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Abstract 

 

In the fields of ergonomics and biomechanics, the use of bio-instrumentation for the 

purpose of analysing work and reducing work related muskuloskeletal disorders for injury 

prevention has become a new norm. It is equally important to employ these instruments in 

ecologically-valid experimental work tasks that use relevant and controllable 

manipulations of occupational psychophysics. The current thesis attempts to begin design 

and validation of components for a 21st century occupational psychophysics toolbox that 

couples relevant bio-instrumentation hardware (vision tracking, motion capture, and force 

platforms) with custom Matlab based experimental software capable of image processing, 

assessment of full body kinematics, and analysis of ground reaction force kinetics to study 

the perceptions and actions at work tasks. I investigated the coupling between visual 

attention and cueing, pre-handling perceptions, and manual material handling actions, with 

the ultimate goal of understanding occupational behaviours and preventing injurious 

occupational behaviours.  
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1.0 Bio-instrumentation 

Bio-instrumentation is the measurement of living systems with bio-electronic 

instruments, for the purpose of detecting, recording, processing and transmitting 

physiological and behavioural information (Wise, 1991).  Bio-instrumentation emphasizes 

common principles and unique problems associated with making measurements in living 

systems. A theoretical bio-instrument system is a combination of biology, sensors, interface 

electronics, microcontrollers and computer programming, designed, validated, and 

synchronized through the application of multiple disciplines including biology, optics, 

mechanics, mathematics, electronics, and computer science (Enderle, 2006). The typical 

construction of a bio-instrument contains numerous technical components that are designed 

to complete unique tasks, including measuring, acquiring, processing, displaying, and 

storing bio-information of biological systems (Figure 1.1).  

1.1 Bio-instrumentation Components 

1.1.1 Measurand 

The physical quantity or the condition that can be measured using a bio-instrument 

system is called the measurand (Figure 1.1). A measurand is a collective term for all kinds 

of signals that can be measured and monitored from a living organism and can be 

categorized according to the source that generates the signal and the kind of energy they 

handle. The main measurand types are electrical, magnetic, mechanical, chemical, and bio-

hydraulic signals (Singh, 2011).  
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Figure 1. 1 A theoretical bio-instrumentation system using sensors to measure bio-signals 

with data acquisition, storage and display capabilities, along with calibration and feedback 

signals. 
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1.1.1.1 Bio-electric Measurands 

Bio-electric signals are the electric signals that have a biological origin, and can be 

generated by a particular anatomical structure such as a muscle or the brain, or a chemical 

or a mechanical signal that is converted to an electric signal (Enderle, 2006). These 

electrical signals are manifested as differences of potential between two points located in 

some place of the living organism, either inside or on its surface (Valentinuzzi, 2004). 

Valentinuzzi (2004), describes two types of bio-electrical signals that exist: traditional and 

non-traditional bio-electrical signals. Traditional bio-electrical signals are the ones that are 

generated by excitable tissues such as the nerve, skeletal muscle, cardiac muscle and 

smooth muscles. These signals are gathered with the use of relatively large differential 

electrodes such as electrocardiogram (ECG), electromyogram (EMG), and 

electroencephalogram (EEG). On the other hand, the non-traditional bio-electric signals are 

generated by other tissues such as the eye, or the skin which are capable of producing small 

differences in potential.  To capture bio-electric signals originated from the eye, bio-

engineers use electrooculograms (EOGs), and electroretinograms (ERGs), whereas 

electrodermograms (EDGs) are used to capture electrical signals coming off of skin. 

Therefore, generally, bio-electric signals provide researchers a proportional reflection of 

bio-activity happening in a localized area of a living organism. 

1.1.1.2 Bio-magnetic Measurands 

The term bio-magnetism refers to magnetic fields generated by biological systems. 

Bio-magnetic sources can be found in electric currents in diamagnetic, paramagnetic and 

ferromagnetic substances found in the body (Williamson et al, 1983). Diamagnetic 

substances such as water or water based bio-materials have a relative magnetic permeability 
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that is less than or equal to one, thus resulting in being repelled by the presence of a 

magnetic field. Paramagnetic substances include most chemical elements and some 

compounds, of which the relative magnetic permeability is greater than or equal to one, 

therefore being attracted by external magnetic fields. Ferromagnetic substances such as iron 

are the strongest type of magnetism, and they intensify the external magnetic fields 

extremely when present. Just as for the case in bio-electric measurands, bio-magnetic 

measurands are captured by an array of different bio-instruments that include 

magnetocardiogram (MCG), magnetomyogram (MMG) and magnetoencephelogram 

(MEG).  

1.1.1.3 Bio-mechanical Measurands 

 Study of any moving organ, tissue, or systems of tissues with the methods of 

mechanics is called bio-mechanics. The skeletal voluntary muscles, the involuntary 

rhythmic contracting myocardium, all smooth muscles covering blood vessels produce bio-

mechanical signals that can be measured using various bio-instruments. Within all these 

bio-mechanical signals, force, length, and angular changes are manifested as basic events 

(measurements), while tension, acceleration and torque takes place as more complex events 

(derivations). The electrical signals of skeletal, cardiac and smooth muscles trigger their 

respective contractions, and thus, they develop force, F, usually accompanied by a change 

in muscular length, L. The rate at which F and L change over time is an indication of 

contractility that quantifies velocity of contraction and can be recorded using myograms 

and cardiomyograms. Human locomotion and gait mechanics is a subject that was 

pioneered by D.A Winter, and has been explored thoroughly over the years by countless 

number of researchers (Winter, 1989; Davis et al., 1991; Hreljac, 1995; Medved, 2001). In 
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these studies, special attention is given to kinematic variables, in which bio-mechanical 

modelling can be used to characterize locomotion and other fundamental behaviours by 

treating the body as a complex multi-segmental mechanical system. Limbs, trunk, neck, 

and head are modelled as segments linked with angular movements that generate specific 

torques. 

1.1.1.4 Bio-chemical Measurands 

 Bio-chemical signals generated from the human body include partial pressures of 

the gasses in the blood, lungs and other tissues as well as concentrations of metabolites 

(Singh, 2011). The metabolites are the substances that are necessary for certain metabolic 

process in the body. These include glucose in the metabolism of sugar, starches, and amino 

acids in the process of bio-synthesis of protein. Measuring the concentration of various ions 

inside and in the vicinity of a cell by means of specific ion electrodes is an example of such 

a signal. The bio-chemical signals produced by humans could depend on various factors 

such as whether the person is at rest or in motion, ambient temperature and air pressure, 

and oxygen content of the air. Special sensors are required to monitor these chemical 

changes especially given the fact that these measures are invasive and at times need to be 

observed over a long period of time. In return, they provide physicians and researchers with 

specific characteristics of organs and tissues that are useful in treating patients with various 

conditions.  

1.1.1.5 Bio-hydraulic Measurands 

 Bio-hydraulics refers to the pressure and flow developed by fluids in certain body 

cavities. In particular, hemodynamics, a sub category of bio-hydraulics, is of particular 

interest to the medical professionals, where they study cardiovascular compartments and 
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their moving blood contents. Arterial blood pressure and blood flow are the two main bio-

hydraulic events that the researchers are interested in, and bio-instruments such as 

sphygmomanometers and laser Doppler blood flowmeters are available in today’s industry 

to measure these activities. Bio-hydraulic signals are also measured through one’s heartbeat 

using a stethoscope, where the hydraulic events are being emitted as audible signals.  

1.1.2 Sensors 

In a bio-instrumentation system, a measurand is detected and converted to an 

electrical signal with the use of a sensor or a transducer (Figure 1.1). The terms sensor and 

transducer are used interchangeably in various literature, however it is important to 

understand the subtle differences between the two terms. Strictly speaking, a sensor just 

detects the signal under the original type of energy (electrical, mechanical, thermic, 

magnetic, or chemical), whereas the transducer only transforms the small amount of energy 

contained in a biological signal into electrical energy (Valentinuzzi, 2004). Thus, a 

transducer literally ‘translates’ energy, but it requires a sensor, which is often well 

immersed in the transducer, making it impossible to separate them. The aim of a sensor is 

to produce an electronic signal which is proportional to the concentration of a specific 

chemical or set of chemicals in a biological element (Turner et al., 1987). A sensor is 

designed to minimize the disturbance to the measured variable and its environment, comply 

with the requirements of the living system, and to offer maximum clarity to the input signal.  

Some transducers’ output changes in response to a change in surroundings. These 

outputs include resistance, capacitance or inductance. The variations in these different 

outputs can be measured using a Wheatstone bridge circuitry organization such as strain 

gauges, potentiometers, thermistors, and photoresistors (Valentinuzzi, 2004). The other 
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type of transducers produce a voltage or current in response to a change in environment. 

Some examples include piezoelectric crystals, linear variable differential transformers, and 

thermocouples. In both cases, sensors work as analytical tools that combine a bio-signal 

recognition component off the human body with a physical transducer. The biological 

sensing elements can be an enzyme, antibody, DNA sequence, or a microorganism. 

Biosystems within an individual’s body selectively cause a bio-chemical reaction, which 

the transducer converts into a measurable signal, thus providing the means of detecting it. 

Sensors also have the capability of making use of a neural interface technology to detect 

nerve and muscle activity. Electrodes that sit on the skin can measure muscle electrical 

activity, brain electrical activity and eye movement (Tonneson & Withrow, 2006). The 

electrical signals that the brain uses to control functions of human body have certain 

measurable qualities including intensity and spectral characteristics, and that is exactly 

what the sensors detect in order make associations between neural activities and animal 

behaviors.  

1.1.3 Signal Processing 

The output from the bio-sensors are analog signals, which are continuous, and 

require signal processing in order to comprehend and make inferences. These analog 

signals are usually converted into digital format with the use of an analog to digital (A/D) 

converter to make the signal storage and analysis more efficient and flexible. With the 

recent developments in digital hardware and software technology, the digital techniques 

offer much more powerful, easily implementable complex algorithms that are accurate and 

not affected by unpredictable variables such as component aging and temperature. At the 
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same time, digital techniques allow the users to change and update design parameters more 

freely by allowing recurring software modifications.  

In bio-medical applications, acquiring a bio-signal directly via a sensor is not 

sufficient most of the time, as the signals can be buried with many other irrelevant signals 

(noise), or they might not be detectable from the outset. That is where signal processing 

with the use of different transformation methods is required to enhance the signal, so that 

the required information can be obtained. The processing of bio- signals poses some unique 

challenges. This is mainly due to the complexity of the underlying system, and the need to 

perform indirect, non-invasive measurements without altering the original signal. There are 

a multitude of processing methods and algorithms that are currently available to bio-

medical engineers, however, in order to be successful, one must have a good understanding 

of the goal of processing, test conditions and the underlying signal.  

In signal processing, bio-signals are categorized into two main classes depending 

on the signal characteristics. These two classes are continuous signals, which provide 

information about the signal at any given time, and discrete signals that provide information 

at a specific point in time. Most bio-signals are continuous, however, most of the current 

signal processing tools are designed to process discrete signals, thus, bio- engineers tend to 

transform continuous signals into discrete signals whenever it is possible (Proakis & 

Manolakis, 1988).  

Both continuous and discrete signals can be divided into two main groups called 

deterministic and stochastic signals depending on their wave patterns (Cohen, 1986). 

Deterministic signals are the ones that can be described exactly mathematically or 

graphically. Real world bio-signals are never deterministic as there are always some 
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unknown and unpredictable noise associated with them that render them non-deterministic. 

However, bio-analysts often model bio-signals as of deterministic waveforms in order to 

simplify analysis and to make predictions with regards to signals’ behaviors. Deterministic 

signals can be further divided into two categories as periodic and non-periodic signals. 

Periodic signals have a basic wave form that repeats continuously on the time axis. 

Sinusoidal signals, the most common type, are often used as the basis to model much more 

complex periodic signals, in order to simplify their behaviours. On the other hand, most 

deterministic signals are non-periodic and can be modelled as “almost periodic”. A good 

example is the waveform of an ECG signal that has a variable period length and changes 

its shape after every heartbeat and thus clearly a non-periodic waveform. Under certain 

conditions such as a composite ECG consisting of maternal and fetal signal, however, the 

period length can be almost constant, while continuing an identical wave shape which can 

be modelled as an “almost periodic” wave form (Kay, 1988).  

The other group of signals, stochastic signals, represent sample functions of a 

stochastic process. This process produces sample functions, the infinite collection of which 

is called the ensemble. Each sample function differs from the other in its fine details; 

however, they all share the same distribution probabilities, i.e. random distribution 

characteristics (Cohen, 1986). Stochastic signals can be categorized into stationary and 

non-stationary signals depending on their corresponding structures. Stationary stochastic 

processes are processes whose structures do not change in time, whereas non-stationary 

processes are time dependant and require complex methods in which they cut the signal 

durations into small segments, so that they can be considered as stationary.  
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The bio-signals collected by the sensors are generally represented in the time 

domain, which characterizes the behavior of the signal with respect to time. However, often 

in signal processing, these time domain signals are converted into frequency domain in 

order to simplify the analysis process. There are multiple methods available to transform 

time domain signals into frequency domain, but the most common transformation principle 

is called the Fourier transform. Fourier transform is used to convert a signal of any shape 

into a sum of infinite number of sinusoidal waves which makes the analyzing procedure 

much simpler (Weitkunat, 1991). The other transform methods include Laplace transform 

that is used in electronic circuits and control systems, Z transform that is commonly used 

in digital signal processing, and Wavelet transform that is mainly used in image analysis 

and data compression (Chui, 1992).  

As mentioned earlier, bio-signals are often weak signals contaminated by noise. 

When a bio-signal is acquired using a transducer from a certain muscle or elsewhere, it not 

only picks up the electric potential generated by that certain muscle, but also from the 

surrounding active muscles. Additional noise may also come from other electrical sources 

surrounding the transducer which can be considered as random errors. Also, faulty 

instruments as well as procedural errors caused by the researchers that are considered as 

systematic errors may contaminate the bio-signal furthermore. Therefore, the first step of 

signal processing is to enhance the signal by “cleaning” the noise without distorting the 

signal. This is achieved by designing various types of filters (i.e. low-pass, high-pass, stop 

band, Weiner, matched, etc.) and running the signals through them. Generally, a multi-

layered filtering process is sufficient to remove noise in most signals, however there are 

instances where the signal and noise bandwidth overlap and noise amplitude is enough to 
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seriously corrupt or distort the signal. In such cases, desired response cannot be achieved 

via traditional filtering (Aunon et al., 1981) and requires a process called averaging. Signal 

averaging is a technique applied in the time domain that increases the strength of a signal 

relative to noise that is obscuring it. It sums a set of temporal epochs of the signal together 

with the superimposed noise, and by averaging them, the signal to noise ratio is increased, 

allowing the users to remove noise relatively easy.  

1.1.4 Output 

Once the analog signals are digitized, they can be processed and stored in 

specialized digital computers or micro-controllers (Tompkins and Webster, 1981), where 

various types of signal conditioning can be applied.  

Once the signal conditioning is completed, the results of the measurement process 

need to be displayed to the user in a format that is easy and effective to comprehend. Such 

formats may include numerical and graphical displays that exhibit data continuously or 

discretely, in a permanent or a temporary manner. These data displaying methods are part 

of an ever evolving field called data visualization, where the results are dependent on 

efficient computational methods capable of achieving desired levels of interactivity with 

the audience (Bajaj, 1998). In addition to displaying the processed digital signals, bio-

instruments are also capable of storing data, where they may be stored temporarily for short 

term analysis, or permanently recorded for future reference. With the development of new 

information technology in the recent years, data transmission has also been integrated into 

bio-instruments, where collected data can be transmitted to various other instrumentation 

systems for further analysis.  
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There are many other task specific components that are available for bio-

instrumentation systems. Some of these components are quite essential for the accurate 

functioning of bio-instruments, thus require our attention. One such component is called 

the calibration signal. In almost all bio-instrumentation tasks, the operator is required to 

perform a calibration step, where a signal with amplitude and frequency is applied to the 

instrumentation system at the sensor’s input. The calibration signal allows the input and 

output signals to have a meaningful correlation by introducing a reference frame for the 

system to adjust to. Without such information, the system is incapable of converting the 

output of an instrument system to a meaningful representation of the measurand.  

1.1.5 Feedback Signal 

In a simplistic model of a bio-instrument, a measurand is collected from a bio-

sensor which then goes through signal processing before being displayed by an output 

device. This process might hold true for a very short or single burst of physiological signals, 

however it is often not the case in real life. Almost all of the bio-signals that are analyzed 

by bio-instruments are continuous and ever changing systems. That is where a control 

feedback signal is required in order to elicit the measurand, to adjust the sensor and signal 

conditioner, and to direct the flow of output for display, storage and transmission. Feedback 

signals accomplish these tasks by collecting physiological data and simulating a response 

when needed, or by continuously sending back processed data to the measurand to perform 

real-time analysis on input data. 

There also exists a user-feedback system that tests the bio-instrument system’s 

reading and interpretation qualities, where mathematical models are used to improve the 

quantification process.  Many times, the initial model that was used to study bio-systems 
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must be disposed of or modified because its results did not acceptably fit the real situation. 

Thus it requires the researcher to look back, review, revise, study, search, and experiment 

again, initiating an endless feedback loop to improve the quality of the bio-instrumentation 

process.  

1.2 Bio-instrumentation potential in occupational biomechanics and psychophysics 

Occupational biomechanics is the study of the physical interaction of workers with 

their tools, machines, and materials so as to enhance the workers’ performance while 

minimizing the risk of musculoskeletal disorders (MSDs) (Chaffin et al., 1999). Analysing 

the risks of work related MSDs is a challenging task with many obstacles. Dynamic, three 

dimensional, anatomically complex and electromyography (EMG) driven models are well 

equipped to  simulate industrial manual materials handling tasks, however, they can only 

be applied in controlled laboratory settings due to the complex nature of instrumentation 

and data requirements of the current most-widely cited models. (Garg et al, 1982; McGill 

et al, 1985; Marras et al, 1991, 1995). The multiple risk factors associated with work tasks 

can be categorized into two groups; physical factors and psychosocial factors. Physical risk 

factors such as high repetition, awkward posture, excessive force, static work, and vibration 

affect the workers’ musculoskeletal systems directly (Punnett et al, 2004; Nunes et al, 

2012), while the psychosocial factors such as work stress, high job demand, monotonous 

work, and perceived injury risks affect the workers’ cognitive stress (Bongers et al, 2002; 

Punnett & Wegman, 2004).  Due to the complexity of these multiple risk factors and their 

varying psychophysical attributes, use of single factor risk assessment models has proved 

unconvincing in the past, and thus, a need for a new multi-factorial risk assessment model 

has been raised (Fernandez & Marley, 2014).  
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The development of psychophysics methodology, a relatively new assessment 

model for occupational loading, offers an efficient and timely solution to these challenges, 

where it empirically quantifies subjective tolerance to occupational stress with the use of 

the dependable variable, acceptable limit. Psychophysics offers an opportunity to study 

worker perception of tasks involving occupational stressors, while gathering bio-

mechanical and physiological measurements simultaneously (Fernandez & Marley, 2014).  

The workplace is an environment where many adults perform eight plus hours of 

actions daily. Manual materials handling (MMH) is a frequent, repetitive workplace action 

that has the potential of causing chronic musculoskeletal injuries among workers (Hagberg 

et al., 1995). These injuries may stem from behavioral differences, with injury prone 

workers making unsafe actions during their MMH duties (Marras et al., 2003). An 

occupational handling task such as baggage handling at an airport (Figure 1.2) can be 

performed in multiple ways, where the handling techniques could depend on numerous 

biomechanical, physiological and psychosocial factors that have been shown to have 

interactively and directly influence MMH musculoskeletal injuries (Ayoub and Dempsey, 

1999). With the help of bio-instruments, researchers have been trying to emulate these 

occupational MMH tasks in human performance laboratories (Figure 1.3) in an attempt to 

identify the relevant risk factors and to reduce musculoskeletal injury risks at work places.  

With respect to the bio-instrumentation basics that were discussed earlier, any 

instrument setup that follows the typical bio-instrument structure and is capable of 

collecting valid and reliable data in the occupation field or an occupation experiment could 

be classified as a relevant occupational bio-instrument. These bio-instruments vary from 

each other with respect to their functionality, technology, and the conditions in which they 
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operate, and offer a wide range of solutions to the researchers who look to address 

ergonomic wellbeing of individuals. Bio-instruments such as EMG, transcranial Doppler, 

dynamometers, motion capture, pressure sensors, and inertial measurement units are quite 

relevant in biomechanical research and are often used in ergonomic laboratories all over 

the world. In this thesis however, my aim was to understand and analyze both the perceptual 

and biomechanical factors that could influence worker behaviours simultaneously, and 

thus, vision tracking, motion capture, and force platforms were selected as the 

occupationally pertinent bio-instruments. 
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Figure 1. 2 A typical occupational work station. In the picture, a baggage handler is seen 

moving luggages off the conveyer belt. While it may appear to be a simple work task, 

multiple perceptual and biomechanical factors are directly involved in such work tasks 

that could potentially dictate the workers’ behaviour and safety during their shifts.  

 

 

Figure 1. 3 Recreating a suitcase handling work task in the laboratory with different bio-

instruments in order to analyze the various factors associated in occupational handling 

tasks. On the left, the subject is wearing a pair of vision tracking goggles that keeps track 

of her visual attention during a suitcase handling task. On the right, the participant is 

equipped with reflective markers on his body in order to track his biomechanical motion 

using motion capture. He is also standing on a force platform that keeps track of his 

kinetic profile during the handling task.  
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1.2.1 Vision Tracking 

 Vision tracking is a technique where an individual’s eye movement is measured so 

that the researcher knows both where a person is looking at any given moment as well as 

the sequence in which the person’s eyes are shifting from one location to another (Poole & 

Ball, 2005). Tracking people’s eye movements at workplaces may help industrial engineers 

understand visual and display based factors that could have an impact on workers’ cognitive 

and physical behaviours. Thus, eye-movement recordings can provide an objective source 

of worker’s visual targeting behaviours during work activities, which could potentially be 

related to the way they complete their work tasks. In order to understand the impact of 

vision tracking, it is worth exploring the functionalities of eye trackers and how they 

operate.  

 Generally, there are two types of eye-tracking techniques: those that measure the 

position of the eye relative to the head, and those that measure the orientation of the eye in 

space, or the “point-of-regard” (Young & Seena, 1975). Most commercial eye-tracking 

systems available today measure point-of-regard by keeping track of multiple ocular 

features in order to differentiate head movement from eye rotation. Two such features are 

the corneal-reflection and the pupil centre (Goldberg & Wichansky, 2003; Duchowski, 

2007). These video-based eye trackers normally consist of a desktop computer setup with 

an infrared camera that is either mounted to a table or attached to the head, alongside a 

display monitor equipped with image processing software to locate and identify the features 

of the eye used for tracking.  

 An infrared, corneal reflection eye tracking system relies upon the location of 

observers’ pupils, relative to a small reflected light glint on the surface of the cornea (Young 
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& Sheena, 1975, Mulligan, 1997). A camera lens (the ‘eye’ camera) is focused upon the 

observer’s eye that provides pupil movements to the researcher, and a second lens (the 

‘scene’ camera) may also optionally be pointed towards the current visual display or scene 

being viewed in order to study the subject’s visual targeting patterns. In the case of table-

mounted eye trackers, a scan converter is frequently used in place of the scene camera. The 

light enters the retina and a large proportion of it is reflected back, making the pupil appear 

as a bright, well defined disc, known as the “bright pupil” effect. There exists some cases 

in which the pupil does not illuminate and results in “dark pupil”, thus eye trackers need to 

be switched between these modes to find the most robust pupil imaging for a testing 

environment. The corneal reflection is also generated by the infrared light, appearing as a 

small, but sharp glint (Poole and Ball, 2005).  

 Once the image processing software has identified the centre of the pupil and the 

location of the corneal reflection, the vector between them is measured, and, with further 

trigonometric calculations, point of regard can be found. Video based eye trackers need to 

be fine-tuned to each individual subject’s eye movements by a calibration process. The 

calibration process is achieved by displaying a dot on the screen, and if the eye fixes for 

longer than a certain threshold time and within a certain area, the system records that pupil-

centre/corneal-reflection relationship as corresponding to a specific horizontal and vertical 

coordinate on the screen. This procedure is repeated over a 9 to 13 point grid-pattern to 

gain an accurate calibration spread out over the whole screen.  

 After the calibration of the eye tracker is completed, the researcher can then collect 

raw vision tracking data by recording the video feed coming in from the “eye” camera and 

the “scene” camera. Within the raw data, there exists many types of eye-movements that 
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are vital for eye-tracking analysis. Saccades are commonly observed when watching an 

observer’s eyes while conducting search tasks. They are small, frequent movements that 

occur in both eyes at once, range from about 2-10 degrees of visual angle, and are 

completed in about 10-100 ms (Shebilske & Fisher, 1983). Saccades have rotational 

velocities of 500-900 degrees/second, resulting in very high acceleration (Carpenter, 1988), 

and are typically observed about 250 ms following the onset of a visual target. Because of 

their rapid velocity, there is a suppression of most vision during a saccade to prevent 

blurring of the perceived visual scene.  

 Each saccade is followed by a fixation, where the eye has a 250-500 ms interval to 

process visual information.  In an encoding task such as browsing a web page or reading a 

book, higher fixation frequency on a particular area can be indicative of greater interest in 

the target, or it can be a sign that the target is complex in some way and more difficult to 

encode (Jacob & Karn, 2003; Just & Carpenter, 1976). However, during a search task such 

as looking for a particular tool at a workplace, a higher number of single fixations, or 

clusters of fixations are often an indication of greater uncertainty in recognising a target 

item (Jacob & Karn, 2003). Thus differentiating the type of task is extremely important 

when trying to comprehend eye-tracking data.   

Sequences of saccades and fixations form scanpaths, which describe the eye’s 

movement from one point to another in a visual targeting activity. During a search task, the 

most efficient scanpath is the one that is a straight line to a desired target, with relatively 

short fixation duration at the target (Goldberg & Kotval, 1999). When analysing eye 

tracking data, scanpaths can be quantitatively analysed by focusing on the derived measures 
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such as the duration, length, regularity, direction, spatial density, and the order of searches 

which is also known as the transition matrix.    

Blink rate and pupil size are two other measurements that eye researchers use as an 

index of cognitive workload (Poole & Ball, 2005). A lower blink rate could be an indication 

of higher workload where an individual’s visual attention is constantly being engaged, 

while a higher blink rate may indicate fatigue (Brueneau, Sasse, & McCarthy, 2002; 

Brookings, Wilson, & Swain, 1996). Larger pupils may also indicate more cognitive effort 

(Marshall, 2000; Pomplun & Sunkara, 2003), though pupil size and blink rate can be 

affected by other factors such as the ambient light levels, hence, pupil size, and blink rate 

are less often used in eye tracking research.    

1.2.2 Motion Capture 

 In order to accurately measure the motion of the body in 3D space, and to obtain a 

comprehensive overview of the kinematics of various human movements, researchers use 

a procedure called 3D motion analysis. It has a wide range of applications in numerous 

industries that include military, entertainment, sports, robotics, bio-mechanics, and 

ergonomics. While many human motion parameters and events can be measured using a 

single video camera and 2D motion analysis, 3D motion analysis offers a lot more 

functionalities in terms of kinematics. Motion capture used in ergonomics studies aim at 

analyzing injury risks, work postures and bio-mechanics of workers in an industrial setting. 

High precision motion data coupled with a high fidelity human model, based on 

anthropometric and ergonomic considerations, may yield valuable data for these kinds of 

studies, which currently rely mostly on static pose analyses (Bandouch et al., 2008).  
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Modern motion capture systems generally capture 3D motion data in an automated 

fashion and in real time. There are four main types of motion capture equipment that are 

available in the market: 

• Video digitising systems – These systems use manual digitising on video pictures, 

frame by frame, or automated digitising of reflective markers post-video-capture. 

Video is the only option for 2D analysis, and it is also the only option in situations 

where attaching markers to the study’s participants is not possible (Begg & 

Palaniswami, 2006).  

• Video based reflective marker systems – These systems use reflective markers 

(passive markers) attached to the participants, where high speed cameras pick up 

the reflection from the markers. Reflective marker systems automatically capture 

marker positions and most systems present 3D position-time data of markers in real 

time or near real time.  

• Optoelectronic or active marker systems – These systems use infrared-emitting 

markers (active markers), which are individually identifiable. Similar to the 

reflective markers systems, they also automatically capture 3D position-time data 

of markers in real time.  

• Magnetic tracking systems – These systems are quite unique in the sense that they 

use magnetic field properties along with a set of sensors instead of markers, and 

returns 6DOF (degrees of freedom) data in real time. 

Both reflective and active marker systems are widely used in ergonomics research with 

reflective marker systems being the preferred choice. Magnetic tracking systems and 

manual digitising of video images are not very common in today’s research. The reflective 
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and active marker systems require markers to be attached to the participants and these 

markers are either infrared light-emitting diodes (LEDs) for active marker systems, or solid 

shapes covered with reflective tape for reflective marker systems. The output of these 

systems are the x,y,z coordinates of each marker as a function of time.  

The reflective marker systems use the reflections coming from the markers attached 

to the participants using multiple video cameras. These high speed video cameras (166 – 

500Hz) are equipped with infra-red flash illuminators that surround the camera lens, and 

sends out pulses of infra-red light which are then reflected back into the lens from the 

markers. Each camera records a 2D image with the markers appearing as bright dots. Image 

processing systems isolate the marker dots in the image and record their position (Fisher, 

2002). Since they are “passive” markers, each marker trajectory must be identified and 

tracked. Markers are sometimes hidden from one or more cameras, so the trajectories can 

be difficult to track. Therefore, it is recommended to have a minimum of 6 cameras for a 

reflective marker system so that the researcher would not miss out on capturing all the 

existing markers.  

Once the visible markers have been located on the 2D camera images, the 

coordinates of the centroid of each marker are noted and a series of intersecting rays are 

mathematically projected from each camera position for each marker. Since the positions 

and the lens parameters of each camera are known, the rays from the same marker must 

intersect and the sets of 2D coordinates for each marker can be reconstructed and 3D 

coordinates of each marker can be calculated (Shao et al., 2001). Finally, markers are 

assigned to existing trajectories, and any ghost markers (visual noise due to shiny reflective 

surfaces) are rejected using the image processing software. There are numerous 
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commercially available reflective marker systems in the market, but the most used systems 

in research are Vicon (Oxford Metrics) and Cortex (Motion Analysis).  

Active marker systems also have markers attached to the participant. Markers are 

light emitting diodes (LEDs) that are powered and cabled and each LED pulses in a set 

sequence. With only one marker flashing at any one time, the system can automatically 

identify and track each marker. This is a considerable advantage of active markers systems 

over reflective marker systems, however, there is also a down side to it. After sampling the 

first marker, it must sample all other markers before it can sample the first marker again, 

which means the sample rate reduces as the number of markers increases. The sequential 

pulsing of active marker systems means marker occlusion and ghosting does not become 

an issue as in the case with reflective marker systems. In addition, active marker systems 

are also capable of detecting marker clusters placed together without any errors due to each 

marker being uniquely identifiable. Active marker systems normally have three cameras 

mounted in a rigid rectangular housing. Depending on the type of system that is being used, 

two to three units is sufficient to collect 3D data to great accuracy (Corriveau et al., 2004; 

Sadeghi et al., 2004). Two most commonly available active marker systems in the market 

are OptoTrak (Northern Digital, NDI) and CODA (Charnwood Dynamics).  

Magnetic tracking devices generate and sense magnetic fields. They are equipped 

with a transmitter that emits magnetic fields, and a receiver that detects them. Each sensor 

placed on the participant delivers six degrees of freedom (X, Y, Z, yaw, pitch, roll) 

information to the processing computer. Also, the sensors do not require to be within the 

line of sight of the receiver thus it is a significant advantage these systems carry over the 

other motion capture systems. However, due to their inherent sensitivity to large metallic 
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objects, it becomes a challenge when trying to capture motion data in a big volume of space 

(Perie et al., 2002). Therefore, magnetic tracking systems are used most often in animation 

applications and are not usually the preferred tool for ergonomic analysis research and 

testing.  

For reflective and active marker systems, the basic output is 3D marker coordinates 

moving in time, called “marker trajectories” (Begg & Palaniswami, 2006). These markers 

create an “exo-skeleton” around the participant which has to be related to an “endo-

skeleton” model of the participant (Fisher, 2002). In order to convert the raw marker 

coordinate data into useful 3D human body kinematics, there are a few steps that need be 

followed. First, each body segment is defined using at least three external markers. 

Segments can however, share markers if needed. Then, joint centres are defined using the 

external marker data and pre-defined templates that creates a virtual skeleton for analysis 

purposes. Finally, Euler angles are computed at each body segment and joint centre, where 

local coordinates systems are defined in order to calculate local kinematics with respect to 

a “parent” body segment. The equations for calculating joint coordinates and segment 

orientations from external markers are often provided with the motion capture software. 

Thus, it is the researcher’s task to understand and identify the types of kinematic metrics 

that they need to analyze in a motion capture study, and use the software accordingly to get 

the desired results.   

1.2.3 Force Platforms 

 In ergonomics research, kinetics refers to the forces and moments that are 

responsible for changing a body’s state of motion. Measuring internal muscular forces is 

not possible without using invasive medical instruments, however, external muscle activity 
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can be measured using force platforms that provide valuable information on joint forces 

and joint moments during various human activities. Force platforms are commonly used in 

bio-mechanical lab settings to record and analyze foot-ground reaction forces and moment 

time histories.  

 Foot-ground reaction forces (ground reaction forces, GRF) are reaction forces as a 

result of contact between the foot and the ground, and form an integral part of human 

movement analysis (Benedetti et al., 1998). There are two types of force platforms that are 

widely used in research; those based on piezo-electric transducers such as Kistler, and those 

based on strain-gauge transducers such as AMTI and Bertec (Begg & Palaniswami, 2006). 

From a research perspective, there is not much difference between the two types as they 

both essentially measure the same information, only the raw outputs of the systems are 

different. The output from strain gauge transducer platforms is three orthogonal force 

components (Fx, Fy, Fz) and three moments (Mx, My, Mz), whereas piezo-electric transducer 

platforms output four vertical forces and four horizontal forces. In software, all systems 

convert this raw data to the main information of interest in human movement analysis, that 

is Fx (horizontal medio-lateral force or medial shear component), Fy (horizontal antero-

posterior force or AP shear component), Fz (vertical force component), centre of pressure 

position (COP) and Tz (vertical torque; moment about a vertical axis passing through the 

COP position).  

 Force platforms can be very stable devices and the data they produce are critical for 

kinetic analyses in ergonomic studies. Ergonomic research tasks that involve lifting and 

handling objects, pushing and pulling loads often have external forces along with gravity 

acting on the participant’s body. Thus, force platforms provide an excellent basis to observe 
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how such external forces could induce different bio-mechanical behaviors in individuals 

while comparing that data to their normal force profiles. As with a lot of bio-instruments, 

force platform data can be recorded and analysed using third party software such as 

LabView and Matlab, where the researchers have the freedom to explore different analysis 

methods, compared to a limited number of predefined data analytics.  

1.2.4 Experimental Software 

 The bio-instruments that are used in ergonomics research have the typical two main 

components of experimental bio-instruments, namely hardware system for data collection, 

transmission and storage, and a software component built mainly for data analysis. Many 

of the bio-instrument systems commercially available today come with built-in software 

packages that allow the researchers to analyze and present data in multiple ways. At the 

same time, there also exists third party software that are capable of analysing various types 

of bio-data by allowing the researchers to program the data analytics using numerous 

programming languages. Following is a discussion of the software systems that were used 

to analyze bio-data obtained from different bio-instruments in my research.  

 The goal of eye movement measurement and analysis is to gain insight into the 

viewer’s attentive behavior. In vision tracking, the raw data coming in from an eye tracker 

contains the x, y coordinates of the eye’s position with respect to the viewing area. Raw 

eye movement data for a particular work task may appear informative to a certain extent, 

however, without further analysis, the raw x, y coordinates do not reveal much information 

about the subject’s visual attention. Although intuitively, and from the knowledge of the 

task, it is possible to guess where a subject happened to be paying attention in the 

environment, it is not possible to make any further quantitative inferences about the eye 
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movement data without the use of an eye-tracking software. Within the software, various 

algorithms are programmed to identify fixations and saccades; the eye movements that best 

indicate the locations of the subject’s visual attention.  

 Having the eye tracker calibrated prior to data collection allows the recorded x, y 

coordinates to be accurate and aligned correctly on the scene camera footage. From a signal 

processing standpoint, the raw x, y coordinate data are used to characterize the eye 

movement signals in terms of salient eye movements such as saccades and fixations. The 

analysis task is to locate regions where the x, y coordinates (signal) average changes 

abruptly indicating the end of a fixation resulting in an onset of a saccade, and then to 

observe a stationary characteristic indicating the beginning of a new fixation.   

 Before signal analysis, excessive noise in the eye movement signal must be 

eliminated. Noise is caused mainly due to the inherent instability of the eye, and the 

constant blinking. The latter, considered to be a significant nuisance, and generates strong 

signal perturbation. However, often the eye-trackers are equipped with built-in filters to get 

rid of blinks, and to return a value of (0, 0) whenever it loses sight of the salient features 

needed to record eye movements. Noise caused due to various other sources is filtered out 

by defining an “effective operating range” that is specified in terms of visual angle of the 

subject. Any signal that falls outside the defined pixel range is therefore left out.  

 Once the noise is filtered out, next step is identifying saccades and fixations. There 

are two main approaches to identifying these events; dwell-time fixation detection 

algorithm and the velocity-based saccade detection (Duchowski, 2007).  With the dwell-

time fixation detection method, the algorithms first look for a stationary signal that it 

considers to be the fixation. Then a second criterion is observed where the size of the time 
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window specifying an acceptable range for fixation duration. This classification method 

suggested by Anliker (1976), determines whether M of N points (x, y coordinates) lie 

within a certain distance (D) of the mean (µ) of the signal. When the algorithm eventually 

detects a saccade, the variance of the signal would exceed the threshold D indicating a real 

positional change. An alternative to the dwell-time fixation detection method is the velocity 

detection method (Anliker, 1976). In this method, the velocity of the signal is calculated 

within a sample window and compared to a velocity threshold. If the sampled velocity is 

smaller than the given threshold, then the sample window is deemed to belong to a fixation 

signal, otherwise it is a saccade. Yarbus in his research (1967) observed that saccadic 

velocity is nearly symmetrical (resembles a bell curve), and thus, using this observation a 

velocity based prediction scheme can be implemented to approximate the arrival time and 

location of the next fixation. The next fixation location can be approximated as soon as the 

peak velocity is detected. Measuring elapsed time and distance traveled, and taking into 

account the direction of the saccade, the prediction scheme essentially mirrors the left half 

of the velocity profile to calculate the saccade’s end point (Duchowski, 2007). 

 The dwell-time fixation and velocity-based algorithms produce similar results, and 

both methods can be combined to bolster the analysis by checking for agreement. Once the 

fixations and saccades have been identified, visual attention results can be quantified and 

graphically displayed using various plotting and image processing techniques. These 

functionalities include fixation maps, scan-path visualizations, heat maps, and region of 

interest (ROI) analyses.  Fixation maps are time independent plots that display all the 

fixations plotted over scene camera images to indicate the subject’s visual attention. 

Durations of these fixations can be user inputted, so that the researchers can isolate specific 
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fixation lengths that they are interested in analyzing. Scan-path visualizations display both 

the fixations and saccades graphically. These visualizations track the saccadic eye 

movements using a line graph, while highlighting the fixations using circles of different 

radii to indicate fixation durations. Heat maps are used to emphasize the strength of 

fixations using different color schemes that generally demonstrate the areas on a screen 

where the subject’s visual attention was heightened with respect to other areas. Different 

color schemes such as grey, jet, hot, hsv, spring (Matlab) are used to overlay the fixations 

on top of scene camera images to enhance the visual attention data, while making sure the 

original image is still visible (Spakov et al., 2007). ROI analyses allow the researchers to 

focus on a specific area of the visual data screen and analyze all the fixations and saccades 

that were collected. In a case where multiple clusters of fixations are observed, this method 

is quite valuable in filtering out any data signals that appear outside of the defined ROI 

parameters. Matlab (Mathworks), a multi paradigm numerical computing environment and 

a fourth generation programming language allows eye tracking researchers to perform all 

the aforementioned graphical analyses and image processing with its built-in tool boxes 

and graphical user interfaces, designed specifically to simplify eye-tracking analyses. In 

this thesis, all the bio-data collected via various bio-instruments were analysed using 

Matlab as it is the common practice in basic and applied science today.  

 The data collected from motion capture and force platforms are used to calculate 

kinematic and kinetic metrics using programmable software such as C, C++, and Matlab. 

In the case of Motion capture systems, recorded 3D positions (x, y, z) of each body segment 

and joints are combined to produce a template that is a representation of the subject’s 

skeleton. Using these 3D position data in a vector analysis software such as Matlab, the 
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researchers are then able to calculate the kinematic measures such as displacement, 

velocity, acceleration, angular motion, and particle trajectories. Similarly, the force 

platforms record the forces and torques that act upon a subject during a work task. With the 

use of Matlab, researchers can calculate the kinetic measures such as ground reaction 

forces, centre of pressure, forces acting on different body segments as well as resultant 

forces and torques. By measuring kinetics and kinematics data simultaneously, joint forces 

and moments can be calculated via a mathematical process known as inverse dynamics 

(Begg & Palaniswami, 2006). Inverse dynamics is the process of computing the net joint 

forces, joint moments and joint power, and the calculations require kinematics data 

(positions and orientations of joints and segments as well as their linear and angular 

velocities and accelerations), ground reaction force data and anthropometric data. Joint 

moments are the result of forces produced by muscles and ligaments acting at a distance 

from the joint centre. Joint power is the net rate of generating or absorbing energy by all 

the muscles crossing a joint and is calculated as the product of the joint moment and the 

angular velocity between the two segments defining the joint (Winter, 1990; Meglan & 

Todd, 1994). Joint forces, moments and power during ergonomic activities are critical to 

the understanding of injury prevention and proper work techniques. Thus, using the 

appropriate software to perform the necessary bio-mechanical analyses becomes a vital 

component in ergonomic research. 

 The field of bio-instrumentation is on a continuous climb with countless technical 

advancements being made resulting in affordable, high functioning instruments with 

incredible detection and computing powers. However, there still seems to be a missing link 

when it comes to ergonomic experimental software development. A key word search of 
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“Ergonomics” and “Matlab” in the Pubmed biomedical database resulted in 30 articles, 

while the ‘Web of Science’ database yielded 18 articles for the exact search as of January 

of 2018, suggesting the lack of experimental software in ergonomics and the need for 

further research in this field. Ergonomic researchers and biomechanists continue to prefer 

using default software systems that bio-instrument manufactures produce over custom built 

experimental software. Even though these default software offer numerous data analysis 

methods that are well known, with high precision, they all have limitations that bind the 

researchers to a set number of analysis techniques and prevents them from further 

expanding their research into higher order analyses. Custom experimental software on the 

other hand, offer all the analysis methods that the default software can offer, and allows the 

luxury of adding in numerous high level analysis methods as well as novel analysis 

principles that the researcher may want to experiment with. Numerical analysis software 

such as Matlab, Labview and Analytica are capable of providing high-level numerical 

analysis methods by either using already existing functionalities, where the user can 

combine multiple built-in functions to create a high structured analysis program, or design 

a completely new analysis program from ground up. The result is a well-structured high 

level analysis program offering much more than the basic break down of data, and thought 

provoking results which may induce even deeper discussions with regards to data analysis. 

Therefore, it is imperative to explore the potential impact custom experimental analysis 

software may have on ergonomic research and it requires further attention from 

biomechanical and ergonomic researchers.  

The purpose of my thesis is to begin the design and validation of a 21st century 

occupational psychophysics toolbox that pairs off the shelf bio-instrumentation hardware 
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components, namely vision tracking, motion capture, and force platforms with custom 

Matlab based experimental software capable of image processing, assessment of full body 

kinematics and analysis of ground reaction force kinetics to comprehensively study 

perception action coupling from select occupational tasks. It is hypothesised that unique 

(and explanatory) characteristics of perception-action coupling in occupational behaviour 

would be revealed through the logical experimental combination of conventional human 

movement bio-instrumentation, custom scientific data analysis software, and ecologically 

valid experimentally occupational tasks.  

1.3 Summary 

Bio-instrumentation is the development of technologies for the measurement and 

manipulation of parameters within biological systems, focusing on the application of 

engineering tools for scientific discovery and for the diagnosis and treatment of disease. 

Though the bio-instruments may vary with their components and functionalities according 

to the biological system that they are dealing with, in general they all have a common 

instrumental set up comprised of sensors, calibration signals, signal processing unit, 

feedback signals, and an output display and transmission feature. In the fields of 

ergonomics and biomechanics, the use of bio-instrumentation for the purpose of analysing 

work related MSDs for injury prevention has become the norm. Subsequently, the relatively 

new assessment model, occupational psychophysics, has allowed the use of bio-instruments 

to be more efficient by addressing both the perceptual and physiological challenges that 

arise at work places.  

In this thesis, I have made use of three commonly used bio-instruments, vision-

tracking, motion capture, and force platforms, and have coupled them with Matlab based 
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experimental programming in an attempt to identify the visual, kinematic and kinetic 

concepts associated with occupational lifting tasks.  

1.4 Outline 

In Studies 1 and 2, I examined visual attention preceding a manual material 

handling task, and associated visual attention with explicit pre-handling arousal, implicit 

directional cues for action, and subsequent handling strategies. My goal was to differentiate 

how negative and positive motivational states along with implicit visual cues could 

influence MMH perceptions and actions that may lead to work related musculoskeletal 

injuries. I used a pair of vision tracking goggles (ASL) to capture individual’s visual 

attention data, and combined it with custom Matlab software to process, analyse and to 

visually represent the results. 

In Study 3, I observed the perceived horizontal affordance distance of workers 

during an MMH task, and studied whether the affordance distances could be modified using 

implicit directional cues. I performed a conventional motion capture kinematic assessment 

and a postural kinetic evaluation by making use of two commonly used bio-instruments in 

the industry, a high speed motion capture system and a force-platform. By combining the 

two bio-instruments with another custom matlab software capable of modelling handling 

behaviors into mathematical equations, I was able to discriminate handling behaviours by 

visual cue type for work place risk assessment. 
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2.0 Quantifying Visual Attention for a Manual Materials Handling Task 

2.1 Introduction 

Visual attention is one of the key information contributors in the process of carrying 

out the human activities of everyday life. Visual attention has four basic components; (i) 

selection of the region of interest in the visual field, (ii) selection of feature dimensions and 

values of interest in that region of interest, (iii) control of information flow through the 

network of neurons that constitutes the visual system, and (iv) frequency and order of 

shifting from one region of interest to the next (Tsotsos et al., 1995). It is noteworthy that 

the first two components of visual attention occur prior to any subsequent action, 

suggesting that predictive visual attention precedes actions in everyday activities, as 

previously observed in natural behaviours and tasks such as walking (Marigold and Patla, 

2008) and reaching (deBruin et al., 2014). The direction of visual attention is typically 

defined by two behaviours of the eyes, specifically fixations, (where the visual gaze is 

maintained on a single location), and saccades, (movements of the eyes between two 

fixation points) (Duebel & Schneider, 1996). Measuring fixation patterns and saccadic 

movements provides us with a means of studying visual attention, and associating those 

behaviors with upcoming actions (Yarbus 1967; Hayhoe & Ballard, 2005). Measures of 

real-world visual attention have been widely used in sports science, including table tennis, 

golf, baseball, and darts, to examine the perception-action coupling, accuracy, efficiency, 

and psychophysical status of athletes (Vickers, 1992, 1996, 1997). Numerous experimental 

visual attention studies have used screen-based eye-tracking as a means to substantiate 

possible relationships between visual attention and everyday human actions (see Nguyen 
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et al., 2016 for a review), and the technological advances continue to open new 

environments for investigation (Hayhoe, 2018).  

 The workplace is an environment where many adults perform eight plus hours of 

activities daily. Manual materials handling is a frequent, repetitive workplace activity that 

has chronic potential for causing musculoskeletal injuries amongst workers (Hagberg et al., 

1995). These injuries may stem in part from behavioral differences, with injury prone 

workers making specific unsafe actions during their manual materials handling duties 

(Marras et al., 2000). Motion and principal component analyses identify the kinematic 

evidence of these injury-risk behaviors (Marras et al., 1995; Wrigley et al., 2005), but less 

is known about perceptual differences that may precede (and possibly predict) these 

different action patterns (Bigos et al., 1991; Mullen, 2004). By identifying and quantifying 

preceding visual attention patterns in the workplace, we might be able to predict personal 

handling behaviours, and thus risk of work-related musculoskeletal disorder.  

 A manual materials handling task can be performed in multiple ways, where the 

handling techniques could depend on numerous factors. Assuming the workers are 

physically healthy and are familiar with their work tasks, their lifting patterns may be 

determined by the visual attention patterns and the pre-lift instructions. For example, 

workers fixated on an upstream object on an assembly line might move and lift differently 

than workers attending to the decreasing space between them and the same object. With the 

use of proper research and analysis methods, we might be able to predict differences in 

handling techniques and work-related musculoskeletal loading by investigating 

spatiotemporal characteristics of worker’s pre-lift visual attention patterns. 
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 In this two-part experiment, our goal was to examine visual attention preceding a 

manual material handling task, and to associate visual attention with explicit pre-handling 

arousal (mental state), implicit directional cues for action (physical context), and 

subsequent handling strategies (behaviour). In Study 1, participants were primed with one 

of two handling task arousal states, then asked to grasp and move a suitcase while their 

visual attention and handling behaviour were recorded.  In Study 2, participants 

performed the same task with the same primes plus additional visual cues proposed to 

affect handling behaviour. Previous research has shown that visual cues do effect reaction 

times, while automatically triggering orienting of attention (Posner, 1980; Tipples, 2002). 

Although the influence of explicit and implicit cues on visual attention is well known, 

their effectiveness in moderating manual materials handling tasks and work-related 

activities requires further research. We hypothesized that pre-handling explicit contexts 

would encourage participants to perform the manual materials handling activity with 

different perceptual and behavioral strategies (Study 1), and that implicit visual cueing 

would have the capability to influence the effects of the context, influencing participants 

to handle the loads in differing manner (Study 2). We investigated the relationship 

between visual attention and manual material handling actions, with the goal of 

preventing injurious occupational behaviours. 

2.2 Methods 

2.2.1 Study 1 

2.2.1.1 Experiment 

Thirty-one university undergraduates (21.5 ± 4.5 years old, 17 female) with normal 

or corrected-to-normal vision were recruited. A horizontally oriented suitcase (72 x 45 x 
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25cm) was securely fastened and fully supported on a LIDO WorkSet II dynamometer 

(Loredan Inc, MA, USA; Figure 2.1), and was initially concealed under an eye tracker 

calibration board prior to the work task. Participants’ heights were measured and the 

suitcase was vertically adjusted so its vertical centre was at 53% of each participant’s 

height. Participants were instructed to position their feet inside a 40cm square that was 25 

cm posterior to the centre of the suitcase. A pair of Mobile Eye - XG vision tracking goggles 

(Applied Science Laboratories, MA, USA) were worn by each participant. The goggles’ 

reflector lens and vision camera were each adjusted to capture eye movement data that were 

within each individual’s para-central vision. Prior to the work task, each participant took 

part in a calibration exercise of the goggles, where they stood in front of a horizontally-

oriented calibration board with nine markers placed on it, arranged in a 3 x 3 matrix (79 x 

62cm). Participants were asked to focus their gaze on each of the markers for a few seconds, 

while the vision-tracking software collected and calibrated the data from the goggles to 

make sure that the right pupil was aligned with each marker.  
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Figure 2. 1 Suitcase orientation during the handling task. The suitcase is placed on a LIDO 

dynamometer while the subject is also equipped with vision tracking goggles.  
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2.2.1.2 Protocol 

Subjects were randomly assigned into one of two groups, either WINNING (n = 15) 

or WORKING (n = 16)], and were read a script that explicitly established their group’s pre-

handling context. The WINNING script informed the participants that they had just won a 

free cruise trip to San Diego, California, and were required to grasp a single loaded suitcase 

in front of them to leave for their free vacation. The WORKING script informed the 

subjects that they had been working at an international airport as a luggage handler for an 

extended period of time, with long hours plus low autonomy and fixed compensation, in a 

position that required the workers to repetitively handle suitcases as part of their daily work 

activities. Both scripts are available in Appendix A.  After reading the script, investigators 

gave participants a short count-down then revealed the suitcase by rapidly hoisting the 

calibration board.  Participants were then given a 10 s ‘gazing period’ where they had an 

opportunity to visually examine the suitcase before handling it. These 10 s were when the 

eye behaviour was recorded. 

2.2.2 Study 2  

2.2.2.1 Experiment 

Fifty eight university undergraduates (21.3 ± 4.4 years old, 43 female) with normal 

or corrected-to-normal vision were recruited, ten of them having also participated in Study 

1,. The protocol for Study 2 was similar to Study 1, with the addition of implicit directional 

visual cues (bright yellow triangles, 165 cm2 in viewable surface area) placed on the target 

suitcase for each trial.  
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2.2.2.2 Protocol 

Participants were randomly divided into two groups [WINNING (n = 29) and 

WORKING (n = 29)], and were read the corresponding WINNING or WORKING script 

from Study 1. The implicit visual cues were arranged in two different orientations such that 

they provided either a CONVENTIONAL cue or a COUNTER cue to the typical grasping 

behaviours observed in Study 1. Orientation 1, consisting of two triangles positioned close 

to the centre of the suitcase and pointing to both lateral ends of the suitcase was the 

CONVENTIONAL cue to the WORKING script and COUNTER cue to the WINNING 

script, while Orientation 2 (a single triangle positioned near the centre of the suitcase and 

pointing to the front handle) was the CONVENTIONAL cue for the WINNING script and 

the COUNTER cue for the WORKING script.   

2.3 Analysis 

All the activities in both experiments were captured using the scene camera of the 

eye-tracker along with the corresponding vision data (pupil coordinates) for analysis.  

For both experiments, two alternative suitcase grasp types were identified: 

unimanual handling from the front handle or bimanual handling with one hand on the front 

handle and the other on either side handle or side, or with opposite hands on each of the 

right and left side handles (or sides) of the suitcase. Frequency of grasp types were 

compared between groups to detect possible associations between handling techniques, 

preceding perceptions, and implicit visual cues.  
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The vision tracking data collected from the eye-tracker were saved as Microsoft 

Excel files, and contained the following information: Frame number, x and y coordinates 

of the master spot in eye image pixels, x and y coordinates of the pupil center in eye image 

pixels, pupil radius in eye image pixels, eye direction with respect to the scene image in 

scene image pixels, mouse cursor position with respect to the scene image in scene image 

pixels. From these data, we were interested in the master spot coordinates, which indicated 

the visual targeting areas of individuals in the form of the eye-image pixels. Eye images 

had a resolution of 768 pixels horizontally and 576 pixels vertically.  

The first step of the vision tracking data analysis was noise filtering, where all 

unavailable frames (resolution pixels greater than 768 horizontally and/or 576 vertically) 

were removed from the collected data files. This was done by programing a Matlab function 

(EyeFilter), in which the program explicitly searched for any error coordinates (-2000 or 

coordinates outside of 768 x 576), and then filtered them out by deleting the corresponding 

data that were associated with those frames.   

The vision tracking data were then analysed using a Matlab based eye-tracking 

software called ‘EyeMMV’ (Krassanakis et al., 2013). EyeMMV is a freely available eye-

tracker data analysis software that is capable of analysing vision tracking data and produces 

various types of visually representative results in the form of heat maps, fixation maps, and 

scan-path visualizations. When analyzing heat map results, it is important to keep in mind 

that there are two factors that affect heat map results: the number of fixations and the 

duration of those fixations. In our analysis, the heat maps are a product of these two factors, 

where the higher the number of fixations and/or the greater the duration of each fixation, 

the more intense the color of those resulting fixation areas. The data representation scheme 
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is a colour spectrum map, where the highest intensity corresponds to the color red. Some 

coding modifications were added to the software in order to make sure that it was 

compatible with the eye-tracker while providing us with added benefits. These 

modifications included: (i) capability of handling Excel data files as input by adding in a 

data file conversion subroutine, (ii) adjustments to the heat-map and fixation map generator 

subroutines to accommodate the eye-tracker specific pixel resolutions and coordinate types, 

and (iii) save functionality to all the functions that were available, so that the processed 

data and images can be stored for future use (Appendix B).   

In addition to all the analysis methods that were readily available through 

EyeMMV, we’ve also developed a new functionality called Attraction Index (AI). The AI 

is a number that was calculated in order to compare the visual attention on two or more 

fixation points. The AI provides a quantified representation of the visual targeting results 

compared to the traditional way of visually representing eye-tracking results. For the 

purpose of current study, the AI identified the strength of visual attention amongst 

participants during the suitcase handling task. It took into account three main factors; 

number of fixations (number), duration of each fixation (duration), and the relative distance 

(distance) of each fixation from one of the three handles of the suitcase, such that  

𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =
(number x duration)

distance
 

AI may provide a strong and simple indicator of the pre-movement visual attention. 

The AI function was programmed in Matlab to produce an AI-map that would indicate the 

fixation points of individuals with respect to the three handle points.  
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2.4 Results 

2.4.1 Study 1 

There was a clear distinction between the two groups for their handling motivation 

and their subsequent handling techniques. The WINNING group had significantly 

increased handling motivation that the WORKING group (Figure 2.2), based on their 

physical response (pointing to a number on the response line) to the question ‘After just 

hearing your instructions and getting into your role, how are you feeling right now about 

handling this specific suitcase?’ where the response line ran from -5 (anchored with text 

‘VERY BAD’) on the left to +5 (anchored with text ‘VERY GOOD) on the right, in equal 

increments of 1 and with additional anchor text of ‘SOMEWHAT BAD’ between -3 and -

2, ‘NEUTRAL’ at 0, and ‘SOMEWHAT GOOD’ between + 2 and +3.  The WINNING 

group handled the suitcase only from the front handle on 73.3 % of trials, thus indicating 

their preference for unimanual handling over bimanual handling. The WORKING group’s 

preferred handling technique was front and side grasping (50% of the trials). When we 

collapsed these results into unimanual handling and bimanual handling (including both 

sides and front and side grasps), the WORKING group’s preferred handling technique was 

bimanual (68.8% for WORKING; Figure 2.3).  A two-way log-linear analysis was used to 

produce a final statistical model that retained all effects. The likelihood ratio of this model 

was [X2(0) = 0, p = 1]. This indicated that the highest-order interaction (the group by 

handling interaction) was significant [X2(2) = 20.305, p < .001].  To interpret this 

interaction, a chi-square test was performed comparing WORKING and WINNING 

groups. There was a significant interaction between group and handling, selected, [X2(1) = 

5.490, p = .032]. The odds ratio showed that the odds of selecting a unimanual grasp were 
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6.05 times higher with the WINNING than the WORKING script. Therefore, the analysis 

suggested that bimanual handling was typically selected in the WORKING context, 

whereas unimanual handling was typically selected with the WINNING script. 

The vision tracking results were studied by comparing the heat maps of the two 

groups.  This analysis revealed that, for the WINNING group, the Attraction Index (AI) 

was highest for the front handle (extending to the central region) of the suitcase, compared 

to the WORKING group’s fixations, which were more distributed around the suitcase, but 

falling predominantly on the left (direction of movement) side.  These results are 

summarized in Figure 2.4, and exemplar heat maps are shown in Figures 2.5a and 2.5b.   
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Figure 2. 2 Handling motivation results. Motivation was recorded on a subjective scale 

ranging from -5 (feeling VERY BAD about handling this case) to +5 (feeling VERY 

GOOD about handling this case). WINNING group had a higher motivation rating than the 

WORKING group.  

 

Figure 2. 3 Handling frequency results. WORKING group’s preferred a bimanual handling 

technique while the WINNING group preferred a unimanual handling method.  
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,  

Figure 2. 4 Attraction Index (AI) results. WORKING group’s highest AI was for the left 

handle, while the WINNING group’s highest AI was for the front handle indicating their 

preferred unimanual handling technique.  
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Figure 2. 5 Heat map results. 2.5a (top) shows that for the WINNING group a concentrated 

fixation was visible at the centre of the suitcase. 2.5b (bottom) indicates a cluster of smaller 

fixations spread around the left hand side of the suitcase.  
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2.4.2 Study 2 

The WORKING group continued to display the highest percentage of bimanual 

handling (76% of total trials), while the WINNING group’s preferred method of handling 

was from the front handle (65% of total trials; Figure 2.6).  Interestingly, 

CONVENTIONAL cues strengthened the favoured behaviour of bimanual handling 

amongst the WORKING group (100% of WORKING-CONVENTIONAL trials) while 

members of the WINNING group seemed impervious to the cueing.  A three-way loglinear 

analysis was used to produce a final model that retained all effects. The likelihood ratio of 

this model was [X2(0) = 0, p = 1]. This indicated that the highest-order interaction (the 

group by cue by handling interaction) was significant, [X2(2) = 3.961, p < .047]. Separate 

chi-square tests were performed for WORKING and WINNING scripts. For the 

WORKING script, there was a significant association between the type of cue and whether 

a unimanual or bimanual grasp was selected, [X2(1) = 5.639, p = .026]. This interaction 

was caused by a mixture of unimanual and bimanual grasps with a COUNTER cue but only 

bimanual grasps with a CONVENTIONAL cue. For the WINNING script, the association 

between the type of cue and whether a unimanual or bimanual grasp was selected was not 

significant, [X2(1) = 0.338, p .683]. Therefore, the analysis suggested that a unimanual 

grasp was typically selected with the WINNING script regardless of the type of cue.  

The visual cues for Study 2 were introduced for the purpose of studying any 

possible superseding effect implicit directional visual cueing may have on typical manual 

materials handling behaviours in the work place. As we observed from our results in Study 

1, the WINNING group’s preferred handling method was from the front handle of the 

suitcase, whereas the WORKING group preferred handling the suitcase with two hands. In 
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Study 2, we strategically placed visual counter cues on the suitcase for each group, which 

we predicted would prompt opposite handling results as to what we observed in Study 1. 

Thus, a pair of arrow cues pointed at the two side handles were placed on the suitcase for 

the WINNING group, while a single arrow cue pointed towards the front handle was placed 

on the suitcase for the WORKING group.  The vision tracking results from Study 2 

demonstrated distinct fixation patterns of the participants during their gaze period (Figure 

2.7). The WINNING-COUNTER cue group had a concentrated fixation directed at the 

front handle, despite the paired counter-cues pointing towards the sides (Figure 2.7a).  The 

WORKING-COUNTER group’s vision data looked a bit more scattered, however, there 

was one particular concentrated heat signature directed right at the counter-cue arrow 

(Figure 2.7b).   
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Figure 2. 6 Handling results from study 2 indicating the impact of counter and conventional 

visual cueing on handling techniques. Counter cues had a greater impact on the WORKING 

group by encouraging participants to attempt unimanual handling compared to the 

conventional cues.   
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Figure 2. 7 Heat map results from study 2. 2.7a (top) shows a concentrated fixation at the 

front handle of the suitcase for the WINNING group with counter cues. 2.7b (bottom) 

shows a more scattered fixation pattern with one concentrated fixation on the counter 

visual cue for the WORKING group.  
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2.5 Discussion 

The introduction of implicit directional visual cues aligned in either conventional 

or counter directions to preferred handling behaviours provided us with an opportunity to 

study how visual attention to cues may encourage certain manual materials handling 

techniques.  Our results suggest that visual cues have an impact on the handling behaviours 

of individuals. The percentage of unimanual handling remained the same for the WINNING 

group when the cues were introduced, but the WORKING group’s bimanual preference 

increased significantly with logically consistent cues.  It is possible that consistent cues 

provided assurance to the participants that they were performing the handling motion the 

correct way. The counter visual cues for both groups did generally encourage more opposite 

handling techniques as to conventions observed in Study 1, but it was not a significant 

change. Further research focusing on the modifying effects of cues may prove valuable in 

safely shaping work-related behaviours in actual workplaces. Following on our experiment, 

it might be possible to ‘nudge’ workers to use safer handling techniques, namely bimanual 

handling, by placing or projecting logically consistent visual cues on to the item to be lifted.   

By studying individuals’ visual attention prior to a manual materials handling 

activity, we hoped to gain more insight in to possible relationships that might exist between 

perception and manual material handling techniques, as previous researchers have done for 

sports (Vickers, 2009). Vision tracking results from Study 2 clearly indicated a 

concentrated visual attention towards the front handle for the WINNING perception group. 

The WORKING group’s heat signatures were concentrated on the implicit visual cue, 

which supports our suggestion that visual cues could have a formative impact on 

occupational visual attention and manual materials handling behaviour. The concept of 
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Attraction Index (AI) quantified the strength of each eye-fixation with respect to a certain 

target location was derived. AI may be a useful tool when the visual targeting results are 

not isolated enough to draw conclusions just through qualitative analysis.  The WINNING 

perception group had the highest AI for the front handle, which confirmed previous 

findings of visual attention having an impact on spatial object manipulation. It also 

indicated that for the WORKING group, the side handles (left and right) had higher AI 

values compared to the front handle. Eye tracking may provide an excellent indicator of 

visual and cognitive attention, and thus might be used as a tool to confirm the modification 

of workers’ visual attention, to subsequently modify manual materials handling behaviour 

to ultimately reduce injuries at work. 

2.6 Conclusion 

 The purpose of this study was to examine visual attention preceding a MMH task, 

and to associate visual attention with explicit pre-handling motivations, implicit directional 

cues for action (physical context), and subsequent handling strategies (behaviour). I’ve 

found that MMH behaviours were influenced by state conditions. Specifically, purpose and 

motivation to handle a load changed preferred grasping behaviours (and subsequently 

musculoskeletal load). Visual cues with directional sense seem to have potential to modify 

grasping behaviour, even without specific instructions to attend to cues.  
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3.0 System Engineering Analysis of a Manual Materials Handling Task 

3.1 Introduction 

Manual materials handling (MMH) tasks are present in many service and industrial 

workplaces today, and are a primary source of disabling musculoskeletal disorders (MSDs) 

(Ayoub & Mital, 1989; Dempsey, 1998). MMH tasks such as lifting, lowering, pushing, 

pulling, holding and carrying pose physical stresses to the worker that may accumulate into 

stresses on the musculoskeletal and cardiovascular systems. If the stresses placed on these 

systems exceed the capacity, the potential results are discomfort, fatigue or injury. 

Biomechanical, physiological and psychophysical factors have been shown by previous 

researchers to directly and interactively influence MMH musculoskeletal injuries (Ayoub 

& Dempsey, 1999; Dempsey, 2010; Plamondon et al., 2010). Controlling these factors can 

reduce musculoskeletal injury risks, but controls need to be capable of consistently 

positively shaping behaviours for the majority of workers. Visual cueing has been shown 

to have a direct influence on individuals’ orienting of visual attention, subsequently 

modifying general behaviours (Posner & Cohen, 1984; Nevo et al., 2010), and thus may be 

useful in modifying workers’ perception of safe affordance and subsequent behaviours 

during MMH tasks.   

Motion capture kinematic analysis is often used by researchers to identify detailed 

biomechanics and work techniques associated with MMH tasks. Motion capture systems 

record biomechanical movements at high frame rates then reconstruct the collected images 

into coordinate based biomechanical models representing limbs and joints of the subjects. 

The camera system is calibrated prior to data collection, where a virtual 3D space 

representing the experimental space is set to collect motion data. The cameras capture 2D 
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images of the reflective markers that are placed on the subjects, which are later 

reconstructed into 3D positional vectors with the help of the motion capture software. The 

software compiles all the positional vectors in a continuous time sequence, which can then 

be played back in the aforementioned virtual space. Once the positional data are filtered, 

they can be analyzed using different numerical methods to calculate corresponding linear 

and angular kinematics. The majority of previous MMH research has focused on using 

kinematics for identifying the differences in handling techniques between novice and expert 

workers, and how those techniques could potentially induce possible MSDs at the 

workplace (Delisle et al., 1996; Plamondon et al., 2010; Gagnon et al., 2016). These studies 

have looked at some of the variables associated with handling tasks such as foot 

movements, knee bending, width of the base of support, the lifting dynamics, lifting and 

tilting strategies, and their potential to reduce the risk of injury during handling operations.  

The other side of the biomechanical assessment tool set are kinetic measures, which 

also provide researchers with valuable information about behavioural changes consistently 

induced by select controls on occupational demands. Relevant whole-body lifting kinetics 

include pre-handle anticipatory postural adjustments (APAs) as well as handling behaviors 

and post-handle corrective responses (Toussaint et al., 1998). A handling motion that 

involves voluntary multi-joint movements often triggers a displacement in body’s centre of 

mass (CoM), with respect to the base of support, that causes a disequilibrium in the system 

(Commissaris et al, 1997). In order to counteract such disturbances of balance, individuals 

initiate APAs, where reactive forces are being created to minimize the CoM perturbations 

(Bouisset and Zattara, 1981, 1987; Lee et al., 1987). In a bimanual MMH task, the CoM 

displacement is also affected by the moving of an external load, which causes the combined 
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CoM (individual and load) to shift with respect to the base of support. Previous studies 

have indicated that the APAs in bimanual MMH tasks can be observed by analysing the 

ground reaction force (GRF). For example, the rate of change of the horizontal momentum 

equals the horizontal component of GRF, and the rate of change of the angular momentum 

equals the moment effect of GRF with respect to the CoM (Toussaint et al., 1995). Thus, in 

order to study different handling behaviours associated with bimanual MMH tasks in both 

typical and controlled conditions, one could carefully analyse the GRF that will make way 

to comprehend the whole-body kinetics during a handling motion.  

When whole-body kinetics are derived for a MMH task, traditional analyses 

methods tend to focus on specific time points in a handling task, particularly the point at 

which the highest GRF is being applied to determine instantaneous compressive, shear, and 

resultant soft tissue loads (Davies et al., 1998). While such methods have useful 

contributions, they may not provide comprehensive details for a handling motion with 

respect to continuity and cumulative loading. A system identification paradigm may prove 

beneficial in these dynamic examples, as system identification provides the capability to 

represent handling kinetic data in a continuous fashion. Davidson and colleagues (2015) 

applied a system identification paradigm to a novel seated dynamic stabilization task, and 

this approach was able to discriminate differences in neuromuscular control of posture 

between healthy individuals and patients with lower back pain. Davidson et al. (2015) used 

a 2nd order non-parametric model to simulate the responses they observed during the seating 

task. By identifying the coefficients in those 2nd order systems, they were able to make 

inferences on individuals’ neuromuscular control over the whole duration of the seating 

exercise. A similar systems engineering approach may be applied to studying differences 
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in MMH task behaviours, where certain handling patterns could be modeled using 

mathematical equations. Given the greater degrees of freedom for standing handling 

compared to seated stationary posture, it is likely a higher order solution might be required. 

Such a system analysis could prove valuable in categorizing handling behaviours in terms 

of their risk value, which can then be used in industrial settings to promote safe work 

environments.  

In this study, we conducted a MMH experiment where we attempted to model 

handling behaviours using conventional methods from motion capture kinematics and 

postural kinetics, plus by modelling handling behaviors as 5th order non parametric system 

equations. We attempted to modify handling behaviours by introducing implicit directional 

visual cues into the MMH task. We hypothesized that different visual cues would induce 

unique handling strategies among individuals, and hoped our system analysis approach 

would be able to discriminate handling behaviours by visual cue type. 

3.2 Method 

3.2.1 Experiment: 

Seventy nine healthy university undergraduates (20.74 ± 1.69 years old, 46 female) 

were recruited and randomly assigned into three visual CUE groups; LEFT (n = 27), 

RIGHT (n = 27) and NONE (n = 27). Each participant was equipped with 19 reflective 

markers on their bodies for motion capture with the use of double sided stickers. A 

horizontally aligned suitcase (72 x 45 x 25cm) was placed on a platform, and vertically 

adjusted to be at 53% of each subject’s standing height (Pentalift, Guelf ON, Canada). 

Participants were instructed to stand on a force platform (Bertec Corporation, Columbus 

OH, USA) that was placed directly in front of the height adjusted suitcase (Figure 3.1). 
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Force platform was calibrated to collect force and moment data in x, y and z directions 

relative to anteroposterior, mediolateral and longitudinal axes at a sampling rate of 600Hz. 

A six-camera high speed motion capture system (Vicon Motus, Englewood CO, USA) was 

calibrated to gather kinematic data of the subjects during their work task at a sampling rate 

of 120Hz.   

3.2.2 Protocol 

Each participant was read a script that instructed them on how to handle the suitcase 

as well as the supposed work environment that we were trying to recreate in the lab. 

Participants were told that they were suitcase handlers at an international airport, where 

their job was to pull suitcases on a baggage conveyer from right to left. Given the fact that 

the hypothetical job environment requires them to repeat this task for 8 hours each day, 

participants were asked to set their horizontal affordance distance that they perceived to be 

safe and would keep them injury free during the work day. According to the randomly 

assigned groups, implicit visual cues were placed on the suitcase to observe if different 

visual cues would have an impact on the participants’ perceived safe affordance and the 

corresponding suitcase handling techniques. CUE LEFT group was presented with a white 

color arrow-head glued on top of the suitcase, pointed towards the participants’ left side 

(Figure 3.2). Similarly, the CUE RIGHT group was presented with an exact replica of the 

arrow-head directed towards participants’ right side (Figure 3.2). The CUE NONE group 

was the control group, without any visual cue provided. Once each participant had selected 

their safe horizontal affordance distance, suitcase was moved to that exact location and they 

were asked to move it back (left) towards the initial position to simulate a MMH activity. 

Each participant repeated the handling motion for three separate trials, and at the end of 
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each trial the suitcase was brought back to the safe horizontal distance picked at the 

beginning of the experiment. Force platform and the motion capture systems were initiated 

prior to the movement of the suitcase in order to capture the kinetic and kinematic data of 

each participant.  
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Figure 3. 1 The experiment 3 setup. 3.1a (left) shows the posterior-anterior view of a 

participant standing on a force platform. 3.1b (right) indicates the lateral view of the 

participant with the suitcase placed horizontally on a sliding rail ready for pulling motion. 

Participants’ were markered up with reflective markers for motion capture.  

 

Figure 3. 2 Horizontally placed suitcase with the two visual cue types. 3.2a (left) shows 

CUE LEFT where the arrow head points towards the left side. 3.2b (right) shows CUE 

RIGHT with the arrow head pointing towards the right side. Three reflective markers were 

also placed on the suitcase in order to track the suitcase’s movement in motion capture.  
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3.2.3 Analysis 

3.3.3.1 Kinetic Analysis 

The data collected from the force platform were saved as .csv files. These files 

contained six columns of data, which accounted for force (Fx1, Fy1, Fz1), and moment (Mx1, 

My1, Mz1) results. The data analysis was performed in Matlab (Appendix C), where they 

were calibrated and filtered just prior to calculating individuals’ antero-posterior center of 

pressure displacement in x, y and combined directions (CoPx, CoPy, CoPr).   

𝐶𝑜𝑃𝑥 =
𝑀𝑦

𝐹𝑧
    (1) 

𝐶𝑜𝑃𝑦 =
𝑀𝑥

𝐹𝑧
    (2) 

𝐶𝑜𝑃𝑟 = √𝐶𝑜𝑃𝑥2 +  𝐶𝑜𝑃𝑦2  (3) 

In order to accurately analyse the kinetics involved, suitcase handling motion was 

separated into two stages called pre-handle and post-handle. These two stages were defined 

using three onsets, start-onset, grasp-onset, and end-onset.  The three onsets were identified 

using a set of screening algorithms that searched and isolated the specific handling motion 

events and their corresponding time frames. The start-onset represented the beginning of 

the handling motion, and it was defined as the first instance the participants started rotating 

their cores (hips and shoulders) to reach for the suitcase. Grasp-onset was defined as the 

first instant participants had their hands placed on the suitcase moments before pulling it 

towards the end position.  It was identified by isolating the time frame where the hands 

(one or both) started moving horizontally from right to left. Finally, the end-onset 

represented the end of the handling motion, and was calculated by studying the position of 
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one of the reflective markers that was placed on the suitcase. Since the initial resting 

position of the suitcase was known, the algorithm looked for a set of coordinates that fell 

within 5 standard deviations of the initial resting position in the y-axis (where the suitcase 

was horizontally being moved) and recorded its frame number as the end-onset. All the 

data coordinates that fell within the start-onset and the grasp-onset were categorized as the 

pre-handle stage, whereas the remaining coordinate data starting from the grasp-onset till 

the end -onset were categorized as the post-handle stage.  

The next step of the kinetic analysis was to resample all the pre-handle data sets 

into uniform sized data sets in order to simplify the comparison process. Thus, each pre-

handle data set was resized into 101 data points using the Fourier transform. Once a set of 

uniform pre-handle kinetic data set was acquired, the final step of the analysis was to 

characterize the postural behavior of each participant using a nonlinear, non-parametric 

system identification model. In our system identification paradigm, U(z) was the discrete 

time input signal that represented the normalized affordance distance in the form of a step 

function. Participants selected these distances as their safest horizontal affordance distance 

prior to the handling activity. The output, Y(z), was the calculated CoPr displacement values 

of individuals during the handling period. Once the input and the output signals were 

defined, we then used Matlab’s system identification toolbox to model the lifting 

behaviours in the form of a 5th order transfer function: 

𝐻(𝑧) =
𝑈(𝑧)

𝑌(𝑧)
=

𝑎0𝑧−1+𝑎1𝑧−2+𝑎2𝑧−3+𝑎3𝑧−4

1+𝑏0𝑧−1+𝑏1𝑧−2+𝑏2𝑧−3+𝑏3𝑧−4+𝑏4𝑧−5
  (4) 

The system identification toolbox generates mathematical models of dynamic 

systems with measured input and output data (Mathworks). It accommodates both 
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frequency and time domain data to identify continuous-time and discrete-time transfer 

functions, process models, and state space models. For the current study, we looked at 

discrete-time transfer functions that modelled the CoPr displacement in bimanual handling 

motions. The toolbox allows the user to specify the number of poles and zeroes to be present 

for each system, and calculates the accuracy of the said transfer function with respect to the 

measured data set. The poles and zeroes correspond to the coefficients of the transfer 

function which can provide valuable insight into a system’s behavior. In order to 

successfully model the observed data, we compared a number of different variations of 

number of poles and zeroes for each trial until a transfer function with the highest accuracy 

was derived. These transfer functions were then averaged out for each coupling group, and 

the resulting mean coefficients were compared to analyze the lifting strategies. 

3.2.3.2 Kinematic Analysis 

Prior to motion capture data collection, a nineteen point joint segment stick figure 

was created in Vicon Motus software to represent a biomechanically accurate figure of the 

participants. During testing, reflective markers were placed on these 19 specific joints of 

the participants so that the infrared cameras could capture the motion of subjects and 

recreate the biomechanical movements inside a virtual 3D space.  

Once the data collection was completed, the software identified the 3D positions of 

each of the 19 markers and tabulated the coordinate data with respect to time in a .csv file. 

The next step of the analysis process was to digitize the marker data by connecting the 19 

joints to form the full skeleton in each time frame so that we end up with a complete stick 

figure over the work task time period without any missing data. In the instances where there 

were some missing marker coordinates, the software used either the cubic reconstruction 
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or virtual reconstruction methods to interpolate missing data to complete each trial. Once 

the digitization was completed, the data files were saved as Excel files and were used to 

calculate relative kinematics using the corresponding 3d coordinate data.  

For this particular experiment, we were interested in studying individuals’ trunk 

rotation and trunk forward flexion during pre and post suitcase grasping. Thus, the 

following kinematic formulas were implemented in excel to derive and calculate the two 

aforementioned metrics.  

𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑇𝑤𝑖𝑠𝑡 = 𝑡𝑎𝑛−1 (
𝑆ℎ𝑙𝑑_𝐿𝑦− 𝑆ℎ𝑙𝑑_𝑅𝑦

𝑆ℎ𝑙𝑑_𝑅𝑥− 𝑆ℎ𝑙𝑑_𝐿𝑥
) ×  

180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜋 𝑟𝑎𝑑𝑠
   (5) 

𝐻𝑖𝑝 𝑇𝑤𝑖𝑠𝑡 = 𝑡𝑎𝑛−1 (
𝐻𝑖𝑝_𝐿𝑦− 𝐻𝑖𝑝_𝑅𝑦

𝐻𝑖𝑝_𝑅𝑥− 𝐻𝑖𝑝_𝐿𝑥
) ×  

180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜋 𝑟𝑎𝑑𝑠
    (6) 

Here, Shld_L, and Shld_R represent the left and right shoulders respectively, and 

the subscripts x and y represent the corresponding 3d coordinates that they pertain to. Using 

the normalized shoulder twist and hip twist values (normalized to the starting shoulder and 

hip positions), we then calculated the ‘x factor’ that represented the body twist angle with 

respect to the initial standing positions: 

𝑥𝑓𝑎𝑐𝑡𝑜𝑟 = (|𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑇𝑤𝑖𝑠𝑡 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑|) −  𝐻𝑖𝑝 𝑇𝑤𝑖𝑠𝑡 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  (7) 

Trunk position and forward flexion were then calculated using the following equations: 

𝑡𝑟𝑢𝑛𝑘 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = √(𝐶7𝑥 − 𝐿4𝐿5𝑥)2 +  (𝐶7𝑦 − 𝐿4𝐿5𝑦)
2
   (8) 

𝑡𝑟𝑢𝑛𝑘 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑙𝑒𝑥𝑖𝑜𝑛 = 𝑡𝑎𝑛−1 (
(𝑡𝑟𝑢𝑛𝑘 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)2

𝐶7𝑧− 𝐿4𝐿5𝑧
) ×  

180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝜋 𝑟𝑎𝑑𝑠
  (9) 
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3.3 Results 

3.3.1 Affordances  

The safe horizontal affordance distances for all the participants were normalized by 

their height, and an average horizontal affordance distance value was calculated for each 

CUE group.  The CUE LEFT group had the smallest horizontal affordance (0.131 +/- 0.091 

m/m), though this value failed to differ significantly from CUE RIGHT or CUE NONE 

(0.156 +/- 0.086 m/m and 0.161 +/- 0.079 m/m, respectively).   Non-normalised affordances 

did differ significantly by GENDER (F(1, 75) = 4.362, p=.040), with males perceiving 

larger safe affordances.  As a CUE x GENDER interaction, males perceived increasingly 

larger normalized affordances in the CUE RIGHT condition (Figure 3.3), though this 

interaction failed to reach significance (F(1, 2) = 2.212, p=.117).     
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Figure 3. 3 Normalized perceived affordance distances in LEFT, NONE, and RIGHT cued 

handling conditions.  The difference between male and female participants in the CUE 

RIGHT condition was equal to 15 cm. 
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3.3.2 Kinematics 

The relationship between shoulder and hip angular deflection was defined as X-

factor, a commonly used descriptive in sports biomechanics (Kwon et al., 2013) that is also 

highly relevant in occupational biomechanics. This measure showed a logical relationship 

to CUE, with small increases from LEFT to NONE to RIGHT conditions as participants 

increased their twist to initially grasp and handle the load (Figure 3.4). There were no 

significant CUE or GENDER differences to X-factor.  
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Figure 3. 4 Comparison of the x-factor angle for the three visual cueing groups. X-factor 

represents the amount of body twist during the suitcase pulling, where large and repetitive 

twisting of upper torso over an extended period of time has been linked to lower back 

injury risks (Marras et al, 1994).  
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These X-factor results are supported by an examination of maximum shoulder 

rotation values, where males had significantly greater rotations particularly in the CUE 

RIGHT condition (Figure 3.5), leading to a significant CUE x GENDER interaction (F(1, 

2) = 4.360, p=.016).  X-factor magnitudes may have been mitigated by hip rotation, as 

increased hip rotation decreases X-factor.  Maximum hip rotation approached a CUE x 

GENDER interaction (F(1,2) = 2.670, p=.076), driven by a significant maximum hip 

rotation difference in GENDER (F(1, 75) = 6.749, p=.011), wherein male participants 

generated greater hip rotation at grasp, particularly in the CUE RIGHT condition (Figure 

3.6).  The CUE effect on maximum hip rotation was not significant (F(2, 75) = 2.451, 

p=.093). 
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Figure 3. 5 Maximum shoulder rotation angle for the three visual cueing conditions and 

two gender groups. Male participants had significantly larger rotations in the CUE RIGHT 

condition. 

  

 

Figure 3. 6 Comparison of maximum hip rotation angle for the three visual cueing 

conditions and two gender groups. While males had greater real and normalised perceived 

affordant distances for CUE RIGHT and NONE conditions, they minimised their rotation-

driven trunk loading by generating significantly greater hip rotation values (and 

subsequently smaller X-factor values). 
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A near significant difference by GENDER also existed for trunk lateral flexion (F(1, 

75) = 3.539, p=.064), with male participants generating greater flexions, particularly in 

CUE NONE and CUE RIGHT conditions (Figure 3.7). 

 

Figure 3. 7 Comparison of maximum trunk lateral flexion angle for the three visual cueing 

conditions and two gender groups. Males addressed their greater real and normalised 

perceived affordant distances for CUE RIGHT and NONE conditions by generating greater 

hip rotation and trunk lateral flexion values.  
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Axial trunk velocity, another measure commonly associated with occupational 

overloading (Marras et al., 1994) differed significantly with CUE (F(2,75) = 4.262, 

p=.018), with increased velocities in the CUE RIGHT condition for both GENDER groups 

(Figure 3.8).  It is important to note this maximum is for the twist to grasp phase, not the 

entire movement.  

 

Figure 3. 8 Maximum trunk axial rotation velocity.  Both groups used significantly 

greater velocities to grasp and handle loads in the CUE RIGHT condition.  
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3.3.3 Kinetics 

For each of the three visual cueing groups, an average transfer function was 

calculated: 

𝑇𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑧) =
−0.402𝑧−1 − 0.404𝑧−2 − 0.402𝑧−3 + 1.208𝑧−4

1 − 1.917𝑧−1 + 0.993𝑧−2 − 0.424𝑧−3 + 0.629𝑧−4 − 0.279𝑧−5
 

𝑇𝐹𝑙𝑒𝑓𝑡(𝑧) =
−0.137𝑧−1 − 0.114𝑧−2 − 0.137𝑧−3 + 0.388𝑧−4

1 − 2.731𝑧−1 + 2.992𝑧−2 − 1.773𝑧−3 + 0.509𝑧−4 + 0.004𝑧−5
 

𝑇𝐹𝑟𝑖𝑔ℎ𝑡(𝑧) =
−0.565𝑧−1 − 0.565𝑧−2 − 0.565𝑧−3 + 1.695𝑧−4

1 − 2.456𝑧−1 + 1.789𝑧−2 − 0.164𝑧−3 − 0.167𝑧−4 + 0.0003𝑧−5
 

 Coefficients (poles and zeroes of the transfer functions) of these 5th order models 

were compared (Table 3.1). Our results indicate that CUE RIGHT group had the lowest a0 

value and the highest normalized b0 value (normalized by the corresponding a0 value) 

compared to the other two groups. On the other hand, the CUE LEFT group had the highest 

a0 value, and the lowest normalized b0 values among the three groups.  
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Table 3. 1 Tabulated results of the coefficients a0 and bn of the transfer functions for the three visual cueing groups. A0 value 

represent the gain of each system that was modelled and is a good indication of the total CoP displacement of the subjects 

during the work task. Bn values are the damping coefficients and are indicative of the time it takes each participant to regain 

their balance to come back to the initial CoP position. Results indicate that the CUE RIGHT group had the lowest a0 value 

indicating the highest CoP displacement in the negative direction. b0 value was the highest for the CUE RIGHT group among 

the three groups, and that corresponds to a faster recovery time in order to counter balance the high CoP displacement. 
 

𝒂𝟎 𝒃𝟎 × 𝒂𝟎 𝒃𝟏 × 𝒂𝟎 𝒃𝟐 × 𝒂𝟎 𝒃𝟑 × 𝒂𝟎 𝒃𝟒 × 𝒂𝟎 

CONTROL −0.40 ± 0.05 0.77 ± 0.30 −0.40 ± 0.20 0.17  ± 0.10 −0.25 ± 0.10 0.11  ± 0.10 

LEFT −0.14 ± 0.05 0.37 ± 0.20 −0.41 ± 0.30 0.24 ±  0.10 −0.07 ± 0.10 −0.0006  ± 0.10 

RIGHT −0.57 ± 0.08 1.39 ± 0.40 −1.01 ± 0.20 0.09 ± 0.10 0.09 ±    0.10 −0.0002  ± 0.10 
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In systems engineering analysis, transfer functions represent the relationship 

between a known input and the observed output of a system and thus provide us with some 

valuable insight into how a system might be processing information and different factors 

that may affect the outcome of the system. The coefficients of these said transfer functions 

become increasingly important as each one of the coefficients may correspond to different 

characteristics of the system. In general, the numerator coefficients (a0, a1, a2, a3) correspond 

to the system gain, which determines the size of the steady state response of a system. The 

denominator coefficients (b0, b1, b2, b3, b4) correspond to the damping constants that dictate 

how much the system oscillates as the response decays toward steady state. These 

definitions are purely mathematical, however once we apply the system engineering 

principles into practical applications in order to model various physical systems, parallels 

can be drawn between the theoretical definitions of the system coefficients and physical 

characteristics.  

Figures 3.9 and 3.10 provide the step response to each transfer function. The results 

provided us a visual representation of how the visual cueing could affect handling 

behaviours in terms of individuals’ CoPr displacement with respect to time. Results 

indicated that the CUE RIGHT group had the highest CoPr reach among the three groups, 

whereas the CUE LEFT coupling group had the lowest CoPr reach. 
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Figure 3. 9 Comparison of the three visual cueing groups’ center of pressure (CoPr) displacement during the work task. Cue-right group 

displayed the highest (CoPr) and also the quickest of the three groups to achieve stability as indicated by the time the red line takes to 

reach the steady state (dotted black line). On the other hand, the cue-left group had the shortest CoP displacement, though their time for 

stabilizing is longer than the cue-right group.  
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Next step of our analysis was to categorize the handling kinetics by gender, and to 

see whether males and females had reacted differently to visual cueing.  The transfer 

function results were analysed again by sub categorizing into male and females groups 

within the 3 visual cueing groups.  The results displayed a change in behaviour amongst 

males in our experiment as they had reacted to the visual cues considerably more than the 

female participants had (Figure 3.10). When compared, the male participants’ reaction time 

towards the CUE RIGHT is considerably longer and vise-versa for the CUE LEFT.  
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Figure 3. 10 Gender comparison of CoPr displacement results for the suitcase handling task when the visual cues were present. 

For the CUE LEFT group, male participants displayed an increase in CoPr displacement compared to the female participants, 

while shortening their settling time (time to initial resting position). As per the CUE RIGHT group, CoPr displacement was 

increased for both male and female participants. At the same time, male participants’ settling time had also increased drastically, 

indicating a slower return to the starting position when the right cue was present. 
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3.4 Discussion 

 

The horizontal affordance results indicated a possible link between the cue type and 

gender, and in combination how those factors could influence what individuals may 

perceive to be safe during ergonomic tasks. Specifically, the male participants had the 

highest normalized horizontal affordance with the RIGHT cue, which led us to logically 

conclude that the visual cue directed away from the participants prompted them to assume 

a higher reaching distance. These affordance results along with the corresponding handling 

behaviour results indicated that there were significant differences in kinematics that may 

have been caused by cue direction. As a result of having higher horizontal affordance on 

the right side, the male participants would have had to rotate their shoulders and hips at a 

greater angle (also known as the X-factor) from the starting position. The higher X-factor 

values would subsequently cause the participants to increase their internal angular 

velocities while moving the suitcase from right left, which was evident in our axial trunk 

velocity results that showed increased velocities in the RIGHT cue condition for both 

gender groups. 

Results from the force platform kinetic measures, and the subsequent systems 

engineering analysis supported the kinematic results, where RIGHT cue had a greater 

impact on individuals’ centre of pressure (CoPr) displacement during the handling task. 

The step response analysis to the modelled transfer functions displayed the continuous 

change in CoPr displacement as a function of time. Upon closer inspection, it was observed 

that the male participants had the highest settling time, which is an indication of the amount 

of time taken to reach CoPr equilibrium, when the handling task is completed. This is a 

direct consequence of having a greater horizontal affordance distance at the beginning of 
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the work task, where the male participants would have to take longer than average amount 

of time to rotate their bodies back to the initial standing position.   

The unique nature of our results favoring gender based correlations that prompted 

male participants’ MMH behaviours to be influenced by visual cueing could be explained 

by previous research conducted on the subject of gender based perceptual differences. 

Previous researchers have shown that males have greater bilateral brain activity during 

visuospatial tasks whereas females have greater bilateral brain activity during phonological 

tasks (Dittmar et al., 1993; Clements et al., 2006). Our suitcase handling experiment 

coupled with visual cueing is very much a visuospatial task, thus it may have prompted 

greater attention from male participants, which corresponds to triggering greater interest in 

a target, in our case, the visual cues (Jacob & Karn, 2003). 

The use of motion capture and force platform systems to study ergonomic 

behaviours, particularly kinematic and kinetic measures, provide researchers with multiple 

options to identify detailed biomechanics and work techniques associated with MMH tasks. 

Combined with custom experimental software capable of assessing kinematics and kinetics 

simultaneously, these bio-instrumentation systems could prove valuable in categorizing 

handling behaviours in terms of their risk value, which might then be used in industrial 

settings to promote safe work environments. 
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4.0 Global Discussion 

4.1 Introduction 

Bio-instrumentation allows the study of biological systems, through the use of bio-

electronic instruments that integrate sensors, interface electronics, microcontrollers, and 

computer programming to capture micro and macro behaviours, and thus offer relevant 

information and solutions in the fields of medicine, biomechanics, and ergonomics. 

Occupational biomechanics, the study of the physical interaction of workers with their 

tools, machines, and materials so as to enhance the workers’ performance while minimizing 

the risk of MSDs is a challenging research area, due to the multiple interactive factors that 

are associated with work context and worker perceptions and behaviours. The use of bio-

instruments allows occupational biomechanics investigators to analyze the physical and 

psychosocial factors by combining experimental paradigms and measures from multiple 

disciplines such as biology, optics, mechanics, physics, electronics, and computer science. 

Occupational bio-measurements such as visual attention, 3D kinematics, and ground 

reaction forces can be measured using standalone bio-instruments. However, combining 

multiple bio-instruments in experimental settings has the potential to yield more 

explanatory ergonomic analyses. For example, understanding the postural adjustments a 

fatigued worker makes to control an unstable load might measure visual and haptic 

perceptions, whole body kinetics and kinematics, plus relevant muscle activities. 

Furthermore, continuing advancement in bio-technology allows researchers to constantly 

update existing bio-instruments, introducing new instrumentation techniques to expand our 

understanding of work, efficiency, and behaviour. 



82 
 

Standalone bio-instruments that are commercially available today have two main 

components: hardware and analysis software. Hardware are the physical components of 

bio-instruments, whereas the analysis software allows the researchers to perform various 

data analytics on the corresponding bio-data. A majority of the bio-instruments in the 

industry today come equipped with built-in software that permit a set number of analysis 

methods that are highly efficient, but limiting the users into fixed forms of analyses, and 

subsequently limiting them from further expanding their research. Custom built 

experimental softwares, on the other hand, allow the researchers to program their own 

analysis methods enabling well-structured high-level analyses that may allow deeper 

discussions with regards to data analysis. Furthermore, custom experimental software has 

the ability to synchronously incorporate multiple bio-instruments into one experimental 

setup and to perform comprehensive data analyses between and within the instruments that 

are involved in the setup. Previous researchers have often focused on select perspectives of 

worker behavioural analyses, by performing single instrument experiments with 

corresponding local data analyses (Cappelli & Duffy, 2006). In order to understand the 

perceptions and actions at work, however, psychophysics methodologies coupled with 

multiple bio-instrument setups may be required, which in turn may unravel the “bigger 

picture”, helping us to understand how perceptions and actions are coupled in occupational 

activities.  

  The current thesis attempts to start the design and face validation of a 21st century 

occupational psychophysics toolbox, by combining typically standalone bio-instruments 

and custom experimental software capable to analyze bio-instrumentation data.  In 

particular, my goal was to examine psychological and physical interactions that are relevant 
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in industrial tasks when assessing risks of work related MSDs. The hardware suite of the 

bio-instrumentation setup featured a mobile vision tracking system, a passive marker 

motion capture system, and a pair of force platforms with the goal of providing a 

comprehensive biomechanical assessment within a simulated occupational workstation. 

The custom Matlab softwares complemented the hardware by introducing algorithms 

capable of functions including image and attention processing, full body linear and angular 

kinematic measurement, and ground reaction force analyses that could assist biomechanists 

and ergonomic researchers to study unique and integrated characteristics of perception-

action coupling in occupational behaviors. I conducted two unique MMH experiments that 

were designed to test participants’ visual attention, preparatory and action handling 

kinematics, and kinetic profiles in a simulated work place, which could collectively shed 

light on perception based ergonomic actions and work-related musculoskeletal disorders.  

4.2 Study 1 

In chapter 2, I designed a pair of experiments that generated specific motivational 

states amongst participant ‘workers’ performing a MMH task, to observe how positive or 

negative motivational states could drive corresponding behaviours, specifically MMH 

perceptions and actions. I simulated a baggage (suitcase) handling environment, where 

‘workers’ would experience specific motivational states thanks to a fixed script with 

combined mental, physical, and environmental factors, delivered by the investigator. By 

measuring each individual’s motivation to perform a handling task on a Likert scale of 

‘very bad’ to ‘very good’ prior to the completion of the work task, and analysing the 

participants’ handling techniques, I hoped to differentiate how positive and negative 
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motivational states could influence MMH perceptions and actions that might eventually 

lead to work related musculoskeletal injuries.  

Visual attention is one of the key perceptual contributors in the process of selecting 

and guiding human actions, and provides great insight into the relationship between 

psychophysical states of individuals and their subsequent actions (Vickers, 1992). Previous 

research supports the idea that visual attention precedes human behaviours (deBruin et al., 

2014), thus providing experimenters an opportunity to empirically connect perception and 

action in MMH, and to test ergonomic strategies that might shape behaviours. Given that, 

I used mobile vision tracking goggles within the MMH task to allow the participants’ visual 

attention prior to the work task, to be carefully observed.  

My results from Study 1 in chapter 2 indicated a clear connection between 

participants’ motivations and their corresponding handling actions. There was a significant 

difference between frequency of unimanual and bimanual grasp selected based on state 

condition, wherein the odds ratio showed that the odds of selecting a unimanual grasp were 

6.05 times higher with the positive motivation state than the negative motivation state. 

Vision tracking results supported these findings, identifying a greater number of fixations 

and relatively longer fixation durations directed at the centre of the suitcase for the positive 

motivation state group compared to the negative motivation state group.  

These results seem to follow the theory of ‘self-efficacy’ introduced by Albert 

Bandura that refers to an individual’s belief about his or her capabilities to execute a 

specific task within a given context (Bandura, 1977; Stajkovic & Luthans, 2003). There are 

a number of determinants of self-efficacy, but relevant factors for worker behaviours is 

primarily physiological and psychological arousal, which logically combine to influence 
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motivation and action in worker behaviours. Self-efficacy is measured on two scales: 

Magnitude, the level of task difficulty that a person believes he or she is capable of 

executing; and strength, which indicates whether the individual’s belief about magnitude is 

strong and likely to produce perseverance in coping efforts, or weak and easily surrender 

in the face of difficulty. In my case, the results could be interpreted as positive motivation 

group possessing high levels of self-efficacy by predicting low magnitude and subsequently 

high strength to handle the suitcase, thus prompting unimanual handling. On the other hand, 

the negative motivation group may have had low self-efficacy due to their high estimation 

of task magnitude and a relatively lower perceived strength to complete the task, resulting 

in bimanual handling techniques.  

4.3 Study 2 

Better understanding of human perceptions and behaviours at the workplace may 

be an important first step in minimizing workplace injury occurrences. However, it is also 

important to identify the ways to correct and modify human behaviors at workplace using 

practical methods. In the second experiment from Chapter 2, I studied the use of implicit 

visual cues for modifying MMH behaviors. Previous research has shown that visual cues 

do accommodate in changing actions, typically reaction times, by automatically triggering 

orienting of attention (Posner, 1980; Tipples, 2002). Although the influence of explicit and 

implicit cues on visual attention is well known, their effectiveness in moderating 

occupational handling tasks and work-related activities requires further research. By 

employing vision tracking, we expected to confirm previous findings of visual cues 

influencing visual attention, while studying how cues could potentially affect perceptions 

and actions during MMH tasks. The visual cues were arranged in two different orientations 
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such that they provided either a conventional cue or a counter cue to the handling 

behaviours observed in Study 1. Orientation 1 - Two triangles pointing to either side of the 

suitcase positioned close to the centre of the suitcase (counter cue – positive script; 

conventional cue – negative script). Orientation 2 - A single triangle pointing to the front 

handle positioned near the centre of the suitcase (counter cue – negative; conventional cue 

- positive). The placement of the visual cues was strategically designed to influence 

participants’ preferred handling methods, and we hoped to find potential changes in 

handling techniques as well as pre-action visual attention when the cues were presented. 

By exposing individuals to varying motivational states and implicit visual cues, and 

measuring their visual attention, we wanted to perform a thorough analysis of perceptions 

and actions at work, while exploring potential methods of modifying such behaviours in a 

simulated workplace environment.  

Results from Study 2 confirmed my findings in experiment 1 with regards to 

positive and negative states having an influence over participants’ handling techniques. The 

new information also confirmed that visual cues had influenced handling techniques. 

Conventional cues reinforced the handling behaviour from experiment 1, particularly in 

combination with the negative motivation state, where 100% of participants preferred 

bimanual handling. Counter cues on the other hand yielded a mixture of unimanual and 

bimanual grasps under the negative motivation state. For the positive motivation state, the 

association between the type of cue and whether a unimanual or bimanual grasp was 

selected was not significant, suggesting that a unimanual grasp was typically selected with 

the positive script regardless of the type of cue. Vision tracking results also supported these 

findings, where the positive motivation group continued to direct a concentrated fixation 
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on the front handle despite the counter cues, indicating the preferred unimanual handling 

technique. In contrast, the negative motivation group directed attention at the counter cue, 

despite still choosing a bimanual handling action 61.1% of the time.  These results support 

the potential of a single implicit cue to attract attention, though that attention failed to 

influence participants’ handling actions significantly.  

4.4 Study 3 

In chapter 3, we implemented a similar experimental paradigm with a different set 

of bio-instruments to study individuals’ kinematic and kinetic profiles during a MMH task. 

In the past, researchers have often experimented with various instruments in order to collect 

kinematic data from workers. Marras and colleagues developed a lumbar motion monitor 

exoskeleton to capture three dimensional kinematics, specifically the instantaneous change 

in trunk position, velocity and acceleration, in order to assess the risks of back injuries 

(Marras et al., 1992). The use of motion capture systems along with force platforms to 

measure full body kinematics and ground reaction force kinetics is a common practice in 

today’s biomechanics research (Kim et al., 2013). A more recent study performed an 

analysis of occupational hygiene among airport baggage handlers by focusing on workers’ 

trunk and upper arm angular changes, velocities, and accelerations, and aimed to 

differentiate the correlations between postural exposures in different workstations 

(Wahlstrom et al., 2016). We simulated a similar suitcase handling task coupled with 

implicit visual cueing, in order to examine how visual cues may influence individuals’ 

perceived safe horizontal affordances. The two bio-instruments were then used to observe 

and analyze how the corresponding horizontal affordant distances may dictate participants’ 

MMH behaviours, in particular their handling biomechanics. 
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Our results indicated that there were significant differences in kinematics that may 

have been caused by cue direction. The relationship between shoulder and hip angular 

deflection, also known as the X-factor, showed a predicted relationship to cue type, with 

small increases from LEFT to NONE to RIGHT cue conditions as participants increased 

their twist to initially grasp and handle the load. In particular, male participants had 

significantly greater shoulder and hip rotations in the RIGHT cue condition. Axial trunk 

velocity, another measure commonly associated with occupational overloading (Marras et 

al., 1994) differed significantly with cue type, with increased velocities in the RIGHT cue 

condition for both gender groups. Results from the kinetic analysis and the subsequent 

systems engineering analysis supported the kinematic results, where RIGHT cue prompted 

greater centre of pressure (CoPr) displacement among the participants during the handling 

task. The step response analysis to the modelled transfer functions displayed the continuous 

change in CoPr displacement as a function of time, and highlighted that male participants 

had a greater settling time for RIGHT cue condition as a result of greater horizontal 

affordant distance. 

The unique nature of our results favoring gender based differences that prompted 

male participants’ MMH behaviours to be influenced by visual cueing could be explained 

by previous research conducted on the subject of gender based perceptual differences. 

Previous researchers have shown that males have greater bilateral brain activity during 

visuospatial tasks whereas females have greater bilateral brain activity during phonological 

tasks (Dittmar et al., 1993; Clements et al., 2006). Our suitcase handling experiment 

coupled with visual cueing is very much a visuospatial task, thus it may have prompted 
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greater attention from male participants, which corresponds to triggering greater interest in 

a target, in our case, the visual cues (Jacob & Karn, 2003).  

4.5 Software Development 

As much as the hardware components of the bio-instruments are useful in collecting 

data and designing experiments, the software system that complement the instruments 

while allowing high level analyses play an equally important role in our attempt in 

designing the psychophysics toolbox. Using Matlab, a multi paradigm numerical 

computing environment and a fourth generation programming language, we had the 

capability to create algorithms to address any analytical need starting from simple tasks 

such as data filtering and data manipulation, to more complex analytical tasks including 

mathematical modelling and bio-instrument specific variable derivation.  

4.5.1 Vision Tracking Software 

For vision tracking, different algorithms were created in order to process raw eye 

tracking coordinate data, and to compare visual attention of individuals by quantifying the 

results. I used an already existing Matlab based eye-tracking software named ‘EyeMMV’ 

(Krassanakis et al., 2013), and made necessary coding modifications to its subroutines in 

order to perform the customized vision tracking analyses I was interested in. ‘Heat-maps’ 

in particular was one of the functions that was looked at as a method of visually representing 

eye-tracking results. Heat maps are used to emphasize the strength of fixations by 

combining the number of fixations and the durations of those fixations (Spakov et al., 

2007). The algorithm make use of different color schemes that generally demonstrate the 

areas on a screen where the subject’s visual attention was heightened with respect to other 

areas. I also developed a novel vision tracking functionality called the Attraction Index 
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(AI). The AI is a number, calculated in order to compare the visual attention of two or more 

fixation points. For the purpose of current study, the (AI) identified and quantified the 

strength of eye-fixations by taking three main factors into account; number of fixations 

(number), duration of each fixation (duration), and the relative distance (distance) of each 

fixation from one of the three handles of the suitcase. AI may provide an excellent indicator 

of the pre-movement visual attention. 

4.5.2 Kinetic Analysis Software 

 Traditional kinetic algorithms were programmed and applied to the force platform 

data to analyze full body and segmental biomechanics. Three dimensional force and 

moment data collected from the force platforms were used to calculate the antero-posterior 

center of pressure displacements in x, y and combined directions (CoPx, CoPy, CoPr). 

These measures are often used to derive and isolate external forces acting on different body 

segments. At the same time, I explored a novel kinetic analysis method through Matlab 

algorithm development, where the goal was to model MMH biomechanical movements 

into mathematical models using a systems engineering approach. In the system 

identification paradigm, the input signal was the normalized affordance distance in the form 

of a step function. Participants selected these distances as their safest horizontal affordance 

distance prior to the handling task. The output was the calculated CoPr displacement values 

of individuals during the handling period. Once the input and the output signals were 

defined, we then used Matlab’s system identification toolbox to model the lifting 

behaviours in the form of a 5th order transfer function. By doing so, I expected to isolate 

some of the finer kinetic details that may become visible, and help us in understanding the 

biomechanics of handling tasks comprehensively.   
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4.5.3 Synthesis 

Numerical analysis software such as Matlab, allows the researchers to make use of 

numerous built-in functionalities along with programing capabilities to develop novel 

analytical models from ground up that could ultimately result in comprehensive data 

analyses. Furthermore, matlab’s graphical user interface functionalities make it relatively 

easier to append multiple algorithms into one program, allowing the luxury to continuously 

upgrade the analysis software by bringing in new instruments. Therefore, the back-end code 

along with the graphical user interface act as the ‘toolbox’ that complements the hardware 

by creating a virtual space for multiple standalone bio-instruments to exist as part of a larger 

system.  

The current thesis’ attempt to expand the perception-action paradigm in 

occupational tasks for the purpose of injury prevention and modifying worker behaviors is 

a timely subject. As the bio-instrumentation technology is constantly on the rise, the need 

to use such instruments collectively at the work place in order to understand perceptions 

and actions during everyday tasks is quite relevant. Employers are constantly exploring 

ways to strengthen their workforce by preventing injuries and promoting safe work 

procedures. Thus, seeking help from the biomechanists and ergonomists who conduct 

research on the physical and perceptual behavioural implications at workplaces may be the 

best possible method of addressing such issues. The current thesis used three different bio-

instruments that are commonly found in biomechanical laboratories, and combined them 

with custom Matlab software for analysis in a simulated experimental space where we were 

in charge of controlling the independent variables that needed attention. In the real world 

however, the closely linked perception-action relationship is a difficult challenge to tackle 
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in such a short term with limited resources, though the work completed in this thesis does 

provide certain solutions that may prove useful to the ergonomic community going forward.  

4.6 Limitations 

One of the main challenges ergonomists have is the subjective nature of assessing 

occupational tasks. As a result, at times it has proven unsuccessful trying to quantify 

physical and mental stressors that are associated with such tasks. Therefore, a set of bio-

instruments capable of representing an “acceptable limit” in ergonomic activities would 

prove valuable to researchers trying to understand the worker perception of tasks involving 

occupational stressors. As a combined unit, the hardware and software from my 

‘psychophysics toolbox’ offer such capabilities with motion capture and force platforms 

providing the biomechanical and physiological measurements that define acceptable limits 

for work stressors, while vision tracking provides insight into individuals’ pre-action 

strategies and their visuospatial awareness. The software component compliments the 

hardware by signal processing, data analysing, and visually representing results to the 

readers.   

Our experimental work provide evidence supporting the perception-action theory 

where certain actions could be influenced by changing preceding perceptions. It was also 

observed that ergonomic actions could be moderated with the help of implicit visual cueing 

as found by previous researchers (Posner, 1980). However, a number of challenges do arise 

when we attempt to transfer our experimental work into real world applications. First and 

foremost, it is a quite difficult task to simulate an exact replica of workplace like 

environment in a biomechanical lab. A typical work shift of a MMH worker runs for eight 

hours with a total of one hour break time in between. This would imply that the worker 
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may have to perform their handling tasks non-stop for couple of hours at times. However, 

when we try to simulate a work task in the lab, the task is typically repeated only for 3 to 5 

trials with considerable rest time in between. Thus, it does not replicate the same fast pace 

work environment with added physical and mental stressors that could potentially induce 

different workable actions from individuals in a lab compared to the actual workplace. 

Secondly, the bio-instrumentation setups used for biomechanical testing are not mobile in 

most cases, and requires considerable amount of time and manpower to set up and calibrate, 

which could potentially prevent employers from seeking help from the ergonomic 

researchers. There is also a case to be made on how feasible it is to have bio-instrumentation 

setups at workplaces measuring individuals’ actions while not disturbing the normal 

workplace environmental equilibrium. Therefore, transferring experimental work from a 

laboratory to an actual workplace needs to be carefully monitored and may only be done 

with appropriate collaboration of employers and ergonomic researchers.  

4.7 Future Directions 

Going forward, our work in bio-instrumentation and studying human perception 

and actions for work related tasks could play a huge role in identifying unsafe work 

practices and minimizing potential ergonomic injuries. As the bio-technology industry 

make further developments, more and more novel bio-instruments and systems are being 

introduced to the scientific community. As mentioned earlier, the main challenge the 

researchers face today is to figure out how to transfer the experimental setups from the 

laboratory to an actual workplace, and that is where newer technologies may provide more 

appealing opportunities to the employers to implement such human measurement units at 

workstations. Marker-less motion capture systems per instance may prove to be a more cost 
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and time effective method to implement at workplaces, where the workers would be free to 

continue their normal work routines without much disturbance from the testing equipment. 

Virtual reality devices in the form of safety goggles and head shields are being implemented 

in workplaces to modify worker visual attention patterns thus promoting safe visuospatial 

awareness among workers. In the current thesis, we only used 3 bio-instruments, but going 

forward we could include more relevant bio-instruments to make the whole system work 

more efficiently. Heart rate monitors and inertial measurement units are two such 

instruments that would provide the researchers a lot more information regarding the 

workers perceptual and action related behaviours.  

Overall, the work that has been done in this thesis is may be important to the 

ergonomic community, and has multiple applications to other related industries.  Further 

research and resources are required to expand and fine-tune the psychophysics toolbox in 

order to transfer its effectiveness to the real world applications.  
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Appendix A 

 

Scenario 2: Baggage transferring environment (Script) 

You are a baggage handler at an international airport, a position you’ve held for the past 

24 months without promotion or increased wage. Your job is transferring suitcases 

horizontally from the baggage train in front of you to a baggage conveyor on your left. 

This task is performed 5 times per minute for an 8 hour shift, which would include 7 

hours of work and 1chour of breaks. Your specific assigned flights are weekend charters 

to sunny San Diego, so your average suitcase handled has a mass equal to the items an 

adult would bring on a weekend away at a resort. 

When I say ‘LOOK’, your target suitcase will be revealed. We want you to look at the 

suitcase and find where you are going to grasp it to handle it for the next suitcase transfer 

of your work shift. Only look, do not reach, until you hear the second command, which 

will be ‘REACH’. When you hear reach, we want you to reach out and grasp the suitcase 

so you are ready to handle it for the next suitcase transfer of your work shift. Do not 

move the suitcase, merely grasp and hold until you hear the word ‘STOP’. 

READY? 

<Start eye tracker now> 

<3 seconds> 

LOOK 

<10 seconds> 

REACH 

<10 seconds> 

STOP. 
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Appendix B 

 

Vision Tracking Analysis Code 
 

%This function converts eye tracking data (excel/csv) files into txt files 

%so that they can be used with the software 'eyeMMV'. It also filters out 

%the noise (caused by blinking) so that the resulting text file can be used 

%straightaway to analyze using 'eyeMMV' 

 

function text_converter (data) 

 

%save the input file name 

[~,name,~] = fileparts(data); 

fname = [name,'.txt']; 

 

%read in the excel file 

[rawData]  = xlsread(data); 

 

%eyeMMV only requires three parameters; x-cordinate, y-cordinate and the time 

%(frame number in our case) to analyse eye tracking data. So we make three 

%separate column vectors from the input excel file 

xcord = rawData(:,7); 

ycord = rawData(:,8); 

time  = rawData(:,1); 

 

%correction for data files containing abnormal coordinate values.  

%for k = 1:length(ycord) 

%    ycord(k)= ycord(k)+1999; 

%end 

 

%correct all the abnormal cordinate values to -2000. i.e: cordinates should 

%be between 768x576 

 

[m,~]=size(rawData); 

 

for i = 1:1:m 

    if xcord(i,1) >768 

        xcord(i,1) = -2000; 

    elseif ycord(i,1)> 576 

        ycord(i,1) = -2000; 

    end 

end 

%combine the three column vectors to make a matrix 

c = [xcord ycord time]; 

 

%now to remove the blinking noise. Our eyetracker displays bliniking noise 

%as (-2000). So we remove any x or y cordinate value that is less than 

%zero. 

 

%step one: create an identical matrix but with the absolute values in it 

a = abs(c); 
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%step two: compare the two matrices and then if the values are different, we 

%assign a zero to that particular location of the value 

[~,loc]= ismember(a,c,'rows'); 

%step three: get rid of all the locations (rows) containing the zeroes 

%(that corresponds to -2000 value) 

b = c(nonzeros(loc),:); 

 

%take the transpose matrix, required for fprintf function 

d = b'; 

 

%write the resulting matrix to a text file 

%dlmwrite('.txt',b,'delimiter','\t','precision',4); 

 

fileID =  fopen (fname,'w'); 

fprintf(fileID,'%6.2f %8.2f %6.0f\r\n',d); 

fclose(fileID); 

 

end 

 

……………………………………………………………………………………………………… 

 

%Combine_fixations function 

%file works with 'fixation_plots.m' file where it calculates the attraction 

%index of different handling techniques. 

function combine_fixations(fix_list,ref_list,t1,m1,m2,m3) 

 

m = 1; 

[x1,y1,x2,y2,x3,y3,a1,a2,a3,delta_a1,delta_a2,delta_a3] = 

fixation_plots(fix_list,ref_list,t1,m,m1); 

% fprintf ('The Weighted Attraction of Positive Centre is %d \n', a1); 

% fprintf ('The Weighted Attraction of Positive Right is %d \n', a2); 

% fprintf ('The Weighted Attraction of Positive Left is %d \n', a3); 

positive = [a3 a1 a2]; 

delta_positive = [delta_a3 delta_a1 delta_a2]; 

 

figure 

plot(x1,y1,'bo') 

hold on 

plot(x2,y2,'bd'); 

hold on 

plot(x3,y3,'bs'); 

hold on 

 

[x1,y1,x2,y2,x3,y3,a1,a2,a3] = fixation_plots(fix_list,ref_list,t1,m1+1,m2); 

% fprintf ('The Weighted Attraction of Negative Centre is %d \n', a1); 

% fprintf ('The Weighted Attraction of Negative Right is %d \n', a2); 

% fprintf ('The Weighted Attraction of Negative Left is %d \n', a3); 

negative = [a3 a1 a2]; 

delta_negative = [delta_a3 delta_a1 delta_a2]; 

 

plot(x1,y1,'ro') 



108 
 

hold on 

plot(x2,y2,'rd'); 

hold on 

plot(x3,y3,'rs'); 

hold on 

 

[x1,y1,x2,y2,x3,y3,a1,a2,a3] = fixation_plots(fix_list,ref_list,t1,m2+1,m3); 

% fprintf ('The Weighted Attraction of Neutral Centre is %d \n', a1); 

% fprintf ('The Weighted Attraction of Neutral Right is %d \n', a2); 

% fprintf ('The Weighted Attraction of Neutral Left is %d \n', a3); 

neutral = [a3 a1 a2]; 

delta_neutral = [delta_a3 delta_a1 delta_a2]; 

 

plot(x1,y1,'go') 

hold on 

plot(x2,y2,'gd'); 

hold on 

plot(x3,y3,'gs'); 

hold on 

 

plot([-160 160],[0 0],'k','LineWidth',1.5); 

hold on 

plot ([0 0],[-40 40],'k','LineWidth',1.5); 

hold on 

plot ([-110 -110],[-40 40],'k','LineWidth',1.5); 

hold on 

plot ([110 110], [-40 40],'k','LineWidth',1.5); 

 

% text(0,0,'\leftarrow Front Handle'); 

 

title (sprintf('Fixations with respect to the three Handle Locations (Filter Radius = %d 

pixels)',t1),'FontSize',20); 

xlabel(sprintf('Normalized Horizontal Pixel Coordinate \n (Percentage 

Values)'),'Color','k','FontSize',15); 

ylabel(sprintf('Normalized Vertical Pixel Coordinate \n (Percentage 

Values)'),'Color','k','FontSize',15); 

xlim([-160 160]); 

ylim([-40 40]); 

%axis equal; 

set (gca,'XGrid','on','YGrid','on'); 

set (gca,'Xtick',-160:10:160); 

 

set (gca,'XtickLabel',-50:10:50); 

legend ('Positive - Centre','Positive - Right','Positive - Left','Negative - Centre','Negative - 

Right','Negative - Left','Neutral - Centre','Neutral - Right','Neutral - Left'); 

% v = get(h,'title'); 

% set(v,'string','Fixations'); 

 

disp([positive; negative; neutral]); 

y = [positive;negative;neutral]; 

delta_y_upper = [delta_positive;delta_negative;delta_neutral]; 
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errorbar_lower=zeros(size(y)); 

 

% set (gca,'YGrid','on'); 

 

%errorbar_groups(y,errorbar_lower,delta_y_upper); 

figure  

bar (y) 

set (gca, 'YGrid','on'); 

%set (gcf,'XTck',1:3); 

set (gca,'XTickLabel',{'Positive','Negative','Neutral'}); 

legend ('Left Handle','Front Handle','Right Handle'); 

% title ('Attraction Index of the Suitcase Handles','FontSize',20); 

xlabel ('Motivation','FontSize',15); 

ylabel ('Attraction Index','FontSize',15); 

 

end 

……………………………………………………………………………………………………… 

 

%Function fixation_plots compares a set of fixation points with a set of 

%reference points and plot them on a normalized cartesian plane 

function 

[x_cen_diff,y_cen_diff,x_right_diff,y_right_diff,x_left_diff,y_left_diff,a1,a2,a3,delta_a1,delta_a2

,delta_a3]=fixation_plots(fixation_list,coordinate_list,t1,n1,n2) 

 

%input files, reference coordinate list and the fixation coordinate list 

data = load(fixation_list); 

ref_points = load(coordinate_list); 

 

%separate fixation points into x and y coordinates 

x_data = data(:,1); 

y_data = data(:,2); 

duration = data(:,7); 

 

%separate reference points into x y coordinates and also group into three 

%sections; centre, right and left (corresponds to the three handling points) 

x_centre = ref_points(:,1); 

y_centre = ref_points(:,2); 

x_right = ref_points(:,3); 

y_right = ref_points(:,4); 

x_left = ref_points(:,5); 

y_left = ref_points(:,6); 

 

%initialize matrices and arrays to be used in calculating the difference 

%between the reference points and the fixation points 

table5 = zeros(5); 

table2 = zeros(5); 

table1 = zeros(5); 

x_left_diff = []; 

y_left_diff = []; 

x_right_diff = []; 

y_right_diff = []; 
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x_cen_diff = []; 

y_cen_diff = []; 

 

r_cen_diff = 0; 

r_right_diff = 0; 

r_left_diff = 0; 

 

a3 = []; 

r_left_inv = []; 

dur_left = []; 

dur_right = []; 

dur_cen = []; 

 

%n1 and n2 represents the first and the last data set to be considered from 

%the complete fixation and reference point list. Note that all three 

%scenarios' data have been input as a single file but are in the order of 

%positive, negative and neutral. So we first assess the positive set of 

%data, so n1 and n2 tells the program up until which data point each 

%scenario runs 

for i = n1:n2 

    %calculate distance between the reference point and the fixation point 

    %using the function distance2p for centre, right and left coordinates 

    d1 = distance2p (x_data(i),y_data(i),x_centre(i),y_centre(i)); 

    d2 = distance2p (x_data(i),y_data(i),x_right(i),y_right(i)); 

    d3 = distance2p (x_data(i),y_data(i),x_left(i),y_left(i)); 

     

    %check whether the distances calculated above are within the user  

    %required range. t1 is the radius distance to be defined by the user to 

    %filter out any non-required fixation points 

    if d1<t1  

        table1(i,:,:,:,:) = [x_data(i),y_data(i),x_centre(i),y_centre(i),duration(i)]; 

    else if d2<t1 

            table2(i,:,:,:,:) = [x_data(i),y_data(i),x_right(i),y_right(i),duration(i)]; 

        else if d3<t1 

                table5(i,:,:,:,:) = [x_data(i),y_data(i),x_left(i),y_left(i),duration(i)]; 

            end 

        end 

    end 

end 

 

%remove all rows containg all zeros. 'any' function checks whether the 

%table 1 has zeros in each row (2 represents search by row) and produces a 

%column vector containing 1's and 0's for corresponding values (0 for zeros 

%and 1's for other values). ~ means logical NOT 

table1(~any(table1,2),:) = []; 

table2(~any(table2,2),:) = []; 

table5(~any(table5,2),:) = []; 

 

%length of each data set; table 1 --> central coordinates; table 2 --> 

%right coordinates, table 3 -->left coordinates 

p = length(table1(:,1)); 
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q = length(table2(:,1)); 

r = length(table5(:,1)); 

 

% disp(table2); 

%fprintf ('number of left neutral fixations is %d\n',r); 

 

for i=1:p 

    x_cen_diff(i)= (table1(i,3) - table1(i,1))/768*100; 

    y_cen_diff(i)= (table1(i,4) - table1(i,2))/768*100; 

    r_cen_diff(i)= sqrt(x_cen_diff(i).^2 + y_cen_diff(i).^2); 

    %r_cen_inv(i) = 1/r_cen_diff(i); 

    dur_cen(i) = table1(i,5); 

end 

% x_cen_diff = x_cen_diff/768 * 100; 

% y_cen_diff = y_cen_diff/576 * 100; 

 

 

% disp([x_cen_diff' y_cen_diff' r_cen_diff']); 

%a1 = mean(r_cen_inv); 

a1 = p * mean(dur_cen)/sum(r_cen_diff); 

delta_a1 = sqrt((mean(dur_cen)^2 + p^2 + 

(mean(dur_cen)^2+p^2)/sum(r_cen_diff)^2)/sum(r_cen_diff)^2); 

% fprintf ('weighted attraction is %d \n',attraction); 

 

for i=1:q 

    x_right_diff(i)= ((table2(i,3)- table2(i,1))/768 * 100); 

    y_right_diff(i)= (table2(i,4) - table2(i,2))/576 * 100; 

    r_right_diff(i)= sqrt(x_right_diff(i).^2 + y_right_diff(i).^2); 

    %r_right_inv(i) = 1/r_right_diff(i); 

    dur_right(i) = table2(i,5); 

end 

x_right_diff = x_right_diff + 110; 

% y_right_diff = (y_right_diff/576 * 100); 

%a2 = mean(r_right_inv); 

a2 = q * mean(dur_right)/sum(r_right_diff); 

delta_a2 = sqrt((mean(dur_right)^2 + p^2 + 

(mean(dur_right)^2+p^2)/sum(r_right_diff)^2)/sum(r_right_diff)^2); 

 

for i=1:r 

    x_left_diff(i)= ((table5(i,3) - table5(i,1))/768 * 100); 

    y_left_diff(i)= (table5(i,4) - table5(i,2))/576 * 100; 

    r_left_diff(i)= sqrt(x_left_diff(i).^2 + y_left_diff(i).^2); 

    %r_left_inv(i) = 1/r_left_diff(i); 

    dur_left(i) = table5(i,5); 

end 

 

 

%disp ([r_cen_diff' r_right_diff']); 

x_left_diff = x_left_diff - 110; 

% y_left_diff = (y_left_diff/576 * 100); 
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%a3 = mean(r_left_inv); 

a3 = r*mean(dur_left)/sum(r_left_diff); 

delta_a3 = sqrt((mean(dur_left)^2 + p^2 + 

(mean(dur_left)^2+p^2)/sum(r_left_diff)^2)/sum(r_left_diff)^2); 

% plot(x_cen_diff,y_cen_diff,'b*') 

% hold on 

% plot(x_right_diff,y_right_diff,'r+'); 

% hold on 

% plot(x_left_diff,y_left_diff,'ys'); 

% hold on 

 

 

end 

     

………………………………………………………………………………………………………

……………………………………………………………………………………………………… 
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Appendix C 

 

Kinetic Analysis Code 
 

function [startVal, endVal, normAfford, Ts] = FPonsetLookup (TLA) 

 

rootname = 'C:\Users\Harsha\Documents\Mellina-lifting\Harsha-Melina - Lifting 2016\'; 

fname = dir(fullfile(rootname, '*FP_Data - onsets*.xlsx')); 

 

datafile = fname.name; 

s = importdata([rootname datafile]); 

 

TLAindex = find(strcmp(TLA, s.textdata.Sheet1(:,1))); 

startVal = s.data.Sheet1(TLAindex-1, 1); 

endVal = s.data.Sheet1(TLAindex-1, 2); 

normAfford = s.data.Sheet1(TLAindex-1,7); 

Ts = s.data.Sheet1(TLAindex-1,9); 

 

End 

…………………………………………………………………………………………………. 

 

function affordance = AffordanceLookUp (TLA) 

 

rootname = 'C:\Users\Harsha\Documents\Mellina-lifting\Harsha-Melina - Lifting 2016\'; 

fname = dir(fullfile(rootname, '*participantsAffordance*.xlsx')); 

 

datafile = fname.name; 

s = importdata([rootname datafile]); 

%headers = s.textdata(1,:); 

 

TLAindex = find(strcmp(TLA, s.textdata.Sheet1(:,1))); 

affordance = s.data.Sheet1(TLAindex-1,7); 

 

 

end 

………………………………………………………………………………………………………

…………………………………………… 

 

clc 

clear all 

close all 

 

rootname = ['C:\Users\Harsha\Documents\Mellina-lifting\Harsha-Melina - Lifting 2016\']; 

 

fnames = dir(fullfile(rootname, '*CoP*.txt')); 

finalArray = zeros(length(fnames), 13); 

nameArray = cell(length(fnames),1); 

 

for m = 1:length(fnames) 

close all     
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dataFile = fnames(m).name; 

CoPdata = importdata([rootname dataFile]); 

CoPr = CoPdata(:,3); 

 

TLA = fnames(m).name(1:5); 

nameArray(m,1) = {TLA}; 

[startVal, endVal, normAfford, Ts] = FPonsetLookup(TLA); 

 

absLift = CoPr(startVal:endVal); 

 

targetSize = [101 1]; 

rbLift = imresize(absLift, targetSize); 

 

plot(absLift, 'r'); 

figure; 

plot(rbLift, 'g'); 

 

t = 0:1:100; 

td = 1; 

input = (normAfford*heaviside(t-td))'; 

 

results = iddata(rbLift, input, Ts); 

sys = tfest(results, 5, 'Ts', Ts); 

 

finalArray(m,:) = [sys.num sys.den sys.Ts sys.Report.Fit.FitPercent]; 

 

end 

 

% prompt = {'Please enter the file name:', 'Please enter the starting value:', 'Please enter the end 

value:', 'Please enter the normalized affordance value:'}; 

% dlg_title = 'Input'; 

% num_lines = 1; 

% defaultans = {'ASL_1CoP.txt','20','300','0.200'}; 

% answer = inputdlg(prompt,dlg_title,num_lines,defaultans); 

%  

% data = answer{1,1}; 

% G = str2double(answer{2,1}); 

% L = str2double(answer{3,1}); 

% affordance = str2double(answer{4,1}); 

%  

% CoP = load(data); 

% CoPr = CoP(:,3); 

%  

%  

% % G = 138; 

% % L = 346; 

% abs_lift = CoPr(G:L); 

% rb_lift = interpft(abs_lift,101); 

%  

%  

% % figure 
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% % plot(abs_lift); 

% figure 

% plot(rb_lift); 

%  

%  

% stepFunc = [zeros(1,1); affordance*ones(100,1)]; 

% %input function for system analysis 

% inputFunc = stepFunc; 

%  

% outputFunc = rb_lift; 

%  

% assignin('base','input',inputFunc); 

% assignin('base','output',outputFunc); 

………………………………………………………………………………………………… 

 

%This function calculates the start onset (G) and end onset (L), for 

%individuals using the 'Load FP' data, specifically Mx data. Mx data is 

%loaded from CalibrationEqns function and k is the number of indecies (6060)  

function [G, L] = StartOnset (~,~) 

 

k = 1; 

 

while k ~= 0 

 

prompt = {'Please enter the Calibrated file name:'}; 

dlg_title = 'Input'; 

num_lines = 1; 

defaultans = {'ASL_1Calibrated.txt'}; 

answer = inputdlg(prompt,dlg_title,num_lines,defaultans); 

 

%load the text data file 

data = answer{1,1}; 

values = load(data); 

Mx = values(:,4); 

n = k; 

 

% Build a low-pass filter 

collection_frequency = 600; % Hz 

[B A] = butter(2, 20 / collection_frequency / 2, 'low');    % 2nd order, 10 Hz 

 

% Dual-pass filter the data (becomes a 4th order filter) 

Mx_filtered = filtfilt(B, A, Mx); % this will return all NaNs if any value is NaN 

Mx_edit = Mx_filtered; 

Mx_edit2 = Mx_filtered; 

Mx_edit3 = Mx_filtered; 

 

% Use the first 100 frams (1000 ms) as the (hopefully) quiet baseline 

Mx_mean = mean(Mx_filtered(1:100)); 

Mx_std = std(Mx_filtered(1:100)); 
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% Find the first time each channel goes outside +/- 5 standard deviations 

% (i.e. first fluctuation) 

Mx_onset = min([ find(Mx_filtered > Mx_mean + 5*Mx_std, 1) find(Mx_filtered < Mx_mean - 

5*Mx_std, 1) ]); 

G = Mx_onset 

 

Remove1 = (1:Mx_onset)'; 

Mx_edit(Remove1) = []; %indecies upto first onset value removed; Length of data array is 

changed 

 

%Find the second fluctuation point (value above +5 standard deviations) 

next_onset = min(find(Mx_edit > Mx_mean + 5*Mx_std, 1)); 

%second onset value is equal to the first onset value plus the second 

%fluctuating position. This is the Grasp onset (where the subjects touch the suitcase for the first 

time) 

Mx_onset2 = next_onset + Mx_onset; 

L = Mx_onset2 

 

Remove2 = (1:Mx_onset2)'; 

%indecies upto second onset point is removed; Length of the data array (i.e. Mx_edit) is 

%changed again 

Mx_edit2(Remove2) = []; 

 

%Find the third fluctuation point (value less than -5 standard deviations) 

third_onset = min(find(Mx_edit2 < Mx_mean - 5*Mx_std, 1)); 

%Thrid onset is the sum of previous two onset INDECIES and the last 

%fluctuation indecies (due to changing data array length) 

%Mx_onset3 = third_onset + Mx_onset2 + Mx_onset; 

Mx_onset3 = third_onset + Mx_onset2; 

 

Remove3 = (1:Mx_onset3)'; 

%Indecies upto third onset point is removed: Length of the data array (i.e. 

%Mx_edit) is changed again 

Mx_edit3(Remove3) = []; 

 

%Find the fourth fluctuating point (i.e. value greater than +5 standard deviations) 

fourth_onset = min(find(Mx_edit3 > Mx_mean + 5*Mx_std, 1)); 

%Final onset point is the sum of all three previous onset INDECIES and the 

%index of the fourth fluctuating point 

%End_onset = fourth_onset + third_onset + Mx_onset2 + Mx_onset 

End_onset = fourth_onset + Mx_onset3; 

 

 

figure; 

%subplot(2,1,1), hold on, ylabel('Fx2'); 

%subplot(2,1,2),  

hold on, ylabel('Mx (m)'); 

xlabel('Time (ms)'); 

title('Grasp & Lift Onsets'); 

%subplot(2,1,1), plot(Fx2_Fy2(:,1), 'c'); 

%subplot(2,1,2),  
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plot(Mx, 'm'); 

%subplot(2,1,1), plot(Fx2_Fy2_filtered(:,1), 'b'); 

%subplot(2,1,2), 

plot(Mx_filtered, 'r'); 

%subplot(2,1,1), hline(Fx2_mean, 'k'); 

%subplot(2,1,2),  

hline(Mx_mean, 'k'); 

%subplot(2,1,1), hline(Fx2_mean+5*Fx2_std, '--k'); 

%subplot(2,1,1), hline(Fx2_mean-5*Fx2_std, '--k'); 

%subplot(2,1,2),  

hline(Mx_mean+5*Mx_std, '--k'); 

%subplot(2,1,2),  

hline(Mx_mean-5*Mx_std, '--k'); 

%subplot(2,1,1), vline(Fx2_onset, 'g'); 

%subplot(2,1,2),  

vline(Mx_onset, 'g'); 

vline(Mx_onset2, 'm'); 

vline(Mx_onset3, 'b'); 

vline(End_onset, 'g'); 

 

%return the two onset value indecies 

% G = Mx_onset; 

% L = LiftOnset + Mx_onset; 

 

% Plot the two onset points over the Fy2 data 

% figure; 

% %subplot(2,1,1), hold on, ylabel('Fx2'); 

% %subplot(2,1,2),  

% hold on, ylabel('Fy2 (m)'); 

% xlabel('Time (ms)'); 

% title('Grasp & Lift Onsets'); 

% %subplot(2,1,1), plot(Fx2_Fy2(:,1), 'c'); 

% %subplot(2,1,2),  

% plot(Mx, 'm'); 

% %subplot(2,1,1), plot(Fx2_Fy2_filtered(:,1), 'b'); 

% %subplot(2,1,2), 

% plot(Mx_filtered, 'r'); 

% %subplot(2,1,1), hline(Fx2_mean, 'k'); 

% %subplot(2,1,2),  

% hline(Mx_mean, 'k'); 

% %subplot(2,1,1), hline(Fx2_mean+5*Fx2_std, '--k'); 

% %subplot(2,1,1), hline(Fx2_mean-5*Fx2_std, '--k'); 

% %subplot(2,1,2),  

% hline(Mx_mean+5*Mx_std, '--k'); 

% %subplot(2,1,2),  

% hline(Mx_mean-5*Mx_std, '--k'); 

% %subplot(2,1,1), vline(Fx2_onset, 'g'); 

% %subplot(2,1,2),  

% vline(Mx_onset, 'g'); 

% vline(LiftOnset+Mx_onset, 'y'); 

% %vline(fmax_index,'b'); 
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prompt2 = {'Enter 0 to exit, 1 to continue:'}; 

dlg_title2 = 'Exit Info'; 

num_lines2 = 1; 

defaultans2 = {'1'}; 

answer2 = inputdlg(prompt2,dlg_title2,num_lines2,defaultans2); 

 

k = str2double(answer2{1,1}); 

 

end 

 

 

end 

……………………………………………………………………………………………………… 

 

function [inputFunc, rbTotal2] = CalibrateSignals (~,~) 

 

k = 1; 

 

while k ~= 0 

 

prompt = {'Please enter the file name:', 'Please enter the affordance distance:'}; 

dlg_title = 'Input'; 

num_lines = 1; 

defaultans = {'ASL_1.txt','20'}; 

answer = inputdlg(prompt,dlg_title,num_lines,defaultans); 

 

%data = input(prompt,'s'); 

data = answer{1,1}; 

 

%save the input file name 

[~,name,~] = fileparts(data); 

fname = [name,'Calibrated.txt']; 

 

fname2 = [name,'CoP.txt']; 

 

%load data from text file 

values = load(data); 

 

%break into separate arrays; changed column numbers according to the second 

%experiments' data sets, i.e. columns 3 to 8 and only 1 forceplate (Sep 22,2016) 

Fx_1 = values(:,3); 

Fy_1 = values (:,4); 

Fz_1 = values(:,5); 

Mx_1 = values(:,6); 

My_1 = values(:,7); 

Mz_1 = values(:,8); 

% Fx_2 = values(:,7); 

% Fy_2 = values(:,8); 

 

n = length(Fx_1); 
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%matirx A represents the force plate #1 data 

A = [Fx_1 Fy_1 Fz_1 Mx_1 My_1 Mz_1]; 

%divide by 5 to get rid of the external gain 

A_noGain = A/5; 

 

%calibration matrix for force plate #1 

CaliMatrix = [1260.6 28.1 2.2 4.8 -6.8 5.1; -50.7 1254.0 -2.3 -2.1 -10.6 4.7; 3.5 -3.0 1881.4 8.2 -

5.7 9.7; 2.9 -55.7 -2.3 583.8 -0.3 0.8; 53.8 2.9 -0.4 -1.3 408.1 0.8; 2.6 -3.6 -3.3 -0.3 -0.6 291.4]; 

%take transpose for matrix multiplication purposes 

B = CaliMatrix.'; 

 

%matrix multiplication, Matrix C is the resultant (calibrated resultant) matrix 

for i=1:n 

    C = A_noGain*B; 

end 

%take transpose of C to be used for fileID function 

D = C'; 

 

%write the matrix D into a .txt file 

fileID =  fopen (fname,'w'); 

fprintf(fileID,'%8.5f %8.5f %8.5f %8.5f %8.5f %8.5f\r\n',D); 

fclose(fileID); 

 

% Build a low-pass filter 

collection_frequency = 600; % Hz 

[B, A] = butter(2, 20 / collection_frequency / 2, 'low');    % 2nd order, 10 Hz 

 

C_filtered = zeros(6060,6); 

for k = 1:6 

    % Dual-pass filter the data (becomes a 4th order filter) 

    C_filtered(:,k) = filtfilt(B, A, C(:,k)); % this will return all NaNs if any value is NaN 

end 

 

%COPx (centre of pressure in x-direction) = My/Fz and writting to txt file 

COPx = -1*( C_filtered(:,5)./C_filtered(:,3)); 

COPy = (C_filtered(:,4)./C_filtered(:,3)); 

COPr = sqrt(COPx.^2 + COPy.^2); 

 

COP_all = [COPx COPy COPr]; 

E = COP_all'; 

 

fileID2 = fopen(fname2, 'w'); 

fprintf(fileID2, '%8.5f %8.5f %8.5f\r\n', E); 

fclose(fileID2); 

 

prompt2 = {'Enter 0 to exit, 1 to continue:'}; 

dlg_title2 = 'Exit Info'; 

num_lines2 = 1; 

defaultans2 = {'1'}; 

answer2 = inputdlg(prompt2,dlg_title2,num_lines2,defaultans2); 

 



120 
 

k = str2double(answer2{1,1}); 

end 

 

end 

……………………………………………………………………………………………………… 

 

%this function takes in the Fz data from the stance FP and finds the 'local 

%minimum' value just before it goes down to the baseline value. 'Local 

%minimum' represents the point when the participant's force in Z direction 

%is in free-flow which indicates the end of the lift 

function [EoL] = EndofLift (data) 

 

%load data from text file 

values = load(data); 

 

%break into separate arrays 

Fx_1 = values(:,1); 

Fy_1 = values (:,2); 

Fz_1 = values(:,3); 

Mx_1 = values(:,4); 

My_1 = values(:,5); 

Mz_1 = values(:,6); 

Fx_2 = values(:,7); 

Fy_2 = values(:,8); 

 

n = length(Fx_1); 

%matirx A represents the force plate #1 data 

A = [Fx_1 Fy_1 Fz_1 Mx_1 My_1 Mz_1]; 

%divide by 5 to get rid of the external gain 

A_noGain = A/5; 

 

%calibration matrix for force plate #1 

CaliMatrix = [1260.6 28.1 2.2 4.8 -6.8 5.1; -50.7 1254.0 -2.3 -2.1 -10.6 4.7; 3.5 -3.0 1881.4 8.2 -

5.7 9.7; 2.9 -55.7 -2.3 583.8 -0.3 0.8; 53.8 2.9 -0.4 -1.3 408.1 0.8; 2.6 -3.6 -3.3 -0.3 -0.6 291.4]; 

%take transpose for matrix multiplication purposes 

B = CaliMatrix.'; 

 

%matrix multiplication, Matrix C is the resultant (calibrated resultant) matrix 

for i=1:n 

    C = A_noGain*B; 

end 

%take transpose of C to be used for fileID function 

D = C'; 

 

[Gon , Lon] = GraspOnset (Fy_2, n); 

 

%call function Fz_min_local 

Fz_min_local = FzMinimum (C(:,3), Lon); 

EoL = Fz_min_local; 

 

display(Fz_min_local); 
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end 

………………………………………………………………………………………………............. 

 


