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Abstract 

The objectives of this study were to gain insights into the structure-retention relationships and 

to propose the model to estimating their retention. Chromatographic investigation of series of 

36 Schiff bases and their Copper(II) and Nickel(II) complexes, was done under both normal- 

and reverse-phase conditions. Chemical structures of the compounds have been characterized 

by molecular descriptors which are calculated from the structure and related to the 

chromatographic retention parameters by multiple linear regression analysis. Effects of 

chelation on retention parameters of investigated compounds, under normal- and reverse-

phase chromatographic condition, were analyzed by PCA, QSRR and QSAR models were 

developed on the basis of theoretical molecular descriptors, calculated exclusively from 

molecular structure, and parameters of retention and lipophilicity. 
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Introduction 

 

Schiff bases are organic compounds that have broad use in biology, medicine and 

pharmacy. They are used as complexing agents as they form stable complexes with transition 

metals. Some of these complexes have antibiotic, antitumor and antiviral effect. The 

properties of complexe coordination center change accordingly to the present substituents 

(Bader, 2010; Raman et al., 2003; Naeimi and Nazifi, 2013; Abd-Elzaher, 2001; Khuhawar 

and Talpur, 1992; Calligaris, 1972). 

Tetra-dentate Schiff bases are used for determination of metal ions by gas and liquid 

chromatography due to their selective reactions with them (Khuhawar and Soomro, 1992). 

Metal complexes are used as modified stationary phase in gas chromatography for separation 

of various compounds such as alcohols, ketones, aldehydes, esters, nitro- and amino 

compounds (Laghari et al., 2010). They can also be used for modification of stationary 

phases in HPLC separations of copper and nickel ions (Bader et al., 2012).  

 

Retention in TLC is the result of competitive distribution of the investigated compounds 

between the mobile and stationary phase. The molecular structure and chemical properties of 

these compounds and applied chromatographic systems determine the type and extent of the 

interactions between them. The forces associated with these interactions may be related to the 

geometric, topological, and electric characteristics of the compounds, i.e. molecular 

descriptors.  

Molecular descriptors are mathematical values that describe chemical structure of 

investigated compounds. They can be experimental and teorethical. Multivariant Linear 

Regression (MLR) correlate chromatographically determined retention parameter (RM) and 

molecular descriptors. MLR is statistical method where dependent variable Y and more than 

one independent variable X, connected by the equation Y=Xb (capitals mean matrices, lower 

case means a vector). Principal Component Analysis (PCA) used as a method for 

classification (Hubert and Engelen, 2004; Kallitharka et al., 2001; Parineta et al., 2004). The 

basic idea of this statistical technique is to reduce the dimensions of the data obtained by 

experiments. All independent variables are projected in several principal components linearly 

combined with original variants and they describe the maximum of variance in the given data 

set (Escuder-Gilabert et al., 2005; Trifković et al., 2010; Kovačević et al., 2013). The QSRR 
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(Quantitative Structure-Retention Relationship) describes the effect of chemical structure on 

the retention of investigated compounds. Whereas the QSAR (Quantitative Structure-Activity 

Relationship) shows their influence on the biological activity (e.g. lipophilicity) (Moustafa, 

2008; Kiralj and Ferreira, 2009) as well as interaction between drug molecules and DNA 

(Abdel-Rahman et al., 2014; Abu-Dief and Nassr, 2015; Abdel-Rahman et al., 2016; Abdel-

Rahman et al., 2016).  

Our research group investigates tetra-dentate Schiff bases and their complexes with 

confirmed biological activity. Retention and lipophilicity of these compounds were 

investigated on several thin layers. Quantitative relation between structure, retention and 

activity/property as well as electrochemical behaviour and antioxidative activity of these 

compounds, were also investigated (Baošić and Tešić, 1995; Baošić et al., 2003; Baošić et al., 

2008; Baošić et al., 2010; Aburas et al., 2012; Aburas et al., 2013). Results motivated us to 

examine the effect of structure of Schiff bases and their Ni(II) and Cu(II) complexes on 

chromatographic behaviour under normal and reverse-phase conditions in order to determine 

effect of substituent on retention. 

In this paper we established QSAR and QSRR models for the same set of complexes 

under the same chromatographic conditions so we could easily compare them. With the 

QSRR and PCA results applied to the set of investigated compounds we could describe the 

effect of substituents on their chromatographic behavior, due to the fact that TLC presents 

model system for simulation of in vivo processes, such as passing of biologically active 

compounds through cell membrane. According to the results described in this paper the 

synthesis of new compounds with substituents that will enhance its lipophilic character is 

possible.   
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Material and methods 

 

 Investigated compounds 

 

Schiff  bases which contain ethane-1,2-diamine or propane-1,2-diamine as the amine part 

and pentane-2,4-dione and/or 1-phenylbutane-1,3-dione, pentane-2,4-dione and/or 1,1,1-

trifluoropentane-2,4-dione, or 1,1,1-trifluoropentane-2,4-dione and/or 1-phenylbutane-1,3-

dione as beta-diketones part, were synthesized as describe in previous work (Baošić and 

Tešić, 1995). Their structures are presented in Table 1. 

 

 Chromatography  

 

Chromatographic investigations were carried out by horizontal thin layer chromatography on 

silica gel RP-18 plates, 10 × 10 cm (Merck, Darmstadt, Germany) using a Camag horizontal 

HPTLC development chamber in the tank configuration. Standard solutions (5 mg/mL) of the 

compounds were prepared in appropriate solvent. The plates were spotted with 1.0 μL 

aliquots of freshly prepared solutions of the corresponding compound. Prior to the 

development, the spotted plates were equilibrated for 30 minutes in a chromatographic 

chamber saturated with mobile phase vapor. All solvents used throughout the present study 

were of analytical-grade purity. The applied mobile phases were mixtures of different organic 

modifiers and water. The list of applied mobile phases is presented in Table 2. Silica gel and 

reverse phase silica gel (RP-18) thin layer were used as stationary phases. The investigated 

compounds were chromatographed simultaneously. After development, the spots were 

colored by their own color. RF values were determined as averages from three independent 

measurements. All measurements were carried out at ambient temperature (22 ± 2 
o
C). RM 

values were calculated by use of the Bate-Smith and Westall equation (Bate-Smith and 

Westall, 1950). 
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Calculations 

 

All structures were drawn with the HyperChem Professional software (version 7.0, 

Hybercube, Gainseville, FL, USA). In order to obtain molecular descriptors, the geometry 

optimization of molecules was performed by the molecular mechanics MM+ force field 

method. The single-point calculation was done with the semi-empirical quantum chemical 

method ZINDO/1. Additional calculations of the molecular descriptors have been developed 

by Molecular Modelling Program Plus (MMP Plus) software 

(http://www.norgwyn.com/mmpplus.html). Following descriptors were calculated: Molecular 

Volume (MV), Surface Area (SA), Energy of the Highest Occupied Molecular Orbital 

(EHOMO), Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Dipole Moment (µ), 

Refractivity (R), Polarizability (α), Hydrophilic–Lipophilic Balance (HLB), and Lipophilicity 

Parameter ClogP. Statistical calculations, variable selection routine and multiple linear 

regression analysis (MLR) were performed by NCSS 2004 software package (Hintze, 2001). 

PCA has been performed using a demo version of PLS_Toolbox statistical package 

(Eigenvectors, v. 5.7) for MATLAB version 7.4.0.287 (R2007a) (MathWorks, Natick, MA, 

USA).    

 

Results and discussion 

 

 Thin layer chromatography  

 

Chromatographic investigation of the 36 compounds was performed by the normal 

and reverse-phase chromatography. Under normal-phase conditions the separation was 

carried out on silica gel with 11 mono-, 2 two-component aquaeous and 4 two-component 

nonaquaeous mobile phases. Reveresed-phase chromatography was done on silica gel RP-18 

thin layer using 5 mono- and 7 two-component aqueous as well as 2 two-component 

nonaquaeous mobile phases (Table 2). 

 

Investigated set of the Schiff bases and their Cu(II) and Ni(II) complexes represent 

suitable model systems for examination and correlation of the separation mechanisms in 

various chromatographic systems, primarily because of the presence of different substituents 

that can be successively introduced in their structure (Table 1).   

http://h/
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 Principal component analysis  

 

The major advantage of PCA application in chromatography is clustering of investigated 

compounds according to their retention behavior and in the possibility of linking this 

behavior with structural characteristics of the studied compounds. PC1 defines the freedom of 

variation in retention data, while PC2 defines the maximal deviation.  

Similarities and dissimilarities between the investigated compounds and their retention were 

determined by PCA. Also, PCA was applied on calculated molecular descriptors and 

retention parameters of Schiff bases and their Cu(II) and Ni(II) complexes. The following 

systems were investigated: i) retention parameters obtained by normal-phase 

chromatography; ii) retention parameters obtained by reverse-phase chromatography; iii) 

classification of investigated compounds, based on calculated molecular descriptors (for both, 

Schiff bases and complexes- biplot). 

 

PCA for complexes 

 

Figure 1 shows results of PCA analysis for normal- and reverse-phase 

chromatography. PC1 (Figure 1a) recognizes differences between complexes with 

trifluoromethyl- and phenyl-group. However, PC1 does not separate complexes with different 

central ion or different diamine bridge. This is in accordance with mechanism of separation in 

terms of normal-phase chromatography. For example, PC1 separates complexes in pairs 

(1,13), (2,14) (5,11) (4,10), (6,12), (7,13), (16,22) and (17,23) regardless of the central metal 

ion or the diamine bridge. Also, the PCA reveals that complexes form three main separate 

clusters, which is in agreement with their structural characteristics and specific interactions in 

applied normal-phase chromatographic system. First cluster contains complexes with phenyl- 

and/or trifluoromethyl-group (3, 4, 9, 10, 16 and 22). Present substituents exhibit both, 

negative inductive and steric effect in applied chromatographic systems. The other two 

clusters contain complexes in which the asymmetry is present with regard to the substituents. 

Namely, they contain, on the one hand, methyl-group, while on the other, a phenyl- (2, 8, 14 

and 20) or a trifluoromethyl-group (5, 11, 17 and 23). Opposite, in terms of reverse-phase 

chromatography, PC1 (Figure 1b) separates complexes with phenyl- and trifluoromethyl-

group in cluster (3, 4, 9, 10, 15, 16, 21 and 22), while PC2 poorly recognize similarities in 

structured of investigated compounds. 
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On Figure 2 are shown biplot based on molecular descriptors for investigated 

complexes. PC1 separates μ and ELUMO from the others molecular descriptors. As can be seen 

from Figure 2, ELUMO recognizes the presence of methyl-group (1, 7, 13 and 19), while the 

molecular descriptor μ recognizes successive substitution of methyl- by trifluoromethyl-

group (5, 6, 11, 12, 17, 18, 23, 24). ELUMO is decribed as possibility of the molecul to be good 

nucleophile, while dipole moment (μ) belongs to the group of “electric polarization 

descriptors” and gives insight in charge distribution within the molecule. On the other hand 

molecular descriptors HLB, ClogP, SA and MV, distinguish the presence of trifluoromethyl- 

and phenyl-group (4, 10, 16, 22). HLB presents molecular descriptor that shows if the 

investigated component has hydrophobic or hydrophillyc or both groups on its surface 

(Todeschini and Consonni, 2009).  

 Finally, EHOMO, α and R distinguish successive substitution of methyl- by phenyl- group (2, 

3, 8, 9, 14, 15, 20, 21). The energy of the EHOMO is directly related to the ionization potential 

and it decribes the possibility of molecule toward attack by electrophiles (Karelson and 

Lobanov, 1996). 

PCA of Schiff bases  

 

Dependence of PC1 and PC2 based on retention parameters RM of Schiff bases, obtained 

for normal- and reverse-phase chromatography (Figure 3a and 3b). PCA doesn’t present 

satisfactory grouping of investigated compounds according to their structures in comparison 

with complexes (Figure 1). This is probably due to the open structure of the observed Schiff 

base compared with the closed system of complex compounds, which is square planar, i.e. is 

located in a single spatial plane. Distribution of investigated Schiff bases in terms of normal-

phase chromatography shows no noticeable regularity. Open system and long structure gives 

the possibility of spatial orientation of molecules, which allows hydrogen bonding 

interactions with the applied sorbent. However, the observed clustering of Schiff bases along 

the PC1 axis in terms of reverse-phase chromatography shows a clear tendency to clustering 

compounds in relation to the substituents present in order to favor hydrophobic interactions 

that dominate in this chromatographic system (25, 31; 26, 32, 29, 35; 27, 33, 30, 36; and 28, 

34).  

 

 

 

https://www.google.rs/search?hl=sr&tbo=p&tbm=bks&q=inauthor:%22Roberto+Todeschini%22
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Figure 4 shows biplot based on molecular descriptors of investigated Schiff bases. 

PC1 separates HLB and α, together with compounds with methyl- and/or trifluoromethyl-

group, from others descriptors and compounds. This is in accordance with chromatographic 

behavior of compounds under normal- and reversed-phase conditions. Also, PC2 separates 

investigated compounds  in relation to electronic or geometric descriptors.  

 

Based on results it is obvious that substituents have an impact on chromatographic 

behavior of investigated compounds, e.g. their inductive and steric effect.  

 

In normal-phase conditions, substitution of methyl- by trifluoromethyl- and/or phenyl-

group reduced the electron density of donor atoms, due to change of inductive effect. The 

consequence of this effect is the increased mobility of the investigated compounds due to 

weaker hydrogen bonds. Trifluoromethyl- and phenyl-groups are voluminous and because of 

the steric effect they hinder access of donor atoms to silanol groups on sorbent surface. Also, 

compounds with propilenediamine in diamine bridge are more hydrophobic, in comparison to 

ethylenediamine. Accordingly they may form strong hydrogen bonds with silanol groups of 

silica-gel. Steric effect is not pronounced so oxygen and nitrogen donor atoms can easily 

approach the sorbents surface and silanol groups and interact with them. As expected, 

reverse-phase chromatography gave the reverse order of elution of the compounds. Under 

these conditions chromatographic behavior is based on the non-specific interactions of the 

aromatic rings of the compounds with the sorbent and the specific interactions with the 

mobile phase. Substitution of methyl- with trifluoromethyl- and/or phenyl-group leads to the 

increase of hydrophobicity of compounds. Application of reverse-phase chromatography 

gave better separation of investigated Schiff bases (25-36) with considerably more 

pronounced effect of substituents. Namely, the structure of Schiff bases contains large 

number of sp
3
 atoms. The effect of substituents introduced into Schiff base, decreases with 

the chain length which causes small differences in retention. The lipophilicity of the Schiff 

bases and their complexes increased with substitution of methyl-group by a more polar 

trifluoromethyl-group. Lipophilicity is affected by electron-withdrawing properties and 

strong resonance of trifluoromethyl- and phenyl-group.  
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QSRR 

 

The QSRR models were established for all applied stationary and mobile phases based 

on retention parameters (RM) for Schiff bases as well as their complexes. As a criterion for 

the quality check of QSRR models the following parameters were calculated: 

r
2
,correlation coefficient; MSE, Mean Square Error; F, Fischer statistical parameter; r

2
cv, 

correlation coefficient for cross-referenced validation; PRESS, Predictive Residual Sum of 

Squares) and SSY, Sum of the Squared Deviations. The PRESS parameter clearly defines the 

error of the established model. The value of the ratio PRESS/SSY lower than 0.4 shows that 

the QSRR model is statistically validated as good, but if the value of the ratio is lower than 

0.1 shows that the model is perfect  (Van de Waterbeemd, 1995). 

 

Complexes 

 

Table 3 present the statistically best QSRR model for complexes. Under reversed-phase 

chromatographic condition, dominant mechanisms are hydrophobic interaction between 

sorbent and complexes. The delocalization of the π-electrons over the whole chelate ring is 

increased by substitution of methyl- with phenyl- and/or trifluoromethyl-group. The 

lipophilicity of the coordination compounds is enhanced with these substitutions. Model 1 

shows that the highest impact on retention have these descriptors: µ, EHOMO and ClogP. The 

results indicated that lipophilic character is not only affected by the composition and structure 

of the molecule and that some other interactions could be important. This is in accordance 

with expected chromatographic behavior of these compounds as well as results of biplot by 

PCA. Based on PRESS/SSY ratio model 1 (Table 3) belongs to the group of perfect models. 

  

Schiff bases  

 

Model 2 (Table 3) represents statistically the best model for Schiff bases. In this 

model the highest impact on the retention, have: α, EHOMO, µ, MV and ClogP.  

Under applied reversed-phase chromatographic conditions, Clog P is the most 

influencing parameter due to dominant hydrophobic interactions. Also, α and MV have the 

lowest influence. In this case the molecular size has no effect, because all ligands are in the 

open form. 

 



 

 
This article is protected by copyright. All rights reserved. 

QSRR/QSAR for complexes 

 

In previous paper (R. Baošić et al., 2008) the biological activity of investigated 

complexes of Copper(II) and Nickel(II) was described. Based on that finding we wanted to 

compare established QSRR and QSAR models for investigated complexes. For this purpose 

we have chosen statistically best QSRR model, whose RM values were obtained by reversed-

phase chromatography, because the lipophilicity parameters in QSAR model, were obtained 

under the same condition. QSAR model is present in Table 3 (model 3). Under the same 

conditions, this model is statistically less credible than QSRR (Table 3, model 1).  

The lipophilicity has a significant impact on biological activity based on absorption, 

distribution, metabolism, and excretion of compounds (ADME properties). Lipophilicity of 

Copper(II) and Nickel(II) complexes strongly depends on substitution of methyl- by 

trifluoromethyl- and/or phenyl-group. The chelation changes the characteristics of Schiff 

bases as ligands. This process has influence in behavior of observed complexes in reversed-

phase chromatographic systems, as well as in biological systems. The chelation of Schiff base 

reduces the polarity and increases the lipophilic nature of the complexes. Therefore, the 

complexes shown enhanced activity as compared to parent ligand.  

From these established models we can assume that RM parameter is better than RM
0
 

for describing lipophilicity of Schiff base complexes and structurally similar compounds, in 

vivo (Perušković et al., 2014).  

 

Conclusions 

 

The QSRR models describe relations between the molecular properties of observed set of 

Schiff bases and corresponding Cu(II) and Ni(II) complexes, and their chromatographically 

obtained retention parameters. Effects of substitution, inductive and steric effect on retention 

parameters of investigated compounds, under normal- and reverse-phase chromatographic 

condition, were analyzed by PCA. For investigated complexes, ELUMO recognizes the 

presence of methyl-group, while the molecular descriptor μ recognizes successive 

substitution of methyl- by trifluoromethyl-group. Molecular descriptors HLB, ClogP, SA and 

MV, distinguish the presence of trifluoromethyl- and phenyl-group. Also, EHOMO, α and R 

distinguish successive substitution of methyl- by phenyl-group. For investigated Schiff bases, 

HLB and α recognizes compounds with methyl- and/or trifluoromethyl-groups. According to 

these results, the desire molecule should have voluminous substituents with enhanced 
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inductive effect. It is also better that diamine bridge has propylene group due to higher 

hydrophobicity.  

QSRR and QSAR models for investigated complexes were developed on the basis of 

theoretical molecular descriptors, calculated exclusively from molecular structure, and 

parameters of retention and lipophilicity. Lipophilicity of these compounds, in vivo, is better 

described by RM than RM
0 

parameter, which is not in accordance with expected results.  
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Table 1. Stuctures of investigated compounds 
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N
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N
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O
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O

 

  

Compound     Complex R R1     B Compound 

 

    Schiff bases 

 

(1) (13) [M(acac2 en)]
 a ,b 

CH3 CH3 CH2CH2  (25) H2 (acac2 en)
  

(2) (14) [M(acac phacac en)]
 c 

CH3 C6H5 CH2CH2  (26) H2 (acac phacac en)
  

(3) (15) [M(phacac2 en)]
 

C6H5 C6H5 CH2CH2  (27) H2 (phacac2 en)
 

(4) (16) [M(phacac tfacac en)]
 d

 C6H5 CF3 CH2CH2  (28) H2 (phacac tfacac en) 

(5) (17) [M(acac tfacac en)] CH3 CF3 CH2CH2 (29) H2 (acac tfacac en) 

  (6) (18)  [M(tfacac2 en)] CF3 CF3 CH2CH2 (30) H2 (tfacac2 en) 

  (7) (19)  [M(acac2 pn)]
 e 

CH3 CH3 CH(CH3)CH2 (31) H2 (acac2 pn)
  

  (8) (20)  [M(acac phacac pn)] CH3 C6H5 CH(CH3)CH2 (32) H2 (acac phacac pn) 

  (9) (21) [M(phacac2 pn)] C6H5 C6H5 CH(CH3)CH2 (33) H2 (phacac2 pn) 

(10) (22)  [M(phacac tfacac pn)] C6H5 CF3 CH(CH3)CH2 (34) H2 (phacac tfacac pn) 

(11) (23) [M(acac tfacac pn)] CH3 CF3 CH(CH3)CH2 (35) H2 (acac tfacac pn) 

(12) (24)  

 

[M(tfacac2  pn)] CF3 CF3 CH(CH3)CH2 (36) H2 (tfacac2  pn) 

 

aacac = pentane-2,4-dione;  en = ethane-1,2-diamine; 

b M = Cu(II) (1-12) or Ni(II) (13-24) 

c phacac = 1-phenylbutane-1,3-dione; 

d tfacac = 1,1,1-trifluoropentan-2,4-dione; 

e pn = propane-1,2-diamine. 
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Table 2. List of applied mobile phases 

No Composition Proportions (v/v) 

1 Chloroform 
 

2 Acetone 
 

3 Methanol 
 

4 Ethanol 
 

5 Dichlorometane 
 

6 Carbon tetrachloride 
 

7 Acetonitrile 
 

8 1,2,3,4-tetrahydronaphtalene 
 

9 Amyl acetate 
 

10 Dioxane 
 

11 Tetrahydrofurane 
 

12 Methanol-water 80:20 

13 Dioxane-water 80:20 

14 Tetrahydrofurane-water 60:40 

15 Ethanol-water 70:30 

16 Acetonitrile-water 70:30 

17 Isopropyl acetate-water 70:30 

18 Acetone-water 70:30 

19 Dichloromethane-carbon tetrachloride 80:20 

20 Toluene-dioxane 60:40 

21 Toluene-dioxane 70:30 

22 Methanol-carbon tetrachloride 60:40 
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Table  3.  QSRR models for complexes and Schiff bases  

  Model         Equation                                                                                            r
2 
          MSE             F               

r
2
CV              PRESS         PRESS/SSY 

      1a            RM=1.871(±0.108)+0.039(±0.011)·EHOMO-0.044(±0.008)·µ-                     0.945          0.014            113.362          

0.920           0.401               0.080                                                              

                                         0.331 (±0.021)·ClogP   

      2b             RM=29.600(±10.071)-0.553(±0.406)·EHOMO +0.192(±0.069)·µ+               0.959          0.012              27.785           

0.802           0.347               0.198                                           

                        1.311(±0.461)·α+ 0.148(±0.058)·MV-3.651(±1.309)·ClogP    

      3a             RM
0=1.482(±1.205)-0.571(±0.166)·ELUMO+0.119(±0.010)·HLB+              0.924         0.067              80.583           

0.880           2.085               0.120                  

                                               0.050(±0.003)·R 

         EHOMO-  Energy of the highest occupied molecular orbital; µ-Dipole moment; ClogP-Lipophilicity parameter; MV-

Molecular volume; α-Polarizability; ELUMO-Energy of the Lowest Unoccupied Molecular Orbital ;   HLB- 

Hydrophilic–Lipophilic Balance;  R-Refractivity;  

         a) RP-18, dichloromethane-carbon tetrachloride (80:20) 

         b) RP-18, dichloromethane 
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Figure 1.  PCA for complexes based on RM values: (a) silica gel; b) silica gel  RP-18. 
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Figure 2. PCA of complexes based on molecular descriptors (biplot). 
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Figure 3.  PCA for Schiff bases based on RM values: (a) silica gel; b) silica gel RP-18. 
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Figure 4. PCA of Schiff bases based on molecular descriptors (biplot). 

 


