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a b s t r a c t 

We examine the emergence of chaos in a non-linear model derived from a semiquantum Hamiltonian 

describing the coupling between a classical field and a quantum system. The latter corresponds to a 

bosonic version of a BCS-like Hamiltonian, and possesses stable and unstable regimes. The dynamics of 

the whole system is shown to be strongly influenced by the quantum subsystem. In particular, chaos is 

seen to arise in the vicinity of a quantum critical case, which separates the stable and unstable regimes 

of the bosonic system. 
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1. Introduction 

The interplay between quantum and classical systems is a topic

of great interest in quantum dynamics and quantum chaos. When-

ever quantum effects in one of the systems are negligible in com-

parison with those of the other, its consideration as classical sim-

plifies the description and provides deep insight into the com-

bined system dynamics. Examples can be readily found, such as

Bloch equations [1] , two-level systems interacting with an electro-

magnetic field within a cavity and Jaynes–Cummings semi-classical

model [2,3] , collective nuclear motion [4] , etc. Here we will con-

sider a semiquantum bipartite system in which the quantum com-

ponent, representing the matter and described by a quadratic

Hamiltonian in boson operators or generalized coordinates and

momenta, can exhibit distinct dynamical regimes [5,6] (bounded or

unbounded), whereas the classical component represents a single

mode of an electromagnetic field. Such type of composite system is

of interest in Quantum Optics and Condensed Matter [2,3,7,8] . The

essential point we want to discuss is how the different regimes of

the quantum system influence those of the combined semiquan-

tum system, and in particular examine if the onset of chaos can be

related to this effect. 

As is well known, quadratic Hamiltonians in generalized coor-

dinates and momenta, or equivalently in boson operators, are a

common presence in theoretical models of physical systems. They

often emerge through diverse linearization procedures of the perti-

nent equations of motion around a stationary point [4,9] , providing

a tractable description of the small amplitude fluctuations which is
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E-mail address: kowalski@fisica.unlp.edu.ar (A.M. Kowalski). 

 

t  

r  

https://doi.org/10.1016/j.chaos.2018.02.026 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 
xact if the deviations from equilibrium are sufficiently small. They

lay in particular a fundamental role in the description of Bose–

instein condensates (BEC) [10–15] as well as in other fields like

isordered systems [16] , quantum optics [3] , dynamical systems

17–19] and collective nuclear motion [4] . While the treatment of

uch quadratic systems in the stable regime is of course standard,

eading to a set of normal coordinates which evolve independently,

hat of the unstable regime, in which the quadratic Hamiltonian

s no longer positive definite, is less trivial and requires the in-

roduction of non-hermitian normal coordinates (complex normal

odes) [5,6,20] , which exhibit exponential evolutions. Moreover, at

he boundary between stable and unstable sectors, non-separable

egimes can arise in which the dynamics is described by non-

iagonalizable evolution matrices and the equations of motion can-

ot be fully decoupled [6] . 

Non-positive quadratic bosonic forms naturally emerge in the

escription of BEC instabilities [13–15] and fast rotating conden-

ates [21–26] , as well as in generalized RPA treatments [27,28] .

he methods developed in [5] were used for describing the on-

et of instabilities in trapped BEC’s with a highly quantized vor-

ex [13–15] through the Bogoliubov–de Gennes equations. Here we

ill apply this methodology for studying the dynamics of a quan-

um systems interacting with a classical system, showing that non-

iagonalizable regimes can be related to the onset of chaos. 

. The model 

We consider a semi-quantum system composed of two quan-

um harmonic modes coupled to a classical oscillator which rep-

esents a single-mode of an electromagnetic field. The complete
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Fig. 1. Plot of h N i (blue solid lines) and the invariants E eff (green lines) and 

I (orange lines) for the initial conditions h Ni 0 = 1 , h O ±i 0 = 0 , X 0 = 1 and P 0 = 

−2 . 54950976 , with parameters ω = 1 and α/ 1 = 0 . 0 0 01 (a), 0.015 (b) and 1.1 (c), 

while ε/ 1 = 1 . 05 (a)–(b), and 2 (c). Fig. 1a corresponds to the oscillatory zone and 

1b to the non-linear and chaotic one. In 1c, h N i diverges for large t . (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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amiltonian is of the form 

 = ε + 
³

b † + b + + 

1 

2 

´
+ ε −

³
b † −b − + 

1 

2 

´

+ (1 + αX ) (b + b − + b † −b † + ) + 

ω 

2 

(P 2 
X + X 

2 ) , (1) 

here b 
† 
±, b ± are boson creation and annihilation operators

atisfying the standard commutation relations ( [ b μ, b 
† 
ν ] = δμν,

 b μ, b ν ] = [ b 
† 
μ, b 

† 
ν ] = 0 for μ, ν = ±), ε± > 0 are the single boson

nergies and X, P X are classical coordinate and momentum vari-

bles, with ω the corresponding oscillator frequency. 

The dynamical equations for the quantum observables are the

anonical ones [7,8] , i.e., any operator O evolves in the Heisenberg

icture as 

 

dO 

dt 
= −[ H, O ] . (2)

he concomitant evolution equation for its mean value

 O i ≡ Tr [ ρ O ( t )] is 

 

dh O i 
dt 

= −h [ H, O ] i , (3)

here the average is taken with respect to a proper quantum den-

ity operator ρ . Additionally, the classical variables obey classical

amiltonian equations of motion, i.e., 

dX 

dt 
= 

∂h Hi 
∂P X 

, (4a) 

dP X 
dt 

= −∂h Hi 
∂X 

. (4b) 

The complete set of equations (3) + (4) constitute an au-

onomous set of coupled first-order ordinary differential equations

ODE). They allow for a dynamical description in which no quan-

um rules are violated, i.e., the commutation-relations are trivially

onserved for all times, since the quantum evolution is the canon-

cal one for an effective time-dependent Hamiltonian ( X plays the

ole of a time-dependent parameter for the quantum system) and

he initial conditions are determined by a proper quantum density

perator ρ . 

Defining the hermitian operators 

 = b † + b + + b † −b − , δN = b † + b + − b † −b − , (5) 

 + = b + b − + b † −b † + , O − = i (b + b − − b † −b † + ) , (6) 

e can rewrite the Hamiltonian (1) as 

 = ε (N + 1) + γ δN + (1 + αX ) O + + 

ω 

2 

(P 2 
X + X 

2 ) , (7)

here ε = (ε + + ε −) / 2 > 0 and γ = (ε + − ε −) / 2 , with | γ | < ε. Us-

ng Eqs. (3 )–(4) we then obtain the following closed system of

quations for the previous set of operators and classical vari-

bles: 

dh N + 1 i 
dt 

= 2(1 + αX ) h O −i , (8a) 

dh O −i 
dt 

= 2(1 + αX ) h N + 1 i + 2 εh O + i , (8b) 

dh O + i 
dt 

= −2 εh O −i , (8c) 

dX 

dt 
= ωP X , (8d) 

dP X = −(ωX + αh O + i ) (8e) 

dt 
ith d h δNi /d t = 0 . 

Eq. (8) constitute a nonlinear closed ODEs system. Nonlinear-

ty is introduced by the coupling factor between the two systems

ontrolled by the parameter α. For α = 0 the two systems become

ecoupled and previous equations reduce, accordingly, to two in-

ependent linear systems. 

The mean value h O −i represents a “current” while h O + i deter-

ines the expectation value of the quantum part of the interac-

ion potential. Each level population can be recovered as h b † ±b ±i =
(h Ni ± h δNi ) / 2 . The full system (8) possesses in addition the fol-

owing Bloch-like invariant of motion, 

 = h N + 1 i 2 − 4 |h b + b −i| 2 = h N + 1 i 2 − h O −i 2 − h O + i 2 , (9)



142 A.M. Kowalski, R. Rossignoli / Chaos, Solitons and Fractals 109 (2018) 140–145 

Fig. 2. Poincare sections h O + i vs. h O −i for X = 0 , corresponding to E eff = 4 . 8 and I = 4 , with X 0 = 1 , h Ni 0 = 1 , h O + i 0 = 0 and ω = 1 . The values of h O −i 0 and P 0 change in 

order to generate the 21 curves. We set α/ 1 = 0 . 015 while the ratios ε/ 1 are given by (a) ε/ 1 = 1 . 5 , (b) ε/ 1 = 1 . 075 , (c) ε/ 1 = 1 . 065 , (d) ε/ 1 = 1 . 05 . For decreasing 

values of ε/ 1, the behavior evolves from periodic curves to complex quasiperiodic curves and finally to chaos. 

Fig. 3. Poincare sections h O + i vs. h O −i for X = 0 as in Fig. 2 , with the same inital conditions and parameter values, but setting ε/ 1 = 1 . 05 (fixed) and varying α/ 1: (a) 

α/ 1 = 0 . 0 0 01 , (b) α/ 1 = 0 . 01 , (c) α/ 1 = 0 . 015 . For increasing values of α/ 1, the behavior evolves again from periodic curves to complex quasiperiodic curves and finally 

to chaos. Fig. 2 (c) coincides with Fig. 2 (d). 
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Fig. 4. h N i vs. t . The initial conditions and parameter values are those of Fig. 1 , but 

now ε = 1 = 1 and α = 10 −6 . This is the non-diagonalizable region of the linear 

case. For the depicted times this curve is practically similar to that of the linear 

case. 
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Fig. 6. Poincare section h N i vs. h O + i for X = 0 . This plot corresponds to Fig. 2 (d) 

(same initial conditions and parameter values). In the nonlinear case it is no longer 

a surface. 
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hich satisfies d I/d t = 0 in both the linear ( α = 0 ) and nonlinear

 α 6 = 0) cases, as can be directly verified. 

The conservation of h δN i makes it convenient to work with the

ffective ener gy E eff = h Hi − γ h δNi − ε instead of the total energy

 H i . Both quantities are invariants of motion. Using I together with

he effective energy, we can reduce the original number of degrees

f freedom of the system (8) to three. This property allows us to

se tools like the Poincare sections to analyze the system dynamics.

In the linear case α = 0 , the evolution of the quantal subsystem

s fully determined by the quantum Hamiltonian 

 q = ε + 
³

b † + b + + 

1 

2 

´
+ ε −

³
b † −b − + 

1 

2 

´
+ 1(b + b − + b † −b † + ) . (10)

he ensuing dynamics exhibits three distinct regimes according to

he value of the coupling strength 1 [5] : 

a) The dynamically stable regime, which holds for | 1| < ε,

here the evolution is bounded and quasiperiodic . Here H q can be
Fig. 5. Solution of the subsystem (8) for one of the quasiperiodic curves of Fi
ritten as a sum of two independent standard normal modes 

 q = λ+ 
³

a † + a + + 

1 

2 

´
+ λ−

³
a † −a − + 

1 

2 

´
, (11) 

here the eigenfrequencies λ± are real and given by 

± = 

p 

ε 2 − 12 ± γ . (12) 

ere a ± = ub ± + v b † ∓, a 
† 
± = ub 

† 
± + v b ∓, are normal boson creation

nd annihilation operators ( [ a μ, a 
† 
ν ] = δμν, [ a μ, a ν ] = [ a 

† 
μ, a 

† 
ν ] = 0 )

elated to the original ones through a Bogoliubov transformation

4] (with u = 

q 

ε+ η
2 η , v = 

q 

ε−η
2 η and η = 

p 

ε 2 − 12 real). Their evo-

ution is then given by Eq. (2) , i.e., id a ±/d t = λ±a ±, which leads to

 ±(t) = e −iλ±t a ±(0) and hence a 
† 
±(t) = e iλ±t a 

† 
±(0) . 

This regime can actually be divided in three subregimes accord-

ng to the spectrum of H [5] , which in this case is discrete , i.e.,
g. 2 (d)). In this case Eq. (9) represents a two-sheet hyperboloid ( I = 4 ). 
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E mn = λ+ (m + 

1 
2 ) + λ−(n + 

1 
2 ) , with m, n ∈ N : a 1 ) | 1| < 

√ 

ε + ε − =p 

ε 2 − γ 2 , where λ± are both positive and H is then positive def-

inite ; a 2 ) | 1| = 

p 

ε 2 − γ 2 , where λ+ > 0 but λ− = 0 , implying H

positive semidefinite with a discrete yet infinitely degenerate spec-

trum; a 3 ) 
p 

ε 2 − γ 2 < 1 < ε, where λ+ > 0 but λ− < 0 , entailing

that H is non longer positive and has no longer a minimum energy.

b) The dynamically unstable regime, existing for | 1| > ε, where

the dynamics is exponentially unbounded . Here H q can be written

as a sum of two complex normal modes [5] , 

H q = λ+ 
³

ā + a + + 

1 

2 

´
+ λ−

³
ā −a − + 

1 

2 

´
, (13)

where λ± are still given by Eq. (12) but are now complex , and

where a ± = ub ± + v b † ∓, ā ± = ub 
† 
± + v b ∓, with u, v given by the

same previous expressions, still satisfy boson commutation rela-

tions ( [ a μ, ā ν ] = δμν, [ a μ, a ν ] = [ ̄a μ, ā ν ] = 0 ) but ā ± 6 = a 
† 
±, since u,

v are now also complex (complex normal modes). These oper-

ators then exhibit, according to Eq. (2) , exponential-type evolu-

tions a ±(t) = e −iλ±t a ±(0) , ā ±(t) = e iλ±t ā ±(0) , which diverge either

for t → ∞ or t → −∞ . Note that hermiticity is preserved, since

λ∗± = −λ∓ and ( ̄a ±a ±) † = −a ∓ā ∓. 

c) The non-separable case | 1| = ε, where λ± = ±γ and H can

no longer be written as a sum of two-independent modes. This

case, which lies at the border between the dynamically stable and

unstable regimes, corresponds to a non-diagonalizable evolution

matrix [5] and hence to a linear system which cannot be fully de-

coupled . Instead, H q can be written here as 

H q = γ ( ̄a + a + − ā −a −) + 21ā −ā + , (14)

where a ± = 

b ±−b 
† 
∓√ 

2 
, ā ± = 

b ±−b 
† 
∓√ 

2 
still satisfy boson-like commuta-

tion relationships. In this form, H q is “maximally decoupled”, in

the sense that the evolution equations for ā ± are fully decoupled,

while those for a ± are coupled just to ā ∓. This leads to ā ±(t) =
e ±iγ t ā ±(0) , a ±(t) = e ∓iγ t [ a ±(0) − 2 it1ā ∓(0)] , and hence to a poly-

nomially unbounded evolution [5] . 

Previous expressions for a ± ( t ) and ā ±(t) allow one to obtain

the final explicit expressions for the averages of the relevant ob-

servables. In the diagonalizable cases a) and b), we obtain 

h N + 1 i = −−ε (ε h N + 1 i 0 + 1h O + i 0 ) + 1(1h N + 1 i 0 + εh O + i 0 ) 
η2 

h O −i = h O −i 0 cos 2 ηt + (1h N + 1 i 0 + εh O + i 0 ) sin 2 ηt 

η
, (16)

h O + i = − 1(εh N + 1 i 0 + 1h O + i 0 ) − ε(1h N + 1 i 0 + εh O + i 0 ) cos 2

η2 

where η is real for | 1| < ε (case a) and imaginary for | 1| > ε (case

b). In the non-diagonalizable transition regime | 1| = ε ( η = 0 ), the

explicit expressions become 

h N + 1 i = h N + 1 i 0 + 2 h O −i 0 εt + 2 h N + 1 + O + i 0 ε 2 t 2 , (18)

h O −i = h O −i 0 + 2 h N + 1 + O + i 0 εt, (19)

h O + i = h O + i 0 − 2 h O −i 0 εt − 2 h N + 1 + O + i 0 ε 2 t 2 . (20)

3. Results 

The numerical results were obtained for initial conditions con-

sistent with a proper density operator, such that the pertinent un-

certainty relations are satisfied for all times. We have also checked
 ηt − 1ηh O −i 0 sin 2 ηt 
, (15)

 εηh O −i 0 sin 2 ηt 
, (17)

heir accuracy by verifying the constancy in time of the dynamical

nvariants E eff and I (within a precision of 10 −10 ). 

The obtained numerical results indicate that the distinct

egimes obeyed by the semiclassical system are determined by the

elation between ε, 1 and α irrespective of the initial conditions

nd the value of ω. When | α| ≥ ε, the dynamics is always diver-

ent (with or without oscillations), as occurs in the linear case,

ith α playing the role of 1. In Fig. 1 we show a characteristic

volution of h N i (together with those of the invariants, as check).

hen ε > | α|, the dynamics is determined by ε, 1 and α, com-

eting ε with the two coupling constants, but as α decreases, the

ystem approaches the linear case and hence the relation between

and ε becomes dominant. In Figs. 2 and 3 we show the Poincare

ections obtained from the X(t) = 0 plane, for the same values of

 eff and I . In Fig. 2 , α < ε is kept fixed but the ratio ε/ 1 is varied.

t is seen that for ε > | 1| the dynamics is periodic ( Figs. 1 (a) and

 (a) and (b)) as in the linear case for most ratios, but becomes

uasiperiodic ( Fig. 2 (c)) in the vicinity of the non-diagonalizable

egime ε = | 1| , showing increasing nonlinear effects as this region

s approached ( Fig. 1 (b)). For ε < | 1| the regime becomes divergent

s in the linear case. 

The most remarkable behavior occurs in the critical regime

C | 1|, i.e. in the vicinity of the non-diagonalizable case of the

inear system, at border with the unstable case. Here we find com-

lex quasiperiodic evolution curves ( Fig. 2 (c)). Moreover, for ap-

ropriate “small” values of α ( α < 1), chaos is seen to emerge, as

hown in Fig. 2 (d), where the characteristic presence of chaotic see

s recognized. In Fig. 3 , we see the same behavior for different val-

es of α < ε, maintaining the same ratio ε/ 1. Fig. 3 (c), coincides

ith Fig. 2 (d). The existence of chaos was verified by the calcu-

ation of the Lyapunov characteristic exponent, which is positive

or the curves in question. On the other hand, the linear regime

s approached when α decreases ( Fig. 4 ). Here we have ε = 1 for

= 10 −6 . The result is practically the same as in the linear case

 Eq. (18) ). 

Eq. (9) represents different types of surfaces in the space

(h Ni , h O −i , h O + i ) . If I > 0 it represents a two-sheet hyperboloid

hereas for I = 0 it is a cone. Surfaces are obviously limited by

he condition h N i ≥ 0. 

In Fig. 5 , we depict a solution of subsystem (8), correspond-

ng to a quasiperiodic curve of Fig. 2 (d). This solution rests on the

ntersection of surface I = 4 and the region E eff = 4 . 8 . This last

uantity represents a plane in the linear case ( α = 0 ), but in the

onlinear case is no longer a surface, as seen in Fig. 6 . The curves,

re no longer plane, and this fact enables the onset of chaos. 

. Conclusions 

In this article we have studied the dynamics of a semiquantum

ystem resulting from the interaction of a bosonic system with a

lassical field. The dynamics of the bosonic version of a BCS-like

airing Hamiltonian was solved with a methodology [5,6] suitable

or completely general, not necessarily positive, quadratic forms.

hrough this methodology we found the existence of a quasi-

eriodic regime, a divergent regime and an intermediate regime

hat corresponds to a non-diagonalizable (i.e., non-separable) case.

hese zones are determined by the relation between the parameter
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[

[
[

[

[

[  
and the quantum coupling constant 1 ( ε > | 1|, ε < | 1|, ε = | 1|
espectively) [5] . 

This quantum Hamiltonian is coupled to a classical harmonic

scillator that represents a mode of the electromagnetic field. The

oupling introduces nonlinear effects in the equations of motion.

he nonlinear dynamics of the composite system is determined

y ε and the two coupling constants 1 and α. If ε ≤ | α| the dy-

amic is divergent ( Fig. 1 ). If ε > | α|, it will depend on the rela-

ion between the three constants, competing ε with the two cou-

ling constants. The dynamics can be periodic, quasi-periodic and

lso complex and even chaotic as is observed in Figs. 2 –3 . In these

gures Poincare sections are shown for fixed values of the effec-

ive energy E eff and of the invariant of motion I , together with the

lane X = 0 . When α tends to zero, the relationship between ε and

of the linear case is recovered. In Fig. 4 this situation is observed

or a case corresponding to a non-diagonalizable linear regime. 

The most remarkable behavior occurs for specific small finite

alues of α. In this case, in the vicinity of the non-diagonalizable

inear regime ( ε C 1), we can observe the emergence of chaos

 Figs. 2 (d)–3 (c)). This result was tested by the calculation of the

ertinent Lyapunov characteristic exponent, which is positive for

hese curves. 

We can conclude that the use of the aforementioned methodol-

gy has facilitated the analysis of the dynamics of the semiquantal

onlinear system through that of the associated linear subsystem.

t has also allowed us to understand the appearance of the chaotic

henomenon by its relation to the non-diagonalizable linear case.

lthough the presence of the classical system enables the existence

f chaos, the previous fact allows us to visualize this effect as a

henomenon emerging from the quantum system. 
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