become more pronounced when
more binaries are detected and measurement errors get
smaller.
As a note of caution, we stress here that such discrete

model comparison analyses can only tell us which of two
competing models better describes a given data set, not
which model is correct. For instance, our results in Table I
show some dependence on the underlying mass distribu-
tion. This could be due either to the low dimensionality of
the statistical sample (cf. Sec. V B below), or to the fact that
none of the three mass distributions faithfully describes the
observations. To bracket uncertainties in the time delay
prescription (cf. Sec. II D), Table I also lists odds ratios

computed omitting all redshift information. This calcula-
tion shows that assumptions on the time delays do not
significantly affect our conclusions, given the limited
statistics currently available. It will be straightforward to
update our analysis with higher statistics and better
motivated BH binary formation models when more data
become available.

B. Simulated data: Pure models

The results of Sec. VA show, not surprisingly, that more
than three observations are needed to discriminate between
different models. In order to estimate the capabilities of
larger data sets and more sensitive detectors, here we
perform model selection on simulated observations. Our
main goal is to estimate how many observations are needed
to distinguish a pair of models with a given confidence
level.
Given a model λtrue, we extract the number of events per

bin dk assuming a Poisson distribution

pðdkÞ ¼
rkðλtrueÞdke−rkðλtrueÞ

dk!
: ð27Þ

FIG. 6. Number of events that are necessary to distinguish populations for Advanced LIGO at design sensitivity (top) and Voyager
(bottom). The median odds ratio (thick lines) and 90% confidence intervals to identify each model as true are plotted as functions of the
number of observations Nobs.

ARE MERGING BLACK HOLES BORN FROM STELLAR … PHYSICAL REVIEW D 95, 124046 (2017)

124046-11



Here the total number of observation Nobs ¼ NðλtrueÞ is a
free parameter that we need to specify. We expect model
comparison to be easier/harder if more/less observations are
available. This statement is made more quantitative in
Fig. 6 and Table II.
Figure 6 shows the odds ratio distribution obtained from

several realization of Nobs observations. For each pair of
models we plot OAB (when A is the true model) and OBA
(when B is the true model), thus addressing how easy (or
hard) it is to identify any of the models if it is correct. Thick
lines mark the median odds, while the shaded areas
encompass 90% of the realizations (i.e., they cover the
range between the 5th and the 95th percentiles).
The odds ratio O increases roughly exponentially with

the number of observations Nobs, so our ability to distin-
guish between different models should rapidly improve in
the coming years. Table II shows that in 5% of the
realizations, as few as ∼20 detections are enough to
discriminate the 1gþ 1g population from the 2gþ 2g
population at 5σ with Advanced LIGO at design sensitivity,
while Nobs ∼ 80 observations are necessary to achieve 5σ
confidence in 95% of the realizations.
Model selection involving the 1gþ 2g population typ-

ically requires a larger number of observations. This is clear
when comparing the left panels of Fig. 6 to the middle and
right panels. In both the (1gþ 1g vs. 1gþ 2g) and
(1gþ 2g vs. 2gþ 2g) comparisons the odds ratio grows
(roughly) exponentially, but with smaller slope compared
to the (1gþ 1g vs. 2gþ 2g) case. However, the slope (and
the odds ratio O) is larger when 1gþ 2g is the true model:
it is slightly easier to mistake a 1gþ 1g (or 2gþ 2g)
population for a 1gþ 2g population than vice versa.
Model comparison is easier with more sensitive detec-

tors. For example, distinguishing 1gþ 1g from 2gþ 2g at
5σ in 90% of the realizations requires only ∼30 Voyager
observations (instead of ∼80 for Advanced LIGO at design
sensitivity).

In Sec. VA, where only three observations were con-
sidered, the results were greatly dependent on the assumed
mass distribution. Table II shows that this dependence
becomes much weaker when more observations are avail-
able and/or the instrumental sensitivity improves. This is
largely due to the discriminating power of the redshift
distribution of the events, which becomes more relevant
when high-z binaries become detectable (cf. Fig. 5).

C. Simulated data: Mixed models

Let us now turn to a more ambitious task. As anticipated
in Sec. IV B, we now consider a population of binaries
consisting of a mixture of the three pure models 1gþ 1g,
1gþ 2g and 2gþ 2g. The task is to measure their mixing
fraction, i.e., to determine how many binaries belong to
each of the three pure populations. This is computationally
expensive, as it requires many evaluations of the likelihood
defined in Eq. (26) through Monte Carlo methods.
As a proof of principle, in Fig. 7, we show results for a

specific choice of the mixing parameters. Simulated obser-
vations are drawn from a model5 where 60% of the binaries
are 1gþ 1g, 10% are 2gþ 2g, and 30% are 1gþ 2g:

λtrue ≡ ff1gþ1g; f1gþ2g; f2gþ2gg ¼ f0.6; 0.1; 0.3g: ð28Þ

For concreteness, we assume the “flat” mass prescription
and consider several realizations of Nobs ¼ 100 observa-
tions performed with the Advanced LIGO network at
design sensitivity. Each of the triangles in Fig. 7 shows
the surface f1gþ1g þ f1gþ2g þ f2gþ2g ¼ 1. The color cod-
ing corresponds to the values of the posterior pðλjdÞ. Pure

TABLE II. Number of observations needed to distinguish populations at 5σ with 5%, 50% and 95% probability. The “true” model is
marked by a T in the column header. For instance, in column 1g1gT=2g2g we compare models 1gþ 1g and 2gþ 2g when observations
are drawn from the 1gþ 1g catalog.

1g1gT=2g2g 2g2gT=1g1g 1g1gT=1g2g 1g2gT=1g1g 1g2gT=2g2g 2g2gT=1g2g

Nobs at 5σ 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

LIGO O1 flat 27 53 100 31 57 103 40 76 143 44 80 146 50 105 204 77 133 233
log 27 52 94 25 50 94 30 58 106 29 56 106 42 86 165 59 104 182

power law 14 29 57 19 35 64 7 17 34 13 23 41 31 61 114 35 64 117
Ad. LIGO flat 23 46 86 26 50 91 45 82 146 37 73 139 37 83 170 73 122 206

log 20 41 79 24 45 83 41 73 132 33 66 122 26 56 112 48 81 138
power law 20 39 72 18 37 70 10 21 40 11 22 41 15 31 61 20 37 67

Aþ flat 18 39 75 22 43 79 46 83 149 34 69 136 34 80 165 75 123 211
log 16 34 65 19 38 69 41 73 131 30 62 120 22 51 107 50 81 136

power law 17 35 67 17 34 65 10 22 41 10 21 40 12 27 52 20 35 61
Voyager flat 6 15 33 10 21 39 34 69 128 27 62 122 13 36 80 36 61 102

log 4 11 25 8 17 32 25 53 102 20 51 101 8 23 51 26 44 73
power law 5 13 26 7 16 31 9 19 37 7 18 36 4 11 24 12 21 35

5Our injected fraction of 2g BHs was chosen only for
illustrative purposes. It is higher than current estimates of merger
rates in nuclear clusters, which are favorable environments for
multiple merger events [32].
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models lie on the corners of this “Dalitz plot,”while the star
marks the injected fraction.
As expected, measuring mixing fractions is sensibly

harder than performing discrete model comparison, and it is
going to require many more observations (a similar result
was obtained in Ref. [90]). The injected fractions are
recovered only in some of the realizations, suggesting that
these data points are probably not enough to confidently
perform the measurement.
In any case, we can note some trends. Most (but not all)

of the realizations assign a rather low probability to the
region where f2gþ2g ∼ 0. Whenever a few 2gþ 2g events
are present, their properties are sensibly different from
those involving 1g BHs, and therefore the 2gþ 2g pop-
ulation can be identified relatively easily. Although we may
be unlucky and estimate mixing fractions which are
sensibly different from their true values, our model com-
parison algorithm does return a statistically consistent
result. Out of 1000 realizations, we find that the correct
mixing fraction is identified within the 50% (90%)

confidence interval in 57% (25%) of the cases. The
relatively small number of observations is likely to be
one of the main reasons for this relatively pessimistic result:
if we assume Nobs ¼ 1000, the correct mixing fraction is
identified within the 50% (90%) confidence interval in 90%
(77%) of the cases.
In conclusion, this preliminary study shows that meas-

uring mixing fractions will be challenging in the near
future. Estimating mixing fractions with high con-
fidence may require several hundreds (if not thousands)
of observations.

D. Caveats on mass functions and time delays

We have shown that, given a sufficient number of
detected events, it is possible to distinguish a given 1gþ
1g BH population from a variant of the same population
where repeated mergers occur. Here we discuss how
uncertainties in the assumed 1gþ 1g mass distribution
and in time delay prescriptions may bias our conclusions.

FIG. 7. Posterior distribution of the mixing fraction between the 1gþ 1g, 2gþ 2g and 1gþ 2g pure models. Each triangle shows the
model space defined by

P
f ¼ 1 for a given realization of Nobs ¼ 100 observations. The corners correspond to the three pure models.

The black star marks the “true” injected value of the mixing fractions. Each of the injected mixing fractions is constant along one of the
dashed lines. The log-likelihood is shown in the color map: lighter regions are more likely than darker regions. Solid black contours
mark the 50% and 90% confidence regions.
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In Table III, we perform pure model comparisons
between BH binary populations that differ in both merger
generation (1gþ 1g, 1gþ 2g, 2gþ 2g) scenario and in the
assumed mass distribution. As shown in Sec. V B, the
true distribution is correctly identified whenever it is
among those tested. When the injected population is
not among those being compared, differences in the
assumed mass distribution can sometimes dominate over
differences induced by the occurrence of subsequent
mergers. For instance, if injected 2gþ 2g observations
assuming the “flat” mass distributions are examined
assuming a “power law” mass model, one would erro-
neously conclude that the observed population is 1gþ 1g,
rather than 2gþ 2g.
However, this should not be a problem in practice,

because the mass distribution should soon be well con-
strained by observations. Realistic astrophysical scenarios
typically predict a small fraction of multiple mergers, i.e., a
small fraction of 2g events. Even remaining theory-agnostic,
this anticipation is already (although inconclusively) sup-
ported by the data. Our Table I suggests that 1gþ 1g
mergers may already be favored over 2g scenarios.
So, in practice, there are theoretical and (hopefully soon)
experimental reason to assume that the majority of detected
events have a 1gþ 1g origin. In this very plausible scenario,

the model selection procedure can be “bootstrapped” as
follows:

(i) The mass distribution is inferred from a large
enough number of detections, assuming that most
events are 1gþ 1g;

(ii) This observationally inferred mass distribution can
be used to replace our “toy” mass distributions (flat,
log or power law) for 1gþ 1g BHs, and the 2g
distributions can be constructed through hierarchical
mergers as described earlier;

(iii) We can now look at all measurable properties of the
population to determine whether some (presumably
small) fraction of events has a 2g origin.

Table III shows that step (i) above does not present
problems. Indeed, according to Table III, while it is indeed
possible to wrongly rule in favor of 1gþ 1g BHs given
2gþ 2g injections, the converse is unlikely: if model
selection favors 2gþ 2g BHs, the injected data never belong
to a 1gþ 1g population with a different mass spectrum.
To quantify the importance of time delays, we repeated

all the comparisons shown in Table II excluding redshift
information, i.e., taking u ¼ fM; q; χeffg as our vector of
observable quantities. We find that the correct population is
always identified. The odds still grow exponentially with
the number of observations, although with somewhat
shallower slopes. This is expected, because the statistical

TABLE III. Model comparison tests between populations characterized by different merger generations and mass
distributions using the Advanced LIGO sensitivity curve. For each injected distribution and model comparison we
report the preferred population in the limit where Nobs → ∞ (in practice we use Nobs ¼ 103). The true population
(T) is correctly identified whenever it is among those tested. While most of the comparisons correctly identify the
merger generation (rows denoted by a check mark ✓), in some cases making the wrong assumption on the
underlying mass distribution prevents a correct identification (rows denoted by a cross ⨯). In one case (second row),
we obtained odds ratios consistent with one even when Nobs → ∞, so that no conclusions can be drawn and the
comparison is marked as “not significant.” In all other cases, the behavior of OðNobsÞ is qualitatively similar to
Fig. 6; i.e., the odds ratio grows exponentially until populations can be distinguished at 5σ.

Injection Test Preferred

flat 1gþ 1g flat 1gþ 1g vs flat 2gþ 2g flat 1gþ 1g ✓ T
log 1gþ 1g vs log 2gþ 2g not significant

power law 1gþ 1g vs power law 2gþ 2g power law 1gþ 1g ✓

flat 2gþ 2g flat 1gþ 1g vs flat 2gþ 2g flat 2gþ 2g ✓ T
log 1gþ 1g vs log 2gþ 2g log 2gþ 2g ✓

power law 1gþ 1g vs power law 2gþ 2g power law 1gþ 1g ⨯

log 1gþ 1g flat 1gþ 1g vs flat 2gþ 2g flat 1gþ 1g ✓

log 1gþ 1g vs log 2gþ 2g log 1gþ 1g ✓ T
power law 1gþ 1g vs power law 2gþ 2g power law 1gþ 1g ✓

log 2gþ 2g flat 1gþ 1g vs flat 2gþ 2g flat 1gþ 1g ⨯
log 1gþ 1g vs log 2gþ 2g log 2gþ 2g ✓

power law 1gþ 1g vs power law 2gþ 2g power law 1gþ 1g ⨯

power law 1gþ 1g flat 1gþ 1g vs flat 2gþ 2g flat 1gþ 1g ✓

log 1gþ 1g vs log 2gþ 2g log 1gþ 1g ✓

power law 1gþ 1g vs power law 2gþ 2g power law 1gþ 1g ✓ T
power law 2gþ 2g flat 1gþ 1g vs flat 2gþ 2g flat 1gþ 1g ⨯

log 1gþ 1g vs log 2gþ 2g log 1gþ 1g ⨯
power law 1gþ 1g vs power law 2gþ 2g power law 2gþ 2g ✓ T
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analysis is performed using less information. Omitting
redshift information does not significantly affect the 1gþ
1g vs. 2gþ 2g and 1gþ 2g vs. 2gþ 2g comparisons, but it
plays a more important role in the 1gþ 1g vs 1gþ 2g
comparisons. This is because (as illustrated in Fig. 5) the
mass distributions are very similar for these populations,
which are therefore harder to distinguish if redshifts are
ignored. For instance, while Fig. 6 shows that ∼40
observations are enough to distinguish the 1gþ 1g and
1gþ 2g “flat” populations at 3σ with LIGO in 50% of the
realizations, up to ∼200 events will be necessary to reach
the same conclusion in the absence of redshift information.

VI. CONCLUSIONS

The main result of this paper is that GW observations of
merging stellar-mass BH binaries can be used to gather
information about their progenitors. Starting from simple,
physically motivated populations of “first generation” (1g)
BHs born from stellar collapse, we construct populations
where merging binaries include “second generation” (2g)
BHs, whose masses and spins are computed using numeri-
cal relativity fitting formulas. Then we use Bayesian model
selection to determine whether current or future ground-
based GW interferometers can distinguish different pop-
ulations. If 2g BHs occur in nature, it should be possible to
recover evidence for their existence from GW data; other-
wise, the data can be used to constrain astrophysical models
that produce 2g BHs.
As a first application of our Bayesian model selection

framework, we perform model selection using the two
confirmed detections (GW150914 and GW151226) and the
LVT151012 trigger from Advanced LIGO’s first observing
run. It is quite remarkable that, even with only three data
points, some of the comparisons show odds ratios as high
as ∼10 in favor of 1g BHs. As expected, model selection
performance improves with more observations and more
sensitive detectors. Indeed, as shown in Fig. 6, the Bayesian
odds ratio for comparisons between two pure models scales
(roughly) exponentially with the number of observations.
Depending on the actual realization, ∼20–200 Advanced
LIGO observations at design sensitivity should allow us to
discriminate which of the three populations is favored by
the data at 5σ confidence level in one-to-one comparisons.
Instrumental upgrades will bring this number down to
15–200 observations for Aþ, and 5–100 for Voyager.
More realistically, astrophysical populations of merging

binaries will be a mixture of all three populations (1gþ 1g,
1gþ 2g, 2gþ 2g), and the real experimental task is to
determine the relative mixing fractions. Using simulated
data, we construct synthetic catalogs assuming a mixture of
models for the different BH generations, and attempt to
measure the mixing fractions using Bayesian inference.
Our preliminary results suggest that this is a much more
challenging task: recovering the mixing fractions may
require several hundreds (if not thousands) of observations.

This work should be regarded as a proof-of-principle
study that can (and should) be extended in several direc-
tions. Our simple models are not supposed to be astrophysi-
cally realistic: they were developed solely to show that, at
least in principle, GW observations could provide infor-
mation on the occurrence of multiple stellar-mass BH
mergers. The inclusion of detailed spin alignment models
and more realistic mass distributions (see e.g., [94]),
preferably with input from population synthesis codes, is
an important topic for future investigation.
As illustrated in Sec. II E (see, in particular, Fig. 3), the

spin magnitudes of the merging BHs are very sensitive to
their merger history. This is also true for the massive BH
binaries observable by LISA: see e.g., [40,95]. Unlike BHs
born from stellar collapse, the spin distribution of post-
merger BHs should be strongly peaked at χf ∼ 0.7. In this
paper we only considered measurements of the “effective
spin” χeff , because this is the spin parameter that enters at
lowest PN order in the gravitational waveform. This is a
very conservative approach. As shown in Fig. 2, the
“memory effect” encoded in the spin magnitudes is largely
washed out in this variable. Measurements of the individual
spin magnitudes should be possible by considering better
waveform models or higher SNR signals: in this sense, our
predictions should be regarded as conservative. Moreover,
high-SNR ringdown observations will allow measurements
of the final (postmerger) spin χf within a few percent [69].
These measurements could also be used to identify the
progenitors of merging BHs.
The model selection framework developed in this paper

is complementary to other studies, which usually focus on
discriminating specific astrophysical formation channels
(e.g., field binaries vs dynamical formation scenarios
[48,91,96–99], but see also [100] for work on intermedi-
ate-mass BHs). We focused on using statistical distributions
consisting of several observations, but it is possible that
single events may be smoking guns for (or against) multiple
merger scenarios, at the price of making stronger assump-
tions on the formation mechanism of 1g BHs. For example,
binaries with component masses above the pair-instability
gap [44] can point to the occurrence of multiple mergers is
we assume that 1g BHs are formed via core collapse, and if
we are confident about the upper mass limit on 1g BHs set
by pair instabilities. We hope that our approach will spark
more studies of the astrophysical information encoded in
present and future GW data sets.
While completing our study, we learned that Maya

Fishbach, Daniel Holz, and Ben Farr have been pursuing
a similar investigation [101]. Their work nicely comple-
ments our own, as they focus on the spin distributions and
address the detectability of more than two generations of
mergers.
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