Supplementary data for the article:

Konstantinović, J.; Kiris, E.; Kota, K. P.; Kugelman-Tonos, J.; Videnović, M.; Cazares, L. H.; Terzić Jovanović, N.; Verbić, T. Ž.; Andjelković, B.; Duplantier, A. J.; et al. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. Journal of Medicinal Chemistry 2018, 61 (4), 1595-1608. https://doi.org/10.1021/acs.jmedchem.7b01710

Supporting Information - I

New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Post-intoxication Model

Jelena Konstantinović", Erkan Kiris ${ }^{¥}$, Krishna P. Kota ${ }^{\dagger}$, Johanny Kugelman-Tonos ${ }^{\dagger}$, Milica Videnović\#, Lisa H. Cazares ${ }^{\dagger}$, Nataša Terzić Jovanovičㅁ, Tatjana Ž. Verbić ${ }^{\text {T, }}$, Boban
Andjelkovićl, Allen J. Duplantiert, Sina Bavari** and Bogdan A. Šolaja* ${ }^{* l / s}$
${ }^{\text {I/ }}$ University of Belgrade, Faculty of Chemistry, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
${ }^{¥}$ Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
${ }^{\dagger}$ Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
\#Faculty of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia
${ }^{\nabla}$ University of Belgrade, Institute of Chemistry, Technology, and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
${ }^{\$}$ United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
${ }^{\text {§ Serbian Academy of Sciences and Arts, Knez Mihailova 35, } 11158 \text { Belgrade, Serbia }}$

Table of contents

Inhibitory activities against BoNT/A LC and holotoxin in proteolytic and cell-based S3-S16
assays - Table S1-S6, Figure S1 and S2
Fluorescence and UV-Vis spectra of binding 16 to HSA and AGP - Figure S3-S10 S17-S18
Ligand interaction diagrams - Figure S11-S14 S19-S21
Docking scores for $\mathbf{1 6}$ and $\mathbf{2 4}$ - Table S7 S22
Docking-in vitro inhibitory activity correlations - Figure S15 and S16 S22-S23
Chemistry S24-S93

Table S1. Inhibitory activities against BoNT/A LC and holotoxin in proteolytic and cell-based assay

Compound	In vitro proteolytic assay \% inh BoNT/A LC at 20 $\boldsymbol{\mu} \mathbf{M}$	In vitro proteolytic assay $\mathbf{I C}_{50}(\mu \mathrm{M})$	$\begin{gathered} \text { mES-MNs } \\ \text { pre } \\ \text { intoxication } \\ \text { \% of full } \\ \text { length } \\ \text { SNAP-25 } \\ (\mathbf{1 0} \boldsymbol{\mu M} ; \mathbf{2 0} \\ \boldsymbol{\mu M}) \end{gathered}$	$\begin{gathered} \text { mES-MNs } \\ \text { post } \\ \text { intoxication } \\ \text { at } 20 \mu \mathrm{M} \\ \% \text { of full } \\ \text { length } \\ \text { SNAP-25 } \\ (30 \mathrm{~min} ; 60 \\ \min) \end{gathered}$
1	90	12.4	70; 84	36; 20
14	80	5.7	28; 67	48; 49
15	52	1.5	70; 69	/
16	66	4.5	72; 88	64; 45
17	71	2.7	67; 69	38; 22
18	85	0.7	20; 41	/

(

S2	42	1	1	1
33	69	1	1	1
34	75	7.4	58; 68	16; 17
35	34	1	1	1
36	61	10.2	34; 53	1
37	46	1	44; 55	1
38	27	1	59; 64	1
86	84	4.6	21; 26	1
87	75	3.3	36; 43	1
88	23	1	1	1
89	8	1	1	1

93	77	6.8	31;70	20; 19
94	14	1	/	/
95	30	/	/	/
	35	1	54; 60	34;22
97	36	1	/	/
98	53	12.3	/	1
101	67	9.3	18; 39	/
S6	55	15.7	/	/
S7	55	16.6	/	/
S8	46	/	/	/
S9	44	/	/	/
S10	41	/	/	/

S11	39	1	/	/
56	3	1	1	/
57	71	8.8	51; 56	46; 39
58	24	/	/	/
59	23	/	/	/
60	67	11.7	63; 72	15; 16
61	17	/	/	/
62	61	21.1	$/$	/
63	63	43.3	$/$	$/$
64	13	/	/	/

65	48	/	1	/
68	30	/	30; 31	1
69	31	/	$/$	/
77	20	/	$/$	/
78	46	/	$/$	/
79	24	/	/	/
80	59	3.2	1	/
81	/	/	23; 24	/
82	41	/	/	/
84	3	$/$	$/$	/

85	51	5.2	47; 46	/
99	64	9.1	/	/
100	42	/	/	/
102	65	2.7	29; 30	/
103	2	/	30; 29	/
104	15	/	31; 35	/
105	1	/	24; 23	/
106	1	/	30; 32	/

${ }^{a}$ Compound 24 was tested at 8 and $16 \mu \mathrm{M}$ in pre-intoxication model and at $16 \mu \mathrm{M}$ in 30 minutes postintoxication model.

Synthesis of compound 1 was published in our previous work. ${ }^{1}$ Syntheses of compounds S1-S5, 36, 46, 86-98, 101 were published in our previous work. ${ }^{2}$ Synthesis of compound 35 was published in our previous work. ${ }^{3}$ Syntheses of compounds $\mathbf{9 9}, \mathbf{1 0 0}, \mathbf{1 0 2} \mathbf{- 1 0 6}, \mathbf{S 6}-\mathbf{S 9}$, S11 were published in our previous work. ${ }^{4}$ Synthesis of
compound S10 was published in our previous work. ${ }^{5}$

Table S2. Protection of SNAP-25 in mES-MNs in pre-intoxication model at five concentrations $0.1 \rightarrow 20 \mu \mathrm{M}$ (results are given as mean value of three independent experiments).

Compound	Concentration ($\mu \mathrm{M}$)	\% of full length SNAP-25	SEM
No toxin	/	100	0
Toxin only	500 pM	16.6	3.3
1	0.1	23.1	6.8
	1	23.3	4.8
	5	36.4	9.8
	10	55.5	12.9
	20	78.2	5.0
14	0.1	25.8	8.1
	1	23.3	7.1
	5	25.5	5.2
	10	40.1	11.4
	20	60.2	11.3
16	0.1	19.4	3.8
	1	21.1	4.2
	5	25.1	3.4
	10	50.6	14.6
	20	80.7	9.7
17	0.1	19.5	4.3
	1	19.7	4.1
	5	21.9	4.3
	10	31.7	1.3
	20	61.4	6.0
19	0.1	20.0	6.1
	1	22.1	6.1
	5	22.4	3.7
	10	36.1	6.0
	20	79.3	3.4
34	0.1	18.1	4.7
	1	17.6	4.9
	5	27.0	8.4
	10	40.9	4.1
	20	72.7	8.5
38	0.1	24.1	4.2
	1	24.1	7.2
	5	28.5	8.4

	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 45.2 \\ & 69.3 \end{aligned}$	$\begin{array}{r} 12.6 \\ 11.4 \\ \hline \end{array}$
50	0.1	21.1	7.0
	1	24.3	4.3
	5	26.5	2.2
	10	33.9	3.2
	20	57.3	4.2
57	0.1	28.5	7.0
	1	15.9	4.4
	5	20.7	5.9
	10	33.4	4.6
	20	75.6	14.6
60	0.1	19.6	3.8
	1	21.1	3.3
	5	26.9	6.5
	10	60.6	9.0
	20	89.8	4.5
93	0.1	21.3	6.1
	1	25.6	6.8
	5	26.3	2.0
	10	40.4	2.4
	20	75.9	4.2
96	0.1	23.7	6.3
	1	30.1	11.1
	5	42.2	15.3
	10	60.0	15.7
	20	69.7	11.7

Table S3. Protection of SNAP-25 in mES-MNs in 30/60 minutes post-intoxication model at 20 $\mu \mathrm{M}$ (results are given as mean value of three independent experiments)

Compound	\% of full length SNAP-25 (30 min)	SEM	\% of full length SNAP-25 (60 min)	SEM
No toxin	100	0	100	0
Toxin only	14.8	2.7	16.2	3.7
$\mathbf{1}$	35.9	6.0	19.9	3.5
$\mathbf{1 4}$	48.4	9.1	48.9	24.1
$\mathbf{1 6}$	64.4	6.1	44.9	9.6
$\mathbf{1 7}$	38.5	8.0	21.9	2.4
$\mathbf{1 9}$	49.5	12.0	22.5	1.8
$\mathbf{3 4}$	16.3	2.4	16.6	2.2
$\mathbf{5 7}$	46.4	9.8	39.4	9.8
$\mathbf{6 0}$	15.2	3.0	16.2	3.0
$\mathbf{9 3}$	19.8	3.1	18.9	3.0
$\mathbf{9 6}$	34.3	5.9	22.3	4.1

Table S4. Protection of SNAP-25 in mES-MNs by compounds $\mathbf{1 6}$ and $\mathbf{2 4}$ administered 30 min post-intoxication - dose response experiment 0.25 to $64 \mu \mathrm{M}$ (results are given as mean value of two independent experiments)

Compound	Concentration $(\boldsymbol{\mu M})$	\% of full length SNAP-25	SEM
No toxin	$/$	100	0
Toxin only	500 pM	29.6	3.7
	0.25	33.2	1.8
	0.5	33.9	3.0
	1	38.8	0.3
$\mathbf{1 6}$	2	37.9	0.9
	4	47.3	6.7
	8	48.2	4.3
	16	71.9	4.0
	32	89.4	2.2
	64	100	0
	0.25	33.0	3.3
	0.5	36.6	0.9
	1	38.6	5.3
	2	41.0	5.5
	4	44.0	2.5
	8	50.3	5.3
	16	49.2	2.1
	32	52.7	4.3
	64	69.2	4.1

Figure S1. Protection of SNAP-25 in mES-MNs by compound 24 administered 30 min preintoxication - dose response experiment 0.25 to $64 \mu \mathrm{M}$ (results are given as mean value of two independent experiments $+/-$ SEM). $\mathrm{IC}_{50}=8-16 \mu \mathrm{M}$.

Table S5. Protection of SNAP-25 in mES-MNs by compound 24 administered 30 min preintoxication - dose response experiment 0.25 to $64 \mu \mathrm{M}$ (results are given as mean value of two independent experiments).

Compound	Concentration ($\boldsymbol{\mu M})$	\% of full length SNAP-25	SEM
Toosendanin	10	100	0
Toxin only	500 pM	34.2	4.1
	0.25	35.8	3.3
	0.5	38.9	3.2
	1	41.9	2.4
$\mathbf{2 4}$	2	40.4	5.0
	4	43.4	4.7
	8	46.4	7.3
	16	57.9	8.3
	32	70.8	5.8
	64	94.0	6.0

500 pM BoNT/A

Figure S2. Protection of SNAP-25 in mES-MNs by compound 16 administered 30 min postintoxication - dose response experiment 0.1 to $20 \mu \mathrm{M}$ (results are given as mean value of four independent experiments $+/-$ SEM $) . \mathrm{IC}_{50}=5-10 \mu \mathrm{M}$.

Table S6. Protection of SNAP-25 in mES-MNs by compound 16 administered 30 min postintoxication - dose response experiment 0.1 to $20 \mu \mathrm{M}$ (results are given as mean value of four independent experiments).

Compound	Concentration $(\boldsymbol{\mu} \mathbf{M})$	\% of full length SNAP-25	SEM
No toxin	$/$	100	0
Toxin only	500 pM	15.9	5.6
	0.1	16.9	2.1
$\mathbf{1 6}$	1	21.2	3.1
	5	40.3	3.9
	10	52.9	4.4
	20	64.4	6.1

Fluorescence and UV-Vis spectra of binding 16 to HSA and AGP

Figure S3. Changes in HSA ($c=5 \times 10^{-7} \mathrm{M}$) fluorescence emission spectra upon addition of $\mathbf{1 6}$ (1-20 molar equivalents); T $=298$ K, 1X PBS, pH=7.34.

Figure S5. The Stern-Volmer plot for binding of 16 to HSA $\left(c=5 \times 10^{-7} \mathrm{M}\right)$, $T=298 \mathrm{~K} ; \mathrm{pH}=7.34 ; \lambda=323 \mathrm{~nm}$; linear equation: $y=1+45628.8 x$ (For the calculation of binding constants, only points within linear dependence were used (1-5 molar equivalents).)

Figure S4. Changes in HSA ($c=5 \times 10^{-7} \mathrm{M}$) UV-Vis spectra upon addition of 16 (1-20 molar equivalents); $T=298 \mathrm{~K} ; 1 \mathrm{X}$ PBS, $\mathrm{pH}=$ 7.34 , scan speed $500 \mathrm{~nm} / \mathrm{min}$

Figure S6. Log-log plot for the determination of binding constants K_{b}, and the number of binding sites n for binding of $\mathbf{1 6}$ to HSA ($c=5 \times 10^{-7} \mathrm{M}$) $T=298 \mathrm{~K} ; \mathrm{pH}=7.34 ; \lambda=323 \mathrm{~nm}$; linear equation: $y=2.77+0.67 x$ (For the calculation of binding constants, only points within linear dependence were used (1-5 molar equivalents).)

$$
\log K_{\mathrm{b}}=2.77 \pm 0.26 ; n=0.670
$$

Figure S7. Changes in AGP $\left(c=5 \times 10^{-7} \mathrm{M}\right)$ fluorescence emission spectra upon addition of 16 (1-20 molar equivalents); T $=298 \mathrm{~K}, 30 \mathrm{mM}$ PBS, $\mathrm{pH}=7.34$.

Figure S9. The Stern-Volmer plot for binding of $\mathbf{1 6}$ to AGP $\left(c=5 \times 10^{-7} \mathrm{M}\right)$, $T=298 \mathrm{~K} ; \mathrm{pH}=7.34 ; \lambda=323 \mathrm{~nm}$; linear equation: $y=1+699439.2 x$ (For the calculation of binding constants, only points within linear dependence were used (1-3 molar equivalents).)

Figure S8. Changes in AGP $\left(c=5 \times 10^{-7} \mathrm{M}\right)$ UV-Vis spectra upon addition of 16 (1-20 molar equivalents); $T=298 \mathrm{~K}$; 1 X PBS, $\mathrm{pH}=$ 7.34, scan speed $500 \mathrm{~nm} / \mathrm{min}$.

Figure S10. Log-log plot for the determination of binding constants K_{b}, and the number of binding sites n for binding of $\mathbf{1 6}$ to HSA $\left(c=5 \times 10^{-7} \mathrm{M}\right) T=298 \mathrm{~K} ; \mathrm{pH}=7.34 ; \lambda=323 \mathrm{~nm}$; linear equation: $y=4.88+0.3 x$ (For the calculation of binding constants, only points within linear dependence were used (1-3 molar equivalents).)

$$
\log K_{\mathrm{b}}=4.88 \pm 0.32 ; n=0.838
$$

Ligand interaction diagrams

All ligand structures were built, optimized and their ionization states determined using Schrödinger Suite 2016-4 (Schrödinger, LLC: New York, NY, 2016) in the same manner it was performed before. ${ }^{1}$ Docking of the ligands were performed using grid docking from Glide ligand docking module (Glide, Schrödinger, LLC: New York, NY, 2017), using standard precision and flexible ligand sampling, without no additional constraints. All modeling was performed within a pH range of 7.0 ± 1.0, which corresponds to the pH of in vitro experiments (i.e., pH 7.3), according to our previously published studies. ${ }^{1}$ The structure of BoNT/A LC and its binding site (BS) corresponds with those used in aforementioned publication.

Figure S11. Compounds $\mathbf{1 6}$ (A) and 24 (B) docked in the catalytic cleft of BoNT/A LC at pH 7.0 ± 1.0.

Figure S12. Overlapped docked structures of $\mathbf{1 6}$ (green) and $\mathbf{2 4}$ (yellow) in the catalytic cleft of the BoNT/A LC at $\mathrm{pH} 7.0 \pm 1.0$.

Figure S13. A: 16-Glu55 distance ($1.81 \AA$) and $\mathbf{2 4}-\mathrm{Glu} 55$ distance ($3.05 \AA$); B: $\mathbf{1 6}-\mathrm{Zn}^{2+}$ distance (2.19 \AA) and $\mathbf{2 4 -}-\mathrm{Zn}^{2+}$ distance $(2.23 \AA)$ at $\mathrm{pH} 7.0 \pm 1.0$.

Figure S14. Compounds $\mathbf{3 4}$ (A) and $\mathbf{8 6}$ (B) docked in the catalytic cleft of BoNT/A LC at pH 7.0 ± 1.0.

Docking scores

Table S7. Docking scores for $\mathbf{1 6}$ and $\mathbf{2 4}^{\text {a }}$

Compound/score	$\mathbf{1 6}$	$\mathbf{2 4}$
Docking score	-10.685	-9.697
Glide score	-10.685	-9.697
Model energy	-110.664	-99.034
Asp:370 Eint	-54.216	-50.774
Tyr:366 Eint	-8.81	-8.36
Glu:252 Eint	-48.758	-37.488
Arg:231 Eint	23.86	25.911
Glu:164 Eint	-70.57	-63.814
Glu:55 Eint	-65.916	-56.733
${ }^{\text {a A lower score indicates better binding of a given ligand in the substrate cleft }}$		

Docking-in vitro inhibitory activity correlations

From the Figure S15, it can be seen that there is a certain correlation of IC_{50} and Glide emodel values generated after docking procedure (Emodel represents quantitative representation of the combination of a version of the GlideScore, the internal ligand strain and the coulomb and van der Waals energy).

Compound	$\mathbf{I C}_{\mathbf{5 0}}$ $(\boldsymbol{\mu} \mathbf{M})$	Glide eModel
$\mathbf{1 4}$	5.7	-112.811
$\mathbf{1 5}$	1.5	-119.614
$\mathbf{1 6}$	4.5	-115.169
$\mathbf{1 7}$	2.7	-117.385
$\mathbf{1 9}$	3.0	-123.03
$\mathbf{2 0}$	2.4	-125.266
$\mathbf{2 2}$	7.1	-110.686

Figure S15. Correlation of IC_{50} and Glide emodel values

Same structures show relatively good correlation with total potential energy of minimized structure of the ligand-protein complex (Figure S16). This energy was generated by further minimization of docking poses, using MacroModel module (Schrödinger Release 2017-2: MacroModel, Schrödinger, LLC, New York, NY, 2017.). Minimizations were performed using OPLS-2005 force field with water solvent effects (solvent effect was applied using the analytical Generalized-Born/Surface-Area (GB/SA) model), using Polak-Ribier Conjugate Gradient method with 2500 steps or 0.05 convergence threshold. In the model, the structure of ligand and all of the amino acid residues within $6 \AA$ were freely moving, with the exception of His 227, His 223, Glu 262 and Zn^{2+}, that were held frozen.

Compound	\% inh	$\mathbf{E}_{\text {pot }}$ $(\mathbf{k J / m o l})$
$\mathbf{1 4}$	80	-11760.4
$\mathbf{1 6}$	66	-10819.3
$\mathbf{1 7}$	71	-10748.6
$\mathbf{1 9}$	75	-11187.9
$\mathbf{2 0}$	77	-11498.8
$\mathbf{2 2}$	64	-10544.5
$\mathbf{2 3}$	67	-10643.5
$\mathbf{2 4}$	48	-10174.3
$\mathbf{3 0}$	37	-9805.05

Figure S16. Correlation of $\%$ of inhibition with total potential energy

Chemistry

Melting points were determined on a Boetius PMHK apparatus and were not corrected. IR spectra were recorded on a Thermo-Scientific Nicolet 6700 FT-IR diamond crystal spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini-200 spectrometer (at 200 and 50 MHz , respectively), and a Bruker Ultrashield Advance III spectrometer (at 500 and 125 MHz , respectively) in the indicated solvent (vide infra) using TMS as the internal standard. Chemical shifts are expressed in ppm (δ) values and coupling constants (J) in Hz. ESI-MS (HRMS) spectra of the synthesized compounds were acquired on a Agilent Technologies 1200 Series instrument equipped with Zorbax Eclipse Plus C18 ($100 \times 2.1 \mathrm{~mm}$ i.d. $1.8 \mu \mathrm{~m})$ column and DAD detector (190-450 nm) in combination with a 6210 Time-of-Flight LC/MS instrument in positive and negative ion mode. The samples were dissolved in MeOH (HPLC grade). The selected values were as follows: capillary voltage 4 kV ; gas temperature 350 ${ }^{\circ} \mathrm{C}$; drying gas $12 \mathrm{~L} \mathrm{~min}^{-1}$; nebulizer pressure 45 psig ; fragmentator voltage: 70 V . Mass spectral analyses were done using electrospray ionization in positive ion mode on a Surveyor separations module coupled to a ThermoFinnigan TSQ AM triple quadrupole mass spectrometer. Gas chromatography tandem mass spectrometry (GC-MS) analyses were performed on an Agilent 7890A GC (Agilent) system equipped with a 5975C inert XL EI/CI MSD and a flame ionization detector (FID) connected by capillary flow technology through a 2-way splitter with make-up gas. An HP-5 MS capillary column (Agilent Technologies, 25 mm i.d., 30 m length, $0.25 \mu \mathrm{~m}$ film thickness) was used. The flash chromatography was performed on Biotage SP1 system equipped with UV detector and FLASH 12+, FLASH 25+ or FLASH 40+ columns charged with KP-SIL $(40-63 \mu \mathrm{~m}$, pore diameter $60 \AA$), KP-C18-HS $(40-63 \mu \mathrm{~m}$, pore diameter $90 \AA$) or KPNH ($40-63 \mu \mathrm{~m}$, pore diameter $100 \AA$) as an adsorbent. Elemental analyses were realized with
an Elemental Vario EL III microanalyser. Compounds were analyzed for purity (HPLC) using a Agilent 1200 HPLC system equipped with Quat Pump (G1311B), Injector (G1329B) 1260 ALS, TCC 1260 (G1316A) and Detector 1260 DAD VL+ (G1315C). Compound 42 was analyzed for purity (HPLC) using Waters 1525 HPLC dual pump system equipped with an Alltech, Select degasser system, and dual $\lambda 2487$ UV-VIS detector. HPLC analysis was performed in two diverse systems for each compound. Method A: Zorbax Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}, 1.8 \mu$, S.N. USWKY01594 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at the UV max of the compounds (at 330 nm for compounds $\mathbf{1 4 - 1 6}, \mathbf{1 8}, \mathbf{1 9}, \mathbf{2 2}, \mathbf{2 3}, \mathbf{3 4}, \mathbf{3 7}, \mathbf{3 8}, \mathbf{5 0}, \mathbf{5 6}$ 65, 66-69, 77-82, 84, 85 and 93 , and at 254 nm for compound 17) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was 0.5 $\mathrm{mL} / \mathrm{min}$. Compounds $\mathbf{1 4}, \mathbf{1 6}, 22,23,56-65,66-69,77-82,84$ and 85 were eluted using gradient protocol: $0-1.5 \min 95 \% \mathrm{~A}, 1-5 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \min 5 \% \mathrm{~A}, 16-18 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$. Compounds 15, 17-19, 34, 37 and 50 were eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-6$ $\min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-15 \mathrm{~min} 95 \% \mathrm{~A}$. Compound 38 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-$ $13 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$. Compound 93 was eluted using gradient protocol: $0-2 \mathrm{~min} 95 \% \mathrm{~A}, 2-6$ $\min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-17 \min 5 \% \mathrm{~A}, 17-19 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 19-21 \min 95 \% \mathrm{~A}$. Method $\mathrm{B}:$ Zorbax Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}, 1.8 \mu$, S.N. USWKY01594 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 330 nm for compounds $\mathbf{1 4 - 1 9}, 22,23,34,37,38,44,50,56-65,66-69,77-82,84,85$ and 93) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow
rate was $0.5 \mathrm{~mL} / \mathrm{min}$. Compounds $\mathbf{1 4}, \mathbf{1 6}, 22$ and 23 were eluted using gradient protocol: 0-1.5 $\min 95 \% \mathrm{~A}, 1-5 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \% \mathrm{~A}, 16-18 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$. Compounds $\mathbf{1 5}$, $\mathbf{1 7}, \mathbf{1 9}, \mathbf{3 4}, \mathbf{3 7}, 38$ and 50 were eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-6 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow$ $5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-15 \mathrm{~min} 95 \% \mathrm{~A}$. Compound $\mathbf{1 8}$ was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-4 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 4-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \mathrm{~min}$ $5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-15 \mathrm{~min} 95 \% \mathrm{~A}$. Compound 44 was eluted using gradient protocol: $0-1.5 \mathrm{~min}$ $95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-17 \mathrm{~min} 5 \% \mathrm{~A}, 17-19 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$. Compounds 56-65, 66-69, 77-82, 84 and 85 were eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow$ $5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \% \mathrm{~A}, 16-18 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 18-20 \mathrm{~min} 95 \% \mathrm{~A}$. Compound 93 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-14 \mathrm{~min} 5 \% \mathrm{~A}, 14-15 \mathrm{~min}$ $5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 15-16 \mathrm{~min} 95 \%$. Method C: Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis was performed at the UV max of the compound (at 330 nm for compounds $\mathbf{2 0}, \mathbf{2 1}, \mathbf{2 4}, \mathbf{4 3}, \mathbf{4 4}, \mathbf{4 7}$; at 270 nm for compound $\mathbf{3 0}$, and at 254 nm for compound 33) to maximize selectivity. Compound was dissolved in methanol, final concentration was $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.2 \mathrm{~mL} / \mathrm{min}$. Compound $\mathbf{2 0}$ was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-6 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-15 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow$ 95\%A, 15-20 min 95\%A. Compounds 21 and $\mathbf{3 0}$ were eluted using gradient protocol: 0-1 min $95 \% \mathrm{~A}, 1-6 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-20 \mathrm{~min} 95 \% \mathrm{~A}$. Compound 24 was eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-2 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 2-11$ $\min 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-18 \mathrm{~min} 95 \% \mathrm{~A}$. Compound 33 was eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-$ $18 \min 95 \%$ A. Compounds $\mathbf{4 3}, 44$ and 47 were eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-$
$6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-15 \mathrm{~min} 95 \% \mathrm{~A}$. Method $\mathbf{D}:$ Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis was performed at the UV max of the compound (at 254 nm for compounds 20, 24, 33; at 270 nm for compound $\mathbf{3 0}$ and at 330 nm for compounds 21, 43 and 47) to maximize selectivity. Compound was dissolved in methanol, final concentration was ~ 1 $\mathrm{mg} / \mathrm{mL}$. Flow rate was $0.2 \mathrm{~mL} / \mathrm{min}$. Compounds 20 and 21 were eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-20 \mathrm{~min}$ 95\%A. Compounds 24 and 33 were eluted using gradient protocol: 0-1 min 95\%A, 1-6 min $95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-18 \mathrm{~min} 95 \% \mathrm{~A}$. Compound 30 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-8 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 8-12 \mathrm{~min} 5 \% \mathrm{~A}, 12-16$ $\min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 16-20 \mathrm{~min} 95 \% \mathrm{~A}$. Compounds 43 and 47 were eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-$ $15 \min 95 \%$ A. Method E: Poroshell 120 EC-C18, 4.6 x $50 \mathrm{~mm}, 2.7 \mu$, S.N. USCFU07797 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis was performed at the UV max of the compound (330 nm for compound 48) to maximize selectivity. Compound was dissolved in methanol, final concentration was $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$. Compound 48 was eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-1.5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 1.5-8 \min 5 \% \mathrm{~A}, 8-10 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow$ $95 \% \mathrm{~A}, 10-11 \mathrm{~min} 95 \% \mathrm{~A}$. Method F: Poroshell 120 EC-C18, $4.6 \times 50 \mathrm{~mm}, 2.7 \mu$, S.N. USCFU07797 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis was performed at the UV max of the compound (330 nm for compound 48) to maximize selectivity. Compound was dissolved in
methanol, final concentration was $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$. Compound 48 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-1.5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 1.5-8 \mathrm{~min} 5 \% \mathrm{~A}, 8-10$ $\min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 10-11 \mathrm{~min} 95 \% \mathrm{~A}$. Method G: Symmetry C18, $4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}, \mathrm{~S} . \mathrm{N}$. 02133627813637 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis was performed at the UV max of the compound (340 nm for compound 42) to maximize selectivity. Compound was dissolved in methanol, final concentration was $\sim 1 \mathrm{mg} / \mathrm{mL}$. Compound 42 was eluted using gradient protocol: $0-2 \min 10 \% \mathrm{~A} \rightarrow 20 \% \mathrm{~A}, 2-4 \min 20 \% \mathrm{~A}, 4-8 \mathrm{~min} 20 \% \mathrm{~A} \rightarrow 10 \% \mathrm{~A}$. Method H: Nucleosil C18, $4 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$ was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis was performed at the UV max of the compound (340 nm for compound 42) to maximize selectivity. Compound was dissolved in methanol, final concentration was $\sim 1 \mathrm{mg} / \mathrm{mL}$. Compound $\mathbf{4 2}$ was eluted using gradient protocol: $0-2 \mathrm{~min} 6 \% \mathrm{~A} \rightarrow 12 \% \mathrm{~A}, 2-4 \min 12 \% \mathrm{~A} \rightarrow 30 \% \mathrm{~A}, 4-8 \mathrm{~min}$ $30 \% \mathrm{~A} \rightarrow 6 \% \mathrm{~A}, 8-9 \min 6 \% \mathrm{~A}$.

Procedure A: General procedure for the synthesis of \boldsymbol{N} - $\mathbf{C b z}$ protected aminoquinolines 107 and 109. ${ }^{5}$ The mixture of 4,7-dichloroquinoline/4-chloroquinoline (1 equiv) and mono-Cbz protected diaminoalkane (1.1 - 1.2 equiv) was slowly heated to $80^{\circ} \mathrm{C}$ for 1 h , and the mixture was continued for $6-8 \mathrm{~h}$ at $120-130^{\circ} \mathrm{C}$. After cooling to r.t., reaction mixture was transferred to the separation funnel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 1 \mathrm{M} \mathrm{NaOH}$. The organic layer was washed with 1 M NaOH , water and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated under reduced pressure. Crude product was purified using column chromatography.

Procedure B: General procedure for the obtainment of steroidal derivatives 4-11 and 29. ${ }^{1}$ Alcohol (1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. PCC (1.5 equiv) was added, and the mixture was stirred at r.t. for 3.5 h . Reaction mixture was filtered through a short column of SiO_{2} (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=7 / 3$). Crude aldehyde was dissolved in dry MeOH , aminoquinoline (1.5 equiv) was added, and mixture was stirred at r.t. overnight. NaBH_{4} (2 equiv) was added, and stirring was continued at r.t. for 12 h . Solvent was removed under reduced pressure and crude mixture was prepared for column purification.

Procedure C: General procedure for the removal of the Boc-protecting groups with TFA for compounds 14-23 and 30. A solution of the N-Boc-protected amine in TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v}: \mathrm{v}$; 1:10), was stirred at r.t. for 6 h . Solvents were evaporated under reduced pressure and the residue was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 2.5 \mathrm{M} \mathrm{NaOH}$. The organic layer was dried over MgSO_{4}, and the solvent was evaporated under reduced pressure.

Procedure D: General procedure for \mathbf{N}-methylated aminoquinolines 12, 13, 37, 38, 48, 56$\mathbf{6 5}, \mathbf{6 8}, 69$ and $\mathbf{8 4}, 85 .{ }^{6}$ To a stirred solution of aminoquinolines (1 equiv) in MeOH containing 37% aqueous formaldehyde (2 equiv), the mixture of ZnCl_{2} (2 equiv) and $\mathrm{NaHB}_{3} \mathrm{CN}$ (4 equiv) in MeOH was added. After the reaction mixture was stirred at r.t. for 4 h , the solution was taken up in 0.1 M NaOH and most of MeOH was evaporated under reduced pressure. Aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined extracts were washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure.

Procedure E: General procedure for reductive amination to produce compounds 33, 34, 4245, 50, 66 and 67. Amine (1.5 equiv) and appropriate aldehyde (1 equiv) were dissolved in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture (v:v; 2:1), glac. AcOH (1.5 equiv) was added, and the mixture was
stirred under Ar atmosphere at r.t. After $3 \mathrm{~h}, \mathrm{NaBH}_{4}$ (6 equiv) was added, and stirring was continued for another 18 h . Solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with 2 M NH 44 OH , water and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Finally, the solvent was evaporeted under reduced pressure.

Procedure F: General procedure for the Suzuki coupling reaction using $\mathbf{P d O} \times 1.4 \mathbf{H}_{\mathbf{2}} \mathrm{O}$ for compounds 40 and $113 .{ }^{7}$ An appropriate aryl-bromide (1 equiv) was added to the mixture of arylboronic acid (1.2 equiv), catalyst $\mathrm{PdO} \times 1.4 \mathrm{H}_{2} \mathrm{O}$ (0.1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 equiv) and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(3: 1, \mathrm{v} / \mathrm{v})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h , then diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were washed with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure. The product was purified using silica gel flash chromatography.

Procedure G: General procedure for the Suzuki coupling reaction using $\operatorname{Pd}(\mathrm{OAc})_{2}$ and $\mathbf{P P h}_{3}$ for compounds 49 and 111. The solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv) and PPh_{3} (0.4 equiv) in DME was purged with argon and stirred at r. t. for 10 min . An appropriate arylboronic acid (1 equiv) and 2 M aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were added. After 5 min , aryl-bromide (1 equiv) was added. The mixture is once more purged with Ar and heated in a sealed vessel in microwave reactor at $80^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled and extracted with ethyl-acetate. The combined organic layers were washed with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure. The crude product was further purified in a manner provided for each compound.

Procedure H: General procedure for palladium catalyzed amination of quinolones to produce compounds 78, 79, 81 and 82. Vial was charged with mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{~mol} \%)$ and DPEphos ($8 \mathrm{~mol} \%$)/SPhos ($8 \mathrm{~mol} \%$) in dioxne and stirred for a few minutes in Ar atmosphere on room temperature. Subsequently, haloquinoline (1.0 equiv), amine (1.2 equiv) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.5 equiv) were added in to reaction mixture. The resulting suspension was sparged with argon for several minuties. The vial was quickly capped, heated to $85^{\circ} \mathrm{C}$ over the night and then cooled down to room temperature. The mixture was adsorbed onto silica gel and purified.
N-(quinolin-4-yl)ethane-1,2-diamine (AQ11), N-(7-chloroquinolin-4-yl)butane-1,4-diamine (AQ4), N-(7-chloroquinolin-4-yl)hexane-1,6-diamine (AQ6), N-(quinolin-4-yl)propane-1,3diamine (AQ7), N-(quinolin-4-yl)butane-1,4-diamine (AQ8), N-(quinolin-4-yl)hexane-1,6diamine (AQ9), N-quinolin-4-yldecane-1,10-diamine (AQ12) were prepared according to known procedures. ${ }^{8-11}$

N -quinolin-4-yldecane-1,10-diamine (AQ12).

The mixture of 4-chloroquinoline ($37.9 \mathrm{mg}, 0.232 \mathrm{mmol}$) and 1,10-diaminodecane ($200 \mathrm{mg}, 1.16$ mmol) were subjected to microwave irradiation using Biotage Initiator 2.5 apparatus for 10 min at $80^{\circ} \mathrm{C}$, followed by 1 h at $140^{\circ} \mathrm{C}$. After cooling to room temperature 0.1 M aqueous NaOH was added and then extracted with dichloromethane. Combined organic layers were dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure. The crude product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). Final product was obtained as yellow oil (19.9 mg, 53\%). IR (ATR): $3329 \mathrm{~m}, 2924 \mathrm{~s}, 2854 \mathrm{~s}$, 1651 m , 1581s, 1492m, 1465m, 1390m, 1342m, 1317m, 1158w, 767w, 722w. ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.33(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(2)), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=7.6, \mathrm{H}-\mathrm{C}(8)), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=7.8, \mathrm{H}-$ $\mathrm{C}(5)), 7.65-7.55$ (m, 1H, H-C(7)), 7.48 - 7.36 (m, 1H, H-C(6)), $6.44(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(3))$, $3.35-3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 2.70-2.48\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right), 1.77-1.65(\mathrm{~m}, 2 \mathrm{H}$, ArNHCH $\left.{ }_{2} \mathrm{CH}_{2}-\right), 1.50-1.08\left(\mathrm{~m}, 14 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{7}-\right) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 152.77$, $151.38,149.12,130.52,129.03,125.63,122.42,120.49,99.25,44.19,42.73,33.97,30.84,30.78$, 30.69, 29.63, 28.42, 28.19. HRMS: $m / z 150.62467$ corresponds to molecular formula $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{H}_{2}{ }^{2+}$ (error in ppm -4.51).

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)-3-[($ Tert-butoxycarbonyl)amino]-24-\{[4-(quinolin-4-

ylamino)butyl]amino\} cholane-7,12-diyl diacetate (4).

According to general procedure B , alcohol $3(445 \mathrm{mg}, 0.770 \mathrm{mmol})$ was transformed into aldehyde using PCC ($239 \mathrm{mg}, 1.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL), which was further transformed into 4 using amine $\mathbf{A Q 8}^{4}$ ($211.5 \mathrm{mg}, 0.9823 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(49.5 \mathrm{mg}, 1.31 \mathrm{mmol})$ and MeOH $(20 \mathrm{~mL})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{Hex} / \mathrm{EtOAc}=1 / 1 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $9 / 1 \rightarrow \mathrm{MeOH}, \mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat. $)=$ 9/1). Final product 4 was obtained as colorless oil ($360 \mathrm{mg}, 60 \%$). $[\alpha]_{\mathrm{D}}^{20}=+38.9(\mathrm{MeOH})$. IR (ATR): $3320 \mathrm{w}, 3052 \mathrm{w}, 2935 \mathrm{~s}, 2866 \mathrm{~m}, 1724 \mathrm{~s}, 1618 \mathrm{w}, 1582 \mathrm{~s}, 1540 \mathrm{~m}, 1441 \mathrm{w}, 1375 \mathrm{~m}, 1342 \mathrm{w}$, 1310w, 1250s, 1171m, 1126w, 1064w, 1023w, 999w, 965w, 884w, 854w, 808w, 765w, 736m, $702 \mathrm{w}, 610 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=$ 8.2, H-C($\left.8^{\prime}\right)$), 7.76 (d, 1H, $\left.J=8.2, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.64-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right)$, 7.42-7.37 (m, 1H, H$\left.\mathrm{C}\left(6^{\prime}\right)\right), 6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.77\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.10-5.07(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)$), 4.92-4.88 (m, 1H, H-C(7)), 4.42 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 3.35-3.21 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArNHCH}_{2}$ - and $\mathrm{H}-\mathrm{C}(3)$), 2.73-2.66 (m, 2H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.65-2.54 (m, 2H-
$\mathrm{C}(24)), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.44(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}-$ steroid), $1.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41-0.97\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right)$, $0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ $170.39,170.27,155.12,151.05,149.85,148.42,129.87,128.87,124.32,119.57,118.83,98.58$, $79.16,75.48,70.86,50.55,49.29,47.49,44.99,43.36,43.18,41.53,37.70,36.39,35.48,34.90$, $34.24,33.36,31.29,28.85,28.40,27.85,27.26,26.46,26.43,25.49,22.80,22.68,21.60,21.37$, 17.91, 12.18. HRMS: $m / z 775.53542$ corresponds to molecular formula $\mathrm{C}_{46} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm-1.79).

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha)$ 3-[(tert-butoxycarbonyl)amino]-24-(\{4-[(7-chloroquinolin-4-

yl)aminolbutyl\}amino)cholane-7,12-diyl diacetate (5).

According to general procedure B , alcohol $3(430.0 \mathrm{mg}, 0.7442 \mathrm{mmol})$ was transformed into aldehyde using PCC ($230 \mathrm{mg}, 1.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, which was further transformed into 5 using amine AQ4 (230.8 mg, 0.9242 mmol$), \mathrm{NaBH}_{4}(46.7 \mathrm{mg}, 1.23 \mathrm{mmol})$ and $\mathrm{MeOH}(20$ mL). The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{Hex} / \mathrm{EtOAc}=1 / 1 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $9 / 1 \rightarrow \mathrm{MeOH}$, EtOAc$/ \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat..$)=$ 9/1). Final product 5 was obtained as colorless oil ($396.3 \mathrm{mg}, 66 \%$). $[\alpha]_{\mathrm{D}}^{20}=+62.2(\mathrm{MeOH}) . \mathrm{IR}$ (ATR): 3311w, 3054w, 2935s, 2866m, 2157w, 1724s, 1610w, 1581s, 1535w, 1450w, 1370m, 1331w, 1248s, 1170w, 1135w, 1064w, 1022w, 999w, 965w, 880w, 851w, 808w, 768w, 736w, $702 \mathrm{w}, 647 \mathrm{w}, 609 \mathrm{w}, 411 \mathrm{sl} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.51\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$, 7.96-7.92 (m, 1H, H-C($\left.8^{\prime}\right)$), $7.71\left(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.34-7.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.37(\mathrm{~d}$, $\left.1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 6.03\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.11-5.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12))$, 4.92-4.88 (m, 1H, H-C(7)), 4.43 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 3.34-3.24 (m, 3H,

ArNHCH 2^{-}and $\left.\mathrm{H}-\mathrm{C}(3)\right)$, 2.73-2.67 (m, 2H, $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 2.64-2.52 (m, $2 \mathrm{H}-\mathrm{C}(24)$), 2.10 (s, 3H, CH $\left.H_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.06$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right)$, 2.02-1.45 (m, 20H, H-steroid), 1.44 (s, 9H, -NHCOOC $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.41-0.98 (m, 9H, H-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.84-0.81(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 170.38,170.26$, $155.13,152.08,149.95,149.19,134.64,128.71,124.88,121.38,117.31,98.83,79.17,75.46$, $70.84,50.53,49.15,47.52,44.98,43.36,43.19,41.52,37.68,36.37,35.47,34.93,34.22,33.36$, $31.28,28.84,28.39,27.87,27.26,26.52,26.28,25.48,22.77,22.67,21.59,21.36,17.91,12.18$. HRMS: $m / z 809.49621$ corresponds to molecular formula $\mathrm{C}_{46} \mathrm{H}_{69} \mathrm{ClN}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm -2.01).

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-[(tert-butoxycarbonyl)amino]-24-\{[4-(quinolin-4-

ylamino)pentyl]amino\}cholane-7,12-diyl diacetate (6) (Mixture of diastereomers).

According to general procedure B , alcohol $3(493.6 \mathrm{mg}, 0.8543 \mathrm{mmol})$ was transformed into aldehyde using PCC ($265.2 \mathrm{mg}, 1.230 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, which was further transformed into 6 using amine N^{4}-(quinolin-4-yl)pentane-1,4-diamine ${ }^{2}$ ($238.9 \mathrm{mg}, 1.042 \mathrm{mmol}$), NaBH_{4} ($52.6 \mathrm{mg}, 1.39 \mathrm{mmol}$) and $\mathrm{MeOH}(10 \mathrm{~mL})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{Hex} / \mathrm{EtOAc}=1 / 1 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient 9/1 $\rightarrow \mathrm{MeOH}, \mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat. $)=9 / 1$, flash, Biotage SP1, RP column 40+M, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $\left.7 / 3 \rightarrow \mathrm{MeOH}\right)$. Final product $\mathbf{6}$ was obtained as mixture of diastereomers. Colorless foam (398 mg, 59\%). M.p. $=101-103{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+48.0(\mathrm{MeOH})$. IR (ATR): 3356w, $3260 \mathrm{w}, 3233 \mathrm{w}, 3192 \mathrm{w}, 3122 \mathrm{w}, 2934 \mathrm{~s}, 2868 \mathrm{~m}, 1718 \mathrm{~s}, 1622 \mathrm{w}, 1580 \mathrm{~s}, 1533 \mathrm{~s}, 1450 \mathrm{~m}, 1374 \mathrm{~s}$, $1168 \mathrm{~s}, 1062 \mathrm{w}, 1023 \mathrm{~m}, ~ 965 \mathrm{w}, ~ 890 \mathrm{w}, ~ 857 \mathrm{w}, ~ 809 \mathrm{w}, 764 \mathrm{~m}, ~ 691 \mathrm{w}, ~ 655 \mathrm{w}, ~ 609 \mathrm{w}, 533 \mathrm{w}, 500 \mathrm{w}$, 474w, $435 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.55-8.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}$, H-C(8')), 7.73 (d, 1H, J=8.4, H-C(5')), 7.64-7.59 (m, 1H, H-C(7')), 7.42-7.37 (m, 1H, H-C(6')),
$6.42\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.29-5.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.10-5.06(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12))$, 4.91-4.88 (m, 1H, H-C(7)), $4.42(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}$, $\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-$), 3.27 (bs, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)\right)$, 2.69-2.61 (m, $2 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 2.612.49 (m, 2H-C(24)), 2.10 and 2.09 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.06 and 2.05 (s and s , overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)$), 2.00-1.45 (m, 20H, H-steroid), 1.44 (s, 9H, -NHCOOC($\left.\mathrm{CH}_{3}\right)_{3}$), 1.40-1.33 (m, 3H, H-steroid), 1.32 (d, $3 \mathrm{H}, J=6.4, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-$), $1.25-0.75(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-$ steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71$ and 0.70 (s and s, overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 170.39,170.28,155.12,151.00$, $148.89,148.63,129.98,128.87,124.32,119.35,118.83,98.86,79.21,75.48,70.87,50.58,50.54$, $49.67,48.18,47.45,44.98,43.37,41.54,37.70,36.40,35.49,34.87,34.23,33.32,31.29,28.85$, 28.40, 27.26, 26.59, 26.56, 26.47, 25.49, 22.79, 22.69, 21.60, 21.38, 20.27, 17.90, 12.18. HRMS: $m / z 789.55312$ corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm 0.84).

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-[(tert-butoxycarbonyl)amino]-24-\{[1-methyl-4-(quinolin-4-

 ylamino)butyl]amino\}cholane-7,12-diyl diacetate (7) (Mixture of diastereomers).According to general procedure B, alcohol $3(440.0 \mathrm{mg}, 0.7615 \mathrm{mmol})$ was transformed into aldehyde using PCC ($236 \mathrm{mg}, 1.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$, which was further transformed into 7 using amine $108(221 \mathrm{mg}, 0.964 \mathrm{mmol}), \mathrm{NaBH}_{4}(48.6 \mathrm{mg}, 1.28 \mathrm{mmol})$ and $\mathrm{MeOH}(20$ mL). The product was purified using column chromatography (dry-flash, SiO_{2}, eluent Hex/EtOAc $=1 / 1 \rightarrow$ EtOAc, EtOAc/MeOH gradient $9 / 1 \rightarrow \mathrm{MeOH}$, EtOAc/MeOH(NH3 sat. $)$ gradient $9 / 1 \rightarrow 7 / 3$). Final product 7 was obtained as mixture of diastereomers. Colorless oil $(390 \mathrm{mg}, 65 \%) .[\alpha]_{\mathrm{D}}^{20}=+40.0(\mathrm{MeOH})$. IR (ATR): $3337 \mathrm{~m}, 3190 \mathrm{~m}, 2932 \mathrm{~s}, 2866 \mathrm{~s}, 2654 \mathrm{w}, 1729 \mathrm{~s}$, $1582 \mathrm{~s}, 1537 \mathrm{~s}, 1444 \mathrm{~m}, 1374 \mathrm{~s}, 1244 \mathrm{~s}, 1170 \mathrm{~s}, 1063 \mathrm{w}, 1024 \mathrm{~m}, ~ 966 \mathrm{w}, 940 \mathrm{w}, 885 \mathrm{w}, 856 \mathrm{w}, 807 \mathrm{w}$,
$764 \mathrm{~m}, 656 \mathrm{w}, 611 \mathrm{w}, 532 \mathrm{w}, 406 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.55(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-$ $\left.\mathrm{C}\left(2^{\prime}\right)\right), 7.99-7.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.78-7.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, 7.64-7.59 (m, 1H, H-C(7')), 7.43$7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.60(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.09-5.06 (m, 1H, H-C(12)), 4.91-4.87 (m, 1H, H-C(7)), 4.46 (bs, 1H, H-N), 3.38-3.20 (m, $3 \mathrm{H}, \mathrm{ArNHCH} 2^{-}$and $\left.\mathrm{H}-\mathrm{C}(3)\right)$, 2.77-2.69 (m, $1 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$)), 2.67-2.47 (m, $2 \mathrm{H}-\mathrm{C}(24)$), 2.09 and 2.08 (s and s , overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.05 and 2.04 (s and s , overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.45\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}\right.$-steroid), $1.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.42-1.20 (m, 6H, H-steroid), 1.09 (d, $3 \mathrm{H}, J=6.2, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-), 1.08-1.01 (m, $3 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70$ and 0.69 (s and s, overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $170.38,170.26,155.17,151.02$, $149.78,148.40,129.88,128.88,124.37,119.47,118.78,98.62,79.17,75.46,70.84,52.68,47.65$, $47.62,47.44,47.41,44.95,43.46,43.35,41.52,37.67,36.37,35.47,34.82,34.64,34.58,34.21$, $33.39,33.36,31.27,28.84,28.38,27.23,26.70,25.47,25.11,22.76,22.66,21.57,21.35,20.46$, 20.40, 17.88, 12.16. HRMS: $m / z 789.54993$ corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$ (error in ppm -3.21); m/z 395.27922 corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{2}{ }^{2+}$ (error in ppm -1.64).

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-[(tert-butoxycarbonyl)amino]-24-(\{4-[7-(chloroquinolin-4-

 ylamino)pentyl\}amino)cholane-7,12-diyl diacetate (8) (Mixture of diastereomers).According to general procedure B , alcohol $3(150.0 \mathrm{mg}, 0.2596 \mathrm{mmol})$ was transformed into aldehyde using PCC ($80.6 \mathrm{mg}, 0.374 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, which was further transformed into 8 using amine N^{4}-(7-chloroquinolin-4-yl)pentane-1,4-diamine ${ }^{4}$ ($80.4 \mathrm{mg}, 0.305 \mathrm{mmol}$), $\mathrm{NaBH}_{4}(15.4 \mathrm{mg}, 0.406 \mathrm{mmol})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$. The product was purified using column
chromatography (dry-flash, SiO_{2}, eluent $\mathrm{Hex} / \mathrm{EtOAc}=1 / 1 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $9 / 1 \rightarrow \mathrm{MeOH}, \mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat. $\left.)=9 / 1\right)$. Final product 8 was obtained as mixture of diastereomers. Colorless oil ($142.9 \mathrm{mg}, 67 \%$). $[\alpha]_{\mathrm{D}}^{20}=+51.1(\mathrm{MeOH})$. IR (ATR): $3364 \mathrm{w}, 3317 \mathrm{w}$, $2934 \mathrm{~s}, 2868 \mathrm{~m}, 1716 \mathrm{~s}, 1612 \mathrm{w}, 1578 \mathrm{~s}, 1535 \mathrm{~m}, 1450 \mathrm{~m}, 1374 \mathrm{~s}, 1335 \mathrm{w}, 1246 \mathrm{~s}, 1170 \mathrm{~m}, 1064 \mathrm{w}$, $1024 \mathrm{~m}, ~ 965 \mathrm{w}, 940 \mathrm{w}, 880 \mathrm{w}, 852 \mathrm{w}, 810 \mathrm{w}, 767 \mathrm{w}, 605 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 8.52-8.49 (m, 1H, H-C($\left.\left.2^{\prime}\right)\right), 7.95-7.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.68\left(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.34-7.30$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.48-5.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.10-5.06 (m, 1H, H-C(12)), 4.91-4.87 (m, 1H, H-C(7)), 4.43 (bs, 1H, H-N, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 3.75-3.66 (m, 1H, ArNHCH($\left.\mathrm{CH}_{3}\right)$-), 3.27 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)$), 2.67-2.61 (m, 2 H , $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 2.60-2.48 (m, $2 \mathrm{H}-\mathrm{C}(24)$), 2.10 and 2.09 (s and s, overlap, 3 H , $\left.\mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.45(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}-\mathrm{steroid}), 1.44(\mathrm{~s}, 9 \mathrm{H},-$ NHCOOC $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.40-1.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}\right.$-steroid), $1.31\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right.$), $1.26-$ $0.99\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.72$ and 0.71 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $170.38,170.27,155.12$, $151.99,149.37,149.02,134.68,128.79,124.91,121.17,117.32,99.13,79.18,75.47,70.85$, $53.39,50.56,50.53,49.51,48.28,47.48,44.97,43.35,41.52,37.69,36.38,35.47,34.90,34.87$, $34.22,34.07,33.32,31.28,28.84,28.39,27.25,26.49,26.48,25.48,22.77,22.67,21.59,21.36$, 20.14, 17.89, 12.17. HRMS: $m / z 823.51447$ corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{ClN}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$ (error in ppm 1.19); $m / z 412.26065$ corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{ClN}_{4} \mathrm{O}_{6} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 0.66).

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-[(Tert-butoxycarbonyl)amino]-24-(\{4-[(7-chloroquinolin-4-yl)amino]-1-methylbutyl\}amino)cholane-7,12-diyl diacetate (9) (Mixture of diastereomers).

According to general procedure B , alcohol $3(120.0 \mathrm{mg}, 0.2077 \mathrm{mmol})$ was transformed into aldehyde using PCC ($64.5 \mathrm{mg}, 0.299 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, which was further transformed into 9 using amine 110 ($67.3 \mathrm{mg}, 0.255 \mathrm{mmol}$), NaBH_{4} ($12.9 \mathrm{mg}, 0.340 \mathrm{mmol}$) and $\mathrm{MeOH}(8$ mL). The product was purified using column chromatography (dry-flash, SiO_{2}, eluent EtOAc, EtOAc/MeOH gradient 9/1 $\rightarrow \mathrm{MeOH}$, EtOAc/ $\mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat.) gradient 95/5 $\rightarrow 8 / 2$). Final product 9 was obtained as mixture of diastereomers. Colorless oil (132.4 mg, 77\%). $[\alpha]_{\mathrm{D}}^{20}=+44.6$ (MeOH). IR (ATR): 3341w, 3055w, 2935s, 2866m, 1723s, 1610w, 1581s, 1538m, 1451m, $1371 \mathrm{~m}, ~ 1332 \mathrm{w}, ~ 1249 \mathrm{~s}, 1171 \mathrm{~m}, 1065 \mathrm{w}, 1023 \mathrm{w}, 999 \mathrm{w}, 852 \mathrm{w}, 809 \mathrm{w}, 737 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.52\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.96-7.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.71-7.68(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.35-7.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.38\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.82-5.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.10-5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)), 4.91-4.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 4.45(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{N}), \quad 3.35-3.20\left(\mathrm{~m}, \quad 3 \mathrm{H}, \quad \mathrm{ArNHCH}_{2}-\quad\right.$ and $\left.\mathrm{H}-\mathrm{C}(3)\right), \quad 2.76-2.69 \quad(\mathrm{~m}, \quad 1 \mathrm{H}$, ArNHCH ${ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-), 2.67-2.46 (m, $2 \mathrm{H}-\mathrm{C}(24)$), 2.09 and 2.09 (s and s, overlap, 3 H , $\mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.05 i 2.04 (s and s , overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)$), 2.02-1.45 (m, 20H, Hsteroid), $1.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.40-1.20(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}$-steroid), $1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.4$, ArNHCH $2_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$), 1.07-0.97 (m, $3 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right.$), 0.81 (d, $3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)$), 0.71 i 0.70 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 170.37,170.27,155.11,151.08,149.86,149.20,134.69,128.78,124.99,121.23$, $117.26,98.91,79.17,75.47,70.84,52.59,50.78,47.62,47.58,47.47,44.98,43.50,43.37,41.52$, $37.68,36.38,35.47,34.87,34.69,34.62,34.22,33.41,33.39,31.28,28.85,28.40,27.24,26.80$,
$25.49,24.98,22.77,22.67,21.58,21.36,20.50,20.46,17.89,12.18$. HRMS: $m / z 823.51237$ corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{ClO}_{6} \mathrm{H}^{+}$(error in ppm -1.36).

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha)-3-[($ Tert-butoxycarbonyl)amino]-24-\{[6-(quinolin-4-ylamino)

 hexyl]amino\}cholane-7,12-diyl diacetate (10).According to general procedure B , alcohol $3(207.4 \mathrm{mg}, 0.3590 \mathrm{mmol})$ was transformed into aldehyde using $\operatorname{PCC}(111.4 \mathrm{mg}, 0.5170 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$, which was further transformed into $\mathbf{1 0}$ using amine $\mathbf{A Q 9}^{2}(115.4 \mathrm{mg}, 0.4742 \mathrm{mmol}), \mathrm{NaBH}_{4}(23.9 \mathrm{mg}, 0.632$ mmol) and $\mathrm{MeOH}(5 \mathrm{~mL})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{Hex} / \mathrm{EtOAc}=1 / 1 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $9 / 1 \rightarrow \mathrm{MeOH}$, $\mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat. $)=9 / 1 \rightarrow 6 / 4$; flash, Biotage $\mathrm{SP} 1, \mathrm{RP}$ column $25+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $75 / 25 \rightarrow \mathrm{MeOH})$. Final product 10 was obtained as a pale yellow oil ($157 \mathrm{mg}, 54 \%$). $[\alpha]$ ${ }_{D}^{20}=+22.6(\mathrm{MeOH})$. IR (ATR): 3325w, 2932s, $2862 \mathrm{~m}, 1725 \mathrm{~s}, 1619 \mathrm{w}, 1582 \mathrm{~s}, 1540 \mathrm{~m}, 1460 \mathrm{w}$, $1376 \mathrm{~m}, 1342 \mathrm{w}, 1249 \mathrm{~s}, 1172 \mathrm{w}, 1127 \mathrm{w}, 1065 \mathrm{w}, 1024 \mathrm{w}, 965 \mathrm{w}, 885 \mathrm{w}, 810 \mathrm{w}, 765 \mathrm{w}, 736 \mathrm{w}, 608 \mathrm{w}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.57-8.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.98\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right)$, $7.73\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.65-7.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right), 7.45-7.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.44-6.40$ (m, 1H, H-C($\left.3^{\prime}\right)$), 5.10-5.06 (m, 1H, H-C(12)), 5.05-5.00 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 4.92-4.87 (m, 1H, H-C(7)), 4.44 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 3.36-3.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right.$ and $\left.\mathrm{H}-\mathrm{C}(3)\right)$, 2.65$2.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}\right.$and $2 \mathrm{H}-\mathrm{C}(24)$), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right.$), $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.45\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}\right.$-steroid), $1.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.40-0.98\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 170.39,170.27,155.14,151.02,149.60$, $148.40,129.96,128.90,124.50,119.12,118.66,98.72,79.17,75.48,70.85,53.38,50.58,49.96$,
$47.40,44.95,43.35,43.14,41.51,37.68,36.38,35.47,34.82,34.21,33.31,31.28,30.07,28.85$, 28.38, 27.22, 27.12, 27.07, 26.41, 25.47, 22.78, 22.66, 21.58, 21.36, 17.88, 12.16. HRMS: m / z 803.56820 corresponds to molecular formula $\mathrm{C}_{48} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm 0.11).

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)-3-[($ Tert-butoxycarbonyl)amino]-24-(\{6-[(7-chloroquinolin-4-

 yl)amino|hexyl\}amino)cholane-7,12-diyl diacetate (11).According to general procedure B, alcohol $3(121.4 \mathrm{mg}, 0.2101 \mathrm{mmol})$ was transformed into aldehyde using PCC ($65.2 \mathrm{mg}, 0.302 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, which was further transformed into 11 using amine AQ6 (82.2 mg, 0.296 mmol), $\mathrm{NaBH}_{4}(15.0 \mathrm{mg}, 0.39 \mathrm{mmol})$ and $\mathrm{MeOH}(4$ mL). The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{Hex} / \mathrm{EtOAc}=1 / 1 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $9 / 1 \rightarrow \mathrm{MeOH}, \mathrm{EtOAc} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat. $)=$ 9/1; flash, Biotage SP1, RP column $25+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $75 / 25 \rightarrow \mathrm{MeOH}$). Final product 11 was obtained as a colorless oil ($103 \mathrm{mg}, 58 \%) .[\alpha]_{\mathrm{D}}^{20}=+87.5(\mathrm{MeOH})$. IR (ATR): $3344 \mathrm{w}, 3054 \mathrm{w}, ~ 2933 \mathrm{~s}, 2862 \mathrm{~m}, 1724 \mathrm{~s}, 1610 \mathrm{w}, 1580 \mathrm{~s}, 1536 \mathrm{w}, 1451 \mathrm{w}, 1371 \mathrm{~m}, 1331 \mathrm{w}, 1249 \mathrm{~s}$, $1171 \mathrm{~m}, 1065 \mathrm{w}, 1023 \mathrm{w}, 965 \mathrm{w}, 884 \mathrm{w}, 851 \mathrm{w}, 808 \mathrm{w}, 737 \mathrm{~m}, 703 \mathrm{w}, 613 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.53\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.97-7.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-$ $\left.\mathrm{C}\left(5^{\prime}\right)\right), 7.37-7.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.41\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12))$, 5.04-4.99 (m, 1H, H-N, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.92-4.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 4.43(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N})$, 3.35-3.22 (m, 3H, ArNHCH 2^{-}and $\mathrm{H}-\mathrm{C}(3)$), 2.65-2.48 (m, $4 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}$ and $2 \mathrm{H}-\mathrm{C}(24)$), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.45(\mathrm{~m}, 23 \mathrm{H}$, H-steroid), $1.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41-0.98\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ $\mathrm{C}(10)), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 170.40,170.28,155.12,152.04,149.64,149.14,134.77,128.86,125.20,120.78,117.08$,
99.04, 79.19, 75.49, 70.86. 50.60, 49.96, 47.41, 44.96, 43.36, 43.17, 41.52, 37.69, 36.39, 35.47, $34.83,34.22,33.32,31.29,30.09,28.84,28.81,28.40,27.24,27.11,27.05,26.44,25.48,22.79$, 22.67, 21.60, 21.37, 17.90, 12.17. HRMS: $m / z 837.52879$ corresponds to molecular formula $\mathrm{C}_{48} \mathrm{H}_{73} \mathrm{ClN}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm -0.42).

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)-3-[($ Tert-butoxycarbonyl)amino]-24-\{methyl[4-(quinolin-4-

 ylamino)butyl]amino\} cholane-7,12-diyl diacetate (12).Compound 12 was prepared by procedure D , using $4(340.0 \mathrm{mg}, 0.4387 \mathrm{mmol}), 37 \%$ aqueous formaldehyde ($65 \mu \mathrm{~L}, 0.88 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(30.0 \mathrm{mg}, 0.219 \mathrm{mmol}), \mathrm{NaHB}_{3} \mathrm{CN}(28.0 \mathrm{mg}, 0.439$ mmol) and $\mathrm{MeOH}(5 \mathrm{~mL}+5 \mathrm{~mL})$. Final product $\mathbf{1 2}$ was obtained as colorless foam (300 mg , 87\%). M.p. $=85-86^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+60.0(\mathrm{MeOH})$. IR (ATR): 3356w, 2939s, 2865m, 2789w, $1729 \mathrm{~s}, 1711 \mathrm{~s}, 1582 \mathrm{~s}, 1541 \mathrm{~m}, 1444 \mathrm{w}, 1372 \mathrm{~m}, 1308 \mathrm{w}, 1239 \mathrm{~s}, 1170 \mathrm{~m}, 1123 \mathrm{w}, 1063 \mathrm{w}, 1024 \mathrm{~m}$, $763 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.59-8.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 8.05-7.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.\mathrm{C}\left(8^{\prime}\right)\right)$, 7.81-7.75 (m, 1H, H-C($\left.\left.5^{\prime}\right)\right), 7.65-7.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right)$, 7.44-7.36 (m, 1H, H-C(6')), 6.426.37 (m, 1H, H-C(3')), 5.94 (bs, 1H, H-N, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.10-5.06 (m, 1H, H-C(12)), 4.92-4.86 (m, 1H, H-C(7)), $4.54(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 3.34-3.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right.$ and $\left.\mathrm{H}-\mathrm{C}(3)\right)$, 2.442.39 (m, 2H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-), 2.36-2.30 (m, $2 \mathrm{H}-\mathrm{C}(24)$), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}$), 2.07 (s , $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.03$ (s, 3H, $\left.\mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.45$ (m, 19H, H-steroid), 1.44 (s, $9 \mathrm{H},-$ NHCOOC $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.40-0.97$ (m, $9 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.83-0.80(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 170.36, 170.26, 155.16, $150.87,150.02,148.24,129.67,128.90,124.29,119.71,118.78,98.52,79.13,75.45,70.83$, 58.11, 57.00, 53.37, 50.71, 47.57, 44.98, 43.35, 43.24, 42.44, 41.52, 37.66, 36.35, 35.47, 34.94, 34.20, 33.54, 31.26, 28.86, 28.38, 27.24, 26.63, 25.48, 25.19, 23.56, 22.76, 22.66, 21.57, 21.33,
17.91, 12.16. HRMS: $m / z 789.55095$ corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm -1.91); m/z 395.27983 corresponds to molecular formula $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}_{2}{ }^{2+}$ (error in ppm $0.09)$.

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-[(tert-butoxycarbonyl)amino]-24-\{methyl[4-(quinolin-4-

ylamino)pentyl]amino\}cholane-7,12-diyl diacetate (13) (Mixture of diastereomers).

Compound 13 was prepared by procedure D, using $6(223.0 \mathrm{mg}, 0.2826 \mathrm{mmol}), 37 \%$ aqueous formaldehyde ($42 \mu \mathrm{~L}, 0.56 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(19.3 \mathrm{mg}, 0.141 \mathrm{mmol}), \mathrm{NaHB}_{3} \mathrm{CN}(17.8 \mathrm{mg}, 0.283$ $\mathrm{mmol})$ and $\mathrm{MeOH}(4 \mathrm{~mL}+4 \mathrm{~mL})$. Final product $\mathbf{1 3}$ was obtained as mixture of diastereomers. Colorless foam (186 mg, 82\%). M.p. $=85-87^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+32.8(\mathrm{MeOH})$. IR (ATR): 3354 m , 2939s, $2869 \mathrm{~m}, 2789 \mathrm{~m}, 1715 \mathrm{~s}, 1639 \mathrm{w}, 1579 \mathrm{~s}, 1534 \mathrm{~s}, 1447 \mathrm{~m}, 1374 \mathrm{~s}, 1241 \mathrm{~s}, 1168 \mathrm{~m}, 1063 \mathrm{w}$, $1022 \mathrm{~m}, 965 \mathrm{w}, 897 \mathrm{w}, 857 \mathrm{w}, 809 \mathrm{w}, 763 \mathrm{w}, 612 \mathrm{w}, 533 \mathrm{w}, 478 \mathrm{w}, 426 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.56-8.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 8.01-7.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.77-7.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, 7.64-7.59 (m, 1H, H-C($\left.7^{\prime}\right)$), 7.42-7.38 (m, 1H, H-C($\left.\left.6^{\prime}\right)\right), ~ 6.45-6.41\left(m, 1 H, H-C\left(3^{\prime}\right)\right), 5.38-5.31$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.10-5.06 (m, 1H, H-C(12)), 4.91-4.87 (m, 1H, H-C(7)), 4.55 and 4.45 (bs and bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$), 3.77-3.68 (m, $1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right)$) , 3.28 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)$), 2.40-2.34 (m, $\left.2 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 2.32-2.25 (m, $2 \mathrm{H}-\mathrm{C}(24)$), 2.20-2.17 (m, 3 H , $\mathrm{CH}_{3}-\mathrm{N}$), 2.09 and 2.07 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.05 and 2.03 (s and s, overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.00-1.46(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}$-steroid), 1.44 (s and s , overlap, $9 \mathrm{H},-$ $\left.\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.40-1.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}\right.$-steroid), 1.32 (d, $3 \mathrm{H}, J=6.4$, $\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-$), 1.27$0.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70$ and 0.69 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 170.37, 170.27, 155.11, $150.80,149.05,148.44,129.78,128.92,124.32,124.30,119.48,119.44,118.82,118.81,98.86$,
$79.13,75.47,70.85,58.27,58.20,57.47,57.34,50.74,48.18,48.12,47.61,47.52,44.97,43.38$, 43.32, 42.33, 42.30, 41.52, 37.68, 37.66, 36.37, 35.47, 34.92, 34.89, 34.44, 34.22, 34.20, 33.50, $33.45,31.26,28.87,28.83,28.39,27.24,25.48,23.86,23.75,23.70,23.59,22.76,22.67,21.59$, 21.57, 21.35, 21.34, 20.22, 20.20, 17.91, 12.17, 12.15. HRMS: $m / z 803.56681$ corresponds to molecular formula $\mathrm{C}_{48} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{H}^{+}$(error in ppm -1.62).

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-Amino-24-\{[4-(quinolin-4-ylamino)butyl]amino\}cholane-7,12-diyl diacetate (14).

Compound 14 was prepared by procedure C using $\mathbf{4}(178 \mathrm{mg}, 0.230 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5,5$ mL). The product was purified using column chromatography (flash, Biotage SP1, RP column $25+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $75 / 25 \rightarrow \mathrm{MeOH}$). Final product 14 was obtained as a colorless foam ($75 \mathrm{mg}, 48 \%$). M.p. $=67-70^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+50.0(\mathrm{MeOH})$. IR (ATR): 3279 w , 2937s, 2864m, 1727s, 1582s, 1543w, 1440w, 1377m, 1342w, 1248s, 1126w, 1024w, 964w, 806w, 766w, 733w cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.56-8.52 (m, 1H, H-C(2')), 7.98-7.95 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.79-7.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.64-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.\mathrm{C}\left(6^{\prime}\right)\right)$, 6.41-6.38 (m, 1H, H-C(3')), $5.79\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.10-5.06(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)), 4.91-4.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 3.36-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 2.72-2.67(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, $2.65-2.52$ (m, $3 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(24)$ and $\left.\mathrm{H}-\mathrm{C}(3)\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\right.$ $\mathrm{C}(12)), 2.07$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.05-0.95\left(\mathrm{~m}, 31 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right)$, 0.84-0.80 (m, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ $170.64,170.61,151.01,149.84,148.38,129.80,128.84,124.28,119.57,118.81,98.55,75.50$, $70.90,51.62,50.53,49.27,47.48,44.98,43.38,43.15,41.48,39.48,37.74,35.50,34.89,34.34$, $33.34,31.42,31.22,28.96,27.84,27.24,26.48,26.39,25.55,22.77,21.62,21.46,17.86,12.17$.

HRMS: $m / z 675.48325$ corresponds to molecular formula $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$(error in ppm -1.68); $m / z 338.24629$ corresponds to molecular formula $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 1.36). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 9.070, area 98.83%; method B: RT 7.811, area 96.95%.

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-Amino-24-\{methyl[4-(quinolin-4-ylamino)butyl]amino\}cholane-7,12-diyl diacetate (15).

Compound 15 was prepared by procedure C , using $12(230 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(8$ mL). The product was purified using column chromatography (flash, Biotage SP1, RP column $25+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $75 / 25 \rightarrow \mathrm{MeOH}$). Final product 15 was obtained as a colorless foam (110 mg, 56\%). M.p. $=77-80^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+59.1(\mathrm{MeOH})$. IR (ATR): 3308 m , 2946s, 2867s, 2795m, 1730s, 1664w, 1642w, 1619w, 1583s, 1544m, 1460m, 1377s, 1343m, 1246s, 1156w, 1126w, 1026m, 966w, 767m cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.53$ (d, 1H, J $\left.=5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.99-7.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.79-7.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.\mathrm{C}\left(7^{\prime}\right)\right)$, 7.42-7.37 (m, 1H, H-C(6')), $6.39\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.94$ (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.10-5.05 (m, 1H, H-C(12)), 4.90-4.85 (m, 1H, H-C(7)), 3.34-3.28 (m, $2 \mathrm{H}, \mathrm{ArNHCH} 2_{2}$), 2.64-2.55 (m, 1H, H-C(3)), 2.43-2.38 (m, $2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 2.352.30 (m, 2H-C(24)), $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\right.$ $\mathrm{C}(7)), 2.05-0.94\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right)$, 0.70 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 170.64,150.89,150.02,148.25$, $129.65,128.89,124.26,119.70,118.80,98.53,75.50,70.90,58.12,57.11,51.61,47.64,44.99$, $43.35,43.24,42.38,41.47,39.44,37.73,35.50,34.98,34.33,33.56,31.41,31.18,28.95,27.24$, 26.66, 25.54, 25.26, 23.66, 22.76, 21.63, 21.43, 17.88, 12.16. HRMS: $m / z 689.49878$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$(error in $\mathrm{ppm}-1.82$); m/z 345.25311
corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm -1.56). HPLC purity ($\lambda=330$ $\mathrm{nm})$: method A: RT 7.549, area 95.60%; method B: RT 7.483, area 97.51%.

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-Amino-24-(\{4-[(7-chloroquinolin-4-yl)amino]butyl\}amino)cholane-7,12-

 diyl diacetate (16).Compound 16 was prepared by procedure C using $5(590.0 \mathrm{mg}, 0.7288 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$. Final product 16 was obtained as a colorless foam (502.4 mg, 97\%). M.p. $=79-82^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{20}=+78.2(\mathrm{MeOH}) . \operatorname{IR}(\mathrm{ATR}): 3554 \mathrm{w}, 3401 \mathrm{w}, 3329 \mathrm{w}, 2935 \mathrm{~s}, 2863 \mathrm{~m}, 1941 \mathrm{w}, 1727 \mathrm{~s}, 1647 \mathrm{w}$, 1610w, 1580s, 1542w, 1448w, 1374w, 1332w, 1246m, 1134w, 1078w, 1026w, 969w, 930w, 891w, 848w, 809w, 773w, 721w, 570w, 537w, 455w, 423w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.53-8.49 (m, 1H, H-C($\left.\left.2^{\prime}\right)\right), 7.96-7.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.72\left(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, 7.34-7.30 (m, 1H, H-C($\left.\left.6^{\prime}\right)\right), 6.38-6.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 6.03\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.10-$ 5.06 (m, 1H, H-C(12)), 4.91-4.86 (m, 1H, H-C(7)), 3.33-3.27 (m, 2H, ArNHCH ${ }_{2}$), 2.73-2.68 (m, $2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$) , 2.65-2.53 (m, 3H, $2 \mathrm{H}-\mathrm{C}(24)$ and $\left.\mathrm{H}-\mathrm{C}(3)\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\right.$ $\mathrm{C}(12)), 2.07$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right)$, 2.06-1.95 (m, 31H, H-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right)$, $0.82\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ $170.65,170.62,152.06,149.96,149.17,134.65,128.70,124.88,121.38,117.30,98.83,75.51$, $70.91,51.64,50.52,49.14,47.54,45.01,43.40,43.18,41.50,39.51,37.76,35.51,34.95,34.36$, $33.36,31.43,31.25,28.98,27.85,27.26,26.53,26.27,25.58,22.78,21.63,21.47,17.88,12.19$. HRMS: $m / z 709.44393$ corresponds to molecular formula $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$(error in ppm -2.08). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 9.189, area 95.02%; method B: RT 7.825 , area 97.26\%.

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-amino-24-\{[4-(quinolin-4-ylamino)pentyl]amino\}cholane-7,12-diyl diacetate (17) (Mixture of diastereomers).

Compound 17 was prepared by procedure C using $\mathbf{6}(150 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5$ mL). Final product 17 was obtained as mixture of diastereomers. Colorless foam (92.9 mg , $71 \%)$. M.p. $=82-83{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+31.5(\mathrm{MeOH})$. IR (ATR): 3478w, 3275m, 3190m, 3118m, 3078m, 2930s, 2861s, 1725s, 1653w, 1538s, 1496w, 1445m, 1377s, 1342m, 1154w, 1025m, $963 \mathrm{w}, 892 \mathrm{w}, 810 \mathrm{w}, 765 \mathrm{~m}, 656 \mathrm{w}, 611 \mathrm{w}, 532 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.53(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.98-7.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.74\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right), 7.42-7.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.41\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$, 5.31-5.26 (m, 1H, H-N, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.09-5.06 (m, 1H, H-C(12)), 4.90-4.86 (m, 1H, H-C(7)), 3.76-3.69 (m, $1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right)-$), 2.67-2.49 (m, $5 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - and $2 \mathrm{H}-\mathrm{C}(24)$ and $\mathrm{H}-$ $\mathrm{C}(3))$, 2.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{COO}_{3} \mathrm{CO}(12)$), 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)$), 2.04-1.33 (m, 25H, H-steroid), $1.32\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 1.28-0.96\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right)$, $0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71$ and 0.70 (s and s, overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $170.64,170.62,150.94,148.89,148.56,129.90,128.85,124.28,119.37$, $118.81,98.81,75.50,70.90,51.63,50.54,50.51 ; 49.62,48.16,47.44,44.97,43.37,41.49,39.50$, $37.74,35.50,34.86,34.84,34.35,34.18,33.31,31.42,31.23,28.96,27.23,26.54,26.52,26.45$, $25.55,22.77,21.62,21.47,20.23,17.85,12.16$. HRMS: $m / z 345.25444$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 2.27). HPLC purity: method $\mathrm{A}(\lambda=254 \mathrm{~nm}$): RT 8.644, area 95.76%; method $\mathrm{B}(\lambda=330 \mathrm{~nm})$: RT 7.455, area 95.83\%.

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-amino-24-\{methyl[4-(quinolin-4-ylamino)pentyl]amino\}cholane-7,12-diyl

 diacetate (18) (Mixture of diastereomers).Compound 18 was prepared by procedure C using $\mathbf{1 3}(90 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL). The product was purified using column chromatography (flash, Biotage SP1, RP column $25+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $\left.8 / 2 \rightarrow \mathrm{MeOH}\right)$. Final product 18 was obtained as mixture of diastereomers. Colorless foam (47 mg, 60\%). M.p. $=70-72^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+39.3(\mathrm{MeOH}) . \mathrm{IR}$ (ATR): $3353 \mathrm{w}, 3278 \mathrm{w}, 3064 \mathrm{w}, 2942 \mathrm{~s}, 2863 \mathrm{~m}, 2790 \mathrm{w}, 1725 \mathrm{~s}, 1579 \mathrm{~s}, 1537 \mathrm{~m}, 1448 \mathrm{w}, 1376 \mathrm{~m}$, 1341w, 1244s, 1152w, 1023w, $765 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.58-8.49 (m, 1H, H$\left.\mathrm{C}\left(2^{\prime}\right)\right), 8.00-7.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.76-7.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.64-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)\right), 7.43-$ $7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right)$, 6.45-6.40(m, 1H, H-C($\left.3^{\prime}\right)$), 5.33-5.26 (m, 1H, H-N, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.07 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)$), 4.90-4.85 (m, 1H, H-C(7)), 3.77-3.68 (m, 1H, $\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-$), 2.61 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3))$, 2.39-2.33 (m, 2H, $\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 2.31-2.24 (m, $2 \mathrm{H}-$ $\mathrm{C}(24)), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.04-$ $1.34\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{H}\right.$-steroid), 1.33-1.30 (m, 3H, $\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-$), 1.26-0.94 (m, $6 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.82-0.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70$ and 0.69 (s and s , overlap, 3 H , $\left.\mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 170.71,150.85,149.01,148.44,129.77,128.92$, $124.30,119.44,118.80,98.86,75.52,70.93,58.26,57.50,51.59,48.18,48.15,47.62,44.98$, $43.35,42.29,41.45,39.39,37.71,35.48,34.95,34.48,34.34,33.50,31.40,31.15,28.95,27.24$, 25.54, 23.89, 23.88, 23.73, 22.78, 21.67, 21.48, 20.22, 17.87, 12.17. HRMS: $m / z 345.25306$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm -1.72); m/z 230.50462 corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{3}{ }^{3+}$ (error in ppm -1.04). HPLC purity ($\lambda=330$ $\mathrm{nm})$: method A: RT 8.574, area 95.26%; method B: RT 6.961, area 98.08%.

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-amino-24-\{[1-methyl-4-(quinolin-4-ylamino)butyl]amino\}cholane-7,12-

 diyl diacetate (19) (Mixture of diastereomers).Compound 19 was prepared by procedure C using $7(390 \mathrm{mg}, 0.49 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(17$ mL). Final product was obtained as mixture of diastereomers. Colorless foam ($319 \mathrm{mg}, 94 \%$). M.p. $=75-77{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+45.6(\mathrm{MeOH})$. IR (ATR): 3265m, 2938s, 2865s, $1727 \mathrm{~s}, 1623 \mathrm{w}$, $1583 \mathrm{~s}, 1543 \mathrm{~m}, 1505 \mathrm{w}, 1442 \mathrm{~m}, 1377 \mathrm{~s}, 1342 \mathrm{~m}, 1247 \mathrm{~s}, 1154 \mathrm{w}, 1127 \mathrm{w}, 1082 \mathrm{w}, 1026 \mathrm{~m}, 964 \mathrm{w}$, $890 \mathrm{w}, 809 \mathrm{w}, 766 \mathrm{~m}, 609 \mathrm{w}, 540 \mathrm{w}, 423 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.54(\mathrm{~d}, 1 \mathrm{H}, J=$ 5.2, H-C(2')), $7.97\left(\mathrm{~d}, 1 \mathrm{H}, J=8.5, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.76\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.\mathrm{C}\left(7^{\prime}\right)\right), 7.43-7.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.62$ (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 5.09-5.05 (m, 1H, H-C(12)), 4.90-4.86 (m, 1H, H-C(7)), 3.38-3.25 (m, $\left.2 \mathrm{H}, \mathrm{ArNHCH} \mathrm{N}_{2}\right), 2.77-2.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-\right.$), 2.67-2.47 (m, 3H, $2 \mathrm{H}-\mathrm{C}(24)$ and $\mathrm{H}-\mathrm{C}(3)$), 2.10 and 2.10 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)$), 2.05-1.20 (m, 28H, H-steroid), $1.09\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$) , 1.07-0.99 (m, $3 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70$ and 0.69 (s and s, overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 170.62, 170.60, 150.98, 149.77, $148.36,129.81,128.85,124.34,119.47,118.76,98.58,75.49,70.89,52.72,51.60,47.67,47.60$, $47.44,44.95,43.44,43.35,41.46,39.47,37.72,35.48,34.84,34.64,34.58,34.32,33.39,33.36$, $31.40,31.20,28.94,27.21,26.77,25.52,25.08,22.74,21.60,21.44,20.41,20.38,17.83,12.14$. HRMS: $m / z 689.49852$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$(error in ppm -2.19); $m / z 345.25324$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm -1.21). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.059, area 98.72%; method B: RT 7.502, area 97.72%.

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-amino-24-(\{4-[(7-chloroquinolin-4-yl)amino)pentyl\}amino)cholane-7,12-

 diyl diacetate (20) (Mixture of diastereomers).Compound 20 was prepared by procedure C using $\mathbf{8}(130 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(11$ $\mathrm{mL})$. Final product 20 was obtained as mixture of diastereomers. Colorless foam (110.5 mg , 97\%). M.p. $=85-87^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+44.8(\mathrm{MeOH}) . \mathrm{IR}(\mathrm{ATR}): 3301 \mathrm{w}, 2937 \mathrm{~s}, 2864 \mathrm{~m}, 2351 \mathrm{w}$, $2327 \mathrm{w}, 1727 \mathrm{~s}, 1610 \mathrm{w}, 1578 \mathrm{~s}, 1538 \mathrm{w}, 1451 \mathrm{w}, 1377 \mathrm{~m}, 1334 \mathrm{w}, 1246 \mathrm{~s}, 1154 \mathrm{w}, 1080 \mathrm{w}, 1024 \mathrm{w}$, 964w, 878w, 851w, 811w, 766w, 607w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.50(\mathrm{~d}, 1 \mathrm{H}, J=$ 5.4, H-C(2')), 7.94-7.92 (m, 1H, H-C($\left.8^{\prime}\right)$), 7.69 (d, 1H, $\left.J=9.0, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.\mathrm{C}\left(6^{\prime}\right)\right), 6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.4, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.51-5.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.09-5.06$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)), 4.91-4.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7))$, 3.74-3.67(m, $\left.1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right)$, 2.67-2.62 (m, $\left.2 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.62-2.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)$ and $2 \mathrm{H}-\mathrm{C}(24)), 2.11(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.05-1.32(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}$-steroid), $1.31(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.4, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 1.26-0.99\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.4, $\mathrm{CH}_{3}-\mathrm{C}(20)$), 0.72 and 0.71 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 170.64,170.62,151.97,149.34,149.00,134.67,128.75,124.89,121.17,117.30,99.11$, $75.70,70.90,51.63,50.53,50.50,49.48,48.27,47.49,44.98,43.38,41.49,39.50,37.74,35.50$, $34.90,34.87,34.35,34.05,33.31,31.42,31.24,28.97,27.24,26.47,25.56,22.77,21.62,21.47$, 20.13, 17.85, 12.17. HRMS: $m / z 723.45837$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$ (error in ppm -3.72). HPLC purity: method C $(\lambda=330 \mathrm{~nm})$: RT 10.367, area 95.87%; method D $(\lambda=254 \mathrm{~nm})$: RT 8.879, area 95.63%.

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-Amino-24-(\{4-[(7-chloroquinolin-4-yl)amino]-1-methylbutyl\}amino)cholane-7,12-diyl diacetate (21) (Mixture of diastereomers).

Compound 21 was prepared by procedure C using $9(120 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(11$ mL). Final product was obtained as mixture of diastereomers. Colorless foam ($75.7 \mathrm{mg}, 72 \%$). M.p. $=75-77{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+46.9(\mathrm{MeOH})$. IR (ATR): 3284w, 2931s, 2860s, 1725s, 1652w, 1610w, 1578s, 1539m, 1449m, 1373m, 1331w, 1242s, 1154w, 1135w, 1078w, 1022w, 963w, $937 \mathrm{w}, 895 \mathrm{w}, 849 \mathrm{w}, 806 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.51\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$, 7.96-7.92 (m, 1H, H-C($\left.\left.8^{\prime}\right)\right), ~ 7.72-7.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.35-7.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.38(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.79$ (bs, 1H, H-N exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)), 4.90-$ $4.86(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{H}-\mathrm{C}(7)), \quad 3.36-3.23 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{ArNHCH}_{2}-\right), \quad 2.76-2.69 \quad(\mathrm{~m}, \quad 1 \mathrm{H}$, ArNHCH ${ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-), 2.67-2.47 (m, 3H, 2H-C(24) and $\left.\mathrm{H}-\mathrm{C}(3)\right), 2.11$ and 2.10 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)$), 2.05-1.20 (m, 28H, H-steroid), 1.09 (d, $3 \mathrm{H}, J=6.4, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$), 1.07-0.97 (m, $3 \mathrm{H}, \mathrm{H}$-steroid), 0.90 and 0.90 (s and s, overlap, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)$), $0.80\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71$ i 0.70 (s and s, overlap, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 170.65,152.04,149.88,149.15,134.70$, $128.72,124.99,121.23,117.25,98.90,75.51,70.91,52.64,51.63,47.65,47.57,47.52,44.99$, $43.50,43.39,41.49,39.50,37.75,35.51,34.90,34.69,34.61,34.35,33.42,33.39,31.43,31.23$, 28.97, 27.24, 26.87, 26.84, 25.56, 24.95, 22.77, 21.63, 21.47, 20.45, 20.42, 17.86, 12.18. HRMS: $m / z 723.45968$ corresponds to molecular formula $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{ClO}_{4} \mathrm{H}^{+}$(error in ppm -1.91). HPLC purity $(\lambda=330 \mathrm{~nm})$: method C: RT 10.536, area 95.38%; method D: RT 8.430, area 95.36%.

(3 $\alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-Amino-24-\{[6-(quinolin-4-ylamino)hexyl]amino\}cholane-7,12-diyl diacetate (22).

Compound 22 was prepared by procedure C using $\mathbf{1 0}(170 \mathrm{mg}, 0.21 \mathrm{mmol})$ and TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5$ mL). The product was purified using column chromatography (flash, Biotage SP1, RP column $25+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $\left.8 / 2 \rightarrow \mathrm{MeOH}\right)$. Final product 22 was obtained as a colorless foam (112.8 mg, 76\%). M.p. $=72-75^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+56.4(\mathrm{MeOH}) . \operatorname{IR}(\mathrm{ATR}): 3294 \mathrm{w}, 3061 \mathrm{w}$, 2933s, $2860 \mathrm{~m}, 1726 \mathrm{~s}, 1582 \mathrm{~s}, 1542 \mathrm{w}, 1441 \mathrm{w}, 1376 \mathrm{~m}, 1341 \mathrm{w}, 1247 \mathrm{~s}, 1156 \mathrm{w}, 1125 \mathrm{w}, 1084 \mathrm{w}$, 1023w, 964w, 891w, 808w, 767w, 734w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.55(\mathrm{~d}, 1 \mathrm{H}, J=$ 5.2, H-C(2')), 8.00-7.95 (m, 1H, H-C(8')), 7.74 (d, 1H, $\left.J=7.8, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, 7.64-7.60 (m, 1H, H$\left.\mathrm{C}\left(7^{\prime}\right)\right), 7.44-7.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.42\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}-\mathrm{C}(12)$), 4.90-4.86 (m, 1H, H-C(7)), 3.34-3.28 (m, 2H, ArNHCH 2^{-}), 2.63-2.49 (m, 5H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - and $2 \mathrm{H}-\mathrm{C}(24)$ and $\left.\mathrm{H}-\mathrm{C}(3)\right), 2.11(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), 2.07 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.05-1.99$ (m, $35 \mathrm{H}, \mathrm{H}$-steroid), 0.90 (s, 3H, $\mathrm{CH}_{3}-$ $\mathrm{C}(10)), 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): $170.62,170.59,150.96,149.59,148.34,129.86,128.85,124.44,119.15,118.63,98.67$, $75.48,70.87,51.59,50.53,49.90,47.35,44.92,43.35,43.09,41.45,39.45,37.70,35.47,34.79$, $34.30,33.26,31.40,31.19,30.01,28.93,28.79,27.18,27.08,27.02,26.37,25.52,22.74,21.59$, 21.43, 17.82, 12.12. HRMS: $m / z 703.51463$ corresponds to molecular formula $\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$ (error in ppm -1.50); m/z 352.26200 corresponds to molecular formula $\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 1.49). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 9.134, area 98.86%; method B: RT 7.830, area 97.20%.

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)-3$-amino-24-(\{6-[(7-chloroquinolin-4-yl)amino]hexyl\}amino)cholane-7,12-

diyl diacetate (23).

Compound 23 was prepared by procedure C using $11(51.5 \mathrm{mg}, 0.0698 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.5 mL). Colorless foam ($41.5 \mathrm{mg}, 92 \%$). M.p. $=69-71^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}^{20}=+66.9(\mathrm{MeOH}) . \operatorname{IR}(\mathrm{ATR})$: 3284w, 2934s, 2860m, 1727s, 1610w, 1581s, 1540w, 1452w, 1376m, 1332w, 1248s, 1136w, $1080 \mathrm{w}, 1024 \mathrm{w}, 964 \mathrm{w}, 899 \mathrm{w}, 850 \mathrm{w}, 807 \mathrm{w}, 735 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.53(\mathrm{~d}$, $\left.1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.98-7.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.66\left(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.38-7.33(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.41\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.09-5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)), 5.02-4.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 4.91-4.86 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)$), 3.34-3.27 (m, $2 \mathrm{H}, \mathrm{ArNHCH}_{2}-$), 2.64-2.48 (m, $5 \mathrm{H}, \quad \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - and $2 \mathrm{H}-\mathrm{C}(24)$ and $\mathrm{H}-\mathrm{C}(3)$), 2.11 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-$ $\mathrm{C}(12)$), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)$), 2.05-0.99 (m, $35 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right.$), $0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $170.68,170.65,152.06,149.62,149.16,134.76,128.89,125.21,120.76,117.08,99.06,75.54$, $70.93,51.66,50.63,49.98,47.41,44.99,43.41,43.18,41.51,39.52,37.77,35.52,34.85,34.37$, $33.33,31.46,31.26,30.13,28.99,28.82,27.25,27.13,27.07,26.48,25.58,22.80,21.65,21.49$, 17.88, 12.18. HRMS: $m / z 737.47556$ corresponds to molecular formula $\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{H}^{+}$(error in ppm -1.56); $m / z 246.49683$ corresponds to molecular formula $\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{H}_{3}{ }^{3+}$ (error in ppm -1.04). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 9.278, area 97.57\%; method B: RT 7.853, area 97.20%.

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-Amino-24-(\{4-[(7-chloroquinolin-4-yl)amino]butyl\}amino)cholane-7,12diol (24).

$16(20.0 \mathrm{mg}, 0.0282 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL}), \mathrm{KOH}(31.6 \mathrm{mg}, 0.564 \mathrm{mmol})$ was added and the mixture was heated at $60^{\circ} \mathrm{C}$ for 5 days. The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with wather and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified using column chromatography (flash, Biotage SP1, RP column $12+\mathrm{M}$, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $7 / 3 \rightarrow \mathrm{MeOH}$). Pale yellow foam $(12 \mathrm{mg}, 68 \%)$. M.p. $=116-119{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+26.2(\mathrm{MeOH})$. IR (ATR): $3282 \mathrm{~m}, 2932 \mathrm{~s}, 2861 \mathrm{~m}$, $1609 \mathrm{w}, 1581 \mathrm{~s}, 1541 \mathrm{w}, 1453 \mathrm{~m}, 1372 \mathrm{~m}, 1333 \mathrm{w}, 1281 \mathrm{w}, 1251 \mathrm{w}, 1201 \mathrm{w}, 1136 \mathrm{w}, 1081 \mathrm{w}, 1038 \mathrm{w}$, $982 \mathrm{w}, 952 \mathrm{w}, 908 \mathrm{w}, 878 \mathrm{w}, 852 \mathrm{w}, 807 \mathrm{w}, 767 \mathrm{w}, 736 \mathrm{w}, 645 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $8.49\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.97-7.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.78\left(\mathrm{~d}, 1 \mathrm{H}, J=8.8, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.34-$ $7.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 6.44(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 6.36\left(\mathrm{~d}, 1 \mathrm{H}, J=5.4, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(12)), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 3.34-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right)$, 2.75-2.67 (m, 3 H , $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ and $\left.\mathrm{H}-\mathrm{C}(3)\right), 2.65-2.51(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(24)$ and $2 \mathrm{H}-\mathrm{O}), 2.00-1.00(\mathrm{~m}$, $31 \mathrm{H}, \mathrm{H}$-steroid), $0.98-0.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}-\mathrm{C}(10)\right), 0.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ $\mathrm{C}(13)) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 152.03,150.24,149.17,134.66,128.53,124.84,121.90$, $117.48,98.82,72.80,68.13,51.72,50.46,49.10,46.90,46.32,43.26,41.94,41.89,39.60,35.87$, $35.44,34.68,34.58,33.42,28.29,27.73,27.55,26.59,26.36,26.19,23.21,22.67,17.71,12.48$. HRMS: $m / z 625.42214$ corresponds to molecular formula $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm -3.42). HPLC purity: method $\mathrm{C}(\lambda=330 \mathrm{~nm})$: RT 8.685 , area 97.90%; method $\mathrm{D}(\lambda=254 \mathrm{~nm})$: RT 8.713, area 96.63%.

7-Chloroquinolin-4-amine (25). ${ }^{12}$

4,7-Dichloroquinoline ($2.00 \mathrm{~g}, 10.1 \mathrm{mmol}$) was dissolved in phenol $(9.50 \mathrm{~g}, 101 \mathrm{mmol})$ and the mixture was heated at $110{ }^{\circ} \mathrm{C} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(4.85 \mathrm{~g}, 50.5 \mathrm{mmol})$ was added in portions, and stirring continued for 3 h at $165^{\circ} \mathrm{C}$. After cooling to room temperature, diethyl ether was added $(150 \mathrm{~mL})$ and organic layer washed with 10% aqueous $\mathrm{NaOH}(3 \times 50 \mathrm{~mL})$. The solvent was removed under the reduced pressure. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9 / 1$, MeOH). Final product $\mathbf{2 5}$ was obtained as beige powder ($1.44 \mathrm{~g}, 80 \%$). M.p. $=137-139{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{ATR}): 3443 \mathrm{w}, 3321 \mathrm{~m}, 3098 \mathrm{~s}, 2788 \mathrm{w}$, 2707w, 1683w, 1656m, 1635m, 1612m, 1577s, 1505m, 1444m, 1371w, 1329m, 1285w, 1204w, $1165 \mathrm{w}, 1125 \mathrm{w}, 1107 \mathrm{w}, 1076 \mathrm{w}, 908 \mathrm{w}, 877 \mathrm{w}, 853 \mathrm{w}, 810 \mathrm{~m}, 766 \mathrm{w}, 640 \mathrm{w}, 625 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.22(\mathrm{~d}, 1 \mathrm{H}, J=5.0, \mathrm{H}-\mathrm{C}(2)), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=9.0, \mathrm{H}-\mathrm{C}(5)), 7.76-7.78$ (m, 1H, H-C(8)), 7.37-7.25 (m, 1H, H-C(6)), $6.57(\mathrm{~d}, 1 \mathrm{H}, J=5.6, \mathrm{H}-\mathrm{C}(3)) .{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 154.44,151.80,149.85,136.56,127.27,125.80,124.96,118.26,103.88$. HRMS: $m / z 179.03644$ corresponds to molecular formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{H}^{+}$(error in ppm -3.43).

4-Chloro- N -(7-chloroquinolin-4-yl)butanamide (26).

$25(500.0 \mathrm{mg}, 2.799 \mathrm{mmol})$ was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, triethyl amine ($0.47 \mathrm{~mL}, 3.4$ mmol) was added and the mixture was cooled in an ice bath. 4-Chlorobutanoyl chloride (0.38 $\mathrm{mL}, 3.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was slowly added to the mixture, stirring continued for 10 minutes at $0{ }^{\circ} \mathrm{C}$, and 1.5 h at r.t. The solvent was removed under the reduced pressure. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane, hexane/EtOAc gradient $9 / 1 \rightarrow 3 / 7$). The final product 26 was obtained as white crystals (707 mg , 89\%). M.p. $=89-90{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{ATR}): 3318 \mathrm{~s}, 3101 \mathrm{w}, 2963 \mathrm{w}, 2919 \mathrm{w}, 2815 \mathrm{w}, 1670 \mathrm{~s}, 1614 \mathrm{~m}$,
$1571 \mathrm{~m}, 1526 \mathrm{~s}, 1488 \mathrm{~s}, 1443 \mathrm{~m}, 1419 \mathrm{w}, 1379 \mathrm{w}, 1349 \mathrm{w}, 1323 \mathrm{~m}, 1304 \mathrm{~m}, 1275 \mathrm{w}, 1254 \mathrm{w}, 1208 \mathrm{~m}$, $1190 w, 1141 \mathrm{w}, 1107 \mathrm{w}, 1076 \mathrm{w}, 1032 \mathrm{w}, 967 \mathrm{w}, 873 \mathrm{w}, 846 \mathrm{w}, 819 \mathrm{w}, 776 \mathrm{w}, 644 \mathrm{w}, 598 \mathrm{w}, 563 \mathrm{w}$, $430 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (200 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.72(\mathrm{~d}, 1 \mathrm{H}, J=5.1, \mathrm{H}-\mathrm{C}(2)), 8.23-8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(5)$ and $\mathrm{H}-\mathrm{C}(3)), 7.96-7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 3.70(\mathrm{t}, 2 \mathrm{H}, J=6.5,-$ $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 2.79\left(\mathrm{t}, 2 \mathrm{H}, J=7.3\right.$, $\mathrm{ArNHCOCH}_{2}$-), 2.27-2.12 (m, 2H, ArNHCOCH $2 \mathrm{CH}_{2}$-). ${ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 174.21,152.96,143.98,136.96,128.42,128.25,124.85,121.02,113.83$, 97.83, 45.16, 34.72, 29.13. HRMS: $m / z 283.04012$ corresponds to molecular formula $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OH}^{+}$(error in ppm 0.63).

4-Azido- N-(7-chloroquinolin-4-yl)butanamide (27).

$26(500.0 \mathrm{mg}, 1.766 \mathrm{mmol})$ was dissolved in DMF (2 mL) in Ar atmosphere, and sodium azide was added ($459 \mathrm{~mL}, 7.06 \mathrm{mmol}$). Reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layer was washed with water and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane, hexane/EtOAc gradient 9/1 $\rightarrow 1 / 1$). Final product 27 was obtained as white powder ($383 \mathrm{mg}, 75 \%$). M.p. $=54-55^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{ATR}): 3318 \mathrm{~s}$, 2930m, 2670m, 2168w, 2101s, 1946w, 1894w, 1675s, 1613m, 1570m, 1525s, 1485s, 1443m, 1416w, 1375w, 1343w, 1303s, 1253m, 1217m, 1189m, 1161m, 1108w, 1072w, 1040w, 965w, $878 \mathrm{w}, 847 \mathrm{~m}, 817 \mathrm{w}, 764 \mathrm{w}, 642 \mathrm{w}, 617 \mathrm{w}, 559 \mathrm{w}, 475 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.80$ (d, $1 \mathrm{H}, J=5.6, \mathrm{H}-\mathrm{C}(2)), 8.32(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=5.1, \mathrm{H}-\mathrm{C}(3)), 8.09-8.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)), 7.83-7.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.51-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 3.46\left(\mathrm{t}, 2 \mathrm{H}, J=6.5,-\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.66$ ($\mathrm{t}, 2 \mathrm{H}, J=7.3, \mathrm{ArNHCOCH}_{2}-$), 2.15-1.97 (m, 2H, $\mathrm{ArNHCOCH}_{2} \mathrm{CH}_{2}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 170.95,152.18,149.24,140.47,135.46,129.20,127.34,120.95,118.62,111.74$,
$50.53,34.25,24.29$. HRMS: $m / z 290.08039$ corresponds to molecular formula $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{OH}^{+}$ (error in ppm 0.28).

4-Amino- N -(7-chloroquinolin-4-yl)butanamide (28).

Syntesis was conducted according to modified procedure from the literature. ${ }^{13} \mathbf{2 7}(382 \mathrm{mg}, 1.32$ mmol) was dissolved in THF (6 mL), $\mathrm{Ph}_{3} \mathrm{P}(380.4 \mathrm{mg}, 1.450 \mathrm{mmol})$ and water ($26 \mu \mathrm{~L}, 1.4$ mmol) was added and reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 48 h . The solvent was removed under reduced pressure. Crude product was purified using fast column chromatography (dryflash, SiO_{2}, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9 / 1, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd. $\left.)=7 / 3\right)$ and without characterizaton was used in the next reaction. Yield 230 mg (66\%). Product 28 fastly decomposes to amine $\mathbf{2 5}$ and pyrrolidin-2-one (confirmed by HRMS).

$(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)-3-[($ Tert-butoxycarbonyl)amino]-24-(\{4-[(7-chloroquinolin-4-yl)amino]-4-

 oxobutyl\}amino)cholane-7,12-diyl diacetate (29).According to general procedure B, alcohol $\mathbf{3}(68 \mathrm{mg}, 0.12 \mathrm{mmol})$ was transformed into aldehyde using PCC ($36.5 \mathrm{mg}, 0.170 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, which was further transformed into 29 using amine $28(30.0 \mathrm{mg}, 0.113 \mathrm{mmol}), \mathrm{NaBH}_{4}(6.6 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{MeOH}(3 \mathrm{~mL})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent EtOAc, EtOAc/MeOH gradient 9/1 $\rightarrow \mathrm{MeOH}$, EtOAc $/ \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat.) gradient $95 / 5 \rightarrow 8 / 2$). Final product 29 was obtained as colorless foam (42 mg, 43\%). M.p. $=80-84{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{20}=+50.5$ (MeOH). IR (ATR): 3305w, 2933m, 2866w, 1710m, 1616w, 1567w, 1526m, 1450w, 1373w, $1307 \mathrm{w}, 1240 \mathrm{~m}, 1167 \mathrm{w}, 1063 \mathrm{w}, 1022 \mathrm{w}, 965 \mathrm{w}, 881 \mathrm{w}, 850 \mathrm{w}, 822 \mathrm{w}, 768 \mathrm{w}, 675 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 10.26 (bs, $1 \mathrm{H},-\mathrm{N} H C O-$), $8.82\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 8.28(\mathrm{~d}, 1 \mathrm{H}, J=$
5.2, H-C($\left.3^{\prime}\right)$), 8.11-8.07 (m, 1H, H-C($\left.8^{\prime}\right)$), $7.90\left(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.48-7.43$ (m, 1H, H$\left.\mathrm{C}\left(6^{\prime}\right)\right), 5.10-5.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(12)), 4.92-4.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 4.41$ (bs, 1H, H-N), 3.27 (bs, 1H, $\mathrm{H}-\mathrm{C}(3))$, 2.84-2.78 (m, 2H, ArNHCOCH 2_{2}), 2.71-2.65 (m, 2H, ArNHCOCH $\mathrm{A}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.632.54 (m, 2H-C(24)), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.01-1.49(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{H}$-steroid), $1.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38-0.96\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}\right.$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ $\mathrm{C}(10)), 0.77\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 172.46,170.38,170.26,155.12,152.48,149.47,141.47,135.07,129.25,126.69,121.80$, $118.96,111.26,79.20,75.42,70.84,53.39,50.25,48.30,47.68,45.01,43.34,41.52,37.69$, 36.38, 36.27, 35.47, 35.07, 34.23, 33.32, 31.28, 28.83, 28.40, 27.27, 26.61, 25.48, 24.76, 22.77, $22.68,21.60,21.36,17.86,12.18$. HRMS: $m / z 823.47498$ corresponds to molecular formula $\mathrm{C}_{46} \mathrm{H}_{67} \mathrm{ClN}_{4} \mathrm{O}_{7} \mathrm{H}^{+}$(error in ppm -2.59); m/z 845.45727 corresponds to molecular formula $\mathrm{C}_{46} \mathrm{H}_{67} \mathrm{ClN}_{4} \mathrm{O}_{7} \mathrm{Na}^{+}$(error in ppm -2.11).

($3 \alpha, 5 \beta, 7 \alpha, 12 \alpha$)-3-Amino-24-(\{4-[(7-chloroquinolin-4-yl)amino]-4-oxobutyl\}amino)cholane-

7,12-diyl diacetate (30).

Compound 30 was prepared by procedure C using $29(40.0 \mathrm{mg}, 0.0486 \mathrm{mmol})$ and $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.3 mL). Final product 30 was obtained as colorless foam ($28 \mathrm{mg}, 80 \%$). M.p. $=65-67^{\circ} \mathrm{C}$. IR (ATR): $3287 \mathrm{w}, 2940 \mathrm{~s}, 2864 \mathrm{~m}, 1726 \mathrm{~s}, 1616 \mathrm{w}, 1567 \mathrm{w}, 1531 \mathrm{~m}, 1491 \mathrm{w}, 1446 \mathrm{w}, 1377 \mathrm{~m}, 1307 \mathrm{w}$, $1249 \mathrm{~s}, 1159 \mathrm{w}, 1120 \mathrm{w}, 1077 \mathrm{w}, 1025 \mathrm{w}, 965 \mathrm{w}, 883 \mathrm{w}, 850 \mathrm{w}, 823 \mathrm{w}, 735 \mathrm{w}, 702 \mathrm{w}, 610 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.28(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NHCO}-), 8.82\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 8.28(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=5.0, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 8.10-8.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.89\left(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}$, H-C(6')), 5.08-5.05 (m, 1H, H-C(12)), 4.90-4.87 (m, 1H, H-C(7)), 2.84-2.79 (m, 2H, ArNHCOCH 2^{-}), 2.71-2.66 (m, 2H, ArNHCOCH $\left.{ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.64-2.54(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(24)$ and $\mathrm{H}-$
$\mathrm{C}(3))$, 2.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(12)$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}-\mathrm{C}(7)\right), 2.05-0.95(\mathrm{~m}, 29 \mathrm{H}, \mathrm{H}$-steroid), $0.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(10)\right), 0.77\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6, \mathrm{CH}_{3}-\mathrm{C}(20)\right), 0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}(13)\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $172.45,170.62,152.48,149.47,141.45,135.07,129.26,126.68,121.78$, 118.94, 111.23, 75.48, 70.90, 51.65, 50.24, 48.28, 47.68, 45.04, 43.40, 41.50, 39.51, 37.76, $36.30,35.51,35.08,34.38,33.32,31.44,31.25,28.98,27.27,26.62,25.58,24.71,22.79,21.65$, 21.49, 17.83, 12.20. HRMS: $m / z 723.42255$ corresponds to molecular formula $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{H}^{+}$ (error in ppm -2.93); $m / z 362.21612$ corresponds to molecular formula $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 0.41). It must be stored under Ar atmosphere at $-20^{\circ} \mathrm{C}$, otherwise it decomposes to amine 25 and $(3 \alpha, 5 \beta, 7 \alpha, 12 \alpha)$-3-amino-24-(2-oxopyrrolidin-1-yl)cholane-7,12-diyl diacetate (confirmed by HRMS). HPLC purity $(\lambda=270 \mathrm{~nm})$: method C: RT 10.993, area 95.23%; method D: RT 9.394, area 96.81\%.

N-(7-chloroquinolin-4-yl)- N^{\prime}-[4-(5-fluoro-1-benzothiophene-3-yl)benzyl]butane-1,4-diamine

 (33).Compound $\mathbf{3 3}$ was prepared by procedure E, using aldehyde $\mathbf{3 1}^{2}(93.2 \mathrm{mg}, 0.364 \mathrm{mmol})$, amine AQ4 (136.3 mg, 0.5458 mmol), glac. $\mathrm{AcOH}(31 \mu \mathrm{~L}, 0.54 \mathrm{mmol}), \mathrm{NaBH}_{4}(82.6 \mathrm{mg}, 2.18 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane/EtOAc gradient $1 / 1 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95 / 5 \rightarrow$ $\mathrm{MeOH})$. Final product $\mathbf{3 3}$ was obtained as a white foam ($99.1 \mathrm{mg}, 56 \%$). M.p. $=112-114{ }^{\circ} \mathrm{C}$. IR (ATR): $3266 \mathrm{~m}, 3068 \mathrm{~m}, 2932 \mathrm{~m}, 2854 \mathrm{~m}, 2565 \mathrm{w}, 1608 \mathrm{~m}, 1578 \mathrm{~s}, 1535 \mathrm{~m}, 1490 \mathrm{w}, 1471 \mathrm{w}, 1435 \mathrm{~m}$, $1367 \mathrm{~m}, 1331 \mathrm{~m}, 1280 \mathrm{w}, 1249 \mathrm{~m}, 1195 \mathrm{~m}, 1135 \mathrm{w}, 1114 \mathrm{w}, 1060 \mathrm{w}, 1019 \mathrm{w}, 970 \mathrm{w}, 902 \mathrm{w}, 881 \mathrm{w}$, $850 \mathrm{w}, ~ 804 \mathrm{w}, 781 \mathrm{w}, 735 \mathrm{w}, 647 \mathrm{w}, 619 \mathrm{w}, 570 \mathrm{w}, 543 \mathrm{w}, 517 \mathrm{w}, 430 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 8.51\left(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.94-7.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.85-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7))$,
7.66-7.62 (m, 1H, H-C(5')), 7.58-7.50 (m, 3H, 2H-Ar and H-C(4)), 7.48-7.42 (m, $3 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}$ and H-C(2)), 7.23-7.19 (m, 1H, H-C(6')), 7.17-7.12 (m, 1H, H-C(6)), 6.38 (d, 1H, $\left.J=5.5, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$, $5.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NH}-\right), 3.35-3.29(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArNHCH}_{2}-$), 2.82-2.77 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{NHCH}_{2}$) , 1.94-1.87 (m, $2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-$), 1.78-1.60 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2^{-}}$and $\mathrm{H}-\mathrm{N}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.09 (d, $J=241.0$), 152.07, 149.90, 149.16, 139.64, $139.06(\mathrm{~d}, J=9.9), 137.52(\mathrm{~d}, J=3.6), 135.98,134.70,134.37$, $128.73,128.61,128.52,125.68,125.00,124.00(\mathrm{~d}, J=9.0), 121.26,117.25,113.32(\mathrm{~d}, J=25.3)$, $108.48(\mathrm{~d}, J=24.4), 98.89,53.68,48.68,43.21,27.77,26.37$. HRMS: $m / z 490.15075$ corresponds to molecular formula $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{SFH}^{+}$(error in ppm -1.43). HPLC purity ($\lambda=254$ $\mathrm{nm})$: method C: RT 10.920, area 96.15%; method D: RT 9.897, area 96.40%.

N^{4}-[4-(5-fluoro-1-benzothien-3-yl)benzyl]- N^{1}-quinolin-4-ylpentane-1,4-diamine (34).

Compound 34 was prepared by procedure E, using aldehyde $\mathbf{3 1}^{2}$ ($170 \mathrm{mg}, 0.66 \mathrm{mmol}$), amine 108 ($213 \mathrm{mg}, 0.929 \mathrm{mmol}$), glac. $\mathrm{AcOH}(50 \mu \mathrm{~L}, 0.8 \mathrm{mmol}), \mathrm{NaBH}_{4}(150.6 \mathrm{mg}, 3.980 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dryflash, SiO_{2}, eluent hexane/EtOAc gradient $1 / 1 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95 / 5 \rightarrow$ MeOH , flash, Biotage SP 1 , NH column, eluent EtOac/hexane gradient $8 / 2 \rightarrow \mathrm{EtOAc}$, EtOAc/MeOH gradient $95 / 5 \rightarrow 1 / 1$ and flash, Biotage $\mathrm{SP} 1, \mathrm{SiO}_{2}$ column, eluent EtOAc/MeOH $+\mathrm{NH}_{3}(9 / 1)$ gradient $\left.95 / 5 \rightarrow 65 / 35\right)$. Final product 34 was obtained as a white foam (239 mg, 77\%). M.p. $=41-44^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3257 \mathrm{~m}, 3070 \mathrm{~m}, 2958 \mathrm{~m}, 2866 \mathrm{~m}, 1581 \mathrm{~s}, 1540 \mathrm{~m}$, 1495w, 1438m, 1374w, 1340w, 1252w, 1196w, 1117w, 1020w, 883w, 862w, 809w, 768w, $652 \mathrm{w}, 438 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.53\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$), 7.98-7.95 (m, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.81\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.7, J_{2}=4.8, \mathrm{H}-\mathrm{C}(7)\right), 7.73-7.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.60-7.52(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)$ and $\left.\mathrm{H}-\mathrm{C}(4)\right)$, 7.51-7.47 (m, 2H-Ar), 7.46-7.42 (m, $3 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-\mathrm{C}(2)$), 7.34$7.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 6.39\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.67(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{N}$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.93,3.82\left(\mathrm{ABq}, 2 \mathrm{H}, J_{A B}=13.0, \mathrm{ArCH}_{2}-\right), 3.36-3.26(\mathrm{~m}, 2 \mathrm{H}$, ArNHCH 2_{2}), 2.88-2.80 (m, 1H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$-), 2.06 (bs, 1H, H-N exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 1.94-1.78 (m, 2H, ArNHCH $\mathrm{CH}_{2}-$), 1.69-1.55 (m, 2H, ArNHCH $2 \mathrm{CH}_{2} \mathrm{CH}_{2}$-), 1.18 (d, $3 \mathrm{H}, J=6.3, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$) $) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $161.08(\mathrm{~d}, J=$ 239.6), 151.02, 149.79, 148.38, 140.15, $139.08(\mathrm{~d}, J=9.0), 137.59(\mathrm{~d}, J=4.1), 135.97,134.26$, 129.87, 128.91, 128.62, 128.57, 125.60, 124.43, $123.98(\mathrm{~d}, J=9.0), 119.42,118.77,113.31(\mathrm{~d}, J$ $=25.3), 108.50(\mathrm{~d}, J=23.5), 98.67,52.17,50.97,43.48,34.60,25.10,20.50 . \mathrm{HRMS}: m / z$ 470.20588 corresponds to molecular formula $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{SH}^{+}$(error in ppm -0.40). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.766, area 95.04%; method B: RT 7.737, area 95.17%.

N-[4-(5-fluoro-1-benzothiophene-3-yl)benzyl]- N-methyl- N^{\prime}-quinolin-4-ylbutane-1,4diamine (37).

Compound 37 was prepared by procedure D, using $\mathbf{3 5}^{3}(30.0 \mathrm{mg}, 0.0658 \mathrm{mmol}), 37 \%$ aqueous formaldehyde ($10 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(17.9 \mathrm{mg}, 0.132 \mathrm{mmol}), \mathrm{NaHB}_{3} \mathrm{CN}(16.6 \mathrm{mg}, 0.263$ $\mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL}+1 \mathrm{~mL})$. The product was purified using column chromatography (flash, Biotage SP1, NH column, eluent EtOAc/hexane gradient $8 / 2 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $95 / 5 \rightarrow \mathrm{MeOH}$ and flash, Biotage $\mathrm{SP} 1, \mathrm{SiO}_{2}$ column, eluent $\mathrm{EtOAc} / \mathrm{MeOH}+\mathrm{NH}_{3}(9 / 1)$ gradient $95 / 5 \rightarrow 2 / 8$). Final product 37 was obtained as a colorless oil ($23 \mathrm{mg}, 74 \%$). IR (ATR): $3647 \mathrm{w}, 3252 \mathrm{~m}, 3069 \mathrm{~m}, 2927 \mathrm{~s}, 2852 \mathrm{~m}, 2793 \mathrm{~m}, 1730 \mathrm{w}, 1582 \mathrm{~s}, 1541 \mathrm{~m}, 1494 \mathrm{w}, 1438 \mathrm{~m}, 1374 \mathrm{w}$, $1342 \mathrm{~m}, 1252 \mathrm{~m}, 1195 \mathrm{~m}, 1118 \mathrm{w}, 969 \mathrm{w}, 883 \mathrm{w}, 864 \mathrm{w}, 807 \mathrm{w}, 765 \mathrm{~m}, 737 \mathrm{w}, 653 \mathrm{w}, 628 \mathrm{w}, 572 \mathrm{w}$, $543 \mathrm{w}, 422 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500MHz, CDCl_{3}): $8.53\left(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.99-7.95(\mathrm{~m}, 1 \mathrm{H}$,
$\left.\mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right), 7.82\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=4.6, J_{2}=8.8, \mathrm{H}-\mathrm{C}(7)\right), 7.74-7.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{C}\left(7^{\prime}\right)$ and $\mathrm{H}-\mathrm{C}(4)$), 7.51-7.48 (m, 2H-Ar), 7.47-7.44 (m, $3 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-\mathrm{C}(2)$), 7.35-7.30 (m, 1H, H-C(6')), 7.17-7.11 (m, 1H, H-C(6)), $6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.76(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2^{-}}\right), 3.36-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}\right), 2.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 6.8, $\mathrm{ArCH}_{2} \mathrm{NHCH}_{2}-$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right.$), $2.19(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}$), 1.89 (quin, $2 \mathrm{H}, J=6.8$, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}$-), 1.76 (quin, $2 \mathrm{H}, J=7.0, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $161.08(\mathrm{~d}, J=240.1), 150.87,150.00,148.21,139.05(\mathrm{~d}, J=9.0), 138.43,137.58(\mathrm{~d}, J=4.5)$, $135.98,134.35,129.70,129.57,128.96,128.38,125.61,124.38,123.98(\mathrm{~d}, J=9.9), 119.58$, $118.76,113.30(\mathrm{~d}, J=25.3), 108.50(\mathrm{~d}, J=23.5), 98.62,61.89,56.75,43.19,42.51,26.48$, 25.21. HRMS: $m / z 470.20631$ corresponds to molecular formula $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{SH}^{+}$(error in ppm 0.50). HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 9.126, area 97.87\%; method B: RT 7.770, area 96.71\%.

3-[4-(\{methyl[4-(quinolin-4-ylamino)pentyl]amino\}methyl)phenyl]-1-benzothiophene-5carbonitrile (38).

Compound $\mathbf{3 8}$ was prepared by procedure D , using $\mathbf{3 6}^{2}(15.8 \mathrm{mg}, 0.0331 \mathrm{mmol}), 37 \%$ aqueous formaldehyde ($5.1 \mu \mathrm{~L}, 0.066 \mathrm{mmol}), \mathrm{ZnCl}_{2}(9.0 \mathrm{mg}, 0.066 \mathrm{mmol}), \mathrm{NaHB}_{3} \mathrm{CN}(8.3 \mathrm{mg}, 0.283$ $\mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL}+1 \mathrm{~mL})$. The product was purified using column chromatography (flash, Biotage SP1, NH column, eluent EtOac/hexane gradient $8 / 2 \rightarrow \mathrm{EtOAc}, \mathrm{EtOAc} / \mathrm{MeOH}$ gradient $95 / 5 \rightarrow \mathrm{MeOH}$ and flash, Biotage $\mathrm{SP} 1, \mathrm{SiO}_{2}$ column, eluent $\mathrm{EtOAc} / \mathrm{MeOH}+\mathrm{NH}_{3}(9 / 1)$ gradient $95 / 5 \rightarrow 65 / 35$). Final product 38 was obtained as a colorless oil ($12.1 \mathrm{mg}, 74 \%$). IR (film): 3375s, 3104s, 2971s, 2796m, 2346w, 2306w, 2227m, 1963w, 1703m, 1601s, 1553s, $1498 \mathrm{~m}, 1460 \mathrm{~s}, 1405 \mathrm{~m}, 1342 \mathrm{~m}, 1264 \mathrm{~m}, 1224 \mathrm{~m}, 1146 \mathrm{~m}, 1058 \mathrm{~m}, 1014 \mathrm{w}, 888 \mathrm{w}, 860 \mathrm{w}, 805 \mathrm{~m}$,
$767 \mathrm{~m}, 735 \mathrm{~m}, 702 \mathrm{w}, 654 \mathrm{~m}, 614 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.51(\mathrm{~d}, 1 \mathrm{H}, J=5.2, \mathrm{H}-$ $\left.\mathrm{C}\left(2^{\prime}\right)\right)$, 8.21-8.19 (m, 1H, H-C(4)), 8.01-7.98 (m, 1H, H-C($\left.\left.8^{\prime}\right)\right), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7))$, 7.74$7.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, 7.63-7.57 (m, 2H, H-C(6) and H-C(7')), 7.52 (s, 1H, H-C(2)), 7.49-7.44 (m, 4H-Ar), 7.39-7.35 (m, 1H, H-C(6')), $6.42\left(\mathrm{~d}, 1 \mathrm{H}, J=5.6, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 5.20-5.16$ (m, 1H, H-N exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.79-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right)$, $3.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}-\right), 2.50-2.45$ (m, 2H, $\mathrm{ArCH}_{2} \mathrm{NHCH}_{2}-$), 2.24 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}$), $2.10\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}\right.$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 1.841.67 (m, 4H, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.35\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 150.77,149.03,148.36,144.78,139.28,137.96,137.92,133.28,129.79$, $129.64,129.00,128.50,127.76,126.27,125.50,124.42,123.91,119.46,119.32,118.76,108.12$, 98.91, $62.02,57.03,48.14,42.39,34.27,23.90,20.35$. HRMS: $m / z 491.22662$ corresponds to molecular formula $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm 0.45). HPLC purity $(\lambda=330 \mathrm{~nm}$): method A: RT 8.785, area 96.50%; method B: RT 7.734, area 97.90%.

4-\{5-[4-(\{[2-(quinolin-4-ylamino)ethyl]amino\}methyl)phenyl]-2-thienyl\}benzonitrile (42).

Compound 42 was prepared by procedure E using aldehyde $\mathbf{3 9}^{2}(40 \mathrm{mg}, 0.14 \mathrm{mmol})$, amine AQ11 (38.8 mg, 0.207 mmol), glac. $\mathrm{AcOH}(12 \mu \mathrm{~L}, 0.21 \mathrm{mmol}), \mathrm{NaBH}_{4}(31.3 \mathrm{mg}, 0.828 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent EtOAc, EtOAc/MeOH gradient $9 / 1 \rightarrow \mathrm{MeOH}$ and flash Biotage SP1, NH column, eluent hexane/EtOAc gradient $36 / 65 \rightarrow \mathrm{EtOAc})$. Final product $\mathbf{4 2}$ was obtained as a yellow solid (41.3 mg, 65\%). M.p. $=107-111^{\circ} \mathrm{C} . \mathrm{IR}($ film $): 3296 \mathrm{w}, 3064 \mathrm{w}, 2223 \mathrm{w}, 1581 \mathrm{~s}$, $1539 \mathrm{~m}, 1495 \mathrm{w}, 1452 \mathrm{~m}, 1393 \mathrm{w}, 1337 \mathrm{w}, 1278 \mathrm{w}, 1177 \mathrm{w}, 1129 \mathrm{w}, 836 \mathrm{~m}, 800 \mathrm{~m}, 765 \mathrm{~m}, 734 \mathrm{w} \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.54(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}(2)), 8.01-7.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.82$ $-7.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.72-7.67(\mathrm{~m}, 2 \mathrm{H}-\mathrm{ArCN}), 7.67-7.62(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{ArCN}$ and $\mathrm{H}-\mathrm{C}(7))$,
$7.61-7.56(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-$ thiophene), $7.32-7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-thiophene), $6.40(\mathrm{~d}, 1 \mathrm{H}, J=5.4, \mathrm{H}-\mathrm{C}(3)), 5.82(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $3.89\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{ArCH}_{2} \mathrm{NH}-\right), 3.40-3.36\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHAr}\right), 3.10-$ $3.06\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHAr}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 150.93, 149.84, 148.27, 145.70, $140.89,140.09,138.48,132.72,129.78,129.03,128.75,126.08,125.91,125.67,124.62,124.32$, $119.51,118.90,118.82,110.43,98.92,52.99,46.99,42.17$. HRMS: $m / z 461.17978$ corresponds to molecular formula $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm 0.73). HPLC purity $(\lambda=330 \mathrm{~nm}$): method G : RT 2.132, area 95.55\%; method H: RT 1.879, area 95.01\%.

4-\{5-[4-(\{[10-(quinolin-4-ylamino)decyl]amino\}methyl)phenyl]-2-thienyl\}benzonitrile (43).

Compound 43 was prepared by procedure E using aldehyde $\mathbf{3 9}^{2}(57.9 \mathrm{mg}, 0.200 \mathrm{mmol})$, amine AQ12 $(90 \mathrm{mg}, 0.30 \mathrm{mmol})$, glac. $\mathrm{AcOH}(18 \mu \mathrm{~L}, 0.30 \mathrm{mmol}), \mathrm{NaBH}_{4}(45.4 \mathrm{~g}, 1.20 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dryflash, SiO_{2}, eluent hexane, EtOAc, EtOAc/MeOH gradient $9 / 1 \rightarrow \mathrm{MeOH}, \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ sat.) and flash, Biotage SP1 NH column, eluent EtOAc, gradient EtOAc \rightarrow EtOAc/MeOH 4/6). Final product 43 was obtained as a yellow solid ($45.9 \mathrm{mg}, 40 \%$). M. p. $=115-116{ }^{\circ} \mathrm{C}$. IR (film): $3266 \mathrm{~m}, 2922 \mathrm{~s}, 2851 \mathrm{~m}, 2221 \mathrm{~m}, 1725 \mathrm{w}, 1668 \mathrm{w}, 1580 \mathrm{~s}, 1530 \mathrm{~m}, 1492 \mathrm{w}, 1445 \mathrm{~m}, 1375 \mathrm{~m}, 1342 \mathrm{~m}$, 1278m, 1234w, 970w, 875w, 836w, 799m, $762 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.55(\mathrm{~d}$, $1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}(2)), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=7.8, \mathrm{H}-\mathrm{C}(8)), 7.75-7.55$ (m, 8H, 4H-ArCN, 2H-Ar, H$\mathrm{C}(5)$ and $\mathrm{H}-\mathrm{C}(7)), 7.45-7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)$, H-thiophene, $2 \mathrm{H}-\mathrm{Ar}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=3.9, \mathrm{H}-$ thiophene), 6.42 (d, 1H, J=5.3, H-C(3)), 4.96 (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NH}\right), 3.35-$ 3.27 (m, 2H, - $\left.\mathrm{CH}_{2} \mathrm{NHAr}\right), 2.64$ (t, $J=7.2, \mathrm{ArCH}_{2} \mathrm{NHCH}_{2}$), $1.80-1.25$ (m, $\left.16 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{8}-\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}, \delta$): $151.10,149.64,148.46,146.04,140.86,140.72,138.56,132.75$,
$132.34,130.05,128.94,128.77,126.09,125.79,125.66,124.55,124.18,119.12,118.88,118.69$, $110.38,98.79,53.72,49.54,43.27,30.14,29.52,29.49,29.36,28.97,27.33,27.15$. HRMS: m / z 573.30186 corresponds to molecular formula $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm - 4.85). HPLC purity $(\lambda=330 \mathrm{~nm})$: method C: RT 8.038, area 96.27%; method D: RT 6.152, area 95.99\%.

(4-\{5-[4-(\{[2-(quinolin-4-ylamino)ethyl]amino\}methyl)phenyl]-2-thienyl\}phenyl)acetonitrile

 (44).Compound 44 was prepared in two steps from 114. The general procedure F was followed using $\mathbf{1 1 4}(95 \mathrm{mg}, 0.34 \mathrm{mmol})$, 4-formylphenylboronic acid ($118.6 \mathrm{mg}, 0.4099 \mathrm{mmol}$), $\mathrm{PdO} \times 1.4 \mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(56.6 \mathrm{mg}, 0.409 \mathrm{mmol}), \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(9.6 \mathrm{~mL}, 3: 1, \mathrm{v} / \mathrm{v})$. The product 40 was roughly purified using column chromatography (flash Biotage $\mathrm{SP} 1, \mathrm{SiO}_{2}$ column, eluent toluene, toluene/EtOAc gradient $9 / 1 \rightarrow$ EtOAc). The crude product was subjected to the next reaction step following procedure E using amine $\mathbf{A Q 1 1}$ ($32.3 \mathrm{mg}, 0.172 \mathrm{mmol}$), AcOH ($10 \mu \mathrm{~L}$, $0.172 \mathrm{mmol}), \mathrm{NaBH}_{4}(26.1 \mathrm{mg}, 0.690 \mathrm{mmol}), \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent EtOAc, EtOAc/MeoH gradient $9 / 1 \rightarrow 1 / 1$ and flash, Biotage SP1, NH column, eluent hexane/EtOAc gradient 6/4 \rightarrow EtOAc). The final product 44 was obtained as a yellow solid. (20 mg, 12%) M. p. $=110-112{ }^{\circ} \mathrm{C}$. IR (ATR): $3638 \mathrm{~m}, 3358 \mathrm{~s}, 3315 \mathrm{~m}, 3079 \mathrm{~m}, 3027 \mathrm{~m}, 2934 \mathrm{~m}, 2900 \mathrm{~m}, 2860 \mathrm{~m}, 2815 \mathrm{~m}, 1647 \mathrm{w}, 1620 \mathrm{~m}$, 1581s, 1542s, 1500m, 1458m, 1438m, 1417m, 1402m, 1370m, 1336s, 1277m, 1261m, 1223w, $1126 \mathrm{~m}, ~ 1047 \mathrm{w}, 1015 \mathrm{w}, 965 \mathrm{w}, 912 \mathrm{~m}, ~ 815 \mathrm{~m}, 795 \mathrm{~s}, 766 \mathrm{~m}, 738 \mathrm{~m}, 650 \mathrm{w}, 476 \mathrm{w}, 401 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.55-8.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)), 8.02-7.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)), 7.85-7.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.67-7.57\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}, 2 \mathrm{H}-\mathrm{ArCH}_{2} \mathrm{CN}\right.$ and $\left.\mathrm{H}-\mathrm{C}(7)\right)$, 7.47 - $7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 7.40-7.32\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}\right.$ and $\left.2 \mathrm{H}-\mathrm{ArCH}_{2} \mathrm{CN}\right), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}-$
thiophene), $6.40(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(3)), 4.73(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N}), 3.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NH}\right), 3.77(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$), $3.42-3.36\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NHAr}\right), 3.13-3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NHCH}_{2}-\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, \delta$): $150.36,150.21,147.50,143.58,142.38,138.82,134.10$, $133.23,129.38,128.74,128.60,128.46,126.12,125.76,124.77,124.43,124.04,119.92,118.75$, 117.71, $98.51,52.95,46.78,42.10,23.20$. HRMS $m / z 475.19470$ corresponds to molecular formula $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm -0.82). HPLC purity $(\lambda=330 \mathrm{~nm}$): method B: RT 7.922, area 95.73%; method C: RT 7.974, area 95.24%.

N-(7-chloroquinolin-4-yl)- N^{\prime}-[4-(5-\{4-[(trimethylsilyl)ethynyl]phenyl\}-2-

thienyl)benzyl]ethane-1,2-diamine (45).

Compound 45 was prepared by procedure E using aldehyde $\mathbf{4 1}^{2}(25.9 \mathrm{mg}, 0.0718 \mathrm{mmol})$, amine AQ2 (23.9 mg, 0.108 mmol), glac. $\mathrm{AcOH}(7 \mu \mathrm{~L}, 0.108 \mathrm{mmol}), \mathrm{NaBH}_{4}(16.3 \mathrm{mg}, 0.431 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent EtOAc, EtOAc/MeoH gradient $9 / 1 \rightarrow \mathrm{MeOH}$ and flash, Biotage SP1, NH column, eluent hexane/EtOAc gradient $6 / 4 \rightarrow$ EtOAc). The final product 45 was obtained as a yellow foam ($23.9 \mathrm{mg}, 59 \%$. IR (ATR): 3298m, 3070w, 2958m, 2853w, 2158w, 1608m, $1584 \mathrm{~s}, 1536 \mathrm{w}, 1495 \mathrm{w}, 1453 \mathrm{w}, 1372 \mathrm{w}, 1332 \mathrm{w}, 1280 \mathrm{w}, 1250 \mathrm{w}, 1139 \mathrm{w}, 867 \mathrm{~m}, 844 \mathrm{~m}, 802 \mathrm{w} \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}, \delta\right): 8.50(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(2)), 7.96-7.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)), 7.71-7.67$ (m, 1H, H-C(5)), $7.60-7.52$ (m, 4H-Ar), 7.52 - 7.44 (m, 2H-Ar), $7.40-7.33$ (m, 3H, H-C(6) and 2H-Ar), $7.32-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-thiophene), $7.28-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-thiophene, overlap with $\left.\mathrm{CHCl}_{3}\right), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(2)), 3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NH}-\right), 3.40-3.26(\mathrm{~m}, 2 \mathrm{H}$, ArNHCH 2^{-}), $3.10-3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 0.26\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 151.95,149.86,148.99,143.80,142.72,139.42,139.37,134.88,134.17,133.23$,
$132.66,132.50,128.69,125.78,125.31,125.13,124.69,124.56,124.11,122.04,121.18,117.32$, 104.86, 99.19, $95.34,52.95,46.79,42.02,0.04$. HRMS $m / z 566.18315$ corresponds to molecular formula $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{SSiH}^{+}$(error in ppm -2.83).

N-(7-chloroquinolin-4-yl)- N^{\prime}-\{4-[5-(4-ethynylphenyl)-2-thienyl]benzyl\}ethane-1,2-diamine

 (47).Compound 45 ($17.8 \mathrm{mg}, 0.314 \mathrm{mmol}$) was dissolved in dry methanol $(0.5 \mathrm{~mL})$. Anh. $\mathrm{K}_{2} \mathrm{CO}_{3}(2.2$ $\mathrm{mg}, 0.016 \mathrm{mmol}$) was added and reaction mixture was stirred at r.t. for 24 h . After extraction with ethyl-acetate, combined organic layers were washed with satd. aqueous solution of NaHCO_{3} and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the crude product was purified using column chromatography (flash, Biotage SP1, NH column, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ gradient $9 / 1 \rightarrow$ $1 / 1)$. The final product 47 was obtained as a yellow solid ($7.6 \mathrm{mg}, 49 \%$). M.p. $=163-167{ }^{\circ} \mathrm{C}$. IR (ATR): 3292m, 2924w, 2854w, 1611m, 1583s, 1539m, 1493w, 1453m, 1372w, 1334w, 1281w, 1246w, 1211w, 1139w, 1113w, 837m, $803 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.36(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(2)), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=8.9, \mathrm{H}-\mathrm{C}(5)), 7.90-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8)$), $7.65-7.58$ (m, 4H-Ar), $7.54-7.48$ (m, 2H-Ar), $7.43-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 7.39-7.33$ (m, 3H, 2H-Ar and H-thiophene), $7.32-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-thiophene), $6.50-6.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(3)), 3.88$ (s, 2H, $\left.\mathrm{ArCH}_{2} \mathrm{NH}-\right), 3.54-3.46$ (m, 2H, ArNHCH_{2}), 3.26 (s, 1H, CH), $3.12-2.98$ (m, 2H, ArNHCH CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, \delta$): 150.97, 150.16, 147.20, $143.47,142.25,137.87,135.42,134.21,133.05,132.29,128.64,126.14,125.44,125.26,124.91$, 124.42, 123.91, 122.22, 120.76, 116.97, 98.33, 83.04, 77.92, 52.56, 46.24, 41.83. HRMS m / z 494.14419 corresponds to molecular formula $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{SH}^{+}$(error in ppm -2.09). HPLC purity $(\lambda=330 \mathrm{~nm})$: method C: RT 8.075, area 96.46\%; method D: RT 5.738, area 95.31\%. (48).

Compound 48 was prepared by procedure D using $\mathbf{4 6}^{2}(36.5 \mathrm{mg}, 0.071 \mathrm{mmol})$ in methanol (1.5 $\mathrm{mL}), 37 \%$ aqueous formaldehyde ($11.5 \mu \mathrm{~L}, 0.141 \mathrm{mmol}$), and solution of $\mathrm{NaBH}_{3} \mathrm{CN}(17.8 \mathrm{mg}$, $0.282 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(19.2 \mathrm{mg}, 0,141 \mathrm{mmol})$ in methanol $(1.5 \mathrm{~mL})$. The crude product was purified using column chromatography (flash, Biotage SP1, NH column, eluent hexane/EtOAc, gradient $1 / 1 \rightarrow \mathrm{EtOAc} \rightarrow \mathrm{MeOH})$. The final product 48 was obtained as a yellow solid $(18.6 \mathrm{mg}$, 50%). M.p. $=135-140^{\circ} \mathrm{C}$. IR (film): $3271 \mathrm{w}, 3068 \mathrm{w}, 2928 \mathrm{~m}, 2853 \mathrm{~m}, 2793 \mathrm{w}, 2224 \mathrm{~m}, 1734 \mathrm{w}$, $1652 \mathrm{w}, 1601 \mathrm{~m}, 1581 \mathrm{~s}, 1540 \mathrm{~m}, 1496 \mathrm{~m}, 1455 \mathrm{~m}, 1373 \mathrm{w}, 1342 \mathrm{~m}, 1279 \mathrm{w}, 1223 \mathrm{w}, 1177 \mathrm{w}, 1123 \mathrm{w}$, $1015 \mathrm{w}, 837 \mathrm{w}, 800 \mathrm{~m}, 765 \mathrm{~m}, 730 \mathrm{w}, 668 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.54(\mathrm{~d}, 1 \mathrm{H}, J=$ 5.3, H-C(2)), $8.05-7.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.72-7.60(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H}-\mathrm{ArCN}, \mathrm{H}-\mathrm{C}(5))$ and $\mathrm{H}-\mathrm{C}(7))$, $7.59-7.54(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-$ thiophene), $7.31-7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$-thiophene $), 6.44-6.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)), 4.95(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-\mathrm{N})$, $3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 3.35-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}\right.$-), $2.44-2.35(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right), 1.81-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 1.61-1.52(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{ArNH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}-\right), 1.52-1.37\left(\mathrm{~m}, 4 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}-\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 152.34,151.36,149.66,147,57,142.27,141.09,140.11,134.42,134.31,133.97$, $132.11,131.30,131.23,131.17,130.65,127.65,127.51,127.22,127.17,126.20,125.73,120.71$, $120.44,120.17,111.95,100.30,63.60,58.70,44.80,43.90,30.50,28.84,28.62,28.57$. HRMS: $m / z 531.25859$ corresponds to molecular formula $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm 1.69). HPLC purity $(\lambda=330 \mathrm{~nm})$: method E: RT 4.358, area 95.79\%; method F: RT 4.042, area 95.71\%.

4-[5-(3-formylphenyl)thiophen-2-yl]benzonitrile (49).

Compound 49 was prepared by procedure G using $\mathrm{Pd}(\mathrm{OAc})_{2}(8.7 \mathrm{mg}, 0.039 \mathrm{mmol}), \mathrm{PPh}_{3}(40.7$ $\mathrm{mg}, 0.155 \mathrm{mmol}$), 4-cyanophenylboronic acid ($57.1 \mathrm{mg}, 0.388 \mathrm{mmol}$), aq. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~mL})$, 112 ($103.8 \mathrm{mg}, 0.388 \mathrm{mmol}$) and $\mathrm{DME}(10 \mathrm{~mL})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane, hexane/EtOAc gradient 9/1 $\rightarrow 7 / 3$). Final product 49 was precipitated with ethyl acetate as a yellow solid ($42.7 \mathrm{mg}, 38 \%$). M.p. $=178{ }^{\circ} \mathrm{C}$. IR (film): $3096 \mathrm{~m}, 3066 \mathrm{~m}, 2873 \mathrm{~m}, 2760 \mathrm{w}, 2222 \mathrm{~s}, 1685 \mathrm{~s}, 1636 \mathrm{~m}, 1600 \mathrm{~s}, 1581 \mathrm{~s}, 1507 \mathrm{~m}, 1485 \mathrm{~m}$, $1458 \mathrm{~m}, 1435 \mathrm{~m}, 1414 \mathrm{~m}, 1389 \mathrm{~m}, 1340 \mathrm{~m}, 1314 \mathrm{~m}, 1286 \mathrm{~s}, 1240 \mathrm{~m}, 1177 \mathrm{~s}, 1092 \mathrm{~m}, 1003 \mathrm{w}, 883 \mathrm{w}$, $842 \mathrm{~m}, 809 \mathrm{~m}, 786 \mathrm{~m}, 751 \mathrm{w}, 724 \mathrm{~m}, 696 \mathrm{~m}, 677 \mathrm{w}, 650 \mathrm{w}, 542 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta): 10.08$ (s, 1H, H-CO), 8.13 (bs, 1H, H-C(2')), $7.89-7.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$ and $\left.\mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 7.73$ $-7.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{ArCN}), 7.60\left(\mathrm{t}, 1 \mathrm{H}, J=7.7, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(4))$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 191.81,144.12,142.03,138.18,137.05,134.71,132.81,131.32$, $129.80,129.40,126.23,126.20,125.83,125.33,118.72,110.84 . \operatorname{GC} / \mathrm{MS}(\mathrm{m} / \mathrm{z}(\%)): 289.0\left(\left[\mathrm{M}^{+}\right]\right.$, 100); 259.0 (20).

4-\{5-[3-(\{[6-(quinolin-4-ylamino)hexyl]amino\}methyl)phenyl]-2-thienyl\}benzonitrile (50).

Compound 50 was prepared by procedure E using aldehyde 49 ($37.6 \mathrm{mg}, 0.129 \mathrm{mmol}$), amine $\mathbf{A Q 9}^{2}(47.4 \mathrm{mg}, 0.195 \mathrm{mmol})$, glac, $\mathrm{AcOH}(12 \mu \mathrm{~L}, 0.195 \mathrm{mmol}), \mathrm{NaBH}_{4}(29.3 \mathrm{mg}, 0.774 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane, EtOAc, EtOAc/MeOH gradient $9 / 1 \rightarrow \mathrm{MeOH}$ and flash Biotage SP1 NH column eluent hexane/EtOAc gradient $6 / 4 \rightarrow \mathrm{EtOAc}, \mathrm{MeOH})$. The final product $\mathbf{5 0}$ was obtained as a yellow solid (28.2 mg, 54 \%). M.p. $=(143-146)^{\circ} \mathrm{C}$. IR (film): $3402 \mathrm{w}, 3300 \mathrm{w}$, $3062 \mathrm{w}, 2930 \mathrm{~m}, 2855 \mathrm{~m}, 2225 \mathrm{~m}, 1602 \mathrm{~m}, 1583 \mathrm{~s}, 1541 \mathrm{~m}, 1505 \mathrm{w}, 1456 \mathrm{w}, 1394 \mathrm{w}, 1372 \mathrm{w}, 1342 \mathrm{w}$,

1280w, 1176w, 1125w, 837w, 808w, 787w, 766w, 732w, 698w, 542w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.54\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right), 7.98\left(\mathrm{~d}, 1 \mathrm{H}, J=8.5, \mathrm{H}-\mathrm{C}\left(8^{\prime \prime}\right)\right), 7.71-7.60(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}\left(7^{\prime \prime}\right), 4 \mathrm{H}-\mathrm{ArCN}, \mathrm{H}-\mathrm{C}\left(5^{\prime \prime}\right)$ and $\left.\mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 7.51\left(\mathrm{~d}, 1 \mathrm{H}, J=7.3, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right), 7.42-7.32$ (m, 4H, H$\mathrm{C}\left(6^{\prime}\right)$, $2 \mathrm{H}-\mathrm{ArS}$ and $\left.\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, 7.29 - 7.27 (m, 1H, H-C(4')), $6.40\left(\mathrm{~d}, 1 \mathrm{H}, J=5.3, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right)\right), 4.99$ (bs, $1 \mathrm{H}, \mathrm{H}-\mathrm{N}$), $3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 3.31-3.28$ (m, 2H, ArNHCH_{2}-), $2.69-2.66$ (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right), 1.79-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 1.60-1.55\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right)$, $1.52-1.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$-). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 150.87, 149.68, 148.22, 146.04, 141.41, 140.91, 138.48, 133.79, 132.72, 129.84, 129.09, 129.01, 127.94, 126.04, $125.63,125.45,124.58,124.41,119.12,118.83,118.61,110.41,98.72,53.88,49.27,43.17$, 29.98, 28.88, 27.05. HRMS m/z 517.24204 corresponds to molecular formula $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{SH}^{+}$ (error in ppm -1.04). HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 9.390, area 97.66%; method B: RT 7.586, area 95.23%.

N-(1-Adamantylmethyl)- N^{\prime}-(7-chloroquinolin-4-yl)- N-methylethane-1,2-diamine (56).

Compound 56 was prepared from aminoquinoline N-(1-adamantylmethyl)- N^{N}-(7-chloroquinolin-4-yl)ethane-1,2-diamine ${ }^{5}(87 \mathrm{mg}, 0.24 \mathrm{mmol})$ and 37% formaldehyde ($35 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) using $\mathrm{ZnCl}_{2}(65 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(60 \mathrm{mg}, 0.96 \mathrm{mmol})$ by procedure D and was obtained after column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ as a white solid ($74 \mathrm{mg}, 82 \%$) softenes at $135-137{ }^{\circ} \mathrm{C}$. IR (ATR): $3207 \mathrm{w}, 3062 \mathrm{w}, 2901 \mathrm{~s}, 2844 \mathrm{~m}, 2792 \mathrm{w}, 1612 \mathrm{w}$, $1581 \mathrm{~s}, 1489 \mathrm{w}, 1453 \mathrm{~m}, 1432 \mathrm{w}, 1374 \mathrm{w}, 1339 \mathrm{w}, 1313 \mathrm{w}, 1283 \mathrm{w}, 1243 \mathrm{w}, 1208 \mathrm{~m}, 1183 \mathrm{w}, 1166 \mathrm{w}$, 1135w, 1101w, 1080w, 1046w, 986w, 949w, 902w, 874w, 847w, 823w, 804m, 772w, 735w, $645 \mathrm{w}, 623 \mathrm{w}, 567 \mathrm{w}, 488 \mathrm{w}, 425 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.53(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(2)), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.35(\mathrm{dd}, 1 \mathrm{H}, J=2.2$
$\mathrm{Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 6.30(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NH}), 3.30-3.15(\mathrm{~m}, 2 \mathrm{H}$, ArNHCH 2_{2}), 2.90-2.70 (m, 2H, $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right)$, $2.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.14\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right)$, 1.99 (bs, $3 \mathrm{H},-\mathrm{Ad}$), 1.70-1.50 (m, 12H, -Ad). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 152.09; 149.87; 149.01; 134.74; 128.67; 125.08; 121.24; 117.37; 99.20; 77.41; 57.96; 44.21; 41.31; 40.13; 37.13; 35.03; 28.31. (+)ESI-HRMS (m/z (\%)): 384.21997 ([M+H] ${ }^{+}$, 100); calculated 384.22010 (error in ppm: -0.34). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{3} \times \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, 70.30; H, 7.95; N, 10.69. Found: C, 70.50; $\mathrm{H}, 7.97$; $\mathrm{N}, 10.58$. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.872, area 98.49%; method B: RT 9.624, area 98.88\%.

N-(1-Adamantylmethyl)- N^{\prime}-(7-chloroquinolin-4-yl)- N-methylpropane-1,3-diamine (57).

Compound 57 was prepared from aminoquinoline N-(1-adamantylmethyl)- N-(7-chloroquinolin-4-yl)propane-1,3-diamine ${ }^{5}$ ($93 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 37% formaldehyde ($36 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) using $\mathrm{ZnCl}_{2}(65 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(60 \mathrm{mg}, 0.96 \mathrm{mmol})$ by procedure D and was obtained after column chromatography: $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ as a white solid ($85 \mathrm{mg}, 87 \%$) softenes at $137-139{ }^{\circ} \mathrm{C}$. IR (ATR): $3246 \mathrm{~m}, 3064 \mathrm{w}, 2900 \mathrm{~s}, 2844 \mathrm{~m}$, $1612 \mathrm{w}, 1580 \mathrm{~s}, 1540 \mathrm{w}, 1451 \mathrm{~m}, 1429 \mathrm{w}, 1367,1330 \mathrm{w}, 1283 \mathrm{w}, 1233 \mathrm{w}, 1202 \mathrm{w}, 1167 \mathrm{w}, 1139 \mathrm{~m}$, $1103 \mathrm{w}, ~ 1079 \mathrm{w}, ~ 1036 \mathrm{w}, ~ 901 \mathrm{w}, ~ 876 \mathrm{w}, ~ 850 \mathrm{w}, ~ 804 \mathrm{~m}, ~ 766 \mathrm{w}, 731 \mathrm{w}, 644 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.52(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.80(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 7.21(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 6.35(\mathrm{~d}$, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.45-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 2.65-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, $2.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.08\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.00-1.40\left(\mathrm{~m}, 17 \mathrm{H},-\mathrm{Ad},-\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C}-$ NMR (50 MHz, CDCl_{3}): $152.09 ; 150.45 ; 149.10 ; 134.61 ; 128.51 ; 124.70 ; 122.06 ; 117.53 ; 98.59$; 72.47; 60.87; 46.14; 44.06; 41.46; 36.87; 34.69; 28.24; 25.46. (+)ESI-HRMS (m/z (\%)):
$398.23579\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 398.23575 (error in ppm: -0.09). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{3} \times 1 / 2\right.$ $\mathrm{H}_{2} \mathrm{O}$) Calcd: C, 70.83 ; H, 8.17 ; N, 10.32. Found: C, 71.01 ; H, 8.12; N, 10.14. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.834, area 96.12\%; method B: RT 9.633, area 96.86\%.

N-[2-(1-Adamantyl)ethyl]- N^{\prime}-(7-chloroquinolin-4-yl)- N-methylpropane-1,3-diamine (58).

Compound 58 was prepared from aminoquinoline N-(1-adamantylmethyl)- N^{N}-(7-chloroquinolin-4-yl)butane-1,4-diamine ${ }^{5}(127 \mathrm{mg}, 0.32 \mathrm{mmol})$ and 37% formaldehyde ($48 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) using $\mathrm{ZnCl}_{2}(87 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(80 \mathrm{mg}, 1.28 \mathrm{mmol})$ by procedure D and was obtained after column chromatography: $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ as a white solid ($123 \mathrm{mg}, 93 \%$) softenes at $157-159{ }^{\circ} \mathrm{C}$. IR (ATR): 3234m, 3063w, 2900s, 2844m, 2790w, 1611w, 1578s, 1541w, 1508w, 1489w, 1473w, 1452m, 1429w, 1368m, 1331w, 1281w, 1252w, 1203w, 1164w, 1140m, 1102w, 1080w, 1034w, 898w, 873w, 847m, 804m, 767w, 637w, $564 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.52(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ $\mathrm{Hz}, \mathrm{H}-\mathrm{C}(8)), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6))$, $6.40(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3))$, $5.40(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 3.40-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 2.50-2.30$ (m, 2H, - $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Ad}\right), \quad 2.25\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), \quad 2.10-1.40\left(\mathrm{~m}, \quad 21 \mathrm{H}, \quad-\mathrm{CH}_{2} \mathrm{Ad}\right.$, $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}{ }^{-}, \quad \mathrm{ArNHCH} \mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{Ad}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 152.01 ; 149.81$; $149.14 ; 134.72 ; 128.71 ; 125.03 ; 121.12 ; 117.15 ; 98.98 ; 71.05 ; 60.20 ; 46.41 ; 43.15 ; 41.35 ; 37.11$; 34.70; 28.42; 26.42; 25.69. (+)ESI-HRMS (m/z (\%)): calculated $412.25123\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 412.25140 (error in ppm: -0.42). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, 71.32; H , 8.38; N, 9.98. Found: C, 71.73 ; H, 8.77 ; N, 10.02. HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 7.856, area 99.06\%; method B: RT 9.641, area 98.70\%.

N^{1}-(1-Adamantylmethyl)- N^{2}-(7-chloroquinolin-4-yl)- N^{1}-methylpropane-1,2-diamine (59).

Compound 59 was prepared from aminoquinoline N^{1}-(1-adamantylmethyl)- N^{2}-(7-chloroquinolin-4-yl)propane-1,2-diamine ${ }^{4}(61 \mathrm{mg}, 0.16 \mathrm{mmol})$ and 37% formaldehyde ($24 \mu \mathrm{~L}$, $0.32 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(45 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{NaHB}_{3} \mathrm{CN}(40 \mathrm{mg}, 0.64 \mathrm{mmol})$ by procedure D and was obtained after dry-flash chromatography: $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $)=$ $100 / 2$) as white solid ($58 \mathrm{mg}, 91 \%$) softenes at $134-136^{\circ} \mathrm{C}$. IR (ATR): $3257 \mathrm{~m}, 3067 \mathrm{w}, 2980 \mathrm{w}$, 2901s, 2844s, 2795w, 2611w, 1574s, 1546m, 1490w, 1453m, 1426w, 1377m, 1332m, 1313w, 1283w, 1250w, 1208m, 1173w, 1152m, 1105w, 1079w, 1038w, 956w, 902w, 874w, 862w, $843 \mathrm{w}, 824 \mathrm{w}, 803 \mathrm{w}, 772 \mathrm{w}, 757 \mathrm{w}, 610 \mathrm{w}, 600 \mathrm{w}, 567 \mathrm{w}, 495 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $8.54(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(5)), 7.35$ (dd, 1H, $J=2.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 6.26$ (bs, $1 \mathrm{H}, \mathrm{ArNH}-), 3.60-3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 2.70-2.60\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 2.60-$ $2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 2.19\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.15\left(\mathrm{ABq}, 1 \mathrm{H}, H_{A}, J=14.0 \mathrm{~Hz},-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Ad}\right), 2.10\left(\mathrm{ABq}, 1 \mathrm{H}, H_{B}, J=14.0 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.98(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ad}), 1.85-1.60(\mathrm{~m}, 6 \mathrm{H},-\mathrm{Ad})$, 1.60-1.50 (m, 6H, -Ad), $1.29\left(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 152.04$; $150.24 ; 149.21 ; 134.75 ; 128.79 ; 125.14 ; 121.49 ; 118.21 ; 99.85 ; 71.62 ; 65.98 ; 46.18,44.72$; 41.37; 37.20; 35.15; 28.40; 18.60. (+)ESI-HRMS (m/z (\%)): 398.23694 ([M+H] ${ }^{+}, 100$); calculated 398.23575 (error in ppm: 2.99). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{3} \times 2 / 3 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, 70.31; H, 8.19; N, 10.25. Found: C, 70.29; H, 8.40; N, 10.15. HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 7.838, area 98.86\%; method B: RT 9.645, area 99.04\%.

N^{1}-(1-Adamantylmethyl)- N^{3}-(7-chloroquinolin-4-yl)- N^{1}-methylbutane-1,3-diamine (60).

Compound 60 was prepared from aminoquinoline N^{1}-(1-adamantylmethyl)- N^{3}-(7-chloroquinolin-4-yl)butane-1,3-diamine ${ }^{4}(248 \mathrm{mg}, 0.62 \mathrm{mmol})$ and 37% formaldehyde ($93 \mu \mathrm{~L}$, $1.25 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(169 \mathrm{mg}, 1.24 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(156 \mathrm{mg}, 2.48 \mathrm{mmol})$ by procedure D and was obtained after column chromatography: $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $)=$ $95 / 5$) as a white solid ($222 \mathrm{mg}, 87 \%$) softenes at $48-50^{\circ} \mathrm{C}$. IR (ATR): $3251 \mathrm{~m}, 3063 \mathrm{w}, 2902 \mathrm{~s}$, 2845s, 1655w, 1611w, 1576s, 1538m, 1489w, 1452m, 1372w, 1332w, 1280w, 1201w, 1149m, 1102w, 1080w, 1045w, 1007w, 983w, 877w, 850w, 806m, 766w, 737w, 648w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.49(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.83(\mathrm{~d}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 7.07(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 6.40$ $(\mathrm{d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.90-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right)$, 2.75-2.65 (m, $1 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Ad}\right), 2.65-2.40\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Ad}\right), 2.34\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.12$ (ABq, $\left.1 \mathrm{H}, H_{A}, J=13.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.04\left(\mathrm{ABq}, 1 \mathrm{H}, H_{B}, J=13.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.95-1.85(\mathrm{~m}$, $\left.4 \mathrm{H},-\mathrm{Ad}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 1.80-1.45\left(\mathrm{~m}, 14 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right.$, -Ad$), 1.33(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.5 Hz, $\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 151.68 ; 149.87 ; 149.04 ; 134.82$; 128.39; 124.75; 122.09; 117.68; 98.90; 72.28; 58.14; 48.64; 46.45; 41.61; 36.96; 34.74; 33.28; 28.39; 19.63. (+)ESI-HRMS (m/z (\%)): $412.25136\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 412.25140 (error in ppm: -0.11). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, 71.32; H, 8.38; N, 9.98. Found: C, 71.32; H, 8.20; N, 9.85. HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 7.851, area 96.80%; method B: RT 9.605, area 96.30%.

N-[2-(1-Adamantyl)ethyl]- N^{\prime}-(7-chloroquinolin-4-yl)- N-methylethane-1,2-diamine (61).

Compound 61 was prepared from aminoquinoline N-[2-(1-adamantyl)ethyl]- $N^{\prime}-(7-$ chloroquinolin-4-yl)ethane-1,2-diamine ${ }^{5}(54 \mathrm{mg}, 0.14 \mathrm{mmol})$ and 37% formaldehyde ($21 \mu \mathrm{~L}$, $0.28 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(38 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(35 \mathrm{mg}, 0.56 \mathrm{mmol})$ by procedure D and was obtained after column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ as a white solid ($50 \mathrm{mg}, 89 \%$) softenes at $157-159{ }^{\circ} \mathrm{C}$. IR (KBr): $3264 \mathrm{~m}, 3064 \mathrm{w}, 2902 \mathrm{~s}$, 2843s, $2787 \mathrm{w}, 1611 \mathrm{w}, 1581 \mathrm{~s}, 1550 \mathrm{w}, 1508 \mathrm{w}, 1489 \mathrm{w}, 1451 \mathrm{~m}, 1431 \mathrm{w}, 1366 \mathrm{~m}, 1355 \mathrm{w}, 1333 \mathrm{~m}, 1282 \mathrm{w}$, 1248w, 1203w, 1169w, 1145m, 1104w, 1083w, 1059w, 1041w, 1014w, 911w, 876m, 869w, $838 \mathrm{~m}, 818 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.53(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.95(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.36(\mathrm{dd}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(6)), 6.37(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 6.01(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 3.35-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right)$, 2.80-2.65 (m, 2H, $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 2.55-2.40\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.61\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.94$ (bs, $3 \mathrm{H},-\mathrm{Ad}), 1.80-1.55(\mathrm{~m}, 6 \mathrm{H},-\mathrm{Ad}), 1.55-1.45(\mathrm{~m}, 6 \mathrm{H},-\mathrm{Ad}), 1.40-1.20\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right) .{ }^{13} \mathrm{C}-$ NMR (50 MHz, CDCl_{3}): $152.10 ; 149.85 ; 149.08 ; 134.75 ; 128.65 ; 125.16 ; 121.32 ; 117.35 ; 99.20$; 54.95; 51.93; 42.61; 41.42; 41.31; 39.58; 37.05; 31.86; 28.55. (+)ESI-HRMS (m/z (\%)): $398.23665\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 398.23575 (error in ppm: 2.25). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{3} \times 1 / 2\right.$ $\mathrm{H}_{2} \mathrm{O}$) Calcd: C, 70.83 ; H, 8.17 ; N, 10.32. Found: C, 70.36 ; H, 8.11 ; N, 10.30. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.898, area 98.86\%; method B: RT 9.851, area 95.82%.

N-[2-(1-Adamantyl)ethyl]- N^{\prime}-(7-chloroquinolin-4-yl)- N-methylpropane-1,3-diamine (62).

Compound 62 was prepared from aminoquinoline N-[2-(1-adamantyl)ethyl]- $N^{\prime}-(7-$ chloroquinolin-4-yl)propane-1,3-diamine ${ }^{5}(132 \mathrm{mg}, 0.33 \mathrm{mmol})$ and 37% formaldehyde ($50 \mu \mathrm{~L}$, $0.66 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(90 \mathrm{mg}, 0.66 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(83 \mathrm{mg}, 1.32 \mathrm{mmol})$ by procedure D
and was obtined after column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ as a white solid ($113 \mathrm{mg}, 84 \%$) softenes at $101-103{ }^{\circ} \mathrm{C}$. IR (ATR): 3245m, 3064w, 2899s, 2844m, 2786w, 1610w, 1578s, 1541w, 1508w, 1497w, 1473w, 1452m, 1430w, 1396w, 1366m, 1331w, 1282w, 1231w, 1202w, 1168w, 1140w, 1098w, 1080w, 1038w, 900w, 870w, 845w, 804w, 769w, 644w cm ${ }^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $8.49(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)$), 8.08 (bs, $1 \mathrm{H},-\mathrm{N} H), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.31(\mathrm{dd}, 1 \mathrm{H}, J$ $=2.3 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.45-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right)$, 2.70-2.55 (m, 2H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$) , 2.55-2.40 (m, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}$), $2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right.$), 1.91 (bs, $3 \mathrm{H},-\mathrm{Ad}$), 1.80-1.50 (m, 8H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}{ }^{-}, \mathrm{Ad}$), 1.46 (bs, $6 \mathrm{H},-\mathrm{Ad}$), 1.40-1.30 (m, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 152.12 ; 150.68 ; 149.14 ; 134.50 ; 128.45 ; 124.67$; 122.15; 117.62; 98.19; 58.06; 52.28; 44.37; 42.42; 42.01; 41.48; 37.00; 31.68; 28.48; 24.07. $(+)$ ESI-HRMS $(\mathrm{m} / \mathrm{z}(\%)): 412.25106\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 412.25140 (error in ppm: -0.83). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, $71.32 ; \mathrm{H}, 8.38 ; \mathrm{N}, 9.98$. Found: C, $71.54 ; \mathrm{H}, 8.02 ; \mathrm{N}$, 10.07. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.999, area 99.74%; method B: RT 9.940, area 99.04\%.

N-[2-(1-Adamantyl)ethyl]- N^{\prime}-(7-chloroquinolin-4-yl)- N-methylbutane-1,4-diamine (63).

Compound 63 was prepared from aminoquinoline N-[2-(1-adamantyl)ethyl]- $N^{\prime}-(7-$ chloroquinolin-4-yl)butane-1,4-diamine ${ }^{5}(194 \mathrm{mg}, 0.47 \mathrm{mmol})$ and 37% formaldehyde ($71 \mu \mathrm{~L}$, $0.94 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(128 \mathrm{mg}, 0.94 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(118 \mathrm{mg}, 1.88 \mathrm{mmol})$ by procedure D and was obtained after column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $)=$ $95 / 5$) as a white solid ($172 \mathrm{mg}, 86 \%$) softenes at $136-138{ }^{\circ} \mathrm{C}$. IR (ATR): $3232 \mathrm{~m}, 3064 \mathrm{w}, 2906 \mathrm{~s}$, 2844m, 2367w, 1610w, 1580s, 1542w, 1522w, 1508w, 1490w, 1454m, 1430w, 1386w, 1367m,
$1331 \mathrm{~m}, 1279 \mathrm{w}, 1256 \mathrm{w}, 1225 \mathrm{w}, 1200 \mathrm{w}, 1167 \mathrm{w}, 1139 \mathrm{w}, 1074 \mathrm{w}, 1039 \mathrm{w}, 1028 \mathrm{w}, 898 \mathrm{w}, 869 \mathrm{w}$, 852w, 821w, 805w, 770w, 734w, 644w, 637w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.49(\mathrm{~d}, 1 \mathrm{H}, J$ $=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.29(\mathrm{dd}$, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.61(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.35-$ 3.15 ($\mathrm{m}, 2 \mathrm{H}, ~ \mathrm{ArNHCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$-), 2.50-2.30 (m, 4H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.94(\mathrm{bs}, 3 \mathrm{H},-\mathrm{Ad}), 1.80-1.55\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}{ }^{-}\right.$, ArNHCH $\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{Ad}$), 1.48 (bs, $6 \mathrm{H},-\mathrm{Ad}$), $1.40-1.20$ (m, 2H, $-\mathrm{CH}_{2} \mathrm{Ad}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 151.98 ; 150.28 ; 149.10 ; 134.52 ; 128.42 ; 124.67 ; 121.83 ; 117.38 ; 98.72 ; 56.90 ; 51.42$; 43.28; 42.61; 42.41; 40.99; 37.00; 31.63; 28.50; 26.60; 25.36. (+)ESI-HRMS (m/z (\%)): $426.26631\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 426.26705 (error in ppm: -1.75). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{ClN}_{3} \times 1 / 3\right.$ $\mathrm{H}_{2} \mathrm{O}$) Calcd: C, 72.28 ; H, 8.55; N, 9.73. Found: C, 72.17 ; H, 8.82; N, 9.71. HPLC purity ($\lambda=330$ $\mathrm{nm})$: method A: RT 7.898, area 99.37\%; method B: RT 9.855, area 99.17%.

N^{1}-[2-(1-Adamantyl)ethyl]- N^{2}-(7-chloroquinolin-4-yl)- N^{1}-methylpropane-1,2-diamine (64).

Compound 64 was prepared from aminoquinoline N^{1}-[2-(1-adamantyl)ethyl]- N^{2}-(7-chloroquinolin-4-yl)propane-1,2-diamine ${ }^{4}(27 \mathrm{mg}, 0.07 \mathrm{mmol})$ and 37% formaldehyde ($11 \mu \mathrm{~L}$, $0.14 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(19 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(18 \mathrm{mg}, 0.28 \mathrm{mmol})$ by procedure D and was obtained after column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ a white solid ($27 \mathrm{mg}, 93 \%$) softenes at $138-140{ }^{\circ} \mathrm{C}$. IR (ATR): $3275 \mathrm{~m}, 2964 \mathrm{w}, 2901 \mathrm{~s}, 2844 \mathrm{~m}$, 2799w, 2346w, 1610w, 1575s, 1541m, 1500w, 1490w, 1451m, 1425w, 1381w, 1366w, 1341w, 1331w, 1273w, 1254w, 1198w, 1153w, 1126w, 1104w, 1078w, 1045w, 909w, 872m, 839w, 820w, 802w, 769w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.52(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.95(\mathrm{~d}$, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.35(\mathrm{dd}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}$,

H-C(6)), $6.44(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{ArNH}-), 3.70-3.55(\mathrm{~m}, 1 \mathrm{H}$, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), \quad 2.70-2.55 \quad\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), \quad 2.50-2.30 \quad(\mathrm{~m}, \quad 3 \mathrm{H}$, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.90(\mathrm{bs}, 3 \mathrm{H},-\mathrm{Ad}), 1.75-1.50(\mathrm{~m}, 6 \mathrm{H}$, -Ad), 1.45 (bs, 6H, -Ad), 1.30 (d, $\left.3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 1.30-1.15\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right)$. ${ }^{13}$ C-NMR (125 MHz, CDCl_{3}): 151.98; 149.87; 149.22; 134.68; 128.66; 125.13; 121.44; 118.06; 99.70; 62.58; 52.04; 45.59; 42.55; 42.10; 41.36; 37.06; 31.82; 28.58; 18.69. (+)ESI-HRMS (m/z $(\%)): 412.25217\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 412.25140 (error in ppm: 1.86). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{3} \times\right.$ $1 / 2 \mathrm{H}_{2} \mathrm{O}$) Calcd: C, 71.32; H, 8.38; N, 9.98. Found: C, 71.57; H, 8.72; N, 9.98. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.811, area 98.20%; method B: RT 9.832, area 98.83%.

N^{1}-[2-(1-Adamantyl)ethyl]- N^{3}-(7-chloroquinolin-4-yl)- N^{1}-methylbutane-1,3-diamine (65).

Compound 65 was prepared from aminoquinoline N^{1}-[2-(1-adamantyl)ethyl]- N^{3}-(7-chloroquinolin-4-yl)butane-1,3-diamine ${ }^{4}(140 \mathrm{mg}, 0.34 \mathrm{mmol})$ and 37% formaldehyde ($54 \mu \mathrm{~L}$, $0.68 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(93 \mathrm{mg}, 0.68 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(85 \mathrm{mg}, 1.36 \mathrm{mmol})$ by procedure D and was obtained after column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ as a white solid ($116 \mathrm{mg}, 80 \%$) softenes at $54-56^{\circ} \mathrm{C}$. IR (ATR): $3236 \mathrm{~m}, 2902 \mathrm{~s}, 2845 \mathrm{~s}, 2611 \mathrm{w}$, $1578 \mathrm{~s}, 1541 \mathrm{~m}, 1488 \mathrm{w}, 1450 \mathrm{~m}, 1428 \mathrm{w}, 1375 \mathrm{w}, 1330 \mathrm{w}, 1281 \mathrm{w}, 1243 \mathrm{w}, 1200 \mathrm{w}, 1152 \mathrm{~m}, 1098 \mathrm{w}$, 1078w, 1048w. 878w, 849w, 806m, 765w, 644w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.47$ (d, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 8.00(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz},-\mathrm{N} H), 7.92(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.65(\mathrm{~d}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}$, $\mathrm{H}-\mathrm{C}(3))$, 3.90-3.80 (m, 1H, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right)$, 2.85-2.75 (m, $\left.1 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 2.50$2.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}$, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 1.92(\mathrm{bs}, 3 \mathrm{H},-\mathrm{Ad}), 1.75-1.55\left(\mathrm{~m}, 7 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right.$, -Ad$), 1.44(\mathrm{~m}$,
$6 \mathrm{H},-\mathrm{Ad}), 1.35-1.25\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 151.86 ; 149.94$; $149.27 ; 134.61 ; 128.42 ; 124.65 ; 122.25 ; 117.85 ; 98.50 ; 54.42 ; 52.32 ; 48.65 ; 42.47 ; 42.08 ; 41.37$; 37.07; 31.75; 31.50; 28.58; 18.90. (+)ESI-HRMS (m/z (\%)): $426.26541\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 426.26705 (error in ppm: -3.85). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{ClN}_{3} \times \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, 70.32; H, 8.63; N, 9.46. Found: C, 69.70; H, 9.05; N, 9.38. HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 8.531, area 97.77\%; method B: RT 9.909, area 96.78\%.

N-(1-Adamantylmethyl)- N^{\prime}-quinolin-4-ylpropane-1,3-diamine (66).

Compound 66 was prepared from AQ7 ($1.4 \mathrm{~g}, 6.96 \mathrm{mmol}$) and adamantane-1-carboxaldehyde ($952 \mathrm{mg}, 5.80 \mathrm{mmol}$) using $\mathrm{AcOH}(370 \mu \mathrm{~L}, 6.96 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.36 \mathrm{~g}, 34.80 \mathrm{mmol})$ by procedure E and was obtained after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient: Hex/EtOAc $=$ $4 / 6 \rightarrow 1 / 9)$ as a colorless foam ($1.21 \mathrm{~g}, 60 \%$). IR (ATR): $3290 \mathrm{~m}, 2901 \mathrm{~s}, 2846 \mathrm{~s}, 1657 \mathrm{w}, 1619 \mathrm{w}$, 1584s, 1544m, 1451m, 1372w, 1340w, 1285w, 1225w, 1151w, 1131w, 1100w, 1041m, 807w, $762 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.51(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{H}-\mathrm{C}(8)), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.58(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(7)), 7.32(\mathrm{t}, 1 \mathrm{H}, J=$ 7.6 Hz, H-C(6)), $7.14(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NH}), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right)$, 2.90-2.78 (m, 2H, $-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}$), $2.29\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.05-1.95(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ad}), 1.93-1.83(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-$), 1.8-1.67 (m, $6 \mathrm{H},-\mathrm{Ad}$), $1.65-1.55(\mathrm{~m}, 6 \mathrm{H},-\mathrm{Ad}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 150.89 ; 150.48 ; 148.11 ; 129.33 ; 128.81 ; 123.94 ; 120.66 ; 118.94 ; 98.13 ; 63.56 ; 50.62 ;$ 43.86; 41.05; 37.10; 33.24; 28.38; 27.60. (+)ESI-HRMS (m/z (\%)): 350.25906 ([M+H] ${ }^{+}, 100$); calculated 350.25907 (error in ppm: -0.05). HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 7.531, area 95.70\%; method B: RT 8.193, area 95.60\%.

N-[2-(1-Adamantyl)ethyl]- N^{\prime}-quinolin-4-ylpropane-1,3-diamine (67).

Compound 67 was prepared from AQ7 (185 mg, 0.92 mmol) and adamantyl-1-acetaldehyde ($136 \mathrm{mg}, 0.77 \mathrm{mmol}$) using $\mathrm{AcOH}(63 \mu \mathrm{~L}, 1.10 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(209 \mathrm{mg}, 5.52 \mathrm{mmol})$ by procedure E and was obtained after flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient: Hex/EtOAc $=$ $4 / 6 \rightarrow 1 / 9$) as a colorless foam ($195 \mathrm{mg}, 70 \%$). IR (ATR): $3250 \mathrm{~m}, 3072 \mathrm{w}, 2902 \mathrm{~s}, 2844 \mathrm{~m}, 1612 \mathrm{w}$, $1583 \mathrm{~s}, 1544 \mathrm{~m}, 1446 \mathrm{~m}, 1399 \mathrm{w}, 1371 \mathrm{w}, 1339 \mathrm{w}, 1284 \mathrm{w}, 1242 \mathrm{w}, 1131 \mathrm{w}, 808 \mathrm{w}, 762 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}-$ NMR (500 MHz, CDCl_{3}): 8.52 (d, $\left.1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)\right), 7.95(\mathrm{dd}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}$, $\mathrm{H}-\mathrm{C}(8)), 7.82(\mathrm{dd}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.74(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(7)), 7.42-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.45-3.35(\mathrm{~m}, 2 \mathrm{H}$, ArNHCH 2_{2}), 2.95-2.85 (m, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}\right), 2.75-2.60\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.00-1.85(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-$, -Ad), 1.75-1.60 (m, 6H, -Ad), 1.55-1.45 (m, 6H, -Ad), 1.45-1.35 (-CH2 $\left.\mathrm{CH}_{2} \mathrm{Ad}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.99 ; 150.61 ; 148.26 ; 129.40 ; 128.80 ; 124.02 ; 120.61 ; 119.13 ;$ $97.88 ; 49.61 ; 44.94 ; 44.42 ; 43.84 ; 42.65 ; 37.06 ; 31.83 ; 28.59 ; 27.47$. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.661, area 96.48\%; method B: RT 7.311, area 95.26\%

N -(1-Adamantylmethyl)-N-methyl-N'-quinolin-4-ylpropane-1,3-diamine (68).

Compound 68 was prepared from aminoquinoline $\mathbf{6 6}(1.2 \mathrm{~g}, 3.43 \mathrm{mmol})$ and 36% formaldehyde ($529 \mu \mathrm{~L}, 6.87 \mathrm{mmol})$ using $\mathrm{ZnCl}_{2}(936 \mathrm{mg}, 6.87 \mathrm{mmol})$ and $\mathrm{NaHB}_{3} \mathrm{CN}(862 \mathrm{mg}, 13.72 \mathrm{mmol})$ by procedure D and was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=95 / 5\right)$ and flash chromatography (Biotage SP1 NH column, gradient: $\mathrm{Hex} / \mathrm{EtOAc}=3 / 7 \rightarrow 1 / 9$) as a white foam. Yield: $900 \mathrm{mg}(72 \%)$. IR (ATR): 3291m, 3078w, 2901s, 2846s, 1659w, 1619w, 1584s, 1544m, 1454m, 1374w, 1342w, 1229w, 1176w, 1132w, 1104w, 1042m, 984w, 887w, 809w, 764m, 738w, 598w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 8.55
(d, 1H, $J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5))$, 7.65-7.55 (m, 1H, H-C(7)), 7.45-7.33 (m, 1H, H-C(6)), $6.98(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NH}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=5.3$ $\mathrm{Hz}, \mathrm{H}-\mathrm{C}(3))$, 3.47-3.35 (m, 2H, ArNHCH 2_{2}), 2.68-2.55 (m, 2H, $-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}$), 2.39 (s, $3 \mathrm{H},-$ NCH_{3}), $2.08\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.95-1.83\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}\right.$, -Ad$) 1.70-1.40(\mathrm{~m}, 12 \mathrm{H},-\mathrm{Ad})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $150.86 ; 150.50 ; 148.15 ; 129.42 ; 128.90 ; 124.13 ; 120.36 ; 119.04 ;$ 98.29; 72.53; 60.76; 46.11; 43.86; 41.47; 36.95; 34.77; 28.35; 25.82. (+)ESI-HRMS (m/z (\%)): $364.27455\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 364.27472 (error in ppm: -0.48). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \times\right.$ $1 / 2 \mathrm{H}_{2} \mathrm{O}$) Calculated: C, 77.37; H, 9.20; N, 11.28 Found: C, 77.49; H, 9.11; N, 11.36. HPLC purity $(\lambda=330 \mathrm{~nm})$: method A: RT 7.800, area 99.24%; method B: RT 9.268, area 98.89%.

N-[2-(1-Adamantyl)ethyl]- N-methyl- N^{\prime}-quinolin-4-ylpropane-1,3-diamine (69).

Compound 69 was prepared from aminoquinoline 67 ($220 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 36% formaldehyde ($93 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$) using $\mathrm{ZnCl}_{2}(165 \mathrm{mg}, 1.20 \mathrm{mmol})$ and $\mathrm{NaHB}_{3} \mathrm{CN}(151 \mathrm{mg}$, $2.4 \mathrm{mmol})$ by procedure D and was obtained after dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3} \mathrm{satd}\right)=95 / 5\right)$ as a white solid $(167 \mathrm{mg}, 73 \%)$. IR $(\mathrm{ATR}): 3236 \mathrm{~m}, 3070 \mathrm{w}$, 2901s, 2844s, 1582s, 1544m, 1445m, 1397w, 1372w, 1339w, 1235w, 1133w, 1046w, 857w, 808w, 764w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.53(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.98(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.88(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.67-7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(7))$, 7.45-7.35 (m, 1H, H-C(6)), $6.33(\mathrm{~d}, 1 \mathrm{H}, ~ J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3))$, 3.47-3.33 (m, 2H, ArNHCH 2_{2}), 2.70-2.65 (m, 2H, $-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad}$), 2.53-2.40 (m, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}$), $2.35(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{NCH}_{3}$), 2.00-1.85 (m, 5H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}{ }^{-}$, -Ad) 1.75-1.65 (m, 6H, -Ad) 1.47 (m, 6H, -Ad), 1.40-1.30 (m, 2H, $-\mathrm{CH}_{2} \mathrm{Ad}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 150.85; 150.69; 147.94; 129.91; 128.92; 124.16; 120.54; 119.10; 97.91; 57.83; 52.29; 44.18; 42.46; 41.98; 41.36; 37.06; 31.74;
28.56; 24.35. (+)ESI-HRMS (m/z (\%)): 378.29024 ([M+H] ${ }^{+}$, 100); calculated 378.29037 (error in ppm: -0.36). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calculated: C, 77.67 ; $\mathrm{H}, 9.39$; $\mathrm{N}, 10.87$. Found: C , 77.22; H, $9.44 ; \mathrm{N}, 11.03$. HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 7.931, area 98.67%; method B: RT 9.534, area 96.77%.

N^{2}-(1-Adamantylmethyl)- N^{1}-quinolin-4-ylpropane-1,2-diamine (77).

Compound 77 was prepared from amine linker $\mathbf{7 0}^{4}(110 \mathrm{mg}, 0.49 \mathrm{mmol})$ and 4-chloroquinoline ($81 \mathrm{mg}, 0.49 \mathrm{mmol}$) in phenol ($692 \mathrm{mg}, 7.35 \mathrm{mmol}$). The mixture was heated at $120-130{ }^{\circ} \mathrm{C}$ for 24 h , cooled to r.t. and taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed several times with NaOH and brine. The organic layer was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The final product was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=9 / 1\right)$ and flash chromatography (Biotage SP1 RP column, eluent: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=9 / 1$) as a yellow solid (102 mg, 60%). IR (ATR): $3364 \mathrm{~m}, 3303 \mathrm{w}$, 2897s, 2843s, 1589 s , 1534s, $1483 \mathrm{w}, 1453 \mathrm{~m}, 1395 \mathrm{w}, 1366 \mathrm{w}, 1300 \mathrm{w}, 1246 \mathrm{w}, 1161 \mathrm{w}, 803 \mathrm{w}$, $757 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.55(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}, \mathrm{H}-\mathrm{C}(8)), 7.81$ (d, 1H, $J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5))$, 7.66-7.61 (m, 1H, H-C(7)), 7.46-7.40 (m, 1H, H$\mathrm{C}(6))$, $6.38(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3))$, $6.26(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NH}), 3.38-3.31(\mathrm{~m}, 1 \mathrm{H}$, ArNHCH $\left.2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)-\right)$, 3.07-3.01 (m, $\left.1 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CHNHCH}_{2} \mathrm{Ad}\right), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H},-$ $\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CHNHCH}_{2} \mathrm{Ad}\right), 2.44\left(\mathrm{ABq}, 1 \mathrm{H}, H_{A}, J=11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.17\left(\mathrm{ABq}, 1 \mathrm{H}, H_{B}, J=\right.$ $\left.11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.00(\mathrm{~s}, 3 \mathrm{H},-\mathrm{Ad}), 1.80-1.49(\mathrm{~m}, 12 \mathrm{H},-\mathrm{Ad}), 1.24\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.98 ; 150.12 ; 148.28 ; 129.70 ; 128.93 ; 124.42 ; 119.66 ; 119.04 ;$ 98.87; 59.17; 52.29; 46.91; 40.93; 37.22; 33.47; 28.44; 19.53. (+)ESI-HRMS (m/z (\%)): $367.25596\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 367.28562 (error in ppm: +1.28). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \times 2 / 3\right.$
$\mathrm{H}_{2} \mathrm{O}$) Calcd.: C, 76,41 ; H, 9,01 ; N, 11,62; Found: C, 76,$33 ; H, 8,56$; N, 11,34. HPLC purity $(\lambda=$ 330 nm) method A: RT 7.904 min., area 95.56%; method B: RT 9.308 min., area 95.43%.

N^{3}-(1-Adamantylmethyl)- N^{1}-quinolin-4-ylbutane-1,3-diamine (78).

Compound 78 was prepared from amine linker $71^{4}(370 \mathrm{mg}, 1.54 \mathrm{mmol})$ and 4-chloroquinoline $(233 \mathrm{mg}, 1.42 \mathrm{mmol})$ using $\operatorname{Pd}(\mathrm{OAc})_{2}(12.8 \mathrm{mg}, 0.057 \mathrm{mmol})$, SPhos $(51.4 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(750 \mathrm{mg}, 3.55 \mathrm{mmol})$ by procedure H and was obtained after dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient: $\mathrm{EtOAc} /\left[\mathrm{MeOH} /\left(\mathrm{NH}_{3}\right.\right.$ aq. $\left.\left.)=9 / 1\right]=9 / 1 \rightarrow 7 / 3\right)$. Yield: $473 \mathrm{mg}(91 \%)$. IR (ATR): $3263 \mathrm{~s}, 3067 \mathrm{w}, 2900 \mathrm{~s}, 2845 \mathrm{~m}, 1711 \mathrm{w}, 1582 \mathrm{~s}, 1541 \mathrm{~m}, 1450 \mathrm{~m}, 1373 \mathrm{w}, 1340 \mathrm{w}, 1251 \mathrm{w}, 1224 \mathrm{w}$, 1134w, 808w, 763m, 735w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.53(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2))$, $7.96(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=8.25 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.60(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(7)), 7.34(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 7.22(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3))$, 3.55-3.30 (m, 2H, $\left.\mathrm{ArNHCH}_{2}-\right), 2.93-2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-\right), 2.40\left(\mathrm{ABq}, 1 \mathrm{H}, H_{A}\right.$, $\left.J=11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.30\left(\mathrm{ABq}, 1 \mathrm{H}, H_{B}, J=11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.99(\mathrm{~s}, 3 \mathrm{H},-\mathrm{Ad}), 1.80-1.68$ $(\mathrm{m}, 6 \mathrm{H},-\mathrm{Ad}), 1.67-1.50\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-,-\mathrm{Ad}\right), 1.17\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz, CDCl_{3}): $151.01 ; 150.45 ; 148.25 ; 129.48 ; 128.83 ; 123.97 ; 120.68 ; 119.06 ; 98.24$; $60.89 ; 54.28 ; 41.52 ; 41.11 ; 37.15 ; 33.41 ; 33.26 ; 28.42 ; 19.82$. (+)ESI-HRMS (m/z (\%)): $364.27468\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 364.27472 (error in ppm: -0.12). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \times \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, $75.55 ;$ H, $9.25 ;$ N, 11.01. Found C, $75.20 ; H, 8.74 ;$ N, 10.86. HPLC purity ($\lambda=330 \mathrm{~nm}$) method A: RT 7.898 min. area 97.80%; method B: RT 9.348 min., area 97.14%.

N^{4}-(1-adamantylmethyl)- N^{1}-quinolin-4-ylpentane-1,4-diamine (79).

Compound 79 was prepared from amine linker $\mathbf{7 2}^{4}(389 \mathrm{mg}, 1.54 \mathrm{mmol})$ and 4-chloroquinoline $(231 \mathrm{mg}, 1.41 \mathrm{mmol})$ using $\operatorname{Pd}(\mathrm{OAc})_{2}(12.7 \mathrm{mg}, 0.056 \mathrm{mmol})$, SPhos $(46.3 \mathrm{mg}, 0.11 \mathrm{mmol})$ and
$\mathrm{K}_{3} \mathrm{PO}_{4}(749 \mathrm{mg}, 3.52 \mathrm{mmol})$ by procedure H and was obtained after dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /\left[\mathrm{MeOH} /\left(\mathrm{NH}_{3}\right.\right.$ aq. $\left.\left.)=9 / 1\right]=9 / 1 \rightarrow 7 / 3\right)$. Yield: $235 \mathrm{mg}(44 \%)$. IR (ATR): $3324 \mathrm{~m}, 3219 \mathrm{~m}, 3057 \mathrm{~m}, 2903 \mathrm{~s}, 2847 \mathrm{~m}, 1582 \mathrm{~s}, 1460 \mathrm{~m}, 1435 \mathrm{~s}, 1396 \mathrm{~m}, 1339 \mathrm{w}, 1261 \mathrm{w}, 1220 \mathrm{~m}$, $1175 \mathrm{~m}, 1123 \mathrm{~m}, 1072 \mathrm{w}, 805 \mathrm{w}, 764 \mathrm{~m}, 696 \mathrm{~m}, 646 \mathrm{w}, 545 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $8.54(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(5)), 7.60(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(7)), 7.45-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(3)), 5.54(\mathrm{bs}, \quad 1 \mathrm{H},-\mathrm{N} H), \quad 3.40-3.25\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{ArNHCH}_{2}-\right), 2.75-2.60(\mathrm{~m}, 1 \mathrm{H},-$ $\left.\left(\mathrm{CH}_{3}\right) \mathrm{C}_{\mathrm{N}} \mathrm{NHCH}_{2} \mathrm{Ad}\right), 2.29\left(\mathrm{ABq}, 1 \mathrm{H}, H_{A}, J=11.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 2.20\left(\mathrm{ABq}, 1 \mathrm{H}, H_{B}, J=11.3\right.$ $\left.\mathrm{Hz},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.96$ (s, 3H, -Ad), 1.89-1.76 (m, 2H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-$), 1.74-1.59 (m, 6H, -Ad), 1.58-1.45 (m, 8H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-, - Ad), $1.08\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.73 ; 149.98 ; 148.08 ; 129.58 ; 129.01 ; 124.44 ; 119.67 ; 118.74 ; 98.59 ; 59.34 ;$ 53.11; 43.40; 40.95; 37.17; 34.08; 33.28; 28.42; 24.95; 20.48. (+)ESI-HRMS (m/z (\%)): $378.28996\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 378.29037 (error in ppm: -1.08). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \times 3 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, 77.08 ; H, 9.40 ; N, 10.79. Found: C, $77.10 ; H, 8.95$; N, 10.87. HPLC purity ($\lambda=330$ $\mathrm{nm})$: method A: RT 7.560, area 95.16\%; method B: RT 8.832, area 95.67%.

N^{2}-[2-(1-Adamantyl)ethyl]- N^{1}-quinolin-4-ylpropane-1,2-diamine (80).

Amine linker 73^{4} ($260 \mathrm{mg}, 1.10 \mathrm{mmol}$) and 4-chloroquinoline ($180 \mathrm{mg}, 1.10 \mathrm{mmol}$) were mixed in NMP (1.5 ml) in MW cuvette under argon. The reaction mixture was subjected to MW irradiation using a Biotage Initiator 2.5 apparatus, $1 \mathrm{~h}, 180^{\circ} \mathrm{C}$. Compound $\mathbf{8 0}$ was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{EtOAc} / \mathrm{MeOH} /\left(\mathrm{NH}_{3}\right.$ aq. $\left.) 90 / 9 / 1=95 / 5\right)$ and flash chromatography (Biotage SP1-NH column, eluent: $\mathrm{Hex} / \mathrm{EtOAc}=6 / 4 ; \mathrm{RP}$ column eluent: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=8 / 2$). Yield: $253 \mathrm{mg}(63 \%) ; \mathrm{mp}=112-113{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{ATR}): 3251 \mathrm{~m}, 3059 \mathrm{~m}, 2962$
$\mathrm{m}, 2902 \mathrm{~s}, 2844 \mathrm{~s}, 1708 \mathrm{w}, 1618 \mathrm{w}, 1578 \mathrm{~s}, 1543 \mathrm{~s}, 1451 \mathrm{~s}, 1396 \mathrm{~s}, 1374 \mathrm{~m}, 1343 \mathrm{~m}, 1280 \mathrm{w}$, 1258 w, 1159 w, 1130 w, $1108 \mathrm{w}, 909 \mathrm{w}, 807 \mathrm{w}, 763 \mathrm{~m}, 733 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): $8.53(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.81-7.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(5))$, 7.65-7.59 (m, 1H, H-C(7)), 7.46-7.37 (m, 1H, H-C(6)), $6.45(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3))$, $5.69(\mathrm{bs}, \quad 1 \mathrm{H}, \quad-\mathrm{N} H), \quad 3.87-3.73\left(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), \quad 2.91-2.81 \quad(\mathrm{~m}, \quad 2 \mathrm{H}, \quad-$ $\left.\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.70-2.61\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 1.93(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ad}), 1.73-1.57(\mathrm{~m}, 7 \mathrm{H},-\mathrm{NH}$ $-\mathrm{Ad}), 1.55-1.44(\mathrm{~m}, 6 \mathrm{H},-\mathrm{Ad}), 1.36-1.24\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-$ NMR (125 MHz. CDCl_{3}): 150.94; 149.21; 148.52; 129.81; 128.93; 124.45; 119.59;119.12; 99.13; 54.69; 47.52; 44.79; 44.53; 42.69; 37.10; 31.91; 28.63; 18.30. (+)ESI-HRMS (m/z (\%)): $364.27554\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 364.27472 (error in ppm: -0.59). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \times \mathrm{H}_{2} \mathrm{O}\right)$ Calculated: C, 75.55 ; H, 9.25 ; N, 11.01. Found: C, 75.91 ; H, 8.82 ; N, 11.08. HPLC purity $(\lambda=$ 330 nm) method A: RT 7.840 min . area 96.96%; method B: RT 9.480 min ., area 96.39%.

N^{3}-[2-(1-Adamantyl)ethyl]- N^{1}-quinolin-4-ylbutane-1,3-diamine (81).

Compound $\mathbf{8 1}$ was prepared from amine linker $74^{4}(22.6 \mathrm{mg}, 0.09 \mathrm{mmol})$ and 4-chloroquinoline (13.4 mg, 0.08 mmol$)$ using $\operatorname{Pd}(\mathrm{OAc})_{2}(0.7 \mathrm{mg}, 0.003 \mathrm{mmol})$, SPhos $(2.7 \mathrm{mg}, 0.007 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(43.5 \mathrm{mg}, 0.20 \mathrm{mmol})$ by procedure H and was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, gradient: pure EtOAc; gradient: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /\left[\mathrm{MeOH} /\left(\mathrm{NH}_{3}\right.\right.$ aq. $\left.\left.)=9 / 1\right]=9 / 1 \rightarrow 7 / 3\right)$ and flash chromatography (Biotage SP1-NH column, eluent: Hex/EtOAc $=7 / 3$; RP column eluent: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=9 / 1$). Yield: $6.5 \mathrm{mg}(21 \%)$. IR (ATR): $3250 \mathrm{~m}, 3065 \mathrm{w}, 2902 \mathrm{~s}, 2845 \mathrm{~s}$, 2675w, 1664w, 1618w, 1584s, 1543m, 1449m, 1372w, 1341w, 1248w, 1134w, 808w, 763w, $734 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.52(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 8.08(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H)$, $7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.82(\mathrm{dd}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5))$, 7.65-7.57(m,
$1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 6.31(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}$, ArNHCH 2_{2}), 3.40-3.30 (m, 1H, ArNHCH 2_{2}), 3.05-2.90 (m, 1H, ArNHCH $\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}-$), 2.85$2.70\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.70-2.55\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 1.94(\mathrm{~s}, 3 \mathrm{H},-\mathrm{Ad}), 1.80-1.55$ (m, $\left.7 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}{ }^{-},-\mathrm{Ad}\right), 1.55-1.40\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right.$, -Ad), $1.40-1.25(\mathrm{~m}, 1 \mathrm{H},-$ $\mathrm{CH}_{2} \mathrm{Ad}$), $1.20\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 151.18 ; 150.60 ; 148.43$; 129.59; 128.76; 123.92; 120.80; 119.27; 97.86; 45.51; 42.83; 42.41; 41.90; 41.67 37.10; 33.30; 31.93; 28.63; 20.23. (+)ESI-HRMS (m/z (\%)): 378.29011 ([M+H] ${ }^{+}, 100$); calculated 378.29037 (error in ppm: -0.70). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calculated: C, $77.67 ; \mathrm{H}, 9.39 ; \mathrm{N}, 10.87$. Found C, 77.62 ; H, $9.38 ; \mathrm{N}, 10.82$. HPLC purity $(\lambda=330 \mathrm{~nm})$ method A: RT 7.919 min . area 99.19%; method B: RT 8.491 min., area 98.62%.

N^{4}-[2-(1-Adamantyl)ethyl]- N^{1}-quinolin-4-ylpentane-1,4-diamine (82).

Compound $\mathbf{8 2}$ was prepared from amine linker $75(410 \mathrm{mg}, 1.55 \mathrm{mmol})$ and 4 -chloroquinoline (231 mg, 1.41 mmol$)$ using $\operatorname{Pd}(\mathrm{OAc})_{2}(12.7 \mathrm{mg}, 0.056 \mathrm{mmol})$, SPhos $(46.3 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(749 \mathrm{mg}, 3.52 \mathrm{mmol})$ by procedure H and was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, eluent: pure EtOAc; gradient: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /\left[\mathrm{MeOH} /\left(\mathrm{NH}_{3}\right.\right.$ aq. $\left.\left.)=9 / 1\right]=9 / 1 \rightarrow 7 / 3\right)$ and flash chromatography (Biotage SP1 NH column, eluent: Hex/EtOAc =1/9). Yield: 293 mg (53\%). IR (ATR): 3245w, 3067w, 2902s, 2845m, 1616w, 1582s, 1543m, 1448m, 1373w, 1341w, 1130w, 765w, 638w, 596w, 524w, 495w, 410w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.54(\mathrm{~d}, 1 \mathrm{H}$, $J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.63(\mathrm{t}$, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(7)), 7.42(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 5.65$ (bs, $1 \mathrm{H},-\mathrm{NH}$), 3.40-3.27 (m, 2H, $\mathrm{ArNHCH}_{2}-$), 2.78-2.73 (m, $1 \mathrm{H},-\mathrm{CHNHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad}$), 2.72-2.64 $\left(\mathrm{m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.63-2.53\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.05-1.90(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ad}), 1.89-1.75(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{ArNHCH} 2 \mathrm{CH}_{2}-$), 1.73-1.60 (m, $8 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{Ad}$), $1.52-1.45$ (m, $6 \mathrm{H},-\mathrm{Ad}$), 1.32-1.24 (m, 2H, $-\mathrm{CH}_{2} \mathrm{Ad}$), $1.11\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $150.93 ; 149.91 ; 148.32 ; 129.72 ; 128.91 ; 124.39 ; 119.73 ; 118.83 ; 98.58 ; 52.91 ; 44.64 ; 43.41$; 42.59; 41.29; 37.07; 34.43; 31.85; 28.61; 24.96; 20.12. (+)ESI-HRMS (m/z (\%)): 392.30476 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; calculated 392.30602 (error in ppm: -0.88). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{3} \times 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, $73.03 ; \mathrm{H}, 9.56 ; \mathrm{N}, 9.83$. Found: C, 73.34; H, $9.30 ; \mathrm{N}, 9.81$. HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 7.675, area 97.58\%; method B: RT 9.162, area 96.45\%.

N^{3}-(1-Adamantylmethyl)- N^{3}-methyl- N^{1}-quinolin-4-ylbutane-1,3-diamine (84).

Compound 84 was prepared from aminoquinoline 78 ($260 \mathrm{mg}, 0.72 \mathrm{mmol}$) and 36% formaldehyde ($110 \mu \mathrm{~L}, 1.43 \mathrm{mmol}$) using $\mathrm{ZnCl}_{2}(195 \mathrm{mg}, 1.43 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(180 \mathrm{mg}$, $2.86 \mathrm{mmol})$ by procedure D and was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $)=95 / 5$) and flash chromatography (Biotage SP1 NH column, gradient: $\mathrm{Hex} / \mathrm{EtOAc}=3 / 7 \rightarrow 1 / 9$). Yield: $240 \mathrm{mg}(89 \%)$. IR (ATR): 3355m, 3055w, 2957m, 2902s, $2845 \mathrm{~s}, 2792 \mathrm{w}, 1616 \mathrm{w}, 1578 \mathrm{~s}, 1538 \mathrm{~m}, 1494 \mathrm{w}, 1455 \mathrm{~m}, 1400 \mathrm{w}, 1373 \mathrm{~m}, 1346 \mathrm{~m}, 1289 \mathrm{w}$, 1258w, 1233w, 1179w, 1152w, 1125w, 1104w, 1074w, 1046w, 1014w, 984w, 950w, 889w, 871w, 802m, 764m, 470w, 448w, 406w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.55(\mathrm{~d}, 1 \mathrm{H}, J=5.2$ Hz, H-C(2)), 7.96 (d, 1H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.83(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5))$), 7.65-7.55 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7))$, 7.45-7.35 (m, 1H, H-C(6)), 6.63-6.50 (bs, 1H, -NH), $6.40(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{C}(3))$, 3.55-3.45 (m, $1 \mathrm{H}, \mathrm{ArNHCH}_{2}-$), 3.44-3.30 (m, $1 \mathrm{H}, \mathrm{ArNHCH}_{2}-$), 2.85-2.75 (m, 1 H , $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\right), 2.33$ (s, $3 \mathrm{H},-\mathrm{NCH}_{3}$), 2.15-2.05 (m, 2H, $-\mathrm{CH}_{2} \mathrm{Ad}$), 2.00-1.88 (m, 1 H , $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}$) $, 1.81(\mathrm{~s}, 3 \mathrm{H},-\mathrm{Ad}), 1.72-1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}\right.$), $1.60-1.35(\mathrm{~m}, 12 \mathrm{H},-$ Ad), $1.00\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.91 ; 150.37 ; 148.24 ;$
$129.53 ; 128.90 ; 124.16 ; 120.20 ; 119.13 ; 98.57 ; 69.04 ; 61.23 ; 42.94 ; 41.30 ; 38.77 ; 36.97 ; 35.07$; 32.57; 28.35. (+)ESI-HRMS (m/z (\%)): $378.28906\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, calculated 378.29037 (error in ppm: -0.12). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \times 2 / 3 \mathrm{H}_{2} \mathrm{O}\right)$ Calculated: C, $77.08 ; \mathrm{H}, 9.40 ; \mathrm{N}, 10.79$. Found C, 76.98; H, 9.06; N, 10.78. HPLC purity ($\lambda=330 \mathrm{~nm}$) method A: RT 7.896 min. area 98.74%; method B: RT 9.244 min., area 97.79%.

N^{1}-(1-Adamantylmethyl)- N^{1}-methyl- N^{3}-quinolin-4-ylbutane-1,3-diamine (85).

Compound 85 was prepared from aminoquinoline N^{1}-(1-adamantylmethyl)- N^{3}-quinolin-4-ylbutane-1,3-diamine ${ }^{4}(169 \mathrm{mg}, 0.46 \mathrm{mmol})$ and 36% formaldehyde ($72 \mu \mathrm{~L}, 0.93 \mathrm{mmol}$) using $\mathrm{ZnCl}_{2}(126 \mathrm{mg}, 0.93 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(117 \mathrm{mg}, 1.85 \mathrm{mmol})$ by procedure D and was obtained after multiple chromatography: dry-flash $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $)=$ 95/5) and flash chromatography (Biotage SP1 NH column, gradient: Hex/EtOAc $=3 / 7 \rightarrow 1 / 9$ and RP column, gradient: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=8 / 2 \rightarrow 9 / 1$) as a white solid ($123 \mathrm{mg}, 70 \%$). IR (ATR): 3288m, 3073w, 2901s, 2845s, 1618w, 1581s, 1541m, 1451m, 1396w, 1375w, 1342w, 1262w, 1184w, 1150w, 1045m, 983w, 945w, 872w, 809w, 763m, 737w, 603w cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.52(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.86(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 6.79(\mathrm{bs}, 1 \mathrm{H},-\mathrm{N} H)$, $6.42(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.93-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H}$, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.52-2.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right)$, $2.08\left(\mathrm{ABq}, 1 \mathrm{H}, H_{\mathrm{A}}, J=14.0 \mathrm{~Hz},-C H_{2} \mathrm{Ad}\right), 2.03\left(\mathrm{ABq}, 1 \mathrm{H}, H_{\mathrm{B}}, J=14.0 \mathrm{~Hz},-C H_{2} \mathrm{Ad}\right), 1.95-1.67$ (m, 4H, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-,-\mathrm{Ad}\right), 1.95-1.85\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 1.66-1.50(\mathrm{~m}, 12 \mathrm{H}$, -Ad), $1.33\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 150.06 ; 149.86 ; 129.23$; 128.98; 124.27; 120.42; 119.03; 98.49; 72.33; 58.07; 48.45; 46.42; 41.56; 36.97; 34.76; 33.44;
28.41; 19.62. (+)ESI-HRMS (m/z (\%)): 378.29037 ([M+H] ${ }^{+}$, 100); calculated 378.29037 (error in ppm: -0.02). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, $77.67 ; \mathrm{H}, 9.39 ; \mathrm{N}, 10.87$. Found: C, 77.20; H, $9.51 ; \mathrm{N}, 10.92$. HPLC purity ($\lambda=330 \mathrm{~nm}$) method A: RT 7.851 min., area 97.80%; method B : RT 9.284 min., area 95.71%.

Benzyl [1-methyl-4-(quinolin-4-ylamino)butyl]carbamate (107).

Compound 107 was prepared by procedure A using 4-chloroquinoline ($195 \mathrm{mg}, 1.18 \mathrm{mmol}$) and benzyl (4-amino-1-methylbutyl)carabamate ${ }^{4}$ ($335 \mathrm{mg}, 1.42 \mathrm{mmol}$). The product was purified using column chromatography (flash, Biotage SP , NH column, $40+\mathrm{M}$, eluent hexane, hexane/EtOAc gradient 9/1 \rightarrow EtOAc, EtOAc/MeOH gradient $9 / 1 \rightarrow \mathrm{MeOH}$). Final product 107 was obtained as a yellow oil ($320 \mathrm{mg}, 72 \%$). IR (ATR): 3344m, 3063w, 3031w, 2964w, 2934w, 2866w, 1696s, 1616w, 1582s, 1539s, 1454m, 1395w, 1374w, 1343m, 1257m, 1081m, 1029w, 808w, 764m, 697w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.54 (d, $1 \mathrm{H}, J=5.2, \mathrm{H}-\mathrm{C}(2)$), 8.007.95 (m, 1H, H-C(8)), 7.84-7.78 (m, 1H, H-C(5)), 7.65-7.59 (m, 1H, H-C(7)), 7.44-7.39 (m, 1H, H-C(6)), 7.37-7.29 (m, 5H, -Ph), 6.43-6.36 (m, 1H, H-C(3)), $5.30(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 5.11(\mathrm{~s}, 2 \mathrm{H},-$ $\mathrm{CH}_{2} \mathrm{Ph}$), 4.73-4.64 (bs, 1H, NH), 3.89-3.80 (m, 1H, $\mathrm{CbzNHCH}\left(\mathrm{CH}_{3}\right)$), 3.37-3.30 (m, 2H, $\left.\mathrm{CbzNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 1.85-1.75 (m, 2H, $\left.\mathrm{CbzNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right)$, 1.65-1.56 (m, 2 H , $\left.\operatorname{CbzNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 156.02 , $151.00,149.70,148.40,136.45,129.84,128.94,128.53,128.16,128.09,124.54,119.52,118.77$, $98.70,66.68,46.76,43.07,35.12,25.13,21.37$. HRMS: $m / z 364.20267$ corresponds to molecular formula $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm 1.98).

N^{1}-(quinolin-4-yl)pentane-1,4-diamine (108).

The Cbz-protected amine 107 ($305 \mathrm{mg}, 0.839 \mathrm{mmol}$) was hydrogenated using palladium on carbon $10 \%(30 \mathrm{mg}, 10 \% \mathrm{mw})$ as catalyst under 30 psi of hydrogen in $\mathrm{MeOH}(150 \mathrm{~mL})$. After the mixture was stirred at r.t. for 8 h , the catalyst was removed by filtration and the solvent was evaporated under reduced pressure. Final product 108 was obtained as a yellow oil (192 mg , 99.8\%). IR (ATR): 3353m, 3077w, 2958w, 1584s, 1545m, 1441w, 1376w, 1343m, 1258w, $1228 \mathrm{w}, 1127 \mathrm{w}, 1037 \mathrm{w}, 884 \mathrm{w}, 810 \mathrm{w}, 766 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.34(\mathrm{~d}, 1 \mathrm{H}, J$ $=5.5, \mathrm{H}-\mathrm{C}(2)), 8.12-8.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.83-7.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(7))$, 7.45-7.41 (m, 1H, H-C(6)), $6.50(\mathrm{~d}, 1 \mathrm{H}, J=5.8, \mathrm{H}-\mathrm{C}(3)), 3.38\left(\mathrm{t}, 2 \mathrm{H}, J=7.1, \mathrm{ArNHCH}_{2}-\right.$), 3.03-2.95 (m, $1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$), 1.85-1.74 (m, $\left.2 \mathrm{H}, \operatorname{ArNHCH}_{2} \mathrm{CH}_{2}-\right)$, 1.61-1.48 (m, 2 H , ArNHCH $\mathrm{CH}_{2} \mathrm{CH}_{2}-$), 1.14 (d, $3 \mathrm{H}, J=6.4, \mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $152.67,151.14,148.82,130.49,128.72,125.59,122.21,120.28,99.14,47.92,43.87,36.88$, 26.12, 22.28. HRMS: $m / z 230.16532$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{H}^{+}$(error in ppm 0.64); $m / z 115.58652$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 2.52).

Benzyl \{4-[(7-chloroquinolin-4-yl)amino]-1-methylbutyl\}carbamate (109).

Compound 109 was prepared by procedure A using 4,7-dichloroquinoline ($400.0 \mathrm{mg}, 2.019$ mmol) and benzyl (4-amino-1-methylbutyl)carbamate ${ }^{4}$ ($525 \mathrm{mg}, 2.22 \mathrm{mmol}$). The product was purified using column chromatography (flash, Biotage SP, NH column, $40+\mathrm{M}$, eluent hexane, hexane/EtOAc gradient 9/1 $\rightarrow 1 / 9$, EtOAc/MeOH gradient $9 / 1 \rightarrow 1 / 9$). Final product 109 was obtained as yellow oil ($477 \mathrm{mg}, 59 \%$). IR (ATR): $3314 \mathrm{~m}, 3033 \mathrm{w}, 2938 \mathrm{~m}, 1698 \mathrm{~s}, 1610 \mathrm{w}, 1581 \mathrm{~s}$, $1537 \mathrm{~m}, 1452 \mathrm{~m}, 1370 \mathrm{w}, 1333 \mathrm{w}, 1256 \mathrm{~m}, 1139 \mathrm{w}, 1080 \mathrm{w}, 1026 \mathrm{w}, 901 \mathrm{w}, 878 \mathrm{w}, 851 \mathrm{w}, 808 \mathrm{w}$, 738w, $698 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.30(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(2)$), 8.10-8.04 (m,
$1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)), 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 7.34-7.22(\mathrm{~m}, 5 \mathrm{H},-\mathrm{Ph})$, 6.50-6.44 (m, 1H, H-C(3)), 5.10-5.01 (s, 2H, $-\mathrm{CH}_{2} \mathrm{Ph}$), 3.76-3.66 (m, 1H, $\mathrm{CbzNHCH}\left(\mathrm{CH}_{3}\right)$-), 3.38-3.32 (m, 2H, $\operatorname{CbzNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 1.81-1.71 (m, $2 \mathrm{H}, \mathrm{CbzNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$-), 1.63-1.54 (m, 2H, $\left.\operatorname{CbzNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.15$ (d, $\left.3 \mathrm{H}, J=6.6, \mathrm{CbzNHCH}\left(\mathrm{CH}_{3}\right)-\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 158.44,152.69,152.36,149.64,138.48,136.26,129.42,128.90$, $128.69,127.54,125.89,124.32,118.75,99.60,67.23,47.92,43.78,35.38,26.04,21.51$. HRMS: $m / z 398.16435$ corresponds to molecular formula $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm 3.43).

N^{1}-(7-chloroquinolin-4-yl)pentane-1,4-diamine (110).

According to the procedure described in literature, ${ }^{14}$ Cbz-protected amine $\mathbf{1 0 9}(120 \mathrm{mg}, 0.30$ mmol) was dissolved in TFA (2 mL) and the mixture was stirring under the reflux for 2 h . TFA was removed under the reduced pressure. Crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 2.5 \mathrm{M} \mathrm{NaOH}$, organic layer washed twice with 2.5 M NaOH and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Final product was obtained as white powder ($77 \mathrm{mg}, 97 \%$). M.p. $=109-111^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{ATR}): 3294 \mathrm{~m}, 3104 \mathrm{w}$, $3010 \mathrm{w}, 2959 \mathrm{w}, 2931 \mathrm{~m}, 2857 \mathrm{~m}, 1610 \mathrm{w}, 1577 \mathrm{~s}, 1542 \mathrm{~m}, 1473 \mathrm{w}, 1452 \mathrm{~m}, 1369 \mathrm{~m}, 1331 \mathrm{w}, 1283 \mathrm{w}$, 1248w, 1197w, 1149w, 1131w, 1085w, 1025w, 953w, 919w, 901m, 850w, 824w, 800m, 767w $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.32(\mathrm{~d}, 1 \mathrm{H}, J=5.5, \mathrm{H}-\mathrm{C}(2)), 8.07(\mathrm{~d}, 1 \mathrm{H}, J=9.2, \mathrm{H}-$ $\mathrm{C}(5)), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=5.7, \mathrm{H}-\mathrm{C}(3)), 3.34$ $\left(\mathrm{t}, 2 \mathrm{H}, J=7.2, \mathrm{ArNHCH}_{2}-\right), 2.89\left(\mathrm{sext}, 1 \mathrm{H}, J=6.4, \mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-\right.$), 1.83-1.69 (m, 2 H , $\left.\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 1.54-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.09\left(\mathrm{~d}, 3 \mathrm{H}, J=6.4, \mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$)). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $152.71,152.44,149.71,136.26,127.60,125.90,124.30$, 118.77, $99.61,47.66,44.06,37.79,26.23,23.26$. HRMS: $m / z 264.12514$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{H}^{+}$(error in ppm -4.02).

3-(thiophen-2-yl)benzaldehyde (111).

Compound 111 was prepared by procedure G using $\mathrm{Pd}(\mathrm{OAc})_{2}(36.4 \mathrm{mg}, 0.162 \mathrm{mmol}), \mathrm{PPh}_{3}(170$ $\mathrm{mg}, 0.648 \mathrm{mmol}$), 2-thienylboronic acid ($207.4 \mathrm{mg}, 1.621 \mathrm{mmol}$), aq. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(3.1 \mathrm{~mL})$, 3bromobenzaldehyde ($189 \mathrm{mg}, 1.62 \mathrm{mmol}$) and DME (16 mL). The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane, hexane/EtOAc gradient 9/1 $\rightarrow 7 / 3$ and flash Biotage SP1, RP column, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $7 / 3 \rightarrow \mathrm{MeOH}$). Final product 111 was obtained as a white foam (162 mg, 53%). IR (ATR): 3370w, 3105w, 3072w, 2924w, 2834w, 2727w, 1699s, 1599w, 1581w, 1532w, 1480w, 1442w, 1387w, 1350w, 1312w, 1270m, $1220 \mathrm{w}, 1165 \mathrm{~m}, 1119 \mathrm{w}, 1084 \mathrm{w}, 1055 \mathrm{w}, 1000 \mathrm{w}, 896 \mathrm{w}, 842 \mathrm{w}, 793 \mathrm{~m}, 703 \mathrm{~m}, 651 \mathrm{w}, 544 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 10.06 (s, 1H, H-CO), $8.10-8.09$ (m, 1H, H-C(2)), $7.87-7.85$ (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)), 7.79-7.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)), 7.55(\mathrm{t}, 1 \mathrm{H}, J=7.7, \mathrm{H}-\mathrm{C}(5)), 7.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=3.6, J_{2}\right.$ $\left.=1.1, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 7.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.2, J_{2}=1.1, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.0, J_{2}=3.7, \mathrm{H}-\right.$ $\left.\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 192.04,142.68,136.95,135.41,131.57,129.59,128.64$, $128.25,126.61,125.79,124.06 . \mathrm{GC} / \mathrm{MS}(\mathrm{m} / \mathrm{z}(\%)): 188.0$ ([M$\left.\left.{ }^{+}\right], 100\right) ; 159.0$ (36); 115.1 (50).

3-(5-bromothiophen-2-yl)benzaldehyde (112).

According to known procedure, ${ }^{15} \mathbf{1 1 1}(136 \mathrm{mg}, 0.722 \mathrm{mmol})$ was dissolved in 1,2dichloroethane $(2.5 \mathrm{~mL})$. The solution of $\mathrm{Br}_{2}(41 \mu \mathrm{~L}, 0.79 \mathrm{mmol})$ in 1,2-dichloroethane (2.5 mL) was added slowly at $0{ }^{\circ} \mathrm{C}$, then warmed to r.t. and stirred for 2 h . Aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added, and the desired product was extracted with 1,2-dichloroethane. Combined organic layers were washed with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure. The product was purified using column chromatography (flash, Biotage SP1, RP column, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $8 / 2 \rightarrow \mathrm{MeOH}$). The final product $\mathbf{1 1 2}$ was obtained
as a white foam ($144 \mathrm{mg}, 75 \%)$. M.p. $=58-59^{\circ} \mathrm{C}$. IR (ATR): $3357 \mathrm{w}, 3097 \mathrm{w}, 3025 \mathrm{w}, 2857 \mathrm{w}$, 2812w, 2761w, 1738w, 1685s, 1601w, 1480w, 1449w, 1429w, 1398w, 1284w, 1258w, 1183w, 1158w, 1005w, 872w, 783m, 681w, 653w cm ${ }^{-1} .{ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ CO), 8.01 - 8.00 (m, 1H, H-Ar), 7.81 - 7.79 (m, 1H, H-Ar), 7.77 - 7.75 (m, 1H, H-Ar), 7.57$7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=3.9, \mathrm{H}-\mathrm{C}($ thiophene $)$), $7.07(\mathrm{~d}, 1 \mathrm{H}, J=3.7$, H-C(thiophene) $)$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 191.80,144.08,137.03,134.63,131.20,131.10,129.77,129.10$, 126.15, 124.27, 112.61. GC/MS (m/z (\%)): 267.9 ([M $\left.\left.{ }^{+}\right], 100\right) ; 158.0(60)$.

[4-(2-thienyl)phenyl]acetonitrile (113).

Compound 113 was prepared by procedure F using 2-bromothiophene ($200 \mathrm{mg}, 1.23 \mathrm{mmol}$), [4(cyanomethyl)phenyl]boronic acid ($217.2 \mathrm{mg}, 1.349 \mathrm{mmol}$), $\mathrm{PdO} \times 1.4 \mathrm{H}_{2} \mathrm{O}(18 \mathrm{mg}, 0.12$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(186.4 \mathrm{mg}, 1.349 \mathrm{mmol})$ and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 3: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent hexane, hexane/toluene gradient $9 / 1 \rightarrow$ toluene $)$. The final product 113 was obtained as an ocher solid ($157.9 \mathrm{mg}, 65 \%$. $\mathrm{M} . \mathrm{p} .=$ $98-102{ }^{\circ} \mathrm{C}$. IR (film): 3120m, 3024w, 2956w, 2906w, 2359w, 2247m, 2171w, 1609w, 1534m, $1500 \mathrm{~m}, 1428 \mathrm{~m}, 1412 \mathrm{~m}, 1353 \mathrm{w}, 1300 \mathrm{w}, 1260 \mathrm{~m}, 1211 \mathrm{w}, 1119 \mathrm{w}, 1078 \mathrm{w}, 1055 \mathrm{w}, 957 \mathrm{w}, 910 \mathrm{w}$, $851 \mathrm{~m}, 824 \mathrm{~m}, 802 \mathrm{~s}, 702 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.64-7.60(\mathrm{~m}, 2 \mathrm{H}-\mathrm{Ar}), 7.35-$ $7.31(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{Ar}$ and $\mathrm{H}-\mathrm{C}(2)), 7.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.2, \mathrm{H}-\mathrm{C}(4)\right), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(3)), 3.76$ (s, 2H, $\left.\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CN}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 143.30, 134.34, 128.85, $128.46,128.11,126.54,125.26,123.52,117.65,23.32 . \mathrm{GC} / \mathrm{MS}(\mathrm{m} / \mathrm{z}(\%)): 199.1\left(\left[\mathrm{M}^{+}\right], 100\right)$; 171.1 (27).

[4-(5-bromo-2-thienyl)phenyl]acetonitrile (114).

N -bromosuccinimide ($82.4 \mathrm{mg}, 0.463 \mathrm{mmol}$) was added to the stirring solution of $\mathbf{1 1 3}(86.3 \mathrm{mg}$, 0.433 mmol) in dry THF (9 mL) in the dark, at room temperature. Reaction progress was monitored by TLC (RP, MeOH). After 1h of stirring, an aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added, and the desired product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were washed with brine, and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure. The product was purified using column chromatography (flash Biotage SP1 RP column, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gradient $6 / 4 \rightarrow \mathrm{MeOH}$). The final product 114 was obtained as an ocher solid (64.2 mg, 53 \%). M.p. $=142-145{ }^{\circ} \mathrm{C}$. IR (film): 3094w, 3032w, 2923w, 2315w, 2248m, 1913w, $1749 \mathrm{w}, 1568 \mathrm{w}, 1538 \mathrm{w}, 1500 \mathrm{~m}, 1431 \mathrm{~s}, 1407 \mathrm{~m}, 1330 \mathrm{w}, 1299 \mathrm{w}, 1246 \mathrm{w}, 1209 \mathrm{w}, 1124 \mathrm{w}, 1065 \mathrm{w}$, 979w, 946w, 910w, 820w, 794s, 673w, 632w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.55-7.49$ (m, 2H-Ar), $7.37-7.32$ (m, 2H-Ar), $7.07-7.03$ (m, 2H-thiophene), 3.76 (s, 2H, Ar- $\mathrm{CH}_{2}-\mathrm{CN}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 144.70,133.56,130.94,129.36,128.60,126.22,123.70,117.51$, 111.95, 23.33. GC/MS (m/z (\%)): $279.0\left(\left[\mathrm{M}^{+}\right], 100\right) ; 198.1$ (40).

[^0]5. Šolaja, B. A.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Terzić, N.; Opsenica, I.; Burnett, J. C.; Nuss, J.; Gussio, R.; Bavari, S. Novel 4-Aminoquinolines Active Against Chloroquine-Resistant and Sensitive P. falciparum Strain That Also Inhibit Botulinum Serotype A. J. Med. Chem. 2008, 51, 43884391.
6. Kim, S.; Oh, C. H.; Oh, Ko, J. S.; Ahn, K. H.; Kim, Y. J. Zinc-modified cyanoborohydride as a selective reducing agent. J. Org. Chem. 1985, 50, 1927-1932.
7. Amoroso, F.; Colussi, S.; Del Zotto, A.; Llorca Piqué, J.; Trovarelli, A.; PdO hydrate as an efficient and recyclable catalyst for the Suzuki-Miyaura reaction in water/ethanol at room temperature. Cat. Commun. 2011, 12, 563-567.
8. Musonda, C.C.; Gut, J.; Rosenthal, P.J.; Yardley, V.; Carvalho de Souza, R.C.; Chibale, K. Application of multicomponent reactions to antimalarial drug discovery. Part 2: New antiplasmodial and antitrypanosomal 4 -aminoquinoline γ and δ-lactams via a 'catch and release' protocol. Bioorg. Med. Chem. 2006, 14, 5605-5615.
9. Peck, R.M.; Preston, R.K.; Creech, H.J. Nitrogen mustard analogs of antimalarial drugs. J. Am. Chem. Soc. 1959, 81, 3984-3989.
10. Price, C.C.; Leonard, N.J.; Peel, E.W.; Reitsema, R.H. Some 4-amino-7-chloroquinoline derivatives. J. Am.Chem. Soc. 1946, 68, 1807-1808.
11. Singh, C.; Malik, H.; Puri, S.K. Synthesis and antimalarial activity of a new series of trioxaquines. Bioorg. Med. Chem. 2004, 12, 1177-1182.
12. Korotchenko,V.; Sathunuru,R.; Gerena, L.; Caridha, D.; Li, Q.; Kreishman-Deitrick, M.; Smith, P. L.; Lin, A. J. Antimalarial Activity of 4-Amidinoquinoline and 10- Amidinobenzonaphthyridine Derivatives. J. Med. Chem. 2015, 58, 3411-3431.
13. Battaglia, A.; Barbaro, G.; Giorgianni, P.; Guerrini, A.; Pepe, A. 1'-Azido- and 1'-amino-1,3-dioxolan-4-ones. Tetrahedron Asymmetr. 2001, 12, 1015-1023.
14. Mitchell, A. R.; Merrifield, R. B. Occurrence of N -alkylation during the acidolytic cleavage of urethane protecting groups. J. Org. Chem. 1976, 41, 2015-2019.
15. Brendle, J. J.; Outlaw, A.; Kumar, A.; Boykin, D. W.; Patrick, D. A.; Tidwell, R. R.; Werbovetz. K. A. Antileishmanial Activities of Several Classes of Aromatic Dications. Antimicrob. Agents Chemother. 2002, 46, 797.

[^0]: 1. Videnović, M.; Opsenica, D. M.; Burnett, J. C.; Gomba, L.; Nuss, J. E.; Selaković, Ž.; Konstantinović, J.; Krstić, M.; Šegan, S.; Zlatović, M.; Sciotti, R. J.; Bavari, S.; Šolaja, B. A. Second Generation Steroidal 4-Aminoquionolines Are Potent, Dual-Target Inhibitors of the Botulinum Neurotoxin Serotype A Metalloprotease and P. falciparum Malaria. J. Med. Chem. 2014, 57, 4134-4153.
 2. Konstantinović, J.; Videnović, M.; Srbljanović, J.; Djurković-Djaković, O.; Bogojević, K.; Sciotti, R.; Šolaja, B. Antimalarials with benzothiophene moieties as aminoquinoline partners. Molecules 2017, 22, 343.
 3. Marković, O. S.; Cvijetić, I. N.; Zlatović, M. V.; Opsenica, I. M.; Konstantinović, J. M.; Terzić Jovanović, N. V.; Šolaja, B. A.; Verbić, T. Ž. Human serum albumin binding of certain antimalarials. Spectrochim. Acta Mol. Biomol. Spectrosc. 2018, 192, 128-139.
 4. Terzić, N.; Konstantinović, J.; Tot, M.; Burojević, J.; Djurković-Djaković, O.; Srbljanović, J.; Štajner, T.; Verbić, T.; Zlatović, M.; Machado, M.; Albuquerque, I. S.; Prudêncio, M.; Sciotti, R. J.; Pecic, S.; D'Alessandro, S.; Taramelli, D.; Šolaja, B. A. Reinvestigating Old Pharmacophores: Are 4Aminoquinolines and Tetraoxanes Potential Two-Stage Antimalarials? J. Med. Chem. 2016, 59, 264-281.
