

Constructing hydrogen bond based melam/WO3 heterojunction with enhanced visible-light photocatalytic activity

著者	Jin Zhengyuan, Zhang Qitao, Hu Liang, Chen Jiaqi, Cheng Xing, Zeng Yu-Jia, Ruan Shuangchen, Ohno Teruhisa
journal or	Applied Catalysis B: Environmental
publication title	
volume	205
page range	569-575
year	2017-05-15
URL	http://hdl.handle.net/10228/00007135

doi: info:doi/10.1016/j.apcatb.2016.12.069

Electronic Supplementary Information

Constructing hydrogen bond based melam/WO₃ heterojunction with enhanced visible-light photocatalytic activity

Zhengyuan Jin,^{a,b} Qitao Zhang,^b Liang Hu,^a Jiaqi Chen,^a Xing Cheng,^c Yu-Jia Zeng,^{a,d,*} Shuangchen Ruan,^{a,**} and Teruhisa Ohno^b

- ^a Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- ^b Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology,
 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan
- ^c Department of Materials Science and Engineering, South University of Science and Technology of China (SUSTC)
- ^d State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Table of	contents
----------	----------

Item	Cation	Page
Scheme S1	The structures of the carbon nitride family, including melamine, melam, melem, melon, and $g-C_3N_4$. Scheme adapted from Lau et al [1].	S 3
Figure S1	TG analysis of MW (10 mg) between 100 $^{\circ}$ C and 800 $^{\circ}$ C at a heating rate of 10 $^{\circ}$ C min ⁻¹ .	S4
Figure S2	XRD patterns of melamine and WO ₃ after planetary milling treatment.	S4
Figure S3	Time courses of acetaldehyde from acetaldehyde photodecomposition.	S5
Figure S4	Time courses of 2-propanol (a) and CO_2 (b) from 2-propanol photodecomposition.	S5
Figure S5	UV-vis absorption spectrum changes of H_2O_2 generation in acetic acid solution (a) and in pure H_2O (b) under the visible light irradiation (435 nm, 3 mW cm ⁻²).	S6
Figure S6	SEM images of WO_3 (a), melamine (b), and MW (c); (d) TEM image of MW.	S6
Figure S7	HAADF-STEM and EDS mapping images of MW.	S 7
Figure S8	(a) BET N_2 adsorption isotherms and (b) BJH pore size distributions of WO_3 , melamine, and MW.	S7
Figure S9	UV-vis DRS of WO ₃ and MW.	S 8
Figure S10	Linear sweep voltammetry of WO ₃ and MW electrodes.	<mark>S8</mark>
Figure S11	The WO ₃ and MW fabricated onto electrode on a FTO by electrophoresis method.	<mark>58</mark>
Figure S12	(a) Photoluminescence spectra of samples, the time-resolved fluorescence decay spectra of (b) WO_3 and (c) MW.	<mark>S9</mark>
Figure S13	The behavior of photo-exited charge carriers.	<mark>S9</mark>
Figure S14	The photocatalytic activity results of acetaldehyde degradation. Three- cycle test by MW.	<mark>S10</mark>
Figure S15	(a) XRD, (b) FTIR, and (c) UV-vis DRS of MW before and after photocatalytic reaction.	<mark>S10</mark>
	Reference	<mark>S11</mark>

SUPPORTING DATA

Scheme S1 The structures of the carbon nitride family, such as melamine, melam, melem, melon, and $g-C_3N_4$. Scheme adapted from Lau et al [1].

Figure data

Figure S1 TG analysis of MW (10 mg) between 100 °C and 800 °C at a heating rate of 10 °C min⁻¹.

Figure S2 XRD patterns of melamine and WO3 after planetary milling treatment.

Figure S3 Time courses of acetaldehyde from acetaldehyde photodecomposition.

Figure S4 Time courses of 2-propanol (a) and CO₂ (b) from 2-propanol photodecomposition.

Figure S5 UV-vis absorption spectrum changes of H_2O_2 generation in acetic acid solution and pure H_2O under visible light irradiation (435 nm, 3 mW cm⁻²).

Figure S6 SEM images of WO₃ (a), melamine (b), and MW (c); (d) TEM image of MW.

Figure S7 HAADF-STEM and EDS mapping images of MW.

Figure S8 (a) BET N_2 adsorption isotherms and (b) BJH pore size distributions of WO₃, melamine, and MW.

Figure S9 UV-vis diffuse reflectance spectra of WO₃ and MW.

Figure S10 Linear sweep voltammetry of WO₃ and MW electrodes.

Figure S11 The WO₃ and MW fabricated onto electrode on a FTO by electrophoresis method.

Figure S12 (a) Photoluminescence spectra of samples, the time-resolved fluorescence decay

spectra of (b) WO₃ and (c) MW.

Figure S13 The behavior of photo-exited charge carriers [2-3].

Figure S14 The photocatalytic activity results of acetaldehyde degradation. Three-cycle test by MW.

Figure S15 (a) XRD, (b) FTIR, and (c) UV-vis DRS of MW before and after photocatalytic reaction.

Reference

[1] A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B, 104 (2000) 1715-1723.

[2] L. Hu, J. Huang, H. He, L. Zhu, S. Liu, Y. Jin, L. Sun, Z. Ye, Nanoscale, 5 (2013) 3918-3930.

[3] B.V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 13 (2007) 4969-4980.