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Abstract 

Thiol-modified ferrocenes on gold have been archetypical model systems for many 

fundamental charge transfer and other studies, since both thiol-gold and ferrocene redox 

chemistry are considered to be well-understood. Thus unexpectedly, we found that for a 

representative of a new class of flexibly linked bis-ferrocenyl compounds, namely 1-10-bis(1-

ferrocenyl)decane dithiol, surface immobilization on gold failed. Instead, in the presence of 

gold, molecular decomposition took place, resulting in sulfur-based adlayers and well-defined 

molecular elimination products, for which we provide spectroscopic evidence. Careful control 

experiments and comparison with related ferrocene compounds provide insight into the 

mechanism of the observed elimination reactions, as a combined effect of the molecular 

structure and the nature of the gold/sulfur bond. These findings, thus, have broader impact on 

the design of molecular adlayers, for example, in the context of surface functionalisation in 

sensing or the synthesis of gold nanoparticles.  

INTRODUCTION 

Ferrocene (FcH) is an iconic organometallic molecule featuring a characteristic sandwich-like 

molecular structure, significant thermal stability and inertness towards air and moisture.1-6  

Ferrocenyl (Fc) derivatives have found numerous applications across chemistry, biology and 

material sciences.7-17 An important property of FcH is that it undergoes a one-electron 

oxidation which is reversible and produces the ferrocenium cation (FeCp2
+) as a (relatively) 

stable product. This electrochemical behavior is inherited by many FcH derivatives and 

contributes to their usefulness towards various applications. Representative examples of such 

applications comprise utilization of Fc-based ligands in the design of redox-switched catalysis 

for lactide polymerization18 and utilization of Fc groups as redox-activating antenna in 

ferrocifen-type anticancer agents.17  Moreover, FcH-containing compounds have been well-

studied in the context of molecular electronics, redox-active self-assembled monolayers 
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(SAM), mixed valent (MV) systems and nonlinear optical materials (NLO).19-41 Surface 

immobilization on gold and some related metals is often achieved via thiol, thioether and 

other sulfur-containing functionalities as the anchor group42-44 with either 1- or 1,1’-

disubstituted ferrocenes as well-established model systems.  

We have a long standing interest in redox-active molecular electronic components in the 

context of single-molecule charge transport studies,45 including single-center Os- and Co-

based systems,46-49 small nanoparticles,50 viologens,51 in ex situ and in electrolytes and in 

ionic liquids.52 In this context, charge transport in the hopping regime, i.e. directly involving 

the redox centres in the transport pathway, has been relatively well studied, highlighting the 

link between tunnelling conductance and the hopping constants.49,53,54  On the other hand, 

branched and ring-shaped redox-active systems, or systems where redox-active pendant 

groups affect the charge transport pathway indirectly are less well-studied,20,22-25,37-39 even 

though they can display interesting quantum interference features such as Breit-Wigner and 

Fano resonances.55 Some of the systems studied here could offer interesting insight, so we 

herein report the synthesis, structural and electrochemical characterization of representatives 

of a new class of flexibly linked bis-Fcs. We have focused on 1,10-bis(1-ferrocenyl)decane-

1,10-dithiol 3 (Scheme 1) with thiol anchor groups intended for surface immobilisation on 

electrode substrates, such as gold. Interestingly, however, 3 did not interact with the gold 

substrate in the expected way, viz forming a stable gold-sulfur bond. While the characteristic 

voltammetric FcH-based redox signal was present after incubation of the gold substrate, 

increased with immersion time and displayed the electrochemical characteristics of an 

immobilised redox species, comprehensive characterisation of the substrate by surface 

voltammetry, Scanning Tunnelling Microscopy (STM) imaging and X-ray Photoelectron 

Spectroscopy (XPS) revealed a more complex picture. Specifically, it was found that an 

adlayer of elemental sulfur was present on the substrate with an associated reductive 
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desorption charge about an order of magnitude larger than the charge associated with the FcH 

redox process. According to the molecular design, the ratio between Fc and thiol groups was 

expected to be unity, which was indeed confirmed by elemental analysis. Analysis of the 

solution composition by plate chromatography/electron spray ionisation mass spectrometry 

(EI-MS) further showed the presence of unsaturated, (partly) de-thiolated derivatives of 3, 

which were not formed in the absence of Au or with non-thiol containing analogs of 3. Thus, 

the presence of both gold and the thiol functionality were required to trigger the observed 

reaction. Notably, such instabilities have not been reported for FcHs featuring even very short 

primary alkane thiols as substituents.26,27 Thus, it seems that in addition to the above 

conditions, the close proximity of the Fc and the thiol group, as well as the secondary nature 

of the thiol are pre-requisites for the process to take place. Finally, we note that 

immobilisation of 3 continues to take place even after the sulfur layer has formed. This would 

imply that this layer is either sufficiently porous that 3 continues to have access to the gold 

surface or, more likely, that 3 binds to the sulfur layer itself. 

 

RESULTS AND DISCUSSION 

The preparation of 1,10-bis(1-ferrocenyl)decane-1,10-dithiol 3 involves three steps and is 

depicted in Scheme 1.  

 

  

Scheme 1. Synthesis of compounds 1-3 
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In the first step, the 1,10-bis(1-ferrocenyl)decane-1,10-dione 1 was prepared in a 

Friedel-Crafts reaction of FcH with sebacoyl chloride in the presence of AlCl3 (orange 

crystalline solid, 87% yield; see SI for further characterisation). Ferrocenyl diketone 1 has 

been reported in 1986 as a side product of some acylation reactions of FcH.56 More recently, 

Bulut and co-workers obtained 1 in 90% yield in a Friedel-Crafts reaction of FcH with 

sebacoyl chloride in the presence of EtAlCl2.
57 These authors concluded that the high yield of 

the reaction results from EtAlCl2 being applied as a catalyst. Our results, however, 

importantly show that using a common AlCl3 catalyst also allows the isolation of 1 in high 

yield.  

In the second step, compound 1 was treated with Lawesson’s reagent to afford the 

1,10-bis(1-ferrocenyl)decane-1,10-dithione 2 as a dark blue oil in 72% yield. Dithioketone 2 

is an unstable compound which undergoes rapid decomposition to produce a mixture of ill-

defined products. Despite its unstable nature, we were able to confirm the presence of 2 by 1H 

NMR and IR spectroscopy as well as by mass spectrometry, see SI. In the third step, the 

thioketone functions in 2 were reduced with LiAlH4 in tetrahydrofuran at 0oC to produce the 

1,10-bis(1-ferrocenyl)decane-1,10-dithiol 3 (yellow oil, 73% yield, see SI for further 

characterisation).  

The redox behavior of compounds 1 and 3 in solution, as studied by cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV) with a glassy carbon as working 

electrode, features a single pair of redox peaks, associated with the oxidation/reduction of the 

Fc units (see panel ii) in Figures S1 a/b).58,59 The process appears to involve a reversible 

single-electron transition as: (1) the peak-to-peak separation (ΔEp) is close to the predicted 

value of 59 mV, and (2) current density ratio (jpa /jpc) ≈ 1, Figure S1 a/b panels iii) and iv). We 

did not observe any evidence for peak splitting from the two FcH centres in CV or DPV, 

suggesting that there is no significant electronic interaction between them. We attribute this to 
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the reductive desorption data shown in c) (red squares). c) Reductive desorption of S-Au 

bonds, as a function of immersion time (v = 0.1 V/s, electrolyte: 0.1 M NaOH). d) XP spectra 

of the S2p signal (grey curve) showing three different S environments, namely S1, S2 and S3. 

e) STM image of the Au(111) surface after incubation with 3, showing typical pit formation 

(dark areas). f) Magnified area from e), revealing a quasi-rectangular pattern with 

characteristic distances of 1.0 ± 0.1 nm and 0.92 ± 0.089 nm. g) Fast Fourier Transform (FFT) 

of f). 

  

In accordance with these expectations, we indeed observed a notable increase in the Fc 

redox signal as a function of immersion time, as shown in Figure 1a. The peak separation ΔEp 

was small with 26 ± 7 mV, albeit not zero, presumably as a result of the changing 

microenvironment of the redox centers.27 The anodic and cathodic peak currents increase 

linearly with v (inset). Notably, even after 24 h immersion time, the peak charge and hence 

the surface coverage still do not seem to have become saturated (16 C·cm-2 after 24 h, as 

shown in panel b), which is unusually slow for the adsorption of small thiols onto Au.64  

For comparison, panel c) shows the reductive desorption data, for different immersion 

times in dichloromethane solutions of 3 and recorded in 0.1 M NaOH electrolyte (pH = 13), 

see Methods for further details. All curves display a sharp, cathodic peak centered at -0.93 ± 

0.02 V that is characteristic of S-Au bond reduction.65 

However, compared to the Fc-based redox response, a very different picture emerges. 

Firstly, the peak charge does not change significantly for immersion times between 1 and 24 

h, with an average peak charge of 204 ± 18 μC·cm-2 (panel c). Secondly, the associated charge 

is more than an order of magnitude larger than the value determined from the Fc response, 

which cannot be accounted for by differences in the electron transfer stoichiometry. Equally, 

sulfur-based contaminants in the chemicals and solvents used could be ruled out as the source 

of the sulfur species, because in control experiments in the absence of 3 no adsorbed sulfur 

could be detected, while elemental analysis of 3 did not show any excess sulfur species in the 
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solid. Desulfurisation of 3 was thus the most likely origin of the sulfur adlayer, which was 

supported by reductive desorption experiments with sulfide-modified Au(111), Figure 1c 

(grey curve). Namely, after immersing the substrate in 0.1 M aqueous Na2S (pH = 13) for 5 

minutes, the reductive desorption curve was characterized by a sharp cathodic peak centred at 

ca. -0.9 V with a charge density of 192 μC·cm-2 (S-Au + 2e-→ 2Au + S2-), a value comparable 

to the one found after incubation with 3, vide supra. It is worth noting that the FcH signal kept 

increasing, even after the sulfur adlayer had already formed, suggesting immobilisation of 3 

directly on sulfur rather than Au.  

X-ray photoelectron spectroscopy (XPS) characterisation of the surface after 1 h 

incubation with 3 confirmed the presence of a sulfur-rich layer and provided further insight 

into its speciation, Figure 1d (S2p region). The signal was successfully fitted with 3 

components namely S1, S2 and S3 (each a characteristic doublet with relative intensities of 

1:2 associated with quantum numbers j = 1/2 and 3/2). The extracted binding energies of S 

2p3/2 were centered at 161.3 eV for S1, 162.2 eV for S2 and 163.4 eV for S3 with an intensity 

ratio of 2.3:1.6:1. As reported previously,66 the more intense signal S1 was assigned to the 

presence of a sulfide adlayer, while S2 and S3 have been associated with either polysulfide or 

thiolate (S2), and elemental sulfur or physisorbed thiols (S3), respectively.  

Desulfurisation of thiols in contact with Au substrates has been observed previously, 

in particular for aromatic thiols and those with good leaving groups (i.e. where the 

decomposition product is relatively stable).67-70 However, while their results confirmed the 

formation of a sulfur-rich layer on the substrate from a range of different organic thiols, no 

direct experimental evidence for the reaction products in solution were reported. This would 

nevertheless be useful, in order to gain further insight into the reaction mechanism and to 

assess potential further implications of the effect.  
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Since here, the amount of molecular by-products is expected to scale with the 

available Au surface area, we decided to replace the macroscopic Au(111) substrate with a 

dispersion of citrate-stabilised Au colloids (diameter: 10 nm) and to analyse the solution 

composition using plate chromatography/electron impact mass spectrometry (EI-MS).    

After incubation of 3 in the colloidal dispersion (in THF, particle concentration: 4·1012 

particles/mL) for 24 hours in the dark, three different molecular species could be detected, 

namely the de-thiolated product 4, the oxidized di-sulfide 5 and the partially de-thiolated 

product 6, Figure 2. As a control, the same experiment was performed in the absence of 

nanoparticles, but no decomposition products were detected.    

With the aim to fully characterize the decomposition products, their isolation on a 

preparative scale was attempted. Unfortunately, all attempts were unsuccessful. However, we 

did successfully synthesise the proposed compound 4 (Figure S7), which is likely to be the 

abundant decomposition product according to the relative intensity of the EI-MS (Figures S8-

S10).  The EI-MS spectrum of synthetized compound 4 shows the M+ peak at 506 m/z 

(Figure S11), confirming its presence as one of the decomposition products. Furthermore, as 

the same peak at 506 m/z is present in the EI-MS spectra of all decomposition fractions 

(Figures S8-S10), it can be hypothesised that compound 4 is the most stable reaction product 

and compounds 5 and 6 decompose either in the course of MS measurement or in the bulk to 

end up with the most stable alkene 4. In fact, in control experiments with compound 4 in 

contact with colloidal gold, no decomposition of 4 was found reinforcing all above 

mentioned. The position of the double bonds in the chain of 4 has been assigned based on 1H-

NMR spectrum. 1H-NMR of compound 4 shows the unambiguously characteristic doublet 

and doublet of triplet signals assigned to the two CH=CH bonds (Figure S7). This signal 

pattern can only result from terminal positioning of the C=C bonds in the chain as another 

position of the C=C bond would lead to more complex features in the spectrum.  
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Figure 2. Reaction products 4, 5, and 6 (inc. M+ ion masses of 506, 572 and 540), 

detected after incubation of 3 with Au nanoparticle dispersion.   

 

 Hence, these results confirm the formation of well-defined molecular reaction 

products that are complementary to the formation of the sulfur adlayer. It is interesting to note 

that such a decomposition process has not been observed with the unsubstituted FeCp 

analogues of 2-alkyl mercaptans71 or other thiol-modified FcHs, even when the thiol group 

was very close to the Cp ring. 26,27 The latter is, therefore, not a sufficient pre-requisite for the 

reaction to take place under the conditions used here. Arguably, those molecules feature 

primary thiol groups, rather than secondary ones as in 3, and the position of the Fc group, 

relative to the thiol, in the former case does not lend itself to the stabilisation of potential 

intermediates in the same way. It is therefore likely that both play a role in the de-

sulfurisation of 3, namely the ability to form C/C double bonds in -position and the 

stabilisation effect of the Fc group in proximity.  

 

CONCLUSIONS 

We report a new three-step approach for the synthesis for flexibly linked bis(1-Fc) 

compounds in high yield and, in contrast to previous studies, have utilised AlCl3 as the 

catalyst. This further expands the toolset available for the design of FcH-based materials. 
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Secondly, failed attempts to immobilise the thiol-modified variant 3 on gold by exploiting 

well-known gold/thiol chemistry highlights some of the complexities in this interaction. 

Facilitated by the strong gold/thiol interaction, desulfurisation occurs producing sulfur-

containing adlayers on the gold substrate and well-defined, unsaturated molecular products in 

solution. Unexpectedly, some surface immobilisation of 3 took place even after the sulfur 

layer had formed. Based on electrochemical, XPS, STM, chromatography/EI-MS, we provide 

comprehensive characterisation and speciation evidence of both the surface layer and the 

molecular products, offering valuable insight into the mechanism of decomposition and hence 

into the rules underpinning the design of well-defined molecular adlayers. Such 

considerations most likely go beyond the specific system under study here and extend towards 

other areas where thiol-based self-assembled monolayers are key, e.g. in sensor design and 

nanoparticle stabilisation.  
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