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Abstract: Background: Whey protein has been shown to be one of the best proteins to stimulate 
muscle protein synthesis rate (MPS), but other high quality proteins, e.g., animal/porcine-derived, 
could have similar effects. Objective: To investigate the effects of hydrolyzed porcine proteins from 
blood (HPB) and muscle (HPM), in comparison to hydrolyzed whey protein (HW), on MPS after 
intake of 15 g alone or 30 g protein as part of a mixed meal. We hypothesized that the postprandial 
MPS would be similar for porcine proteins and whey protein. Design: Eighteen men (mean ± SD 
age: 24 ± 1 year; BMI: 21.7 ± 0.4 kg/m2) participated in the randomized, double-blind, three-way 
cross-over study. Subjects consumed the three test products (HPB, HPM and HW) in a random order 
in two servings at each test day. Serving 1 consisted of a drink with 15 g protein and serving 2 of a 
drink with 30 g protein together with a mixed meal. A flood-primed continuous infusion of (ring-
13C6) phenylalanine was performed and muscle biopsies, blood and urine samples were collected 
for determination of MPS, muscle free leucine, plasma amino acid concentrations and urea 
excretion. Results: There were no statistical differences between the MPS measured after consuming 
15 g protein alone or 30 g with a mixed meal (p = 0.53) of HPB (0.048 ± 0.007 vs. 0.049 ± 0.008%/h, 
resp.), HPM (0.063 ± 0.011 vs. 0.062 ± 0.011 %/h, resp.) and HW (0.058 ± 0.007 vs. 0.071 ± 0.013%/h, 
resp.). However, the impact of protein type on MPS reached statistical tendency (HPB vs. HPM (p = 
0.093) and HPB vs. HW (p = 0.067)) with no difference between HPM and HW (p = 0.88). Plasma 
leucine, branched-chain, essential and total amino acids were generally higher for HPB and HW 
than HPM (p < 0.01), which reflected their content in the proteins. Muscle-free leucine was higher 
for HPB than HW and HPM (p < 0.05). Conclusion: Hydrolyzed porcine proteins from blood and 
muscle resulted in an MPS similar to that of HW, although with a trend for porcine blood proteins 
to be inferior to muscle proteins and whey. Consequently, these porcine-derived muscle proteins 
can be used similarly to whey protein to support maintenance of skeletal muscle as part of 
supplements and ingredients in foods. 

Keywords: dietary proteins; porcine proteins; muscle protein synthesis; amino acids; FSR 
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1. Introduction 

Daily provision of essential amino acids (EAA) through intake of dietary protein is a necessary 
composite of an adequate daily energy intake to support overall de novo protein synthesis, both in the 
context of this paper and for the general maintenance of muscle mass [1,2]. The peripheral availability 
of EAA, often reflected by the postprandial elevation of circulating amino acid, is dependent on i) the 
quantity of ingested protein [3], and ii) the relative content of the EAA in the protein and even specific 
amino acids [4], as well as iii) the digestibility and absorption rate of the protein [5,6], with the latter 
two being components for evaluating the quality of a protein source [7]. However, both protein 
amount and energy content are decisive for the overall net protein balance in response to a meal [8]. 
Whey proteins are complete in amino acid composition and appear superior to e.g. casein in 
stimulating MPS in the immediate postprandial hours [9–11]. A quick digestibility and hence 
availability of constituent amino acids in the circulation is important for the postprandial stimulation 
of muscle protein synthesis (MPS) [12]. Hence, whey protein, being high in EAA and rapidly 
absorbed, appears as one of the most anabolic proteins [13]. Many animal proteins are also complete 
proteins containing all EAA and therefore, they are also of interest. Meat proteins have been shown 
to stimulate MPS [14–17]. Burd et al. [14] investigated the increase in MPS following consumption of 
30 g protein from skimmed milk or minced beef post exercise and found that milk resulted in a higher 
MPS compared to beef in the early phase (0–2 h post exercise), most likely due from the faster 
appearance of leucine after milk intake, while there was no difference on MPS between proteins in 
the later phase (2–5 h post exercise) where the amino acid availability was sufficient to maintain an 
elevated MPS after both intakes. Hence, if animal-derived protein can be made more readily 
accessible after consumption, the stimulatory capacity on MPS may become as good as that of whey 
protein (the Golden Standard) and hence, make up an alternative protein source. Porcine meat is 
widely consumed in Europe and Asia and residual proteins from such slaughter animals are highly 
available [18]. Such proteins from meat side-streams and slaughter animal residuals make up its own 
business and if they could be used for human feed would add major value of the slaughter animals. 
Further, taste, solubility and heating tolerance are characteristics related to specific proteins and the 
slaughter animal-derived ingredients will widen the variability of foods and applications for the 
benefit of both industry and consumers. Proving a high anabolic potential of such animal-derived 
protein ingredients will therefore provide arguments for an added-value of foods, a decreased waste 
generation, and support sustainability. Therefore, this study is aimed at investigating the anabolic 
potential of such residual porcine protein hydrolysate ingredients and comparing it with high quality 
whey protein hydrolysate with the purpose of investigating novel ingredients for improvement of 
protein quality of new foods for human nutrition.  

Hence, we studied the postprandial MPS response after intake of 15 g protein hydrolysates 
derived from porcine blood or muscle and compared that to the response after intake of 15 g 
hydrolyzed whey protein. Further, to explore any interaction with energy in a mixed meal on MPS, 
we subsequently provided a larger dose of 30 g protein in a drink served with a mixed meal. We 
hypothesized that the postprandial increase in MPS would be similar for the porcine-derived proteins 
and whey protein.  

2. Subjects and Methods 

2.1. Subjects 

Twenty-two normal weight (BMI 18.5–25.0 kg/m2) men aged 22–40 years were recruited for the 
study by advertisements at webpages from August 2015 to April 2016. All subjects participated in a 
physical screening and 18 subjects were selected for the study based on the following criteria: healthy, 
non-vegetarian, non-smokers, no drug abuse, low-to moderate alcohol consumption, no regular 
engagement in cardio or strenuous physical training, no use of protein supplements, no use of 
medication, no blood donation three months prior to the study, no participation in other clinical 
studies four weeks prior to the study and hemoglobin >8.0 mmol/L. Moreover, all subjects were 
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weight stable at inclusion (±3 kg within the previous three months) and were instructed not to change 
their dietary pattern or physical activity level throughout the study period.  

The study was conducted according to the guidelines laid down in the declaration of Helsinki II 
and all procedures involving human subjects were approved by the Danish National Committee on 
Health Research Ethics (journal number: H-15003581). Written informed consent was obtained from 
all subjects after verbal and written information about the study procedures. The trial was registered 
on clinicaltrials.gov as NCT02477410. 

2.2. Physical Screening 

The physical examination conducted at the screening visit included measurements of body 
weight, height and body composition. Body weight was recorded to the nearest 0.1 kg (Lindeltronic 
8000S, Lindells, Sweden) and height was measured with a wall-mounted stadiometer to the nearest 
0.5 cm. Body composition was determined by Dual-energy X-ray absorptiometry (DXA) (Lunar 
Radiation Co., Madison, WI, USA). All measurements were performed with subjects wearing only 
underwear and after a 12 hour fast.  

2.3. Experimental Design 

The study was a randomized, double-blind (subjects and researchers), three-way cross-over 
study, where subjects in a random order received the following treatments 1) hydrolyzed porcine 
blood protein (HPB, Danish Crown Ingredients, Copenhagen V, Denmark), 2) hydrolyzed porcine 
muscle protein (HPM, Danish Crown Ingredients, Copenhagen V, Denmark) and 3) hydrolyzed 
whey protein (HW, Lacprodan, Arla Foods Ingredients group P/S, Viby Jylland, Denmark). The 
randomization was done by a technician not taking part in the experimental trials. 

All subjects completed three identical intervention visits that were separated by at least two 
weeks (Figure 1). The night before the intervention visits subjects were asked to consume a 
standardized meal at home no later than 20.00 h. The meal was provided as freeze product 
beforehand and subjects were asked to consume the entire meal. After fasting for approximately 12 
h (0.5 L water was allowed), subjects arrived by public transportation or car at the Department of 
Nutrition, Exercise and Sports, University of Copenhagen at 7.30 h. 

 
Figure 1. Experimental design. All 18 subjects completed three identical visits during the study 
period. B, muscle biopsy, S1, serving 1 (15 g protein); S2, serving 2 (30 g protein served with a mixed 
meal). Time is given in minutes (min) around time point zero (0) where the tracer infusion (flood-
primed, continuous infusion) was started and S1 was provided. 

Upon arrival urine was collected to ensure an empty bladder and body weight was recorded. 
Moreover, a venflon catheter (VenflonTM Pro I.V. Cannula, Becton Dickinson, Mountain View, CA, 
USA) was placed in an antecubital vein for infusion of [ring-13C6] phenylalanine (Cambridge Isotopes 
Laboratories, Andover, MA, USA) and a second catheter was placed in a superficial hand vein in the 
opposite arm for repeated blood sampling using the heated hand box technique [19]. A background 
blood sample was drawn and in trial two and three also a muscle biopsy from vastus lateralis was 
obtained. Thereafter, an infusion with [ring-13C6] phenylalanine (Cambridge Isotopes Laboratories, 
Andover, MA) was initiated. First, a flood-primed infusion (1320 mg unlabeled and 105.6 mg labelled 
[ring-13C6] phenylalanine in 100 mL suspension) was given over 2–5 min, followed by a continuous 
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infusion of [ring-13C6]phenylalanine (~0.855 mg × fat free mass (kg)−1 × hour−1) for five hours to 
maintain isotopic steady state at an estimated tracer-to-tracee ratio (TTR) of 8% [20]. This infusion 
protocol allowed us to save time (approximately 60–120 min) which is required before isotopic steady 
state is achieved during a classic primed-continuous amino acid tracer infusion.  

Hereafter, at 8.30 h (time 0 min), subjects were served a protein drink for breakfast (serving 1: 15 
g protein) together with 150 mL water. Blood samples were then drawn after 20, 40, 60, 90, 120 and 
150 min. After 150 min the second muscle biopsy was taken from vastus lateralis and at 160 min a 
second protein serving was provided (serving 2: 30 g protein) with 200 mL. of water together with 
toast bread (see section Protein servings). Blood samples were then drawn at the following times 180, 
200, 220, 250, 280 and 310 min. At time 310 min the third muscle biopsy was taken from vastus lateralis 
and the infusion with [ring-13C6] phenylalanine was stopped. Urine samples were collected from 0–
160 min (serving 1) and from 160–310 min (serving 2) to determine postprandial urea excretion. 

2.4. Protein Servings 

Subjects were provided two protein servings at each intervention visit. The two protein servings 
included a protein drink containing one of the three proteins of interest; HPB, HPM or HWP. Energy 
density, macronutrient composition and fiber content were similar between the three dietary 
treatments. Serving 1 consisted of a drink containing 15 g hydrolyzed protein dissolved in 100 mL 
water added 8 g of licorice powder to mask the bitter taste of the proteins (~400 kJ, 68 energy 
percentage (E%) protein, 26 E% carbohydrate, 6 E% fat). Serving 2 consisted of a drink with 30 g 
hydrolyzed protein and 16 g licorice powder in 200 mL water and toast bread with mayonnaise, 
cucumber and bell peppers (3 MJ, 24 E% protein, 46 E% carbohydrate and 30 E% fat). Free tracer was 
added to the protein drinks to account for any dilution of infused tracer during the postprandial 
periods. The amount was calculated based on the expected enrichment obtained by infusion and 
according to the tracer content in the protein. The amino acid composition of the three proteins is 
presented in Table 1.  

Table 1. Amino acid (AA) composition in 15 g protein. 

 
HW HPB HPM 

g AA/15 g protein 
Alanine 0.8 1.3 1.0 
Arginine 0.4 0.6 1.1 

Aspartic acid 1.7 1.7 1.1 
Cystein + cysteine 0.4 0.1 0.1 

Glutamic acid 2.7 1.2 2.3 
Glycine 0.3 0.8 1.3 

Histidine 0.3 1.1 0.4 
Isoleucine 1.0 0.1 0.4 
Leucine 1.7 1.9 0.8 
Lysine 1.4 1.5 1.0 

Methionine 0.3 0.1 0.3 
Phenylalanine 0.5 1.0 0.3 

Proline 0.9 0.5 0.9 
Serine 0.8 0.7 0.4 

Threonine 1.1 0.6 0.4 
Tryptophan 0.3 0.3 0.1 

Tyrosine 0.5 0.4 0.3 
Valine 0.9 1.2 0.5 
EAA 6.1 6.2 3.1 

BCAA 3.6 3.2 1.7 
Total AA 1 16.0  15.1 12.7 

Data are presented as g AA/15 g protein. 1 Total AA differs from 15 g protein due to different analyses 
for total N and specific AA. AA, amino acids; BCAA, branched-chain amino acids; EAA, essential 
amino acids; HPB, hydrolyzed porcine blood protein; HPM, hydrolyzed porcine muscle protein; HW, 
hydrolyzed whey protein. 
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2.5. Muscle Biopsies 

Muscle biopsies were taken from vastus lateralis quadriceps using a 5 mm biopsy needle (Pelomi 
Medical, Denmark) with manual suction under sterile conditions and local anesthesia (3–5 mL 1–2% 
lidocaine). The order of the leg used (left/right/left or right/left/right) as well as the order of the 
placements of the biopsies in the muscle (top, middle and bottom) were randomly determined for all 
participants according to predefined randomization sequences. One incision was made for each 
biopsy and all three biopsies were taken from the same leg per test day. Muscle specimens were 
weighed to assure a minimum of 30 mg muscle. The biopsy was immediately washed in cold saline 
(NaCl concentration: 9 mg/mL) to remove blood and visible adipose tissue. The muscle specimen was 
immediately frozen in liquid nitrogen in a sealed container and stored at −80 °C until further analysis. 

2.6. Blood Samples 

Blood samples were collected using the heated hand box technique, to obtain arterialized venous 
blood [19]. The hand was placed in a cavity through which heated air circulates to warm the hand to 
50 °C and blood is collected through an indwelling superficial catheter placed at the back of the hand. 
Blood samples were collected into EDTA tubes centrifuged for 10 min at 4 °C at 2900 g and stored at 
−80 °C until analysis for plasma (p) amino acid concentrations and tracer abundances.  

2.7. Analyses 

2.7.1. Tracer Enrichment 

Amino acid concentrations and phenylalanine abundances in plasma samples were measured 
using liquid chromatography tandem mass-spectrometry (LC-MS/MS) as described elsewhere [21]. 
Briefly, to 100 µL plasma, 100 uL internal amino acid labelled standard were added, mixed and the 
amino acids were purified by the following process: First, acidification by addition of 1 mL 50% acetic 
acid and poured over resin columns (AG 50W-X8 resin; Bio-Rad Laboratories, Hercules, CA, USA), 
eluted with 2 × 1 mL 2 M NH4OH, and dried down under a stream of nitrogen. The purified amino 
acids were derivatized to yield phenylthiocarbamyl derivites, dried and re-dissolved in 100 uL of LC 
buffer B and 10 uL was injected for analysis on a triple stage quadrupole mass-spectromter, TSQ 
Vantage (Thermo Fisher Scientific, San Jose, CA, USA). 

2.7.2. Muscle Biopsies 

Skeletal muscle specimens of 20–25 mg wet weight were added an internal standard (U-13C6-
leucine), homogenized (FastPrep 24, MP Biomedicals, Santa Ana, CA, USA) in 1.5 mL ice-cold saline 
for 2 × 45 sec in vials containing two silicium-carbide crystals and eight lysing beads (Lysing Matrix 
D, MP Biomedicals, Santa Ana, CA, USA), spun (4 °C, 5,500 g, 10 min), and the supernatant 
transferred into new vials, containing 1.5 mL of 100% acetic acid, which was then poured over resin 
columns as described above. The amino acids were then eluted with NH4OH and derivatized mixing 
N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) + 1% tert-butyl-
dimethylchlorosilane (Regis Technologies, Morton Grove, IL, USA) and acetonitrile in a 1:1 ratio 
using 15 uL each. The MTBSTFA-derivatized phenylalanine (M and M + 6, tracer) and leucine (M and 
M + 6, internal standard) abundances were analyzed in a gas chromatograph (GC) (Trace 1310, 
Thermo Scientific; Milano, Italy), quadrupole-mass spectrometer (TSQ Quantum; Thermo Scientific, 
San Jose, CA, USA) operated in electron ionization mode. The muscle free leucine concentrations 
were calculated by estimating the tissue fluid volume (uL) to be 80% of the dry weight (mg).  

The myofibrillar protein fraction was isolated from the remaining muscle protein pellet by 
adding 1 mL of a homogenization buffer (0.02 M Tris, pH 7.4, 0.15 M NaCl, 2 mM EDTA, 2 mM EGTA, 
0.5% Triton-X 100, and 0.25 M sucrose) and homogenized 2x45 sec and then incubated for 3 h at 4 °C. 
It was centrifuged (800 g, 4 °C, 20 min) and the supernatant was discarded. This step with the addition 
of 1 mL homogenization buffer was repeated once, leaving the homogenate for 30 min and again 
discarding the supernatant. To the pellet, 1.5 mL of high salt buffer (0.7 M KCl and 0.1 M Na4P2O7, 
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pyrophosphate) was added, vortexed, and left overnight at 4 °C. The next morning, samples were 
vortexed and centrifuged (1600 g, 4 °C, 20 min) and the supernatant containing the myofibrillar 
protein fraction was transferred to new vials to which we added 3.45 mL (×2.3 vol) ice-cold 99% 
ethanol, vortexed, and left for 2 h at 4 °C. Thereafter, samples were spun (1600 g, 4 °C, 20 min) and 
the supernatant was discarded. The pellet, containing the myofibrillar protein fraction, was washed 
once with 1 mL 70% ethanol, vortexed, and centrifuged (1600 g, 4 °C, 20 min). The myofibrillar 
proteins were hydrolyzed in 1 mL 6 M HCl at 110 °C overnight, after which the hydrolysates were 
diluted with 4 mL water and the constituent amino acids purified over resin columns (AG 50W-X8 
resin; Bio-Rad Laboratories, Hercules, CA, USA) as described for the plasma amino acids. Hereafter, 
the amino acids were derivatized to the N-acetyl n-propyl derivatives, as described in detail 
previously [22]. The analysis of 13C-phenylalanine bound in myofibrillar proteins was performed on 
a gas chromatography-combustion (GC-C) isotope ratio mass Spectrometry (IRMS) system (Hewlett 
Packard 5890-Finnigan GC combustion III-Finnigan Deltaplus; Finnigan MAT; Bremen, Germany) 
[23]. 

2.7.3. Other Biochemical Analyses 

Urine samples were collected after both servings for analysis of postprandial urea 
concentrations, which were determined by ABX pentra Urea CP (Pentra 400 analyzers, Horiba ABX, 
Montpellier, France) with intra-CV: 2.0%, inter-CV: 4.0%.  

2.8. Calculations 

Tracer-to-tracee (TTR) enrichment was determined by subtracting the isotope ratio of a 
background sample from the isotope ratios measured for the samples obtained during the infusion. 
The abundance of 13C-phenylalanine in myofibrillar proteins was converted to TTR from the ∂-value 
measured by the IRMS analysis by the following formula:  

0.0112372 × (0.001 × ∂ + 1) (1) 

Myofibrillar fractional synthesis rate (FSR) was calculated using the standard precursor-product 
model based on the incorporation of [ring-13C6] phenylalanine into myofibrillar proteins: 

FSR (%/h) = ∆Eprotein/(Eprecursor × ∆time(h)) × 100% (2) 

where ∆Eprotein is the difference in tracer enrichment in the myofibrillar proteins between two 
adjacent muscle biopsies. Eprecursor is the weighted average enrichment of [ring-13C6] phenylalanine 
in the muscle free pool during the incorporation time and ∆time is the time between two biopsies.  

Muscle free leucine concentrations (cleu) were calculated from: 

cleu = ((cIS × volIS)/(ratio (M + 6)/M)) × volmuscle (3) 

Where cIS and volIS are the concentration and the volume, respectively, of the internal standard 
(IS) (U-13C9-leucine) used. volmuscle is the watery pool in µL of a muscle specimen estimated as 80% of 
the muscle wet weight in mg. 

Area under the curve (AUC) were calculated for p-leucine, p-phenylalanine, p-branched-chain 
amino acids (BCAA), p-EAA, and p-total amino acids after serving 1 (0 (baseline)–150 min) and 
serving 2 (150–310 min) using the trapezoidal rule. Data on EAA do not include BCAA and data on 
EAA and total amino acids do not include phenylalanine as this was infused in a large amount in the 
prime and hence, does not reflect protein intake. 

2.8.1. Sample Size  

The sample size was based on a power calculation where the least detectable difference in FSR 
was set to 0.01%/h and the within subject standard deviation to 0.01%/h. With a power of 0.8 and a 
significance level of 0.05 a total of 18 completers was required.  
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2.8.2. Statistical Analyses 

Differences in FSR between proteins after consumption of serving 1 or serving 2 were analyzed 
using a linear mixed-effects model with a serving-treatment interaction, treatment order, and age as 
fixed effects and with subject-specific random effects. Model reduction was carried out by first testing 
the interaction term, and, if non-significant, the main effects of serving and treatment were evaluated 
subsequently. The treatment main effect can be seen as accumulated effects, e.g., comparing the 
overall FSRs for both serving periods between the three protein types. Pairwise comparisons were 
reported where appropriate. 

Moreover, concentrations of p-leucine, p-phenylalanine, p-BCAA, p-EAA, p-total amino acids, 
intramuscular free leucine concentrations and intramuscular and plasma tracer enrichments, urine 
urea concentrations, as well as p-leucine and p-phenylalanine AUCserving1 and AUCserving2 were 
analyzed as using a linear mixed-effects model with a serving-treatment interaction and with 
treatment order, and age as fixed effects and with subject-specific random effects. Analysis on 
intramuscular free leucine was adjusted for baseline value. As for the FSRs, tests for interaction and 
main effects were carried out. 

Time to peak for p-leucine concentrations were determined as the time point at which the highest 
concentration was seen after consumption of both serving 1 and 2, respectively. P-leucine 
concentration time to peak was tested after serving 1 and 2 individually using a linear mixed-effects 
model with a treatment effect and age as fixed effects and with subject-specific random effects. 

All data are presented as means and standard error of means (SEM), unless otherwise specified. 
Before statistical analyses were conducted, all data were checked for normality and homogeneity of 
variance. If data were not normally distributed, they were transformed according to best fitted 
transformation. 

Statistical analyses were performed using STATA version 13.1 (StataCorp. 2013, StataCorp LP, 
College Station, TX, USA).  

3. Results 

3.1. Subject Characteristics 

Eighteen subjects completed the study (Table 2). While conducting the trials, two included 
subjects dropped out between the screening visit and initiation of the study as they could not fit the 
experimental visits into their schedules and one subject dropped out after his first visit due to illness. 
Therefore, three more were recruited to end at n = 18 completers. 

Table 2. Subject characteristics of completers at baseline. 

Characteristics  
Age (years) 24 ± 1 

Body weight (kg) 74.5 ± 1.5 
Height (cm) 185.5 ± 1.3 
BMI (kg/m2) 21.7 ± 0.4 

Fat-free mass (kg) 1 62.6 ± 1.0 
Fat mass (kg) 1 13.6 ± 1.2 

Data are presented as mean ± standard deviation (SD), n = 18. 1 Body composition estimated by dual-energy X-
ray absorptiometry. 

3.2. Phenylalanine Concentration and Enrichment in Plasma and Muscle 

The intravenous injection of the flood prime resulted in a marked increase in phenylalanine 
concentration and also introduced the tracer immediately in the arterialized blood in an enrichment 
(7.6% at 20 min after injection (mean of all groups)), which was maintained by the continuous 
infusion (Figure 2). P-phenylalanine enrichment did though differ between proteins (p < 0.0001). It 
was higher at all time-points for HW than for HPB and HPM (except at 180 min) (all p < 0.05) and did 
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not differ between HPB and HPM except at time 180 min, where it was higher for HPM than HPB (p 
< 0.001). AUCserving1 and AUCserving2 for p-phenylalanine concentrations were higher for HPB (serving 
1: 18239 ± 345 µmol/L × 150 min, serving 2: 17593 ± 445 µmol/L × 160 min) than HW (serving 1: 15978 
± 381 µmol/L × 150min, serving 2: 13542 ± 185 µmol/L × 160min, p < 0.001) and HPM (serving 1: 15518 
± 312 µmol/L × 150min, serving 2: 12512 ± 158 µmol/L × 160min, p < 0.001). AUCserving1 for p-
phenylalanine concentrations was similar for HW than HPM (p = 0.10) and AUCserving2 was higher for 
HW than HPM (p < 0.001) (Figure 2). The tracer enrichment in the intramuscular pool was on average 
71% of the enrichment in arterialized plasma at the corresponding time points, with no difference 
between proteins (p = 0.36), but a slightly higher enrichment for all proteins at 310 min compared to 
150 min (p < 0.05) (Figure 2). 

 
Figure 2. Mean ± SEM tracer enrichments (tracer-to-tracee ratio (TTR)) in plasma (p) (dots with lines) 
and muscle (dots at 150 and 310 min only) following the flood-primed continuous infusion with [ring-
13C6] phenylalanine (A), and p-phenylalanine concentrations after consumption of serving 1 and 
serving 2 (B), n=18. (A) a HW significantly different from HPB and HPM, p < 0.05. b HPB significantly 
different from HPM, p < 0.05. Data on TTR were analyzed using linear mixed-effects models with a 
time-treatment interaction and treatment order and age as fixed effects and with subject-specific 
random effects. Data on p-phenylalanine were analyzed as area under the curve (AUC): AUCserving1 
and AUCserving2 using a linear mixed-effects model with a serving-treatment interaction and with 
treatment order and age as fixed effects and with subject-specific random effects. HPB, hydrolyzed 
porcine blood protein; HPM, hydrolyzed porcine muscle protein; HW, hydrolyzed whey protein. 

3.3. Myofibrillar Protein Synthesis 

The mixed-effects model revealed no serving-protein type interaction (p = 0.66), and the 
subsequent model reduction revealed no effect of the main effects, serving (p = 0.53) and protein type 
(p = 0.14). Hence, over all muscle FSR neither differed between servings (15 g protein alone or 30 g in 
a mixed meal), nor protein types (Figure 3). However, due to the nature of the protein type FSR values 
we report the pairwise comparisons of protein types for pooled servings and HPB tended to be lower 
than HW and HPM (p = 0.067 and p = 0.093, respectively), while no difference was apparent between 
HW and HPM (p = 0.88). 

3.4. Plasma Amino Acids and Muscle Free Leucine Concentrations 

P-leucine concentrations increased for all proteins after both servings (Figure 4). After 
consumption of serving 1 and serving 2 peak p-leucine concentrations were higher for HW and HPB 
than HPM (p < 0.001), with no difference between HW and HPB (p ≥ 0.28). By using the time for when 
leucine concentration was highest within the groups we compared the time to peak, although this is 
not visual from Figure 4. After consumption of serving 1 there was no difference in time to peak 
between proteins (p = 0.16), whereas peak p-leucine concentration was reached more rapidly after 
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HW than HPB (p < 0.01) and tended to be reached more rapidly after HW than HPM (p = 0.059) after 
consumption of serving 2. No difference was found between HPM and HPB (p = 0.32). 

AUC for amino acids were calculated after each of the servings. AUCs after serving 1 were: p-
leucine, HPB = HW > HPM; p-BCAA, HW > HPB > HPM; p-EAA, HPB = HW > HPM; p-total amino 
acids, HPB = HW > HPM. AUCs after serving 2 were: p-leucine HPB ≥ HW > HPM; p-BCAA, HW = 
HPB > HPM; p-EAA, HPB = HW > HPM; p-total amino acids, HPB = HW > HPM (Figure 4).  

 
Figure 3. Mean ± SEM 2.5 h FSR after serving 1 and serving 2, n = 18. Differences in FSR between 
proteins were analyzed using a linear mixed-effects model with a serving-treatment interaction and 
with treatment order and age as fixed effects and with subject-specific random effects. There was no 
effect of protein or serving (p ≥ 0.14). FSR, fractional synthesis rate; HPB, hydrolyzed porcine blood 
protein; HPM, hydrolyzed porcine muscle protein; HW, hydrolyzed whey protein. 

 
Figure 4. Mean ± SEM postprandial p-leucine (A), p-BCAA (B), p-EAA (C) and p-total amino acid (D) 
concentrations after serving 1 and serving 2, n = 18. Time to peak and peak p-leucine concentrations 
were analyzed using linear mixed-effects models with treatment order, age and baseline p-leucine 
concentrations as fixed effects and with subject-specific random effects. Data on p-leucine, p-BCAA, 
p-EAA and p-total amino acids were analyzed as AUCserving1 and AUCserving2 using a linear mixed-
effects model with a serving-treatment interaction and with treatment order and age as fixed effects 
and with subject-specific random effects. HPB, hydrolyzed porcine blood protein; HPM, hydrolyzed 
porcine muscle protein; HW, hydrolyzed whey protein, S1, serving 1 (15 g protein); S2, serving 2 (30 
g protein served with a mixed meal). 
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Muscle free leucine concentrations were higher for HPB and HW than HPM (p < 0.01) at 150 min, 
with no difference between HPB and HW (p = 0.08). At 310 min muscle free leucine concentrations 
were higher for HPB than HW (p < 0.01) and HPM (p < 0.001), and higher for HW than HPM (p < 
0.001) (Figure 5). 

 
Figure 5. Mean ± SEM muscle-free leucine concentrations, n = 18. a HPB significantly different from 
HW, p < 0.01. b HPB significantly different from HPM, p < 0.01. c HW significantly different from HPM, 
p < 0.01. Data were analyzed using linear mixed-effects models with a time-treatment interaction and 
treatment order, age and muscle-free leucine concentrations at baseline as fixed effects and with 
subject-specific random effects. HPB, hydrolyzed porcine blood protein; HPM, hydrolyzed porcine 
muscle protein; HW, hydrolyzed whey protein. 

3.5. Urea 

Postprandial urea concentrations were lower for HPB than HPM and HW after serving 1 (p < 
0.05) and after serving 2 (p < 0.01) with no significant effect of serving. There was no difference 
between HW and HPM (p ≥ 0.44) (Figure 6). 

 
Figure 6. Mean ± SEM postprandial urea concentrations after serving 1 and serving 2, n = 18. * HPB 
significantly different from HPM and HW, p < 0.01. Data were analyzed using a linear mixed-effects 
model with a serving-treatment interaction and treatment order, age and as fixed effects and with 
subject-specific random effects. HPB, hydrolyzed porcine blood protein; HPM, hydrolyzed porcine 
muscle protein; HW, hydrolyzed whey protein 

4. Discussion 

The primary finding in the present study is that hydrolyzed porcine proteins from blood and 
muscle result in an MPS not significantly different from hydrolyzed whey protein when consumed 
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in a moderate dose alone (15 g) and in a dose of 30 g as part of a mixed meal. However, post hoc 
comparisons revealed that MPS after intake of blood protein tends to be lower than after intake of 
both porcine muscle and whey suggesting an inferior effect of porcine blood. Further, no difference 
in MPS was apparent between servings meaning that muscle protein synthesis rate is stimulated 
equally by 15 g protein alone and 30 g in a mixed meal.  

The anabolic effect of whey protein has been extensively studied and its immediate stimulatory 
effect on MPS is yet to be surpassed by other proteins [13]. The present study is the first to investigate 
the anabolic effect of hydrolyzed porcine proteins originating from muscle and blood and comparing 
it with hydrolyzed whey protein on human skeletal muscle. Previous studies on whey protein have 
primarily examined intact protein [4,5,9,24], therefore the use of whey protein hydrolysate in the 
present study will be briefly discussed. Intact whey protein is quickly digested hence its constituent 
amino acids are readily absorbed in the gut peaking in the circulation within the first hour after intake 
[5]. Due to this characteristic of whey, the impact of hydrolysis appears somehow minor [25,26], while 
hydrolysis of slower-digestible proteins like casein markedly impacts the absorption rate [25,26]. To 
our knowledge, the effect of intact versus hydrolyzed whey protein on MPS has not been studied in 
humans. Only 15 g intact whey protein was found to be superior to 7 g EAA, which corresponded to 
the EAA content in the 15 g intact whey protein [27]. This finding is supported by rodent data 
showing that a whey protein hydrolysate was superior to a mixture of amino acids with the exact 
same profile as whey protein to stimulate MPS [28]. Therefore, we argue that whey protein may 
contain proteins/peptides that favors an amino acid appearance profile that is superior to that of the 
single amino acids’ appearance carries and therefore that whey hydrolysate is a valid positive control 
in the present study for comparison with the porcine proteins.  

The procedures to isolate target protein fractions from porcine muscle and blood including 
enzymatic hydrolysis eliminated major differences in absorption rate between proteins shown as 
rapid appearance of amino acids in arterialized blood from all three protein sources (Figure 4 and 
time to peak results). However, the amino acid composition of the three protein sources diverged 
(Table 1) affecting the postprandial circulating amino acid concentrations accordingly. Hence, amino 
acid concentrations were lower for hydrolyzed porcine muscle protein than hydrolyzed porcine 
blood protein and hydrolyzed whey protein (Figure 4). Despite these rather marked compositional 
differences and resulting AUCs for leucine, BCAA and EAA, the amino acid contents in 15 g 
hydrolyzed porcine muscle protein did result in an even 3 h postprandial MPS (Figure 3, serving 1). 
The reason may be that in the resting muscle of healthy adult men, 15 g quickly accessible high quality 
protein may make up an optimal dose. It could be that prior exercise could have created a condition 
where 15 g was sub-optimal, as the dose-response relationship between protein intake and MPS 
appears right-shifted (larger dose required to maximal MPS stimulation) [3,4,29]. However, post-
exercise recovery was not the purpose of this study and we wanted also to compare the 3 h 
postprandial periods directly after the two serving sizes.  

Also of interest, we showed that in young male subjects the MPS response was not significantly 
impacted by doubling the protein amount from 15 to 30 g and adding energy as part of a mixed meal 
(Figure 3). First of all this underlines the fact that the MPS might have been stimulated close-to-
maximal already with the 15 g serving. Further, despite no impact of protein serving sizes and energy 
intake on MPS, should be acknowledged that the leg muscle protein net balance presumably was 
improved by serving 2 compared to serving 1. Recently, a linear association was shown between 
energy/protein content and whole body protein net balance [8]. Insulin may play a role in the net 
balance improvement after full energy meals. Hyperinsulinemia (intake of carbohydrate) does not 
have an additive impact of MPS beyond that of protein [30,31] but it must be expected that the 
anticipated impact of energy intake on insulin secretion in the present study most likely has had a 
major impact on the protein breakdown rate and hence, the net protein balance. We did neither 
measure leg protein breakdown nor net protein balance and therefore will not discuss this balance 
further as it remains speculative. The speed of the translational apparatus appears to be driven largely 
by the availability and the pattern of hyperaminoacidemia in the circulation [5]. As the FSR approach 
measures a gross average of the synthesis rate over a given period of time and misses temporary 
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fluctuations and peaks, we cannot rule out that larger rates and divergent rates between protein 
sources may have been present within the 150-min time frames as the peak amino acid concentrations 
appeared before 60 min after serving 1 and around 60 min after serving 2. However, any such effect 
may be ascribed as being minor.  

More specifically, the statistical analysis of the comparison of MPS rates pooled across servings 
revealed a tendency toward a lower FSR after intake of hydrolyzed porcine blood protein compared 
to hydrolyzed whey and porcine proteins (p = 0.067 and p = 0.093, respectively).Both of these results 
support the notion that hydrolyzed porcine blood protein may be slightly inferior to the other two 
proteins. However, the differences did not reach statistical significance despite the rather high power 
in the present study (n = 18 in cross-over investigations, see limitation section) and hence, any MPS 
stimulatory differences between protein sources must be concluded as being minor.  

Intramuscular concentrations of amino acids are utilized for protein synthesis or metabolized 
quickly once they appear and only seems to accumulate with high circulating concentrations [32] and 
therefore, the intramuscular concentrations most likely are beyond any accumulation and reflect 
levels approaching baseline values (Figure 5). A comparison with the plasma leucine concentrations 
at the time points for muscle biopsies reveals a concordance in the concentration differences between 
groups. The porcine muscle protein contains least leucine and appears lowest in both plasma and 
muscle. However, after intake of porcine blood hydrolysate the plasma concentrations remained 
elevated towards the end, 90 min and 280 min, of the postprandial periods after serving 1 and 2, 
respectively, which reflects either a prolonged appearance from gut or a slower clearance from 
circulation. Interestingly, also the intramuscular concentrations are higher after hydrolyzed porcine 
blood protein intake than after whey. We are not aware of any similar findings, however, the results 
suggest that intracellular utilization, for protein synthesis (trend toward a slower rate compared to 
whey) and/or metabolism/oxidation (a lower urea concentration) is diminished after intake of 
hydrolyzed porcine blood protein compared to muscle protein and whey. 

This study has a number of limitations. The lack of a fasting period means that we cannot say 
whether intake of any of the protein intakes enhanced the MPS over that of a basal rate. This design 
was chosen due to ethical concerns with number of muscle biopsies. Furthermore, the statistical 
comparisons made were simpler and more powerful with fewer time points. We argue though, that 
sufficient evidence support that whey protein stimulates muscle protein synthesis above fasting level 
[3,9]. Given the borderline finding of HBP being lower than HW and HBM, it can be argued that the 
study was underpowered to detect an actual difference. However, an n of 18 inclusions in a cross-
over design with the application of the tracer methodology has high power. In contrary, the repeated 
tracer exposures may have enhanced variation in the FSR measurements randomly [33] and thereby 
diminished the benefits of the cross-over design, comparably. Finally, with reference to the ‘muscle 
full’ phenomenon, it could be argued that the resting muscle in our subjects entered a kind of 
refractory period with serving 2 only 2.5 h after ingestion of serving 1 [34,35] and therefore, a 
dampened stimulatory response was seen after serving 2. The pulsatile circulating amino acid 
concentrations after serving 1 should though, allow the muscle to sense the lack of excess availability 
and thereby, be responsive for yet another meal.  

5. Conclusions 

In conclusion, 15 g of hydrolyzed protein alone or 30 g ingested as part of a mixed meal result 
in similar muscle FSRs in young resting males, emphasizing the notion that proteins/amino acids are 
primarily responsible for stimulating the MPS and that this is maximized irrespective of other 
nutrients and concomitant energy intake. Further, the data support that the postprandial protein net 
balance cannot be extrapolated from the synthesis rates. When ingested alone and as part of a mixed 
meal, intake of hydrolyzed porcine proteins from blood tends to result in a lower MPS in the muscle 
of young males in the resting condition than intake of porcine muscle and whey protein hydrolysates. 
All in all, these findings lend support for the use of especially hydrolyzed porcine muscle-derived 
proteins as well as whey proteins as effective sources for stand-alone supplements or ingredients in 
snacks and meals to support growth and maintain mass of skeletal muscle. However, investigations 
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involving the measurement of protein breakdown rate and/or net balance over the course of multiple 
servings comparing different protein sources should be conducted to reveal any differences in their 
net anabolic potentials when integrated as parts of a full diet.  
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