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ABSTRACT
We investigate the consequences of superkicks on the population of supermassive black
holes (SMBHs) in the Universe residing in brightest cluster galaxies (BCGs). There is strong
observational evidence that BCGs grew prominently at late times (up to a factor 2–4 in mass
from z = 1), mainly through mergers with satellite galaxies from the cluster, and they are
known to host the most massive SMBHs ever observed. Those SMBHs are also expected
to grow hierarchically, experiencing a series of mergers with other SMBHs brought in by
merging satellites. Because of the net linear momentum taken away from the asymmetric
gravitational wave emission, the remnant SMBH experiences a kick in the opposite direction.
Kicks may be as large as 5000 km s−1 (‘superkicks’), pushing the SMBHs out in the cluster
outskirts for a time comparable to galaxy-evolution time-scales. We predict, under a number of
plausible assumptions, that superkicks can efficiently eject SMBHs from BCGs, bringing their
occupation fraction down to a likely range 0.9 < f < 0.99 in the local Universe. Future thirty-
metre-class telescopes like ELT and TMT will be capable of measuring SMBHs in hundreds
of BCGs up to z = 0.2, testing the occurrence of superkicks in nature and the strong-gravity
regime of SMBH mergers.

Key words: Black hole physics – gravitation – gravitational waves – galaxies: evolution –
galaxies: interactions.

1 IN T RO D U C T I O N

The centres of galaxy clusters host the most massive galaxies in
the Universe, generally known as brightest cluster galaxies (BCGs).
Their luminosity can easily exceed 1012 L� and, consequently, their
estimated masses can be up to few times 1012 M�. They also host the
biggest supermassive black holes (SMBHs) known in the Universe,
with masses in the range 109–1010 M� (McConnell et al. 2012),
tipping the observed SMBH–host relations at the high-mass end
(McConnell & Ma 2013).

In the context of the � cold dark matter (�CDM) cosmological
paradigm, large dark matter (DM) haloes in the Universe build up
hierarchically (White & Rees 1978), driving the assembly of galac-
tic structures. Galaxy formation kicks off at high redshifts, as gas
starts to cool at the centres of DM haloes. Following the halo hi-
erarchy, small protogalaxies merge with each other forming larger
ones. This process continues until the present time, resulting in the
formation of massive galaxies we see today. Within this framework
also SMBHs grow hierarchically, experiencing a sequence of ac-
cretion events and merging with other SMBHs following galaxy

�
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mergers (Begelman, Blandford & Rees 1980; Volonteri, Haardt &
Madau 2003).

One interesting astrophysical consequence of SMBH binary
mergers is the gravitational recoil. Emission of asymmetric gravita-
tional waves (GWs) in the late inspiral and final coalescence takes
away net linear momentum from the binary system, and the remnant
SMBH is consequently kicked in the opposite direction. With the
advent of numerical relativity (Pretorius 2005; Baker et al. 2006;
Campanelli et al. 2006), it is now possible to simulate SMBH merg-
ers in full general relativity and assess the magnitude of these kicks.
Surprisingly, configurations have been found in which the final
kick can reach magnitudes up to ∼5000 km s−1 (Campanelli et al.
2007; González et al. 2007a; Lousto & Zlochower 2011)1 opening
the possibility of SMBH ejection even from the deepest potential
wells created by the most massive galaxies (Merritt et al. 2004;

1 Technically, Campanelli et al. (2007); González et al. (2007a) found recoils
up to ∼4000 km s−1 for systems with spins lying in the binary orbital plane,
which they referred to as ‘superkicks’. ‘Hangup kicks’ up to ∼5000 km s−1

were found by Lousto & Zlochower (2011) in a different configuration, in
which the spins are inclined with respect to the orbital plane of the binary. For
simplicity, we will generally refer to high-velocity recoils as ‘superkicks’
throughout the paper.
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Schnittman & Buonanno 2007). Observationally, few candidate re-
coiling SMBHs have been recently identified as off-centre AGNs
(Civano et al. 2010, 2012; Koss et al. 2014), and an excellent re-
view of the spatial and kinematical observational signatures of these
peculiar systems can be found in Komossa (2012). A direct conse-
quence of high-velocity kicks is that the SMBH occupation fraction
may be altered (Schnittman 2007; Volonteri, Haardt & Gültekin
2008; Volonteri, Gültekin & Dotti 2010), providing an indirect way
to test the strong-gravity physics behind GW kicks. In this paper, we
explore this possibility by investigating the consequences of gravi-
tational recoils on to SMBH masses and the occupation fraction in
BCGs.

Although kicks will naturally eject SMBHs more easily from
lighter galaxies (as extensively investigated by Volonteri et al. 2010),
there are at least three good reasons for considering this possibil-
ity in BCGs. First, BCGs show the strongest mass evolution from
z ≈ 1.5 up to now. In general, both detailed numerical simulations of
galaxy formation (De Lucia & Blaizot 2007; Oser et al. 2010; Lack-
ner et al. 2012) and observations of BCGs at different z (Trujillo,
Ferreras & de La Rosa 2011; Lidman et al. 2012, 2013) show an
average mass doubling from z = 1 to the present time. Though it
is difficult to assess observationally what is the cause of this mass
growth, it appears in simulations to be driven primarily by galaxy
mergers (Lotz et al. 2011; Laporte et al. 2013). This is also consis-
tent with close galaxy pair counts at z < 1 (Bell et al. 2006; Bundy
et al. 2009; de Ravel et al. 2009; Robaina et al. 2010; López-Sanjuan
et al. 2012; Xu et al. 2012), which imply a prominent merger activity
for these systems. In contrast with all other types of galaxies, very
massive ellipticals (and BCGs in particular) are expected to have
undergone several mergers in the last 10 Gyr, some of them ‘major’
(i.e. with satellite to primary galaxy mass ratio M2/M1 > 1/4). It
is therefore possible that they also experienced a few SMBH bi-
nary coalescences, with consequent gravitational recoils. Secondly,
SMBHs of mass >109 M� in the relatively low-density environ-
ment of BCG nuclei have the largest impact on the dynamics of the
surrounding stars (McConnell et al. 2012). The influence radius of
the SMBH can be up to few hundred parsecs, making them ideal
targets for direct dynamical measurements of SMBH masses. With
angular resolutions of ≈0.1 arcsec, it is today possible to confidently
measure SMBH masses in BCGs up to z ≈ 0.03. A factor of 10
improvement in the instrumentation, expected with the Thirty Me-
tre Telescope (TMT) and the European Extremely Large Telescope
(ELT), will dramatically increase this range. As an example, Do
et al. (2014) estimated that 50 masses of SMBHs residing in BCGs
up to z = 0.05 can be measured with a relatively cheap programme
of 14 observing nights on the TMT. Moreover, they show that the
TMT potential will be much greater than that, making mass mea-
surement possible in hundreds of BCGs up to z ≈ 0.2. Conversely,
in Milky Way-type galaxies with SMBH sphere of influence of the
order of few parsecs, even with ELT precision dynamical measure-
ments will be restricted to our local neighbourhood (D < 30 Mpc,
z < 0.01). Lastly, according to our galaxy formation knowledge, the
SMBH occupation fraction f (i.e. the fraction of galaxies hosting
a SMBH) is an increasing function of the galaxy mass. Although
already at dwarf galaxy scales f might be around unity (Bellovary
et al. 2011), observations of galaxies in Virgo galaxies show a sud-
den drop in the X-ray activity at stellar masses around 1010 M�
(Miller et al. 2012). Although this cannot be taken as evidence of
lack of nuclear SMBHs, there is no observational confirmation of a
large f for galaxies on those small scales.

Some tentative candidates of SMBH ejections from BCGs have
already been identified: the BCG in the A2261 cluster shows an

exceptionally large core of 3.2 kpc consistent with the absence of
a scouring SMBH (Postman et al. 2012); the small 1.2 × 1011 M�
lenticular galaxy NCG 1277 in the Perseus cluster hosts an excep-
tionally heavy SMBH of 1.7 × 1010 M� (van den Bosch et al. 2012)
which may have grown in the close BCG NCG 1275, ejected by a
superkick and finally captured by NCG 1277 (Shields & Bonning
2013).

Summarizing, BCGs, being the most massive galaxies in the
Universe, (i) are expected to have f = 1; (ii) have possibly experi-
enced multiple mergers at low redshift; (iii) are the easiest targets
for nuclear SMBH mass measurements. These facts make them
ideal targets for observing the effects of extreme recoils: any obser-
vational confirmation of a missing nuclear SMBH would provide
strong evidence for the occurrence of superkicks.

The paper is organized as follows. Section 2 presents the in-
gredients of our models: (i) SMBH merger fitting formulas; (ii)
galaxy density profiles; (iii) prescriptions for the SMBH return
time-scales and (iv) the merger events; and (v) finally our evo-
lutionary procedure. We highlight our results in Section 3 and
present our conclusions in Section 4. Throughout this paper, we
use a �CDM cosmological model with �M = 0.27, �� = 0.73 and
H0 = 100 h km s−1 Mpc−1 = 70 km s−1 Mpc−1.

2 B C G M E R G E R MO D E L L I N G

A thoughtful modelling of the recoil effect on the SMBH occupation
fraction in BCGs requires putting together in a coherent framework
four main ingredients:

(i) the recoil magnitude as a function of the SMBH binary param-
eters (binary mass ratio, magnitude and orientation of the individual
SMBH spins);

(ii) the gravitational potential in which the recoiled SMBH
evolves;

(iii) the return time-scale for SMBHs suffering kicks below the
escape velocity of their hosts;

(iv) the number of mergers experienced by BCGs as a function
of z and of the galaxy mass ratio.

We will describe each item separately in the following subsections,
providing in Section 2.5 a description of the ‘coherent framework’
that brings them together; we point the readers not interested in all
the mathematical details of our model directly to that section.

2.1 Black hole final mass, spin and kick velocity

We start with modelling the properties of the remnant SMBH as a
function of the properties of the progenitor merging holes. We use a
standard notation in which m1 and m2 denote the individual masses
of the merging SMBHs (with m1 > m2), M = m1 + m2 is the total
mass, q = m2/m1 ≤ 1 is the mass ratio and η = m1m2/M2 is the
symmetric mass ratio. The SMBH spin vectors are (with i = 1, 2)

Si = χi

Gm2
i

c
Ŝi , (1)

where 0 ≤ χ i ≤ 1 is the dimensionless spin parameter and hats
denote unit vectors. We describe the directions of the spins Ŝi with
three angles θ1, θ2 and �	 defined to be (cf. fig. 1 in Gerosa et al.
2014)

cos θ1 = Ŝ1 · L̂ , cos θ2 = Ŝ2 · L̂ ,

cos �	 = Ŝ1 × L̂

|Ŝ1 × L̂| · Ŝ2 × L̂

|Ŝ2 × L̂| , (2)

MNRAS 446, 38–55 (2015)
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where L̂ is the (instantaneous) direction of the orbital angular mo-
mentum of the binary. It is also useful to define the following quan-
tities.

� = qχ2 Ŝ2 − χ1 Ŝ1

1 + q
, χ̃ = q2χ2 Ŝ2 + χ1 Ŝ1

(1 + q)2
, (3)

and to introduce the subscripts ‖ and ⊥ for vector components
along/perpendicular to the orbital angular momentum of the binary:
χ̃‖ = χ̃ · L̂, χ̃⊥ = |χ̃ × L̂|, �‖ = � · L̂, �⊥ = |� × L̂|.

The energy radiated during the inspiral and merger phase Erad re-
duces the post-merger mass to Mf = M − Eradc−2. The dependence
of Erad on the initial parameters (namely the masses and the spins)
can be derived analytically in the test-particle limit q → 0 (Kesden
2008), while the comparable-mass regime q 
 1 can only be esti-
mated using full numerical relativity simulations (Berti et al. 2007;
Tichy & Marronetti 2008; Lousto et al. 2010). Here, we use the
expression recently provided by Barausse, Morozova & Rezzolla
(2012), in which the two regimes are interpolated

Erad

M
= 1 − Mf

M
= η

[
1 − E′

ISCO

]
+ 4η2

[
4p0 + 16p1χ̃‖

(
χ̃‖ + 1

) + E′
ISCO − 1

]
, (4)

where c2E′
ISCO is the energy per unit mass at the innermost stable

circular orbit (ISCO) in the test-particle limit generalized to inclined
orbits and evaluated at the effective spin χ̃ (Bardeen 1973):

E′
ISCO =

√
1 − 2

3r ′
ISCO

, (5)

r ′
ISCO = 3 + Z2 − sign(χ̃‖)

√
(3 − Z1)(3 + Z1 + 2Z2) , (6)

Z1 = 1 + (
1 − χ̃2

‖
)1/3

[(
1 + χ̃‖

)1/3 + (
1 − χ̃‖

)1/3
]

, (7)

Z2 =
√

3χ̃2
‖ + Z2

1 . (8)

The parameters p0 and p1 in equation (4) were fitted by Barausse
et al. (2012) using the numerical relativity data published at the time
(see references therein): they report p0 = 0.04827 and p1 = 0.01707.

The final spin magnitude χ f has been predicted either by cali-
brating fitting formulas with numerical relativity simulations (Rez-
zolla et al. 2008; Tichy & Marronetti 2008; Barausse & Rezzolla
2009; Lousto et al. 2010), or by extrapolating test-particle results
(Buonanno, Kidder & Lehner 2008; Kesden 2008). Here, we use
the expression developed by Barausse & Rezzolla (2009), which
has been shown to reproduce the available numerical relativity data
with 8 per cent precision in χ f for every value of q:

χf =
∣∣∣∣χ̃ + q

(1 + q)2

 L̂

∣∣∣∣ , (9)


 = 2
√

3 + t2η + t3η
2 + s4

(1 + q)4

(1 + q2)2
χ̃2

+(s5η + t0 + 2)
(1 + q)2

1 + q2
χ̃‖ . (10)

The remaining free parameters are fitted to numerical relativity sim-
ulations (see Barausse & Rezzolla 2009 for details): t0 = −2.8904,
t2 = −3.51712, t3 = 2.5763, s4 = −0.1229 and s5 = 0.4537. We
assume χ f = 1 whenever the fitting formula (9) predicts higher
unphysical values.

GW recoils generally arise from asymmetries in the merging
binary that could be either in the masses or in the spins. Fitting

formulas for the recoil velocity vk are typically broken down into
a mass asymmetry term vm, and two spin asymmetry terms vs‖ and
vs⊥ (Campanelli et al. 2007):

vk = vm ˆe⊥1 + vs⊥(cos ξ ˆe⊥1 + sin ξ ˆe⊥2) + vs‖ L̂ , (11)

where ˆe⊥1, ˆe⊥2 are two orthogonal unit vectors in the orbital plane
and ξ is the angle between the mass term and the orbital-plane
spin term. Expressions for vm, vs‖ and vs⊥ are available as fitting
formulas to the numerical simulations. In this work, we implement
the following expressions:

vm = Aη2 1 − q

1 + q
(1 + Bη) , (12)

vs⊥ = Hη2�‖ , (13)

vs‖ = 16η2[�⊥(V11 + 2VAχ̃‖ + 4VBχ̃2
‖ + 8VCχ̃3

‖ )

+χ̃⊥�‖(2C2 + 4C3χ̃‖)] cos � . (14)

The term proportional to V11 in equation (14) arises from the su-
perkick formula (Campanelli et al. 2007; González et al. 2007b),
the terms in VA, B, C have been called ‘hangup-kick’ effect (Lousto
& Zlochower 2011), while the ones proportional to C2, 3 model
the newly discovered ‘cross-kick’ effect (Lousto & Zlochower
2013). The parameters in the equations above are currently es-
timated to be: A = 1.2 × 104 km s−1, B = −0.93 (González
et al. 2007a), H = 6.9 × 103 km s−1 (Lousto & Zlochower 2008),
V11 = 3677.76 km s−1, VA = 2481.21 km s−1, VB = 1792.45 km s−1,
VC = 1506.52 km s−1 (Lousto et al. 2012), C2 = 1140 km s−1,
C3 = 2481 km s−1 (Lousto & Zlochower 2013), ξ = 145◦ (Lousto
& Zlochower 2008). The value of the angle � actually depends on
the initial separation of the binary in the numerical simulations: as
in previous studies (Berti, Kesden & Sperhake 2012; Lousto et al.
2012), we deal with this dependence by sampling over a uniform
distribution in �.

Since the spin angles θ1, θ2 and �	 evolve during the inspiral,
the recoil fitting formula provided above can only by applied close
to merger, at separations a ∼ 10M where numerical relativity simu-
lations typically start.2 Kesden, Sperhake & Berti (2010b) pointed
out that substantial recoil suppression/enhancement could occur due
to spin–orbit resonances (Schnittman 2004) in the post-Newtonian
(PN) regime of the inspiral. Spin–orbit resonances mostly affect bi-
naries with asymmetric spin directions at large separation (θ1 �= θ2),
while symmetric configurations (θ1 
 θ2) are generally unaffected
(Gerosa et al. 2013). Both effects are generally present for isotropic
distributions of the spin angles that are therefore maintained qual-
itatively isotropic by the PN evolution (Bogdanović, Reynolds &
Miller 2007; Kesden, Sperhake & Berti 2010a). Resonant effects
are therefore strongly dependent on early-time alignment processes,
such as those arising from accretion-disc interactions (Perego et al.
2009; Dotti et al. 2010; Lodato & Gerosa 2013; Miller & Krolik
2013).

In the present astrophysical application to BCG galaxies, we as-
sume isotropic distributions of both the spin vectors, taking the spin
angles uniformly distributed in cos θ1, cos θ2 and �	. This is a del-
icate point because the misalignment distribution (also needed to

2 The effect of PN resonances is critical to compute the kick velocity, but
not so critical in the case of the final mass (equation 4) and the final spin
(equation 9): see Barausse & Rezzolla (2009) for a discussion of this point.
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properly initialize the late-time PN inspiral) has a strong impact on
the recoil velocities. Although spin alignment is expected to occur
when a SMBH binary is surrounded by a cold massive circumbi-
nary disc, the relative cold gas content of galaxies is a decreasing
function of their mass (Catinella et al. 2010) and BCGs are ex-
tremely gas-poor systems. Fresh cold gas can be naturally brought
in by the merging satellite; however, most of the companions of
massive elliptical galaxies in observed galaxy pairs are red (up to
about 70 per cent; López-Sanjuan et al. 2012), making dry mergers
the more common mass growth channel for BCGs. None the less, a
fraction of mergers can still result in significant accretion on to the
central SMBH; in fact, BCGs are known to power luminous radio
jets (Best et al. 2007) creating X-ray cavities in a number of clusters
(Hlavacek-Larrondo et al. 2013; Russell et al. 2013). However, as a
result of the ‘anti-hierarchical’ behaviour of AGNs, only about one
in a thousand of the SMBHs with M > 3 × 108 M� is accreting at
more than 1 per cent of the Eddington rate at low redshift (Heckman
et al. 2004). This is despite the fact that very massive galaxies expe-
rience (as we will see below) a prominent merger activity at z < 1.
Assuming one merger per BCG since z = 1, the numbers above im-
ply that BCGs are, on average, accreting at about 1 per cent of the
Eddington rate for ∼107 yr, resulting in a mass growth <1 per cent.
This is generally insufficient to align the spins of a putative SMBH
binary even if the gas is accreted by a coherent circumbinary pool as
envisaged by Dotti et al. (2010). Moreover, accretion might occur
in a series of subsequent episodes with incoherent angular momenta
orientations (King & Pringle 2006; Sesana et al. 2014), and disc spin
alignment might be less effective than generally assumed in sim-
ple α-disc models (Lodato & Gerosa 2013). Therefore, disc-driven
alignment processes should be less important for the systems rele-
vant to our investigation, and random spin orientation is a sensible
working hypothesis for the majority of them. In this case, the kick
distribution is only weakly modified by the PN inspiral (cf. Berti
et al. 2012, their fig. 2) and can therefore be neglected. We checked
and confirm this conclusion using the numerical PN code presented
by Gerosa et al. (2013). This is particularly important because fol-
lowing the full PN evolution is computationally expensive; bypass-
ing this stage allows us to simulate a larger number of galaxies,
thus reducing the statistical error on the final occupation fractions.
For reasonably large samples (∼1000 BCGs), uncertainties in the
occupation fraction are still dominated by Poisson counting errors,
rather than the PN influence on the kicks.

2.2 BCG mass-density and potential profile

BCGs sit at the centre of their host cluster. The relevant potential is
therefore given by the spheroidal component of the BCG plus the
whole cluster DM halo.

A simple analytic model to describe the spheroidal component
is given by the Hernquist mass-density profile (Hernquist 1990;
Tremaine et al. 1994; see Laporte et al. 2013 for a specific applica-
tion to BCGs):

ρBCG(r) = MBCG

2π

rH

r

1

(r + rH)3
, (15)

where MBCG is the mass of the spheroid and rH is a scale radius. The
scale radius rH can be related to the typical cusp radius rγ observed
in the luminosity profiles of elliptical galaxies (Carollo et al. 1997;
Lauer et al. 2007). We match cusp-radius measurements from Lauer
et al. (2007) and galaxy-mass measurements from McConnell & Ma

Figure 1. BCG kinematical properties, modelled using the Hernquist pro-
file. The velocity dispersion values predicted from our model are compared
with the sample of observations reported by McConnell & Ma (2013, black
diamonds). Green circle points are computed sampling equation (16) with
a Gaussian error of 0.1 dex and then considering σ ≈ 0.3

√
GMBCG/rH

(Hernquist 1990); black dashed and dotted lines show the average and the
1σ interval of the same distribution.

(2013), obtaining a final sample of 14 BCGs. We fit these values
using a log–log relation, obtaining

log

(
rγ

pc

)
= −7.73 + 0.857 log

(
MBCG

M�

)
, (16)

with dispersion of 0.1 dex. The central densities of elliptical cores
typically lie in the range 103–104 M� pc−3 (see e.g. Terzić &
Graham 2005); these values are reproduced by scaling the cusp
radius by an order of magnitude, i.e. taking rH = 10rγ . This
choice gives acceptable results in terms of the kinematical proper-
ties of BCGs, especially at typical BCG masses ∼1012 M�: Fig. 1
shows the velocity dispersion of the BCG σ ≈ 0.3

√
GMBCG/rH

(Hernquist 1990) compared3 to the measurements in the sample of
large elliptical galaxies collected by McConnell & Ma (2013).

Self-consistent (and therefore more realistic) models have also
been developed to describe photometric and kinematical data in
elliptical galaxies (see e.g. Bertin 2000) but we opted for the Hern-
quist profile because it reproduces the kinematical properties quite
well despite its analytical simplicity. We model the cluster DM
halo with a Navarro–Frenk–White (NFW) profile (Navarro, Frenk
& White 1996, 1997), which has been found to be in good agree-
ment with galaxy cluster data (van der Marel et al. 2000). The NFW
mass-density profile is

ρDM(r) = c3gc�v(z)

3
ρc(z)

1

(cr/rv) (1 + cr/rv)2 , (17)

where rv is the virial radius; �v(z) is the virial overdensity (see
below); c is a concentration parameter; the function gc is given by

gc = 1

ln(1 + c) − c/(1 + c)
; (18)

3 Since the baryonic structure is much more concentrated that the DM halo
(i.e. rH � rv), considering the stellar component only is sufficient in a com-
parison with stellar-velocity data. The definition of σ used by McConnell &
Ma (2013) involves measurements of velocity dispersion and radial velocity
averaged up to some effective radius (their equation 1). We compare their
estimates with values of σ evaluated close to rH, where the Hernquist profile
is expected to give the largest contribution to their averaged estimations.
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and ρc(z) is the critical density of the Universe at the redshift under
consideration,

ρc(z) = 3H 2(z)

8πG
, (19)

where

H (z) = H0

√
(1 + z)3 �M + ��. (20)

The virial radius rv is defined as the distance from the centre of the
halo within which the mean density is �v(z)ρc(z). The halo mass
MDM is then simply defined to be the DM mass within rv:

MDM = 4

3
πr3

v �v(z)ρc(z) . (21)

Under the assumption that the cluster has just virialized,4 cal-
culations of spherical top-hat perturbations (Peebles 1980) yield
�v = 18π2 
 178, but the actual value depends on the cosmolog-
ical model through (Lacey & Cole 1993; Bryan & Norman 1998;
Klypin, Trujillo-Gomez & Primack 2011)

�v(z) = 18π2 − 82��(z) − 39�2
�(z), (22)

where

�M(z) = (1 + z)3 �M

(1 + z)3 �M + ��

, ��(z) = 1 − �M(z). (23)

The virial radius as a function of the halo mass reads

rv =
(

MDM

1014 M�

)1/3 (
�M

�M(z)

�v(z)

18π2

)−1/3 1 Mpc

1 + z
. (24)

In the regime considered here (z < 1), the virial overdensity �v

is roughly 0.7 × 18π2 
 124 with a rather weak dependence on
z; typical sizes of DM haloes with the same mass may differ by a
factor ∼1.5 if placed at different redshifts.

Stott et al. (2012) relate the BCG visible mass to the halo mass
measured at r500, defined to be the radius at which the mean density
is 500 times the critical density of the present Universe:

M500 = 4

3
πr3

500 ρc(z = 0) × 500. (25)

Their observational relation reads (Stott et al. 2012)

log

(
M500

1014 M�

)
= −14.29 + 1.28 log

(
MBCG

M�

)
, (26)

with dispersion σ ≈ 0.3 dex. The concentration parameter c is re-
lated to the halo mass and in general depends on the redshift and the
underlying cosmological model (Neto et al. 2007; Macciò, Dutton
& van den Bosch 2008; Ludlow et al. 2014). Those dependences
are, however, rather weak in the BCG range (M200 ∼ 1013−16 M�),
in which theoretical predictions by different authors tend to agree
(see fig. 10 in Ludlow et al. 2014). Here, we implement the relation
reported by Neto et al. (2007):

log c = 5.26 − 0.1 log

(
M200

1014 M�
h−1

)
, (27)

with a dispersion of 0.05 dex. In analogy with equation (26), M200

is defined to be the mass of the halo inside a radius r200 at which

4 For simplicity, we do not truncate the NFW halo at the virial radius, which is
expected under such virialization assumption (e.g. Peacock 2003; Barausse
2012). Our predictions of the final occupation fractions are independent of
these assumptions: SMBHs kicked at rmax > rv ∼ fewMpc in general do
not find their way back to the galactic centre within a Hubble time.

Figure 2. Observationally based relation between the halo virial radius
rv and the concentration parameter c. Fitting formulas provided by Stott
et al. (2012) and Neto et al. (2007) are solved using the iterative procedure
described in the main text. MBCG is reported on the colour scale. Massive
galaxies (lighter points on the right) correspond to larger haloes and to lower
values of c; on the other hand, lighter BCGs (darker points on the left) are
hosted in smaller haloes and present a wider range of concentrations up to c

 10. This figure is obtained with a uniform distribution in log MBCG/M�
∈ [10, 12] at z = 0.

the mean density is 200 times the critical density:

M200 = 4

3
πr3

200 ρc(z = 0) × 200. (28)

The value of M500 and M200 can also be obtained by integrating
ρDM(r) from equation (17). This gives the following constraints on
r200, r500 and rv:

500

�v

H 2
0

H 2(z)
= gc

(
rv

r500

)3 [
ln

(
1 + cr500

rv

)
− cr500/rv

1 + cr500/rv

]
;

(29)

200

�v

H 2
0

H 2(z)
= gc

(
rv

r200

)3 [
ln

(
1 + cr200

rv

)
− cr200/rv

1 + cr200/rv

]
.

(30)

We implement an iterative procedure to find rv and c simultaneously;
results are presented in Fig. 2.

For each BCG stellar mass, MBCG, we compute M500 trough
equation (26) assuming a Gaussian error of 0.3 dex, and then r500

using equation (25). Given the initial guess c = 5, the constraint
(29) is used to obtain numerically rv. Equation (30) is then solved
to find r200, and M200 is obtained using equation (28). An updated
value of c can now be computed through the observational relation
(27). The whole procedure is then iterated. When convergence is
reached,5 we add a Gaussian error of 0.05 dex to the final value
of c. Once rv and c are obtained, the halo mass, MDM, is given by
equation (21). As a consistency test, the BCG/DM-halo relation is
shown in Fig. 3, where our Monte Carlo sample is contrasted to
observational data from Lidman et al. (2012).

5 Convergence down to |�c|< 10−6 is typically obtained after five iterations.
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Missing black holes in BCGs 43

Figure 3. Relation between MBCG and MDM as implemented in our model.
Our Monte Carlo realization (green circles) is statistically consistent with
the observational catalogue of 160 BCGs collected by Lidman et al. (2012,
black diamonds). This figure is obtained with uniform distributions in
log MBCG/M� ∈ [11, 12.3] and z ∈ [0, 1.5], which are the same ranges
covered by the data sample in Lidman et al. (2012).

To summarize: we model the BCG mass density from equations
(15) and (17) as ρ = ρBCG + ρDM, while the associated gravitational
potential is given by 	 = 	BCG + 	DM, with

	BCG(r) = −GMBCG

r + rH
, (31)

and

	DM(r) = −gc
GMDM

rv

ln(1 + cr/rv)

r/rv
. (32)

2.3 Recoiled SMBH return time-scales

Following the binary merger, the remnant SMBH recoils because of
asymmetrical GW emission which may result in its ejection from
the BCG core. The recoiling SMBH transfers its orbital energy into
random motions of the surrounding stars through collisions, and
may sink back to the galactic centre. Here, we develop two physical
models to predict the return time-scale of this process.

The remnant SMBH is initially kicked out on a radial orbit. De-
tailed N-body simulations of the process have been performed by
Gualandris & Merritt (2008), which detect strong damping during
each passage of the SMBH though the galactic core. It is there-
fore critical to know whether the recoiling SMBH orbit crosses the
galactic core, since damping happens mainly in those quick pas-
sages. Repeated core passages cannot be prevented in a spherically
symmetric potential. However, post-merger galactic potentials are
expected to be triaxial (Khan, Just & Merritt 2011; Preto et al.
2011): the SMBH orbit will not in general remain exactly radial
and in particular the core may not be crossed (Vicari, Capuzzo-
Dolcetta & Merritt 2007). Moreover, especially for extreme kicks,
the SMBH can travel further than a Mpc from the BCG core. At this
point, its trajectory is likely to be perturbed by the clumpy potential
of other galaxies and DM subhaloes within the main cluster halo,
and return to the BCG core is unlikely. Missing the core would re-
sult in a much longer inspiral time-scale because only low-density
regions contribute to the frictional force. This difference is critical
to our purposes, particularly if this time-scale gets comparable with
the time-scale between two galactic mergers: less efficient sinking
may result in ‘empty’ galactic centres when the next satellite galaxy

merges into the BCG. The full complexity of the problem cannot
be solved within our spherically symmetric model; therefore, we
developed two extreme approaches bracketing the uncertainties re-
lated to the dynamics describe above.

(i) In the first model, we assume that the SMBH orbit is
‘quasi-circular’ and we compute the sinking time-scale using
Chandrasekhar’s (1943) dynamical friction (DF). This is meant to
be the extreme case for a strongly perturbed potential for which the
SMBH never crosses the galactic core.

(ii) In the second scenario, we consider repeated SMBH-core
bounces by fitting the N-body simulations reported by Gualandris
& Merritt (2008). This model is appropriate for BCG and cluster
potentials which exhibit small deviations from spherical symmetry.

2.3.1 Dynamical friction model

Let us consider a SMBH with mass MBH kicked with velocity vk

from the galactic centre (r = 0). The SMBH will be ejected from
the galactic halo if vk exceeds the escape velocity of the system:

vesc =
√

2G

(
MBCG

rH
+ c gc

MDM

rv

)
. (33)

If vk < vesc, the SMBH will stop at a distance rmax from the centre.
Gualandris & Merritt (2008) showed that the maximum displace-
ment rmax can be estimated simply through energy conservation
neglecting star friction (see their fig. 2):

1

2
v2

k + φ(0) = φ(rmax) . (34)

The initial displacement is reached in a time which is typically
100 times smaller than the sinking time-scale (Gualandris & Merritt
2008) and will be therefore neglected. Here, we estimate the time
needed to sink back to r = 0 integrating the DF equation on quasi-
circular orbits. The frictional force exerted on to the black hole is
given by (e.g. Binney & Tremaine 1987)

F (r) = 4πG2M2
BHρ(r) ξ (r) ln �

v2
c (r)

, (35)

where vc(r) = √
r dφ/dr is the circular velocity, ln � is the

Coulomb logarithm and the factor ξ (r) depends on the stellar veloc-
ity distribution. We take ln � = 2.5, as observed by Gualandris &
Merritt (2008) in the very first phase of their simulated orbits (see
also Escala et al. 2004). We assume the velocity distribution to be
locally Maxwellian, with velocity dispersion σ (r). Although not ex-
act, the Maxwellian distribution is approached as a consequence of
collisionless relaxation processes (Lynden-Bell 1967). Under this
assumption, the ξ factor in equation (35) reads (Binney & Tremaine
1987)

ξ (r) = erf

[
vc(r)√
2σ (r)

]
−

√
2

π

vc(r)

σ (r)
exp

[
− v2

c (r)

2σ 2(r)

]
. (36)

The velocity dispersion σ (r) is computed from our galactic poten-
tial using the expression provided by Binney (1980) when isotropy
is assumed. The frictional force F(r) is tangential and directed
opposite to the SMBH velocity. The SMBH angular momentum
L(r) = MBHrvc(r) is lost at the rate dL(r)/dt = −rF(r) by Newton’s
third law, causing the SMBH to slowly inspiral while remaining on
a quasi-circular orbit. The DF time-scale, over which the SMBH
sinks back to the galactic centre r = 0 from its initial position rmax ,
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44 D. Gerosa and A. Sesana

Figure 4. SMBH return time-scales, in both the DF (left) and the bounce model (right), as a function of the kick velocity vk. We consider recoiling SMBHs
with MBH = 109 M� and BCGs with stellar mass MBCG = 1011 M� (solid), 5 · 1011 M� (long-dashed) and 1012 M� (short-dashed). The remaining galaxy
parameters (such as rH, MDM, rv and c) are estimated using the prescriptions presented in Section 2.2. To facilitate comparisons, here we set variances in
equations (16), (26) and (27) to zero. In order to bracket the effects of cosmological evolution we carry out the analysis at both z = 0 (darker, black lines) and
z = 1 (lighter, red lines). Black holes are effectively ejected from the BCGs when the sinking time-scale (either tDF or tB) gets larger than the lookback time at
the merger redshift, which in turn is always smaller than the one computed at z = 1 (∼7.8 Gyr, shown with a dotted horizontal line). Dotted vertical lines in
the right panel are placed at the escape velocity vesc, at which equation (40) must be truncated.

is thus given by6

tDF = −
∫ 0

rmax

dL(r)

dr

1

rF (r)
dr . (37)

DF time-scales for typical systems are reported in Fig. 4 (left-
hand panel) as a function of the kick velocity vk. A recoiling SMBH
is strictly ejected only if vk > vesc, which is unlikely since we are
considering the whole cluster potential for which vesc may be as
large as ∼6000 km s−1 for the typical values MBCG = 1012 M� and
MBH = 109 M�. However, SMBHs are effectively ejected if their
return time-scales are larger than the lookback time at the merger
redshift zm (e.g. Peebles 1993):

tL(zm) =
∫ zm

0

dz

(1 + z)H (z)
, (38)

which corresponds to the time the Universe needs to evolve from
zm to now. In this case, the SMBH remains outside the BCG, wan-
dering in the intracluster medium. Our systems are evolved from
z = 1 to 0, which sets a (conservative) effective escape condition
tDF > tL(z = 1) for which SMBHs will never come back to the BCG
centre. As shown in the left-hand panel of Fig. 4, this condition is

6 Because of the intrinsic divergence in the density profile (equations 15–
17), this integral cannot be computed up to r = 0: hereafter, we implement
a lower threshold at 10−3rH ∼ 1 pc. We also neglect the dependence on
the redshift while computing the integral (equation 37). In both models, the
sinking times are computed fixing the redshift at his initial value (i.e. when
the kick is imparted to the SMBH). As shown in Fig. 4, differences between
time-scales computed at different redshifts are negligible in the interesting
region tDF < tL(z = 1).

fulfilled for achievable kicks vk ∼ 1500 km s−1, opening the pos-
sibility of several (effective) ejections from typical BCGs. When
this occurs, the distance between the SMBH and the galaxy centre
(offset) can be estimated by numerically inverting equation (37). At
z = 0, the SMBH needs the additional time tDF − tL(zm) to sink to
the centre. The offset rz = 0 is given by the displacement resulting
in such time,7 i.e.

tDF − tL(zm) = −
∫ 0

rz=0

dL(r)

dr

1

rF (r)
dr . (39)

2.3.2 Bounce model

To describe recoiling SMBHs on radial orbit, we rely on the N-body
simulations performed by Gualandris & Merritt (2008). They study
the motion of a SMBH recoiling from the centre of an initially
spherically symmetric galaxy. The SMBH motion can be divided
into three distinct stages: (i) first, a short DF phase damps the radial
oscillations as predicted by Chandrasekhar’s (1943) formula with
2 � ln � � 3; (ii) once the amplitude of the motion is smaller than
the core radius, the SMBH and the galactic core exhibit oscillations
about their common centre of mass; (iii) finally, the SMBH and
the core reach thermal equilibrium when the SMBH kinetic energy
equals the mean kinetic energy of the stars in the core. Orbital
energy dissipation occurs mostly during core-SMBH encounters.
Here, we are interested in estimating the time-scale tB, given by the
sum of the first and the second phase.

The duration of the first two phases is listed in Gualandris &
Merritt (2008) for 18 simulations in total, six in each of their three

7 In both scenarios, offsets are computing with the galaxy properties at z = 0.
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Missing black holes in BCGs 45

Figure 5. Fitting curve employed to compute the return time-scale in the
bounce model tB as a function of the kick velocity vkick. Markers show
predictions computed by Gualandris & Merritt (2008) in each of their mod-
els, namely A1, A2 and B. Once reduced to dimensionless quantities with
the expected scaling, all three models appear to lie on the same lin–log
relation, which however must be truncated at the escape velocity vesc. The
dimensionless scaled points and the fitting curve (dashed black line) de-
pend only weakly on the galaxy mass MBCG. This figure is produced with
M = 1012 M�; the resulting fitting coefficients are a = 0.26 and b = 4.44.

different models. As suggested by the authors themselves (their
equation 18), the second-phase times originally reported must be
corrected, since the number of N-body particles used is smaller
than the actual number of stars in a galaxy. They implement the
galaxy profile first proposed by Terzić & Graham (2005) to de-
scribe binary-depleted galactic cores which present a well-defined
profile transition at the core radius rc. Oscillations damp only dur-
ing passages through the galaxy core, whose properties are ex-
pected to strongly influence the damping time. For a given MBCG,
we first compute the SMBH mass MBH, the velocity dispersion σ c

and the mass density ρc at rc for each of their three models using the
Terzić & Graham (2005) density profile. Even if DF cannot fully
describe such core-passage dynamics, the return time appears to
satisfy the same scaling relation as if DF would be fully responsible
for the sinking process (Gualandris & Merritt 2008). We therefore
scale the simulated kick velocities with σ c and the reported return
time-scales tB with σ 3

c /G2ρcMBH.
Once reduced to a dimensionless problem, we fit their 18 simu-

lated time-scales with the ansatz

tB = σ 3
c

G2ρcMBH
exp

(
a

v

σc
+ b

)
, (40)

truncated at the escape velocity vesc. Here a and b are best-fitting
coefficients. They only depend (weakly) on the galactic mass MBCG

which enters in the correction factor to tB due to the limited number
of N-body particles. Fig. 5 shows the results of our fit for a fiducial
mass MBCG = 1012 M�. The dimensionless fit can be reported into
physical units by computing σ c and ρc for our galactic profiles
(Hernquist+NFW) at a fiducial core radius

log

(
rc

pc

)

 1.1 + 0.09 log

(
rH

pc

)
, (41)

as obtained by matching the mass dependences in equation (16)
with the analogous estimate for the core radius used by Gualandris
& Merritt (2008). Results of our procedure are reported in the right-
hand panel of Fig. 4. This second model predicts longer inspiral
time-scales for kicks smaller than ∼1000 km s−1; while large kicks
make SMBHs returning very quickly (∼100 Myr) to their galactic

centres. If the SMBH does not escape from the cluster (v < vesc),
there will always be a first core passage causing enough dissipation
to trigger more and more passages leading to a quick comeback.

The SMBH offset at z = 0 can be computed by iterating the fit
procedure describe above. We numerically look for the hypothetical
kick velocity ṽk which would result in a return time equal to tB −
tL(zm), i.e. the time left to the SMBH at z = 0 to finally reach the
galactic centre. Assuming the SMBH motion to be approximately
oscillatory, we compute the amplitude of the oscillations r̃z=0 from
energy conservation (cf. equation 34) and we finally estimate the
offset to be rz=0 = r̃z=0 sin ϕ, with ϕ uniformly distributed in [0, π ].

2.4 BCG merger rates

In the last few years, strong observational evidence for a prominent
growth of BCGs from z = 1 came about. Among other studies,
Trujillo et al. (2011) observe that early-type galaxies grew by a
factor 5–10 in size and 2–4 in mass since z = 1, and Lidman
et al. (2012) find that BCGs grow in mass by a factor of ≈2 in
the redshift range 0.9–0.2 (see also Burke & Collins 2013 and
Ascaso et al. 2014). BCG mass growth is naturally explained by
frequent mergers in the hierarchical build-up scenario, and several
dedicated simulations and theoretical studies find that major and
minor mergers can account for it (De Lucia & Blaizot 2007; Oser
et al. 2010; Lackner et al. 2012; Laporte et al. 2013). However, there
are claims that size growth cannot be ascribed to mergers, and might
be related to the redshift evolution of the properties of the underlying
DM haloes (Posti et al. 2014; Sonnenfeld, Nipoti & Treu 2014). In
general, the merger-driven mass-growth scenario is consistent with
observations of close galaxy pairs (Bundy et al. 2009; de Ravel
et al. 2009; Liu et al. 2009; Robaina et al. 2010; López-Sanjuan
et al. 2012; Xu et al. 2012), and both observations and simulations
point towards high merger rates for early-type galaxies (Hopkins
et al. 2010; Lotz et al. 2011), that can be up to 0.4 Gyr−1 at z ∼ 1
for BCGs (Lidman et al. 2013).

Here, we exploit the observationally based approach put forward
by Sesana (2013). We are not interested in a global galaxy-merger
rate, but rather in the distribution of mergers experienced by the
typical BCG. Building on the same formalism as in Sesana (2013),
the galaxy merger rate per unit mass ratio8 and redshift experienced
by a galaxy of a given mass can be written as

d2N

dz dQ

∣∣∣∣∣
M

= df

dQ

∣∣∣∣∣
M,z

1

τ (z, M,Q)

dtL

dz
. (42)

Here, df/dQ|M, z is the differential fraction of galaxies with mass M
at redshift z paired with a secondary galaxy having a mass ratio in
the range [Q, Q + δQ]; τ (z, M, Q) is the typical merger time-scale
for a galaxy pair with a given M and Q at a given z; and dtL/dz
is the integrand in equation (38). df/dQ can be directly measured
from observations, whereas τ can be inferred by detailed numerical
simulations of galaxy mergers. The number of mergers experienced
from z = 1 to 0 by a galaxy starting with mass MBCG = Mz = 1 at
z = 1 can be therefore written as

N (Mz=1) =
∫ 0

1
dz

∫ 1

Qmin

dQ

∫
dM

d2N

dz dQ

∣∣∣∣∣
M

δ[M − M(z)], (43)

where the integral is consistently evaluated at the redshift-evolving
galaxy mass M(z) through the Dirac delta function.

8 We indicate galaxy mass ratios with Q, to differentiate with black holes
mass ratios q.
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46 D. Gerosa and A. Sesana

To estimate the mass growth of BCGs, we consider the fraction
f of galaxies with a companion in the range Qmin = 0.25 < Q < 1,
which corresponds to the standard definition of major mergers. f is
estimated in several observational studies, and it is generally fitted
with a function of redshift of the form

f = a(1 + z)b. (44)

The parameters a and b are, in general, function of the primary
galaxy mass. Since we are concerned with BCGs, we consider fits to
equation (44) corresponding to primaries with mass M > 1011 M�.
We construct three models, to which we will refer as ‘Optimistic’,
‘Fiducial’ and ‘Pessimistic’. In the ‘Fiducial’ model we take the best
fit to the observations of Bundy et al. (2009), yielding a = 0.035,
b = 1.3. Those data are consistent with a larger fraction described
by a = 0.07, b = 0.7, which we take as ‘Optimistic’ model. López-
Sanjuan et al. (2012) find a smaller pair fraction with a stronger
redshift dependence, corresponding to a = 0.02, b = 1.8, which
we take as ‘Pessimistic’ model. Pairs are then distributed across the
allowed mass ratio range according to df/dQ|M, z ∝ Q−1 (López-
Sanjuan et al. 2011). López-Sanjuan et al. (2012) additionally pro-
vide the pair fraction in the range 0.1 < Q < 0.25, corresponding
to minor mergers. This is found to be f ≈ 0.06 independent on
redshift. We add those to the ‘Pessimistic’ model to construct the
‘Pessimistic-Minor’ model, which we use to assess the impact of
minor mergers on our findings.

The function τ is then specified by using the formula given by
Kitzbichler & White (2008, their equation 10) to get9

τ = 1.32 Gyr

(
M∗

4 × 1010 h−1 M�

)−0.3 (
1 + z

8

)
, (45)

where M∗ is the total mass of the pair. We shall stress here that
equation (45) provides the galaxy merger time-scale, which can
be regarded as the time-scale over which a bound SMBH binary
forms. The actual coalescence of the binary might be further de-
layed because the system needs to get rid of its energy and angular
momentum in order to get to the efficient GW emission stage. This
is known as the ‘final parsec problem’ (Milosavljević & Merritt
2003); we will return on this potential caveat in the next section.
The galaxy merger rate is finally obtained by inserting equation (44)
– distributing the pairs according to Q−1 – and equation (45) into
equation (42).

Fig. 6 compares the predicted mass growth and average number
of mergers suffered by BCGs as a function of their mass at z = 1 to a
number of observations and theoretical models. When corrected for
the expected contribution of minor mergers, the ‘Fiducial’ model
predicts a mass growth in line with observations by Lidman et al.
(2012). The ‘Optimistic’ one has a larger growth, consistent with
theoretical modelling by De Lucia & Blaizot (2007) and Laporte
et al. (2013), whereas the ‘Pessimistic’ is marginally consistent with
the data, and tends to slightly underpredict the BCG mass growth
(still yielding to mass doubling since z = 1). We will consider all
models in the following, and we stress that our main results do not
qualitatively depend on the details of the growth history of BCGs,
so long as most galaxies experience at least one merger at z < 1.

A small fraction of our galaxies can grow up to 1013 M� (in the
‘Optimistic’ scenario in particular), which might be at odd with the
sharp cut-off in the galaxy mass function observed around 1012 M�
(Bell et al. 2003). However, determinations of the mass function are

9 We fixed rp = 30 kpc in equation 10 of Kitzbichler & White (2008),
because this is the projected separation of the samples we use.

Figure 6. BCG mass growth (top panel) and average number of major
mergers (bottom panel) as a function of initial mass at z = 1. In both pan-
els, red solid curves are predictions of our observation-based semi-analytic
models; from bottom to top: ‘Pessimistic’, ‘Fiducial’ and ‘Optimistic’. In
the top panel, the additional black dashed lines are (in the same order)
growth factors corrected for the contribution of minor mergers (the lower
one corresponds to the ‘Pessimistic-Minor’ model, whereas the same frac-
tional growth correction factor is applied to get the other two curves). The
magenta triangle is the average mass growth predicted by Lidman et al.
(2012), the brown pentagon is derived from De Lucia & Blaizot (2007), the
blue circles are a selected sample of BCGs from Laporte et al. (2013), and
the cyan square is a simulation from Oser et al. (2010). In the bottom panel,
only the number of major mergers is considered, and we additionally plot
the average number of mergers found by Bell et al. (2006, magenta triangle),
Xu et al. (2012, brown pentagon) and Hopkins et al. (2010, blue square).

typically obtained by converting luminosities to stellar masses. This
results in large systematic uncertainties (especially at the high-mass
end) due to the assumptions on the stellar mass-to-light ratio, as well
as the different possible light profile fitting procedures (Bernardi
et al. 2010), which can extend the high-mass tail of the galaxy mass
function by 0.5 dex (Bernardi et al. 2013). Moreover, extreme cases
of BCGs with masses possibly in excess of 5 × 1012 M� have been
reported, the most notable case being ESO 146-IG 005 (Carrasco
et al. 2010).

2.5 Putting the pieces together

We select the initial BCG mass at z = 1 using the high-redshift
sample collected by Lidman et al. (2012), consisting in 32 observed
BCGs with redshift within 0.8 and 1.6. For each initial galaxy of
mass MBCG = Mz = 1, we assign a number of mergers drawn from
a Poissonian distribution with average N(Mz = 1); mass ratios and
redshifts of galactic mergers are distributed according to dN/dz dQ
as reported in equation (42).10 Both BCG and each satellite galaxy,

10 We bin mass and merger distributions and we generate our Monte Carlo
samples accordingly. Bin widths have been determined through numerical
experiments: 10 bins have been used to map the BCG mass distribution
from the Lidman et al. (2012) data; 5 bins have been considered to obtain
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are then populated with SMBHs using the SMBH–bulge relation as
recently obtained by McConnell & Ma (2013):

log

(
MBH

M�

)
= 8.46 + 1.05 log

(
MBCG

1011M�

)
, (46)

with a dispersion of 0.34 dex. In particular, McConnell & Ma (2013)
detect steeper slopes in the galaxy scale laws when BCG data are
included in the fitted sample (cf. also Kormendy & Ho 2013). When
a BCG merges with a satellite galaxy, we assume that the satellite
mass is fully accreted by the BCG:

M ′
BCG = (1 + Q)MBCG. (47)

and we compute the stellar and DM profile from M ′
BCG using the

procedure described in Section 2.2. No SMBH remnant can be
present in the post-merger BCG if both the parent BCG and satellite
did not host any SMBH at their centres; a single SMBH is assumed
to lie in the newly formed BCG if only one of the parents carried a
SMBH; finally, if both the BCG and the satellites had a SMBH, we
assume that the two SMBHs also merge at the same time (redshift)
as the galaxies merge. At each SMBH merger, we compute the
remnant mass, spin and recoil as presented in Section 2.1. From the
kick velocity and the galactic potential of the newly formed BCG,
we compute the return time tR using either tDF from equation (37)
or tB from equation (40) in each of our two models. In practice,
the SMBH is removed from the simulation and placed back to the
galactic centre after a time tR. If tR is smaller than the time between
two galactic mergers, the SMBH will simply settle back at the centre
of its BCG; if instead a subsequent galactic merger happens before,
the BCG centre may already contain a SMBH (coming from one of
the satellites). A new binary merger is computed, possibly resulting
in another ejection from the BCG.

2.6 Possible caveats

A few simplifying assumptions have been made in the implemen-
tation of this procedure, which we justify in the following.

First, we assume that all SMBH binaries merge, thus circum-
venting the so-called final-parsec problem (Milosavljević & Merritt
2003). The bottleneck to SMBH binary evolution (Begelman et al.
1980) is believed to occur on the parsec scale, where intersecting-
orbit stars have all been ejected but GWs are still not efficient
enough to finally drive the inspiral. In principle, the relatively low-
density gas-poor galaxy cores of BCGs are the most exposed to
SMBH binary stalling. It has been found that triaxial potentials
might alleviate the problem by increasing the number of orbits that
cross the binary’s loss cone, therefore providing a way to get rid of
additional binary energy and angular momentum (Merritt & Poon
2004). However, a recent investigation by Vasiliev, Antonini &
Merritt (2014) called this result into question by showing that tri-
axiality alone might not be enough. None the less, in real mergers,
other factors such as rotation, bar-like instabilities and an unrelaxed
time evolving potential might significantly enhance the flux of stars
into the loss cone (Berczik et al. 2006), and recent ab initio N-
body simulations of merging stellar bulges succeeded in driving the
SMBH binary to final coalescence (Khan et al. 2011; Preto et al.
2011). If some gas if present, this may provide additional help in

the average merger numbers N(Mz = 1) (a Poissonian dispersion is then
applied), while for dN/dz dQ we used 4 bins in the mass ratio and 37 bins
in the redshift (bin widths are smaller for z < 0.3, where redshifts get closer
to the end of the simulations z = 0).

hardening the binary (see e.g. Armitage & Natarajan 2002; Escala
et al. 2005; Dotti et al. 2007 for gas driven binaries), even though
it has been also argued that gas might indeed be unable to absorb
significant angular momentum from the binary if the gaseous-disc
mass is limited by self-gravity and fragmentation (Lodato et al.
2009).

Secondly, we only update SMBH masses and spins during merg-
ing events, thus neglecting any accretion mechanism. Giant ellipti-
cals are gas-poor systems, generally unable to supply large amounts
of material to feed the central SMBH. It is observationally well
known that the accretion activity of the most massive black holes
peaks at z ≈ 2 (see e.g. Hopkins, Richards & Hernquist 2007),
rapidly declining at lower redshifts. This trend has been reproduced
by state-of-the-art theoretical models, which find that the most mas-
sive SMBHs at low z grow primarily via mergers (Malbon et al.
2007; Fanidakis et al. 2011), with little contribution from gas ac-
cretion. The change of the SMBH spin magnitude due to accretion
can also be safely neglected: momentum-conservation arguments
(Thorne 1974) imply that the spin magnitude is modified signifi-
cantly only if the accreted mass is the order of the SMBH mass
itself. This assumption is coherent with taking isotropic spin direc-
tions neglecting further spin-alignment processes (see discussion in
Section 2.1).

Thirdly, we neglect any delay between galactic and SMBH binary
mergers, thus assuming that they take place simultaneously. In real-
ity, binary formation and inspiral will postpone the SMBH merger
even if the final-parsec problem is solved efficiently. In dense stel-
lar environments, if there is a continuous supply of stars interacting
with the binary (technically, a full loss cone) SMBHs generally
inspiral for >3 × 107 yr before merging with each other (Sesana
2010), and similar time-scales apply to gaseous environments (Dotti
et al. 2009). This delay will likely be longer for low-density ellip-
ticals (Khan et al. 2011); however, BCGs generally experience at
most 2–3 major mergers since z = 1, therefore delayed SMBH bi-
nary mergers could have a substantial impact on our results only
if binaries typically survive for Gyr (in which case, the distinction
between delayed merger and stalling becomes blurry). We try here
to critically assess the impact on delayed mergers on our results.
We consider the longest merger time-scales found in N-body sim-
ulations of merging galaxies performed by Preto et al. (2011) and
Khan et al. (2012). When scaled to massive ellipticals, the results
of Khan et al. (2012) give coalescence times that can be as long
as ∼1 Gyr (see their table 5), whereas Preto et al. (2011) provide
shorter time-scales (see their fig. 4). We therefore count a posteriori
the fraction of subsequent mergers separated by less than 1 Gyr.
This fractions turned out to be

(i) ∼0.2 in the ‘Fiducial’ scenario;
(ii) ∼0.3 in the ‘Optimistic’ scenario;
(iii) ∼0.12 in the ‘Pessimistic’ scenario;
(iv) ∼0.25 in the ‘Pessimistic-Minor’ scenario (however, in this

latter case, also the number of mergers is larger).

We see that delayed mergers can produce triple interaction in 30 per
cent of the cases at most (considering only the major merger statis-
tics). When a triplet forms, either (i) a strong triple interaction
occurs, causing the ejection of the lightest of the three SMBHs (and
possibly accelerating the coalescence of the binary left behind),
or (ii) a hierarchical system forms, possibly exciting Kozai reso-
nances in the inner binary, again driving it to rapid coalescence.
The outcome of the two processes is generally different, and the
occurrence of one or the other depends on how far has the SMBH
binary already gone into the hardening process, on how shallow
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48 D. Gerosa and A. Sesana

has the galaxy core became, etc. We notice, however, that in case
(i) the number of coalescences decreases at most proportionally
with the fraction of triplets that forms, whereas in case (ii), the
number of coalescences is basically unaffected, since each triplet
formation leads to the coalescence of the binary that was already
in place. Extensive numerical experiments performed by Hoffman
& Loeb (2007) showed that triple interactions generally lead to at
least one binary coalescence (in 85 per cent of the cases), usually
on a time-scale shorter than 1 Gyr (fig. 8 in Hoffman & Loeb 2007).
Therefore, triple interactions might cause a fractional change of our
ejection fractions of 0.3 at most. In any case, it might be interest-
ing to track consistently triplets in our simulations, and this point
may be the subject of future improvements of our model. We also
note that similar assumptions are also often made in more elabo-
rate galaxy-evolution models (see e.g. Barausse 2012 for a critical
discussion).

We are also neglecting the previous merger history of the BCGs.
BCGs will generally reach z = 1 after multiple merger events. The
inspiral of a SMBH binary preceding a merger is expected to leave
an imprint on the host galaxy in the form of a core scouring in the
BCG centre (especially if little nuclear star formation occurs). At
each merger, the mass ejected in stars is of the order of ∼0.5M
(where M is the total mass of the binary; Merritt 2006). The effect
may be important after many merger generations and it leads to
strong modification of the galactic potential in the core region.
This effect is absent in our simplified model, but we note that
the core properties are only important when estimating the SMBH
return time in the Bounce model (Section 2.3). The fitting procedure
developed here is built on the results obtained by Gualandris &
Merritt (2008), which in turn consider an elaborate galaxy model
(Terzić & Graham 2005) where core depletion is taken into account.

3 R ESULTS AND DISCUSSION

We combine different prescriptions for two main processes:

(i) the return time: Dynamical friction or ‘Bounce’ (Section 2.3);
(ii) the merger distribution: ‘Fiducial’, ‘Optimistic’ or ‘

Pessimistic’ (Section 2.4).

This results in a set of six models that we use as investigation
playground: ‘Fiducial-DF’, ‘Fiducial-Bounce’, ‘Optimistic-DF’,
‘Optimistic-Bounce’, ‘Pessimistic-DF’, ‘Pessimistic-Bounce’. In
each model, the evolution of the SMBH population is character-
ized by the following input parameters:

(i) initial BCG occupation fraction fz = 1;
(ii) occupation fraction of the satellite galaxies fs;
(iii) initial SMBH spin magnitudes in the BCGs χz = 1;
(iv) SMBH spin magnitudes in the satellites χ s.

We discuss in the following the results of our simulations, separating
the effect of each individual parameter. The main observables are

(i) final BCG occupation fraction fz = 0 (later split between those
galaxies which underwent a SMBH replenishment f R

z=0 and those
which keep their original SMBH f NR

z=0);
(ii) fraction of BCG that do not host a nuclear SMBH at z = 0,

simply defined by 1 − fz = 0;
(iii) distance from the BCG centre (offset) of the ejected SMBH

at the present time rz = 0.

For any given set of parameters, we simulate 1000 BCGs (with
the exception of the runs presented in Figs 9 and 11 which con-
tains 10000 BCGs): typical Poisson counting errors on the final

occupation fractions are therefore ∼3 per cent. Most of the results
presented here (with the exception of Section 3.2.2 where such is-
sue is explicitly investigated) are computed assuming fz = 1 = 1 as
a simplifying assumption (cf. Section 1)

3.1 The impact of the host properties: cluster shape
and BCG merger rates

The six models described above are defined by distinct ‘environ-
mental properties’ which are not directly related to the SMBH pop-
ulation itself; namely the merger history of BCGs (determining the
number of SMBH binary mergers) and the shape of the cluster po-
tential (governing the typical return time-scales of ejected SMBHs).
We describe their impact on the results first (fixing fz = 1 = fs = 1),
turning to the properties of the SMBH population in the next sub-
section.

3.1.1 Bounce versus DF models

The detailed shape of the cluster potential affects the trajectory
of the recoiling SMBH. If all gravitational potentials were spheri-
cally symmetric, then SMBHs would always get back to the core of
BCGs, and the Bounce model would provide a complete description
of the dynamics. However, cluster density profiles are often triax-
ial, unrelaxed, and ‘clumpy’. In a triaxial potential orbits do not
conserve angular momentum, implying that the SMBH will miss
the BCG core at subsequent passages; additionally, gravitational
perturbations due to subhaloes and other galaxies can easily deflect
the SMBH out of its initially radial orbit. The DF model is taken as
an extreme (and admittedly unrealistic) case in which the SMBH
returns on a circular orbit. Both the DF and the Bounce models are
idealizations meant to bracket the range of possible outcomes. As
shown in Fig. 4 for three selected systems, return time-scales can
easily exceed the Hubble time in the DF model. This is better seen in
Fig. 7 where the distributions of recoil velocities vk and return times
tR are computed along the evolution of the BCG population for our
four default models. For all of them, the recoil distribution presents
a high-velocity tail extending to about 4000 km s−1, with a median
value of about 600 km s−1. The difference between the Bounce and
the DF models is clearly shown in the return time distribution. As
expected, the rise of the distribution at tR < 1 Gyr (corresponding
to small kick velocities) is similar because the bounce dynamics
is basically equivalent to a DF process when the SMBH do not
leave the galaxy core. However, in the DF scenario, about 10 per
cent of the SMBH are ejected outside the host BCG and interacts
only with the low-density DM background outside the galaxy, with
resulting return times longer than 10 Gyr (cf. the bump of the black
distributions in the left-hand panel of Fig. 7). As a result, BCG
occupation fractions fz = 0 can be as low as 85 per cent in the case
χz = 1 = χ s = 1, as reported in the upper panels of Fig. 8. Con-
versely, in the Bounce model, only few SMBHs do not make it back
to the galaxy core following a kick, resulting in occupation fractions
of 98 per cent or higher. The two models are best compared in terms
of ‘depleted fraction’, i.e. the fraction of BCGs that do not host a
SMBH at z = 0, which is simply 1 − fz = 0. This is shown in the
lower panels of Fig. 8; it is clear that the DF model depletes BCGs
of their central SMBH 10 times more efficiently than the Bounce
model.

3.1.2 Fiducial, optimistic and pessimistic models

Conversely, the adopted merger rate does not have a strong im-
pact on fz = 0, and the difference between Fiducial, Optimistic and
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Missing black holes in BCGs 49

Figure 7. Return time distribution tR (left) and recoil velocity distribution vk (right) of all kicked SMBH in a 1000-events Montecarlo realization of our
four fiducial models. Red (black) curves are for the Bounce (DF) models, whereas solid, dashed and dotted curves correspond to the Fiducial, Optimistic and
Pessimistic scenarios respectively, as labelled in figure. The dotted vertical lines are the median values of all the distributions (which are not distinguishable
on this scale). All distributions are computed assuming unity occupation fractions at z = 1 and χz = 1 = χ s = 1.

Pessimistic models is only modest, being at most a factor of ∼2 in
terms of depleted fractions, as shown in Fig. 8. For example, for
χz = 1 = χ s = 1, 1 − fz = 0 varies between 0.1 and 0.15. The impact
of minor mergers is also small, as shown in the left-hand panels of
Fig. 8.

Although apparently counter intuitive, this result is in fact ex-
pected because a higher BCG merger rate implies also a higher
probability of multiple mergers. While it is true that each SMBH has
a larger chance to be kicked out of its host, it is also true that there is a
higher probability that it is replaced by another (possibly undermas-
sive) SMBH brought in by a subsequent merger. Enhanced ejections
and replenishments nearly cancel out making fz = 0 only weakly de-
pendent on the details of the merger history. This is illustrated in
Fig. 9, where the extreme case χz = 1 = χ s = 1 is considered. In the
Fiducial-DF model, 87 per cent of the BCGs host a SMBH at z = 0
(fz = 0 = 0.87); however, only 79 per cent of them retained their
original z = 1 SMBH, while ∼9 per cent are depleted of their origi-
nal SMBH and ‘replenished’ in a subsequent merger with a satellite
galaxy hosting a SMBH. In the Optimistic-DF model those per-
centages become 69 and 16 per cent, respectively: more SMBH are
ejected (only 69 per cent of original SMBHs retained), but a larger
fraction of BCGs is replenished (16 per cent) by virtue of the higher
merger rate (causing a higher probability of multiple mergers). The
opposite behaviour is detected when the Pessimistic-DF scenario
is considered. The balance is almost perfect in the Bounce models
(also shown in Fig. 9). All three scenarios show fz = 0 
 0.98, but the
probability of replenishment increases from the Pessimistic to the
Fiducial and Optimistic models following a larger number of SMBH
ejections.

As expected, the SMBH-mass distributions are different for re-
plenished and non-replenished galaxies. Non-replenished galaxies
reflect the injected correlation law (equation 46) with lower scatter-
ing at z = 0, while the replenished samples tend to host undermas-
sive SMBHs which have grown within smaller satellite galaxies in
the cluster.

3.2 The impact of the SMBH properties: spin magnitude
and initial occupation fraction

Having explored the impact of the physics governing the evolution
of the SMBH environment, we turn now to a description of the
effect of the parameters related to the SMBH population itself; in
particular SMBH spins and initial occupation fraction.

3.2.1 Spin magnitude

The magnitude of the SMBH spin vectors in BCGs is essentially
unknown, since most of the direct measurements from Kα iron lines
involve local Seyfert galaxies (Brenneman 2013; Reynolds 2013)
and it is difficult do derive clear constrains through indirect argu-
ments related to jet production, AGN spectra energy distribution
fitting, or the evolution of the SMBH accretion efficiency with mass
and redshift (see e.g. Wang et al. 2009; Shankar et al. 2010; Netzer &
Trakhtenbrot 2014). However, we know that spins are crucial in the
physics of gravitational recoils, because highly spinning SMBHs are
likely to experience stronger recoils (see equation 14). We therefore
need to investigate the SMBH parameter space carefully, to cover
the full range of possibilities predicted by our models. For each of
our four models, we initialize χz = 1 at a fixed value, running be-
tween zero and one. As stated in Section 2.1, the spin orientations
are assumed to be isotropic. For each case, we consider two differ-
ent χ s distributions: (i) χ s = χz = 1 in each individual merger, and
(ii) χ s random in the range [0, 1]. As shown in the upper panels of
Fig. 8, fz = 0 is always a decreasing function of χz = 1, and is fairly
well described by a quadratic function. Trends are best seen in the
lower panels of Fig. 8, where we plot the depleted BCG fraction
1 − fz = 0. In terms of the depleted fraction, spins have an order of
magnitude impact on the results. In the DF model, only ≈1–4 per
cent of the BCGs are depleted at z = 0 (i.e. 1 − fz = 0 = 0.01 −
0.04) for χz = 1 = 0, whereas up to ≈10–15 per cent of the BCGs
lost their SMBH at z = 0 (i.e. 1 − fz = 0 = 0.1–0.15) for χz = 1 = 1.
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50 D. Gerosa and A. Sesana

Figure 8. BCG occupation fractions. The left-hand plot shows the ‘Fiducial’ and the ‘Optimistic’ models, whereas the right-hand plot compares the ‘Pessimistic’
and the ‘Pessimistic-Minor’ models, to assess the impact of minor mergers. In each plot, the top panel shows the dependence of the z = 0 occupation fraction
fz = 0 on the initial BCG spin magnitude χz = 1. To highlight the peculiarities of each individual model, the lower panel shows the corresponding depletion
fraction 1 − fz = 0, in logarithmic scale. Runs have been performed with two prescriptions on the spin magnitude of the satellite galaxy SMBHs χ s, taken either
to be equal to the spins of the BCG SMBHs (black curves) or uniformly distributed in [0, 1] (red curves). A quadratic interpolation is presented in both cases.
While final fractions as low as ∼0.85 are detected in the DF scenario, only fz = 0 ∼ 0.98 can be achieved in spherically symmetric (Bounce) galaxies even for
maximally spinning SMBHs.

Similar trends hold for the Bounce model, but in that case only
≈0.1 per cent to ≈2 per cent of the SMBHs are lost at z = 0. It is
interesting to notice that even for χz = 1 = 0, we get 0.01 < 1 −
fz = 0 < 0.04 in the DF models. This is, again, because of multiple
mergers: a Schwarzschild SMBH can acquire a spin χ ≈ 0.5–0.6
in a single merger event (see equation 9), which significantly en-
hances the probability to experience a superkick if a subsequent
merger occurs. The different χ s prescriptions (case i and ii above)
show the same qualitative feature. The fits to the depleted fractions
(lower panel of Fig. 8) intersect around χz = 1 = 0.5 as expected:
for lower values, the average χ s in case (ii) is larger, resulting in
more superkicks and more SMBH ejections, while the opposite is
true in case (i).

3.2.2 Initial BCG occupation fraction

All theoretical models developed to reproduce the SMBH cosmic
evolution (including present number density, and quasar luminosity
function up to high redshift) require an amount of SMBHs that
guarantees an occupation fraction f = 1 for massive galaxies (see e.g.
Malbon et al. 2007; Bellovary et al. 2011; Guo et al. 2011; Khandai

et al. 2014), pending, of course, the occurrence of superkicks. There
is always the possibility that a superkick occurs at z > 1, even
though galaxies at higher redshift are generally richer of cold gas,
which will likely promote SMBH spin alignment during mergers
(Bogdanović et al. 2007; Dotti et al. 2010), ultimately suppressing
superkicks (Kesden et al. 2010b). None the less, this might introduce
some uncertainty on fz = 1 and, although we do not expect it to be far
from unity, we study the sensitivity of our models to this parameter
for completeness.

Fig. 10 shows fz = 0 as a function of fz = 1, for 240 different merger
trees. The main evidence is that fz = 1 scales linearly with fz = 0. The
slopes and the intercept of the linear relation mostly depend on
the occupation fraction of the satellite galaxies fs, i.e. on how many
SMBHs are injected in the simulations between z = 0 and z = 1. The
linear relationship between fz = 1 and fz = 0 can be easily understood
using a simple analytic model (built on the line of Schnittman 2007).
The probability fi of a BCG to have a SMBH at the ith merger
generation consists in the sum of (i) the probability that only the
BCG had a SMBH at the previous generation fi − 1(1 − fs), (ii) the
probability that only the satellite had a SMBH fs(1 − fi − 1) and (iii)
the probability that there has been a merger but the SMBH has not
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Missing black holes in BCGs 51

Figure 9. Deviations from the SMBH/host relation in replenished galaxies, and final occupation fractions. We show the distributions of the SMBH mass MBH

and the galaxy mass MBCG in our six different models, assuming fz = 1 = fs = 1 and χz = 1 = χ s = 1. Dashed and dotted lines show the average and the standard
deviation of the initial correlation (equation 46). Blue circles shows the initial z = 1 sample. We track those system where a replenishment occurred (R, red
diamonds) and those which just underwent a plain evolution to z = 0 (NR, green triangles). While the evolved NR sample still lies on the z = 1 correlation but
with lower scatter, replenished galaxies clearly exhibit deviations towards lower MBH values. Occupation fractions for each sample are reported in the legends
and are computed considering 10000 initial BCGs; points are shown for only 2000 initial BCGs to avoid cluttering.

been ejected fsfi − 1(1 − Pej) (where Pej is the ejection probability).
This yields

fi = fs + fi−1 − fsfi−1(1 − Pej) . (48)

Using the convergence limit f∞ = 1/(1 + Pej), and fixing fz = 1 as
initial condition, we can write down the previous expression as a
geometric progression:

fi − f∞ = (fz=1 − f∞)

(
1 − fs

f∞

)i

. (49)

With the further (strongly idealized) assumption that Pej is con-
stant over different merger generations, we can estimate the final
occupation fraction in our samples to be

fz=0 − f∞ = (fz=1 − f∞)
∑
j=0

εj

(
1 − fs

f∞

)j

, (50)

where εj is the fraction of BCG in which j mergers occur be-
tween z = 1 and 0. The above expression confirm the main trends
observed in the simulations presented in Fig. 10, namely the lin-
ear relationship between fz = 0 and fz = 1, with slope and intersect
mainly depending on fs. The initial occupations fz = 1 and fs are

physically determined by cosmic history at early times (z > 1),
whose modelling is outside the scope of the present paper. How-
ever, as discussed before, we expect any deviation of fz = 1 from
unity to be also related to the occurrence of superkicks.

3.3 Discussion

Our results show that superkicks likely have very interesting and
potentially observable astrophysical consequences, most notably, a
decrease of the SMBH occupation fraction in BCGs down to 0.9
or lower, under specific assumptions. At the time of writing, secure
SMBH mass measurements have been performed in about 10 BCGs
(McConnell et al. 2012), an insufficient number to empirically con-
strain the models presented here. As described in the introduction,
future thirty-metre-class telescopes like ELT and TMT can easily
boost those figures by a factor of 10 or more. With O(100) SMBH
mass measurements, significant deviations from fz = 0 = 1 can be
measured, making possible to directly test our superkick models,
and possibly providing insights on the BCG SMBH spin distribu-
tion. As shown in the previous section, fz = 0 strongly depends on
both spin magnitudes and the detailed shape of the cluster potentials.
The effect of the two ingredients is somewhat degenerate, since both
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Figure 10. Dependence of the final BCG occupation fraction (fz = 0) on the
initial occupation fraction of BCGs (fz = 1) and satellites (fs). Each point
represents a simulation of 1000 clusters where both the initial BCG and
the satellites galaxies have the same initial spin χz = 1 = χ s (indicated
with symbol size, where small symbols stand for slowly rotating SMBHs
and large symbols for high spins) and model prescriptions (indicated with
different symbol shapes, as detailed in the legend). Each sample (clustered
along the dashed lines, with different colours) is computed with a different
value of fs. As confirmed analytically, the final BCG occupation fraction
scales linearly with the initial occupation fraction; slopes and intercept are
mainly determined by fs.

high spins and non-spherical potentials tend to reduce the occupa-
tion fraction. The degeneracy is, however, only partial. For example,
fz = 0 < 0.9 is possible only if cluster potentials are extremely non-
spherical and typical spins are higher than 0.8. A measurement of
such low BCG occupation fraction will therefore provide valuable
information on both the dynamics of the kicked SMBHs and their
spins. Conversely, an occupation fraction of, say, 0.98 can be due to
a combination of extremely low spins and non-spherical potentials
or very high spins and almost spherical potentials, as demonstrated
in the lower panel of Fig. 8. In this case, degeneracy might be bro-
ken via independent measurements of the cluster mass distribution
derived, for example, by lensing. Those allow us to reconstruct the
shape of the cluster potential, thus providing an estimate of how
likely/unlikely it is for an ejected SMBH to return on a radial orbit.

We note that the Bounce and DF prescriptions have been taken
as extreme cases of a continuum range of possibilities. Since those
prescriptions have a strong impact on the results, we can try to assess
which of the two might be closer to reality on the basis of qualitative
theoretical arguments. In the Bounce model, subsequent passages
of the SMBH across the BCG core are crucial in damping the radial
oscillations, critically shortening the return time. As a matter of
fact, the clumpyness of a typical galaxy cluster mass distribution
might easily cause a SMBH kicked to a few hundred kpc to miss
a galaxy core which is smaller than 10 kpc across (Lauer et al.
2007). A simple estimate of the deviation from the radial path can
be done by considering close encounters between the kicked SMBH
and other cluster galaxies at apoastron. Consider a SMBH ejected at
r ≈ 100 kpc in a typical cluster of MDM = 5 × 1014 M�. The typical
time it spends close to apoastron is δt ≈ 0.1 Gyr. The gravitational

pull of a galaxy with mass M at a distance d from the SMBH, will
cause a velocity change

δv ≈ GM

d2
δt ≈ 50

(
M

1010 M�

) (
d

104 pc

)−2

km s−1. (51)

In a galaxy cluster like Coma, the galaxy density at 100 kpc from
the centre is few times 103 galaxy Mpc−3 (Weinzirl et al. 2014),
implying that the presence of at least one perturber at d < 10 kpc
is guaranteed. Considering a circular velocity of vc ≈ 103 km s−1,
it is therefore very likely that SMBHs kicked at r > 100 kpc will
acquire a tangential velocity component ≈0.1vc because of inter-
actions with nearby cluster galaxies (and clumpyness of the DM
halo). We performed a simple test of the DF return time-scales for
non-circular orbits by numerically integrating the DF equations in a
Hernquist+NFW potential. We placed the sinking SMBH at a dis-
tance R from the centre, and we gave it an initial velocity v = vc(R)
and v = 0.1vc(R). The first case corresponds to a circular orbit,
while the second implies a nominal eccentricity of e ≈ 0.98 (if the
orbit was Keplerian). Despite an almost radial orbit, the return time-
scale in the latter case was only approximately five times shorter.
We tested that reducing tDF in equation (37) by a factor of 5 may
cause a maximum variation of ∼0.07 on fz = 0 in the extreme case
χ s = χz = 1 = 1, which still implies fz = 0 ≈ 0.9. This suggests that
small deviations from a perfectly radial orbit result in return time-
scales just a factor of a few smaller than our DF computation, but
two orders of magnitude longer than the Bounce model prediction,
which is therefore relevant only for almost spherical potentials. We
conclude that the DF scenario provides a better approximation for
the return time-scales in realistic potentials implying interesting
observational prospects. As shown in Fig. 8, a DF-like dynamics
results in fz = 0 < 0.99 for basically any choice of other relevant pa-
rameters, and the superkick effect should be detected with a sample
of O(100) SMBH mass measurements.

Besides the lower BCG occupation fraction, another interesting
phenomenon is BCG replenishment. We saw in the previous section
that depleted BCGs can be replenished in a subsequent merger with
another SMBH carried by the satellite galaxy. In this case, the
new SMBH will most likely be undermassive with respect to the
BCG mass. This is shown by the red diamonds in Fig. 9, which
lie ≈0.3 dex below the SMBH–bulge relation defined by the green
triangles. However, the net effect of replenishment is just to produce
a slightly lower normalization and larger scatter in the SMBH–bulge
relation, which would be hard to identify observationally.

The implications of superkicks on the BCG occupation fraction
are directly mirrored in the presence of a complementary popula-
tion of wandering SMBHs. In fact, as already noted, full ejections
from galaxy clusters are extremely unlikely because of the high es-
cape speeds. As a natural consequence, some recoiled SMBHs are
still sinking back to the BCG centre today, and can potentially be
detected as off-centre objects, adding evidence to the superkick sce-
nario. Because of the longer return time-scales, off-centre SMBHs
are expected to be at least 10 times more likely in the DF than in the
Bounce models. The offset distribution is shown in Fig. 11 for three
values of the the spin magnitudes χz = 1 = χ s = 0, 0.5, 1, assum-
ing the ‘Fiducial’ model (other models, not shown, yield similar
results). The absolute number of recoiling SMBHs in each panel is
directly related to the average kick velocity imparted after SMBH
mergers, which reflects the average spin magnitude. Distributions
are generally monotonically decreasing functions of the offset rz = 0,
meaning that many of these wandering SMBHs are concentrated in
a few central kpc. However, in the maximally spinning case (right-
hand panel) about 50 per cent of the ejected SMBHs are located
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Figure 11. Number of wandering, off-centre, SMBHs as a function of their present distance from the galactic centre (offset) rz = 0. The DF models (suited
for non-spherical potentials) present at least a factor ∼10 more wandering SMBHs than the Bounce models. SMBH detection through off-nuclear quasar
signatures or compact stellar systems may therefore distinguish between the two scenarios. Each run presented in this figure contains 10000 BCGs, which sets
the absolute scale of the SMBH number; three different spin-magnitude values χz = 1 = χ s = 0 (left-hand panel), 0.5 (middle panel) and 1 (right-hand panel)
are considered; initial occupation fractions are fixed at fz = 1 = fs = 1.

well outside the central BCG, with an offset between 100 kpc and
1 Mpc. Moreover, a tail extending to few Mpc is present, implying
that a few SMBHs might even lurk in the outskirts of galaxy clus-
ters. For this favourable configuration, we predict that between 0.5
and 5 per cent of massive galaxy clusters should host a wondering
BCG SMBH with an offset of a few hundred kpc from the cluster
centre. The situation is less promising for lower spin values, even
though in the intermediate case (central panel) for the DF model,
about 1 per cent of the BCGs might host SMBHs lurking at few
tens of kpc from their centres.

Several observational signatures of recoiling SMBHs have been
proposed in the literature, ranging from off-centre AGNs (Blecha
et al. 2011) and tidal disruptions (Komossa & Merritt 2008; Li
et al. 2012), to intracluster ultracompact stellar systems (Merritt,
Schnittman & Komossa 2009). All of them rely on the fact that
the recoiling SMBH is carrying with it a significant amount of nu-
clear gas and stars, which is not likely in our case. First, BCGs
are mostly gas-poor systems with shallow stellar cores; little cold
gas should be available in the surrounding of the merger remnant,
disfavouring off-nuclear AGN activity. Secondly, the SMBH can
carry away only material that is orbiting around it with a velocity
greater than the kick velocity vk. Ejections to a few hundred kpc
require vk > 1500 km s−1 � σ , implying that the mass in stars and
gas that can be carried away is likely <1 per cent of the SMBH
mass. Lastly, because of their high mass, those SMBHs will sim-
ply swallow stars without tidally disrupting them, inhibiting the
tidal disruption channel as a possible observational signature. The
only possibility seems therefore to be the challenging detection of a
faint ultracompact cluster with extremely high velocity dispersion,
which might be feasible in nearby galaxy clusters as discussed by
Merritt et al. (2009). Alternatively, also ‘naked’ SMBHs still inter-
act with the diffused hot intracluster gas. This can produce X-ray
emission potentially observable at nearby galaxy cluster distances
(see Devecchi et al. 2009 for details).

4 SU M M A RY A N D C O N C L U S I O N S

In this paper, we investigated the consequences of superkicks for the
population of the most massive SMBHs in the Universe residing in

BCGs. The choice of BCGs as study targets follows from a number
of theoretical and observational arguments: (i) compared to other
types of galaxies, BCGs have the richest merger history, especially
at low redshift, (ii) future thirty-metre-scale telescopes will have
the resolution to easily reveal SMBHs in hundreds of BCGs up to
z ≈ 0.2, (iii) theoretically, BCGs are expected to have unit SMBH
occupation fraction, and even a single depleted system would be the
smoking gun of superkick occurrence in nature. We demonstrate
that, under plausible astrophysical assumptions, SMBHs can be
ejected from BCG cores, potentially resulting in an occupation
fraction substantially lower than one in the local Universe (say,
z < 0.1).

Starting from the observational fact that BCGs have doubled their
mass since z = 1 – and that this mass growth is consistent with their
merger activity as inferred from galaxy pair counts, and as found
in simulations of galaxy formation – we have constructed a simple
semi-analytical model to track their evolution to the present time.
Our model reconstructs the dynamics of each single major merger,
including a self-consistent computation of the gravitational recoil
and of the return time of the kicked SMBHs. We considered six
classes of models combining two BCG major merger history mod-
els (‘Fiducial’, ‘Optimistic’ and ‘Pessimistic’, covering the range
consistent with observations and simulations) and two specific pre-
scriptions for the return times (‘Bounce’ and ‘DF’). Minor merger
rates were also available for the ‘Pessimistic’ scenario, we inves-
tigated their impact by including them in the ‘Pessimistic-Minor’
model. Since the magnitude of the spins of SMBHs in BCGs is
basically unknown, for each model we considered a range of spin
distributions for the SMBHs residing in the BCGs, χ , and in the
merging satellites, χ s. We ran several sets of simulations varying
all the relevant parameters, we studied their impact on the final
BCG occupation fraction fz = 0, and we investigated possible obser-
vational consequences.

Our main results can be summarized as follows:

(i) superkicks can efficiently deplete BCGs of their central
SMBHs. The occupation fraction at z = 0 can be as low as
fz = 0 = 0.85 for the most favorable scenarios;
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(ii) fz = 0 is quite insensitive to the BCG merger history, so long
as those experience at least ≈1 merger since z = 1;

(iii) only small quantitative differences were found when com-
paring the ‘Pessimistic’ and the ‘Pessimistic-Minor’ models, im-
plying that the poorly constrained distribution of minor mergers is
not a significant caveat to our findings;

(iv) fz = 0 is very sensitive to the dynamics of the ejected
SMBHs in the galaxy cluster potential well. The fraction of
depleted BCGs (i.e. 1 − fz = 0) is of the order of 0.01 only
for the Bounce models, but it is typically 0.05–0.1 for the DF
models;

(v) the intial value of the SMBH spins has an order of magnitude
influence on the depleted BCG fraction. In the DF models, this varies
from ≈0.02 for non-spinning SMBHs, up to ≈0.15 for maximally
spinning SMBHs;

(vi) we predict that a few per cent of the galaxy clusters host
an offset BCG SMBH inspiralling at a few hundred kpc from the
dynamical centre, although they might be extremely difficult to
detect;

(vii) for a large variety of physically plausible scenarios, we
predict fz = 0 < 0.99, that can be directly tested with measurements
of SMBHs in the centre of O(100) BCGs with future thirty-metre
telescopes.

As detailed in Section 2.5, we made a number of simplifying as-
sumptions in our calculation. In particular, we neglected any possi-
ble mass and spin evolution due to gas accretion, and we assumed
SMBH binaries always merge following galaxy mergers (i.e. we
bypassed the final parsec problem). Moreover, we assumed random
spin orientations when computing kick velocities. We showed that
all these assumptions are well justified at least for the majority of
mergers involving BCGs, but refinement of some of them might be
considered for future work.

Although current statistics of SMBH mass measurements in
BCGs is insufficient to empirically constrain the models presented
here, prospects look promising for the next generation of thirty-
metre-class optical telescopes. Any measurement of a BCG occu-
pation fraction lower than unity will provide observational evidence
for the occurrence of superkicks in nature, bringing the extreme dy-
namical effects of strong-field general relativity to the realm of
observational astronomy.
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Milosavljević M., Merritt D., 2003, in Centrella J. M., ed., AIP Conf. Proc.

Vol. 686, The Astrophysics of Gravitational Wave Sources. Am. Inst.
Phys. New York, p. 201

Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Neto A. F. et al., 2007, MNRAS, 381, 1450
Netzer H., Trakhtenbrot B., 2014, MNRAS, 438, 672
Oser L., Ostriker J. P., Naab T., Johansson P. H., Burkert A., 2010, ApJ, 725,

2312
Peacock J. A., 2003, preprint (arXiv:e-prints)
Peebles P. J. E., 1980, The Large-Scale Structure of the Universe. Princeton

Univ. Press, Princeton, NJ
Peebles P. J. E., 1993, Principles of Physical Cosmology. Princeton Univer-

sity Press, Princeton, NJ
Perego A., Dotti M., Colpi M., Volonteri M., 2009, MNRAS, 399, 2249
Posti L., Nipoti C., Stiavelli M., Ciotti L., 2014, MNRAS, 440, 610
Postman M. et al., 2012, ApJ, 756, 159
Preto M., Berentzen I., Berczik P., Spurzem R., 2011, ApJ, 732, L26
Pretorius F., 2005, Phys. Rev. Lett., 95, 121101
Reynolds C. S., 2013, Space Sci. Rev, 183, 277
Rezzolla L., Barausse E., Dorband E. N., Pollney D., Reisswig C., Seiler J.,

Husa S., 2008, Phys. Rev. D, 78, 044002
Robaina A. R., Bell E. F., van der Wel A., Somerville R. S., Skelton R. E.,

McIntosh D. H., Meisenheimer K., Wolf C., 2010, ApJ, 719, 844
Russell H. R., McNamara B. R., Edge A. C., Hogan M. T., Main R. A.,

Vantyghem A. N., 2013, MNRAS, 432, 530
Schnittman J. D., 2004, Phys. Rev. D, 70, 124020
Schnittman J. D., 2007, ApJ, 667, L133
Schnittman J. D., Buonanno A., 2007, ApJ, 662, L63
Sesana A., 2010, ApJ, 719, 851
Sesana A., 2013, MNRAS, 433, L1
Sesana A., Barausse E., Dotti M., Rossi E. M., 2014, ApJ, 794, 104
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