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ABSTRACT

Ospino, S.; Restrepo, J.C.; Otero, L.; Pierini, J., and Alvarez-Silva, O., 0000. Saltwater intrusion into a river with high
fluvial discharge: A microtidal estuary of the Magdalena River, Colombia. Journal of Coastal Research, 00(0), 000–000.
Coconut Creek (Florida), ISSN 0749-0208.

The Magdalena River (Bocas de Ceniza) forms a microtidal estuary subjected to numerous interventions aimed to
guarantee navigability towards the port of Barranquilla, Colombia. Significant sedimentation processes are still frequent
in this area, however. Understanding the dynamics of both saltwater intrusion and mixing conditions is a fundamental
requisite to understanding the sedimentation dynamics in these types of estuaries. The effects of river discharge, tide,
and winds on stratification patterns, and mixing and saltwater intrusion dynamics in the estuary of the Magdalena River
were evaluated, focusing on the effects of river discharge variability. The three-dimensional hydrodynamic model
MOHID was implemented, and calibration and validation of the model were carried out using in situ velocity,
temperature, and salinity data, obtaining Skill values greater than 0.90. To cover a wide range of variability in the main
forcing factors (fluvial discharge, tide, and wind), the conditions recorded in 2010 were simulated when both phases of
the El Niño–Southern Oscillation phenomenon occurred. During that year, the river discharge ranged between 2465 and
16,463 m3 s�1. Results revealed a stratified, saltwater wedge estuary, the dynamics of which were mainly dominated by
river discharge. Tide and winds altered saltwater intrusion dynamics, mainly during low-discharge periods.

ADDITIONAL INDEX WORDS: MOHID model, estuarine dynamics, stratification, mixing conditions, ENSO influence.

INTRODUCTION
Estuaries are subjected to a complex interplay among fluvial,

marine, meteorological, and geomorphological factors (Syvitski

and Saito, 2007). Because all these physical factors affect

mixing conditions, estuaries are usually classified according to

their stratification degree as well mixed, partially mixed, or

stratified (Dyer, 1997; Haralambidou, Sylaios, and Tsihrintzis,

2010; Vijith and Shetye, 2012). Typically, well-mixed estuaries

have a tidal range .4.0 m and are characterized by a tidal

prism that favors the homogeneous mixing of the water

column, and thus haloclines do not form. Partially mixed

estuaries have a tidal range between 2.0 and 4.0 m. The mixing

capacity of the tide is reduced, resulting in the formation of

diffuse haloclines. Stratified estuaries are usually microtidal

environments (tidal range ,2.0 m), with a well-defined

halocline that separates the almost homogeneous freshwater

and saltwater bodies. The depth of the halocline defines the

general form of what is known as a salt wedge—the layer of

saltwater that penetrates the mouth of a river and migrates

upstream, underneath the freshwater (Rattray and Mitsuda,

1974). The dynamics of such systems, particularly those with

relatively low levels of human intervention (e.g., Strymon,

Yura, or Ebro River estuaries), have been widely studied.

Generally, there is a strong seaward fluvial flux in the upper

layer and a weak landward marine flux in the bottom layer.

Salt wedges generally propagate upstream as horizontal

gravity currents and depend on the balance between tidal

forces and the resistance imposed by the seaward flow of

freshwater (Simpson, 1987). Consequently, a salinity gradient

causes the formation of a very stable halocline and thus

prevents vertical mixing. In these stratified estuary systems,

mixing mainly develops because of the shear stress beneath,

and within the halocline (Dyer, 1997). The position of a salt

wedge is thus determined by the equilibrium between the

baroclinic pressure gradient (caused by the difference in

longitudinal density) and the advection induced by the flow of

the river (D’Adamo and Lukatelich, 1985). This equilibrium

allows the salt wedge to reach a quasi-stationary state known

as an arrested salt wedge (Rattray and Mitsuda, 1974). As this

regime plays an important role in sedimentation processes of

estuaries (Hinwood, 1994; Restrepo et al., 2016) and in the

spatial distribution of nutrients, chemical compounds, and

pollutants (Delandmeter et al., 2015), different parameteriza-

tions have been formulated to predict the position of the salt

wedge (e.g., Hinwood, 1994; Officer, 1976).

Salt-wedge intrusion in the Magdalena River estuary has

been poorly studied. Its role in siltation processes has been

highlighted recently, linking the formation and magnitude of

the estuarine turbidity maximum (ETM) with both the saline

convergence front dynamics and turbulence weakening (Re-

strepo et al., 2018). Furthermore, in this particular case, salt-

wedge intrusion might lead to serious socioeconomic conflicts

due to the tensions related to fluvial-water supply for domestic,

agricultural, and industrial uses. Given the influence that

saltwater intrusion has on water quality and sedimentation
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processes, human interventions have been performed at some

river mouths to control this phenomenon (Haralambidou,

Tsihrintzis, and Sylaios, 2003) and reduce sedimentation rates

(Van Rijn, 2005). In the case of the mouth of the Magdalena

River (Figure 1), the system has been subjected to significant

human intervention for almost a century. However, despite the

various jetties, breakwaters, and training walls that have been

built to regulate the flow and reduce sedimentation rates, the

Magdalena River still experiences frequent navigability prob-

lems related to sedimentation processes. Therefore, the river

channel must undergo periodic dredging to keep it navigably

active (Restrepo et al., 2016). Although several initiatives have

been launched to characterize the sedimentation processes at

this river mouth (e.g., Alvarado, 1992; NEDECO, 1973), very

few studies have highlighted the relationships among its

stratification, mixing conditions, and sedimentation. Restrepo

et al. (2016) demonstrated that the variations in the river flow

and the associated stratification patterns play a central role in

the sedimentary dynamics of the estuary. The conjugated

effects of salt wedge and tide lead to a stable ETM in the saline

convergence front, with near-bed upstream currents favoring

sediment trapping (Burchard and Baumert, 1998). The ETM

favors a weakening of turbulence and consequently of the

mixing conditions. Here, stratification might be also strength-

ened by the high sediment concentration, and presumably by

flocculation (e.g., Manning et al., 2010). In this study, the

dynamics of the saltwater intrusion in the estuary of the

Magdalena River was investigated in order to: (1) understand

the forcing behind the spatial distribution of salinity in the

navigable channel; (2) identify the dominant forcing factors in

the dynamics of the saltwater intrusion; and (3) analyze the

effect that this forcing exerts on the stratification and mixing

conditions of the estuary. The aim focused heavily on the effects

of river discharge variability. The study of each of these aspects

is a fundamental prerequisite to fully understand the sedi-

mentary dynamics of the Magdalena River.

Study Area: The Mouth of the Magdalena River
The mouth of the Magdalena River forms a 1690 km2 arcuate

delta characterized by alluvial plains, sandpits, and marginal

lagoon complexes. Deposition of sediments along the delta front

has resulted in the formation of a shelf and a large-scale

subtidal channel spanning the NNE sector. Moreover, in the

prodelta, a steep (~408) underwater canyon is aligned with the

mouth of the river. The morphology and sedimentary archi-

tecture of this canyon are closely related to the high

sedimentary contribution of the river (Ercilla et al., 2002),

estimated at 142.6 3 106 t yr�1 of suspended sediments

(Restrepo et al., 2016). Human interventions aimed to mitigate

sedimentation processes and promote commercial navigation

towards the port of Barranquilla have resulted in significant

morphological changes to the main mouth of the Magdalena

River (Bocas de Ceniza). Since 1936, the construction of two

jetties at the mouth of the river has forced the discharge path to

follow a quasi-rectilinear orientation. These eastern and

western jetties have lengths of 1.4 and 7.4 km, respectively

(Figure 1). The main objective of these works was to reduce the

width of the mouth, increase the flow rate, and thereby

increase the capacity to transport sediment. Even following

the implementation of these projects, sedimentation processes

continued to be a major problem. In 1942 and 1945, for

instance, a frontal bar formed at the mouth of the river. In

response to these events, the jetties were reinforced and

extended by an additional 120 m in 1949 and an additional

53 m in 1951. Between 2008 and 2009, two contraction groynes,

0.67 and 0.23 km long, were built on the northern segment of

the eastern jetty to further reduce the width of the mouth.

Currently, the river mouth is 430 m wide, with a minimum

depth of 9.15 m in the navigable channel (Restrepo et al., 2016).

The mouth of the Magdalena River is characterized by a

predominantly diurnal, mixed microtidal regime. The most

significant harmonic constituents at the mouth are K1

(lunisolar diurnal), M2 (principal lunar), and O1 (principal

lunar diurnal) (Figure 2D). The tidal range oscillates between

0.13 m during neap tide and 0.40 m during spring tide. It has

been reported that the tide reaches a maximum amplitude of

0.20 m approximately 22 km upstream of the river mouth

(Alvarado, 1992). Surface salinity in the Caribbean Basin of

Colombia ranges from approximately 33 to 37. While the

general circulation of the Caribbean Sea dominates the

variability in salinity within the deeper layers of this basin,

the more superficial layers are controlled by changes in river

discharge, wind circulation patterns, and upwelling. The upper

layers exhibit considerable seasonal variability in salinity

(Ruiz-Ochoa et al., 2010).

Studies looking at the intrusion of saltwater into the

Magdalena estuary are scarce. Restrepo et al. (2016) showed,

however, that there is a pronounced difference in the salinity

structure during the high- and low-river-discharge seasons. A

well-defined shallow halocline forms in the deltaic front during

the high-discharge season, while a deep halocline forms at the

river mouth. In contrast, during the low-discharge season, the

salt wedge penetrates approximately 4 km upstream of the

river mouth, with salinity values lower than 20 in the deep

layers. Moreover, the final stretch of the channel of the

Magdalena River is characterized by a column of stratified

water during the low-discharge season, while such stratifica-

tion is not observed in this section during the high-discharge

season.

The wind patterns in the Caribbean are defined by the

latitudinal migration of the Intertropical Convergence Zone

(ITCZ). During August, the ITCZ is located in the Northern

Hemisphere at approximately 108N (over the Caribbean Sea).

At this time, the trade winds that cross the equatorial zone

from the Southern Hemisphere acquire a westerly component

and are characterized by low magnitudes and variable

directions. On the other hand, in January, the ITCZ is located

further south (28N), and this results in the generation of strong

and constant northeast trade winds (Andrade, 1993). The

mouth of the Magdalena River experiences the strongest winds

between the months of December and April, with average

values ranging from 7.3 to 9.2 m s�1. The rest of year, winds are

typically weaker, with values falling below the long term

average of 6.5 m s�1 (Figure 2A). These winds mainly come from

the NE (43%) and the NNE (30%) (Figure 2B). The annual wind

cycle changes during El Niño–Southern Oscillation (ENSO)

events: During El Niño, there is a reduction in wind velocities

in the December-January-February and March-April-May
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Figure 2. Characteristics of the main environmental drivers at the Magdalena River mouth. (A) Monthly and annual averaged wind velocities and (B) the wind

rose (both obtained from Global Forecast System [GFS] data). (C) Monthly averaged discharge during non-ENSO years, El Niño and La Niña (Restrepo et al.,

2014). (D) Spectral energy of main tidal harmonics measured ~6 km inside the river mouth. Variability of the main drivers during 2010: (E) daily streamflow at

Calamar gauging station (IDEAM), (F) hourly astronomic tide obtained from Fes2004, (G) wind velocity extracted from GFS data (3 hour time resolution), and (H)

daily wind rose for the dates shown in Table 2.

Journal of Coastal Research, Vol. 00, No. 0, 0000
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quarters but an increase in velocities in the June-July-August

and September-October-November quarters. In contrast, the

opposite pattern occurs during La Niña phenomena (Bernal,

Ruiz-Ochoa, and Beier, 2010).

The Magdalena River experiences low streamflow (,4500 m3

s�1) between February and April and high streamflow (.7500

m3 s�1) between October and December. The average annual

flow of the river is estimated to be 6334.9 m3 s�1, with a monthly

maximum and minimum flow of 16,913 and 1520 m3 s�1,

respectively (Higgins et al., 2016; Restrepo et al., 2014). The

years affected by ENSO events might experience significantly

different values at the extremes of the annual cycle, with an

increase of up to 61% and a decrease of up to 23% during La

Niña and El Niño, respectively (Figure 2C). Although some

studies have shown an important correlation between ENSO

and the flow of the Magdalena River, with ENSO accounting for

up to 65% of the interannual variability (e.g., Restrepo and

Kjerfve, 2000), Restrepo et al. (2014) indicated a less significant

role of ENSO in streamflow variability, since the annual and

quasi-decadal (i.e. 8–12 years) bands are the main oscillatory

components of hydrological variability, whereas the interan-

nual band (i.e. ENSO) represents a second-order source of

variability.

METHODS
A baroclinic three-dimensional (3D) numerical model (MO-

HID 3D, where MOHID stands for Modelo Hidrodinâmico) was

employed to simulate salt intrusion, mixing, and stratification

in the Magdalena River mouth. This model is capable for

simulating estuarine and coastal fluxes under different

scenarios (e.g., Coelho et al., 1999; Martins et al., 2001;

Restrepo et al., 2017; Vaz, Dias, and Leitão, 2009). This model

solves the 3D equations for incompressible fluids, assuming a

hydrostatic equilibrium and employing the Boussinesq and

Reynolds approaches (Martins et al., 2001):

]ui

]xi
¼ 0; ð1Þ

]ui

]t
þ ]ðuiujÞ

]xj
¼ � 1

q0

]patm

]xi
� g

qðgÞ
q0

]g
]xi
� g

q0

Zg
x3

] q0

]xi
dx3

þ ]

]xi
m

]ui

]xj

� �
� 2eijkXjuk; ð2Þ

where, ui represents the velocity components along the

Cartesian directions xi, while g, m, g, and patm represent the

free surface elevation, turbulent viscosity, gravity, and atmo-

spheric pressure, respectively, and q and q0 are the water

density and its anomaly ðq ¼ q0 þq0Þ. The Coriolis force is

represented through the last term in Eq. (2). The UNESCO

state equation (UNESCO, 1981) was used for estimating water

density. Salinity and temperature were transported using the

momentum equations (Martins et al., 2001). The transport

equations were discretized numerically using the finite volume

method, through the Arakawa-C stepped grid (Arakawa, 1966).

The equations were solved through a semi-implicit algorithm

(Alternative Direction Implicit [ADI]) that calculates the

change of water elevation and the evolution of the velocity

based on Abbott, Damsgaard, and Rodenhuis (1973) and

Leendertse (1967). The vertical coordinate of MOHID is

generic, allowing the employment of various types of coordi-

nates (i.e. sigma, Cartesian, isopic, or Lagrangian) (Martins,

Neves, and Leitão, 1998). Horizontal and vertical transport of

temperature and salinity were calculated explicitly and

implicitly, respectively (Mateus et al., 2012). Horizontal

turbulent diffusion was approached through the Smagorinsky

method (Smagorinsky, 1963). Baroclinic force was calculated

using a level z technique for any vertical coordinate, whereby a

horizontal density gradient was estimated (Mateus et al.,

2012). The shear bottom stress was also calculated implicitly as

a part of the boundary condition linked to the vertical diffusion

term (Mateus et al., 2012). Finally, MOHID was coupled with

the General Ocean Turbulence Model (GOTM) model to

calculate vertical viscosity by modelling the turbulent kinetic

energy equations and turbulent dissipation rate through

application of the type k-e model (Rodi, 1987). This approach

has been broadly used (Canuto et al., 2001; Luyten et al., 1996).

Data for Model Implementation
Bathymetric data provided by the National Hydrographic

Service were processed to design a structured calculation mesh

of 1203162 cells with constant 100 m spacing in the horizontal

direction and a vertical sigma discretization of 10 layers. The

baroclinic approach was employed for simulating saltwater

intrusion, considering river discharge, astronomical tide, and

wind as driving mechanisms. Daily discharge data from the

Calamar station (10.2551028 N, 74.9075848 W), the closest to

the river mouth, were used; the astronomical tide harmonics

were taken from the Fes2004 global tide model (Table 1); and

zonal and meridional wind velocities with time resolution of 3

hours were obtained from the Global Forecast System, at a

point located in front of the mouth of the Magdalena River

(11.16668 N, 74.83338 W). Initial conditions were set as 36.0 for

salinity and 27.48C for temperature for the entire domain,

according to previous measurements performed in the Colom-

bian Caribbean Basin (e.g., Bernal, Ruiz-Ochoa, and Beier,

2010; Ruiz-Ochoa et al., 2010) and within the values measured

by Restrepo et al. (2016) at both the mouth and delta front. In

contrast, the river discharge was characterized by a salinity

and temperature of ~0.07 and ~30.78C, respectively.

Calibration and Validation of the Numerical Model
The numerical model was calibrated and validated using in

situ data. Initially, sensitivity tests were conducted to evaluate

the optimal conditions of vertical discretization, bed roughness,

and eddy viscosity (procedures not shown for brevity). The best

fit was obtained for a sigma vertical discretization of 10 layers

and bottom roughness of 0.0025 m. The horizontal turbulence

model Smagorinsky and the vertical turbulence model k-

epsilon were used for the calibration and validation of the

numerical model.

Assuming a relaxation time of 10 days, the hydrodynamic

calibration of the model was performed using water-surface

elevation data measured at~6 km upstream of the river mouth

and salinity/temperature profiles measured along the naviga-

ble channel. Elevation data were taken over 14 days (18–31

March 2014) using a RBR DR-1060t sensor, while salinity and

temperature profiles were measured with a CTD SeaBird
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19Plust during the dry period (20 April 2013). Finally, to

validate the model, salinity and temperature profiles measured

in both the rainy (November 29, 2012) and dry (April 21, 2013)

seasons were compared with simulation results from the same

dates. The prediction error of the model was quantified in terms

of the Skill (3) and RMSE (4) indicators:

Skill ¼ 1�
PN

i¼1ðMi � SiÞ2PN
i¼1 ðSi �MÞ þ ðMi �MÞ
� �2 ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðMi � SiÞ2

N

s
ð4Þ

where, Mi and Si represent the measured and simulated data,

respectively; M is the average of the measured data; and N is

the number of data points. A perfect fit is indicated by Skill¼1

and RMSE¼ 0.

Simulated Scenarios
The in situ measurements along with the results found by

Restrepo et al. (2016) in the Magdalena River emphasize the

importance of river discharge in the processes of stratification,

mixing, and saltwater intrusion. Various river discharge

scenarios were evaluated, including the annual average and

extreme conditions. Variations in discharge during 2010

(Figure 2E) were considered, because this year was character-

ized by both phases of the ENSO, in conjunction with other

climatic events (Restrepo et al., 2014). El Niño of 2010 brought

a minimum discharge of 2465 m3 s�1, while during La Niña,

there was a maximum discharge of 16,463 m3 s�1. The mean/

minimum/maximum discharge scenarios were combined with

high/low-tide conditions and wind/calm situations for a total of

12 modelled scenarios (Table 2). An average NNE wind of 8.0 m

s�1 was used in those scenarios (Figure 2G,H). The stratifica-

tion and mixing were quantified for all scenarios using the

stratification parameter (ns) and the Richardson layered

number (RL), where the stratification parameter (ns) was

determined by:

ns ¼ dS=Sm ð5Þ

where, dS is the difference in salinity between the bottom and

the surface, and Sm corresponds to the average salinity in the

water column. When the water column is well mixed, ns , 0.1;

when it is partially mixed, 0.1 , ns , 1.0; and when ns . 1.0,

the water column is stratified, and the presence of a salt wedge

is evident (Haralambidou, Sylaios, and Tsihrintzis, 2010). The

weakening of the turbulent mixing leads to permanent or

prolonged stratification (Prandle, 2009). The main distinction

between mixing conditions was determined according to the

Richardson layered number (RL):

RL ¼
ghðqb � qsÞ

u2qo

ð6Þ

where, g is the gravitational acceleration (m s�2), h is the depth

of the water layer (m), ū is the depth-averaged velocity (m s�1),

qo is the depth-averaged density (kg m�3), and (qb – qs) is the

difference in density between the bottom layer and the surface

layer (kg m�3) (Dyer, 1997; Kitheka, Obiero, and Nthenge,

2005). RL enables a quantitative estimation of the mixing

intensity and is dependent on the variations in flow and tide.

For RL values .20, the water column is considered to be stable,

and bottom turbulence is not effective enough to generate

mixing. Meanwhile, when 2 , RL , 20, the turbulence mixing

becomes more effective. If RL , 2, the turbulence generated by

bottom friction is the fundamental mechanism of mixing (Dyer,

1997).

After evaluating the average-discharge condition, the sur-

face area of dissolution was defined by considering the domain

of water with salinities ranging between 0.5 and 30 (Kinne,

Table 1. Harmonic components of the tide in the study zone, taken from

FES2004 model.

Harmonic Period (h) Amplitude (m) Phase (8)

M2 12.42 0.06740610 126.2100

S2 12.00 0.00806993 32.5322

K1 23.93 0.09293130 �119.4320

K2 11.97 0.01085130 14.2867

N2 12.66 0.02625460 108.4130

2N2 12.91 0.00368386 70.6246

O1 25.82 0.05379000 �125.9750

Q1 26.87 0.03060430 �120.0860

P1 24.07 0.00893939 �137.8770

Mf 327.86 0.01681680 �4.1648

Mm 661.30 0.00809742 �6.4744

Mtm 219.19 0.00340095 0.145009

MSqm 170.30 0.00047171 �1.12319

Table 2. Simulation scenarios. For mean-discharge conditions, a date when the discharge was similar to the long-term average was selected. For extreme

conditions, the minimum and maximum discharge of 2010 where chosen.

Date Streamflow

(m3 s�1)

Tidal State

(ebb/flood)

Wind

Case CodeDD/MM/AAAA Magnitude (m s�1) Direction

12/02/2010 2465 Ebb — — 1 C1

12/02/2010 2465 Ebb 8.0 NNE 2 C2

12/02/2010 2465 Flood — — 3 C3

12/02/2010 2465 Flood 8.0 NNE 4 C4

06/05/2010 6052 Ebb — — 5 C5

06/05/2010 6052 Ebb 8.0 NNE 6 C6

06/05/2010 6052 Flood — — 7 C7

06/05/2010 6052 Flood 8.0 NNE 8 C8

30/11/2010 16,463 Ebb — — 9 C9

30/11/2010 16,463 Ebb 8.0 NNE 10 C10

30/11/2010 16,463 Flood — — 11 C11

30/11/2010 16,463 Flood 8.0 NNE 12 C12
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1971). The average depth of this water domain was then

calculated in order to estimate the average volume of the

estuary. In this way, the stratification diagram proposed by

Vijith and Shetye (2012) may be applied using the discharge

and tidal range shown in Figure 2. This diagram assumes that

stratification depends primarily on the relationships tr/h and

Rs/Ve, where, tr is the tidal range (m), R is the streamflow (m3

s�1), h is the average depth (m), s is the timescale (1 day), and Ve

is the volume of the estuary (m3). This diagram has successfully

replicated stratification state (i.e. mixed, partially mixed,

stratified) in numerous estuaries with a well-defined main

channel (e.g., Godavari estuary, Mandovi estuary, and Guadi-

ana estuary). In addition to evaluating both the average and

extreme 2010 discharge conditions, other streamflows were

also evaluated (i.e. 3600, 4800, 8400, and 12,000 m3 s�1) in

order to obtain a mathematical function capable of estimating

the maximum penetration of different isohalines (i.e. 1, 10, 20,

and 30) into the navigable channel for a given streamflow

condition. For these scenarios, high-tide conditions were

considered, but due to its more random nature, the effect of

wind was omitted.

RESULTS
The comparison between the simulated and measured data

(water level and flow velocity) ~6 km upstream of the river

mouth (Figure 3, D1), yielded a Skill value of 0.95 and a RMSE

of 0.04 for water level; and a Skill value of 0.80–0.95 and a

RMSE value of 0.01–0.08 for flow velocity. The calibration

results with respect to the vertical distribution of salinity and

temperature for the dry period, along with the validation of the

model for both wet and dry periods, are shown in Figure 3, D2–

D4, respectively. The estimated Skill prediction values are

higher than 0.90 for all cases (Table 3), similar to those

reported in studies applying similar approaches (e.g., Dı́as and

Lopes, 2006; Dı́az et al., 2009; Martins et al., 2007; Oliveira,

Fortunato, and Pinto, 2006).

Saltwater Intrusion in the Magdalena River
The calibrated and validated 3D model was used to simulate

saltwater intrusion into the Magdalena River under different

scenarios (Table 2). The results of the vertical distribution of

salinity (Figures 4–5) along the longitudinal AB transect

(Figure 1) show the salt wedge penetration upstream under

Figure 3. Comparison between in situ data and numerical model results for (D1) water level and velocity in (a) wet season and (b) dry season, (D2) salinity and

temperature calibration during the dry season, (D3) salinity and temperature validation during the dry season, and (D4) salinity and temperature validation

during the wet season.

Table 3. Skill and RMSE values from comparing measurements and

simulation results during calibration and validation of the model.

Season Estimator Salinity Temperature

Calibration

Dry RMSE 2.51 0.25

Dry Skill 0.92 0.94

Validation

Dry RMSE 1.69 0.31

Dry Skill 0.96 0.90

Wet RMSE 1.60 0.07

Wet Skill 0.95 0.96
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minimal- and medium-discharge conditions (Figures 4 and 5,

C7–C8). In contrast, under maximum-discharge conditions

(Figures 5, C9–C12), the saltwater convergence front remained

confined to the river mouth (i.e. it only reached as far as 300 m

upstream). More specifically, it stayed close to the depression

located before the subtidal shoal of the delta. The maximum

upstream penetration of the salt wedge occurred under

conditions of minimal discharge (2465 m3 s�1) and high tide

(0.2 m). In these conditions, the 30, 20, 10, and 1 isohalines

intersected the channel bed at 0.6, 1.1, 1.8, and 2.7 km,

respectively. In spring-tide, the salt front was located at 2.2 and

2.9 km upstream of the river mouth during low and high tide,

respectively; the salt-wedge location shifted up to 0.7 km In

neap tide, this shift was less than 0.2 km, and the salt front was

located at 2.3 and 2.5 km upstream of the river mouth during

low- and high-tide, respectively.

Furthermore, in absence of tide forcing, the salt wedge

penetrated up to 2.4 km upstream of the river mouth. The force

of the wind did not significantly affect the maximum penetra-

tion of the salt wedge (Figures 4–6). During minimum-,

medium-, and maximum-discharge conditions, the maximum

difference in salinity between the bottom and surface layers

(~30 salinity) was located 0.3, 0.2, and 0.0 km upstream from

the river mouth, respectively. Consequently, the most pro-

nounced haloclines were formed in these zones.

During high-discharge conditions, deep haloclines were

present in the navigable channel. Also, at the mouth of the

river (transversal CD transect; Figure 1), the depth of the

haloclines increased according to river discharge (Figure 7).

Moreover, the isohalines exhibited a cross-channel tilt, where

the depth of the halocline increased from the eastern to western

margin of the river. For example, during high-discharge

conditions, an isohaline of 10 showed a depth of ~5 m on the

eastern margin but a depth of ~10 m on the western margin

(Figure 7, C9–C12).

These results demonstrate that the dynamics of the salt

wedge in the Magdalena River are mainly controlled by the

river’s discharge (Figures 4–6 and 8). The positions at which

the isohalines intercept the channel bed can be described by a

power function: X ¼ aQ�b (Figure 8). In this function, X

represents the maximum penetration of a given isohaline (km),

Q represents the discharge (m3 s�1), and a and b represent the

fit coefficients. This means that the penetration of the salt

wedge decreases as the river discharge increases. For example,

the 1, 10, 20, and 30 isohalines under minimal-discharge

conditions (Q¼2465 m3 s�1) penetrated 2.7, 1.8, 1.1, and 0.6 km

upstream of the river mouth, respectively. Under maximum-

discharge conditions (Q ¼ 16,463 m3 s�1), the isohalines only

reached approximately 0.4, 0.3, 0.2, and 0.1 km inland. This

power function provided the best fit to the simulated data

(other fits not shown for brevity), having coefficients of

determination higher than R2 . 0.92 with statistical signifi-

cance levels above 95% (p � 0.05). The equations for the

prediction of the intrusion of each isohaline are shown in Table

4.

Under maximum-discharge conditions, surface salinity at

the delta front was notably reduced, leading to a large area of

dissolution. The surface layer of the delta front exhibited

salinities of 10, 20, and 30 up to 1.0, 2.4, and 3.8 km offshore

from the river mouth, respectively. The wind dynamics also

Figure 4. Vertical distribution of salinity along the longitudinal transect AB

(Figure 1) during low (C1 to C4) and mean (C5 and C6) streamflow

conditions.

Figure 5. Vertical distribution of salinity along the longitudinal transect AB

(Figure 1) during mean (C7 and C8) and high (C9 to C12) streamflow

conditions.
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proved to significantly influence the distribution of salinity in

the offshore surface layers, also altering the maximum extent

of the hypopycnal flux defined by the river inputs (Figure 6).

Winds coming from the NE drive the migration of the surface

riverine plume principally towards the NW and SW. In

contrast, for deeper layers (depth . 10 m), the shear stress

exerted by the wind did not generate any significant change in

the distribution of salinity.

Stratification and Mixing Conditions in the Estuary
Saltwater intrusion into the navigable channel of the

Magdalena River leads to stratification values (ns) between

1.0 and~4.0. This saltwater intrusion weakens turbulence and

creates a moderately stable water column upstream (with RL

values between 2 and 20), as well as a stable water column close

to the river mouth (with RL . 20). At this site, the maximum

stability conditions (RL ¼ ~90) are reached under minimal-

discharge conditions (Figure 9). A variation in the stratification

and mixing conditions of the water column was observed along

the tidal cycle at the control points p1, p2, p3, and p4 located 0, 1,

2, and 4 km upstream of the river mouth, respectively. For

instance, during a tidal cycle under minimal streamflow

conditions, tide and wind generated small variations in ns

and RL without presenting transitions between stratification

and mixing conditions. The parameter ns exhibited larger

variations in the control points located upriver, with values

around 2.0, while the control point located at the river mouth

showed the greater variation of RL, with values between 50 and

130 (Figure 10).

Under maximum-discharge conditions, the discharge tends

to preserve the stratification and stability of the water column

at the river mouth in spite of any mixing effect from the tide or

wind. When discharge decreases, the effect of the tide and wind

becomes, however, more relevant, and significant changes in

the stratification and mixing conditions of the estuary can be

observed (Figure 9). For example, during mean-discharge

conditions, when the saltwater convergence front is found

close to the mouth of the river, the action of the wind causes an

increase in salinity of up to 6 at this saltwater front (Figure 11).

On the other hand, during low-discharge conditions, the tide

determines the final penetration of the saltwater front, since at

high tide and low tide, the front reaches 2.7 and 2.4 km

upstream, respectively. This constitutes a difference of 0.3 km

Figure 6. Bottom and superficial distribution of salinity for the different scenarios shown in Table 2.
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in terms of salt-wedge penetration for a tidal range of only~0.3

m (Figure 11).

Under average-discharge conditions, the area of dissolution

(i.e. the water domain with a salinity range of 0.5–30) is ~8.8

km2, with an average depth of ~24 m. As such, the volume of

the Magdalena estuary can be estimated as ~0.21 km3. In

contrast, under minimum and maximum-discharge conditions,

the area of dissolution becomes ~6.16 and ~19.33 km2, with

average depths of ~14 and ~47 m, respectively. These values

correspond to estuary volumes of ~0.086 and ~0.908 km3,

Figure 7. Vertical distribution of salinity along the cross section CD (Figure 1) for the different scenarios shown in Table 2.

Figure 8. Intrusion of isohalines (1, 10, 20, and 30) upstream of the river mouth as a function of the streamflow.
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respectively. The estuary volume is relatively low compared to

daily freshwater discharge, and the mean depth is relatively

high with regard to tidal range. Under these conditions, a

highly defined stratified estuary develops, where the interac-

tion between fluvial discharges and tides, even during minimal

streamflow and maximum tidal range, is not sufficient to

promote efficient mixing through the water column (Figure 12).

DISCUSSION
Currently, there is limited available information regarding

saltwater intrusion at the Magdalena River mouth (e.g.,

Alvarado, 1992; Alvarez-Silva and Osorio, 2015; Cormagdale-

na, 2012; Restrepo et al., 2016). Although this information has

provided a general approximation to the dynamics of saltwater

structure at the mouth, it is insufficient to analyze the effect of

the different drivers (i.e. discharge, tide, and wind) and their

interaction on the stratification, mixing, and saltwater intru-

sion. A new approach was performed through the implemen-

tation of a 3D hydrodynamic model (MOHID 3D). This model

was calibrated and validated using distinct weather scenarios

(rainy and dry seasons) and subsequently used to simulate

different interactions between the main hydrodynamic drivers

(Figure 2E–H). The results showed a marked seasonal change

in the stratification state and position of the saltwater/

freshwater interface (Figures 4–12). Decreases in river dis-

charge lead to greater saltwater intrusion into the deeper part

of the channel of the river mouth (Figures 4–6). As such, this

confirms that the dynamics of saltwater intrusion at the mouth

of the Magdalena River depend mostly on the variations in

river discharge. This fact was previously suggested by Restrepo

et al. (2016) through experimental measurements. The effects

of tides and winds on the salt-wedge intrusion are non-

negligible during low and medium river discharges, as shown

in Figure 11.

The different simulated scenarios revealed the formation of

deep haloclines in the navigable channel and shallow halo-

clines in the delta front. During high-discharge conditions, the

advection flux does not completely displace the convergence

front towards the delta, but rather deepens the halocline

(Figure 5, C9–C12). On the other hand, under low-discharge

conditions, the halocline and thus the stratification conditions,

are strengthened (Figure 4, C1–C4). Furthermore, the greater

depth at the channel also favors the penetration of the salt

wedge into the river, as can be seen in transect CD in Figure 7,

where shallower haloclines were found in the deepest part of

the cross section due to the effect of the density gradient on the

estuarine circulation. This pattern has also been observed in

estuaries that experience lateral circulation (e.g., Vigo estu-

ary). These results suggest that increasing the depth of the

channel by dredging would favor the penetration of the

saltwater convergence front by altering the balances among

advection flux, stratification, and shear stress. In fact, it has

been reported that the landward migration of the saltwater

convergence front after dredging activities has generated

significant changes in salt-wedge intrusion and sedimentation

patterns (e.g., Wang, Hassan, and Xie, 2006; Wu, Liu, and

Wang, 2012). In addition, human intervention at the Magda-

lena River mouth has been conducted to regulate flow and to

reduce siltation rates (Restrepo et al., 2016). These interven-

tions might have modified the salt-wedge dynamics, leading to

a lesser landward penetration as a result of river mouth

narrowing and the freshwater flux increase (Restrepo et al.,

2016).

The length of the salt-wedge intrusion shows a relation with

the fluvial discharge (Q) estimated as Q�1/3 (Monismith et al.,

2002; Ralston, Geyer, and Lerczak, 2008). This estimation has

been used as a reference for evaluating the response of salt

gradients against changes in fluvial discharge (Bowen, 2000;

Zahed, Etemad-Shahidi, and Jabbari, 2008). The estimated

Q�1/3 only considers steady shear dispersion as the mechanism

triggering upstream salt flux, despite the fact that oscillatory

salt flow also plays a major role in highly stratified systems

(Chen et al., 2012). The bed morphology and channel geometry

significantly affect the length of the salt-wedge intrusion

(Ralston, Geyer, and Lerczak, 2008). Therefore, the length of

the intrusion might be relatively unresponsive to fluvial

discharges, exhibiting deviation from the Q�1/3 estimate

Table 4. Functions describing the penetration (X) of the 1, 10, 20 and 30

isolines into the final stretch of the river as a function of the river discharge

(Q).

Isohaline Function R2 p Value

1 X¼7410Q�1.01 0.9297 0.0014

10 X¼2340Q�0.9089 0.9409 0.0005

20 X¼646.4Q�0.8023 0.9787 0.0001

30 X¼292.1Q�0.7641 0.9527 0.0001

Figure 9. Evolution of the stratification and mixing parameters along the

longitudinal profile AB (from the river mouth to 10 km upstream) (Figure 1).

(A) Stratification parameter ns, where, the band represents the transition

zone from a homogeneous to stratified water column. (B) Mixing parameter

RL, where, the band represents the transition zone between a steady and

unsteady water column.
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(Aristizabal and Chant, 2013). This deviation was observed at

the Magdalena River estuary, where the maximum intrusion of

the 1 and 30 isohalines was proportional to Q�1.01 and Q�0.76,

respectively.

Changes in the stratification parameter (ns) and the

Richardson layered number (RL) under different scenarios also

reflect the displacement of the interface between the two water

masses (saltwater/freshwater): The final stretch of the Magda-

lena River is characterized by alternation between well-mixed

and stratified conditions (Figure 9). The change in the

stratification state is determined by the changes in the mixing

mechanisms. As explained before, the term RL is widely

accepted for estimating the efficiency of buoyancy in mitigating

the instabilities generated inside the water column by

turbulence or internal waves (i.e. Holmboe, Kelvin-Helmholtz

instability). For large RL values (.20), it is considered that

there are no instabilities, either because the shear force is very

weak or because buoyancy is predominant. In contrast, for low

RL values (,2), the effect of the shear force is dominant, and

any perturbation can cause an instability and generate mixing

throughout the water column (Prandle, 2009). The modelling

results show that when river discharge decreases (i.e. decrease

in ū), the RL value increases (Figure 9). Therefore, under low-

discharge conditions (cases C1–C4), stratification becomes

effective ~2.7 km upstream of the river mouth as a result of

the decrease in river flux and the increase in the density

difference between the two masses of water (qb � qs). This

makes the turbulence caused by bottom friction less efficient

for mixing the water column, resulting in turn in a well-defined

extended stratification, as indicated by the stratification

parameter (ns) (Figure 9). Other studies have also demonstrat-

ed that in stratified flows, the vertical fluctuations in

turbulence are weakened or suppressed, with a proportion of

the turbulent energy dissipating along the longitudinal

component (e.g., Dyer, Christie, and Manning, 2004; Geyer,

Hill, and Kineke, 2004; Kitheka, Obiero, and Nthenge, 2005).

Therefore, the stratification induced by salt-wedge intrusion

during low streamflow conditions leads to a reduction in the

vertical mixing and subsequent ETM formation, promoting

suspended particulate matter settling (Restrepo et al., 2018).

The type of stratification observed in the simulations is

characteristic of estuaries experiencing two-layer circulation

and the formation of a salt wedge. This is common at the

mouths of large rivers, and it represents the balance between

river advection and vertical stratification. The friction between

the two water layers is also important, as river water flowing

seaward balances the pressure gradient by forcing saltwater

outwards and stopping the salt wedge (Prandle, 2009).

Considering these results, it can be assumed that the intrusion

of the salt wedge is a function of river discharge, as was

effectively demonstrated here (Figure 8; Table 4). In the

equations shown in Table 4, the tide and wind effects are not

taken into account because they are secondary contributors to

the shifts in the location of the salt front (Figure 11). The

nonlinear relationship between the river discharge and the

position of the salt wedge shown in Figure 8 can be explained by

the irregular morphology of the river bed, where shallow areas

act as an obstacle for the progression of the salt wedge, and by

the nonlinearity of frictional processes within the bottom layers

and the halocline (e.g., Prandle, 2009).

The position of the convergence front can thus be estimated

with a significant level of confidence using these functions for

average and low streamflow conditions (Table 4). For example,

the simulations show that when the system is subjected to high

streamflows (.7500 m3 s�1), the 30 isohaline only reaches the

depression and mouth frontal bar located 0.3 km upstream of

the mouth. This pattern agrees with the longitudinal distribu-

tion of salinity measured by Restrepo et al. (2016) during

discharges of~8000 m3 s�1, in which the 1 isohaline penetrated

as far as 0.4 km upstream of the river mouth. For a discharge of

6000 m3 s�1, which is a medium streamflow (4500 m3 s�1 , Q ,

7500 m3 s�1), the maximum penetration of an isohaline of 1 into

the river is estimated to be 0.8 km upstream of the river mouth.

A similar result was reported by Cormagdalena (2012), in

which a saltwater influence was found as far as 0.7 km from the

river mouth with a streamflow of 6200 m3 s�1. However, for low

discharges (,4500 m3 s�1), the model shows that the salt wedge

propagates further upstream, but not as much as measure-

ments by Restrepo et al. (2016) show. While the model predicts

Figure 10. Temporal evolution of the stratification and mixing parameters

for the control points shown in Figure 1 during the low-discharge simulation

scenarios. (A) Stratification parameter ns, where, the band represents the

transition zone from a homogeneous to stratified water column. (B) Mixing

parameter RL, where, the band represents the transition zone between a

steady and unsteady water column. (C) Magnitude and direction of the wind.

(D) Water level. The dotted ‘‘V’’ and continuous ‘‘M’’ lines represent

scenarios with and without wind, respectively.
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a penetration of 1.4 km for the isohaline of 1, the measurements

show a penetration of 6.2 km upstream of the river mouth. For

the minimum reported discharge (1520 m3 s�1), the model

estimates the salt wedge (e.g., isohaline of 1) to penetrate as far

as 4.5 km upstream of the mouth. The differences in salt-wedge

penetration between the results of this study and those

reported by Restrepo et al. (2016) could be due to the effects

of morphology on the landward propagation of the salt wedge.

Discrepancies in the length of the salt-wedge penetration

might be linked to differences in the bathymetry considered in

the current numerical simulation and that existing during

previous measurements (Restrepo et al., 2016). Such differenc-

es are very likely, considering that significant changes of the

bed morphology occur as a result of the periodic dredging

performed in the Magdalena River mouth. Moreover, some

bathymetric features may not be fully reproduced by the 3D

hydrodynamic model because of the relationships among

spatial discretization (horizontal/vertical), time lapse, and the

stability of the numerical model. Accurate bathymetry im-

proves the simulation of salt-wedge penetration, highlighting

the effect of bed morphology on such process (Ibañez, Pont, and

Prat, 1997). A study by Alvarado (1992) reported salt-wedge

propagation of ~22 km upstream of the mouth during a

discharge of 2100 m3 s�1. Nonetheless, this estimation seems to

be unlikely because a saltwater prism of this volume (~52.8 3

106 m3) would require about 20 hours to form considering the

geometry of the channel, the thickness of the salt wedge (,4

m), and the typical velocity of this density flow (~0.3 m s�1), and

ignoring diffusive processes. This amount of time clearly

exceeds the duration of the tidal cycle that occurs at the mouth

of the Magdalena River.

As previously mentioned, even though the estuary of the

Magdalena River is subjected to a microtidal environment with

a maximum tidal range of 0.4 m, the tide still has an influence

Figure 11. Spatial differences in salinity along the longitudinal profile (AB) as a consequence of (A) variations in the driving mechanisms (tide and wind). The

labels identifying each figure represent the difference between the two scenarios (Table 2). For minimum flow condition: (B) variations between flood/ebb states

during neap tide, and (C) variations between flood/ebb states during spring tide. The dashed line represents the isohaline of 1 (no tide).

Figure 12. Vijith and Shetye (2012) stratification diagram for the estuary of

the Magdalena River, where, tr: tidal range (m), R: discharge (m3 s�1), h:

average depth (m), s: timescale (1 day), and Ve: volume of the estuary (m3).
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on the position and structure of the saltwater wedge under

minimum-discharge conditions. This enables both an increase

in the thickness and a progression of the saltwater front during

tidal floods (Figure 11). Under medium-discharge conditions,

the force of the wind prevails over the force of the tide, favoring

the penetration of water with higher salinity (Figure 11).

However, a more detailed analysis of wind effects on the

distribution of salinity, mixing conditions, and the stratifica-

tion state of the water column shall be carried out by evaluating

scenarios using different magnitudes and directions of winds,

under different tidal and discharge situations.

The stratification and formation of a surface plume (i.e.

hypopycnal flow) on a delta front are typical processes of rivers

that discharge into deep basins, close to submarine canyons,

and that experience weak tides (e.g., Congo, Sepik, Fraser). In

these cases, the frontal mixing zone is extremely abrupt, with

only a few hundred meters between the river domain and the

ocean domain (Geyer, Hill, and Kineke, 2004). The position and

extent of the fontal zone depend on the bathymetry, tidal

conditions, and wave energy in the receiving basin. At the

Magdalena River, this front appears to extend less than 1.5 km

from the mouth (Figures 4 and 5). Considering that the

Magdalena River delta experiences highly energetic waves

(Ortı́z et al., 2013), the delta front could be considered as

partially or well mixed, since the turbulence produced by waves

breaking in shallow areas generates mixing throughout the

entire water column. Additional studies shall be conducted in

order to analyze the effect of waves on mixing conditions and

estuarine dynamics. Generally, this results in an increase in

turbulence, and consequently a decrease in the vertical salinity

gradient (Movellán, 2003).

CONCLUSIONS
A 3D numerical model was calibrated and validated in the

Magdalena River estuary under different physical conditions,

yielding relatively high and low Skill and RMSE values,

respectively. The simulation of different scenarios of stream-

flow, tide, and wind patterns revealed significant seasonal

changes in vertical distribution of salinity and mixing

conditions. The salt wedge penetrates upstream under mini-

mal- and medium-discharge conditions. In contrast, under

maximum-discharge conditions, the saltwater convergence

front remains confined to the river mouth. These results

demonstrate that the dynamics of the salt wedge in the

Magdalena River are mainly controlled by the river’s dis-

charge. Saltwater intrusion into the navigable channel of the

Magdalena River leads to stratification, which in turn leads to

changes in the mixing conditions. Under maximum-discharge

conditions, the flow of the river tends to preserve the

stratification and stability of the water column at the river

mouth in spite of any mixing effect from the tide or wind. When

discharge decreases, however, the effects of the tide and wind

become more relevant, and significant changes in the stratifi-

cation and mixing conditions of the estuary can be observed.

Despite microtidal conditions, the tide still has an influence on

the position and structure of the saltwater wedge under

minimum-discharge conditions. This enables both an increase

in the thickness and a progression of the saltwater front during

tidal floods. Under medium-discharge conditions, the force of

the wind prevails over the force of the tide, favoring the

penetration of water with higher salinity.

Under low-discharge conditions, stratification becomes ef-

fective at ~2.7 km upstream of the river mouth as a result of

the decrease in river flux and the increase in the density

difference between the two masses of water. This makes the

turbulence caused by bottom friction less efficient for mixing

the water column, resulting in turn in a well-defined extended

stratification, as indicated by the stratification parameter (ns).

The final stretch of the Magdalena River is characterized by

alternation between well-mixed and stratified conditions. The

halocline and thus the stratification conditions are strength-

ened under low-discharge conditions. Furthermore, the greater

depth of the channel also favors the penetration of the salt

wedge into the river, where shallower haloclines were found in

the deepest part of the cross section due to the effect of the

density gradient on the estuarine circulation. These results

suggest that increasing the depth of the channel by dredging

would favor the penetration of the saltwater convergence front

by altering the balance among advection flux, stratification,

and shear stress.

During high-discharge conditions, the advection flux does not

completely displace the convergence front towards the delta,

but rather it deepens the halocline. In addition, surface salinity

at the delta front was notably reduced, leading to a large area of

dissolution. The surface layer of the delta front exhibited

salinities of 10, 20, and 30 up to 1.0, 2.4, and 3.8 km offshore

from the river mouth, respectively. The wind dynamics also

proved to significantly influence the distribution of salinity in

the offshore surface layers and alter the maximum extent of the

hypopycnal flux defined by the river inputs. Under average-

discharge conditions, the area of dissolution is ~8.8 km2, with

an average depth of ~24 m. As such, the volume of the

Magdalena estuary can be estimated as ~0.21 km3. Alterna-

tively, under minimum- and maximum-discharge conditions,

the area of dissolution becomes ~6.16 and ~19.33 km2,

respectively, with average depths of ~14 and ~47 m,

respectively. These values correspond to estuary volumes of

~0.086 and ~0.908 km3, respectively.
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quilla, Colombia: Ministerio de Obras Públicas y Transporte,
Technical Report, 43p.

Journal of Coastal Research, Vol. 00, No. 0, 0000

0 Ospino et al.



Alvarez-Silva, O. and Osorio, A., 2015. Salinity gradient energy
potential in Colombia considering site specific constraints. Renew-
able Energy, 74, 737–748.

Andrade, C., 1993. Análisis de la velocidad del viento en el mar
Caribe. Boletı́n Cientı́fico Centro de Investigaciones Oceanográficas
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A SUMMARY OR EXTENDED ABSTRACT IN NATIVE LANGUAGE A

La desembocadura del Rı́o Magdalena (Bocas de Ceniza) en el Mar Caribe forma un estuario micro-mareal que ha sido objeto de numerosas intervenciones

destinadas a garantizar la navegabilidad hacia el puerto de Barranquilla. No obstante, a pesar de estas intervenciones, aún son frecuentes los procesos

significativos de sedimentación en esta zona. Entender la dinámica de la intrusión salina y las condiciones de mezcla es un pre-requisito fundamental para

analizar la dinámica sedimentaria en este tipo de estuarios. Se evaluaron los efectos de la descarga fluvial, la marea y el viento sobre la estratificación, las

condiciones de mezcla y la dinámica de la intrusión salina en el estuario del Rı́o Magdalena. Se implementó el modelo hidrodinámico tridimensional MOHID;

la calibración y validación del modelo se realizaron utilizando datos de temperatura y salinidad recolectados de campañas hidrográficas. El modelo presenta

una habilidad predictiva (Skill) mayor a 0.90. Con el fin de cubrir un rango amplio de variabilidad en los forzadores (descarga fluvial, marea y viento), se

simularon las condiciones registradas en 2010 donde se presentaron ambas fases del evento ENOS (El Niño-Oscilación del Sur). Durante este año la descarga

fluvial osciló entre 2465 y 16463 m3 s�1. Los resultados revelan una estratificación, estuario de cuña salina, cuya dinámica está dominada principalmente por

la descarga fluvial. La marea y los vientos pueden alterar la intrusión salina principalmente durante los periodos de baja descarga fluvial.
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