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Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung
diseases and is associated with disease progression, often regardless of the
initiating cause. Neutrophils and their products are thought to be key mediators
of the inflammatory changes in the airways of patients with chronic obstructive
pulmonary disease (COPD) and have been shown to cause many of the
pathological features associated with disease, including emphysema and
mucus hypersecretion. Patients with COPD also have high rates of bacterial
colonisation and recurrent infective exacerbations, suggesting that neutrophil
host defence mechanisms are impaired, a concept supported by studies
showing alterations to neutrophil migration, degranulation and reactive oxygen
species production in cells isolated from patients with COPD. Although the role
of neutrophils is best described in COPD, many of the pathological features of
this disease are not unique to COPD and also feature in other chronic
inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1
anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for
immune cell dysfunction contributing to inflammation in many of these
diseases, focusing interest on the neutrophil as a key driver of pulmonary
inflammation and a potential therapeutic target than spans diseases. This
review discusses the evidence for neutrophilic involvement in COPD and also
considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma,
and cystic fibrosis. We provide an in-depth assessment of the role of the
neutrophil in each of these conditions, exploring recent advances in
understanding, and finally discussing the possibility of common mechanisms
across diseases.

Keywords
Neutrophil, COPD, Asthma, Cystic Fibrosis, Bronchiectasis, Alpha-1
Anti-Trypsin, Inflammation

   Referee Status:

  Invited Referees

 version 1
published
26 Apr 2019

 1 2

, Beaumont Hospital,Catherine M Greene

Ireland
1

, Second Hospital ofZhiHua Chen

Zhejiang University School of Medicine,
China

2

 26 Apr 2019,  (F1000 Faculty Rev):557 (First published: 8
)https://doi.org/10.12688/f1000research.18411.1

 26 Apr 2019,  (F1000 Faculty Rev):557 (Latest published: 8
)https://doi.org/10.12688/f1000research.18411.1

v1

Page 1 of 17

F1000Research 2019, 8(F1000 Faculty Rev):557 Last updated: 26 APR 2019

http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/8-557/v1
https://f1000research.com/articles/8-557/v1
https://orcid.org/0000-0002-6636-2077
https://f1000research.com/articles/8-557/v1
https://doi.org/10.12688/f1000research.18411.1
https://doi.org/10.12688/f1000research.18411.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.18411.1&domain=pdf&date_stamp=2019-04-26


 

 Georgia M Walton ( )Corresponding author: g.m.walton@bham.ac.uk
  : Writing – Original Draft Preparation;  : Writing – Original Draft Preparation;  : Conceptualization,Author roles: Jasper AE McIver WJ Sapey E

Funding Acquisition, Supervision, Writing – Review & Editing;  : Conceptualization, Supervision, Writing – Original Draft Preparation,Walton GM
Writing – Review & Editing

 No competing interests were disclosed.Competing interests:
 This work was supported by the Alpha-1 Foundation, the Medical Research Council, the Wellcome Trust, and the NationalGrant information:

Institute for Health Research. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Jasper AE  . This is an open access article distributed under the terms of the  , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Jasper AE, McIver WJ, Sapey E and Walton GM. How to cite this article: Understanding the role of neutrophils in chronic inflammatory
 F1000Research 2019,  (F1000 Faculty Rev):557 (airway disease [version 1; peer review: 2 approved] 8

)https://doi.org/10.12688/f1000research.18411.1
 26 Apr 2019,  (F1000 Faculty Rev):557 ( ) First published: 8 https://doi.org/10.12688/f1000research.18411.1

Page 2 of 17

F1000Research 2019, 8(F1000 Faculty Rev):557 Last updated: 26 APR 2019

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.18411.1
https://doi.org/10.12688/f1000research.18411.1


Introduction
Neutrophils are the dominant circulating leucocyte, comprising 
around 70% of white blood cells in health and representing a 
key component of the innate immune system. Neutrophils are  
short-lived cells (with a half-life of about 8 hours), having a 
basal production of 1 to 2 × 1011 neutrophils per day in health,  
although this can increase to 1012 during infection and their 
half-life can also increase in the presence of inflammation and  
hypoxia1. Neutrophils are characterised by their multi-lobed 
nucleus and granular cytoplasm, the latter caused by azurophillic  
(primary), specific (secondary) and gelatinase (tertiary) granules, 
as well as secretory vesicles (contents described in Figure 1). 
These granules and vesicles contain a complex armamen-
tarium of products that permit cell communication, neutrophil  
migration, microbial killing, tissue remodelling, degradation and  
repair.

In response to infection, neutrophils leave the circulation 
and migrate to the affected sites, where they use a variety of  
mechanisms to contain and kill invading pathogens, prevent-
ing further dissemination. The phagocytosis of bacteria leads 
to intracellular pathogen killing within a contained structure  
(the phagolysosome) to protect the cell and surrounding tissue. 
The phagolysosome is formed when neutrophil granules (which  

contain pre-formed products such as proteinases and bacteri-
cidal proteins and newly formed reactive oxygen species [ROS])  
fuse with the lysosome containing the ingested bacterium. ROS 
production is a convoluted process, necessary to protect the host  
from the free radical-associated harm. NADPH oxidase is  
constructed from a series of subunits and then acts as a channel 
for electrons from the cytosol to enter the phagolysosome,  
stimulating reduction of oxygen (O

2
) to the superoxide anion 

O
2
−2. Superoxide then can dismutate to form the highly  

oxidative hydrogen peroxide (H
2
O

2
), which can react further, 

forming the strongly bactericidal hypohalous acids (for example, 
hypochlorous acid)3–8. These products can also be released into 
the extracellular matrix by degranulation, but neutrophils require 
different levels of activation to release granules; secretory 
vesicles are released during minimal stimulation to facilitate 
migration and adhesion, and azurophil granules (the most  
cytotoxic) require the most stimulation.

Release of azurophil granules leads to areas of obligate tissue 
damage, as the proteinases contained therein readily digest  
components of the extracellular matrix until their inhibition by 
anti-proteinases can occur9. Finally, in overwhelming infection 
or inflammation, neutrophils have been described as releasing  
their decondensed DNA in web-like structures outside of the 

Figure 1. The contents of neutrophil granule subtypes split into characteristic, matrix (cytosolic), and membrane proteins. AAT,  
alpha-1 anti-trypsin; BC, band cell; BPI, bacterial permeability-increasing protein; CR1, complement receptor-1; fMLP, N-formylmethionine-
leucyl-phenylalanine; hCAP-18, human cathelicidin protein-18; Mac-1, macrophage-1 antigen (CD11b/CD18); MB, myeloblast; MC, myelocyte; 
MM, metamyelocyte; MMP, matrix metalloproteinase; MPO, myeloperoxidase; NADPH, nicotinamide adenine dinucleotide phosphate; PM, 
promyelocyte; PMN, polymorphonuclear neutrophil; R, receptor; TNF, tumour necrosis factor. Data were combined from 10–12.
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cell. The extruded DNA is coated in cytotoxic products, includ-
ing proteinases, termed neutrophil extracellular traps (NETs) 
as they can ensnare and “trap” bacteria13. To protect the host 
from this immense arsenal, neutrophils are held in three states 
that they can fluctuate between: quiescent, primed and activated. 
The primed state provides both a mechanism to allow a rapid 
and pro-inflammatory response to infection but also a brake to  
prevent unwarranted degranulation14.

There is increasing interest in neutrophil phenotypes or sub-
types, and cells appear to have a broader repertoire of responses  
than the highly aggressive, cytotoxic response described 
above. The concept of cell phenotypes is well established with  
lymphocytes or macrophages but remains more controversial 
with neutrophils. However, despite previous theories, neu-
trophils are transcriptionally active15, can release a wide range 
of context-specific products16 and have an adaptable lifespan  
depending on activation status and environment17. They also  
express more than 30 different receptors—including G protein–
coupled receptors, Fc receptors, adhesion receptors, cytokine  
receptors and pattern recognition receptors—that can sense  
pro-inflammatory mediators and modulate neutrophil migra-
tion, function and behaviour18, suggesting plasticity in their 
responses. There have been descriptions of pro-angiogenic  
neutrophils19, characterised by increased matrix metalloprotei-
nase 9 (MMP-9) release20,21 and anti-inflammatory neutrophils 
capable of suppressing other immune cells22. Research into the 
exact function of these phenotypes (or indeed whether they do 
represent different cell types or are an adaption of the cell to 
environmental stimuli) remains unclear, but it might be that  
different subsets of cells have different functions; indeed, 
when neutrophils are viewed, it is clear that cells within a field  
behave heterogeneously23.

What is evident is the immense potential that neutrophils have 
for host damage which requires constant check. Recently, it has 
been suggested that the lung may be involved in this process.  
Neutrophils are larger in diameter than some of the tortuous 
pulmonary vasculature that they must traverse. Initially, it was  
considered that the lungs hold a sequestered pool of neutrophils, 
slow in transit through the capillary bed and ready to respond to 
pulmonary infection24–26. However, recent research has shown 
that this is not the case in health, and there is no evidence of a  
retained neutrophil population in the lungs unless there is  
systemic priming of neutrophils and even this results in only a 
transitory retention of neutrophils27. It was then demonstrated  
that the process of manoeuvring through tight spaces  
promoted neutrophil de-priming28, leading to the hypothesis that 
the sinuous pulmonary vasculature might be a site where the 
primed neutrophil population (thought to be up to 40% of the 
whole population in some studies) can be “stood down” into a  
quiescent state29.

Perhaps then it is no surprise that there is evidence of neutrophil 
dysregulation during lung disease, that airway neutrophilia is 
a feature of multiple lung pathologies and that patients with  
airway disease often display heightened and more damaging 
neutrophilic inflammation. This may represent a physiological  
response to an infective or inflammatory trigger (such as  

neutrophil recruitment to the lung in response to a respiratory 
infection or cigarette smoke) or a physiological response to a  
pathological environment (the inflamed and damaged lung  
causing increased neutrophil recruitment and being less able to  
“de-prime” cells). However, there is amassing evidence that 
the neutrophil itself may inflict further harm to the host by  
intrinsic changes to key cellular functions. Understanding 
whether the neutrophil is a reactive responder or a creative 
actor in lung disease (or indeed both) is vital when consider-
ing the development of new therapeutics: would one target  
the environment or the neutrophil? The evidence for these  
processes in airway disease has been most thoroughly described 
in chronic obstructive pulmonary disease (COPD). This review 
will explore what is currently known about neutrophils in the 
pathogenesis of airway disease, focusing mainly on COPD.  
However, neutrophil function in alpha-1 anti-trypsin deficiency 
(AATD), bronchiectasis, cystic fibrosis (CF) and asthma will 
also be considered in order to assess the likelihood of common  
mechanisms and therefore potential therapies which could span 
diseases.

Chronic obstructive pulmonary disease
COPD is a leading cause of morbidity and mortality worldwide 
and constitutes a significant healthcare burden30–32. In the UK,  
chronic cigarette smoking remains the largest cause of COPD, 
but after 25 years of smoking, only about 30 to 40% of adults 
will have developed COPD33, and COPD is diagnosed in never  
smokers (who may have other environmental exposures which  
lead to disease)34, suggesting that smoking is neither necessary  
nor sufficient to cause COPD.

Airway inflammation is central to the pathophysiology of  
COPD and contributes to tissue damage and destruction and a  
wealth of data support a role for the neutrophil at the heart 
of this inflammatory process. All patients with COPD have  
airway neutrophilia, regardless of clinical phenotype (chronic  
bronchitis, emphysema, and even eosinophilic COPD), disease 
severity, and rate of decline or age of onset. COPD is very  
heterogeneous and although patients may share a cause (such 
as cigarette smoking), the disease presentation is variable, sug-
gesting that COPD is more an umbrella term than a narrow  
clinical entity35 (Table 1). Neutrophil numbers (and their  
products) relate to airway obstruction, decline in forced expira-
tory volume in 1 second (FEV

1
), reduction in gas transfer, 

and development of emphysema36–40. Although patients with  
COPD demonstrate airway neutrophilia, they also experience 
airway colonisation and recurrent bacterial infections41–44. 
This raises the possibility that the function of neutrophils is  
impaired, leading to reduced anti-microbial function and at 
the same time contributing to lung damage and a number of  
observations support this concept.

Neutrophil migration and chronic obstructive pulmonary 
disease
Older studies of neutrophil migration in COPD yielded  
conflicting results as to whether there was any compromise 
in migratory function45,46; however, more recent studies have  
allowed the assessment of specific neutrophil migratory  
dynamics and have shown that neutrophils from patients with  

Page 4 of 17

F1000Research 2019, 8(F1000 Faculty Rev):557 Last updated: 26 APR 2019



Table 1. Recognised clinical phenotypes of chronic obstructive pulmonary disease, asthma, and bronchiectasis.

Phenotype Basic features

Chronic obstructive pulmonary disease (COPD) 

Bronchitic phenotype The presence of productive cough (at least 3 months per year in at least 
2 consecutive years)

Emphysema phenotype Presence of emphysema confirmed on imaging (including computed 
tomography densitometry) 

Eosinophil COPD Presence of eosinophilia, normally defined as at least 2% eosinophils in 
either blood or sputum

Asthma COPD overlap Persistent airflow limitation with several features usually associated with 
asthma and several features usually associated with COPD

Overlap COPD and bronchiectasis
Airflow obstruction consistent with COPD alongside irreversibly dilated 
airways, mucus gland hyperplasia and impaired mucus clearance 
associated with bronchiectasis

Frequent exacerbation phenotype
Two or more “exacerbation” events per year; an exacerbation is defined 
as an acute worsening of respiratory symptoms that result in additional 
therapy.

Asthma 

Atopic asthma Atopic and eosinophilic with increased fractional exhaled nitric oxide 
(FeNO)

Non-eosinophilic asthma associated with obesity Decreased lung function associated with obesity

Non-eosinophilic asthma (neutrophilic asthma) Lack of eosinophilic inflammation. No raised sputum eosinophil count or 
FeNO. Neutrophilic inflammation common.

Aetiology Examples of causes 

Bronchiectasis 

Post-infectious damage Tuberculosis, whooping cough, and so on

Muco-ciliary clearance defects Primary ciliary dyskinesia, cystic fibrosis, and Young’s syndrome

Immunodeficiency Primary (for example, hypogammaglobinaemia) 
Secondary (for example, malignancy such as leukaemias or immune 
modulation with drugs, after transplant)

Autoimmune conditions Rheumatoid arteritis, systemic lupus erythematosus, and inflammatory 
bowel disease

Congenital Tracheobronchomegaly, cartilage deficiency, and Marfan syndrome

Toxic exposures, obstruction or aspiration Toxic gas (chlorine, ammonia), foreign body, and smoke exhalation

The first and second sections provide a table of recognised COPD and asthma phenotypes. Though not exhaustive, these represent phenotypes 
most often discussed in recent publications (for example, 47,48) and it is also possible for patients to have more than one phenotype; thus, 
there can be considerable clinical overlap. In the third section, examples of aetiologies that can lead to bronchiectasis have been given. Again, 
this list is not exhaustive but for all diseases (COPD, asthma and bronchiectasis) is intended to provide an overview of how disparate clinical 
phenotypes associated with one umbrella term can be.

COPD migrate with increased speed but reduced directional 
accuracy towards a variety of chemoattractants compared with 
age-matched healthy control subjects40. This does not result 
from reduced chemoattractant receptor expression or impaired  
receptor localisation49 but could be improved by using a broad-
spectrum PI3K inhibitor (LY294002), suggesting that the  
defective migration results from aberrant intracellular signalling 
processes40.

As a neutrophil migrates, serine proteinases, including neu-
trophil elastase (NE), cathepsin G and proteinase 3 (PR3), are 

released from azurophil granules into the extracellular space, and 
some active enzyme is retained on the plasma membrane9,50–52.  
Substrates for these proteinases include elastin53, collagen54  
and fibronectin55, which are major components of the extra-
cellular matrix, and their degradation is linked to all clinical  
facets of COPD.

Initially, NE was thought to be the most important proteinase 
in COPD. NE can be inhibited by a number of endogenous  
inhibitors, including alpha-1 anti-trypsin (AAT), secretory leuco-
cyte proteinase inhibitor (SLPI) and α2-macroglobulin (α2M). 
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However, at the time of NE release, its concentration (5.33 mM) 
is 15 to 1500 times greater than that of its inhibitors56 (with 
plasma concentrations of AAT of 32.8 μM9, SLPI of 11 μm57 
and α2M of 3.5 μM58). NE is only partly inhibited until it  
diffuses away from the cell and an optimal NE-inhibitor ratio is 
reached. As this inhibition is not immediate, an obligate area of 
local, proteinase-mediated tissue damage occurs, a phenomenon  
known as “quantum proteolysis”. Furthermore, a proportion of 
NE remains bound to the neutrophil cell surface, making it less  
accessible to inhibitors and more resistant to inhibition, further 
increasing the local potential damage. There is emerging  
evidence that PR3 may be even more implicated in the pathol-
ogy of COPD, especially the emphysema process59. PR3 is  
stored in higher concentrations than NE60 and has a lower  
association rate constant with AAT, suggesting that it is likely 
to have more prolonged activity than NE before inactivation, as  
demonstrated by mathematical modelling61 and in studies of 
airway secretions in both AAT-deficient (AATD) and non- 
deficient COPD62.

Reduced migratory accuracy of neutrophils in COPD may have 
implications for disease pathology because of the increased  
area of obligate tissue damage caused by proteinase release  
during poorly directed migration. In keeping with this, previous 
work has shown increased fibronectin degradation by migrat-
ing COPD neutrophils45; in vitro, there are increased levels of 
the NE footprint Aα-Val36063 and newly described PR3 footprint  
Aα-VAL54164 in plasma from patients with COPD.

Of note, recent studies suggest that migration of monocytes from 
COPD patients to COPD sputum is also impaired65, although  
similar studies using single chemokines as the chemoattractant 
do not replicate this finding66. As neutrophils and monocytes are 
derived from the same bone marrow precursor cells, this may  
reflect a common genetic/epigenetic or inflammatory cause. 
It remains unclear when neutrophil migratory dysfunction 
develops in COPD: during maturation in the bone marrow or  
following release into the circulation. If monocyte migration 
were found to be similarly impaired in COPD, this might suggest  
that the defect lies in bone marrow precursor cells.

COPD is more commonly seen in older patients and neutrophil 
migratory accuracy also declines with “healthy” ageing, a  
phenomenon also associated with constitutive PI3K activity67, 
and selective class I PI3K-δ or PI3K-γ inhibitors improve  
neutrophil migratory accuracy. It is possible that the poor  
migratory accuracy seen with age is exaggerated in patients with 
COPD, and inhibition of specific PI3K isoforms may offer a  
novel strategy to improve bacterial clearance and reduce tissue 
damage in COPD.

Proteinases and chronic obstructive pulmonary disease
The proteinase/anti-proteinase theory of COPD suggests that  
damage to the lung tissue occurs when the levels of anti- 
proteinases in the lung are insufficient to effectively neutralise 
the proteinases present62,68,69. Recently, the proteinase/anti- 
proteinase theory of COPD was revisited in a study which  
elegantly demonstrates a role for exosomes (cell-derived vesicles 
that are present in many eukaryotic fluids, including blood,  

urine and cerebrospinal fluid) in promoting NE activity, effec-
tively tipping the local protease/anti-protease balance within 
the lung to favour tissue damage70. The authors describe a 
population of exosomes released from neutrophils which 
bind NE when it is released during degranulation, before its  
diffusion into the tissues. Unlike free enzyme, NE bound to 
these exosomes was found to be resistant to inhibition by AAT 
and to be able to bind to the extracellular matrix (via mac-1)  
whilst maintaining NE activity against the extracellular matrix 
proteins. These neutrophil-derived exosomes were found in  
clinical specimens from subjects with COPD but not healthy 
controls and importantly were capable of transferring a COPD-
like phenotype from humans to mice70. Certainly, there is 
evidence of increased degranulation in COPD, and CD63 
(a marker of primary granules) is found to be increased on 
the surface of unstimulated neutrophils from patients with  
COPD71.

Serine proteinases are potent stimulators of mucus secretion 
from submucosal and goblet cells of the airways72, which, along-
side the effects of cigarette smoke on mucosal cilia, reduces  
mucociliary clearance73,74. Mucus is able to build up in the  
airways, contributing to further obstruction, increasing the risk  
for bacterial colonisation and further inflammation72,75.

Neutrophil extracellular traps and chronic obstructive 
pulmonary disease
Recently, there has been significant interest in the role of NETs 
in COPD, but the current evidence is conflicting. Increased  
quantities of NET components have been described in the  
sputum of both stable and exacerbating COPD patients, along-
side an increased proportion of “NET producing” neutrophils76,77.  
Furthermore, the abundance of NETs within sputum has been 
shown to correlate with severity of airflow limitation assessed 
by FEV

1
76,78 and overall severity of COPD using a composite 

scale including symptoms and exacerbation frequency alongside 
FEV

1
78. Interestingly, the most recent study of NETs in COPD 

shows a correlation between NET complexes in sputum and  
microbial diversity, in particular a dominance of haemophilus  
species, whereby more than 40% haemophilus species within the 
lung microbiome were found to be associated with significantly 
greater DNA-elastase complexes78. Despite this, neutrophils  
isolated from the blood of patients with exacerbations of 
COPD have been shown to have a reduced ability to undergo  
NETosis compared with both stable patients and healthy  
controls, despite the increased presence of cell-free DNA in  
plasma79. This seems counterintuitive but it is possible that the 
clearance of NETs by DNases80 is impaired in COPD or that  
only a proportion of cells are able to produce NETs (a phenotype  
of cell) but this remains unknown.

Phagocytosis and chronic obstructive pulmonary disease
Reduced phagocytic function of macrophages in COPD is well 
described, encompassing impaired phagocytosis of disease-
relevant bacteria (non-typeable Haemophilus influenzae and  
Streptococcus pneumoniae), fungi81 and apoptotic neutrophils 
via efferocytosis82–84. However, little research to date has focused  
on the phagocytic ability of neutrophils, and data so far  
provide conflicting results; some demonstrate no differences 
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in phagocytosis85–87 and others suggest a reduction88. However, 
few studies have used phagocytic targets relevant to disease  
pathology, and studies in macrophages suggest that the use of 
non-physiological targets may provide misleading results. For  
example, phagocytosis of synthetic beads by macrophages was 
found to be unaltered in COPD, but bacterial studies showed 
a reduction in phagocytosis of the disease-relevant bacteria  
H. influenzae and S. pneumoniae82, suggesting that the results of 
studies using non-physiological targets may be misleading85,88.  
This gap in knowledge clearly needs detailed exploration.

Further to this, NE has been shown to be able to cleave comple-
ment components on bacteria as well as complement receptors 
on neutrophils89,90. If NE activity is heightened, as suggested in  
COPD91 and AATD92, the resulting opsonin-receptor mismatch  
may impair effective phagocytosis.

Neutrophil phenotypes in chronic obstructive pulmonary 
disease and retention in the lung
Despite emerging interest in the concept of neutrophil pheno-
types, there are few studies of this in COPD. One recent article  
assessed protein expression on the surface of neutrophils 
from 41 patients with COPD and seven healthy, age-matched  
controls, describing clear clustering which could differentiate 
patients with COPD from the control subjects93. Furthermore, 
the neutrophil proteome was different between two COPD 
groups; but these patient groups were not clinically different, the  
expressions of several activation markers were not significantly 
different, but there were some functional changes between  
groups in relation to ROS release93.

In relation to the retention of neutrophils in COPD lungs, a very 
recent publication94 has built upon the previously described 
studies of neutrophil transit times through the lung vascula-
ture, clearly demonstrating increased neutrophil accumulation 
in COPD lungs compared with healthy individuals, with little  
overlap.

In summary, recent studies in COPD have built upon a strong 
foundation implicating the neutrophil as a key driver of COPD 
pathology. This includes altered cell functions which favour host 
tissue damage with an increased burden of proteinase activity, 
a clear signal of neutrophil retention in the lungs which is not 
seen in health, and a tantalising hint of differing cell phenotypes.  
However, because COPD studies invariably compare health with 
disease, it is unclear whether these changes are unique to COPD 
(and thus may represent a COPD-specific therapeutic target) 
or whether these changes are also seen in other diseases of the  
airways.

Alpha-1 anti-trypsin deficiency
AAT is a 52-kDa glycoprotein produced by hepatocytes but 
also macrophages and neutrophils and (as stated) functions as a  
serine protein inhibitor, providing essential protection of the lung 
tissue against the proteolytic actions of enzymes such as NE 
and PR3. In health, there is a constant diffusion of AAT into the  
lung, which is increased in the presence of inflammation (such 
as during respiratory infections). AATD is a genetic disorder in  
which the gene encoding AAT is mutated. There are many  

subtypes of AATD but in the most common severe form of  
deficiency (named PiZZ) this leads to mis-folding of the protein 
product, retention of AAT in AAT-producing cells and the for-
mation of protein polymers in these cells, which causes damage 
and low circulating levels of AAT. AATD is the only robustly  
established genetic risk factor for the development of COPD and 
emphysema, and these disease processes can occur in patients  
with AATD, even in the absence of cigarette smoking62,91,95,96.

Neutrophils play a central role in the pathophysiology of  
emphysema associated with AATD97, and pulmonary disease is 
thought to develop, in part, from an imbalance of proteinases and 
AAT, although AAT has many non-proteolytic functions which  
protect against infection and inflammation, including immu-
nomodulation and anti-microbial activity. It is well known that  
AAT deficiency is associated with a reduced ability to neutralise 
NE and PR3 adequately, leading to more tissue damage. In 
response to NE activity, epithelial cells and macrophages  
also release pro-inflammatory mediators such as CXCL898 and  
leukotriene B

4
 (LTB

4
)99, respectively. This chemoattractant pro-

duction is perpetuated, further increasing neutrophil influx and 
increased NE activity within the lung, forming a vicious cycle 
of damage. In keeping with this, the inflammation present in  
AATD (both systemic and local) is amplified when compared 
with non-AATD COPD with a similar burden of disease100 
and this may influence immune function by cell priming or  
activation.

Lung neutrophilia has been much easier to demonstrate in 
AATD compared with non-AATD COPD101 but these cells do 
not appear to be just “reactive responders”, and a number of  
studies have described abnormal neutrophil behaviour in 
AATD. A recent study described increased apoptosis of AATD  
neutrophils102. The authors proposed that this might reflect  
endoplasmic reticulum stress owing to the accumulation of  
mis-folded AAT within the neutrophil102. However, augmenta-
tion therapy, in which deficient AAT is “replaced” with purified  
plasma AAT from healthy individuals, was able to normalise 
cell apoptosis without altering endoplasmic reticulum stress  
markers, and apoptosis was a direct result of low circulating  
AAT. Internalised AAT is known to co-localise with and inhibit 
staurosporine-induced caspase-3 activation103, a potent signal for 
apoptosis recently described in neutrophils104.

The same authors propose defective bacterial killing by 
AATD neutrophils but this appeared to result from accelerated  
neutrophil apoptosis rather than an intrinsic defect in neutrophil 
phagocytosis per se102. AAT augmentation both in vitro and  
in vivo could restore the bacterial killing capacity of ZZ-AATD 
neutrophils to that of non-deficient neutrophils but again this  
might reflect reduced apoptosis102. AAT is known to improve  
phagocytosis by both human alveolar macrophages (AMs) from 
patients with non-AATD COPD and AMs isolated from mice 
exposed to cigarette smoke105. This improvement included both 
efferocytosis (clearance of dead neutrophils) and phagocytosis 
and was associated with the upregulation of efferocytosis and  
scavenger receptors on the AM plasma membrane105. These  
receptors were also shown to be upregulated in patients with  
AATD following double-dose augmentation treatment with  
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purified AAT compared with a single dose, suggesting that a  
similar mechanism to enhance efferocytosis may exist in vivo.

There are limited data regarding neutrophil migratory function 
in patients with AATD. One study has suggested that sputum  
from patients with AATD has greater chemotactic activity 
which likely relates to increased levels of neutrophil chemoat-
tractants CXCL8 and LTB

4
 in sputum rather than the ability of  

neutrophils to migrate per se106. A further study demonstrated 
no difference in the ability of neutrophils from patients with  
AATD to migrate to a standard chemoattractant (CXCL8)  
compared with healthy controls despite finding reduced migra-
tory accuracy of neutrophils from patients with COPD40. There 
is an increased burden of ROS in AATD, and AAT modulates  
neutrophil O

2
− production elicited by N-formylmethionine- 

leucyl-phenylalanine (fMLP) and CXCL8 in a dose-dependent 
manner107. However, the burden of ROS in AATD may be  
multi-faceted, and AAT is known to bind to a number of  
products with oxidative potential, including hemin108. There are 
few studies of NET formation in AATD. One study using the  
non-physiological stimulant phorbol myristate acetate (PMA) 
reported that AAT did not reduce NET formation from  
neutrophils isolated from patients with PiZZ AATD but this  
study has yet to be replicated using disease-relevant stimuli109.

To date, there are no studies of neutrophil phenotype in PiZZ 
AATD to determine whether distinct patterns are seen, but when 
the data are considered together, it appears that AATD is not  
merely an exaggerated form of non-AATD COPD and there  
appear to be differences in cellular function between the two 
groups. This is highlighted in clinical and imaging studies. 
The predominant phenotype of emphysema observed in  
non-AATD COPD is typically apical centrilobular but this  
differs in AATD, where emphysema is predominantly basal 
and panlobular110,111, reflecting differences in pathophysiology  
between the two conditions. 18-fluorodeoxyglucose (18FDG)  
positron emission tomography–computed tomography (PET-CT) 
studies generate both quantitative and spacial data regarding  
pulmonary glucose uptake, which has been shown to relate to  
neutrophil activity in animal models112,113. When these studies  
were performed in patients with COPD, 18FDG uptake was 
shown to be greater in emphysematous regions of the lung and  
correlated with physiological measures of disease severity114. 
Despite this, the increased pulmonary 18FDG demonstrated in 
non-AATD COPD was not demonstrated in a small cohort of  
patients with AATD, in whom 18FDG uptake was comparable to 
that of healthy controls114. This suggests important differences 
in the pathogenesis of emphysema in these two conditions, in  
particular with respect to the role of the neutrophil.

Also, lung disease is heterogeneous in AATD, even in patients 
with PiZZ AATD who have never smoked. A proportion of  
never-smoking patients with similar deficiency levels do not 
develop lung disease although some do, and in those who do, 
rates of decline are variable and currently cannot be predicted at  
baseline screening115. Furthermore, patients with AATD  
experience clinical phenotypes similar to those of patients with  
non-AATD COPD115. Also, although AAT augmentation reduces  
the progression of lung disease in some patients, it has little  

impact on others, highlighting the fact that replenishing the  
deficient anti-proteinase is not enough to treat disease and more  
studies are needed to assess the utility of targeting the neutrophil  
in conjunction with augmentation strategies.

Bronchiectasis
Rather than being a pathological entity (such as AATD),  
bronchiectasis is a chronic lung condition caused by a number 
of pathological insults (Table 1) characterised visually by irre-
versibly dilated airways, mucus gland hyperplasia, and impaired 
mucus clearance resulting in recurrent severe infections and 
further airway damage as described by Cole’s vicious cycle  
hypothesis116–118. Bacterial colonisation with potentially patho-
genic micro-organisms is extremely common, and neutrophils  
are thought to play a fundamental role in bronchiectasis patho-
genesis, partially in response to this infection. Impaired mucus 
clearance and recurrent infections cause rich sputum levels of  
potent neutrophil chemoattractants, including interleukin 1 beta 
(IL-1β), tumour necrosis factor alpha (TNFα), CXCL8, and  
LTB

4
119. Consequently, neutrophils dominate cell populations in 

both the sputum and bronchoalveolar lavage fluid of patients with 
bronchiectasis, and neutrophil counts positively correlate with 
bronchiectasis disease severity117,120. This heightened inflamma-
tion impacts on neutrophil function. Systemic neutrophils from 
individuals with bronchiectasis have a higher level of baseline  
activation compared with healthy individuals, as indicated by 
increased CD62L and CD11b120. Furthermore, blood neutrophil 
viability is significantly prolonged because of delayed apoptosis 
(a feature of inflammation) and these neutrophils release more  
myeloperoxidase (MPO) when unstimulated in more severe  
forms of the disease (suggesting constitutive priming and  
activation)120. Systemic neutrophils seem to retain their  
phagocytic and anti-microbial ability compared with airway 
counterparts120. Airway neutrophils in bronchiectasis exhibit  
impaired phagocytosis of pathogens, including Pseudomonas  
aeruginosa (PAO1), contributing to recurrent infections120.  
However, this appears to improve with antibiotic therapy120. In 
a study of 103 adults with bronchiectasis, the most frequent  
immune cell abnormality was reduced neutrophil oxidative  
burst121 but there was significant heterogeneity. A comprehen-
sive screen of immune function confirmed that 13 subjects had  
low levels of IgG3, six had low levels of B-cell lymphocytes  
and seven had low T-helper cell lymphocytes when compared 
with controls. All subjects had a normal neutrophil phagocytic  
function, but 33 of the subjects had an oxidative burst that was 
below that seen in health121. In addition, airway neutrophils in 
bronchiectasis exhibit higher necrosis and impaired cell death 
as well as reduced clearance by macrophages, delaying inflam-
mation resolution and causing persistent inflammation and  
further airway damage116,120. Furthermore, increased neutrophil  
degranulation causes further airway damage and correlates with 
worse clinical outcome119,122.

Although these studies highlight themes of neutrophil func-
tion and dysfunction across bronchiectasis, the diverse causes 
of disease may display different patterns. For example, primary  
ciliary dyskinesia (PCD) is a rare genetic disease caused by  
abnormal structure or function of motile cilia (or both) which  
leads to bronchiectasis123. Recently, neutrophils from patients 
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with PCD have been shown to display reduced migration toward  
CXCR2 ligands (CXCL5 and CXCL8) but not to LTB

4
 and  

complement component 5a. The reduced response to CXCL8 
was observed in all subgroups of patients with PCD and  
correlated with lung function, and CXCR2 expression was  
downregulated on the cell surface in about 65% of the patients 
with PCD124. However, in non-PCD bronchiectasis, neutrophil  
migration appears preserved125, and a trial of a CXCR2 antago-
nist given orally for 28 days resulted in about a 70% decrease 
in the percentage of sputum neutrophils, suggesting that  
CXCR2 ligands were strong drivers of neutrophil accumulation  
in the lung126.

The combination of infection and inflammation suggests that  
both anti-microbial and anti-inflammatory agents might help 
with disease management. Currently, the two main treatment  
options for bronchiectasis involve physiotherapy for clearance 
of mucus and antibiotics for treatment of infections127, a strat-
egy that has not changed since bronchiectasis was first char-
acterised in the 1950s. Despite advances in understanding the 
pathophysiology of bronchiectasis, the rates of exacerbation and  
mortality amongst patients with bronchiectasis have shown little  
improvement128. Therefore, further research is needed to under-
stand how to prevent disease progression and to develop thera-
peutic targets accordingly but this may require better stratification  
of the cause of bronchiectasis and a diverse treatment strategy.

Cystic fibrosis
CF is an autosomal recessive disease whereby a loss-of- 
function mutation in the CF transmembrane conductance  
regulator (CTFR) gene affects mucociliary clearance117. CF is the 
most common inherited disorder in the Caucasian population,  
affecting 1 in 2000 live births129, and a common cause of  
bronchiectasis, which is often more severe and progressive than 
non-CF bronchiectasis. With CF bronchiectasis, as with non-
CF bronchiectasis, neutrophil dysfunction has been described. 
In particular, airway neutrophils in patients with CF exhibit 
a functional exhaustion and a pro-survival phenotype129,130,  
potentially reflecting the high levels of inflammation and  
structural damage present in the lung.

Recruitment and migration of neutrophils into the lung 
appear to be normal in patients with CF, but the plethora of  
inflammatory mediators in the CF airways makes the sputum 
rich in neutrophils117. Extensive research into these airway 
neutrophils has uncovered some functional defects. First, CF  
airway neutrophils exhibit impaired degranulation which is 
linked to the loss of CFTR function as ivacaftor treatment 
reverses this129,131. Dysregulated degranulation of NE and MPO  
contributes to tissue damage which can exacerbate CF117.  
Furthermore, the altered microenvironment of the CF lung is  
thought to be a contributing factor to lower neutrophil phago-
cytosis levels which are coupled with a lower respiratory 
burst generation shown in vitro following stimulation with  
PMA117,130. This is thought to contribute to impaired bacterial  
killing and recurrent infections. In addition to having functional 
defects, CF airway neutrophils appear to have a pro-survival  
phenotype. CF neutrophils have apoptosis defects which delay 
and impair cell death, resulting in neutrophil persistence, NET  

production and increased necrosis129,130,132,133. Auto-antibodies to 
NET components have also been described in patients with CF 
and the presence of these auto-antibodies has been associated  
with diminished lung function134, although direct evidence linking 
these two observations is lacking.

New CFTR modulators have revolutionised the treatment of  
CF for patients with specific genetic mutations and these  
therapies also appear to impact on neutrophil function. Ivacaftor 
treatment restored neutrophil apoptosis rates in patients commenc-
ing this treatment compared with their baseline functions129,131. 
The exact mechanism of action has not yet been elucidated, but  
similar immune modification has been seen in macrophages 
from CF patients taking CFTR modulators135, providing further  
evidence of effect.

Asthma
Asthma is a chronic inflammatory lung disease that affects  
340 million people worldwide and accounts for 180,000 deaths 
worldwide every year136,137. Again, there are many phenotypes 
of asthma (Table 1), and for many years there has been interest  
in the concept of “neutrophilic asthma” (where neutrophils rep-
resent 40 to 76% of total sputum cells) and this classically  
correlates with steroid resistance, acute exacerbations, occupa-
tional asthma and more treatment-resistant forms of the disease,  
suggesting that the neutrophil plays a role in asthma  
pathophysiology136,138–140. In patients with asthma, as in those with 
other diseases discussed, both peripheral and airway neutrophils 
exhibit functional defects compared with healthy individuals.  
In vitro chemotactic velocity to CXCL8 and fMLP has been 
shown to be impaired137. This finding has led to the suggestion  
that neutrophil migration could be used to differentiate asthma  
from non-asthma patients141, but given that neutrophil migration 
is dysfunctional in a number of conditions, the utility of such  
a device is questionable. In asthma, as in other airway diseases, 
there is some evidence of increased NET formation142, ROS  
generation143 and reduced neutrophil phagocytosis144, although 
results are variable. In patients with neutrophilic asthma, as in  
those with COPD, systemic inflammation (C-reactive protein 
and IL-6) is increased compared with both patients with  
non-neutrophilic asthma and healthy controls145. However, whether 
defects in neutrophil function are intrinsic or are a consequence 
of—and perhaps contribute to—heightened systemic and airway 
inflammation remains unclear.

Of note, although neutrophils are associated with tissue damage 
in asthma, they have also been shown to have a role in control-
ling inflammation, restoring tissue homeostasis and promoting 
tissue repair136, highlighting the delicate balance between protec-
tive and destructive functions of neutrophils in airway disease, a  
common feature across all of the diseases we have considered.

Common mechanisms across diseases
The data presented highlight many similarities in neutrophilic 
inflammation across airway diseases. First, an airway neu-
trophilia is common. Second, there are often markers of neutrophil  
degranulation and in particular ROS and proteinase activity  
which are associated with disease presentation and progression. 
Third, aspects of neutrophil function appear altered. Although  
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this seems to most commonly affect migration and ROS  
production, studies also highlight aberrant NETosis and  
phagocytosis, although defects are variable. The commonality of  
neutrophil inflammation across different diseases might suggest 
common underlying mechanisms of effect, and studies have  
suggested potential themes as to how this might occur.

First, inflammation might impact on neutrophil functions  
irrespective of the initial insult (be it infection, allergen or  
smoking). For example, TNFα—shown to be increased in  
airway secretions from patients with COPD, asthma, bronchiecta-
sis and AATD—is able to increase the expression of capture  
receptors and adhesion molecules on the surface of blood  
vascular endothelial cells, enhancing neutrophil migration into 
the inflamed lung146. Furthermore, TNFα can impact on cellu-
lar functions as it is a potent priming agent and able to increase  
ROS production by neutrophils, which will further contribute to 
tissue damage147. Second (and more speculatively), the inflam-
mation present across diseases might impair the ability of the 

lungs to “de-prime” cells29, leading to a circulating population 
of primed cells, which might confer a more aggressive cellular  
phenotype. A third putative theme is that of altered cellular  
subtypes. This has only recently been described in COPD, but  
other studies suggest that neutrophils change in response to  
signals such as inflammation, hypoxia or physical pressure,  
resulting in different functional phenotypes. These changes are 
subtle and may relate to the immediate cellular environment, 
as described in mice models of cancer147 and pro-inflammatory  
culture conditions148. Figure 2 provides a summary of how 
these mechanisms could lead to pathology across diseases. The  
evidence base for these themes is tentative but, if confirmed, may 
provide therapeutic insight to target fundamental inflammatory 
processes across diseases.

Targeting neutrophils in airway disease
Although modifying neutrophilic inflammation is an attrac-
tive interventional strategy, neutrophils are a challenging target 
and one that comes with risks associated with neutropenia or 

Figure 2. Inflammatory mechanisms in disease pathogenesis. Inflammation from the initial insult (1) increases the expression of capture 
molecules on the bronchial epithelium and adhesion molecules on neutrophils, (2) enhancing neutrophil migration into the inflamed lung, 
resulting in airway neutrophilia. (3) Potentially altered neutrophil priming processes from excessive neutrophil priming, or a possible 
failure of the lung to “de-prime” neutrophils, further increases airway neutrophilia. (4) Release of proteases from airway neutrophils during 
migration, release of neutrophil extracellular traps (NETs), or frustrated phagocytosis contributes to degradation of elastin and development 
of emphysema. Neutrophil elastase can also cause mucus hypersecretion, contributing to development of chronic bronchitis. (5) Increased 
reactive oxygen species (ROS) released from primed neutrophils further contributes to tissue damage within the lung. (6) Impaired neutrophil 
function increases tissue-damaging potential via excessive protease release or impaired bacterial clearance, increasing susceptibility to 
bacterial colonisation or acute infection. (7) Bacterial colonisation further heightens pulmonary inflammation, increasing tissue damage 
potential. (8) Speculatively, inflammation, hypoxia or physical pressure may alter the neutrophil population, resulting in subtypes of neutrophils 
with different phenotypes and altered function which further contribute to local tissue damage and impaired bacterial clearance.
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excessive inhibition of neutrophil host defence mechanisms 
against infection. There are two potential therapeutic avenues to  
explore.

The first is to target the chemoattractants responsible for  
neutrophil recruitment into the lung. CXCL8 and LTB

4
 are the 

dominant chemokines thought to be responsible for this100,106,149 
and drugs targeting these mediators have been trialled in inflam-
matory airway disease. Clinical studies of a CXCR2 agonist  
(MK-7123) led to improvements in lung function and reduced 
exacerbations in active-smoking patients with COPD compared 
with placebo treatment150, but a large proportion of patients 
experienced neutropenia, raising concerns about immunosup-
pression. As discussed earlier, in patients with bronchiectasis, 
the CXCR2 antagonist AZD5069 resulted in a 70% decrease 
in the percentage of sputum neutrophils but this was not associ-
ated with improved clinical outcomes126. A small phase II trial 
investigated the effects of a leukotriene synthesis inhibitor,  
reducing LTB

4
 production, on bronchial inflammation in  

patients with stable COPD, showing some benefit151. However, 
a randomised placebo-controlled trial of an LTB

4
 receptor 

antagonist (BIIL 284 BS) in patients with CF was terminated 
early because of serious adverse effects, including increased  
respiratory symptoms requiring intravenous antibiotics and  
hospitalisation, reduced pulmonary function and increased  
circulating neutrophil numbers152, suggesting that LTB

4
 antag-

onism may result in acute pulmonary exacerbations and  
heightened inflammation152, although the mechanisms for this  
were poorly understood. An alternative strategy may be to  
target associated co-morbid conditions which contribute to the 
inflammatory load. For example, the treatment of periodontitis, 
a chronic inflammatory condition associated with neutrophilic  
inflammation and recruitment which shares many inflamma-
tory features of COPD153, has been shown to improve changes in  
both lung function and exacerbation frequency in COPD154.

The second therapeutic option is to directly modulate neu-
trophil function155. A number of in vitro studies have investi-
gated strategies to improve the accuracy of neutrophil migration, 
thereby theoretically reducing the potential for migration- 
associated and protease-mediated tissue damage. Broad-range  
inhibition of PI3K signalling has been shown to restore  
migration of COPD neutrophils to levels similar to those of  
neutrophils from age-matched healthy controls40. However,  
broad-spectrum inhibition of PI3K therapeutically is likely to 
lead to significant side effects. Selective inhibition of class I  
PI3K-δ and PI3K-γ, which are enriched in leucocytes156, may 
offer a more acceptable therapeutic option; indeed, selective  
isoform inhibition of PI3K-δ and PI3K-γ has been shown 
to restore reduced migratory accuracy of neutrophils from 
healthy older adults67. Impaired migration in COPD is hypoth-
esised to be a further exaggeration of age-related impairment in  
neutrophil migration, emphasising the potential of this strategy 
in COPD, but whether PI3K inhibition provides benefit in vivo  
or in other inflammatory airway diseases requires further  
investigation. Simvastatin is a safe and well-tolerated drug  
commonly used for its cholesterol-lowering abilities. Population  
studies and clinical trials suggested a survival benefit for patients 

taking statins during infection157, which prompted interest in 
the ability of these drugs to modulate immune function. In vitro  
simvastatin treatment has been shown to have beneficial effects 
on migration of neutrophils from patients with COPD158 and  
during pulmonary infection in otherwise healthy older adults 
but not during more severe infection or sepsis159. These ben-
eficial effects on migration were replicated in a clinical trial of  
high-dose simvastatin in healthy older adults159,160. Similar in vivo 
studies are required to determine whether effects are maintained 
in a disease setting, but a clinical trial is currently under way161 

and outputs are expected this year. Other commonly used drugs  
may also provide mechanistic insight into how neutrophil could 
be targeted. Aspirin induces resolvin-D signalling, which has 
been associated with improved pneumonia outcomes in murine  
models162, and aspirin is associated with improved survival in  
observational studies of pneumonia163. Metformin, commonly 
used for glycaemic control in diabetes, has also gained interest 
as a potential means to target neutrophil functions, potentially  
modifying chemotaxis and bacterial killing through 5′  
adenosine monophosphate-activated protein kinase (AMPK)  
activation164.

Targeting local airway neutrophil apoptosis has also been  
suggested, and induction of airway neutrophil apoptosis 
reduced airway inflammation in mouse models165,166 but these  
models do not recapitulate all features of human disease.  
Effective clearance of apoptotic cells, via efferocytosis, is vital to  
prevent secondary necrosis and release of damaging pro- 
inflammatory cell contents which may heighten inflammation  
and contribute to further tissue damage167. However, in human 
studies, clearance of apoptotic cells has been shown to be 
reduced in many inflammatory airway diseases, including  
COPD83,84, asthma168,169, CF and bronchiectasis170. As such,  
induction of neutrophil apoptosis in vivo, without improvement 
of clearance mechanisms, needs to be approached with caution  
and may have the potential to cause more harm than good.

The final challenge is effective delivery of the desired drug 
to its target without impacting host defence against infection 
owing to neutropenia or excessive impairment of neutrophil 
function. Inhaled therapies may permit effective targeting of 
airway neutrophils whilst minimising systemic side effects; 
indeed, an inhaled PI3K-Δ inhibitor is in clinical trial for the  
treatment of COPD exacerbations (ClinicalTrials.gov Identifier:  
NCT03345407). The key would be to ensure penetration of 
the inhaled compounds into the smaller airways and newer  
devices offer the promise of these effects.

Conclusions
Neutrophilic inflammation is a common feature of many  
airway diseases and is associated with disease progression, often  
irrespective of the initiating cause or underlying diagnosis. 
This provides a potential therapeutic target, but the target is a  
challenging one. The crucial role of neutrophils in clearing  
bacteria means that merely inhibiting their responses in a blunt 
or indiscriminate fashion is likely to be detrimental to the host, 
as demonstrated by the manifestations of neutropenia. Targeting  
neutrophils requires a more subtle approach. Neutrophils appear 
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to be susceptible to epigenetic changes171 which are variable 
but impact on function and the resultant changes appear long-
lived172. This might provide a mechanism for the self-perpetuating  
inflammation present across many airway diseases. It might be  
that chronic inflammation leads to epigenetic reprogramming 
of neutrophils, which alters their phenotype or responses. The  
physical damage to the lung infrastructure and especially the 
pulmonary vasculature might compound this by inhibiting  
de-priming. Unfortunately, the current evidence base for 
understanding neutrophil function across diseases is limited 
(often small studies using different techniques across different 
patient groups) but this is certainly worthy of more study. To 
ascertain whether there are shared mechanisms of neutrophil  

dysfunction across disease and more importantly how these  
might be targetable will require collaborative research across  
current disease silos.
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