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Abstract 
DNA replication starts with the opening of DNA at sites called DNA replication origins. From 
the single sequence-specific DNA replication origin of the small E. Coli genome, up to the 
thousands of origins that are necessary to replicate the large human genome, strict sequence 
specificity has been lost. Nevertheless, genome-wide analyses performed in the recent years, 
using different mapping methods, demonstrated that there are precise locations along the 
metazoan genome from which replication initiates.  These sites contain relaxed sequence 
consensus and epigenetic features. There is flexibility in the choice of origins to be used during 
a given cell cycle, probably imposed by evolution and developmental constraints. Here, we 
will briefly describe their main features. 
 
Introduction: Choice and flexibility in the usage of DNA replication origins in eukaryotes   
DNA replication starts with the opening of DNA at sites called DNA replication origins. A single 
replication origin is sufficient to completely duplicate the E. coli genome during the 30min-
long cell cycle. The human genome is 700-fold larger, the replication fork speed is 30-fold 
lower. Therefore, with the same cell cycle length than in E. Coli, 21 000 origins would be 
necessary, 21 000 origins would be necessary to fully duplicate the human genome. Early 
experimental findings suggested that between 30 000 and 100 000 replication origins are 
activated in a mammalian cell cycle, and recent methods that allow characterizing origins at 
the genome-wide level gave similar numbers [1].  Two important features were also 
confirmed. First, from yeast to human cells, the number of potential origins is large, but only 
20 to 30% of them are activated each cell cycle. Moreover, there is a large flexibility in the 
choice of the origins to be activated in each cell of a given population, and this choice is 
apparently stochastic. Second, selected origins are not activated all at the same time, but 
according to a highly regulated timing of individual activations during the entire S phase. 
 
Identikit of a replication origin 
From bacteria to higher eukaryotes, replication origins contain at least two elements: a 
replication initiation site (IS), where DNA synthesis is activated, and an upstream adjacent 
element where the pre-replication complex (pre-RC) is assembled (Figure 1). Pre-RC formation 
is initiated by ORC binding to the replication origin at the G1 phase of the cell cycle, followed 
by CDC6, CDT1, and finally the MCM DNA helicase, in a reaction called replication origin 
licensing. This complex remains inactive up to S-phase start, when Dbf4-dependent and cyclin-
dependent kinases phosphorylate the MCM helicase that associates with the GINS tetramer, 
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MCM 10 and CDC45 to form the two active CMG helicases. At this stage, the DNA double helix 
is opened allowing the recruitment of the DNA polymerase machinery and the formation of 
the two replication forks [2]; [3], for reviews). 
Due to the pre-RC steric occupancy on DNA and the neighboring nucleosome that cover at 
least 210 bp of DNA [3]; [4]), the IS cannot be at the pre-RC site, but at least 210 bp 
downstream of it. Other constraints also predict that the IS should be at a variable position 
downstream of the pre-RC site. First, the MCM helicase will have to unwind the DNA over a 
minimum length to allow the binding of the DNA polymerase machinery to the unwound DNA. 
Second, in some cases, MCM helicases can be displaced from their initial binding sites along 
DNA, leading to initiation of DNA replication further away from the pre-RC binding site [5]. 
Third, DNA polymerases do not require a specific sequence to start DNA synthesis. Indeed, the 
start of DNA synthesis might depend on the accessibility of the unwound DNA that may 
fluctuate according to the origin and its epigenetic features. These constraints are likely to 
explain the IS size variations from a sharp peak to an initiation zone. 
 
 
Mapping DNA replication origins 
In the last years, five main methods have been developed to map replication origins genome-
wide. Table 1 summarizes these methods and the average size of IS zones and peaks. 
The highest resolution is reached with the Small Nascent Strand-sequencing (SNS-seq) method 
that is based on the purification of nascent RNA-primed DNA synthesized at origins.  Nascent 
DNA strands are the first to be produced at the leading strand of replication origins. They 
contain RNA primers (8 to 12 nucleotides) synthesized by DNA polymerase alfa-primase to 
start DNA replication. Usually, RNA-primed nascent DNA fragments (500-1500 bp in size) are 
first purified by incubation with lambda exonuclease to eliminate any contaminating DNA that 
was not RNA primed. This method is the most accurate to map replication origins. 
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) against ORC also has been 
used for origin mapping. As ORC has additional functions in mitosis, ORC1 should be the most 
suitable target because this subunit is already present at pre-RCs in G1 and then is degraded 
during the S phase. 
In the IS sequencing (Ini-Seq) method, BrdU immunoprecipitation is used to purify nascent 
DNA labeled with short BrdUTP pulses at the beginning of S phase (reagents are added to 
block DNA strand elongation). This approach is relatively accurate, but maps only early 
replication origins. 
The replication bubble sequencing (bubble-seq) method relies on the structure of open 
replication origins to trap them on agarose gels. It requires the use of restriction enzymes to 
separate such structures that are then isolated and sequenced. This method allows defining 
relatively large initiation zones, but cannot distinguish between the IS and the replicator, due 
to the large size of the analyzed fragments. 
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The Okazaki fragment sequencing (OK-seq) method is based on the change of directionality in 
Okazaki fragments synthesized at replication origins. It only maps wide replication domains 
(30 Kbp on average) in which several replication origins that cannot be distinguished with this 
method might be included. Moreover, it assumes an equal level of background from both 
strands (a technical impossibility), and is insensitive to weaker initiation sites [6, 7]. A recent 
study described a Bayesian inference algorithm to analyze OK-seq data, and proposed that it 
can be used to detect origin obscuring suggesting that improvements of analysis methods may 
lead to more sensitive, accurate and higher resolution detection of DNA replication origins [8]. 
The replication origins identified with these five methods (i.e., the origin repertoire) reflect the 
sum of the activated origins in a cell population. Methods to visualize activated replication 
origins in single cells are still lacking. This information might be soon accessible thanks to a 
nanopore sequencing technology that can identify a base sequence from the electric readout 
produced when single-strand DNA passes through a protein pore [9] [10].   

Motifs at DNA replication origins  
In S. cerevisiae, DNA replication initiates from regions that contain an A/T-rich motif called the 
autonomously replicating sequence (ARS) [11]). The ARS is necessary, but not sufficient for 
origin specification, because only about 3% of ARS sequences in the genome are used as 
origins [12].  
The identification of an ARS-like motif at metazoan DNA replication origins was more 
challenging. In mouse cells, genome-wide origin mapping using SNS-seq identified a G-rich 
region called Origin G-rich Repeat Element (OGRE) [13] [14]. This sequence motif is located 
~280 bp from the IS, in a nucleosome-free region[15]) Other SNS-seq-based studies also linked 
replication origins to G-rich sequences, such as G-quadruplex (G4) elements and CpG islands 
[16], [17], [18], [19]. Similar G-rich sequences have also been identified around DNA 
replication IS using the Ini-seq method [20]. In fact, the majority of mammalian origins 
identified by SNS-seq and half of all ORC1 and ORC2 binding sites contain G4 structures [21] 
[22] and Akerman et al, unpublished data). Moreover, the requirement of a G4 element for 
replication initiation activity has been demonstrated for individual origins ([23] and Prorok et 
al, to be published), but has not been generalized to all origins yet. CpG islands also are highly 
associated with IS (about 70% of CpG islands host DNA replication origins). However, most 
DNA replication origins do not contain CpG islands, and the majority of putative G4 structures 
do not host IS. This suggests that a G-rich sequence, such as a G4 element or a CpG island, is 
necessary but not sufficient for DNA replication origin specification. Moreover, chromatin 
immunoprecipitation (ChIP) of pre-RC components suggests that ORC1 and ORC2 are localized 
in open chromatin regions, with a preference for G/C-rich sequences, but without a specific 
sequence motif [21, 24] [21, 24]) 
A study in Caenorhabditis elegans embryos found that in early embryogenesis, origins are 
associated with asymmetrical A/T-rich sequences, while in late embryogenesis they are 
associated with G/C-rich sequences, such as CpG islands [25]. This result confirms several 
previous observations showing that replication origins are more frequent in transcription 
promoter regions [26]. 
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In Drosophila melanogaster, genome-wide mapping of ORC [27] did not identify any specific 
motif. Nevertheless, machine-learning algorithms could be used to discriminate between the 
DNA sequences of ORC-bound regions and random genomic sequences, through the detection 
of nucleosome-positioning signals that promote open chromatin [27]. A subsequent study 
that used SNS-seq to identify IS revealed a significant association between replication origins 
and putative G4 elements in the D. melanogaster genome) [28].  
A recent work suggests that within the initiation zones identified using OK-seq method, 
regions characterized by poly-A or poly-T tracks are enriched in DNA replication origins [6]. 
These putative IS do not directly overlap with known ORC2-binding sites; however, about 
~20% of them resides within 2Kb of known ORC2 binding sites (Akerman et al, unpublished 
data).  
 
Transcription  
Active transcription can be considered as a factor that positively affects replication activity. 
Genome-wide origin mapping performed in several organisms and using different mapping 
methods led to the conclusion that origins are strongly enriched in proximity of transcription 
start sites (TSS) in fly [28], plant [29], mouse [13, 15] and human cells [22], [7, 24, 30]. 
Interestingly, replication origins situated close to transcribed enhancers display higher 
replication activity compared with those close to non-transcribed enhancers, suggesting that 
transcription activity contributes to both replication origin position and strength [31]. 
  Conversely, dormant replication origins (i.e., licensed but not activated) seem to be 
associated with GC-poor regions within transcriptionally silent regions. Interestingly, 
replication origins associated with cell transformation also are within transcriptionally 
inactive, late-replicating and GC-poor regions [32].  
 
 
Epigenetic marks 
In higher eukaryotes, the positioning of replication origins is not dictated by a single DNA 
sequence motif and appears to be more dependent on the chromatin environment. For 
instance, it has been suggested that ORC triggers a permissive chromatin environment 
through the direct recruitment of histone acetyltransferases, such as GCN5 [33]; [34]). 
Moreover, the OGRE/G4 element upstream of the pre-RC is nucleosome-free, whereas the IS 
contains a labile nucleosome that might be removed during the initiation step. Recent studies 
on the telomere-associated protein RIF1 have further highlighted the potential role of G4s in 
origin firing. Specifically, it has been suggested that RIF1 delays pre-RC activation until late S-
phase at heterochromatin by organizing late replication-timing domains via its association 
with G4s that are enriched at telomeres [35], [36], [37]. Furthermore, a role of G4 in origin 
activation was also suggested by the presence of a functional G4-binding domain within MTBP 
[38], a protein cooperating with Treslin to trigger Cdc45 incorporation [39]. 
An exhaustive analysis of 43 epigenetic marks present at replication origins in mouse 
embryonic stem (ES) cells defined three main classes of replication origins that are 
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characterized by different chromatin environments [37]). Class 1 represents isolated origins 
that are poor in epigenetic marks and that are preferentially activated in late S phase. Class 2 
origins are particularly rich in enhancer elements, and consequently correlate with the histone 
mark H3K4me1, but also with the specific DNA modifications 5fC and 5hmC. Class 3 origins are 
associated with open chromatin and polycomb protein-enriched regions, and with H3K4me2-
3, H3K27ac, H3K9ac and H3K27me3. In mouse ES cells, H3K4me3 and H3K27me3 characterize 
polycomb-enriched bivalent domains that are strongly predictive of replication [15], [40]. 
Interestingly, H3K27me3 depletion in plants leads to re-replication of these genomic locations, 
arguing for an active role of the epigenetic environment in origin firing decision [41]. 
Similarly, conversion of H3K4me3 into H3K4me2 is catalyzed by the JARID1C demethylase that 
is crucial for origin activation in early S phase [42]. As JARID1C triggers the recruitment of 
CDC45 and PCNA that occurs simultaneously with H3K4me3 demethylation [43], it is tempting 
to hypothesize that the epigenetic environment might also contribute to origin firing 
coordination. Finally, H4K20 methylation also has been linked to origins. H4K20me1 seems to 
regulate late replicating regions in D. melanogaster [44] [45]. Conversely, in human cells, 
H4K20me1 is enriched at early replication domains [17, 46, 47]. In mammals, H4K20me3 
regulates late-replication domains, likely through ORCA recruitment [48] and by controlling 
the nuclear chromatin organization. In adult cells, H4K20me3 depletion results in ORC and 
MCM overloading that perturb the replication program [49]. The decreased chromatin 
compaction observed in the absence of H4K20me3 is reminiscent of the open genome 
organization in early embryos that is not compatible with the H4K20me3 heterochromatin 
mark [50]. These observations suggest that lower chromatin compaction promotes higher 
replication origin density at very early developmental stages. 
On the other hand, silencing of three H1 genes induces changes in genome organization and 
chromatin compaction that lead to more frequent abortive replication initiation, marked by a 
high number of stalled forks and ssDNA accumulation [51].  
In conclusion, DNA replication initiation and pre-RC formation appear linked with genomic 
sequences that promote open chromatin, including G-rich motifs that potentially form G4 
elements. These elements could represent a specific DNA structure, but cannot support a 
strict consensus motif (like the ARS element) at metazoan origins. They might be involved in 
pre-RC component recruitment and/or in origin specification by promoting nucleosome 
positioning and open chromatin. It is worth noting that while poly-A/T tracts play a role in 
nucleosome exclusion in yeast [52], the same function could be ensured by G-rich/G4 element 
in pluricellular organisms.  
 
Licensing within the cell cycle 
In eukaryotic cells, DNA replication and cell division are timely separated, ensuring that the 
whole genome is replicated once and only once per cell division. To prevent DNA re-replication 
within the same cell cycle and to ensure that DNA is fully replicated before cell division, the 
licensing reaction is regulated in time, integrated within the cell cycle, and occurs specifically 
in the G1 phase. To avoid re-replication, de novo pre-RC assembly on the newly synthetized 
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DNA is inhibited by different redundant mechanisms [53]; [54]; [55]; [56]. To date, three main 
mechanisms are known: i) pre-RC component inactivation by post-translationnal modification, 
ii) pre-RC component degradation, and iii) binding of the metazoan protein geminin (present 
from G1/S phase to metaphase) to the licensing factor CDT1 to inhibit its function.  
Unexpectedly, it has been recently shown that the mechanisms preventing re-replication are 
not identical for all origins, and that two different degradation complexes act in parallel to 
prevent re-replication at distinct pools of origins. This suggests that replication origin 
activation may be differently regulated regarding their genomic localization [57].  
 
Origin firing in time and space during S phase  

Replication origins are not activated synchronously, but are fired in a coordinated 
manner. Indeed, monitoring of ongoing replicative forks in fixed or live nuclei revealed a 
robust spatio-temporal organization of replication during S phase [58], with origins gathered 
within replicating foci the size and location of which vary according to the replication origin 
timing . These replication foci have been characterized at the single replicon scale using 3D-
SIM super resolution microscopy [59]. The results challenge the previous depiction of 
replication foci based on conventional microscopy studies as replication factories in which the 
replicative machinery is shared by several replicons. This vision of single replicons was 
completed by showing that replication domains typically contain four co-replicating regions 
that are gathered within a 150 nm region during their co-replication [59, 60].  

It was originally postulated that the local gathering of replicative forks might result 
from a 3D genomic organization based on the formation of DNA loops that temporarily allow 
physical chromatin contacts [58]. Replication domains are megabase-sized regions the 
boundaries of which co-localize with CTCF binding sites [61, 62]. Remarkably, genome-wide 
analysis of cell populations and single cells associated the boundary of temporally regulated 
replication domains with the boundaries of Topological Associated Domains (TADs), 
suggesting an interconnection between the genome 3D organization and the timing of origin 
firing [61, 63]. Early replicating domains are enriched in origins, and are typically associated 
with highly transcribed regions, enriched in open chromatin marks (for review [64]). 
Conversely, late heterochromatin replicating domains are at the nuclear periphery [65]. 
Genome-editing approaches have been used to identify genetic elements that might regulate 
the timing of replication domains. Unexpectedly, they showed that replication timing is, at 
least in part, governed by genetic sequences involved in intra-domain contacts and not by the 
CTCF dependent-TAD boundaries. Importantly, these intra-domain contacts of DNA in cis 
confirmed the formation of DNA loops within replication domains and their importance in 
replication timing maintenance [62].  It has been recently proposed that RIF1, a known late-
replication domain regulator that is involved in late replication timing maintenance [37]; [66]; 
[67], [68]), induces chromatin loop formation by simultaneous interactions with multiple G4 
structures [69]. 

Moreover, direct evidence of interplays between replication timing, chromatin 
organisation and epigenome was provided by repositioning of a heterochromatin region to 
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the nuclear periphery. This relocation decreased levels of the constitutive heterochromatin 
marks H3K9me3, H3K9me2 and H4K20me3, marks and trigger a switch from late to early 
replicating timing [70]. 
 
Replication origins and human diseases 
The importance of origin licensing regulation is highlighted by the deleterious phenotypes 
induced by its deregulation. A sub-optimal amount of licensing factors has been linked to 
Meier-Gorlin syndrome (MGS), a rare disease characterized by primordial dwarfism and 
specific developmental defects. Hypomorphic mutations of proteins involved in pre-RC 
formation or activation have been detected in nearly 70% of patients with MGS (reviewed by 
[71]; [72]; [73]; [74]; [75]. In addition, cilia formation impairment caused by pre-RC component 
deficiency [76] could contribute to MGS clinical features [77] and for review [78].  
Origin licensing deregulation has also been involved in cancer. Indeed, pre-RC protein 
expression is often altered in cancer cells [79]; [80]. Moreover, deregulated licensing proteins 
can trigger cell transformation ([81], [56, 82], [83], [84], [85], [86], [87] [88] for review  [79] 
and [56, 88]),   Several studies have shown that licensing deregulation induces replication 
stress and subsequently genomic instability, two major features of cancer cells [56], [89], [87]. 
In normal conditions, origin licensing occurs preferentially at the TSS of transcribed genes, 
therefore ensuring the co-linearity of the replication and transcription machineries and 
preventing their deleterious collision [31, 90]. Importantly, when overexpressed, the cyclin E 
and Myc oncogene proteins trigger premature S-phase entry that results in DNA replication 
stress through improper activation of a set of origins that are not activated in normal 
conditions [91, 92] . Oncogene-induced initiation zones are within highly transcribed regions 
and generate conflicts between the replication and transcription machineries, leading to fork 
collapse, DNA damage, and genetic instability [92]).  
All these observations indicate that although no DNA is synthesized in G1, this phase is crucial 
in normal somatic cells for ensuring correct origin licensing to maintain genomic stability. 
Interestingly, the G1 phase length is developmentally regulated. It is extremely short in ES 
cells and almost absent in early Xenopus laevis and C. elegans embryos [93, 94]. Importantly, 
in this context of rapid cell divisions, replication origin sites and density are different from 
those observed during late developmental stages [25, 95]. Rapid licensing during early 
development seems to be important for pluripotency maintenance in mouse ES cells, because 
experimentally slowing down licensing triggers their differentiation [96]. 
 
Perspectives 
During the last years, genome-wide analyses allowed broadening our understanding of 
metazoan replication origins. Currently, the flexibility in the choice of the exact set of 
replication origins to be used and the plasticity of their sequence are the main reproducible 
features. Transcription boosts the activity of replication origins and their clustering, partly 
because of the open chromatin environment that is more favorable to replication factors 
binding. As opposed to what observed in bacteria and yeasts, strict consensus motifs have not 
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been found in metazoan.  Nevertheless, some sequence features have been reproducibly 
observed, such as repeated G-rich motifs. It is not entirely clear whether their ability to form 
G4 allows defining a specific structure that can be used for initiation of DNA replication, or 
whether their upstream position relative to the IS is linked to a role in controlling pre-RC 
activation. Epigenetic features also clearly influence origin activity, but again, no universal 
strict universal feature that specifies all replication origins has been identified yet and this may 
reflect evolutionary constraints that imposed some flexibility specific to metazoan to adapt to 
different cell behaviors/identity and to different chromatin environments. 
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Figure 1: A scheme of a metazoan replication origin
The preRC assembles to a sequence located upstream of the initiation site of DNA synthesis. Although its distance from the OGRE/G4 
element could fit with preRC binding site, an experimental demonstration is lacking.
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