
5 Months of Haskell : Programming languages as

just other programs. Contribution toward a field

of computer science education.

Camille Akmut

Abstract

The following is understood as a contribution toward a field of com-
puter science education : a reflection of 5 months of learning the functional
programming language Haskell; out of which has emerged for us that pro-
gramming languages are ‘just other programs’. This lesson, so important,
is never felt more than in a functional language like Haskell, we defend. It
has for principal benefit to bring down the barriers between creators and
users of programming languages, i.e. “programmers”, both are the same;
a psychological-sociological fact not without revolutionary characteristics.

1

Introduction : on riding bikes, and violins

There is something magical about computer science, and programming,
and programming languages – we must leave that to Abelson and Suss-
man. But, not in the commonly understood way, that was not theirs.

Learning a programming language, though no different perhaps than
any other task, is very much like learning to ride a bike, or learning how
to swim : this, in fact, strange, strange process by which a skill is learned,
but the process forgotten!

This has countless implications and complications, of course. On stu-
dents, and on their teachers.

The psychology and sociology of these events, as they specifically re-
late to programming, escapes us, yet. It is doubtful whether the already
established field of “mathematics education” – which may or may not
serve as a model – has solved its own problems1.

—
The great computer scientist Edgar Dijkstra, perhaps no other had

blurred the lines between computer and social sciences (they are the same,
we repeat, and maintain) more than him, wrote :

It is not only the violin that shapes the violinist, we are all
shaped by the tools we train ourselves to use, and in this re-
spect programming languages [are no different]: they shape our
thinking habits.2

Out of which follows, that computer scientists, and whatever admin-
istrators have greater say than them, carry a huge responsibility when
picking a programming language for their students. – so Dijkstra, so us.

—
And, so, to avoid this, which is to say the loss of memories attached

to a learning process, as it had been for myself, I write them down in the
hopes they will be useful to future researchers of this field.

1See, for instance, Alcock 2013, whose approach is not entirely convincing.
2Dijkstra 2001.

2

1 Background

Little would be learned from my experiences, if I did not provide some
indications about my background. In writing this text, I must also alter-
nate constantly, and awkwardly, between the “I” of the participant, the
learner, and the “we” of the observer, scientist.

—
Contrary to many others, it appears to me, I say this as some sort of

feeling, but not as a matter of fact3, I had learned programming as an
adult : I was well into my twenties, late twenties in fact!

—
It is important to publicize and communicate such experiences, not

only to break with the myth of the “genius” programmer (least the even
more improbable notions of “rock star programmers”, notions so laugh-
able, they can only be the product of an even more so industry); but

“Genius”, with a capital, only, because, like virtuoso violinists, they
had started early on; the only fact more improbable would be for anyone
to not reach some level of mastery after 10 or 20 years of practice; but,
these fools, would prefer to cover and erase the steps and tracks and acts
of their painful and long learning journeys, rather than admit to it; and,
encourage others.

—
My “first language”, by which I specifically mean the first language

that I had discovered for myself as a “proper language”, this is to mean
one that I would enjoy writing, thinking, and expressing myself in, was
Python. As has already been noted many times, its appeal, so for myself
also, was that it looked like English. There was something clean about it,
all unnecessaries removed. (My first language was Wirth’s Pascal4.)

—
Before starting with Haskell, I had been programming in Python for

about 2 years. At which point, I had become able to “translate” small
real-world problems into code i.e. performing security/network tasks on
many servers at once, automatically.

—
Languages that I simply cannot bring myself to think in, or write in,

or that I generally want as little to do with as possible, include :

– Java/C# : heavy, heavy dislike. – On an almost instinctive level, my
feeling; and later opinion. I understood just enough of what it was trying
to do, to also understand I wanted nothing to do with it. This verbose,
corporate language... Half the time, and energy is spent instructing this
language’s compiler, rather than expressing ideas. A 12-line “Hello World”
program should have convinced anyone that perhaps something had gone
wrong during its design. “What a horrible language”, thought Torvalds
out loud, and Dijkstra much worse. Used for decades as first language...
(The 1990’s “workhorse”.)

3Studies would be needed.
4Learned in a high-school programming class, soon dropped, not because of the language,

which is fine. (Wirth’s ideas, e.g. contra-OOP, are compatible with functional programming?)

3

– JavaScript : a “week-end affair”, created by a homophobe with remorses
the night-after, what a wonderful background story for any language to
have... Half the time, and energy, here, is spent correcting the mistakes
of the language, that are the language itself.

Languages that I have enjoyed in the past, or don’t mind using :

– Rust. The best compiler I have ever interacted with. Programming,
here, takes on the traits of a dialog between a student and teacher, with
the former informing of errors, their nature, and how to correct them –
precisely, correctly, and accurately. (In theory, all compilers.)
– “Lisp-family programming languages”. I liked Scheme/Racket, Clojure.
I feel most at home now with functional languages.
– Ruby. Although I agree with the sentiment of one StackOverflow user,
that “Ruby is Candy Coated Perl, just as Macs are Candy Coated UNIX,
the two are attached respectively to each other.”; it is not a bad language.
Inspired by Python, resembling it, but making it also more clunky in some
respects (begin/end...).

2 Beginnings

The earliest “proof” of my involvement with Haskell, that I could find,
comes in the form of a commit with beginning SHA 19f3ddd1 for a pro-
gram quicksort.hs, dated “01 Jan, 2019”.

This is also how I remember it : first of January. I had finally managed
to make the Haskell compiler work for me, after much struggles to bring
it to do, or validate anything. And, with this victory, I had resolved to
only program in Haskell for an entire year – so, in theory, anyway...

Listing 1: quicksort.hs

−− Graham Hutton , Programming in H a s k e l l .

qso r t [] = []
q so r t (x : xs) = qso r t sma l l e r ++ [x] ++ qsor t l a r g e r

where
sma l l e r = [a | a <− xs , a <= x]
l a r g e r = [b | b <− xs , b > x]

main = print (q so r t [1 , 5 , 6 , 2 , 1 3 , 2 , 3 , 2])
−− output : [1 , 2 , 2 , 2 , 3 , 5 , 6 , 1 3]

I think, this was the moment “I fell in love” with Haskell, and func-
tional programming in general perhaps. But, specifically Haskell. – and,
because we lack yet the vocabulary to express these happenings correctly,
what these analogies lack in precision, they make up with immediacy.

4

At that point, and in my mind, the principal “frame of reference”
I had of this algorithm – the ways in which it could be expressed, and
specifically the most simple, clean ones – was the implementation of the
mergesort algorithm that can be found in John Guttag’s Introduction to
Computation and Programming Using Python (they had left out quicksort,
because it was even more complicated they said!) :

Listing 2: recursive-mergesort.py

”””As p res en te d by Eric Grimson , based on John Guttag ’ s book ,
wi th a d d i t i o n a l comments and m o d i f i c a t i o n s by me”””

def merge (l e f t , r i g h t) :
r e s u l t = []
i , j = 0 ,0
while i < len (l e f t) and j < len (r i g h t) :

i f l e f t [i] < r i g h t [j] :
r e s u l t . append (l e f t [i])
i += 1

else :
r e s u l t . append (r i g h t [j])
j += 1

while i < len (l e f t) :
r e s u l t . append (l e f t [i])
i += 1

while j < len (r i g h t) :
r e s u l t . append (r i g h t [j])
j += 1

return r e s u l t

def merge sort (L) :
i f len (L) < 2 :

return L
else :

middle = len (L)//2
l e f t = merge sort (L [: middle])
r i g h t = merge sor t (L [middle :])
return merge (l e f t , r i g h t)

array1 = [2 , 5 , 4 , 123 , −4, 0 , 2 , 1]
array2 = []
array3 = [−1]
print (merge sor t (array1) , merge sor t (array2) , merge sor t (array3))
[−4 , 0 , 1 , 2 , 2 , 4 , 5 , 123] [] [−1]

Needless to say, my mind was made up.

5

I had not been convinced through arguments, or sound theories : but,
by a matter-of-fact, very real and almost palpable difference, obtained
trough the most summary of comparison.

—
On my computer, I have another file, p.hs, dated “Mo 31 Dec 2018”,

created shortly before midnight...

Listing 3: p.hs

sum2 [] = 0
sum2 (n : ns) = n + sum2 ns
main = print (sum2 [1 , 2 , 3])

—–
These were my beginnings in Haskell, best I can recall.

3 A lesson learned early : programming
languages are just ‘other programs’

I have used, continue to use primarily two books to teach myself Haskell,
these are :

1. Graham Hutton’s Programming in Haskell ; and
2. Simon Thompson’s The Craft of Functional Programming.

Additionally, also :
3. Miran Lipovaca’s Learn You a Haskell for Great Good!

And, 4., the variety of Internet and Web ressources that are available5.
—
Common to all of them, 1. certainly, 2. in older editions6, and per-

haps also 3., is the lesson whose ending we will spoil here : programming
languages are just ‘other programs’. What do we mean by this?

All of the aforementioned textbooks have for common trait that from
the very first chapters, if not pages on parts of the programming language
Haskell itself are reprogrammed by the reader, learner.

Such that, by the end, significant portions of Haskell – as can be found
in Prelude – have been reprogrammed, all while learning to program.

This occurs, for instance, in 6.2 Polymorphism of an earlier edition of
Thompson’s book, where the length function is found

Listing 4: length

length [] = 0
length (a : x) = 1 + length x

The same is found literally everywhere in Hutton’s book (of which, we
have read the entire first part, corresponding to an undergraduate course.)

—

5https://www.haskell.org/community/
6We must be a little harsh here, in saying that we did not care at all for the “horse”

example of the latest edition, the third. Was this a pedagogical phase of the time?

6

This is, simply, not the way this is approached in most other languages,
and their textbooks : it would not occur to any beginning Python learner
to re-program Python, and it would not because this part of intellectual
activity is not emphasized, and it is not because in these languages doing
so would be either fastidious or only reserved to advanced programmers.

The summum, so to speak, of a learning journey – only accessible to
wizards.

—
But, not so in Haskell, or other functional programming languages,

and their textbooks7 : here it is neither the beginning, not the end.
The end, or beginning perhaps we should say, left implicit, though

nonetheless real, seems for teachers like Hutton and Thompson to bring
their readers and students to a point where they would be able to program,
if not new languages, then at the very least so-called “domain specific
languages” (written in Haskell).

—
Neither the beginning, nor the end – as we have said.8

7A pedagogical innovation started by Abelson and Sussman in Structures...?
8During my journey so far, I have submitted many errata, and it made me feel, rightly

or wrongly, that I had become part of a community. – This, I cannot say about any other
language(s).

7

References

—. 2019. “What is Computer Science? Outline for a project.”

—. 2019. “Computer science is a social science.”

Abelson, Harold and Sussman, Gerald. *. Structure and Interpretation of
Computer Programs.

Alcock, Lara. 2013. How to Study for a Mathematics Degree. Oxford
University Press.

Dijkstra, Edgar. 2001. “To the members of the Budget Council”.
https://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html

Hutton, Graham. 2016. Programming in Haskell. Cambridge University
Press. Second edition.

Lipovaca, Miran. Learn You a Haskell for Great Good! http://learnyouahaskell.com/

Thompson, Simon. 2011. Haskell: the craft of functional programming.
Addison-Wesley. Third edition.

8

